src/share/vm/opto/superword.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2727
08eb13460b3a
child 3040
c7b60b601eb4
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
never@1940 2 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 */
duke@435 23
stefank@2314 24 #include "precompiled.hpp"
stefank@2314 25 #include "compiler/compileLog.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/divnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/opcodes.hpp"
stefank@2314 35 #include "opto/superword.hpp"
stefank@2314 36 #include "opto/vectornode.hpp"
duke@435 37
duke@435 38 //
duke@435 39 // S U P E R W O R D T R A N S F O R M
duke@435 40 //=============================================================================
duke@435 41
duke@435 42 //------------------------------SuperWord---------------------------
duke@435 43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
duke@435 44 _phase(phase),
duke@435 45 _igvn(phase->_igvn),
duke@435 46 _arena(phase->C->comp_arena()),
duke@435 47 _packset(arena(), 8, 0, NULL), // packs for the current block
duke@435 48 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
duke@435 49 _block(arena(), 8, 0, NULL), // nodes in current block
duke@435 50 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
duke@435 51 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
duke@435 52 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
duke@435 53 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
duke@435 54 _align_to_ref(NULL), // memory reference to align vectors to
duke@435 55 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
duke@435 56 _dg(_arena), // dependence graph
duke@435 57 _visited(arena()), // visited node set
duke@435 58 _post_visited(arena()), // post visited node set
duke@435 59 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
duke@435 60 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
duke@435 61 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
duke@435 62 _lpt(NULL), // loop tree node
duke@435 63 _lp(NULL), // LoopNode
duke@435 64 _bb(NULL), // basic block
duke@435 65 _iv(NULL) // induction var
duke@435 66 {}
duke@435 67
duke@435 68 //------------------------------transform_loop---------------------------
duke@435 69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
duke@435 70 assert(lpt->_head->is_CountedLoop(), "must be");
duke@435 71 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
duke@435 72
duke@435 73 if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
duke@435 74
duke@435 75 // Check for no control flow in body (other than exit)
duke@435 76 Node *cl_exit = cl->loopexit();
duke@435 77 if (cl_exit->in(0) != lpt->_head) return;
duke@435 78
never@540 79 // Make sure the are no extra control users of the loop backedge
never@540 80 if (cl->back_control()->outcnt() != 1) {
never@540 81 return;
never@540 82 }
never@540 83
duke@435 84 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
duke@435 85 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
duke@435 86 if (pre_end == NULL) return;
duke@435 87 Node *pre_opaq1 = pre_end->limit();
duke@435 88 if (pre_opaq1->Opcode() != Op_Opaque1) return;
duke@435 89
duke@435 90 // Do vectors exist on this architecture?
duke@435 91 if (vector_width_in_bytes() == 0) return;
duke@435 92
duke@435 93 init(); // initialize data structures
duke@435 94
duke@435 95 set_lpt(lpt);
duke@435 96 set_lp(cl);
duke@435 97
duke@435 98 // For now, define one block which is the entire loop body
duke@435 99 set_bb(cl);
duke@435 100
duke@435 101 assert(_packset.length() == 0, "packset must be empty");
duke@435 102 SLP_extract();
duke@435 103 }
duke@435 104
duke@435 105 //------------------------------SLP_extract---------------------------
duke@435 106 // Extract the superword level parallelism
duke@435 107 //
duke@435 108 // 1) A reverse post-order of nodes in the block is constructed. By scanning
duke@435 109 // this list from first to last, all definitions are visited before their uses.
duke@435 110 //
duke@435 111 // 2) A point-to-point dependence graph is constructed between memory references.
duke@435 112 // This simplies the upcoming "independence" checker.
duke@435 113 //
duke@435 114 // 3) The maximum depth in the node graph from the beginning of the block
duke@435 115 // to each node is computed. This is used to prune the graph search
duke@435 116 // in the independence checker.
duke@435 117 //
duke@435 118 // 4) For integer types, the necessary bit width is propagated backwards
duke@435 119 // from stores to allow packed operations on byte, char, and short
duke@435 120 // integers. This reverses the promotion to type "int" that javac
duke@435 121 // did for operations like: char c1,c2,c3; c1 = c2 + c3.
duke@435 122 //
duke@435 123 // 5) One of the memory references is picked to be an aligned vector reference.
duke@435 124 // The pre-loop trip count is adjusted to align this reference in the
duke@435 125 // unrolled body.
duke@435 126 //
duke@435 127 // 6) The initial set of pack pairs is seeded with memory references.
duke@435 128 //
duke@435 129 // 7) The set of pack pairs is extended by following use->def and def->use links.
duke@435 130 //
duke@435 131 // 8) The pairs are combined into vector sized packs.
duke@435 132 //
duke@435 133 // 9) Reorder the memory slices to co-locate members of the memory packs.
duke@435 134 //
duke@435 135 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
duke@435 136 // inserting scalar promotion, vector creation from multiple scalars, and
duke@435 137 // extraction of scalar values from vectors.
duke@435 138 //
duke@435 139 void SuperWord::SLP_extract() {
duke@435 140
duke@435 141 // Ready the block
duke@435 142
duke@435 143 construct_bb();
duke@435 144
duke@435 145 dependence_graph();
duke@435 146
duke@435 147 compute_max_depth();
duke@435 148
duke@435 149 compute_vector_element_type();
duke@435 150
duke@435 151 // Attempt vectorization
duke@435 152
duke@435 153 find_adjacent_refs();
duke@435 154
duke@435 155 extend_packlist();
duke@435 156
duke@435 157 combine_packs();
duke@435 158
duke@435 159 construct_my_pack_map();
duke@435 160
duke@435 161 filter_packs();
duke@435 162
duke@435 163 schedule();
duke@435 164
duke@435 165 output();
duke@435 166 }
duke@435 167
duke@435 168 //------------------------------find_adjacent_refs---------------------------
duke@435 169 // Find the adjacent memory references and create pack pairs for them.
duke@435 170 // This is the initial set of packs that will then be extended by
duke@435 171 // following use->def and def->use links. The align positions are
duke@435 172 // assigned relative to the reference "align_to_ref"
duke@435 173 void SuperWord::find_adjacent_refs() {
duke@435 174 // Get list of memory operations
duke@435 175 Node_List memops;
duke@435 176 for (int i = 0; i < _block.length(); i++) {
duke@435 177 Node* n = _block.at(i);
kvn@464 178 if (n->is_Mem() && in_bb(n) &&
kvn@464 179 is_java_primitive(n->as_Mem()->memory_type())) {
duke@435 180 int align = memory_alignment(n->as_Mem(), 0);
duke@435 181 if (align != bottom_align) {
duke@435 182 memops.push(n);
duke@435 183 }
duke@435 184 }
duke@435 185 }
duke@435 186 if (memops.size() == 0) return;
duke@435 187
duke@435 188 // Find a memory reference to align to. The pre-loop trip count
duke@435 189 // is modified to align this reference to a vector-aligned address
duke@435 190 find_align_to_ref(memops);
duke@435 191 if (align_to_ref() == NULL) return;
duke@435 192
duke@435 193 SWPointer align_to_ref_p(align_to_ref(), this);
duke@435 194 int offset = align_to_ref_p.offset_in_bytes();
duke@435 195 int scale = align_to_ref_p.scale_in_bytes();
duke@435 196 int vw = vector_width_in_bytes();
duke@435 197 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
duke@435 198 int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
duke@435 199
duke@435 200 #ifndef PRODUCT
duke@435 201 if (TraceSuperWord)
never@507 202 tty->print_cr("\noffset = %d iv_adjustment = %d elt_align = %d scale = %d iv_stride = %d",
never@507 203 offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
duke@435 204 #endif
duke@435 205
duke@435 206 // Set alignment relative to "align_to_ref"
duke@435 207 for (int i = memops.size() - 1; i >= 0; i--) {
duke@435 208 MemNode* s = memops.at(i)->as_Mem();
duke@435 209 SWPointer p2(s, this);
duke@435 210 if (p2.comparable(align_to_ref_p)) {
duke@435 211 int align = memory_alignment(s, iv_adjustment);
duke@435 212 set_alignment(s, align);
duke@435 213 } else {
duke@435 214 memops.remove(i);
duke@435 215 }
duke@435 216 }
duke@435 217
duke@435 218 // Create initial pack pairs of memory operations
duke@435 219 for (uint i = 0; i < memops.size(); i++) {
duke@435 220 Node* s1 = memops.at(i);
duke@435 221 for (uint j = 0; j < memops.size(); j++) {
duke@435 222 Node* s2 = memops.at(j);
duke@435 223 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
duke@435 224 int align = alignment(s1);
duke@435 225 if (stmts_can_pack(s1, s2, align)) {
duke@435 226 Node_List* pair = new Node_List();
duke@435 227 pair->push(s1);
duke@435 228 pair->push(s2);
duke@435 229 _packset.append(pair);
duke@435 230 }
duke@435 231 }
duke@435 232 }
duke@435 233 }
duke@435 234
duke@435 235 #ifndef PRODUCT
duke@435 236 if (TraceSuperWord) {
duke@435 237 tty->print_cr("\nAfter find_adjacent_refs");
duke@435 238 print_packset();
duke@435 239 }
duke@435 240 #endif
duke@435 241 }
duke@435 242
duke@435 243 //------------------------------find_align_to_ref---------------------------
duke@435 244 // Find a memory reference to align the loop induction variable to.
duke@435 245 // Looks first at stores then at loads, looking for a memory reference
duke@435 246 // with the largest number of references similar to it.
duke@435 247 void SuperWord::find_align_to_ref(Node_List &memops) {
duke@435 248 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
duke@435 249
duke@435 250 // Count number of comparable memory ops
duke@435 251 for (uint i = 0; i < memops.size(); i++) {
duke@435 252 MemNode* s1 = memops.at(i)->as_Mem();
duke@435 253 SWPointer p1(s1, this);
duke@435 254 // Discard if pre loop can't align this reference
duke@435 255 if (!ref_is_alignable(p1)) {
duke@435 256 *cmp_ct.adr_at(i) = 0;
duke@435 257 continue;
duke@435 258 }
duke@435 259 for (uint j = i+1; j < memops.size(); j++) {
duke@435 260 MemNode* s2 = memops.at(j)->as_Mem();
duke@435 261 if (isomorphic(s1, s2)) {
duke@435 262 SWPointer p2(s2, this);
duke@435 263 if (p1.comparable(p2)) {
duke@435 264 (*cmp_ct.adr_at(i))++;
duke@435 265 (*cmp_ct.adr_at(j))++;
duke@435 266 }
duke@435 267 }
duke@435 268 }
duke@435 269 }
duke@435 270
duke@435 271 // Find Store (or Load) with the greatest number of "comparable" references
duke@435 272 int max_ct = 0;
duke@435 273 int max_idx = -1;
duke@435 274 int min_size = max_jint;
duke@435 275 int min_iv_offset = max_jint;
duke@435 276 for (uint j = 0; j < memops.size(); j++) {
duke@435 277 MemNode* s = memops.at(j)->as_Mem();
duke@435 278 if (s->is_Store()) {
duke@435 279 SWPointer p(s, this);
duke@435 280 if (cmp_ct.at(j) > max_ct ||
duke@435 281 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 282 data_size(s) == min_size &&
duke@435 283 p.offset_in_bytes() < min_iv_offset)) {
duke@435 284 max_ct = cmp_ct.at(j);
duke@435 285 max_idx = j;
duke@435 286 min_size = data_size(s);
duke@435 287 min_iv_offset = p.offset_in_bytes();
duke@435 288 }
duke@435 289 }
duke@435 290 }
duke@435 291 // If no stores, look at loads
duke@435 292 if (max_ct == 0) {
duke@435 293 for (uint j = 0; j < memops.size(); j++) {
duke@435 294 MemNode* s = memops.at(j)->as_Mem();
duke@435 295 if (s->is_Load()) {
duke@435 296 SWPointer p(s, this);
duke@435 297 if (cmp_ct.at(j) > max_ct ||
duke@435 298 cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
duke@435 299 data_size(s) == min_size &&
duke@435 300 p.offset_in_bytes() < min_iv_offset)) {
duke@435 301 max_ct = cmp_ct.at(j);
duke@435 302 max_idx = j;
duke@435 303 min_size = data_size(s);
duke@435 304 min_iv_offset = p.offset_in_bytes();
duke@435 305 }
duke@435 306 }
duke@435 307 }
duke@435 308 }
duke@435 309
duke@435 310 if (max_ct > 0)
duke@435 311 set_align_to_ref(memops.at(max_idx)->as_Mem());
duke@435 312
duke@435 313 #ifndef PRODUCT
duke@435 314 if (TraceSuperWord && Verbose) {
duke@435 315 tty->print_cr("\nVector memops after find_align_to_refs");
duke@435 316 for (uint i = 0; i < memops.size(); i++) {
duke@435 317 MemNode* s = memops.at(i)->as_Mem();
duke@435 318 s->dump();
duke@435 319 }
duke@435 320 }
duke@435 321 #endif
duke@435 322 }
duke@435 323
duke@435 324 //------------------------------ref_is_alignable---------------------------
duke@435 325 // Can the preloop align the reference to position zero in the vector?
