src/share/vm/memory/collectorPolicy.cpp

Thu, 26 Sep 2013 12:18:21 +0200

author
tschatzl
date
Thu, 26 Sep 2013 12:18:21 +0200
changeset 5775
461159cd7a91
parent 5706
9e11762cee52
child 5814
9ecd6d3782b1
permissions
-rw-r--r--

Merge

duke@435 1 /*
jwilhelm@4554 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "runtime/vmThread.hpp"
jprovino@4542 42 #include "utilities/macros.hpp"
jprovino@4542 43 #if INCLUDE_ALL_GCS
stefank@2314 44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
jprovino@4542 46 #endif // INCLUDE_ALL_GCS
duke@435 47
duke@435 48 // CollectorPolicy methods.
duke@435 49
stefank@5706 50 // Align down. If the aligning result in 0, return 'alignment'.
stefank@5706 51 static size_t restricted_align_down(size_t size, size_t alignment) {
stefank@5706 52 return MAX2(alignment, align_size_down_(size, alignment));
stefank@5706 53 }
stefank@5706 54
duke@435 55 void CollectorPolicy::initialize_flags() {
brutisso@5071 56 assert(max_alignment() >= min_alignment(),
brutisso@5071 57 err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
brutisso@5071 58 max_alignment(), min_alignment()));
brutisso@5071 59 assert(max_alignment() % min_alignment() == 0,
brutisso@5071 60 err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
brutisso@5071 61 max_alignment(), min_alignment()));
brutisso@5071 62
tschatzl@5073 63 if (MaxHeapSize < InitialHeapSize) {
tschatzl@5073 64 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
tschatzl@5073 65 }
tschatzl@5073 66
stefank@5706 67 if (!is_size_aligned(MaxMetaspaceSize, max_alignment())) {
stefank@5706 68 FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
stefank@5706 69 restricted_align_down(MaxMetaspaceSize, max_alignment()));
kvn@2150 70 }
duke@435 71
stefank@5706 72 if (MetaspaceSize > MaxMetaspaceSize) {
stefank@5706 73 FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
stefank@5706 74 }
stefank@5706 75
stefank@5706 76 if (!is_size_aligned(MetaspaceSize, min_alignment())) {
stefank@5706 77 FLAG_SET_ERGO(uintx, MetaspaceSize,
stefank@5706 78 restricted_align_down(MetaspaceSize, min_alignment()));
stefank@5706 79 }
stefank@5706 80
stefank@5706 81 assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
stefank@5706 82
stefank@5706 83 MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, min_alignment());
stefank@5706 84 MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, min_alignment());
duke@435 85
duke@435 86 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 87
coleenp@4037 88 assert(MetaspaceSize % min_alignment() == 0, "metapace alignment");
coleenp@4037 89 assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
coleenp@4037 90 if (MetaspaceSize < 256*K) {
coleenp@4037 91 vm_exit_during_initialization("Too small initial Metaspace size");
duke@435 92 }
duke@435 93 }
duke@435 94
duke@435 95 void CollectorPolicy::initialize_size_info() {
tschatzl@5073 96 // User inputs from -mx and ms must be aligned
tschatzl@5073 97 set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
tschatzl@5073 98 set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
ysr@777 99 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 100
duke@435 101 // Check heap parameter properties
jmasa@448 102 if (initial_heap_byte_size() < M) {
duke@435 103 vm_exit_during_initialization("Too small initial heap");
duke@435 104 }
duke@435 105 // Check heap parameter properties
jmasa@448 106 if (min_heap_byte_size() < M) {
duke@435 107 vm_exit_during_initialization("Too small minimum heap");
duke@435 108 }
jmasa@448 109 if (initial_heap_byte_size() <= NewSize) {
duke@435 110 // make sure there is at least some room in old space
duke@435 111 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 112 }
jmasa@448 113 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 114 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 115 }
jmasa@448 116 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 117 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 118 }
jmasa@448 119 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 120 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 121 }
jmasa@448 122
jmasa@448 123 if (PrintGCDetails && Verbose) {
jmasa@448 124 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 125 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 126 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 127 }
duke@435 128 }
duke@435 129
jmasa@1822 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 131 bool result = _should_clear_all_soft_refs;
jmasa@1822 132 set_should_clear_all_soft_refs(false);
jmasa@1822 133 return result;
jmasa@1822 134 }
duke@435 135
duke@435 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 137 int max_covered_regions) {
duke@435 138 switch (rem_set_name()) {
duke@435 139 case GenRemSet::CardTable: {
duke@435 140 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 141 return res;
duke@435 142 }
duke@435 143 default:
duke@435 144 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 145 return NULL;
duke@435 146 }
duke@435 147 }
duke@435 148
jmasa@1822 149 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 150 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 151 // have been cleared in the last collection but if the gc overhear
jmasa@1822 152 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 153 if (size_policy() != NULL) {
jmasa@1822 154 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 155 }
jmasa@1822 156 _all_soft_refs_clear = true;
jmasa@1822 157 }
jmasa@1822 158
tschatzl@5701 159 size_t CollectorPolicy::compute_max_alignment() {
tschatzl@5701 160 // The card marking array and the offset arrays for old generations are
tschatzl@5701 161 // committed in os pages as well. Make sure they are entirely full (to
tschatzl@5701 162 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
tschatzl@5701 163 // byte entry and the os page size is 4096, the maximum heap size should
tschatzl@5701 164 // be 512*4096 = 2MB aligned.
