src/share/vm/opto/memnode.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2816
286c498ae0d4
child 3047
f1c12354c3f7
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
kvn@2602 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/connode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/matcher.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/mulnode.hpp"
stefank@2314 39 #include "opto/phaseX.hpp"
stefank@2314 40 #include "opto/regmask.hpp"
stefank@2314 41
duke@435 42 // Portions of code courtesy of Clifford Click
duke@435 43
duke@435 44 // Optimization - Graph Style
duke@435 45
kvn@509 46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 47
duke@435 48 //=============================================================================
duke@435 49 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 50
duke@435 51 const TypePtr *MemNode::adr_type() const {
duke@435 52 Node* adr = in(Address);
duke@435 53 const TypePtr* cross_check = NULL;
duke@435 54 DEBUG_ONLY(cross_check = _adr_type);
duke@435 55 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 56 }
duke@435 57
duke@435 58 #ifndef PRODUCT
duke@435 59 void MemNode::dump_spec(outputStream *st) const {
duke@435 60 if (in(Address) == NULL) return; // node is dead
duke@435 61 #ifndef ASSERT
duke@435 62 // fake the missing field
duke@435 63 const TypePtr* _adr_type = NULL;
duke@435 64 if (in(Address) != NULL)
duke@435 65 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 66 #endif
duke@435 67 dump_adr_type(this, _adr_type, st);
duke@435 68
duke@435 69 Compile* C = Compile::current();
duke@435 70 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 71 st->print(" Volatile!");
duke@435 72 }
duke@435 73
duke@435 74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 75 st->print(" @");
duke@435 76 if (adr_type == NULL) {
duke@435 77 st->print("NULL");
duke@435 78 } else {
duke@435 79 adr_type->dump_on(st);
duke@435 80 Compile* C = Compile::current();
duke@435 81 Compile::AliasType* atp = NULL;
duke@435 82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 83 if (atp == NULL)
duke@435 84 st->print(", idx=?\?;");
duke@435 85 else if (atp->index() == Compile::AliasIdxBot)
duke@435 86 st->print(", idx=Bot;");
duke@435 87 else if (atp->index() == Compile::AliasIdxTop)
duke@435 88 st->print(", idx=Top;");
duke@435 89 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 90 st->print(", idx=Raw;");
duke@435 91 else {
duke@435 92 ciField* field = atp->field();
duke@435 93 if (field) {
duke@435 94 st->print(", name=");
duke@435 95 field->print_name_on(st);
duke@435 96 }
duke@435 97 st->print(", idx=%d;", atp->index());
duke@435 98 }
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 extern void print_alias_types();
duke@435 103
duke@435 104 #endif
duke@435 105
kvn@509 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 107 const TypeOopPtr *tinst = t_adr->isa_oopptr();
kvn@658 108 if (tinst == NULL || !tinst->is_known_instance_field())
kvn@509 109 return mchain; // don't try to optimize non-instance types
kvn@509 110 uint instance_id = tinst->instance_id();
kvn@688 111 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 112 Node *prev = NULL;
kvn@509 113 Node *result = mchain;
kvn@509 114 while (prev != result) {
kvn@509 115 prev = result;
kvn@688 116 if (result == start_mem)
twisti@1040 117 break; // hit one of our sentinels
kvn@509 118 // skip over a call which does not affect this memory slice
kvn@509 119 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 120 Node *proj_in = result->in(0);
kvn@688 121 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 122 break; // hit one of our sentinels
kvn@688 123 } else if (proj_in->is_Call()) {
kvn@509 124 CallNode *call = proj_in->as_Call();
kvn@509 125 if (!call->may_modify(t_adr, phase)) {
kvn@509 126 result = call->in(TypeFunc::Memory);
kvn@509 127 }
kvn@509 128 } else if (proj_in->is_Initialize()) {
kvn@509 129 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 130 // Stop if this is the initialization for the object instance which
kvn@509 131 // which contains this memory slice, otherwise skip over it.
kvn@509 132 if (alloc != NULL && alloc->_idx != instance_id) {
kvn@509 133 result = proj_in->in(TypeFunc::Memory);
kvn@509 134 }
kvn@509 135 } else if (proj_in->is_MemBar()) {
kvn@509 136 result = proj_in->in(TypeFunc::Memory);
kvn@688 137 } else {
kvn@688 138 assert(false, "unexpected projection");
kvn@509 139 }
kvn@1535 140 } else if (result->is_ClearArray()) {
kvn@1535 141 if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
kvn@1535 142 // Can not bypass initialization of the instance
kvn@1535 143 // we are looking for.