duke@435 326 bool SuperWord::ref_is_alignable(SWPointer& p) {
duke@435 327 if (!p.has_iv()) {
duke@435 328 return true; // no induction variable
duke@435 329 }
duke@435 330 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
duke@435 331 assert(pre_end->stride_is_con(), "pre loop stride is constant");
duke@435 332 int preloop_stride = pre_end->stride_con();
duke@435 333
duke@435 334 int span = preloop_stride * p.scale_in_bytes();
duke@435 335
duke@435 336 // Stride one accesses are alignable.
duke@435 337 if (ABS(span) == p.memory_size())
duke@435 338 return true;
duke@435 339
duke@435 340 // If initial offset from start of object is computable,
duke@435 341 // compute alignment within the vector.
duke@435 342 int vw = vector_width_in_bytes();
duke@435 343 if (vw % span == 0) {
duke@435 344 Node* init_nd = pre_end->init_trip();
duke@435 345 if (init_nd->is_Con() && p.invar() == NULL) {
duke@435 346 int init = init_nd->bottom_type()->is_int()->get_con();
duke@435 347
duke@435 348 int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
duke@435 349 assert(init_offset >= 0, "positive offset from object start");
duke@435 350
duke@435 351 if (span > 0) {
duke@435 352 return (vw - (init_offset % vw)) % span == 0;
duke@435 353 } else {
duke@435 354 assert(span < 0, "nonzero stride * scale");
duke@435 355 return (init_offset % vw) % -span == 0;
duke@435 356 }
duke@435 357 }
duke@435 358 }
duke@435 359 return false;
duke@435 360 }
duke@435 361
duke@435 362 //---------------------------dependence_graph---------------------------
duke@435 363 // Construct dependency graph.
duke@435 364 // Add dependence edges to load/store nodes for memory dependence
duke@435 365 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
duke@435 366 void SuperWord::dependence_graph() {
duke@435 367 // First, assign a dependence node to each memory node
duke@435 368 for (int i = 0; i < _block.length(); i++ ) {
duke@435 369 Node *n = _block.at(i);
duke@435 370 if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
duke@435 371 _dg.make_node(n);
duke@435 372 }
duke@435 373 }
duke@435 374
duke@435 375 // For each memory slice, create the dependences
duke@435 376 for (int i = 0; i < _mem_slice_head.length(); i++) {
duke@435 377 Node* n = _mem_slice_head.at(i);
duke@435 378 Node* n_tail = _mem_slice_tail.at(i);
duke@435 379
duke@435 380 // Get slice in predecessor order (last is first)
duke@435 381 mem_slice_preds(n_tail, n, _nlist);
duke@435 382
duke@435 383 // Make the slice dependent on the root
duke@435 384 DepMem* slice = _dg.dep(n);
duke@435 385 _dg.make_edge(_dg.root(), slice);
duke@435 386
duke@435 387 // Create a sink for the slice
duke@435 388 DepMem* slice_sink = _dg.make_node(NULL);
duke@435 389 _dg.make_edge(slice_sink, _dg.tail());
duke@435 390
duke@435 391 // Now visit each pair of memory ops, creating the edges
duke@435 392 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
duke@435 393 Node* s1 = _nlist.at(j);
duke@435 394
duke@435 395 // If no dependency yet, use slice
duke@435 396 if (_dg.dep(s1)->in_cnt() == 0) {
duke@435 397 _dg.make_edge(slice, s1);
duke@435 398 }
duke@435 399 SWPointer p1(s1->as_Mem(), this);
duke@435 400 bool sink_dependent = true;
duke@435 401 for (int k = j - 1; k >= 0; k--) {
duke@435 402 Node* s2 = _nlist.at(k);
duke@435 403 if (s1->is_Load() && s2->is_Load())
duke@435 404 continue;
duke@435 405 SWPointer p2(s2->as_Mem(), this);
duke@435 406
duke@435 407 int cmp = p1.cmp(p2);
duke@435 408 if (SuperWordRTDepCheck &&
duke@435 409 p1.base() != p2.base() && p1.valid() && p2.valid()) {
duke@435 410 // Create a runtime check to disambiguate
duke@435 411 OrderedPair pp(p1.base(), p2.base());
duke@435 412 _disjoint_ptrs.append_if_missing(pp);
duke@435 413 } else if (!SWPointer::not_equal(cmp)) {
duke@435 414 // Possibly same address
duke@435 415 _dg.make_edge(s1, s2);
duke@435 416 sink_dependent = false;
duke@435 417 }
duke@435 418 }
duke@435 419 if (sink_dependent) {
duke@435 420 _dg.make_edge(s1, slice_sink);
duke@435 421 }
duke@435 422 }
duke@435 423 #ifndef PRODUCT
duke@435 424 if (TraceSuperWord) {
duke@435 425 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
duke@435 426 for (int q = 0; q < _nlist.length(); q++) {
duke@435 427 _dg.print(_nlist.at(q));
duke@435 428 }
duke@435 429 tty->cr();
duke@435 430 }
duke@435 431 #endif
duke@435 432 _nlist.clear();
duke@435 433 }
duke@435 434
duke@435 435 #ifndef PRODUCT
duke@435 436 if (TraceSuperWord) {
duke@435 437 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
duke@435 438 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
duke@435 439 _disjoint_ptrs.at(r).print();
duke@435 440 tty->cr();
duke@435 441 }
duke@435 442 tty->cr();
duke@435 443 }
duke@435 444 #endif
duke@435 445 }
duke@435 446
duke@435 447 //---------------------------mem_slice_preds---------------------------
duke@435 448 // Return a memory slice (node list) in predecessor order starting at "start"
duke@435 449 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
duke@435 450 assert(preds.length() == 0, "start empty");
duke@435 451 Node* n = start;
duke@435 452 Node* prev = NULL;
duke@435 453 while (true) {
duke@435 454 assert(in_bb(n), "must be in block");
duke@435 455 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 456 Node* out = n->fast_out(i);
duke@435 457 if (out->is_Load()) {
duke@435 458 if (in_bb(out)) {
duke@435 459 preds.push(out);
duke@435 460 }
duke@435 461 } else {
duke@435 462 // FIXME
duke@435 463 if (out->is_MergeMem() && !in_bb(out)) {
duke@435 464 // Either unrolling is causing a memory edge not to disappear,
duke@435 465 // or need to run igvn.optimize() again before SLP
duke@435 466 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
duke@435 467 // Ditto. Not sure what else to check further.
cfang@1102 468 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
duke@435 469 // StoreCM has an input edge used as a precedence edge.
duke@435 470 // Maybe an issue when oop stores are vectorized.
duke@435 471 } else {
duke@435 472 assert(out == prev || prev == NULL, "no branches off of store slice");
duke@435 473 }
duke@435 474 }
duke@435 475 }
duke@435 476 if (n == stop) break;
duke@435 477 preds.push(n);
duke@435 478 prev = n;
duke@435 479 n = n->in(MemNode::Memory);
duke@435 480 }
duke@435 481 }
duke@435 482
duke@435 483 //------------------------------stmts_can_pack---------------------------
twisti@1040 484 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
duke@435 485 // s1 aligned at "align"
duke@435 486 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
cfang@1422 487
cfang@1422 488 // Do not use superword for non-primitives
cfang@1422 489 if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
cfang@1422 490 (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
cfang@1422 491 return false;
cfang@1422 492
duke@435 493 if (isomorphic(s1, s2)) {
duke@435 494 if (independent(s1, s2)) {
duke@435 495 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
duke@435 496 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
duke@435 497 int s1_align = alignment(s1);
duke@435 498 int s2_align = alignment(s2);
duke@435 499 if (s1_align == top_align || s1_align == align) {
duke@435 500 if (s2_align == top_align || s2_align == align + data_size(s1)) {
duke@435 501 return true;
duke@435 502 }
duke@435 503 }
duke@435 504 }
duke@435 505 }
duke@435 506 }
duke@435 507 }
duke@435 508 return false;
duke@435 509 }
duke@435 510
duke@435 511 //------------------------------exists_at---------------------------
duke@435 512 // Does s exist in a pack at position pos?
duke@435 513 bool SuperWord::exists_at(Node* s, uint pos) {
duke@435 514 for (int i = 0; i < _packset.length(); i++) {
duke@435 515 Node_List* p = _packset.at(i);
duke@435 516 if (p->at(pos) == s) {
duke@435 517 return true;
duke@435 518 }
duke@435 519 }
duke@435 520 return false;
duke@435 521 }
duke@435 522
duke@435 523 //------------------------------are_adjacent_refs---------------------------
duke@435 524 // Is s1 immediately before s2 in memory?
duke@435 525 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
duke@435 526 if (!s1->is_Mem() || !s2->is_Mem()) return false;
duke@435 527 if (!in_bb(s1) || !in_bb(s2)) return false;
never@1940 528
never@1940 529 // Do not use superword for non-primitives
never@1940 530 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
never@1940 531 !is_java_primitive(s2->as_Mem()->memory_type())) {
never@1940 532 return false;
never@1940 533 }
never@1940 534
duke@435 535 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
duke@435 536 // only pack memops that are in the same alias set until that's fixed.
duke@435 537 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
duke@435 538 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
duke@435 539 return false;
duke@435 540 SWPointer p1(s1->as_Mem(), this);
duke@435 541 SWPointer p2(s2->as_Mem(), this);
duke@435 542 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
duke@435 543 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
duke@435 544 return diff == data_size(s1);
duke@435 545 }
duke@435 546
duke@435 547 //------------------------------isomorphic---------------------------
duke@435 548 // Are s1 and s2 similar?
duke@435 549 bool SuperWord::isomorphic(Node* s1, Node* s2) {
duke@435 550 if (s1->Opcode() != s2->Opcode()) return false;
duke@435 551 if (s1->req() != s2->req()) return false;
duke@435 552 if (s1->in(0) != s2->in(0)) return false;
duke@435 553 if (velt_type(s1) != velt_type(s2)) return false;
duke@435 554 return true;
duke@435 555 }
duke@435 556
duke@435 557 //------------------------------independent---------------------------
duke@435 558 // Is there no data path from s1 to s2 or s2 to s1?
duke@435 559 bool SuperWord::independent(Node* s1, Node* s2) {
duke@435 560 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
duke@435 561 int d1 = depth(s1);
duke@435 562 int d2 = depth(s2);
duke@435 563 if (d1 == d2) return s1 != s2;
duke@435 564 Node* deep = d1 > d2 ? s1 : s2;
duke@435 565 Node* shallow = d1 > d2 ? s2 : s1;
duke@435 566
duke@435 567 visited_clear();
duke@435 568
duke@435 569 return independent_path(shallow, deep);
duke@435 570 }
duke@435 571
duke@435 572 //------------------------------independent_path------------------------------
duke@435 573 // Helper for independent
duke@435 574 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
duke@435 575 if (dp >= 1000) return false; // stop deep recursion
duke@435 576 visited_set(deep);
duke@435 577 int shal_depth = depth(shallow);
duke@435 578 assert(shal_depth <= depth(deep), "must be");
duke@435 579 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
duke@435 580 Node* pred = preds.current();
duke@435 581 if (in_bb(pred) && !visited_test(pred)) {
duke@435 582 if (shallow == pred) {
duke@435 583 return false;
duke@435 584 }
duke@435 585 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
duke@435 586 return false;
duke@435 587 }
duke@435 588 }
duke@435 589 }
duke@435 590 return true;
duke@435 591 }
duke@435 592
duke@435 593 //------------------------------set_alignment---------------------------
duke@435 594 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
duke@435 595 set_alignment(s1, align);
duke@435 596 set_alignment(s2, align + data_size(s1));
duke@435 597 }
duke@435 598
duke@435 599 //------------------------------data_size---------------------------
duke@435 600 int SuperWord::data_size(Node* s) {
duke@435 601 const Type* t = velt_type(s);
duke@435 602 BasicType bt = t->array_element_basic_type();
kvn@464 603 int bsize = type2aelembytes(bt);
duke@435 604 assert(bsize != 0, "valid size");
duke@435 605 return bsize;
duke@435 606 }
duke@435 607
duke@435 608 //------------------------------extend_packlist---------------------------
duke@435 609 // Extend packset by following use->def and def->use links from pack members.