tschatzl@5701 165
tschatzl@5701 166 // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
tschatzl@5701 167 // is supported.
tschatzl@5701 168 // Requirements of any new remembered set implementations must be added here.
tschatzl@5701 169 size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
tschatzl@5701 170
tschatzl@5701 171 // Parallel GC does its own alignment of the generations to avoid requiring a
tschatzl@5701 172 // large page (256M on some platforms) for the permanent generation. The
tschatzl@5701 173 // other collectors should also be updated to do their own alignment and then
tschatzl@5701 174 // this use of lcm() should be removed.
tschatzl@5701 175 if (UseLargePages && !UseParallelGC) {
tschatzl@5701 176 // in presence of large pages we have to make sure that our
tschatzl@5701 177 // alignment is large page aware
tschatzl@5701 178 alignment = lcm(os::large_page_size(), alignment);
tschatzl@5701 179 }
tschatzl@5701 180
tschatzl@5701 181 return alignment;
tschatzl@5701 182 }
jmasa@1822 183
duke@435 184 // GenCollectorPolicy methods.
duke@435 185
jmasa@448 186 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 187 size_t x = base_size / (NewRatio+1);
jmasa@448 188 size_t new_gen_size = x > min_alignment() ?
jmasa@448 189 align_size_down(x, min_alignment()) :
jmasa@448 190 min_alignment();
jmasa@448 191 return new_gen_size;
jmasa@448 192 }
jmasa@448 193
jmasa@448 194 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 195 size_t maximum_size) {
jmasa@448 196 size_t alignment = min_alignment();
jmasa@448 197 size_t max_minus = maximum_size - alignment;
jmasa@448 198 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 199 }
jmasa@448 200
jmasa@448 201
duke@435 202 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 203 size_t init_promo_size,
duke@435 204 size_t init_survivor_size) {
tamao@4613 205 const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 206 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 207 init_promo_size,
duke@435 208 init_survivor_size,
tamao@4613 209 max_gc_pause_sec,
duke@435 210 GCTimeRatio);
duke@435 211 }
duke@435 212
duke@435 213 void GenCollectorPolicy::initialize_flags() {
duke@435 214 // All sizes must be multiples of the generation granularity.
duke@435 215 set_min_alignment((uintx) Generation::GenGrain);
duke@435 216 set_max_alignment(compute_max_alignment());
duke@435 217
duke@435 218 CollectorPolicy::initialize_flags();
duke@435 219
duke@435 220 // All generational heaps have a youngest gen; handle those flags here.
duke@435 221
duke@435 222 // Adjust max size parameters
duke@435 223 if (NewSize > MaxNewSize) {
duke@435 224 MaxNewSize = NewSize;
duke@435 225 }
duke@435 226 NewSize = align_size_down(NewSize, min_alignment());
duke@435 227 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 228
duke@435 229 // Check validity of heap flags
duke@435 230 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 231 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 232
duke@435 233 if (NewSize < 3*min_alignment()) {
duke@435 234 // make sure there room for eden and two survivor spaces
duke@435 235 vm_exit_during_initialization("Too small new size specified");
duke@435 236 }
duke@435 237 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 238 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 239 }
duke@435 240 }
duke@435 241
duke@435 242 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 243 GenCollectorPolicy::initialize_flags();
duke@435 244
duke@435 245 OldSize = align_size_down(OldSize, min_alignment());
jwilhelm@4554 246
jwilhelm@4554 247 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
jwilhelm@4554 248 // NewRatio will be used later to set the young generation size so we use
jwilhelm@4554 249 // it to calculate how big the heap should be based on the requested OldSize
jwilhelm@4554 250 // and NewRatio.
