src/share/vm/memory/collectorPolicy.cpp

Thu, 26 Sep 2013 12:18:21 +0200

author
tschatzl
date
Thu, 26 Sep 2013 12:18:21 +0200
changeset 5775
461159cd7a91
parent 5706
9e11762cee52
child 5814
9ecd6d3782b1
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 // Align down. If the aligning result in 0, return 'alignment'.
    51 static size_t restricted_align_down(size_t size, size_t alignment) {
    52   return MAX2(alignment, align_size_down_(size, alignment));
    53 }
    55 void CollectorPolicy::initialize_flags() {
    56   assert(max_alignment() >= min_alignment(),
    57       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
    58           max_alignment(), min_alignment()));
    59   assert(max_alignment() % min_alignment() == 0,
    60       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
    61           max_alignment(), min_alignment()));
    63   if (MaxHeapSize < InitialHeapSize) {
    64     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    65   }
    67   if (!is_size_aligned(MaxMetaspaceSize, max_alignment())) {
    68     FLAG_SET_ERGO(uintx, MaxMetaspaceSize,
    69         restricted_align_down(MaxMetaspaceSize, max_alignment()));
    70   }
    72   if (MetaspaceSize > MaxMetaspaceSize) {
    73     FLAG_SET_ERGO(uintx, MetaspaceSize, MaxMetaspaceSize);
    74   }
    76   if (!is_size_aligned(MetaspaceSize, min_alignment())) {
    77     FLAG_SET_ERGO(uintx, MetaspaceSize,
    78         restricted_align_down(MetaspaceSize, min_alignment()));
    79   }
    81   assert(MetaspaceSize <= MaxMetaspaceSize, "Must be");
    83   MinMetaspaceExpansion = restricted_align_down(MinMetaspaceExpansion, min_alignment());
    84   MaxMetaspaceExpansion = restricted_align_down(MaxMetaspaceExpansion, min_alignment());
    86   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    88   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    89   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    90   if (MetaspaceSize < 256*K) {
    91     vm_exit_during_initialization("Too small initial Metaspace size");
    92   }
    93 }
    95 void CollectorPolicy::initialize_size_info() {
    96   // User inputs from -mx and ms must be aligned
    97   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
    98   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
    99   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
   101   // Check heap parameter properties
   102   if (initial_heap_byte_size() < M) {
   103     vm_exit_during_initialization("Too small initial heap");
   104   }
   105   // Check heap parameter properties
   106   if (min_heap_byte_size() < M) {
   107     vm_exit_during_initialization("Too small minimum heap");
   108   }
   109   if (initial_heap_byte_size() <= NewSize) {
   110      // make sure there is at least some room in old space
   111     vm_exit_during_initialization("Too small initial heap for new size specified");
   112   }
   113   if (max_heap_byte_size() < min_heap_byte_size()) {
   114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   115   }
   116   if (initial_heap_byte_size() < min_heap_byte_size()) {
   117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   118   }
   119   if (max_heap_byte_size() < initial_heap_byte_size()) {
   120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   121   }
   123   if (PrintGCDetails && Verbose) {
   124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   126       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   127   }
   128 }
   130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   131   bool result = _should_clear_all_soft_refs;
   132   set_should_clear_all_soft_refs(false);
   133   return result;
   134 }
   136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   137                                            int max_covered_regions) {
   138   switch (rem_set_name()) {
   139   case GenRemSet::CardTable: {
   140     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   141     return res;
   142   }
   143   default:
   144     guarantee(false, "unrecognized GenRemSet::Name");
   145     return NULL;
   146   }
   147 }
   149 void CollectorPolicy::cleared_all_soft_refs() {
   150   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   151   // have been cleared in the last collection but if the gc overhear
   152   // limit continues to be near, SoftRefs should still be cleared.
   153   if (size_policy() != NULL) {
   154     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   155   }
   156   _all_soft_refs_clear = true;
   157 }
   159 size_t CollectorPolicy::compute_max_alignment() {
   160   // The card marking array and the offset arrays for old generations are
   161   // committed in os pages as well. Make sure they are entirely full (to
   162   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   163   // byte entry and the os page size is 4096, the maximum heap size should
   164   // be 512*4096 = 2MB aligned.
   166   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
   167   // is supported.
