src/share/vm/utilities/growableArray.hpp

Wed, 13 Aug 2014 11:00:22 +0200

author
roland
date
Wed, 13 Aug 2014 11:00:22 +0200
changeset 7041
411e30e5fbb8
parent 7028
46bbe04d1cad
child 7535
7ae4e26cb1e0
child 9858
b985cbb00e68
permissions
-rw-r--r--

8026796: Make replace_in_map() on parent maps generic
Summary: propagate node replacements along control flow edges to callers
Reviewed-by: kvn, vlivanov

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
stefank@2314 27
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "utilities/debug.hpp"
stefank@2314 31 #include "utilities/globalDefinitions.hpp"
stefank@2314 32 #include "utilities/top.hpp"
stefank@2314 33
duke@435 34 // A growable array.
duke@435 35
duke@435 36 /*************************************************************************/
duke@435 37 /* */
duke@435 38 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
duke@435 39 /* */
duke@435 40 /* Should you use GrowableArrays to contain handles you must be certain */
duke@435 41 /* the the GrowableArray does not outlive the HandleMark that contains */
duke@435 42 /* the handles. Since GrowableArrays are typically resource allocated */
duke@435 43 /* the following is an example of INCORRECT CODE, */
duke@435 44 /* */
duke@435 45 /* ResourceMark rm; */
duke@435 46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
duke@435 47 /* if (blah) { */
duke@435 48 /* while (...) { */
duke@435 49 /* HandleMark hm; */
duke@435 50 /* ... */
duke@435 51 /* Handle h(THREAD, some_oop); */
duke@435 52 /* arr->append(h); */
duke@435 53 /* } */
duke@435 54 /* } */
duke@435 55 /* if (arr->length() != 0 ) { */
duke@435 56 /* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
duke@435 57 /* ... */
duke@435 58 /* } */
duke@435 59 /* */
duke@435 60 /* If the GrowableArrays you are creating is C_Heap allocated then it */
duke@435 61 /* hould not old handles since the handles could trivially try and */
duke@435 62 /* outlive their HandleMark. In some situations you might need to do */
duke@435 63 /* this and it would be legal but be very careful and see if you can do */
duke@435 64 /* the code in some other manner. */
duke@435 65 /* */
duke@435 66 /*************************************************************************/
duke@435 67
duke@435 68 // To call default constructor the placement operator new() is used.
duke@435 69 // It should be empty (it only returns the passed void* pointer).
duke@435 70 // The definition of placement operator new(size_t, void*) in the <new>.
duke@435 71
duke@435 72 #include <new>
duke@435 73
duke@435 74 // Need the correct linkage to call qsort without warnings
duke@435 75 extern "C" {
duke@435 76 typedef int (*_sort_Fn)(const void *, const void *);
duke@435 77 }
duke@435 78
duke@435 79 class GenericGrowableArray : public ResourceObj {
never@3138 80 friend class VMStructs;
never@3138 81
duke@435 82 protected:
duke@435 83 int _len; // current length
duke@435 84 int _max; // maximum length
duke@435 85 Arena* _arena; // Indicates where allocation occurs:
duke@435 86 // 0 means default ResourceArea
duke@435 87 // 1 means on C heap
duke@435 88 // otherwise, allocate in _arena
zgu@3900 89
zgu@3900 90 MEMFLAGS _memflags; // memory type if allocation in C heap
zgu@3900 91
duke@435 92 #ifdef ASSERT
duke@435 93 int _nesting; // resource area nesting at creation
duke@435 94 void set_nesting();
duke@435 95 void check_nesting();
duke@435 96 #else
duke@435 97 #define set_nesting();
duke@435 98 #define check_nesting();
duke@435 99 #endif
duke@435 100
duke@435 101 // Where are we going to allocate memory?