jwilhelm@4554 251 assert(NewRatio > 0, "NewRatio should have been set up earlier");
jwilhelm@4554 252 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
jwilhelm@4554 253
jwilhelm@4554 254 calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
jwilhelm@4554 255 MaxHeapSize = calculated_heapsize;
jwilhelm@4554 256 InitialHeapSize = calculated_heapsize;
jwilhelm@4554 257 }
duke@435 258 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 259
tschatzl@5073 260 // adjust max heap size if necessary
tschatzl@5073 261 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5073 262 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5073 263 // somebody set a maximum heap size with the intention that we should not
tschatzl@5073 264 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5073 265 uintx calculated_size = NewSize + OldSize;
tschatzl@5073 266 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5073 267 // align
tschatzl@5073 268 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5073 269 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5073 270 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5073 271 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5073 272 // is a multiple of min_alignment().
tschatzl@5073 273 OldSize = MaxHeapSize - NewSize;
tschatzl@5073 274 } else {
tschatzl@5073 275 MaxHeapSize = NewSize + OldSize;
tschatzl@5073 276 }
tschatzl@5073 277 }
tschatzl@5073 278 // need to do this again
tschatzl@5073 279 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5073 280
tschatzl@5116 281 // adjust max heap size if necessary
tschatzl@5116 282 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5116 283 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5116 284 // somebody set a maximum heap size with the intention that we should not
tschatzl@5116 285 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5116 286 uintx calculated_size = NewSize + OldSize;
tschatzl@5116 287 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5116 288 // align
tschatzl@5116 289 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5116 290 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5116 291 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5116 292 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5116 293 // is a multiple of min_alignment().
tschatzl@5116 294 OldSize = MaxHeapSize - NewSize;
tschatzl@5116 295 } else {
tschatzl@5116 296 MaxHeapSize = NewSize + OldSize;
tschatzl@5116 297 }
tschatzl@5116 298 }
tschatzl@5116 299 // need to do this again
tschatzl@5116 300 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5116 301
duke@435 302 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 303
duke@435 304 // Check validity of heap flags
duke@435 305 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 306 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 307 }
duke@435 308
jmasa@448 309 // Values set on the command line win over any ergonomically
jmasa@448 310 // set command line parameters.
jmasa@448 311 // Ergonomic choice of parameters are done before this
jmasa@448 312 // method is called. Values for command line parameters such as NewSize
jmasa@448 313 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 314 // This method makes the final generation sizings consistent with
jmasa@448 315 // themselves and with overall heap sizings.
jmasa@448 316 // In the absence of explicitly set command line flags, policies
jmasa@448 317 // such as the use of NewRatio are used to size the generation.
duke@435 318 void GenCollectorPolicy::initialize_size_info() {
duke@435 319 CollectorPolicy::initialize_size_info();
duke@435 320
jmasa@448 321 // min_alignment() is used for alignment within a generation.
jmasa@448 322 // There is additional alignment done down stream for some
jmasa@448 323 // collectors that sometimes causes unwanted rounding up of
jmasa@448 324 // generations sizes.
jmasa@448 325
jmasa@448 326 // Determine maximum size of gen0
jmasa@448 327
jmasa@448 328 size_t max_new_size = 0;
ysr@2650 329 if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
jmasa@448 330 if (MaxNewSize < min_alignment()) {
jmasa@448 331 max_new_size = min_alignment();
ysr@2650 332 }
ysr@2650 333 if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 334 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 335 min_alignment());
jmasa@448 336 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 337 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 338 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 339 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 340 } else {
jmasa@448 341 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 342 }
jmasa@448 343
jmasa@448 344 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 345 // specially at this point to just use an ergonomically set
jmasa@448 346 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 347 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 348 // was larger than the entire heap. The interpretation given
jmasa@448 349 // to ergonomically set flags is that the flags are set
jmasa@448 350 // by different collectors for their own special needs but
jmasa@448 351 // are not allowed to badly shape the heap. This allows the
jmasa@448 352 // different collectors to decide what's best for themselves
jmasa@448 353 // without having to factor in the overall heap shape. It
jmasa@448 354 // can be the case in the future that the collectors would
jmasa@448 355 // only make "wise" ergonomics choices and this policy could
jmasa@448 356 // just accept those choices. The choices currently made are
jmasa@448 357 // not always "wise".