   168   // Requirements of any new remembered set implementations must be added here.
   169   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
   171   // Parallel GC does its own alignment of the generations to avoid requiring a
   172   // large page (256M on some platforms) for the permanent generation.  The
   173   // other collectors should also be updated to do their own alignment and then
   174   // this use of lcm() should be removed.
   175   if (UseLargePages && !UseParallelGC) {
   176       // in presence of large pages we have to make sure that our
   177       // alignment is large page aware
   178       alignment = lcm(os::large_page_size(), alignment);
   179   }
   181   return alignment;
   182 }
   184 // GenCollectorPolicy methods.
   186 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   187   size_t x = base_size / (NewRatio+1);
   188   size_t new_gen_size = x > min_alignment() ?
   189                      align_size_down(x, min_alignment()) :
   190                      min_alignment();
   191   return new_gen_size;
   192 }
   194 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   195                                                  size_t maximum_size) {
   196   size_t alignment = min_alignment();
   197   size_t max_minus = maximum_size - alignment;
   198   return desired_size < max_minus ? desired_size : max_minus;
   199 }
   202 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   203                                                 size_t init_promo_size,
   204                                                 size_t init_survivor_size) {
   205   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   206   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   207                                         init_promo_size,
   208                                         init_survivor_size,
   209                                         max_gc_pause_sec,
   210                                         GCTimeRatio);
   211 }
   213 void GenCollectorPolicy::initialize_flags() {
   214   // All sizes must be multiples of the generation granularity.
   215   set_min_alignment((uintx) Generation::GenGrain);
   216   set_max_alignment(compute_max_alignment());
   218   CollectorPolicy::initialize_flags();
   220   // All generational heaps have a youngest gen; handle those flags here.
   222   // Adjust max size parameters
   223   if (NewSize > MaxNewSize) {
   224     MaxNewSize = NewSize;
   225   }
   226   NewSize = align_size_down(NewSize, min_alignment());
   227   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   229   // Check validity of heap flags
   230   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   231   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   233   if (NewSize < 3*min_alignment()) {
   234      // make sure there room for eden and two survivor spaces
   235     vm_exit_during_initialization("Too small new size specified");
   236   }
   237   if (SurvivorRatio < 1 || NewRatio < 1) {
   238     vm_exit_during_initialization("Invalid heap ratio specified");
   239   }
   240 }
   242 void TwoGenerationCollectorPolicy::initialize_flags() {
   243   GenCollectorPolicy::initialize_flags();
   245   OldSize = align_size_down(OldSize, min_alignment());
   247   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
   248     // NewRatio will be used later to set the young generation size so we use
   249     // it to calculate how big the heap should be based on the requested OldSize
   250     // and NewRatio.
   251     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   252     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   254     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
   255     MaxHeapSize = calculated_heapsize;
   256     InitialHeapSize = calculated_heapsize;
   257   }
   258   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   260   // adjust max heap size if necessary
   261   if (NewSize + OldSize > MaxHeapSize) {
   262     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   263       // somebody set a maximum heap size with the intention that we should not
   264       // exceed it. Adjust New/OldSize as necessary.
   265       uintx calculated_size = NewSize + OldSize;
   266       double shrink_factor = (double) MaxHeapSize / calculated_size;
   267       // align
   268       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   269       // OldSize is already aligned because above we aligned MaxHeapSize to
   270       // max_alignment(), and we just made sure that NewSize is aligned to
   271       // min_alignment(). In initialize_flags() we verified that max_alignment()
   272       // is a multiple of min_alignment().
   273       OldSize = MaxHeapSize - NewSize;
   274     } else {
   275       MaxHeapSize = NewSize + OldSize;
   276     }
   277   }
   278   // need to do this again
   279   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   281   // adjust max heap size if necessary
   282   if (NewSize + OldSize > MaxHeapSize) {
   283     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   284       // somebody set a maximum heap size with the intention that we should not
   285       // exceed it. Adjust New/OldSize as necessary.
   286       uintx calculated_size = NewSize + OldSize;
   287       double shrink_factor = (double) MaxHeapSize / calculated_size;
   288       // align
   289       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
   290       // OldSize is already aligned because above we aligned MaxHeapSize to
   291       // max_alignment(), and we just made sure that NewSize is aligned to
   292       // min_alignment(). In initialize_flags() we verified that max_alignment()
   293       // is a multiple of min_alignment().