kvn@1535 144 break;
kvn@1535 145 }
kvn@1535 146 // Otherwise skip it (the call updated 'result' value).
kvn@509 147 } else if (result->is_MergeMem()) {
kvn@509 148 result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
kvn@509 149 }
kvn@509 150 }
kvn@509 151 return result;
kvn@509 152 }
kvn@509 153
kvn@509 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 155 const TypeOopPtr *t_oop = t_adr->isa_oopptr();
kvn@658 156 bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
kvn@509 157 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 158 Node *result = mchain;
kvn@509 159 result = optimize_simple_memory_chain(result, t_adr, phase);
kvn@509 160 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 161 PhiNode *mphi = result->as_Phi();
kvn@509 162 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 163 const TypePtr *t = mphi->adr_type();
kvn@598 164 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 165 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 166 t->is_oopptr()->cast_to_exactness(true)
kvn@682 167 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 168 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 169 // clone the Phi with our address type
kvn@509 170 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 171 } else {
kvn@509 172 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 173 }
kvn@509 174 }
kvn@509 175 return result;
kvn@509 176 }
kvn@509 177
kvn@499 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 179 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 180 Node *mem = mmem;
kvn@499 181 #ifdef ASSERT
kvn@499 182 {
kvn@499 183 // Check that current type is consistent with the alias index used during graph construction
kvn@499 184 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 185 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 186 phase->C->must_alias(adr_check, alias_idx );
kvn@499 187 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 188 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 189 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 190 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 191 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 192 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 193 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 194 // don't assert if it is dead code.
kvn@499 195 consistent = true;
kvn@499 196 }
kvn@499 197 if( !consistent ) {
kvn@499 198 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 199 if( adr_check == NULL ) {
kvn@499 200 st->print("NULL");
kvn@499 201 } else {
kvn@499 202 adr_check->dump();
kvn@499 203 }
kvn@499 204 st->cr();
kvn@499 205 print_alias_types();
kvn@499 206 assert(consistent, "adr_check must match alias idx");
kvn@499 207 }
kvn@499 208 }
kvn@499 209 #endif
never@2170 210 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 211 // means an array I have not precisely typed yet. Do not do any
kvn@499 212 // alias stuff with it any time soon.
never@2170 213 const TypeOopPtr *toop = tp->isa_oopptr();
kvn@499 214 if( tp->base() != Type::AnyPtr &&
never@2170 215 !(toop &&
never@2170 216 toop->klass() != NULL &&
never@2170 217 toop->klass()->is_java_lang_Object() &&
never@2170 218 toop->offset() == Type::OffsetBot) ) {
kvn@499 219 // compress paths and change unreachable cycles to TOP
kvn@499 220 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 221 // Equivalent code in PhiNode::Ideal
kvn@499 222 Node* m = phase->transform(mmem);
twisti@1040 223 // If transformed to a MergeMem, get the desired slice
kvn@499 224 // Otherwise the returned node represents memory for every slice
kvn@499 225 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 226 // Update input if it is progress over what we have now
kvn@499 227 }
kvn@499 228 return mem;
kvn@499 229 }
kvn@499 230
duke@435 231 //--------------------------Ideal_common---------------------------------------
duke@435 232 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 233 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 235 // If our control input is a dead region, kill all below the region
duke@435 236 Node *ctl = in(MemNode::Control);
duke@435 237 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 238 return this;
kvn@740 239 ctl = in(MemNode::Control);
kvn@740 240 // Don't bother trying to transform a dead node
kvn@740 241 if( ctl && ctl->is_top() ) return NodeSentinel;
duke@435 242
kvn@1143 243 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 244 // Wait if control on the worklist.
kvn@1143 245 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 246 Node* bol = NULL;
kvn@1143 247 Node* cmp = NULL;
kvn@1143 248 if (ctl->in(0)->is_If()) {
kvn@1143 249 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 250 bol = ctl->in(0)->in(1);
kvn@1143 251 if (bol->is_Bool())
kvn@1143 252 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 253 }
kvn@1143 254 if (igvn->_worklist.member(ctl) ||
kvn@1143 255 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 256 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 257 // This control path may be dead.
kvn@1143 258 // Delay this memory node transformation until the control is processed.