duke@435 358 } else {
jmasa@448 359 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 360 // Bound the maximum size by NewSize below (since it historically
duke@435 361 // would have been NewSize and because the NewRatio calculation could
duke@435 362 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 363 // Ergonomics plays here by previously calculating the desired
jmasa@448 364 // NewSize and MaxNewSize.
jmasa@448 365 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 366 }
jmasa@448 367 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 368
jmasa@448 369 // Given the maximum gen0 size, determine the initial and
ysr@2650 370 // minimum gen0 sizes.
jmasa@448 371
jmasa@448 372 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 373 // The maximum and minimum heap sizes are the same so
jmasa@448 374 // the generations minimum and initial must be the
jmasa@448 375 // same as its maximum.
jmasa@448 376 set_min_gen0_size(max_new_size);
jmasa@448 377 set_initial_gen0_size(max_new_size);
jmasa@448 378 set_max_gen0_size(max_new_size);
jmasa@448 379 } else {
jmasa@448 380 size_t desired_new_size = 0;
jmasa@448 381 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 382 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 383 // would make sense to use it. If it is used, also use it
jmasa@448 384 // to set the initial size. Although there is no reason
jmasa@448 385 // the minimum size and the initial size have to be the same,
jmasa@448 386 // the current implementation gets into trouble during the calculation
jmasa@448 387 // of the tenured generation sizes if they are different.
jmasa@448 388 // Note that this makes the initial size and the minimum size
jmasa@448 389 // generally small compared to the NewRatio calculation.
jmasa@448 390 _min_gen0_size = NewSize;
jmasa@448 391 desired_new_size = NewSize;
jmasa@448 392 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 393 } else {
jmasa@448 394 // For the case where NewSize is the default, use NewRatio
jmasa@448 395 // to size the minimum and initial generation sizes.
jmasa@448 396 // Use the default NewSize as the floor for these values. If
jmasa@448 397 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 398 // small.
jmasa@448 399 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 400 NewSize);
jmasa@448 401 desired_new_size =
jmasa@448 402 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 403 NewSize);
jmasa@448 404 }
jmasa@448 405
jmasa@448 406 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 407 set_initial_gen0_size(desired_new_size);
jmasa@448 408 set_max_gen0_size(max_new_size);
jmasa@448 409
jmasa@448 410 // At this point the desirable initial and minimum sizes have been
jmasa@448 411 // determined without regard to the maximum sizes.
jmasa@448 412
jmasa@448 413 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 414 set_min_gen0_size(
jmasa@448 415 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 416 set_initial_gen0_size(
jmasa@448 417 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 418 set_max_gen0_size(
jmasa@448 419 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 420
jmasa@448 421 // At this point all three sizes have been checked against the
jmasa@448 422 // maximum sizes but have not been checked for consistency
ysr@777 423 // among the three.
jmasa@448 424
jmasa@448 425 // Final check min <= initial <= max
jmasa@448 426 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 427 set_initial_gen0_size(
jmasa@448 428 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 429 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 430 }
duke@435 431
jmasa@448 432 if (PrintGCDetails && Verbose) {
ysr@2650 433 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 434 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 435 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 436 }
jmasa@448 437 }
duke@435 438
jmasa@448 439 // Call this method during the sizing of the gen1 to make
jmasa@448 440 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 441 // the most freedom in sizing because it is done before the
jmasa@448 442 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 443 // there may be conflicts in the shape of the heap and this method
jmasa@448 444 // is used to make the needed adjustments. The application of the
jmasa@448 445 // policies could be more sophisticated (iterative for example) but
jmasa@448 446 // keeping it simple also seems a worthwhile goal.
jmasa@448 447 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 448 size_t* gen1_size_ptr,
jwilhelm@4554 449 const size_t heap_size,
jwilhelm@4554 450 const size_t min_gen1_size) {
jmasa@448 451 bool result = false;
jwilhelm@4554 452
jmasa@448 453 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jwilhelm@4554 454 if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
jwilhelm@4554 455 (heap_size >= min_gen1_size + min_alignment())) {
jwilhelm@4554 456 // Adjust gen0 down to accommodate min_gen1_size
jwilhelm@4554 457 *gen0_size_ptr = heap_size - min_gen1_size;
jmasa@448 458 *gen0_size_ptr =
jmasa@448 459 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 460 min_alignment());
jmasa@448 461 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 462 result = true;
jmasa@448 463 } else {
jmasa@448 464 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 465 *gen1_size_ptr =
jmasa@448 466 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 467 min_alignment());
jmasa@448 468 }
jmasa@448 469 }
jmasa@448 470 return result;
jmasa@448 471 }
duke@435 472
jmasa@448 473 // Minimum sizes of the generations may be different than
jmasa@448 474 // the initial sizes. An inconsistently is permitted here
jmasa@448 475 // in the total size that can be specified explicitly by
jmasa@448 476 // command line specification of OldSize and NewSize and
jmasa@448 477 // also a command line specification of -Xms. Issue a warning
jmasa@448 478 // but allow the values to pass.