   294       OldSize = MaxHeapSize - NewSize;
   295     } else {
   296       MaxHeapSize = NewSize + OldSize;
   297     }
   298   }
   299   // need to do this again
   300   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   302   always_do_update_barrier = UseConcMarkSweepGC;
   304   // Check validity of heap flags
   305   assert(OldSize     % min_alignment() == 0, "old space alignment");
   306   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   307 }
   309 // Values set on the command line win over any ergonomically
   310 // set command line parameters.
   311 // Ergonomic choice of parameters are done before this
   312 // method is called.  Values for command line parameters such as NewSize
   313 // and MaxNewSize feed those ergonomic choices into this method.
   314 // This method makes the final generation sizings consistent with
   315 // themselves and with overall heap sizings.
   316 // In the absence of explicitly set command line flags, policies
   317 // such as the use of NewRatio are used to size the generation.
   318 void GenCollectorPolicy::initialize_size_info() {
   319   CollectorPolicy::initialize_size_info();
   321   // min_alignment() is used for alignment within a generation.
   322   // There is additional alignment done down stream for some
   323   // collectors that sometimes causes unwanted rounding up of
   324   // generations sizes.
   326   // Determine maximum size of gen0
   328   size_t max_new_size = 0;
   329   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   330     if (MaxNewSize < min_alignment()) {
   331       max_new_size = min_alignment();
   332     }
   333     if (MaxNewSize >= max_heap_byte_size()) {
   334       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   335                                      min_alignment());
   336       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   337         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   338         "new generation size of " SIZE_FORMAT "k will be used.",
   339         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   340     } else {
   341       max_new_size = align_size_down(MaxNewSize, min_alignment());
   342     }
   344   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   345   // specially at this point to just use an ergonomically set
   346   // MaxNewSize to set max_new_size.  For cases with small
   347   // heaps such a policy often did not work because the MaxNewSize
   348   // was larger than the entire heap.  The interpretation given
   349   // to ergonomically set flags is that the flags are set
   350   // by different collectors for their own special needs but
   351   // are not allowed to badly shape the heap.  This allows the
   352   // different collectors to decide what's best for themselves
   353   // without having to factor in the overall heap shape.  It
   354   // can be the case in the future that the collectors would
   355   // only make "wise" ergonomics choices and this policy could
   356   // just accept those choices.  The choices currently made are
   357   // not always "wise".
   358   } else {
   359     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   360     // Bound the maximum size by NewSize below (since it historically
   361     // would have been NewSize and because the NewRatio calculation could
   362     // yield a size that is too small) and bound it by MaxNewSize above.
   363     // Ergonomics plays here by previously calculating the desired
   364     // NewSize and MaxNewSize.
   365     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   366   }
   367   assert(max_new_size > 0, "All paths should set max_new_size");
   369   // Given the maximum gen0 size, determine the initial and
   370   // minimum gen0 sizes.
   372   if (max_heap_byte_size() == min_heap_byte_size()) {
   373     // The maximum and minimum heap sizes are the same so
   374     // the generations minimum and initial must be the
   375     // same as its maximum.
   376     set_min_gen0_size(max_new_size);
   377     set_initial_gen0_size(max_new_size);
   378     set_max_gen0_size(max_new_size);
   379   } else {
   380     size_t desired_new_size = 0;
   381     if (!FLAG_IS_DEFAULT(NewSize)) {
   382       // If NewSize is set ergonomically (for example by cms), it
   383       // would make sense to use it.  If it is used, also use it
   384       // to set the initial size.  Although there is no reason
   385       // the minimum size and the initial size have to be the same,
   386       // the current implementation gets into trouble during the calculation
   387       // of the tenured generation sizes if they are different.
   388       // Note that this makes the initial size and the minimum size
   389       // generally small compared to the NewRatio calculation.
   390       _min_gen0_size = NewSize;
   391       desired_new_size = NewSize;
   392       max_new_size = MAX2(max_new_size, NewSize);
   393     } else {
   394       // For the case where NewSize is the default, use NewRatio
   395       // to size the minimum and initial generation sizes.
   396       // Use the default NewSize as the floor for these values.  If
   397       // NewRatio is overly large, the resulting sizes can be too
   398       // small.