kvn@1143 259 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 260 return NodeSentinel; // caller will return NULL
kvn@1143 261 }
kvn@1143 262 }
duke@435 263 // Ignore if memory is dead, or self-loop
duke@435 264 Node *mem = in(MemNode::Memory);
duke@435 265 if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 266 assert( mem != this, "dead loop in MemNode::Ideal" );
duke@435 267
duke@435 268 Node *address = in(MemNode::Address);
duke@435 269 const Type *t_adr = phase->type( address );
duke@435 270 if( t_adr == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 271
kvn@1143 272 if( can_reshape && igvn != NULL &&
kvn@2181 273 (igvn->_worklist.member(address) ||
kvn@2181 274 igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
kvn@855 275 // The address's base and type may change when the address is processed.
kvn@855 276 // Delay this mem node transformation until the address is processed.
kvn@855 277 phase->is_IterGVN()->_worklist.push(this);
kvn@855 278 return NodeSentinel; // caller will return NULL
kvn@855 279 }
kvn@855 280
kvn@1497 281 // Do NOT remove or optimize the next lines: ensure a new alias index
kvn@1497 282 // is allocated for an oop pointer type before Escape Analysis.
kvn@1497 283 // Note: C++ will not remove it since the call has side effect.
kvn@1497 284 if ( t_adr->isa_oopptr() ) {
kvn@1497 285 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
kvn@1497 286 }
kvn@1497 287
kvn@1143 288 #ifdef ASSERT
kvn@1143 289 Node* base = NULL;
kvn@1143 290 if (address->is_AddP())
kvn@1143 291 base = address->in(AddPNode::Base);
kvn@1143 292 assert(base == NULL || t_adr->isa_rawptr() ||
kvn@1143 293 !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
kvn@1143 294 #endif
kvn@1143 295
duke@435 296 // Avoid independent memory operations
duke@435 297 Node* old_mem = mem;
duke@435 298
kvn@471 299 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 300 // initializations was removed. After macro-expansion all stores catched
kvn@471 301 // by Initialize node became raw stores and there is no information
kvn@471 302 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 303 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 304 // were already unhooked by using information from detect_ptr_independence()
kvn@471 305 // and find_previous_store().
duke@435 306
duke@435 307 if (mem->is_MergeMem()) {
duke@435 308 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 309 const TypePtr *tp = t_adr->is_ptr();
kvn@499 310
kvn@499 311 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 312 }
duke@435 313
duke@435 314 if (mem != old_mem) {
duke@435 315 set_req(MemNode::Memory, mem);
kvn@740 316 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 317 return this;
duke@435 318 }
duke@435 319
duke@435 320 // let the subclass continue analyzing...
duke@435 321 return NULL;
duke@435 322 }
duke@435 323
duke@435 324 // Helper function for proving some simple control dominations.
kvn@554 325 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 326 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 327 // is not a constant (dominated by the method's StartNode).
duke@435 328 // Used by MemNode::find_previous_store to prove that the
duke@435 329 // control input of a memory operation predates (dominates)
duke@435 330 // an allocation it wants to look past.
kvn@554 331 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 332 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 333 return false; // Conservative answer for dead code
kvn@554 334
kvn@628 335 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 336 dom = dom->find_exact_control(dom);
kvn@554 337 if (dom == NULL || dom->is_top())
kvn@554 338 return false; // Conservative answer for dead code
kvn@554 339
kvn@628 340 if (dom == sub) {
kvn@628 341 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 342 // 'dom' is Proj node of the 'sub'.
kvn@628 343 return false;
kvn@628 344 }
kvn@628 345
kvn@590 346 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 347 return true;
kvn@554 348
kvn@554 349 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 350 // of all its inputs dominate or equal to sub's control edge.
kvn@554 351
kvn@554 352 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 353 // Or Region for the check in LoadNode::Ideal();
kvn@598 354 // 'sub' should have sub->in(0) != NULL.
kvn@598 355 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@598 356 sub->is_Region(), "expecting only these nodes");
kvn@554 357
kvn@554 358 // Get control edge of 'sub'.
kvn@628 359 Node* orig_sub = sub;
kvn@554 360 sub = sub->find_exact_control(sub->in(0));
kvn@554 361 if (sub == NULL || sub->is_top())
kvn@554 362 return false; // Conservative answer for dead code
kvn@554 363
kvn@554 364 assert(sub->is_CFG(), "expecting control");
kvn@554 365
kvn@554 366 if (sub == dom)
kvn@554 367 return true;
kvn@554 368
kvn@554 369 if (sub->is_Start() || sub->is_Root())
kvn@554 370 return false;
kvn@554 371
kvn@554 372 {
kvn@554 373 // Check all control edges of 'dom'.