duke@435 610 void SuperWord::extend_packlist() {
duke@435 611 bool changed;
duke@435 612 do {
duke@435 613 changed = false;
duke@435 614 for (int i = 0; i < _packset.length(); i++) {
duke@435 615 Node_List* p = _packset.at(i);
duke@435 616 changed |= follow_use_defs(p);
duke@435 617 changed |= follow_def_uses(p);
duke@435 618 }
duke@435 619 } while (changed);
duke@435 620
duke@435 621 #ifndef PRODUCT
duke@435 622 if (TraceSuperWord) {
duke@435 623 tty->print_cr("\nAfter extend_packlist");
duke@435 624 print_packset();
duke@435 625 }
duke@435 626 #endif
duke@435 627 }
duke@435 628
duke@435 629 //------------------------------follow_use_defs---------------------------
duke@435 630 // Extend the packset by visiting operand definitions of nodes in pack p
duke@435 631 bool SuperWord::follow_use_defs(Node_List* p) {
duke@435 632 Node* s1 = p->at(0);
duke@435 633 Node* s2 = p->at(1);
duke@435 634 assert(p->size() == 2, "just checking");
duke@435 635 assert(s1->req() == s2->req(), "just checking");
duke@435 636 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 637
duke@435 638 if (s1->is_Load()) return false;
duke@435 639
duke@435 640 int align = alignment(s1);
duke@435 641 bool changed = false;
duke@435 642 int start = s1->is_Store() ? MemNode::ValueIn : 1;
duke@435 643 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
duke@435 644 for (int j = start; j < end; j++) {
duke@435 645 Node* t1 = s1->in(j);
duke@435 646 Node* t2 = s2->in(j);
duke@435 647 if (!in_bb(t1) || !in_bb(t2))
duke@435 648 continue;
duke@435 649 if (stmts_can_pack(t1, t2, align)) {
duke@435 650 if (est_savings(t1, t2) >= 0) {
duke@435 651 Node_List* pair = new Node_List();
duke@435 652 pair->push(t1);
duke@435 653 pair->push(t2);
duke@435 654 _packset.append(pair);
duke@435 655 set_alignment(t1, t2, align);
duke@435 656 changed = true;
duke@435 657 }
duke@435 658 }
duke@435 659 }
duke@435 660 return changed;
duke@435 661 }
duke@435 662
duke@435 663 //------------------------------follow_def_uses---------------------------
duke@435 664 // Extend the packset by visiting uses of nodes in pack p
duke@435 665 bool SuperWord::follow_def_uses(Node_List* p) {
duke@435 666 bool changed = false;
duke@435 667 Node* s1 = p->at(0);
duke@435 668 Node* s2 = p->at(1);
duke@435 669 assert(p->size() == 2, "just checking");
duke@435 670 assert(s1->req() == s2->req(), "just checking");
duke@435 671 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
duke@435 672
duke@435 673 if (s1->is_Store()) return false;
duke@435 674
duke@435 675 int align = alignment(s1);
duke@435 676 int savings = -1;
duke@435 677 Node* u1 = NULL;
duke@435 678 Node* u2 = NULL;
duke@435 679 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 680 Node* t1 = s1->fast_out(i);
duke@435 681 if (!in_bb(t1)) continue;
duke@435 682 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
duke@435 683 Node* t2 = s2->fast_out(j);
duke@435 684 if (!in_bb(t2)) continue;
duke@435 685 if (!opnd_positions_match(s1, t1, s2, t2))
duke@435 686 continue;
duke@435 687 if (stmts_can_pack(t1, t2, align)) {
duke@435 688 int my_savings = est_savings(t1, t2);
duke@435 689 if (my_savings > savings) {
duke@435 690 savings = my_savings;
duke@435 691 u1 = t1;
duke@435 692 u2 = t2;
duke@435 693 }
duke@435 694 }
duke@435 695 }
duke@435 696 }
duke@435 697 if (savings >= 0) {
duke@435 698 Node_List* pair = new Node_List();
duke@435 699 pair->push(u1);
duke@435 700 pair->push(u2);
duke@435 701 _packset.append(pair);
duke@435 702 set_alignment(u1, u2, align);
duke@435 703 changed = true;
duke@435 704 }
duke@435 705 return changed;
duke@435 706 }
duke@435 707
duke@435 708 //---------------------------opnd_positions_match-------------------------
duke@435 709 // Is the use of d1 in u1 at the same operand position as d2 in u2?
duke@435 710 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
duke@435 711 uint ct = u1->req();
duke@435 712 if (ct != u2->req()) return false;
duke@435 713 uint i1 = 0;
duke@435 714 uint i2 = 0;
duke@435 715 do {
duke@435 716 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
duke@435 717 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
duke@435 718 if (i1 != i2) {
duke@435 719 return false;
duke@435 720 }
duke@435 721 } while (i1 < ct);
duke@435 722 return true;
duke@435 723 }
duke@435 724
duke@435 725 //------------------------------est_savings---------------------------
duke@435 726 // Estimate the savings from executing s1 and s2 as a pack
duke@435 727 int SuperWord::est_savings(Node* s1, Node* s2) {
duke@435 728 int save = 2 - 1; // 2 operations per instruction in packed form
duke@435 729
duke@435 730 // inputs
duke@435 731 for (uint i = 1; i < s1->req(); i++) {
duke@435 732 Node* x1 = s1->in(i);
duke@435 733 Node* x2 = s2->in(i);
duke@435 734 if (x1 != x2) {
duke@435 735 if (are_adjacent_refs(x1, x2)) {
duke@435 736 save += adjacent_profit(x1, x2);
duke@435 737 } else if (!in_packset(x1, x2)) {
duke@435 738 save -= pack_cost(2);
duke@435 739 } else {
duke@435 740 save += unpack_cost(2);
duke@435 741 }
duke@435 742 }
duke@435 743 }
duke@435 744
duke@435 745 // uses of result
duke@435 746 uint ct = 0;
duke@435 747 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
duke@435 748 Node* s1_use = s1->fast_out(i);
duke@435 749 for (int j = 0; j < _packset.length(); j++) {
duke@435 750 Node_List* p = _packset.at(j);
duke@435 751 if (p->at(0) == s1_use) {
duke@435 752 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
duke@435 753 Node* s2_use = s2->fast_out(k);
duke@435 754 if (p->at(p->size()-1) == s2_use) {
duke@435 755 ct++;
duke@435 756 if (are_adjacent_refs(s1_use, s2_use)) {
duke@435 757 save += adjacent_profit(s1_use, s2_use);
duke@435 758 }
duke@435 759 }
duke@435 760 }
duke@435 761 }
duke@435 762 }
duke@435 763 }
duke@435 764
duke@435 765 if (ct < s1->outcnt()) save += unpack_cost(1);
duke@435 766 if (ct < s2->outcnt()) save += unpack_cost(1);
duke@435 767
duke@435 768 return save;
duke@435 769 }
duke@435 770
duke@435 771 //------------------------------costs---------------------------
duke@435 772 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
duke@435 773 int SuperWord::pack_cost(int ct) { return ct; }
duke@435 774 int SuperWord::unpack_cost(int ct) { return ct; }
duke@435 775
duke@435 776 //------------------------------combine_packs---------------------------
duke@435 777 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
duke@435 778 void SuperWord::combine_packs() {
duke@435 779 bool changed;
duke@435 780 do {
duke@435 781 changed = false;
duke@435 782 for (int i = 0; i < _packset.length(); i++) {
duke@435 783 Node_List* p1 = _packset.at(i);
duke@435 784 if (p1 == NULL) continue;
duke@435 785 for (int j = 0; j < _packset.length(); j++) {
duke@435 786 Node_List* p2 = _packset.at(j);
duke@435 787 if (p2 == NULL) continue;
duke@435 788 if (p1->at(p1->size()-1) == p2->at(0)) {
duke@435 789 for (uint k = 1; k < p2->size(); k++) {
duke@435 790 p1->push(p2->at(k));
duke@435 791 }
duke@435 792 _packset.at_put(j, NULL);
duke@435 793 changed = true;
duke@435 794 }
duke@435 795 }
duke@435 796 }
duke@435 797 } while (changed);
duke@435 798
duke@435 799 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 800 Node_List* p1 = _packset.at(i);
duke@435 801 if (p1 == NULL) {
duke@435 802 _packset.remove_at(i);
duke@435 803 }
duke@435 804 }
duke@435 805
duke@435 806 #ifndef PRODUCT
duke@435 807 if (TraceSuperWord) {
duke@435 808 tty->print_cr("\nAfter combine_packs");
duke@435 809 print_packset();
duke@435 810 }
duke@435 811 #endif
duke@435 812 }
duke@435 813
duke@435 814 //-----------------------------construct_my_pack_map--------------------------
duke@435 815 // Construct the map from nodes to packs. Only valid after the
duke@435 816 // point where a node is only in one pack (after combine_packs).
duke@435 817 void SuperWord::construct_my_pack_map() {
duke@435 818 Node_List* rslt = NULL;
duke@435 819 for (int i = 0; i < _packset.length(); i++) {
duke@435 820 Node_List* p = _packset.at(i);
duke@435 821 for (uint j = 0; j < p->size(); j++) {
duke@435 822 Node* s = p->at(j);
duke@435 823 assert(my_pack(s) == NULL, "only in one pack");
duke@435 824 set_my_pack(s, p);
duke@435 825 }
duke@435 826 }
duke@435 827 }
duke@435 828
duke@435 829 //------------------------------filter_packs---------------------------
duke@435 830 // Remove packs that are not implemented or not profitable.
duke@435 831 void SuperWord::filter_packs() {
duke@435 832
duke@435 833 // Remove packs that are not implemented
duke@435 834 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 835 Node_List* pk = _packset.at(i);
duke@435 836 bool impl = implemented(pk);
duke@435 837 if (!impl) {
duke@435 838 #ifndef PRODUCT
duke@435 839 if (TraceSuperWord && Verbose) {
duke@435 840 tty->print_cr("Unimplemented");
duke@435 841 pk->at(0)->dump();
duke@435 842 }
duke@435 843 #endif
duke@435 844 remove_pack_at(i);
duke@435 845 }
duke@435 846 }
duke@435 847
duke@435 848 // Remove packs that are not profitable
duke@435 849 bool changed;
duke@435 850 do {
duke@435 851 changed = false;
duke@435 852 for (int i = _packset.length() - 1; i >= 0; i--) {
duke@435 853 Node_List* pk = _packset.at(i);
duke@435 854 bool prof = profitable(pk);
duke@435 855 if (!prof) {
duke@435 856 #ifndef PRODUCT
duke@435 857 if (TraceSuperWord && Verbose) {
duke@435 858 tty->print_cr("Unprofitable");
duke@435 859 pk->at(0)->dump();
duke@435 860 }
duke@435 861 #endif
duke@435 862 remove_pack_at(i);
duke@435 863 changed = true;
duke@435 864 }
duke@435 865 }
duke@435 866 } while (changed);
duke@435 867
duke@435 868 #ifndef PRODUCT
duke@435 869 if (TraceSuperWord) {
duke@435 870 tty->print_cr("\nAfter filter_packs");
duke@435 871 print_packset();
duke@435 872 tty->cr();
duke@435 873 }
duke@435 874 #endif
duke@435 875 }
duke@435 876
duke@435 877 //------------------------------implemented---------------------------
duke@435 878 // Can code be generated for pack p?
duke@435 879 bool SuperWord::implemented(Node_List* p) {
duke@435 880 Node* p0 = p->at(0);
duke@435 881 int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
duke@435 882 return vopc > 0 && Matcher::has_match_rule(vopc);
duke@435 883 }
duke@435 884
duke@435 885 //------------------------------profitable---------------------------
duke@435 886 // For pack p, are all operands and all uses (with in the block) vector?
duke@435 887 bool SuperWord::profitable(Node_List* p) {
duke@435 888 Node* p0 = p->at(0);
duke@435 889 uint start, end;
duke@435 890 vector_opd_range(p0, &start, &end);
duke@435 891
duke@435 892 // Return false if some input is not vector and inside block
duke@435 893 for (uint i = start; i < end; i++) {
duke@435 894 if (!is_vector_use(p0, i)) {
duke@435 895 // For now, return false if not scalar promotion case (inputs are the same.)
twisti@1040 896 // Later, implement PackNode and allow differing, non-vector inputs
duke@435 897 // (maybe just the ones from outside the block.)