   399       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   400                           NewSize);
   401       desired_new_size =
   402         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   403              NewSize);
   404     }
   406     assert(_min_gen0_size > 0, "Sanity check");
   407     set_initial_gen0_size(desired_new_size);
   408     set_max_gen0_size(max_new_size);
   410     // At this point the desirable initial and minimum sizes have been
   411     // determined without regard to the maximum sizes.
   413     // Bound the sizes by the corresponding overall heap sizes.
   414     set_min_gen0_size(
   415       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   416     set_initial_gen0_size(
   417       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   418     set_max_gen0_size(
   419       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   421     // At this point all three sizes have been checked against the
   422     // maximum sizes but have not been checked for consistency
   423     // among the three.
   425     // Final check min <= initial <= max
   426     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   427     set_initial_gen0_size(
   428       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   429     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   430   }
   432   if (PrintGCDetails && Verbose) {
   433     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   434       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   435       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   436   }
   437 }
   439 // Call this method during the sizing of the gen1 to make
   440 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   441 // the most freedom in sizing because it is done before the
   442 // policy for gen1 is applied.  Once gen1 policies have been applied,
   443 // there may be conflicts in the shape of the heap and this method
   444 // is used to make the needed adjustments.  The application of the
   445 // policies could be more sophisticated (iterative for example) but
   446 // keeping it simple also seems a worthwhile goal.
   447 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   448                                                      size_t* gen1_size_ptr,
   449                                                      const size_t heap_size,
   450                                                      const size_t min_gen1_size) {
   451   bool result = false;
   453   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   454     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
   455         (heap_size >= min_gen1_size + min_alignment())) {
   456       // Adjust gen0 down to accommodate min_gen1_size
   457       *gen0_size_ptr = heap_size - min_gen1_size;
   458       *gen0_size_ptr =
   459         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   460              min_alignment());
   461       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   462       result = true;
   463     } else {
   464       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   465       *gen1_size_ptr =
   466         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   467                        min_alignment());
   468     }
   469   }
   470   return result;
   471 }
   473 // Minimum sizes of the generations may be different than
   474 // the initial sizes.  An inconsistently is permitted here
   475 // in the total size that can be specified explicitly by
   476 // command line specification of OldSize and NewSize and
   477 // also a command line specification of -Xms.  Issue a warning
   478 // but allow the values to pass.
   480 void TwoGenerationCollectorPolicy::initialize_size_info() {
   481   GenCollectorPolicy::initialize_size_info();
   483   // At this point the minimum, initial and maximum sizes
   484   // of the overall heap and of gen0 have been determined.
   485   // The maximum gen1 size can be determined from the maximum gen0
   486   // and maximum heap size since no explicit flags exits
   487   // for setting the gen1 maximum.
   488   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   489   _max_gen1_size =
   490     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   491          min_alignment());
   492   // If no explicit command line flag has been set for the
   493   // gen1 size, use what is left for gen1.
   494   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   495     // The user has not specified any value or ergonomics
   496     // has chosen a value (which may or may not be consistent
   497     // with the overall heap size).  In either case make
   498     // the minimum, maximum and initial sizes consistent
   499     // with the gen0 sizes and the overall heap sizes.
   500     assert(min_heap_byte_size() > _min_gen0_size,
   501       "gen0 has an unexpected minimum size");
   502     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   503     set_min_gen1_size(
   504       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   505            min_alignment()));
   506     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   507     set_initial_gen1_size(
   508       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   509            min_alignment()));
   511   } else {
   512     // It's been explicitly set on the command line.  Use the
   513     // OldSize and then determine the consequences.
   514     set_min_gen1_size(OldSize);
   515     set_initial_gen1_size(OldSize);
   517     // If the user has explicitly set an OldSize that is inconsistent
   518     // with other command line flags, issue a warning.
   519     // The generation minimums and the overall heap mimimum should
   520     // be within one heap alignment.
