src/share/vm/utilities/growableArray.hpp

Wed, 13 Aug 2014 11:00:22 +0200

author
roland
date
Wed, 13 Aug 2014 11:00:22 +0200
changeset 7041
411e30e5fbb8
parent 7028
46bbe04d1cad
child 7535
7ae4e26cb1e0
child 9858
b985cbb00e68
permissions
-rw-r--r--

8026796: Make replace_in_map() on parent maps generic
Summary: propagate node replacements along control flow edges to callers
Reviewed-by: kvn, vlivanov

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "utilities/debug.hpp"
    31 #include "utilities/globalDefinitions.hpp"
    32 #include "utilities/top.hpp"
    34 // A growable array.
    36 /*************************************************************************/
    37 /*                                                                       */
    38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
    39 /*                                                                       */
    40 /* Should you use GrowableArrays to contain handles you must be certain  */
    41 /* the the GrowableArray does not outlive the HandleMark that contains   */
    42 /* the handles. Since GrowableArrays are typically resource allocated    */
    43 /* the following is an example of INCORRECT CODE,                        */
    44 /*                                                                       */
    45 /* ResourceMark rm;                                                      */
    46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
    47 /* if (blah) {                                                           */
    48 /*    while (...) {                                                      */
    49 /*      HandleMark hm;                                                   */
    50 /*      ...                                                              */
    51 /*      Handle h(THREAD, some_oop);                                      */
    52 /*      arr->append(h);                                                  */
    53 /*    }                                                                  */
    54 /* }                                                                     */
    55 /* if (arr->length() != 0 ) {                                            */
    56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
    57 /*    ...                                                                */
    58 /* }                                                                     */
    59 /*                                                                       */
    60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
    61 /* hould not old handles since the handles could trivially try and       */
    62 /* outlive their HandleMark. In some situations you might need to do     */
    63 /* this and it would be legal but be very careful and see if you can do  */
    64 /* the code in some other manner.                                        */
    65 /*                                                                       */
    66 /*************************************************************************/
    68 // To call default constructor the placement operator new() is used.
    69 // It should be empty (it only returns the passed void* pointer).
    70 // The definition of placement operator new(size_t, void*) in the <new>.
    72 #include <new>
    74 // Need the correct linkage to call qsort without warnings
    75 extern "C" {
    76   typedef int (*_sort_Fn)(const void *, const void *);
    77 }
    79 class GenericGrowableArray : public ResourceObj {
    80   friend class VMStructs;
    82  protected:
    83   int    _len;          // current length
    84   int    _max;          // maximum length
    85   Arena* _arena;        // Indicates where allocation occurs:
    86                         //   0 means default ResourceArea
    87                         //   1 means on C heap
    88                         //   otherwise, allocate in _arena
    90   MEMFLAGS   _memflags;   // memory type if allocation in C heap
    92 #ifdef ASSERT
    93   int    _nesting;      // resource area nesting at creation
    94   void   set_nesting();
    95   void   check_nesting();
    96 #else
    97 #define  set_nesting();
    98 #define  check_nesting();
    99 #endif
   101   // Where are we going to allocate memory?
   102   bool on_C_heap() { return _arena == (Arena*)1; }
   103   bool on_stack () { return _arena == NULL;      }
   104   bool on_arena () { return _arena >  (Arena*)1;  }
   106   // This GA will use the resource stack for storage if c_heap==false,
   107   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
   108   GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
   109     _len = initial_len;
   110     _max = initial_size;
   111     _memflags = flags;
   113     // memory type has to be specified for C heap allocation
   114     assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
   116     assert(_len >= 0 && _len <= _max, "initial_len too big");
   117     _arena = (c_heap ? (Arena*)1 : NULL);
   118     set_nesting();
   119     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
   120     assert(!on_stack() ||
   121            (allocated_on_res_area() || allocated_on_stack()),
   122            "growable array must be on stack if elements are not on arena and not on C heap");
   123   }
   125   // This GA will use the given arena for storage.