duke@435 102 bool on_C_heap() { return _arena == (Arena*)1; }
duke@435 103 bool on_stack () { return _arena == NULL; }
duke@435 104 bool on_arena () { return _arena > (Arena*)1; }
duke@435 105
duke@435 106 // This GA will use the resource stack for storage if c_heap==false,
duke@435 107 // Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
zgu@3900 108 GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
duke@435 109 _len = initial_len;
duke@435 110 _max = initial_size;
zgu@3900 111 _memflags = flags;
zgu@3900 112
zgu@3900 113 // memory type has to be specified for C heap allocation
zgu@3900 114 assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
zgu@3900 115
duke@435 116 assert(_len >= 0 && _len <= _max, "initial_len too big");
duke@435 117 _arena = (c_heap ? (Arena*)1 : NULL);
duke@435 118 set_nesting();
kvn@2040 119 assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
kvn@2040 120 assert(!on_stack() ||
kvn@2040 121 (allocated_on_res_area() || allocated_on_stack()),
kvn@2040 122 "growable array must be on stack if elements are not on arena and not on C heap");
duke@435 123 }
duke@435 124
duke@435 125 // This GA will use the given arena for storage.
duke@435 126 // Consider using new(arena) GrowableArray<T> to allocate the header.
duke@435 127 GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
duke@435 128 _len = initial_len;
duke@435 129 _max = initial_size;
duke@435 130 assert(_len >= 0 && _len <= _max, "initial_len too big");
duke@435 131 _arena = arena;
zgu@3900 132 _memflags = mtNone;
zgu@3900 133
duke@435 134 assert(on_arena(), "arena has taken on reserved value 0 or 1");
kvn@2040 135 // Relax next assert to allow object allocation on resource area,
kvn@2040 136 // on stack or embedded into an other object.
kvn@2040 137 assert(allocated_on_arena() || allocated_on_stack(),
kvn@2040 138 "growable array must be on arena or on stack if elements are on arena");
duke@435 139 }
duke@435 140
duke@435 141 void* raw_allocate(int elementSize);
jrose@867 142
jrose@867 143 // some uses pass the Thread explicitly for speed (4990299 tuning)
jrose@867 144 void* raw_allocate(Thread* thread, int elementSize) {
jrose@867 145 assert(on_stack(), "fast ResourceObj path only");
jrose@867 146 return (void*)resource_allocate_bytes(thread, elementSize * _max);
jrose@867 147 }
duke@435 148 };
duke@435 149
anoll@7028 150 template<class E> class GrowableArrayIterator;
anoll@7028 151 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
anoll@7028 152
duke@435 153 template<class E> class GrowableArray : public GenericGrowableArray {
never@3138 154 friend class VMStructs;
never@3138 155
duke@435 156 private:
duke@435 157 E* _data; // data array
duke@435 158
duke@435 159 void grow(int j);
duke@435 160 void raw_at_put_grow(int i, const E& p, const E& fill);
duke@435 161 void clear_and_deallocate();
duke@435 162 public:
jrose@867 163 GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
jrose@867 164 _data = (E*)raw_allocate(thread, sizeof(E));
jrose@867 165 for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
jrose@867 166 }
jrose@867 167
zgu@3900 168 GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
zgu@3900 169 : GenericGrowableArray(initial_size, 0, C_heap, F) {
duke@435 170 _data = (E*)raw_allocate(sizeof(E));
duke@435 171 for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 172 }
duke@435 173
zgu@3900 174 GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
zgu@3900 175 : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
duke@435 176 _data = (E*)raw_allocate(sizeof(E));
duke@435 177 int i = 0;
duke@435 178 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
duke@435 179 for (; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 180 }
duke@435 181
duke@435 182 GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
duke@435 183 _data = (E*)raw_allocate(sizeof(E));
duke@435 184 int i = 0;
duke@435 185 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
duke@435 186 for (; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 187 }
duke@435 188
duke@435 189 GrowableArray() : GenericGrowableArray(2, 0, false) {
duke@435 190 _data = (E*)raw_allocate(sizeof(E));
duke@435 191 ::new ((void*)&_data[0]) E();
duke@435 192 ::new ((void*)&_data[1]) E();
duke@435 193 }
duke@435 194
duke@435 195 // Does nothing for resource and arena objects
duke@435 196 ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
duke@435 197
duke@435 198 void clear() { _len = 0; }
duke@435 199 int length() const { return _len; }
johnc@5548 200 int max_length() const { return _max; }
duke@435 201 void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
duke@435 202 bool is_empty() const { return _len == 0; }
duke@435 203 bool is_nonempty() const { return _len != 0; }
duke@435 204 bool is_full() const { return _len == _max; }
duke@435 205 DEBUG_ONLY(E* data_addr() const { return _data; })
duke@435 206
duke@435 207 void print();
duke@435 208
jrose@867 209 int append(const E& elem) {
duke@435 210 check_nesting();
duke@435 211 if (_len == _max) grow(_len);
jrose@867 212 int idx = _len++;
jrose@867 213 _data[idx] = elem;
jrose@867 214 return idx;
duke@435 215 }
duke@435 216
kvn@3651 217 bool append_if_missing(const E& elem) {
kvn@3651 218 // Returns TRUE if elem is added.