   521     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   522            min_heap_byte_size()) {
   523       warning("Inconsistency between minimum heap size and minimum "
   524           "generation sizes: using minimum heap = " SIZE_FORMAT,
   525           min_heap_byte_size());
   526     }
   527     if ((OldSize > _max_gen1_size)) {
   528       warning("Inconsistency between maximum heap size and maximum "
   529           "generation sizes: using maximum heap = " SIZE_FORMAT
   530           " -XX:OldSize flag is being ignored",
   531           max_heap_byte_size());
   532     }
   533     // If there is an inconsistency between the OldSize and the minimum and/or
   534     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   535     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   536                           min_heap_byte_size(), OldSize)) {
   537       if (PrintGCDetails && Verbose) {
   538         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   539               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   540               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   541       }
   542     }
   543     // Initial size
   544     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   545                          initial_heap_byte_size(), OldSize)) {
   546       if (PrintGCDetails && Verbose) {
   547         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   548           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   549           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   550       }
   551     }
   552   }
   553   // Enforce the maximum gen1 size.
   554   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   556   // Check that min gen1 <= initial gen1 <= max gen1
   557   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   558   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   560   if (PrintGCDetails && Verbose) {
   561     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   562       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   563       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   564   }
   565 }
   567 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   568                                         bool is_tlab,
   569                                         bool* gc_overhead_limit_was_exceeded) {
   570   GenCollectedHeap *gch = GenCollectedHeap::heap();
   572   debug_only(gch->check_for_valid_allocation_state());
   573   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   575   // In general gc_overhead_limit_was_exceeded should be false so
   576   // set it so here and reset it to true only if the gc time
   577   // limit is being exceeded as checked below.
   578   *gc_overhead_limit_was_exceeded = false;
   580   HeapWord* result = NULL;
   582   // Loop until the allocation is satisified,
   583   // or unsatisfied after GC.
   584   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   585     HandleMark hm; // discard any handles allocated in each iteration
   587     // First allocation attempt is lock-free.
   588     Generation *gen0 = gch->get_gen(0);
   589     assert(gen0->supports_inline_contig_alloc(),
   590       "Otherwise, must do alloc within heap lock");
   591     if (gen0->should_allocate(size, is_tlab)) {
   592       result = gen0->par_allocate(size, is_tlab);
   593       if (result != NULL) {
   594         assert(gch->is_in_reserved(result), "result not in heap");
   595         return result;
   596       }
   597     }
   598     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   599     {
   600       MutexLocker ml(Heap_lock);
   601       if (PrintGC && Verbose) {
   602         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   603                       " attempting locked slow path allocation");
   604       }
   605       // Note that only large objects get a shot at being
   606       // allocated in later generations.
   607       bool first_only = ! should_try_older_generation_allocation(size);
   609       result = gch->attempt_allocation(size, is_tlab, first_only);
   610       if (result != NULL) {
   611         assert(gch->is_in_reserved(result), "result not in heap");
   612         return result;
   613       }
   615       if (GC_locker::is_active_and_needs_gc()) {
   616         if (is_tlab) {
   617           return NULL;  // Caller will retry allocating individual object
   618         }
   619         if (!gch->is_maximal_no_gc()) {
   620           // Try and expand heap to satisfy request
   621           result = expand_heap_and_allocate(size, is_tlab);
   622           // result could be null if we are out of space
   623           if (result != NULL) {
   624             return result;
   625           }
   626         }
   628         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   629           return NULL; // we didn't get to do a GC and we didn't get any memory
   630         }
   632         // If this thread is not in a jni critical section, we stall
   633         // the requestor until the critical section has cleared and
   634         // GC allowed. When the critical section clears, a GC is
   635         // initiated by the last thread exiting the critical section; so
   636         // we retry the allocation sequence from the beginning of the loop,
   637         // rather than causing more, now probably unnecessary, GC attempts.
   638         JavaThread* jthr = JavaThread::current();
   639         if (!jthr->in_critical()) {
   640           MutexUnlocker mul(Heap_lock);
   641           // Wait for JNI critical section to be exited
   642           GC_locker::stall_until_clear();
   643           gclocker_stalled_count += 1;
   644           continue;
   645         } else {
   646           if (CheckJNICalls) {
   647             fatal("Possible deadlock due to allocating while"
   648                   " in jni critical section");
   649           }
   650           return NULL;
   651         }
   652       }
   654       // Read the gc count while the heap lock is held.