   126   // Consider using new(arena) GrowableArray<T> to allocate the header.
   127   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
   128     _len = initial_len;
   129     _max = initial_size;
   130     assert(_len >= 0 && _len <= _max, "initial_len too big");
   131     _arena = arena;
   132     _memflags = mtNone;
   134     assert(on_arena(), "arena has taken on reserved value 0 or 1");
   135     // Relax next assert to allow object allocation on resource area,
   136     // on stack or embedded into an other object.
   137     assert(allocated_on_arena() || allocated_on_stack(),
   138            "growable array must be on arena or on stack if elements are on arena");
   139   }
   141   void* raw_allocate(int elementSize);
   143   // some uses pass the Thread explicitly for speed (4990299 tuning)
   144   void* raw_allocate(Thread* thread, int elementSize) {
   145     assert(on_stack(), "fast ResourceObj path only");
   146     return (void*)resource_allocate_bytes(thread, elementSize * _max);
   147   }
   148 };
   150 template<class E> class GrowableArrayIterator;
   151 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
   153 template<class E> class GrowableArray : public GenericGrowableArray {
   154   friend class VMStructs;
   156  private:
   157   E*     _data;         // data array
   159   void grow(int j);
   160   void raw_at_put_grow(int i, const E& p, const E& fill);
   161   void  clear_and_deallocate();
   162  public:
   163   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
   164     _data = (E*)raw_allocate(thread, sizeof(E));
   165     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   166   }
   168   GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
   169     : GenericGrowableArray(initial_size, 0, C_heap, F) {
   170     _data = (E*)raw_allocate(sizeof(E));
   171     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   172   }
   174   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
   175     : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
   176     _data = (E*)raw_allocate(sizeof(E));
   177     int i = 0;
   178     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   179     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   180   }
   182   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
   183     _data = (E*)raw_allocate(sizeof(E));
   184     int i = 0;
   185     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   186     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   187   }
   189   GrowableArray() : GenericGrowableArray(2, 0, false) {
   190     _data = (E*)raw_allocate(sizeof(E));
   191     ::new ((void*)&_data[0]) E();
   192     ::new ((void*)&_data[1]) E();
   193   }
   195                                 // Does nothing for resource and arena objects
   196   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
   198   void  clear()                 { _len = 0; }
   199   int   length() const          { return _len; }
   200   int   max_length() const      { return _max; }
   201   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
   202   bool  is_empty() const        { return _len == 0; }
   203   bool  is_nonempty() const     { return _len != 0; }
   204   bool  is_full() const         { return _len == _max; }
   205   DEBUG_ONLY(E* data_addr() const      { return _data; })
   207   void print();
   209   int append(const E& elem) {
   210     check_nesting();
   211     if (_len == _max) grow(_len);
   212     int idx = _len++;
   213     _data[idx] = elem;
   214     return idx;
   215   }
   217   bool append_if_missing(const E& elem) {
   218     // Returns TRUE if elem is added.