kvn@3651 219 bool missed = !contains(elem);
kvn@3651 220 if (missed) append(elem);
kvn@3651 221 return missed;
duke@435 222 }
duke@435 223
kamg@4245 224 E& at(int i) {
kamg@4245 225 assert(0 <= i && i < _len, "illegal index");
kamg@4245 226 return _data[i];
kamg@4245 227 }
kamg@4245 228
kamg@4245 229 E const& at(int i) const {
duke@435 230 assert(0 <= i && i < _len, "illegal index");
duke@435 231 return _data[i];
duke@435 232 }
duke@435 233
duke@435 234 E* adr_at(int i) const {
duke@435 235 assert(0 <= i && i < _len, "illegal index");
duke@435 236 return &_data[i];
duke@435 237 }
duke@435 238
duke@435 239 E first() const {
duke@435 240 assert(_len > 0, "empty list");
duke@435 241 return _data[0];
duke@435 242 }
duke@435 243
duke@435 244 E top() const {
duke@435 245 assert(_len > 0, "empty list");
duke@435 246 return _data[_len-1];
duke@435 247 }
duke@435 248
anoll@7028 249 GrowableArrayIterator<E> begin() const {
anoll@7028 250 return GrowableArrayIterator<E>(this, 0);
anoll@7028 251 }
anoll@7028 252
anoll@7028 253 GrowableArrayIterator<E> end() const {
anoll@7028 254 return GrowableArrayIterator<E>(this, length());
anoll@7028 255 }
anoll@7028 256
duke@435 257 void push(const E& elem) { append(elem); }
duke@435 258
duke@435 259 E pop() {
duke@435 260 assert(_len > 0, "empty list");
duke@435 261 return _data[--_len];
duke@435 262 }
duke@435 263
duke@435 264 void at_put(int i, const E& elem) {
duke@435 265 assert(0 <= i && i < _len, "illegal index");
duke@435 266 _data[i] = elem;
duke@435 267 }
duke@435 268
duke@435 269 E at_grow(int i, const E& fill = E()) {
duke@435 270 assert(0 <= i, "negative index");
duke@435 271 check_nesting();
duke@435 272 if (i >= _len) {
duke@435 273 if (i >= _max) grow(i);
duke@435 274 for (int j = _len; j <= i; j++)
duke@435 275 _data[j] = fill;
duke@435 276 _len = i+1;
duke@435 277 }
duke@435 278 return _data[i];
duke@435 279 }
duke@435 280
duke@435 281 void at_put_grow(int i, const E& elem, const E& fill = E()) {
duke@435 282 assert(0 <= i, "negative index");
duke@435 283 check_nesting();
duke@435 284 raw_at_put_grow(i, elem, fill);
duke@435 285 }
duke@435 286
duke@435 287 bool contains(const E& elem) const {
duke@435 288 for (int i = 0; i < _len; i++) {
duke@435 289 if (_data[i] == elem) return true;
duke@435 290 }
duke@435 291 return false;
duke@435 292 }
duke@435 293
duke@435 294 int find(const E& elem) const {
duke@435 295 for (int i = 0; i < _len; i++) {
duke@435 296 if (_data[i] == elem) return i;
duke@435 297 }
duke@435 298 return -1;
duke@435 299 }
duke@435 300
coleenp@4037 301 int find_from_end(const E& elem) const {
coleenp@4037 302 for (int i = _len-1; i >= 0; i--) {
coleenp@4037 303 if (_data[i] == elem) return i;
coleenp@4037 304 }
coleenp@4037 305 return -1;
coleenp@4037 306 }
coleenp@4037 307
duke@435 308 int find(void* token, bool f(void*, E)) const {
duke@435 309 for (int i = 0; i < _len; i++) {
duke@435 310 if (f(token, _data[i])) return i;
duke@435 311 }
duke@435 312 return -1;
duke@435 313 }
duke@435 314
coleenp@4037 315 int find_from_end(void* token, bool f(void*, E)) const {
duke@435 316 // start at the end of the array
duke@435 317 for (int i = _len-1; i >= 0; i--) {
duke@435 318 if (f(token, _data[i])) return i;
duke@435 319 }
duke@435 320 return -1;
duke@435 321 }
duke@435 322
duke@435 323 void remove(const E& elem) {
duke@435 324 for (int i = 0; i < _len; i++) {
duke@435 325 if (_data[i] == elem) {
duke@435 326 for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
duke@435 327 _len--;
duke@435 328 return;
duke@435 329 }
duke@435 330 }
duke@435 331 ShouldNotReachHere();
duke@435 332 }
duke@435 333
kvn@3651 334 // The order is preserved.