duke@435 898 Node* p0_def = p0->in(i);
duke@435 899 for (uint j = 1; j < p->size(); j++) {
duke@435 900 Node* use = p->at(j);
duke@435 901 Node* def = use->in(i);
duke@435 902 if (p0_def != def)
duke@435 903 return false;
duke@435 904 }
duke@435 905 }
duke@435 906 }
duke@435 907 if (!p0->is_Store()) {
duke@435 908 // For now, return false if not all uses are vector.
duke@435 909 // Later, implement ExtractNode and allow non-vector uses (maybe
duke@435 910 // just the ones outside the block.)
duke@435 911 for (uint i = 0; i < p->size(); i++) {
duke@435 912 Node* def = p->at(i);
duke@435 913 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 914 Node* use = def->fast_out(j);
duke@435 915 for (uint k = 0; k < use->req(); k++) {
duke@435 916 Node* n = use->in(k);
duke@435 917 if (def == n) {
duke@435 918 if (!is_vector_use(use, k)) {
duke@435 919 return false;
duke@435 920 }
duke@435 921 }
duke@435 922 }
duke@435 923 }
duke@435 924 }
duke@435 925 }
duke@435 926 return true;
duke@435 927 }
duke@435 928
duke@435 929 //------------------------------schedule---------------------------
duke@435 930 // Adjust the memory graph for the packed operations
duke@435 931 void SuperWord::schedule() {
duke@435 932
duke@435 933 // Co-locate in the memory graph the members of each memory pack
duke@435 934 for (int i = 0; i < _packset.length(); i++) {
duke@435 935 co_locate_pack(_packset.at(i));
duke@435 936 }
duke@435 937 }
duke@435 938
cfang@1102 939 //-------------------------------remove_and_insert-------------------
cfang@1102 940 //remove "current" from its current position in the memory graph and insert
cfang@1102 941 //it after the appropriate insertion point (lip or uip)
cfang@1102 942 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
cfang@1102 943 Node *uip, Unique_Node_List &sched_before) {
cfang@1102 944 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 945 _igvn.hash_delete(current);
cfang@1102 946 _igvn.hash_delete(my_mem);
cfang@1102 947
cfang@1102 948 //remove current_store from its current position in the memmory graph
cfang@1102 949 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 950 Node* use = current->out(i);
cfang@1102 951 if (use->is_Mem()) {
cfang@1102 952 assert(use->in(MemNode::Memory) == current, "must be");
cfang@1102 953 _igvn.hash_delete(use);
cfang@1102 954 if (use == prev) { // connect prev to my_mem
cfang@1102 955 use->set_req(MemNode::Memory, my_mem);
cfang@1102 956 } else if (sched_before.member(use)) {
cfang@1102 957 _igvn.hash_delete(uip);
cfang@1102 958 use->set_req(MemNode::Memory, uip);
cfang@1102 959 } else {
cfang@1102 960 _igvn.hash_delete(lip);
cfang@1102 961 use->set_req(MemNode::Memory, lip);
cfang@1102 962 }
cfang@1102 963 _igvn._worklist.push(use);
cfang@1102 964 --i; //deleted this edge; rescan position
cfang@1102 965 }
cfang@1102 966 }
cfang@1102 967
cfang@1102 968 bool sched_up = sched_before.member(current);
cfang@1102 969 Node *insert_pt = sched_up ? uip : lip;
cfang@1102 970 _igvn.hash_delete(insert_pt);
cfang@1102 971
cfang@1102 972 // all uses of insert_pt's memory state should use current's instead
cfang@1102 973 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
cfang@1102 974 Node* use = insert_pt->out(i);
cfang@1102 975 if (use->is_Mem()) {
cfang@1102 976 assert(use->in(MemNode::Memory) == insert_pt, "must be");
cfang@1102 977 _igvn.hash_delete(use);
cfang@1102 978 use->set_req(MemNode::Memory, current);
cfang@1102 979 _igvn._worklist.push(use);
cfang@1102 980 --i; //deleted this edge; rescan position
cfang@1102 981 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
cfang@1102 982 uint pos; //lip (lower insert point) must be the last one in the memory slice
cfang@1102 983 _igvn.hash_delete(use);
cfang@1102 984 for (pos=1; pos < use->req(); pos++) {
cfang@1102 985 if (use->in(pos) == insert_pt) break;
cfang@1102 986 }
cfang@1102 987 use->set_req(pos, current);
cfang@1102 988 _igvn._worklist.push(use);
cfang@1102 989 --i;
cfang@1102 990 }
cfang@1102 991 }
cfang@1102 992
cfang@1102 993 //connect current to insert_pt
cfang@1102 994 current->set_req(MemNode::Memory, insert_pt);
cfang@1102 995 _igvn._worklist.push(current);
cfang@1102 996 }
cfang@1102 997
cfang@1102 998 //------------------------------co_locate_pack----------------------------------
cfang@1102 999 // To schedule a store pack, we need to move any sandwiched memory ops either before
cfang@1102 1000 // or after the pack, based upon dependence information:
cfang@1102 1001 // (1) If any store in the pack depends on the sandwiched memory op, the
cfang@1102 1002 // sandwiched memory op must be scheduled BEFORE the pack;
cfang@1102 1003 // (2) If a sandwiched memory op depends on any store in the pack, the
cfang@1102 1004 // sandwiched memory op must be scheduled AFTER the pack;
cfang@1102 1005 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
cfang@1102 1006 // memory op (say memB), memB must be scheduled before memA. So, if memA is
cfang@1102 1007 // scheduled before the pack, memB must also be scheduled before the pack;
cfang@1102 1008 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
cfang@1102 1009 // schedule this store AFTER the pack
cfang@1102 1010 // (5) We know there is no dependence cycle, so there in no other case;
cfang@1102 1011 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
cfang@1102 1012 //
cfang@1387 1013 // To schedule a load pack, we use the memory state of either the first or the last load in
cfang@1387 1014 // the pack, based on the dependence constraint.
duke@435 1015 void SuperWord::co_locate_pack(Node_List* pk) {
duke@435 1016 if (pk->at(0)->is_Store()) {
duke@435 1017 MemNode* first = executed_first(pk)->as_Mem();
duke@435 1018 MemNode* last = executed_last(pk)->as_Mem();
cfang@1102 1019 Unique_Node_List schedule_before_pack;
cfang@1102 1020 Unique_Node_List memops;
cfang@1102 1021
duke@435 1022 MemNode* current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1023 MemNode* previous = last;
duke@435 1024 while (true) {
duke@435 1025 assert(in_bb(current), "stay in block");
cfang@1102 1026 memops.push(previous);
cfang@1102 1027 for (DUIterator i = current->outs(); current->has_out(i); i++) {
cfang@1102 1028 Node* use = current->out(i);
cfang@1102 1029 if (use->is_Mem() && use != previous)
cfang@1102 1030 memops.push(use);
cfang@1102 1031 }
cfang@1102 1032 if(current == first) break;
cfang@1102 1033 previous = current;
cfang@1102 1034 current = current->in(MemNode::Memory)->as_Mem();
cfang@1102 1035 }
cfang@1102 1036
cfang@1102 1037 // determine which memory operations should be scheduled before the pack
cfang@1102 1038 for (uint i = 1; i < memops.size(); i++) {
cfang@1102 1039 Node *s1 = memops.at(i);
cfang@1102 1040 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
cfang@1102 1041 for (uint j = 0; j< i; j++) {
cfang@1102 1042 Node *s2 = memops.at(j);
cfang@1102 1043 if (!independent(s1, s2)) {
cfang@1102 1044 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
cfang@1102 1045 schedule_before_pack.push(s1); //s1 must be scheduled before
cfang@1102 1046 Node_List* mem_pk = my_pack(s1);
cfang@1102 1047 if (mem_pk != NULL) {
cfang@1102 1048 for (uint ii = 0; ii < mem_pk->size(); ii++) {
cfang@1102 1049 Node* s = mem_pk->at(ii); // follow partner
cfang@1102 1050 if (memops.member(s) && !schedule_before_pack.member(s))
cfang@1102 1051 schedule_before_pack.push(s);
cfang@1102 1052 }
cfang@1102 1053 }
cfang@1102 1054 }
cfang@1102 1055 }
cfang@1102 1056 }
cfang@1102 1057 }
cfang@1102 1058 }
cfang@1102 1059
cfang@1102 1060 MemNode* lower_insert_pt = last;
cfang@1102 1061 Node* upper_insert_pt = first->in(MemNode::Memory);
cfang@1102 1062 previous = last; //previous store in pk
cfang@1102 1063 current = last->in(MemNode::Memory)->as_Mem();
cfang@1102 1064
cfang@1102 1065 //start scheduling from "last" to "first"
cfang@1102 1066 while (true) {
cfang@1102 1067 assert(in_bb(current), "stay in block");
cfang@1102 1068 assert(in_pack(previous, pk), "previous stays in pack");
duke@435 1069 Node* my_mem = current->in(MemNode::Memory);
cfang@1102 1070
duke@435 1071 if (in_pack(current, pk)) {
cfang@1102 1072 // Forward users of my memory state (except "previous) to my input memory state
duke@435 1073 _igvn.hash_delete(current);
duke@435 1074 for (DUIterator i = current->outs(); current->has_out(i); i++) {
duke@435 1075 Node* use = current->out(i);
cfang@1102 1076 if (use->is_Mem() && use != previous) {
duke@435 1077 assert(use->in(MemNode::Memory) == current, "must be");
duke@435 1078 _igvn.hash_delete(use);
cfang@1102 1079 if (schedule_before_pack.member(use)) {
cfang@1102 1080 _igvn.hash_delete(upper_insert_pt);
cfang@1102 1081 use->set_req(MemNode::Memory, upper_insert_pt);
cfang@1102 1082 } else {
cfang@1102 1083 _igvn.hash_delete(lower_insert_pt);
cfang@1102 1084 use->set_req(MemNode::Memory, lower_insert_pt);
cfang@1102 1085 }
duke@435 1086 _igvn._worklist.push(use);
duke@435 1087 --i; // deleted this edge; rescan position
duke@435 1088 }
duke@435 1089 }
cfang@1102 1090 previous = current;
cfang@1102 1091 } else { // !in_pack(current, pk) ==> a sandwiched store
cfang@1102 1092 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
duke@435 1093 }
cfang@1102 1094
duke@435 1095 if (current == first) break;
duke@435 1096 current = my_mem->as_Mem();
cfang@1102 1097 } // end while
cfang@1102 1098 } else if (pk->at(0)->is_Load()) { //load
cfang@1387 1099 // all loads in the pack should have the same memory state. By default,
cfang@1387 1100 // we use the memory state of the last load. However, if any load could
cfang@1387 1101 // not be moved down due to the dependence constraint, we use the memory
cfang@1387 1102 // state of the first load.