duke@435 479
duke@435 480 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 481 GenCollectorPolicy::initialize_size_info();
duke@435 482
jmasa@448 483 // At this point the minimum, initial and maximum sizes
jmasa@448 484 // of the overall heap and of gen0 have been determined.
jmasa@448 485 // The maximum gen1 size can be determined from the maximum gen0
ysr@2650 486 // and maximum heap size since no explicit flags exits
jmasa@448 487 // for setting the gen1 maximum.
jmasa@448 488 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 489 _max_gen1_size =
jmasa@448 490 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 491 min_alignment());
jmasa@448 492 // If no explicit command line flag has been set for the
jmasa@448 493 // gen1 size, use what is left for gen1.
jmasa@448 494 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 495 // The user has not specified any value or ergonomics
jmasa@448 496 // has chosen a value (which may or may not be consistent
jmasa@448 497 // with the overall heap size). In either case make
jmasa@448 498 // the minimum, maximum and initial sizes consistent
jmasa@448 499 // with the gen0 sizes and the overall heap sizes.
jmasa@448 500 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 501 "gen0 has an unexpected minimum size");
jmasa@448 502 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 503 set_min_gen1_size(
jmasa@448 504 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 505 min_alignment()));
jmasa@448 506 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 507 set_initial_gen1_size(
jmasa@448 508 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 509 min_alignment()));
jmasa@448 510
jmasa@448 511 } else {
jmasa@448 512 // It's been explicitly set on the command line. Use the
jmasa@448 513 // OldSize and then determine the consequences.
jmasa@448 514 set_min_gen1_size(OldSize);
jmasa@448 515 set_initial_gen1_size(OldSize);
jmasa@448 516
jmasa@448 517 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 518 // with other command line flags, issue a warning.
duke@435 519 // The generation minimums and the overall heap mimimum should
duke@435 520 // be within one heap alignment.
jmasa@448 521 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 522 min_heap_byte_size()) {
duke@435 523 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 524 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 525 min_heap_byte_size());
duke@435 526 }
jmasa@448 527 if ((OldSize > _max_gen1_size)) {
jmasa@448 528 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 529 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 530 " -XX:OldSize flag is being ignored",
jmasa@448 531 max_heap_byte_size());
ysr@2650 532 }
jmasa@448 533 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 534 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 535 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 536 min_heap_byte_size(), OldSize)) {
jmasa@448 537 if (PrintGCDetails && Verbose) {
ysr@2650 538 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 539 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 540 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 541 }
jmasa@448 542 }
jmasa@448 543 // Initial size
jmasa@448 544 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 545 initial_heap_byte_size(), OldSize)) {
jmasa@448 546 if (PrintGCDetails && Verbose) {
ysr@2650 547 gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 548 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 549 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 550 }
jmasa@448 551 }
jmasa@448 552 }
jmasa@448 553 // Enforce the maximum gen1 size.
jmasa@448 554 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 555
jmasa@448 556 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 557 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 558 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 559
jmasa@448 560 if (PrintGCDetails && Verbose) {
jmasa@448 561 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 562 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 563 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 564 }
duke@435 565 }
duke@435 566
duke@435 567 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 568 bool is_tlab,
duke@435 569 bool* gc_overhead_limit_was_exceeded) {
duke@435 570 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 571
duke@435 572 debug_only(gch->check_for_valid_allocation_state());
duke@435 573 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 574
jmasa@1822 575 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 576 // set it so here and reset it to true only if the gc time
jmasa@1822 577 // limit is being exceeded as checked below.
jmasa@1822 578 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 579
duke@435 580 HeapWord* result = NULL;
duke@435 581
duke@435 582 // Loop until the allocation is satisified,
duke@435 583 // or unsatisfied after GC.
mgerdin@4853 584 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
duke@435 585 HandleMark hm; // discard any handles allocated in each iteration
duke@435 586
duke@435 587 // First allocation attempt is lock-free.