duke@435 335 void remove_at(int index) {
duke@435 336 assert(0 <= index && index < _len, "illegal index");
duke@435 337 for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
duke@435 338 _len--;
duke@435 339 }
duke@435 340
kvn@3651 341 // The order is changed.
kvn@3651 342 void delete_at(int index) {
kvn@3651 343 assert(0 <= index && index < _len, "illegal index");
kvn@3651 344 if (index < --_len) {
kvn@3651 345 // Replace removed element with last one.
kvn@3651 346 _data[index] = _data[_len];
kvn@3651 347 }
kvn@3651 348 }
kvn@3651 349
never@1515 350 // inserts the given element before the element at index i
never@1515 351 void insert_before(const int idx, const E& elem) {
roland@7041 352 assert(0 <= idx && idx <= _len, "illegal index");
never@1515 353 check_nesting();
never@1515 354 if (_len == _max) grow(_len);
never@1515 355 for (int j = _len - 1; j >= idx; j--) {
never@1515 356 _data[j + 1] = _data[j];
never@1515 357 }
never@1515 358 _len++;
never@1515 359 _data[idx] = elem;
never@1515 360 }
never@1515 361
duke@435 362 void appendAll(const GrowableArray<E>* l) {
duke@435 363 for (int i = 0; i < l->_len; i++) {
roland@7041 364 raw_at_put_grow(_len, l->_data[i], E());
duke@435 365 }
duke@435 366 }
duke@435 367
duke@435 368 void sort(int f(E*,E*)) {
duke@435 369 qsort(_data, length(), sizeof(E), (_sort_Fn)f);
duke@435 370 }
duke@435 371 // sort by fixed-stride sub arrays:
duke@435 372 void sort(int f(E*,E*), int stride) {
duke@435 373 qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
duke@435 374 }
duke@435 375 };
duke@435 376
duke@435 377 // Global GrowableArray methods (one instance in the library per each 'E' type).
duke@435 378
duke@435 379 template<class E> void GrowableArray<E>::grow(int j) {
duke@435 380 // grow the array by doubling its size (amortized growth)
duke@435 381 int old_max = _max;
duke@435 382 if (_max == 0) _max = 1; // prevent endless loop
duke@435 383 while (j >= _max) _max = _max*2;
duke@435 384 // j < _max
duke@435 385 E* newData = (E*)raw_allocate(sizeof(E));
duke@435 386 int i = 0;
duke@435 387 for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
duke@435 388 for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
duke@435 389 for (i = 0; i < old_max; i++) _data[i].~E();
duke@435 390 if (on_C_heap() && _data != NULL) {
duke@435 391 FreeHeap(_data);
duke@435 392 }
duke@435 393 _data = newData;
duke@435 394 }
duke@435 395
duke@435 396 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
duke@435 397 if (i >= _len) {
duke@435 398 if (i >= _max) grow(i);
duke@435 399 for (int j = _len; j < i; j++)
duke@435 400 _data[j] = fill;
duke@435 401 _len = i+1;
duke@435 402 }
duke@435 403 _data[i] = p;
duke@435 404 }
duke@435 405
duke@435 406 // This function clears and deallocate the data in the growable array that
duke@435 407 // has been allocated on the C heap. It's not public - called by the
duke@435 408 // destructor.