cfang@1387 1103 Node* last_mem = executed_last(pk)->in(MemNode::Memory);
cfang@1387 1104 Node* first_mem = executed_first(pk)->in(MemNode::Memory);
cfang@1387 1105 bool schedule_last = true;
cfang@1387 1106 for (uint i = 0; i < pk->size(); i++) {
cfang@1387 1107 Node* ld = pk->at(i);
cfang@1387 1108 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
cfang@1387 1109 current=current->in(MemNode::Memory)) {
cfang@1387 1110 assert(current != first_mem, "corrupted memory graph");
cfang@1387 1111 if(current->is_Mem() && !independent(current, ld)){
cfang@1387 1112 schedule_last = false; // a later store depends on this load
cfang@1387 1113 break;
cfang@1387 1114 }
cfang@1387 1115 }
cfang@1387 1116 }
cfang@1387 1117
cfang@1387 1118 Node* mem_input = schedule_last ? last_mem : first_mem;
cfang@1387 1119 _igvn.hash_delete(mem_input);
cfang@1387 1120 // Give each load the same memory state
duke@435 1121 for (uint i = 0; i < pk->size(); i++) {
duke@435 1122 LoadNode* ld = pk->at(i)->as_Load();
duke@435 1123 _igvn.hash_delete(ld);
cfang@1387 1124 ld->set_req(MemNode::Memory, mem_input);
duke@435 1125 _igvn._worklist.push(ld);
duke@435 1126 }
duke@435 1127 }
duke@435 1128 }
duke@435 1129
duke@435 1130 //------------------------------output---------------------------
duke@435 1131 // Convert packs into vector node operations
duke@435 1132 void SuperWord::output() {
duke@435 1133 if (_packset.length() == 0) return;
duke@435 1134
kvn@2727 1135 #ifndef PRODUCT
kvn@2727 1136 if (TraceLoopOpts) {
kvn@2727 1137 tty->print("SuperWord ");
kvn@2727 1138 lpt()->dump_head();
kvn@2727 1139 }
kvn@2727 1140 #endif
kvn@2727 1141
duke@435 1142 // MUST ENSURE main loop's initial value is properly aligned:
duke@435 1143 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
duke@435 1144
duke@435 1145 align_initial_loop_index(align_to_ref());
duke@435 1146
duke@435 1147 // Insert extract (unpack) operations for scalar uses
duke@435 1148 for (int i = 0; i < _packset.length(); i++) {
duke@435 1149 insert_extracts(_packset.at(i));
duke@435 1150 }
duke@435 1151
duke@435 1152 for (int i = 0; i < _block.length(); i++) {
duke@435 1153 Node* n = _block.at(i);
duke@435 1154 Node_List* p = my_pack(n);
duke@435 1155 if (p && n == executed_last(p)) {
duke@435 1156 uint vlen = p->size();
duke@435 1157 Node* vn = NULL;
duke@435 1158 Node* low_adr = p->at(0);
duke@435 1159 Node* first = executed_first(p);
duke@435 1160 if (n->is_Load()) {
duke@435 1161 int opc = n->Opcode();
duke@435 1162 Node* ctl = n->in(MemNode::Control);
duke@435 1163 Node* mem = first->in(MemNode::Memory);
duke@435 1164 Node* adr = low_adr->in(MemNode::Address);
duke@435 1165 const TypePtr* atyp = n->adr_type();
duke@435 1166 vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
duke@435 1167
duke@435 1168 } else if (n->is_Store()) {
duke@435 1169 // Promote value to be stored to vector
duke@435 1170 VectorNode* val = vector_opd(p, MemNode::ValueIn);
duke@435 1171
duke@435 1172 int opc = n->Opcode();
duke@435 1173 Node* ctl = n->in(MemNode::Control);
duke@435 1174 Node* mem = first->in(MemNode::Memory);
duke@435 1175 Node* adr = low_adr->in(MemNode::Address);
duke@435 1176 const TypePtr* atyp = n->adr_type();
duke@435 1177 vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
duke@435 1178
duke@435 1179 } else if (n->req() == 3) {
duke@435 1180 // Promote operands to vector
duke@435 1181 Node* in1 = vector_opd(p, 1);
duke@435 1182 Node* in2 = vector_opd(p, 2);
duke@435 1183 vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
duke@435 1184
duke@435 1185 } else {
duke@435 1186 ShouldNotReachHere();
duke@435 1187 }
duke@435 1188
duke@435 1189 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1190 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
duke@435 1191 for (uint j = 0; j < p->size(); j++) {
duke@435 1192 Node* pm = p->at(j);
kvn@1976 1193 _igvn.replace_node(pm, vn);
duke@435 1194 }
duke@435 1195 _igvn._worklist.push(vn);
duke@435 1196 }
duke@435 1197 }
duke@435 1198 }
duke@435 1199
duke@435 1200 //------------------------------vector_opd---------------------------
duke@435 1201 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
duke@435 1202 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
duke@435 1203 Node* p0 = p->at(0);
duke@435 1204 uint vlen = p->size();
duke@435 1205 Node* opd = p0->in(opd_idx);
duke@435 1206
duke@435 1207 bool same_opd = true;
duke@435 1208 for (uint i = 1; i < vlen; i++) {
duke@435 1209 Node* pi = p->at(i);
duke@435 1210 Node* in = pi->in(opd_idx);
duke@435 1211 if (opd != in) {
duke@435 1212 same_opd = false;
duke@435 1213 break;
duke@435 1214 }
duke@435 1215 }
duke@435 1216
duke@435 1217 if (same_opd) {
duke@435 1218 if (opd->is_Vector()) {
duke@435 1219 return (VectorNode*)opd; // input is matching vector
duke@435 1220 }
duke@435 1221 // Convert scalar input to vector. Use p0's type because it's container
duke@435 1222 // maybe smaller than the operand's container.
duke@435 1223 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1224 const Type* p0_t = velt_type(p0);
duke@435 1225 if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
duke@435 1226 VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
duke@435 1227
duke@435 1228 _phase->_igvn.register_new_node_with_optimizer(vn);
duke@435 1229 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
duke@435 1230 return vn;
duke@435 1231 }
duke@435 1232
duke@435 1233 // Insert pack operation
duke@435 1234 const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
duke@435 1235 PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
duke@435 1236
duke@435 1237 for (uint i = 1; i < vlen; i++) {
duke@435 1238 Node* pi = p->at(i);
duke@435 1239 Node* in = pi->in(opd_idx);
duke@435 1240 assert(my_pack(in) == NULL, "Should already have been unpacked");
duke@435 1241 assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
duke@435 1242 pk->add_opd(in);
duke@435 1243 }
duke@435 1244 _phase->_igvn.register_new_node_with_optimizer(pk);
duke@435 1245 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
duke@435 1246 return pk;
duke@435 1247 }
duke@435 1248
duke@435 1249 //------------------------------insert_extracts---------------------------
duke@435 1250 // If a use of pack p is not a vector use, then replace the
duke@435 1251 // use with an extract operation.
duke@435 1252 void SuperWord::insert_extracts(Node_List* p) {
duke@435 1253 if (p->at(0)->is_Store()) return;
duke@435 1254 assert(_n_idx_list.is_empty(), "empty (node,index) list");
duke@435 1255
duke@435 1256 // Inspect each use of each pack member. For each use that is
duke@435 1257 // not a vector use, replace the use with an extract operation.
duke@435 1258
duke@435 1259 for (uint i = 0; i < p->size(); i++) {
duke@435 1260 Node* def = p->at(i);
duke@435 1261 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
duke@435 1262 Node* use = def->fast_out(j);
duke@435 1263 for (uint k = 0; k < use->req(); k++) {
duke@435 1264 Node* n = use->in(k);
duke@435 1265 if (def == n) {
duke@435 1266 if (!is_vector_use(use, k)) {
duke@435 1267 _n_idx_list.push(use, k);
duke@435 1268 }
duke@435 1269 }
duke@435 1270 }
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274 while (_n_idx_list.is_nonempty()) {
duke@435 1275 Node* use = _n_idx_list.node();
duke@435 1276 int idx = _n_idx_list.index();
duke@435 1277 _n_idx_list.pop();
duke@435 1278 Node* def = use->in(idx);
duke@435 1279
duke@435 1280 // Insert extract operation
duke@435 1281 _igvn.hash_delete(def);
duke@435 1282 _igvn.hash_delete(use);
duke@435 1283 int def_pos = alignment(def) / data_size(def);
duke@435 1284 const Type* def_t = velt_type(def);
duke@435 1285
duke@435 1286 Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
duke@435 1287 _phase->_igvn.register_new_node_with_optimizer(ex);
duke@435 1288 _phase->set_ctrl(ex, _phase->get_ctrl(def));
duke@435 1289 use->set_req(idx, ex);
duke@435 1290 _igvn._worklist.push(def);
duke@435 1291 _igvn._worklist.push(use);
duke@435 1292
duke@435 1293 bb_insert_after(ex, bb_idx(def));
duke@435 1294 set_velt_type(ex, def_t);
duke@435 1295 }
duke@435 1296 }
duke@435 1297
duke@435 1298 //------------------------------is_vector_use---------------------------
duke@435 1299 // Is use->in(u_idx) a vector use?
duke@435 1300 bool SuperWord::is_vector_use(Node* use, int u_idx) {
duke@435 1301 Node_List* u_pk = my_pack(use);
duke@435 1302 if (u_pk == NULL) return false;
duke@435 1303 Node* def = use->in(u_idx);
duke@435 1304 Node_List* d_pk = my_pack(def);
duke@435 1305 if (d_pk == NULL) {
duke@435 1306 // check for scalar promotion
duke@435 1307 Node* n = u_pk->at(0)->in(u_idx);
duke@435 1308 for (uint i = 1; i < u_pk->size(); i++) {
duke@435 1309 if (u_pk->at(i)->in(u_idx) != n) return false;
duke@435 1310 }
duke@435 1311 return true;
duke@435 1312 }
duke@435 1313 if (u_pk->size() != d_pk->size())
duke@435 1314 return false;
duke@435 1315 for (uint i = 0; i < u_pk->size(); i++) {
duke@435 1316 Node* ui = u_pk->at(i);
duke@435 1317 Node* di = d_pk->at(i);
duke@435 1318 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
duke@435 1319 return false;
duke@435 1320 }
duke@435 1321 return true;
duke@435 1322 }
duke@435 1323
duke@435 1324 //------------------------------construct_bb---------------------------
duke@435 1325 // Construct reverse postorder list of block members
duke@435 1326 void SuperWord::construct_bb() {
duke@435 1327 Node* entry = bb();
duke@435 1328
duke@435 1329 assert(_stk.length() == 0, "stk is empty");
duke@435 1330 assert(_block.length() == 0, "block is empty");
duke@435 1331 assert(_data_entry.length() == 0, "data_entry is empty");
duke@435 1332 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
duke@435 1333 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
duke@435 1334
duke@435 1335 // Find non-control nodes with no inputs from within block,
duke@435 1336 // create a temporary map from node _idx to bb_idx for use
duke@435 1337 // by the visited and post_visited sets,
duke@435 1338 // and count number of nodes in block.
duke@435 1339 int bb_ct = 0;
duke@435 1340 for (uint i = 0; i < lpt()->_body.size(); i++ ) {
duke@435 1341 Node *n = lpt()->_body.at(i);
duke@435 1342 set_bb_idx(n, i); // Create a temporary map
duke@435 1343 if (in_bb(n)) {
duke@435 1344 bb_ct++;
duke@435 1345 if (!n->is_CFG()) {
duke@435 1346 bool found = false;
duke@435 1347 for (uint j = 0; j < n->req(); j++) {
duke@435 1348 Node* def = n->in(j);
duke@435 1349 if (def && in_bb(def)) {
duke@435 1350 found = true;
duke@435 1351 break;
duke@435 1352 }
duke@435 1353 }
duke@435 1354 if (!found) {
duke@435 1355 assert(n != entry, "can't be entry");
duke@435 1356 _data_entry.push(n);
duke@435 1357 }
duke@435 1358 }
duke@435 1359 }
duke@435 1360 }
duke@435 1361
duke@435 1362 // Find memory slices (head and tail)
duke@435 1363 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
duke@435 1364 Node *n = lp()->fast_out(i);
duke@435 1365 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
duke@435 1366 Node* n_tail = n->in(LoopNode::LoopBackControl);
kvn@688 1367 if (n_tail != n->in(LoopNode::EntryControl)) {
kvn@688 1368 _mem_slice_head.push(n);
kvn@688 1369 _mem_slice_tail.push(n_tail);
kvn@688 1370 }
duke@435 1371 }
duke@435 1372 }
duke@435 1373
duke@435 1374 // Create an RPO list of nodes in block
duke@435 1375
duke@435 1376 visited_clear();
duke@435 1377 post_visited_clear();
duke@435 1378
duke@435 1379 // Push all non-control nodes with no inputs from within block, then control entry
duke@435 1380 for (int j = 0; j < _data_entry.length(); j++) {
duke@435 1381 Node* n = _data_entry.at(j);
duke@435 1382 visited_set(n);
duke@435 1383 _stk.push(n);
duke@435 1384 }
duke@435 1385 visited_set(entry);
duke@435 1386 _stk.push(entry);
duke@435 1387
duke@435 1388 // Do a depth first walk over out edges
duke@435 1389 int rpo_idx = bb_ct - 1;
duke@435 1390 int size;
duke@435 1391 while ((size = _stk.length()) > 0) {
duke@435 1392 Node* n = _stk.top(); // Leave node on stack
duke@435 1393 if (!visited_test_set(n)) {
duke@435 1394 // forward arc in graph
duke@435 1395 } else if (!post_visited_test(n)) {
duke@435 1396 // cross or back arc
duke@435 1397 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1398 Node *use = n->fast_out(i);
duke@435 1399 if (in_bb(use) && !visited_test(use) &&
duke@435 1400 // Don't go around backedge
duke@435 1401 (!use->is_Phi() || n == entry)) {
duke@435 1402 _stk.push(use);
duke@435 1403 }
duke@435 1404 }
duke@435 1405 if (_stk.length() == size) {
duke@435 1406 // There were no additional uses, post visit node now
duke@435 1407 _stk.pop(); // Remove node from stack
duke@435 1408 assert(rpo_idx >= 0, "");
duke@435 1409 _block.at_put_grow(rpo_idx, n);
duke@435 1410 rpo_idx--;
duke@435 1411 post_visited_set(n);
duke@435 1412 assert(rpo_idx >= 0 || _stk.is_empty(), "");
duke@435 1413 }
duke@435 1414 } else {
duke@435 1415 _stk.pop(); // Remove post-visited node from stack
duke@435 1416 }
duke@435 1417 }
duke@435 1418
duke@435 1419 // Create real map of block indices for nodes
duke@435 1420 for (int j = 0; j < _block.length(); j++) {
duke@435 1421 Node* n = _block.at(j);
duke@435 1422 set_bb_idx(n, j);
duke@435 1423 }
duke@435 1424
duke@435 1425 initialize_bb(); // Ensure extra info is allocated.