   219     bool missed = !contains(elem);
   220     if (missed) append(elem);
   221     return missed;
   222   }
   224   E& at(int i) {
   225     assert(0 <= i && i < _len, "illegal index");
   226     return _data[i];
   227   }
   229   E const& at(int i) const {
   230     assert(0 <= i && i < _len, "illegal index");
   231     return _data[i];
   232   }
   234   E* adr_at(int i) const {
   235     assert(0 <= i && i < _len, "illegal index");
   236     return &_data[i];
   237   }
   239   E first() const {
   240     assert(_len > 0, "empty list");
   241     return _data[0];
   242   }
   244   E top() const {
   245     assert(_len > 0, "empty list");
   246     return _data[_len-1];
   247   }
   249   GrowableArrayIterator<E> begin() const {
   250     return GrowableArrayIterator<E>(this, 0);
   251   }
   253   GrowableArrayIterator<E> end() const {
   254     return GrowableArrayIterator<E>(this, length());
   255   }
   257   void push(const E& elem) { append(elem); }
   259   E pop() {
   260     assert(_len > 0, "empty list");
   261     return _data[--_len];
   262   }
   264   void at_put(int i, const E& elem) {
   265     assert(0 <= i && i < _len, "illegal index");
   266     _data[i] = elem;
   267   }
   269   E at_grow(int i, const E& fill = E()) {
   270     assert(0 <= i, "negative index");
   271     check_nesting();
   272     if (i >= _len) {
   273       if (i >= _max) grow(i);
   274       for (int j = _len; j <= i; j++)
   275         _data[j] = fill;
   276       _len = i+1;
   277     }
   278     return _data[i];
   279   }
   281   void at_put_grow(int i, const E& elem, const E& fill = E()) {
   282     assert(0 <= i, "negative index");
   283     check_nesting();
   284     raw_at_put_grow(i, elem, fill);
   285   }
   287   bool contains(const E& elem) const {
   288     for (int i = 0; i < _len; i++) {
   289       if (_data[i] == elem) return true;
   290     }
   291     return false;
   292   }
   294   int  find(const E& elem) const {
   295     for (int i = 0; i < _len; i++) {
   296       if (_data[i] == elem) return i;
   297     }
   298     return -1;
   299   }
   301   int  find_from_end(const E& elem) const {
   302     for (int i = _len-1; i >= 0; i--) {
   303       if (_data[i] == elem) return i;
   304     }
   305     return -1;
   306   }
   308   int  find(void* token, bool f(void*, E)) const {
   309     for (int i = 0; i < _len; i++) {
   310       if (f(token, _data[i])) return i;
   311     }
   312     return -1;
   313   }
   315   int  find_from_end(void* token, bool f(void*, E)) const {
   316     // start at the end of the array
   317     for (int i = _len-1; i >= 0; i--) {
   318       if (f(token, _data[i])) return i;
   319     }
   320     return -1;
   321   }
   323   void remove(const E& elem) {
   324     for (int i = 0; i < _len; i++) {
   325       if (_data[i] == elem) {
   326         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
   327         _len--;
   328         return;
   329       }
   330     }
   331     ShouldNotReachHere();
   332   }
   334   // The order is preserved.
   335   void remove_at(int index) {
   336     assert(0 <= index && index < _len, "illegal index");
   337     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
   338     _len--;
   339   }
   341   // The order is changed.
   342   void delete_at(int index) {
   343     assert(0 <= index && index < _len, "illegal index");
   344     if (index < --_len) {
   345       // Replace removed element with last one.
   346       _data[index] = _data[_len];
   347     }
   348   }
   350   // inserts the given element before the element at index i
   351   void insert_before(const int idx, const E& elem) {
   352     assert(0 <= idx && idx <= _len, "illegal index");
   353     check_nesting();
   354     if (_len == _max) grow(_len);
   355     for (int j = _len - 1; j >= idx; j--) {
   356       _data[j + 1] = _data[j];
   357     }
   358     _len++;
   359     _data[idx] = elem;
   360   }
   362   void appendAll(const GrowableArray<E>* l) {
   363     for (int i = 0; i < l->_len; i++) {
   364       raw_at_put_grow(_len, l->_data[i], E());
   365     }
   366   }
   368   void sort(int f(E*,E*)) {
   369     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
   370   }
   371   // sort by fixed-stride sub arrays:
   372   void sort(int f(E*,E*), int stride) {
   373     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
   374   }
   375 };
   377 // Global GrowableArray methods (one instance in the library per each 'E' type).