   655       gc_count_before = Universe::heap()->total_collections();
   656     }
   658     VM_GenCollectForAllocation op(size,
   659                                   is_tlab,
   660                                   gc_count_before);
   661     VMThread::execute(&op);
   662     if (op.prologue_succeeded()) {
   663       result = op.result();
   664       if (op.gc_locked()) {
   665          assert(result == NULL, "must be NULL if gc_locked() is true");
   666          continue;  // retry and/or stall as necessary
   667       }
   669       // Allocation has failed and a collection
   670       // has been done.  If the gc time limit was exceeded the
   671       // this time, return NULL so that an out-of-memory
   672       // will be thrown.  Clear gc_overhead_limit_exceeded
   673       // so that the overhead exceeded does not persist.
   675       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   676       const bool softrefs_clear = all_soft_refs_clear();
   678       if (limit_exceeded && softrefs_clear) {
   679         *gc_overhead_limit_was_exceeded = true;
   680         size_policy()->set_gc_overhead_limit_exceeded(false);
   681         if (op.result() != NULL) {
   682           CollectedHeap::fill_with_object(op.result(), size);
   683         }
   684         return NULL;
   685       }
   686       assert(result == NULL || gch->is_in_reserved(result),
   687              "result not in heap");
   688       return result;
   689     }
   691     // Give a warning if we seem to be looping forever.
   692     if ((QueuedAllocationWarningCount > 0) &&
   693         (try_count % QueuedAllocationWarningCount == 0)) {
   694           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   695                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   696     }
   697   }
   698 }
   700 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   701                                                        bool   is_tlab) {
   702   GenCollectedHeap *gch = GenCollectedHeap::heap();
   703   HeapWord* result = NULL;
   704   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   705     Generation *gen = gch->get_gen(i);
   706     if (gen->should_allocate(size, is_tlab)) {
   707       result = gen->expand_and_allocate(size, is_tlab);
   708     }
   709   }
   710   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   711   return result;
   712 }
   714 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   715                                                         bool   is_tlab) {
   716   GenCollectedHeap *gch = GenCollectedHeap::heap();
   717   GCCauseSetter x(gch, GCCause::_allocation_failure);
   718   HeapWord* result = NULL;
   720   assert(size != 0, "Precondition violated");
   721   if (GC_locker::is_active_and_needs_gc()) {
   722     // GC locker is active; instead of a collection we will attempt
   723     // to expand the heap, if there's room for expansion.
   724     if (!gch->is_maximal_no_gc()) {
   725       result = expand_heap_and_allocate(size, is_tlab);
   726     }
   727     return result;   // could be null if we are out of space
   728   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   729     // Do an incremental collection.
   730     gch->do_collection(false            /* full */,
   731                        false            /* clear_all_soft_refs */,
   732                        size             /* size */,
   733                        is_tlab          /* is_tlab */,
   734                        number_of_generations() - 1 /* max_level */);
   735   } else {
   736     if (Verbose && PrintGCDetails) {
   737       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   738     }
   739     // Try a full collection; see delta for bug id 6266275
   740     // for the original code and why this has been simplified
   741     // with from-space allocation criteria modified and
   742     // such allocation moved out of the safepoint path.
   743     gch->do_collection(true             /* full */,
   744                        false            /* clear_all_soft_refs */,
   745                        size             /* size */,
   746                        is_tlab          /* is_tlab */,
   747                        number_of_generations() - 1 /* max_level */);
   748   }
   750   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   752   if (result != NULL) {
   753     assert(gch->is_in_reserved(result), "result not in heap");
   754     return result;
   755   }
   757   // OK, collection failed, try expansion.
   758   result = expand_heap_and_allocate(size, is_tlab);
   759   if (result != NULL) {
   760     return result;
   761   }
   763   // If we reach this point, we're really out of memory. Try every trick
   764   // we can to reclaim memory. Force collection of soft references. Force
   765   // a complete compaction of the heap. Any additional methods for finding
   766   // free memory should be here, especially if they are expensive. If this
   767   // attempt fails, an OOM exception will be thrown.
   768   {
   769     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   771     gch->do_collection(true             /* full */,
   772                        true             /* clear_all_soft_refs */,
   773                        size             /* size */,
   774                        is_tlab          /* is_tlab */,
   775                        number_of_generations() - 1 /* max_level */);
   776   }
   778   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   779   if (result != NULL) {
   780     assert(gch->is_in_reserved(result), "result not in heap");
   781     return result;
   782   }
   784   assert(!should_clear_all_soft_refs(),
   785     "Flag should have been handled and cleared prior to this point");
   787   // What else?  We might try synchronous finalization later.  If the total
   788   // space available is large enough for the allocation, then a more
   789   // complete compaction phase than we've tried so far might be
   790   // appropriate.