duke@435 1426
duke@435 1427 #ifndef PRODUCT
duke@435 1428 if (TraceSuperWord) {
duke@435 1429 print_bb();
duke@435 1430 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
duke@435 1431 for (int m = 0; m < _data_entry.length(); m++) {
duke@435 1432 tty->print("%3d ", m);
duke@435 1433 _data_entry.at(m)->dump();
duke@435 1434 }
duke@435 1435 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
duke@435 1436 for (int m = 0; m < _mem_slice_head.length(); m++) {
duke@435 1437 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
duke@435 1438 tty->print(" "); _mem_slice_tail.at(m)->dump();
duke@435 1439 }
duke@435 1440 }
duke@435 1441 #endif
duke@435 1442 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
duke@435 1443 }
duke@435 1444
duke@435 1445 //------------------------------initialize_bb---------------------------
duke@435 1446 // Initialize per node info
duke@435 1447 void SuperWord::initialize_bb() {
duke@435 1448 Node* last = _block.at(_block.length() - 1);
duke@435 1449 grow_node_info(bb_idx(last));
duke@435 1450 }
duke@435 1451
duke@435 1452 //------------------------------bb_insert_after---------------------------
duke@435 1453 // Insert n into block after pos
duke@435 1454 void SuperWord::bb_insert_after(Node* n, int pos) {
duke@435 1455 int n_pos = pos + 1;
duke@435 1456 // Make room
duke@435 1457 for (int i = _block.length() - 1; i >= n_pos; i--) {
duke@435 1458 _block.at_put_grow(i+1, _block.at(i));
duke@435 1459 }
duke@435 1460 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
duke@435 1461 _node_info.at_put_grow(j+1, _node_info.at(j));
duke@435 1462 }
duke@435 1463 // Set value
duke@435 1464 _block.at_put_grow(n_pos, n);
duke@435 1465 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
duke@435 1466 // Adjust map from node->_idx to _block index
duke@435 1467 for (int i = n_pos; i < _block.length(); i++) {
duke@435 1468 set_bb_idx(_block.at(i), i);
duke@435 1469 }
duke@435 1470 }
duke@435 1471
duke@435 1472 //------------------------------compute_max_depth---------------------------
duke@435 1473 // Compute max depth for expressions from beginning of block
duke@435 1474 // Use to prune search paths during test for independence.
duke@435 1475 void SuperWord::compute_max_depth() {
duke@435 1476 int ct = 0;
duke@435 1477 bool again;
duke@435 1478 do {
duke@435 1479 again = false;
duke@435 1480 for (int i = 0; i < _block.length(); i++) {
duke@435 1481 Node* n = _block.at(i);
duke@435 1482 if (!n->is_Phi()) {
duke@435 1483 int d_orig = depth(n);
duke@435 1484 int d_in = 0;
duke@435 1485 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
duke@435 1486 Node* pred = preds.current();
duke@435 1487 if (in_bb(pred)) {
duke@435 1488 d_in = MAX2(d_in, depth(pred));
duke@435 1489 }
duke@435 1490 }
duke@435 1491 if (d_in + 1 != d_orig) {
duke@435 1492 set_depth(n, d_in + 1);
duke@435 1493 again = true;
duke@435 1494 }
duke@435 1495 }
duke@435 1496 }
duke@435 1497 ct++;
duke@435 1498 } while (again);
duke@435 1499 #ifndef PRODUCT
duke@435 1500 if (TraceSuperWord && Verbose)
duke@435 1501 tty->print_cr("compute_max_depth iterated: %d times", ct);
duke@435 1502 #endif
duke@435 1503 }
duke@435 1504
duke@435 1505 //-------------------------compute_vector_element_type-----------------------
duke@435 1506 // Compute necessary vector element type for expressions
duke@435 1507 // This propagates backwards a narrower integer type when the
duke@435 1508 // upper bits of the value are not needed.
duke@435 1509 // Example: char a,b,c; a = b + c;
duke@435 1510 // Normally the type of the add is integer, but for packed character
duke@435 1511 // operations the type of the add needs to be char.
duke@435 1512 void SuperWord::compute_vector_element_type() {
duke@435 1513 #ifndef PRODUCT
duke@435 1514 if (TraceSuperWord && Verbose)
duke@435 1515 tty->print_cr("\ncompute_velt_type:");
duke@435 1516 #endif
duke@435 1517
duke@435 1518 // Initial type
duke@435 1519 for (int i = 0; i < _block.length(); i++) {
duke@435 1520 Node* n = _block.at(i);
duke@435 1521 const Type* t = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
duke@435 1522 : _igvn.type(n);
duke@435 1523 const Type* vt = container_type(t);
duke@435 1524 set_velt_type(n, vt);
duke@435 1525 }
duke@435 1526
duke@435 1527 // Propagate narrowed type backwards through operations
duke@435 1528 // that don't depend on higher order bits
duke@435 1529 for (int i = _block.length() - 1; i >= 0; i--) {
duke@435 1530 Node* n = _block.at(i);
duke@435 1531 // Only integer types need be examined
duke@435 1532 if (n->bottom_type()->isa_int()) {
duke@435 1533 uint start, end;
duke@435 1534 vector_opd_range(n, &start, &end);
duke@435 1535 const Type* vt = velt_type(n);
duke@435 1536
duke@435 1537 for (uint j = start; j < end; j++) {
duke@435 1538 Node* in = n->in(j);
duke@435 1539 // Don't propagate through a type conversion
duke@435 1540 if (n->bottom_type() != in->bottom_type())
duke@435 1541 continue;
duke@435 1542 switch(in->Opcode()) {
duke@435 1543 case Op_AddI: case Op_AddL:
duke@435 1544 case Op_SubI: case Op_SubL:
duke@435 1545 case Op_MulI: case Op_MulL:
duke@435 1546 case Op_AndI: case Op_AndL:
duke@435 1547 case Op_OrI: case Op_OrL:
duke@435 1548 case Op_XorI: case Op_XorL:
duke@435 1549 case Op_LShiftI: case Op_LShiftL:
duke@435 1550 case Op_CMoveI: case Op_CMoveL:
duke@435 1551 if (in_bb(in)) {
duke@435 1552 bool same_type = true;
duke@435 1553 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
duke@435 1554 Node *use = in->fast_out(k);
duke@435 1555 if (!in_bb(use) || velt_type(use) != vt) {
duke@435 1556 same_type = false;
duke@435 1557 break;
duke@435 1558 }
duke@435 1559 }
duke@435 1560 if (same_type) {
duke@435 1561 set_velt_type(in, vt);
duke@435 1562 }
duke@435 1563 }
duke@435 1564 }
duke@435 1565 }
duke@435 1566 }
duke@435 1567 }
duke@435 1568 #ifndef PRODUCT
duke@435 1569 if (TraceSuperWord && Verbose) {
duke@435 1570 for (int i = 0; i < _block.length(); i++) {
duke@435 1571 Node* n = _block.at(i);
duke@435 1572 velt_type(n)->dump();
duke@435 1573 tty->print("\t");
duke@435 1574 n->dump();
duke@435 1575 }
duke@435 1576 }
duke@435 1577 #endif
duke@435 1578 }
duke@435 1579
duke@435 1580 //------------------------------memory_alignment---------------------------
duke@435 1581 // Alignment within a vector memory reference
duke@435 1582 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
duke@435 1583 SWPointer p(s, this);
duke@435 1584 if (!p.valid()) {
duke@435 1585 return bottom_align;
duke@435 1586 }
duke@435 1587 int offset = p.offset_in_bytes();
duke@435 1588 offset += iv_adjust_in_bytes;
duke@435 1589 int off_rem = offset % vector_width_in_bytes();
duke@435 1590 int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
duke@435 1591 return off_mod;
duke@435 1592 }
duke@435 1593
duke@435 1594 //---------------------------container_type---------------------------
duke@435 1595 // Smallest type containing range of values
duke@435 1596 const Type* SuperWord::container_type(const Type* t) {
kvn@656 1597 const Type* tp = t->make_ptr();
kvn@656 1598 if (tp && tp->isa_aryptr()) {
kvn@656 1599 t = tp->is_aryptr()->elem();
duke@435 1600 }
duke@435 1601 if (t->basic_type() == T_INT) {
duke@435 1602 if (t->higher_equal(TypeInt::BOOL)) return TypeInt::BOOL;
duke@435 1603 if (t->higher_equal(TypeInt::BYTE)) return TypeInt::BYTE;
duke@435 1604 if (t->higher_equal(TypeInt::CHAR)) return TypeInt::CHAR;
duke@435 1605 if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
duke@435 1606 return TypeInt::INT;
duke@435 1607 }
duke@435 1608 return t;
duke@435 1609 }
duke@435 1610
duke@435 1611 //-------------------------vector_opd_range-----------------------
duke@435 1612 // (Start, end] half-open range defining which operands are vector
duke@435 1613 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
duke@435 1614 switch (n->Opcode()) {
twisti@993 1615 case Op_LoadB: case Op_LoadUS:
duke@435 1616 case Op_LoadI: case Op_LoadL:
duke@435 1617 case Op_LoadF: case Op_LoadD:
duke@435 1618 case Op_LoadP:
duke@435 1619 *start = 0;
duke@435 1620 *end = 0;
duke@435 1621 return;
duke@435 1622 case Op_StoreB: case Op_StoreC:
duke@435 1623 case Op_StoreI: case Op_StoreL:
duke@435 1624 case Op_StoreF: case Op_StoreD:
duke@435 1625 case Op_StoreP:
duke@435 1626 *start = MemNode::ValueIn;
duke@435 1627 *end = *start + 1;
duke@435 1628 return;
duke@435 1629 case Op_LShiftI: case Op_LShiftL:
duke@435 1630 *start = 1;
duke@435 1631 *end = 2;
duke@435 1632 return;
duke@435 1633 case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD:
duke@435 1634 *start = 2;
duke@435 1635 *end = n->req();
duke@435 1636 return;
duke@435 1637 }
duke@435 1638 *start = 1;
duke@435 1639 *end = n->req(); // default is all operands
duke@435 1640 }
duke@435 1641
duke@435 1642 //------------------------------in_packset---------------------------
duke@435 1643 // Are s1 and s2 in a pack pair and ordered as s1,s2?
duke@435 1644 bool SuperWord::in_packset(Node* s1, Node* s2) {
duke@435 1645 for (int i = 0; i < _packset.length(); i++) {
duke@435 1646 Node_List* p = _packset.at(i);
duke@435 1647 assert(p->size() == 2, "must be");
duke@435 1648 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
duke@435 1649 return true;
duke@435 1650 }
duke@435 1651 }
duke@435 1652 return false;
duke@435 1653 }
duke@435 1654
duke@435 1655 //------------------------------in_pack---------------------------
duke@435 1656 // Is s in pack p?
duke@435 1657 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
duke@435 1658 for (uint i = 0; i < p->size(); i++) {
duke@435 1659 if (p->at(i) == s) {
duke@435 1660 return p;
duke@435 1661 }
duke@435 1662 }
duke@435 1663 return NULL;
duke@435 1664 }
duke@435 1665
duke@435 1666 //------------------------------remove_pack_at---------------------------
duke@435 1667 // Remove the pack at position pos in the packset
duke@435 1668 void SuperWord::remove_pack_at(int pos) {
duke@435 1669 Node_List* p = _packset.at(pos);
duke@435 1670 for (uint i = 0; i < p->size(); i++) {
duke@435 1671 Node* s = p->at(i);
duke@435 1672 set_my_pack(s, NULL);
duke@435 1673 }
duke@435 1674 _packset.remove_at(pos);
duke@435 1675 }
duke@435 1676
duke@435 1677 //------------------------------executed_first---------------------------
duke@435 1678 // Return the node executed first in pack p. Uses the RPO block list
duke@435 1679 // to determine order.
duke@435 1680 Node* SuperWord::executed_first(Node_List* p) {
duke@435 1681 Node* n = p->at(0);
duke@435 1682 int n_rpo = bb_idx(n);
duke@435 1683 for (uint i = 1; i < p->size(); i++) {
duke@435 1684 Node* s = p->at(i);
duke@435 1685 int s_rpo = bb_idx(s);
duke@435 1686 if (s_rpo < n_rpo) {
duke@435 1687 n = s;
duke@435 1688 n_rpo = s_rpo;
duke@435 1689 }
duke@435 1690 }
duke@435 1691 return n;
duke@435 1692 }
duke@435 1693
duke@435 1694 //------------------------------executed_last---------------------------
duke@435 1695 // Return the node executed last in pack p.