duke@435 588 Generation *gen0 = gch->get_gen(0);
duke@435 589 assert(gen0->supports_inline_contig_alloc(),
duke@435 590 "Otherwise, must do alloc within heap lock");
duke@435 591 if (gen0->should_allocate(size, is_tlab)) {
duke@435 592 result = gen0->par_allocate(size, is_tlab);
duke@435 593 if (result != NULL) {
duke@435 594 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 595 return result;
duke@435 596 }
duke@435 597 }
duke@435 598 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 599 {
duke@435 600 MutexLocker ml(Heap_lock);
duke@435 601 if (PrintGC && Verbose) {
duke@435 602 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 603 " attempting locked slow path allocation");
duke@435 604 }
duke@435 605 // Note that only large objects get a shot at being
duke@435 606 // allocated in later generations.
duke@435 607 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 608
duke@435 609 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 610 if (result != NULL) {
duke@435 611 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 612 return result;
duke@435 613 }
duke@435 614
duke@435 615 if (GC_locker::is_active_and_needs_gc()) {
duke@435 616 if (is_tlab) {
duke@435 617 return NULL; // Caller will retry allocating individual object
duke@435 618 }
duke@435 619 if (!gch->is_maximal_no_gc()) {
duke@435 620 // Try and expand heap to satisfy request
duke@435 621 result = expand_heap_and_allocate(size, is_tlab);
duke@435 622 // result could be null if we are out of space
duke@435 623 if (result != NULL) {
duke@435 624 return result;
duke@435 625 }
duke@435 626 }
duke@435 627
mgerdin@4853 628 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
mgerdin@4853 629 return NULL; // we didn't get to do a GC and we didn't get any memory
mgerdin@4853 630 }
mgerdin@4853 631
duke@435 632 // If this thread is not in a jni critical section, we stall
duke@435 633 // the requestor until the critical section has cleared and
duke@435 634 // GC allowed. When the critical section clears, a GC is
duke@435 635 // initiated by the last thread exiting the critical section; so
duke@435 636 // we retry the allocation sequence from the beginning of the loop,
duke@435 637 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 638 JavaThread* jthr = JavaThread::current();
duke@435 639 if (!jthr->in_critical()) {
duke@435 640 MutexUnlocker mul(Heap_lock);
duke@435 641 // Wait for JNI critical section to be exited
duke@435 642 GC_locker::stall_until_clear();
mgerdin@4853 643 gclocker_stalled_count += 1;
duke@435 644 continue;
duke@435 645 } else {
duke@435 646 if (CheckJNICalls) {
duke@435 647 fatal("Possible deadlock due to allocating while"
duke@435 648 " in jni critical section");
duke@435 649 }
duke@435 650 return NULL;
duke@435 651 }
duke@435 652 }
duke@435 653
duke@435 654 // Read the gc count while the heap lock is held.
duke@435 655 gc_count_before = Universe::heap()->total_collections();
duke@435 656 }
duke@435 657
duke@435 658 VM_GenCollectForAllocation op(size,
duke@435 659 is_tlab,
duke@435 660 gc_count_before);
duke@435 661 VMThread::execute(&op);
duke@435 662 if (op.prologue_succeeded()) {
duke@435 663 result = op.result();
duke@435 664 if (op.gc_locked()) {
duke@435 665 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 666 continue; // retry and/or stall as necessary
duke@435 667 }
jmasa@1822 668
jmasa@1822 669 // Allocation has failed and a collection
jmasa@1822 670 // has been done. If the gc time limit was exceeded the
jmasa@1822 671 // this time, return NULL so that an out-of-memory
jmasa@1822 672 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 673 // so that the overhead exceeded does not persist.
jmasa@1822 674
jmasa@1822 675 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 676 const bool softrefs_clear = all_soft_refs_clear();
jmasa@4743 677
jmasa@1822 678 if (limit_exceeded && softrefs_clear) {
jmasa@1822 679 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 680 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 681 if (op.result() != NULL) {
jmasa@1822 682 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 683 }
jmasa@1822 684 return NULL;
jmasa@1822 685 }
duke@435 686 assert(result == NULL || gch->is_in_reserved(result),
duke@435 687 "result not in heap");
duke@435 688 return result;
duke@435 689 }
duke@435 690
duke@435 691 // Give a warning if we seem to be looping forever.