kvn@554 374
kvn@554 375 ResourceMark rm;
kvn@554 376 Arena* arena = Thread::current()->resource_area();
kvn@554 377 Node_List nlist(arena);
kvn@554 378 Unique_Node_List dom_list(arena);
kvn@554 379
kvn@554 380 dom_list.push(dom);
kvn@554 381 bool only_dominating_controls = false;
kvn@554 382
kvn@554 383 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 384 Node* n = dom_list.at(next);
kvn@628 385 if (n == orig_sub)
kvn@628 386 return false; // One of dom's inputs dominated by sub.
kvn@554 387 if (!n->is_CFG() && n->pinned()) {
kvn@554 388 // Check only own control edge for pinned non-control nodes.
kvn@554 389 n = n->find_exact_control(n->in(0));
kvn@554 390 if (n == NULL || n->is_top())
kvn@554 391 return false; // Conservative answer for dead code
kvn@554 392 assert(n->is_CFG(), "expecting control");
kvn@628 393 dom_list.push(n);
kvn@628 394 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 395 only_dominating_controls = true;
kvn@554 396 } else if (n->is_CFG()) {
kvn@554 397 if (n->dominates(sub, nlist))
kvn@554 398 only_dominating_controls = true;
kvn@554 399 else
kvn@554 400 return false;
kvn@554 401 } else {
kvn@554 402 // First, own control edge.
kvn@554 403 Node* m = n->find_exact_control(n->in(0));
kvn@590 404 if (m != NULL) {
kvn@590 405 if (m->is_top())
kvn@590 406 return false; // Conservative answer for dead code
kvn@590 407 dom_list.push(m);
kvn@590 408 }
kvn@554 409 // Now, the rest of edges.
kvn@554 410 uint cnt = n->req();
kvn@554 411 for (uint i = 1; i < cnt; i++) {
kvn@554 412 m = n->find_exact_control(n->in(i));
kvn@554 413 if (m == NULL || m->is_top())
kvn@554 414 continue;
kvn@554 415 dom_list.push(m);
duke@435 416 }
duke@435 417 }
duke@435 418 }
kvn@554 419 return only_dominating_controls;
duke@435 420 }
duke@435 421 }
duke@435 422
duke@435 423 //---------------------detect_ptr_independence---------------------------------
duke@435 424 // Used by MemNode::find_previous_store to prove that two base
duke@435 425 // pointers are never equal.
duke@435 426 // The pointers are accompanied by their associated allocations,
duke@435 427 // if any, which have been previously discovered by the caller.
duke@435 428 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 429 Node* p2, AllocateNode* a2,
duke@435 430 PhaseTransform* phase) {
duke@435 431 // Attempt to prove that these two pointers cannot be aliased.
duke@435 432 // They may both manifestly be allocations, and they should differ.
duke@435 433 // Or, if they are not both allocations, they can be distinct constants.
duke@435 434 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 435 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 436 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 437 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 438 return (a1 != a2);
duke@435 439 } else if (a1 != NULL) { // one allocation a1
duke@435 440 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 441 return all_controls_dominate(p2, a1);
duke@435 442 } else { //(a2 != NULL) // one allocation a2
kvn@554 443 return all_controls_dominate(p1, a2);
duke@435 444 }
duke@435 445 return false;
duke@435 446 }
duke@435 447
duke@435 448
duke@435 449 // The logic for reordering loads and stores uses four steps:
duke@435 450 // (a) Walk carefully past stores and initializations which we
duke@435 451 // can prove are independent of this load.
duke@435 452 // (b) Observe that the next memory state makes an exact match
duke@435 453 // with self (load or store), and locate the relevant store.
duke@435 454 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 455 // the optimizer would fold it up somehow.
duke@435 456 // (d) Do the rewiring, and return, depending on some other part of
duke@435 457 // the optimizer to fold up the load.
duke@435 458 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 459 // specific to loads and stores, so they are handled by the callers.