duke@435 1696 Node* SuperWord::executed_last(Node_List* p) {
duke@435 1697 Node* n = p->at(0);
duke@435 1698 int n_rpo = bb_idx(n);
duke@435 1699 for (uint i = 1; i < p->size(); i++) {
duke@435 1700 Node* s = p->at(i);
duke@435 1701 int s_rpo = bb_idx(s);
duke@435 1702 if (s_rpo > n_rpo) {
duke@435 1703 n = s;
duke@435 1704 n_rpo = s_rpo;
duke@435 1705 }
duke@435 1706 }
duke@435 1707 return n;
duke@435 1708 }
duke@435 1709
duke@435 1710 //----------------------------align_initial_loop_index---------------------------
duke@435 1711 // Adjust pre-loop limit so that in main loop, a load/store reference
duke@435 1712 // to align_to_ref will be a position zero in the vector.
duke@435 1713 // (iv + k) mod vector_align == 0
duke@435 1714 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
duke@435 1715 CountedLoopNode *main_head = lp()->as_CountedLoop();
duke@435 1716 assert(main_head->is_main_loop(), "");
duke@435 1717 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
duke@435 1718 assert(pre_end != NULL, "");
duke@435 1719 Node *pre_opaq1 = pre_end->limit();
duke@435 1720 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
duke@435 1721 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
never@507 1722 Node *lim0 = pre_opaq->in(1);
duke@435 1723
duke@435 1724 // Where we put new limit calculations
duke@435 1725 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1726
duke@435 1727 // Ensure the original loop limit is available from the
duke@435 1728 // pre-loop Opaque1 node.
duke@435 1729 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1730 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
duke@435 1731
duke@435 1732 SWPointer align_to_ref_p(align_to_ref, this);
duke@435 1733
never@507 1734 // Given:
never@507 1735 // lim0 == original pre loop limit
never@507 1736 // V == v_align (power of 2)
never@507 1737 // invar == extra invariant piece of the address expression
never@507 1738 // e == k [ +/- invar ]
duke@435 1739 //
never@507 1740 // When reassociating expressions involving '%' the basic rules are:
never@507 1741 // (a - b) % k == 0 => a % k == b % k
never@507 1742 // and:
never@507 1743 // (a + b) % k == 0 => a % k == (k - b) % k
never@507 1744 //
never@507 1745 // For stride > 0 && scale > 0,
never@507 1746 // Derive the new pre-loop limit "lim" such that the two constraints:
never@507 1747 // (1) lim = lim0 + N (where N is some positive integer < V)
never@507 1748 // (2) (e + lim) % V == 0
never@507 1749 // are true.
never@507 1750 //
never@507 1751 // Substituting (1) into (2),
never@507 1752 // (e + lim0 + N) % V == 0
never@507 1753 // solve for N:
never@507 1754 // N = (V - (e + lim0)) % V
never@507 1755 // substitute back into (1), so that new limit
never@507 1756 // lim = lim0 + (V - (e + lim0)) % V
never@507 1757 //
never@507 1758 // For stride > 0 && scale < 0
never@507 1759 // Constraints:
never@507 1760 // lim = lim0 + N
never@507 1761 // (e - lim) % V == 0
never@507 1762 // Solving for lim:
never@507 1763 // (e - lim0 - N) % V == 0
never@507 1764 // N = (e - lim0) % V
never@507 1765 // lim = lim0 + (e - lim0) % V
never@507 1766 //
never@507 1767 // For stride < 0 && scale > 0
never@507 1768 // Constraints:
never@507 1769 // lim = lim0 - N
never@507 1770 // (e + lim) % V == 0
never@507 1771 // Solving for lim:
never@507 1772 // (e + lim0 - N) % V == 0
never@507 1773 // N = (e + lim0) % V
never@507 1774 // lim = lim0 - (e + lim0) % V
never@507 1775 //
never@507 1776 // For stride < 0 && scale < 0
never@507 1777 // Constraints:
never@507 1778 // lim = lim0 - N
never@507 1779 // (e - lim) % V == 0
never@507 1780 // Solving for lim:
never@507 1781 // (e - lim0 + N) % V == 0
never@507 1782 // N = (V - (e - lim0)) % V
never@507 1783 // lim = lim0 - (V - (e - lim0)) % V
duke@435 1784
never@507 1785 int stride = iv_stride();
never@507 1786 int scale = align_to_ref_p.scale_in_bytes();
duke@435 1787 int elt_size = align_to_ref_p.memory_size();
duke@435 1788 int v_align = vector_width_in_bytes() / elt_size;
duke@435 1789 int k = align_to_ref_p.offset_in_bytes() / elt_size;
duke@435 1790
duke@435 1791 Node *kn = _igvn.intcon(k);
never@507 1792
never@507 1793 Node *e = kn;
duke@435 1794 if (align_to_ref_p.invar() != NULL) {
never@507 1795 // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
duke@435 1796 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
duke@435 1797 Node* aref = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
duke@435 1798 _phase->_igvn.register_new_node_with_optimizer(aref);
duke@435 1799 _phase->set_ctrl(aref, pre_ctrl);
never@507 1800 if (align_to_ref_p.negate_invar()) {
never@507 1801 e = new (_phase->C, 3) SubINode(e, aref);
duke@435 1802 } else {
never@507 1803 e = new (_phase->C, 3) AddINode(e, aref);
duke@435 1804 }
never@507 1805 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1806 _phase->set_ctrl(e, pre_ctrl);
duke@435 1807 }
never@507 1808
never@507 1809 // compute e +/- lim0
never@507 1810 if (scale < 0) {
never@507 1811 e = new (_phase->C, 3) SubINode(e, lim0);
never@507 1812 } else {
never@507 1813 e = new (_phase->C, 3) AddINode(e, lim0);
never@507 1814 }
never@507 1815 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1816 _phase->set_ctrl(e, pre_ctrl);
never@507 1817
never@507 1818 if (stride * scale > 0) {
never@507 1819 // compute V - (e +/- lim0)
never@507 1820 Node* va = _igvn.intcon(v_align);
never@507 1821 e = new (_phase->C, 3) SubINode(va, e);
never@507 1822 _phase->_igvn.register_new_node_with_optimizer(e);
never@507 1823 _phase->set_ctrl(e, pre_ctrl);
never@507 1824 }
never@507 1825 // compute N = (exp) % V
duke@435 1826 Node* va_msk = _igvn.intcon(v_align - 1);
never@507 1827 Node* N = new (_phase->C, 3) AndINode(e, va_msk);
never@507 1828 _phase->_igvn.register_new_node_with_optimizer(N);
never@507 1829 _phase->set_ctrl(N, pre_ctrl);
never@507 1830
never@507 1831 // substitute back into (1), so that new limit
never@507 1832 // lim = lim0 + N
never@507 1833 Node* lim;
never@507 1834 if (stride < 0) {
never@507 1835 lim = new (_phase->C, 3) SubINode(lim0, N);
duke@435 1836 } else {
never@507 1837 lim = new (_phase->C, 3) AddINode(lim0, N);
duke@435 1838 }
never@507 1839 _phase->_igvn.register_new_node_with_optimizer(lim);
never@507 1840 _phase->set_ctrl(lim, pre_ctrl);
duke@435 1841 Node* constrained =
never@507 1842 (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
never@507 1843 : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
duke@435 1844 _phase->_igvn.register_new_node_with_optimizer(constrained);
duke@435 1845 _phase->set_ctrl(constrained, pre_ctrl);
duke@435 1846 _igvn.hash_delete(pre_opaq);
duke@435 1847 pre_opaq->set_req(1, constrained);
duke@435 1848 }
duke@435 1849
duke@435 1850 //----------------------------get_pre_loop_end---------------------------
duke@435 1851 // Find pre loop end from main loop. Returns null if none.
duke@435 1852 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
duke@435 1853 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1854 if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
duke@435 1855 Node *iffm = ctrl->in(0);
duke@435 1856 if (!iffm->is_If()) return NULL;
duke@435 1857 Node *p_f = iffm->in(0);
duke@435 1858 if (!p_f->is_IfFalse()) return NULL;
duke@435 1859 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
duke@435 1860 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1861 if (!pre_end->loopnode()->is_pre_loop()) return NULL;
duke@435 1862 return pre_end;
duke@435 1863 }
duke@435 1864
duke@435 1865
duke@435 1866 //------------------------------init---------------------------
duke@435 1867 void SuperWord::init() {
duke@435 1868 _dg.init();
duke@435 1869 _packset.clear();
duke@435 1870 _disjoint_ptrs.clear();
duke@435 1871 _block.clear();
duke@435 1872 _data_entry.clear();
duke@435 1873 _mem_slice_head.clear();
duke@435 1874 _mem_slice_tail.clear();
duke@435 1875 _node_info.clear();
duke@435 1876 _align_to_ref = NULL;
duke@435 1877 _lpt = NULL;
duke@435 1878 _lp = NULL;
duke@435 1879 _bb = NULL;
duke@435 1880 _iv = NULL;
duke@435 1881 }
duke@435 1882
duke@435 1883 //------------------------------print_packset---------------------------
duke@435 1884 void SuperWord::print_packset() {
duke@435 1885 #ifndef PRODUCT
duke@435 1886 tty->print_cr("packset");
duke@435 1887 for (int i = 0; i < _packset.length(); i++) {
duke@435 1888 tty->print_cr("Pack: %d", i);
duke@435 1889 Node_List* p = _packset.at(i);
duke@435 1890 print_pack(p);
duke@435 1891 }
duke@435 1892 #endif
duke@435 1893 }
duke@435 1894
duke@435 1895 //------------------------------print_pack---------------------------
duke@435 1896 void SuperWord::print_pack(Node_List* p) {
duke@435 1897 for (uint i = 0; i < p->size(); i++) {
duke@435 1898 print_stmt(p->at(i));
duke@435 1899 }
duke@435 1900 }
duke@435 1901
duke@435 1902 //------------------------------print_bb---------------------------
duke@435 1903 void SuperWord::print_bb() {
duke@435 1904 #ifndef PRODUCT
duke@435 1905 tty->print_cr("\nBlock");
duke@435 1906 for (int i = 0; i < _block.length(); i++) {
duke@435 1907 Node* n = _block.at(i);
duke@435 1908 tty->print("%d ", i);
duke@435 1909 if (n) {
duke@435 1910 n->dump();
duke@435 1911 }
duke@435 1912 }
duke@435 1913 #endif
duke@435 1914 }
duke@435 1915
duke@435 1916 //------------------------------print_stmt---------------------------
duke@435 1917 void SuperWord::print_stmt(Node* s) {
duke@435 1918 #ifndef PRODUCT
duke@435 1919 tty->print(" align: %d \t", alignment(s));
duke@435 1920 s->dump();
duke@435 1921 #endif
duke@435 1922 }
duke@435 1923
duke@435 1924 //------------------------------blank---------------------------
duke@435 1925 char* SuperWord::blank(uint depth) {
duke@435 1926 static char blanks[101];
duke@435 1927 assert(depth < 101, "too deep");
duke@435 1928 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
duke@435 1929 blanks[depth] = '\0';
duke@435 1930 return blanks;
duke@435 1931 }
duke@435 1932
duke@435 1933
duke@435 1934 //==============================SWPointer===========================
duke@435 1935
duke@435 1936 //----------------------------SWPointer------------------------
duke@435 1937 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
duke@435 1938 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
duke@435 1939 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
duke@435 1940
duke@435 1941 Node* adr = mem->in(MemNode::Address);
duke@435 1942 if (!adr->is_AddP()) {
duke@435 1943 assert(!valid(), "too complex");
duke@435 1944 return;
duke@435 1945 }
duke@435 1946 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
duke@435 1947 Node* base = adr->in(AddPNode::Base);
cfang@1493 1948 //unsafe reference could not be aligned appropriately without runtime checking
cfang@1493 1949 if (base == NULL || base->bottom_type() == Type::TOP) {
cfang@1493 1950 assert(!valid(), "unsafe access");
cfang@1493 1951 return;
cfang@1493 1952 }
duke@435 1953 for (int i = 0; i < 3; i++) {
duke@435 1954 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
duke@435 1955 assert(!valid(), "too complex");
duke@435 1956 return;
duke@435 1957 }
duke@435 1958 adr = adr->in(AddPNode::Address);
duke@435 1959 if (base == adr || !adr->is_AddP()) {
duke@435 1960 break; // stop looking at addp's
duke@435 1961 }
duke@435 1962 }
duke@435 1963 _base = base;
duke@435 1964 _adr = adr;
duke@435 1965 assert(valid(), "Usable");
duke@435 1966 }
duke@435 1967
duke@435 1968 // Following is used to create a temporary object during
duke@435 1969 // the pattern match of an address expression.