duke@435 692 if ((QueuedAllocationWarningCount > 0) &&
duke@435 693 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 694 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 695 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 696 }
duke@435 697 }
duke@435 698 }
duke@435 699
duke@435 700 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 701 bool is_tlab) {
duke@435 702 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 703 HeapWord* result = NULL;
duke@435 704 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 705 Generation *gen = gch->get_gen(i);
duke@435 706 if (gen->should_allocate(size, is_tlab)) {
duke@435 707 result = gen->expand_and_allocate(size, is_tlab);
duke@435 708 }
duke@435 709 }
duke@435 710 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 711 return result;
duke@435 712 }
duke@435 713
duke@435 714 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 715 bool is_tlab) {
duke@435 716 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 717 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 718 HeapWord* result = NULL;
duke@435 719
duke@435 720 assert(size != 0, "Precondition violated");
duke@435 721 if (GC_locker::is_active_and_needs_gc()) {
duke@435 722 // GC locker is active; instead of a collection we will attempt
duke@435 723 // to expand the heap, if there's room for expansion.
duke@435 724 if (!gch->is_maximal_no_gc()) {
duke@435 725 result = expand_heap_and_allocate(size, is_tlab);
duke@435 726 }
duke@435 727 return result; // could be null if we are out of space
ysr@2336 728 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 729 // Do an incremental collection.
duke@435 730 gch->do_collection(false /* full */,
duke@435 731 false /* clear_all_soft_refs */,
duke@435 732 size /* size */,
duke@435 733 is_tlab /* is_tlab */,
duke@435 734 number_of_generations() - 1 /* max_level */);
duke@435 735 } else {
ysr@2336 736 if (Verbose && PrintGCDetails) {
ysr@2336 737 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
ysr@2336 738 }
duke@435 739 // Try a full collection; see delta for bug id 6266275
duke@435 740 // for the original code and why this has been simplified
duke@435 741 // with from-space allocation criteria modified and
duke@435 742 // such allocation moved out of the safepoint path.
duke@435 743 gch->do_collection(true /* full */,
duke@435 744 false /* clear_all_soft_refs */,
duke@435 745 size /* size */,
duke@435 746 is_tlab /* is_tlab */,
duke@435 747 number_of_generations() - 1 /* max_level */);
duke@435 748 }
duke@435 749
duke@435 750 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 751
duke@435 752 if (result != NULL) {
duke@435 753 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 754 return result;
duke@435 755 }
duke@435 756
duke@435 757 // OK, collection failed, try expansion.
duke@435 758 result = expand_heap_and_allocate(size, is_tlab);
duke@435 759 if (result != NULL) {
duke@435 760 return result;
duke@435 761 }
duke@435 762
duke@435 763 // If we reach this point, we're really out of memory. Try every trick
duke@435 764 // we can to reclaim memory. Force collection of soft references. Force
duke@435 765 // a complete compaction of the heap. Any additional methods for finding
duke@435 766 // free memory should be here, especially if they are expensive. If this
duke@435 767 // attempt fails, an OOM exception will be thrown.
duke@435 768 {
tschatzl@5119 769 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 770
duke@435 771 gch->do_collection(true /* full */,
duke@435 772 true /* clear_all_soft_refs */,
duke@435 773 size /* size */,
duke@435 774 is_tlab /* is_tlab */,
duke@435 775 number_of_generations() - 1 /* max_level */);
duke@435 776 }
duke@435 777
duke@435 778 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 779 if (result != NULL) {
duke@435 780 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 781 return result;
duke@435 782 }
duke@435 783
jmasa@1822 784 assert(!should_clear_all_soft_refs(),
jmasa@1822 785 "Flag should have been handled and cleared prior to this point");
jmasa@1822 786
duke@435 787 // What else? We might try synchronous finalization later. If the total
duke@435 788 // space available is large enough for the allocation, then a more
duke@435 789 // complete compaction phase than we've tried so far might be
duke@435 790 // appropriate.
duke@435 791 return NULL;
duke@435 792 }
duke@435 793
coleenp@4037 794 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
coleenp@4037 795 ClassLoaderData* loader_data,
coleenp@4037 796 size_t word_size,
coleenp@4037 797 Metaspace::MetadataType mdtype) {
coleenp@4037 798 uint loop_count = 0;
coleenp@4037 799 uint gc_count = 0;
coleenp@4037 800 uint full_gc_count = 0;
coleenp@4037 801
jmasa@4234 802 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
jmasa@4234 803
coleenp@4037 804 do {
jmasa@4064 805 MetaWord* result = NULL;
jmasa@4064 806 if (GC_locker::is_active_and_needs_gc()) {
jmasa@4064 807 // If the GC_locker is active, just expand and allocate.