duke@435 460 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 461 //
duke@435 462 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 463 Node* ctrl = in(MemNode::Control);
duke@435 464 Node* adr = in(MemNode::Address);
duke@435 465 intptr_t offset = 0;
duke@435 466 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 467 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 468
duke@435 469 if (offset == Type::OffsetBot)
duke@435 470 return NULL; // cannot unalias unless there are precise offsets
duke@435 471
kvn@509 472 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 473
duke@435 474 intptr_t size_in_bytes = memory_size();
duke@435 475
duke@435 476 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 477
duke@435 478 int cnt = 50; // Cycle limiter
duke@435 479 for (;;) { // While we can dance past unrelated stores...
duke@435 480 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 481
duke@435 482 if (mem->is_Store()) {
duke@435 483 Node* st_adr = mem->in(MemNode::Address);
duke@435 484 intptr_t st_offset = 0;
duke@435 485 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 486 if (st_base == NULL)
duke@435 487 break; // inscrutable pointer
duke@435 488 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 489 const int MAX_STORE = BytesPerLong;
duke@435 490 if (st_offset >= offset + size_in_bytes ||
duke@435 491 st_offset <= offset - MAX_STORE ||
duke@435 492 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 493 // Success: The offsets are provably independent.
duke@435 494 // (You may ask, why not just test st_offset != offset and be done?
duke@435 495 // The answer is that stores of different sizes can co-exist
duke@435 496 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 497 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 498 mem = mem->in(MemNode::Memory);
duke@435 499 continue; // (a) advance through independent store memory
duke@435 500 }
duke@435 501 }
duke@435 502 if (st_base != base &&
duke@435 503 detect_ptr_independence(base, alloc,
duke@435 504 st_base,
duke@435 505 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 506 phase)) {
duke@435 507 // Success: The bases are provably independent.
duke@435 508 mem = mem->in(MemNode::Memory);
duke@435 509 continue; // (a) advance through independent store memory
duke@435 510 }
duke@435 511
duke@435 512 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 513 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 514 if (st_base == base && st_offset == offset) {
duke@435 515 return mem; // let caller handle steps (c), (d)
duke@435 516 }
duke@435 517
duke@435 518 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 519 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 520 AllocateNode* st_alloc = st_init->allocation();
duke@435 521 if (st_alloc == NULL)
duke@435 522 break; // something degenerated
duke@435 523 bool known_identical = false;
duke@435 524 bool known_independent = false;
duke@435 525 if (alloc == st_alloc)
duke@435 526 known_identical = true;
duke@435 527 else if (alloc != NULL)
duke@435 528 known_independent = true;
kvn@554 529 else if (all_controls_dominate(this, st_alloc))
duke@435 530 known_independent = true;
duke@435 531
duke@435 532 if (known_independent) {
duke@435 533 // The bases are provably independent: Either they are
duke@435 534 // manifestly distinct allocations, or else the control
duke@435 535 // of this load dominates the store's allocation.
duke@435 536 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 537 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 538 mem = st_alloc->in(TypeFunc::Memory);
duke@435 539 } else {
duke@435 540 mem = st_init->memory(alias_idx);
duke@435 541 }
duke@435 542 continue; // (a) advance through independent store memory
duke@435 543 }
duke@435 544
duke@435 545 // (b) at this point, if we are not looking at a store initializing
duke@435 546 // the same allocation we are loading from, we lose.
duke@435 547 if (known_identical) {
duke@435 548 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 549 return mem; // let caller handle steps (c), (d)
duke@435 550 }
duke@435 551
kvn@658 552 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 553 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 554 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 555 CallNode *call = mem->in(0)->as_Call();
kvn@509 556 if (!call->may_modify(addr_t, phase)) {
kvn@509 557 mem = call->in(TypeFunc::Memory);
kvn@509 558 continue; // (a) advance through independent call memory
kvn@509 559 }
kvn@509 560 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 561 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 562 continue; // (a) advance through independent MemBar memory
kvn@1535 563 } else if (mem->is_ClearArray()) {
kvn@1535 564 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
kvn@1535 565 // (the call updated 'mem' value)
kvn@1535 566 continue; // (a) advance through independent allocation memory
kvn@1535 567 } else {
kvn@1535 568 // Can not bypass initialization of the instance
kvn@1535 569 // we are looking for.
kvn@1535 570 return mem;
kvn@1535 571 }
kvn@509 572 } else if (mem->is_MergeMem()) {
kvn@509 573 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 574 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 575 continue; // (a) advance through independent MergeMem memory
kvn@509 576 }
duke@435 577 }
duke@435 578
duke@435 579 // Unless there is an explicit 'continue', we must bail out here,
duke@435 580 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 581 break;
duke@435 582 }
duke@435 583
duke@435 584 return NULL; // bail out
duke@435 585 }
duke@435 586
duke@435 587 //----------------------calculate_adr_type-------------------------------------
duke@435 588 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 589 // Also, asserts a cross-check of the type against the expected address type.