   791   return NULL;
   792 }
   794 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   795                                                  ClassLoaderData* loader_data,
   796                                                  size_t word_size,
   797                                                  Metaspace::MetadataType mdtype) {
   798   uint loop_count = 0;
   799   uint gc_count = 0;
   800   uint full_gc_count = 0;
   802   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   804   do {
   805     MetaWord* result = NULL;
   806     if (GC_locker::is_active_and_needs_gc()) {
   807       // If the GC_locker is active, just expand and allocate.
   808       // If that does not succeed, wait if this thread is not
   809       // in a critical section itself.
   810       result =
   811         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   812                                                                mdtype);
   813       if (result != NULL) {
   814         return result;
   815       }
   816       JavaThread* jthr = JavaThread::current();
   817       if (!jthr->in_critical()) {
   818         // Wait for JNI critical section to be exited
   819         GC_locker::stall_until_clear();
   820         // The GC invoked by the last thread leaving the critical
   821         // section will be a young collection and a full collection
   822         // is (currently) needed for unloading classes so continue
   823         // to the next iteration to get a full GC.
   824         continue;
   825       } else {
   826         if (CheckJNICalls) {
   827           fatal("Possible deadlock due to allocating while"
   828                 " in jni critical section");
   829         }
   830         return NULL;
   831       }
   832     }
   834     {  // Need lock to get self consistent gc_count's
   835       MutexLocker ml(Heap_lock);
   836       gc_count      = Universe::heap()->total_collections();
   837       full_gc_count = Universe::heap()->total_full_collections();
   838     }
   840     // Generate a VM operation
   841     VM_CollectForMetadataAllocation op(loader_data,
   842                                        word_size,
   843                                        mdtype,
   844                                        gc_count,
   845                                        full_gc_count,
   846                                        GCCause::_metadata_GC_threshold);
   847     VMThread::execute(&op);
   849     // If GC was locked out, try again.  Check
   850     // before checking success because the prologue
   851     // could have succeeded and the GC still have
   852     // been locked out.
   853     if (op.gc_locked()) {
   854       continue;
   855     }
   857     if (op.prologue_succeeded()) {
   858       return op.result();
   859     }
   860     loop_count++;
   861     if ((QueuedAllocationWarningCount > 0) &&
   862         (loop_count % QueuedAllocationWarningCount == 0)) {
   863       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   864               " size=%d", loop_count, word_size);
   865     }
   866   } while (true);  // Until a GC is done
   867 }
   869 // Return true if any of the following is true:
   870 // . the allocation won't fit into the current young gen heap
   871 // . gc locker is occupied (jni critical section)
   872 // . heap memory is tight -- the most recent previous collection
   873 //   was a full collection because a partial collection (would
   874 //   have) failed and is likely to fail again
   875 bool GenCollectorPolicy::should_try_older_generation_allocation(
   876         size_t word_size) const {
   877   GenCollectedHeap* gch = GenCollectedHeap::heap();
   878   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   879   return    (word_size > heap_word_size(gen0_capacity))
   880          || GC_locker::is_active_and_needs_gc()
   881          || gch->incremental_collection_failed();
   882 }
   885 //
   886 // MarkSweepPolicy methods
   887 //
   889 MarkSweepPolicy::MarkSweepPolicy() {
   890   initialize_all();
   891 }
   893 void MarkSweepPolicy::initialize_generations() {
   894   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
   895   if (_generations == NULL)
   896     vm_exit_during_initialization("Unable to allocate gen spec");
   898   if (UseParNewGC) {
   899     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   900   } else {
   901     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   902   }
   903   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   905   if (_generations[0] == NULL || _generations[1] == NULL)
   906     vm_exit_during_initialization("Unable to allocate gen spec");
   907 }
   909 void MarkSweepPolicy::initialize_gc_policy_counters() {
   910   // initialize the policy counters - 2 collectors, 3 generations
   911   if (UseParNewGC) {
   912     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   913   } else {
   914     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   915   }
   916 }

mercurial