jmasa@4064 808 // If that does not succeed, wait if this thread is not
jmasa@4064 809 // in a critical section itself.
jmasa@4064 810 result =
jmasa@4064 811 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
jmasa@4064 812 mdtype);
jmasa@4064 813 if (result != NULL) {
jmasa@4064 814 return result;
jmasa@4064 815 }
jmasa@4064 816 JavaThread* jthr = JavaThread::current();
jmasa@4064 817 if (!jthr->in_critical()) {
jmasa@4064 818 // Wait for JNI critical section to be exited
jmasa@4064 819 GC_locker::stall_until_clear();
jmasa@4064 820 // The GC invoked by the last thread leaving the critical
jmasa@4064 821 // section will be a young collection and a full collection
jmasa@4064 822 // is (currently) needed for unloading classes so continue
jmasa@4064 823 // to the next iteration to get a full GC.
jmasa@4064 824 continue;
jmasa@4064 825 } else {
jmasa@4064 826 if (CheckJNICalls) {
jmasa@4064 827 fatal("Possible deadlock due to allocating while"
jmasa@4064 828 " in jni critical section");
jmasa@4064 829 }
jmasa@4064 830 return NULL;
jmasa@4064 831 }
jmasa@4064 832 }
jmasa@4064 833
coleenp@4037 834 { // Need lock to get self consistent gc_count's
coleenp@4037 835 MutexLocker ml(Heap_lock);
coleenp@4037 836 gc_count = Universe::heap()->total_collections();
coleenp@4037 837 full_gc_count = Universe::heap()->total_full_collections();
coleenp@4037 838 }
coleenp@4037 839
coleenp@4037 840 // Generate a VM operation
coleenp@4037 841 VM_CollectForMetadataAllocation op(loader_data,
coleenp@4037 842 word_size,
coleenp@4037 843 mdtype,
coleenp@4037 844 gc_count,
coleenp@4037 845 full_gc_count,
coleenp@4037 846 GCCause::_metadata_GC_threshold);
coleenp@4037 847 VMThread::execute(&op);
jmasa@4382 848
jmasa@4382 849 // If GC was locked out, try again. Check
jmasa@4382 850 // before checking success because the prologue
jmasa@4382 851 // could have succeeded and the GC still have
jmasa@4382 852 // been locked out.
jmasa@4382 853 if (op.gc_locked()) {
jmasa@4382 854 continue;
jmasa@4382 855 }
jmasa@4382 856
coleenp@4037 857 if (op.prologue_succeeded()) {
coleenp@4037 858 return op.result();
coleenp@4037 859 }
coleenp@4037 860 loop_count++;
coleenp@4037 861 if ((QueuedAllocationWarningCount > 0) &&
coleenp@4037 862 (loop_count % QueuedAllocationWarningCount == 0)) {
coleenp@4037 863 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
coleenp@4037 864 " size=%d", loop_count, word_size);
coleenp@4037 865 }
coleenp@4037 866 } while (true); // Until a GC is done
coleenp@4037 867 }
coleenp@4037 868
duke@435 869 // Return true if any of the following is true:
duke@435 870 // . the allocation won't fit into the current young gen heap
duke@435 871 // . gc locker is occupied (jni critical section)
duke@435 872 // . heap memory is tight -- the most recent previous collection
duke@435 873 // was a full collection because a partial collection (would
duke@435 874 // have) failed and is likely to fail again
duke@435 875 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 876 size_t word_size) const {
duke@435 877 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 878 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 879 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 880 || GC_locker::is_active_and_needs_gc()
ysr@2243 881 || gch->incremental_collection_failed();
duke@435 882 }
duke@435 883
duke@435 884
duke@435 885 //
duke@435 886 // MarkSweepPolicy methods
duke@435 887 //
duke@435 888
duke@435 889 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 890 initialize_all();
duke@435 891 }
duke@435 892
duke@435 893 void MarkSweepPolicy::initialize_generations() {
minqi@5103 894 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
duke@435 895 if (_generations == NULL)
duke@435 896 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 897
brutisso@4387 898 if (UseParNewGC) {
duke@435 899 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 900 } else {
duke@435 901 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 902 }
duke@435 903 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 904
duke@435 905 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 906 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 907 }
duke@435 908
duke@435 909 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 910 // initialize the policy counters - 2 collectors, 3 generations
brutisso@4387 911 if (UseParNewGC) {
duke@435 912 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
brutisso@4387 913 } else {
duke@435 914 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 915 }
duke@435 916 }

mercurial