duke@435 1970 SWPointer::SWPointer(SWPointer* p) :
duke@435 1971 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
duke@435 1972 _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
duke@435 1973
duke@435 1974 //------------------------scaled_iv_plus_offset--------------------
duke@435 1975 // Match: k*iv + offset
duke@435 1976 // where: k is a constant that maybe zero, and
duke@435 1977 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
duke@435 1978 bool SWPointer::scaled_iv_plus_offset(Node* n) {
duke@435 1979 if (scaled_iv(n)) {
duke@435 1980 return true;
duke@435 1981 }
duke@435 1982 if (offset_plus_k(n)) {
duke@435 1983 return true;
duke@435 1984 }
duke@435 1985 int opc = n->Opcode();
duke@435 1986 if (opc == Op_AddI) {
duke@435 1987 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
duke@435 1988 return true;
duke@435 1989 }
duke@435 1990 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1991 return true;
duke@435 1992 }
duke@435 1993 } else if (opc == Op_SubI) {
duke@435 1994 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
duke@435 1995 return true;
duke@435 1996 }
duke@435 1997 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
duke@435 1998 _scale *= -1;
duke@435 1999 return true;
duke@435 2000 }
duke@435 2001 }
duke@435 2002 return false;
duke@435 2003 }
duke@435 2004
duke@435 2005 //----------------------------scaled_iv------------------------
duke@435 2006 // Match: k*iv where k is a constant that's not zero
duke@435 2007 bool SWPointer::scaled_iv(Node* n) {
duke@435 2008 if (_scale != 0) {
duke@435 2009 return false; // already found a scale
duke@435 2010 }
duke@435 2011 if (n == iv()) {
duke@435 2012 _scale = 1;
duke@435 2013 return true;
duke@435 2014 }
duke@435 2015 int opc = n->Opcode();
duke@435 2016 if (opc == Op_MulI) {
duke@435 2017 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2018 _scale = n->in(2)->get_int();
duke@435 2019 return true;
duke@435 2020 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
duke@435 2021 _scale = n->in(1)->get_int();
duke@435 2022 return true;
duke@435 2023 }
duke@435 2024 } else if (opc == Op_LShiftI) {
duke@435 2025 if (n->in(1) == iv() && n->in(2)->is_Con()) {
duke@435 2026 _scale = 1 << n->in(2)->get_int();
duke@435 2027 return true;
duke@435 2028 }
duke@435 2029 } else if (opc == Op_ConvI2L) {
duke@435 2030 if (scaled_iv_plus_offset(n->in(1))) {
duke@435 2031 return true;
duke@435 2032 }
duke@435 2033 } else if (opc == Op_LShiftL) {
duke@435 2034 if (!has_iv() && _invar == NULL) {
duke@435 2035 // Need to preserve the current _offset value, so
duke@435 2036 // create a temporary object for this expression subtree.
duke@435 2037 // Hacky, so should re-engineer the address pattern match.
duke@435 2038 SWPointer tmp(this);
duke@435 2039 if (tmp.scaled_iv_plus_offset(n->in(1))) {
duke@435 2040 if (tmp._invar == NULL) {
duke@435 2041 int mult = 1 << n->in(2)->get_int();
duke@435 2042 _scale = tmp._scale * mult;
duke@435 2043 _offset += tmp._offset * mult;
duke@435 2044 return true;
duke@435 2045 }
duke@435 2046 }
duke@435 2047 }
duke@435 2048 }
duke@435 2049 return false;
duke@435 2050 }
duke@435 2051
duke@435 2052 //----------------------------offset_plus_k------------------------
duke@435 2053 // Match: offset is (k [+/- invariant])
duke@435 2054 // where k maybe zero and invariant is optional, but not both.
duke@435 2055 bool SWPointer::offset_plus_k(Node* n, bool negate) {
duke@435 2056 int opc = n->Opcode();
duke@435 2057 if (opc == Op_ConI) {
duke@435 2058 _offset += negate ? -(n->get_int()) : n->get_int();
duke@435 2059 return true;
duke@435 2060 } else if (opc == Op_ConL) {
duke@435 2061 // Okay if value fits into an int
duke@435 2062 const TypeLong* t = n->find_long_type();
duke@435 2063 if (t->higher_equal(TypeLong::INT)) {
duke@435 2064 jlong loff = n->get_long();
duke@435 2065 jint off = (jint)loff;
duke@435 2066 _offset += negate ? -off : loff;
duke@435 2067 return true;
duke@435 2068 }
duke@435 2069 return false;
duke@435 2070 }
duke@435 2071 if (_invar != NULL) return false; // already have an invariant
duke@435 2072 if (opc == Op_AddI) {
duke@435 2073 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2074 _negate_invar = negate;
duke@435 2075 _invar = n->in(1);
duke@435 2076 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2077 return true;
duke@435 2078 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2079 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2080 _negate_invar = negate;
duke@435 2081 _invar = n->in(2);
duke@435 2082 return true;
duke@435 2083 }
duke@435 2084 }
duke@435 2085 if (opc == Op_SubI) {
duke@435 2086 if (n->in(2)->is_Con() && invariant(n->in(1))) {
duke@435 2087 _negate_invar = negate;
duke@435 2088 _invar = n->in(1);
duke@435 2089 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
duke@435 2090 return true;
duke@435 2091 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
duke@435 2092 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
duke@435 2093 _negate_invar = !negate;
duke@435 2094 _invar = n->in(2);
duke@435 2095 return true;
duke@435 2096 }
duke@435 2097 }
duke@435 2098 if (invariant(n)) {
duke@435 2099 _negate_invar = negate;
duke@435 2100 _invar = n;
duke@435 2101 return true;
duke@435 2102 }
duke@435 2103 return false;
duke@435 2104 }
duke@435 2105
duke@435 2106 //----------------------------print------------------------
duke@435 2107 void SWPointer::print() {
duke@435 2108 #ifndef PRODUCT
duke@435 2109 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
duke@435 2110 _base != NULL ? _base->_idx : 0,
duke@435 2111 _adr != NULL ? _adr->_idx : 0,
duke@435 2112 _scale, _offset,
duke@435 2113 _negate_invar?'-':'+',
duke@435 2114 _invar != NULL ? _invar->_idx : 0);
duke@435 2115 #endif
duke@435 2116 }
duke@435 2117
duke@435 2118 // ========================= OrderedPair =====================
duke@435 2119
duke@435 2120 const OrderedPair OrderedPair::initial;
duke@435 2121
duke@435 2122 // ========================= SWNodeInfo =====================
duke@435 2123
duke@435 2124 const SWNodeInfo SWNodeInfo::initial;
duke@435 2125
duke@435 2126
duke@435 2127 // ============================ DepGraph ===========================
duke@435 2128
duke@435 2129 //------------------------------make_node---------------------------
duke@435 2130 // Make a new dependence graph node for an ideal node.
duke@435 2131 DepMem* DepGraph::make_node(Node* node) {
duke@435 2132 DepMem* m = new (_arena) DepMem(node);
duke@435 2133 if (node != NULL) {
duke@435 2134 assert(_map.at_grow(node->_idx) == NULL, "one init only");
duke@435 2135 _map.at_put_grow(node->_idx, m);
duke@435 2136 }
duke@435 2137 return m;
duke@435 2138 }
duke@435 2139
duke@435 2140 //------------------------------make_edge---------------------------
duke@435 2141 // Make a new dependence graph edge from dpred -> dsucc
duke@435 2142 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
duke@435 2143 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
duke@435 2144 dpred->set_out_head(e);
duke@435 2145 dsucc->set_in_head(e);
duke@435 2146 return e;
duke@435 2147 }
duke@435 2148
duke@435 2149 // ========================== DepMem ========================
duke@435 2150
duke@435 2151 //------------------------------in_cnt---------------------------
duke@435 2152 int DepMem::in_cnt() {
duke@435 2153 int ct = 0;
duke@435 2154 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
duke@435 2155 return ct;
duke@435 2156 }
duke@435 2157
duke@435 2158 //------------------------------out_cnt---------------------------
duke@435 2159 int DepMem::out_cnt() {
duke@435 2160 int ct = 0;
duke@435 2161 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
duke@435 2162 return ct;
duke@435 2163 }
duke@435 2164
duke@435 2165 //------------------------------print-----------------------------
duke@435 2166 void DepMem::print() {
duke@435 2167 #ifndef PRODUCT
duke@435 2168 tty->print(" DepNode %d (", _node->_idx);
duke@435 2169 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
duke@435 2170 Node* pred = p->pred()->node();
duke@435 2171 tty->print(" %d", pred != NULL ? pred->_idx : 0);
duke@435 2172 }
duke@435 2173 tty->print(") [");
duke@435 2174 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
duke@435 2175 Node* succ = s->succ()->node();
duke@435 2176 tty->print(" %d", succ != NULL ? succ->_idx : 0);
duke@435 2177 }
duke@435 2178 tty->print_cr(" ]");
duke@435 2179 #endif
duke@435 2180 }
duke@435 2181
duke@435 2182 // =========================== DepEdge =========================
duke@435 2183
duke@435 2184 //------------------------------DepPreds---------------------------
duke@435 2185 void DepEdge::print() {
duke@435 2186 #ifndef PRODUCT
duke@435 2187 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
duke@435 2188 #endif
duke@435 2189 }
duke@435 2190
duke@435 2191 // =========================== DepPreds =========================
duke@435 2192 // Iterator over predecessor edges in the dependence graph.
duke@435 2193
duke@435 2194 //------------------------------DepPreds---------------------------
duke@435 2195 DepPreds::DepPreds(Node* n, DepGraph& dg) {
duke@435 2196 _n = n;
duke@435 2197 _done = false;
duke@435 2198 if (_n->is_Store() || _n->is_Load()) {
duke@435 2199 _next_idx = MemNode::Address;
duke@435 2200 _end_idx = n->req();
duke@435 2201 _dep_next = dg.dep(_n)->in_head();
duke@435 2202 } else if (_n->is_Mem()) {
duke@435 2203 _next_idx = 0;
duke@435 2204 _end_idx = 0;
duke@435 2205 _dep_next = dg.dep(_n)->in_head();
duke@435 2206 } else {
duke@435 2207 _next_idx = 1;
duke@435 2208 _end_idx = _n->req();
duke@435 2209 _dep_next = NULL;
duke@435 2210 }
duke@435 2211 next();
duke@435 2212 }
duke@435 2213
duke@435 2214 //------------------------------next---------------------------
duke@435 2215 void DepPreds::next() {
duke@435 2216 if (_dep_next != NULL) {
duke@435 2217 _current = _dep_next->pred()->node();
duke@435 2218 _dep_next = _dep_next->next_in();
duke@435 2219 } else if (_next_idx < _end_idx) {
duke@435 2220 _current = _n->in(_next_idx++);
duke@435 2221 } else {
duke@435 2222 _done = true;
duke@435 2223 }
duke@435 2224 }
duke@435 2225
duke@435 2226 // =========================== DepSuccs =========================
duke@435 2227 // Iterator over successor edges in the dependence graph.
duke@435 2228
duke@435 2229 //------------------------------DepSuccs---------------------------
duke@435 2230 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
duke@435 2231 _n = n;
duke@435 2232 _done = false;
duke@435 2233 if (_n->is_Load()) {
duke@435 2234 _next_idx = 0;
duke@435 2235 _end_idx = _n->outcnt();
duke@435 2236 _dep_next = dg.dep(_n)->out_head();
duke@435 2237 } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
duke@435 2238 _next_idx = 0;
duke@435 2239 _end_idx = 0;
duke@435 2240 _dep_next = dg.dep(_n)->out_head();
duke@435 2241 } else {
duke@435 2242 _next_idx = 0;
duke@435 2243 _end_idx = _n->outcnt();
duke@435 2244 _dep_next = NULL;
duke@435 2245 }
duke@435 2246 next();
duke@435 2247 }
duke@435 2248
duke@435 2249 //-------------------------------next---------------------------
duke@435 2250 void DepSuccs::next() {
duke@435 2251 if (_dep_next != NULL) {
duke@435 2252 _current = _dep_next->succ()->node();
duke@435 2253 _dep_next = _dep_next->next_out();
duke@435 2254 } else if (_next_idx < _end_idx) {
duke@435 2255 _current = _n->raw_out(_next_idx++);
duke@435 2256 } else {
duke@435 2257 _done = true;
duke@435 2258 }
duke@435 2259 }

mercurial