duke@435 409 template<class E> void GrowableArray<E>::clear_and_deallocate() {
duke@435 410 assert(on_C_heap(),
duke@435 411 "clear_and_deallocate should only be called when on C heap");
duke@435 412 clear();
duke@435 413 if (_data != NULL) {
duke@435 414 for (int i = 0; i < _max; i++) _data[i].~E();
duke@435 415 FreeHeap(_data);
duke@435 416 _data = NULL;
duke@435 417 }
duke@435 418 }
duke@435 419
duke@435 420 template<class E> void GrowableArray<E>::print() {
duke@435 421 tty->print("Growable Array " INTPTR_FORMAT, this);
duke@435 422 tty->print(": length %ld (_max %ld) { ", _len, _max);
duke@435 423 for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
duke@435 424 tty->print("}\n");
duke@435 425 }
stefank@2314 426
anoll@7028 427 // Custom STL-style iterator to iterate over GrowableArrays
anoll@7028 428 // It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
anoll@7028 429 template<class E> class GrowableArrayIterator : public StackObj {
anoll@7028 430 friend class GrowableArray<E>;
anoll@7028 431 template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
anoll@7028 432
anoll@7028 433 private:
anoll@7028 434 const GrowableArray<E>* _array; // GrowableArray we iterate over
anoll@7028 435 int _position; // The current position in the GrowableArray
anoll@7028 436
anoll@7028 437 // Private constructor used in GrowableArray::begin() and GrowableArray::end()
anoll@7028 438 GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
anoll@7028 439 assert(0 <= position && position <= _array->length(), "illegal position");
anoll@7028 440 }
anoll@7028 441
anoll@7028 442 public:
anoll@7028 443 GrowableArrayIterator<E>& operator++() { ++_position; return *this; }
anoll@7028 444 E operator*() { return _array->at(_position); }
anoll@7028 445
anoll@7028 446 bool operator==(const GrowableArrayIterator<E>& rhs) {
anoll@7028 447 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 448 return _position == rhs._position;
anoll@7028 449 }
anoll@7028 450
anoll@7028 451 bool operator!=(const GrowableArrayIterator<E>& rhs) {
anoll@7028 452 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 453 return _position != rhs._position;
anoll@7028 454 }
anoll@7028 455 };
anoll@7028 456
anoll@7028 457 // Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
anoll@7028 458 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
anoll@7028 459 friend class GrowableArray<E>;
anoll@7028 460
anoll@7028 461 private:
anoll@7028 462 const GrowableArray<E>* _array; // GrowableArray we iterate over
anoll@7028 463 int _position; // Current position in the GrowableArray
anoll@7028 464 UnaryPredicate _predicate; // Unary predicate the elements of the GrowableArray should satisfy
anoll@7028 465
anoll@7028 466 public:
anoll@7028 467 GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
anoll@7028 468 : _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
anoll@7028 469 // Advance to first element satisfying the predicate
anoll@7028 470 while(_position != _array->length() && !_predicate(_array->at(_position))) {
anoll@7028 471 ++_position;
anoll@7028 472 }
anoll@7028 473 }
anoll@7028 474
anoll@7028 475 GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
anoll@7028 476 do {
anoll@7028 477 // Advance to next element satisfying the predicate
anoll@7028 478 ++_position;
anoll@7028 479 } while(_position != _array->length() && !_predicate(_array->at(_position)));
anoll@7028 480 return *this;
anoll@7028 481 }
anoll@7028 482
anoll@7028 483 E operator*() { return _array->at(_position); }
anoll@7028 484
anoll@7028 485 bool operator==(const GrowableArrayIterator<E>& rhs) {
anoll@7028 486 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 487 return _position == rhs._position;
anoll@7028 488 }
anoll@7028 489
anoll@7028 490 bool operator!=(const GrowableArrayIterator<E>& rhs) {
anoll@7028 491 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 492 return _position != rhs._position;
anoll@7028 493 }
anoll@7028 494
anoll@7028 495 bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
anoll@7028 496 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 497 return _position == rhs._position;
anoll@7028 498 }
anoll@7028 499
anoll@7028 500 bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
anoll@7028 501 assert(_array == rhs._array, "iterator belongs to different array");
anoll@7028 502 return _position != rhs._position;
anoll@7028 503 }
anoll@7028 504 };
anoll@7028 505
stefank@2314 506 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP

mercurial