   379 template<class E> void GrowableArray<E>::grow(int j) {
   380     // grow the array by doubling its size (amortized growth)
   381     int old_max = _max;
   382     if (_max == 0) _max = 1; // prevent endless loop
   383     while (j >= _max) _max = _max*2;
   384     // j < _max
   385     E* newData = (E*)raw_allocate(sizeof(E));
   386     int i = 0;
   387     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
   388     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
   389     for (i = 0; i < old_max; i++) _data[i].~E();
   390     if (on_C_heap() && _data != NULL) {
   391       FreeHeap(_data);
   392     }
   393     _data = newData;
   394 }
   396 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
   397     if (i >= _len) {
   398       if (i >= _max) grow(i);
   399       for (int j = _len; j < i; j++)
   400         _data[j] = fill;
   401       _len = i+1;
   402     }
   403     _data[i] = p;
   404 }
   406 // This function clears and deallocate the data in the growable array that
   407 // has been allocated on the C heap.  It's not public - called by the
   408 // destructor.
   409 template<class E> void GrowableArray<E>::clear_and_deallocate() {
   410     assert(on_C_heap(),
   411            "clear_and_deallocate should only be called when on C heap");
   412     clear();
   413     if (_data != NULL) {
   414       for (int i = 0; i < _max; i++) _data[i].~E();
   415       FreeHeap(_data);
   416       _data = NULL;
   417     }
   418 }
   420 template<class E> void GrowableArray<E>::print() {
   421     tty->print("Growable Array " INTPTR_FORMAT, this);
   422     tty->print(": length %ld (_max %ld) { ", _len, _max);
   423     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
   424     tty->print("}\n");
   425 }
   427 // Custom STL-style iterator to iterate over GrowableArrays
   428 // It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
   429 template<class E> class GrowableArrayIterator : public StackObj {
   430   friend class GrowableArray<E>;
   431   template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
   433  private:
   434   const GrowableArray<E>* _array; // GrowableArray we iterate over
   435   int _position;                  // The current position in the GrowableArray
   437   // Private constructor used in GrowableArray::begin() and GrowableArray::end()
   438   GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
   439     assert(0 <= position && position <= _array->length(), "illegal position");
   440   }
   442  public:
   443   GrowableArrayIterator<E>& operator++()  { ++_position; return *this; }
   444   E operator*()                           { return _array->at(_position); }
   446   bool operator==(const GrowableArrayIterator<E>& rhs)  {
   447     assert(_array == rhs._array, "iterator belongs to different array");
   448     return _position == rhs._position;
   449   }
   451   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
   452     assert(_array == rhs._array, "iterator belongs to different array");
   453     return _position != rhs._position;
   454   }
   455 };
   457 // Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
   458 template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
   459   friend class GrowableArray<E>;
   461  private:
   462   const GrowableArray<E>* _array;   // GrowableArray we iterate over
   463   int _position;                    // Current position in the GrowableArray
   464   UnaryPredicate _predicate;        // Unary predicate the elements of the GrowableArray should satisfy
   466  public:
   467   GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
   468    : _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
   469     // Advance to first element satisfying the predicate
   470     while(_position != _array->length() && !_predicate(_array->at(_position))) {
   471       ++_position;
   472     }
   473   }
   475   GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
   476     do {
   477       // Advance to next element satisfying the predicate
   478       ++_position;
   479     } while(_position != _array->length() && !_predicate(_array->at(_position)));
   480     return *this;
   481   }
   483   E operator*()   { return _array->at(_position); }
   485   bool operator==(const GrowableArrayIterator<E>& rhs)  {
   486     assert(_array == rhs._array, "iterator belongs to different array");
   487     return _position == rhs._position;
   488   }
   490   bool operator!=(const GrowableArrayIterator<E>& rhs)  {
   491     assert(_array == rhs._array, "iterator belongs to different array");
   492     return _position != rhs._position;
   493   }
   495   bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
   496     assert(_array == rhs._array, "iterator belongs to different array");
   497     return _position == rhs._position;
   498   }
   500   bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
   501     assert(_array == rhs._array, "iterator belongs to different array");
   502     return _position != rhs._position;
   503   }
   504 };
   506 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP

mercurial