duke@435 590 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 591 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 592 #ifdef PRODUCT
duke@435 593 cross_check = NULL;
duke@435 594 #else
duke@435 595 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 596 #endif
duke@435 597 const TypePtr* tp = t->isa_ptr();
duke@435 598 if (tp == NULL) {
duke@435 599 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 600 return TypePtr::BOTTOM; // touches lots of memory
duke@435 601 } else {
duke@435 602 #ifdef ASSERT
duke@435 603 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 604 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 605 if (cross_check != NULL &&
duke@435 606 cross_check != TypePtr::BOTTOM &&
duke@435 607 cross_check != TypeRawPtr::BOTTOM) {
duke@435 608 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 609 Compile* C = Compile::current();
duke@435 610 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 611 "must stay in the original alias category");
duke@435 612 // The type of the address must be contained in the adr_type,
duke@435 613 // disregarding "null"-ness.
duke@435 614 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 615 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 616 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 617 "real address must not escape from expected memory type");
duke@435 618 }
duke@435 619 #endif
duke@435 620 return tp;
duke@435 621 }
duke@435 622 }
duke@435 623
duke@435 624 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 625 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 626 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 627 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 628 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 629 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 630 // with the same data. This implies that any path into the loop already
duke@435 631 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 632 // must be covered by an equivalent cast, with an earlier control input.
duke@435 633 ResourceMark rm;
duke@435 634
duke@435 635 // The loop entry input of the phi should be the unique dominating
duke@435 636 // node for every Phi/CastPP in the loop.
duke@435 637 Unique_Node_List closure;
duke@435 638 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 639
duke@435 640 // Add the phi node and the cast to the worklist.
duke@435 641 Unique_Node_List worklist;
duke@435 642 worklist.push(adr_phi);
duke@435 643 if( cast != NULL ){
duke@435 644 if( !cast->is_ConstraintCast() ) return false;
duke@435 645 worklist.push(cast);
duke@435 646 }
duke@435 647
duke@435 648 // Begin recursive walk of phi nodes.
duke@435 649 while( worklist.size() ){
duke@435 650 // Take a node off the worklist
duke@435 651 Node *n = worklist.pop();
duke@435 652 if( !closure.member(n) ){
duke@435 653 // Add it to the closure.
duke@435 654 closure.push(n);
duke@435 655 // Make a sanity check to ensure we don't waste too much time here.
duke@435 656 if( closure.size() > 20) return false;
duke@435 657 // This node is OK if:
duke@435 658 // - it is a cast of an identical value
duke@435 659 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 660 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 661 if( n->is_ConstraintCast() ){
duke@435 662 worklist.push(n->in(1));
duke@435 663 } else if( n->is_Phi() ) {
duke@435 664 for( uint i = 1; i < n->req(); i++ ) {
duke@435 665 worklist.push(n->in(i));
duke@435 666 }
duke@435 667 } else {
duke@435 668 return false;
duke@435 669 }
duke@435 670 }
duke@435 671 }
duke@435 672
duke@435 673 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 674 return true;
duke@435 675 }
duke@435 676
duke@435 677 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 678 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 679 // going away in this pass and we need to make this memory op depend on the
duke@435 680 // gating null check.
kvn@598 681 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 682 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 683 }
duke@435 684
duke@435 685 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 686 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 687 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 688 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 689 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 690 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 691 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 692 // up on this approach. CNC 10/20/2000
kvn@598 693 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 694 // Only the control edge of the node 'n' might be updated.
kvn@598 695 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 696 Node *skipped_cast = NULL;
duke@435 697 // Need a null check? Regular static accesses do not because they are
duke@435 698 // from constant addresses. Array ops are gated by the range check (which
duke@435 699 // always includes a NULL check). Just check field ops.
kvn@598 700 if( n->in(MemNode::Control) == NULL ) {
duke@435 701 // Scan upwards for the highest location we can place this memory op.
duke@435 702 while( true ) {
duke@435 703 switch( adr->Opcode() ) {
duke@435 704
duke@435 705 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 706 adr = adr->in(AddPNode::Base);
duke@435 707 continue;
duke@435 708
coleenp@548 709 case Op_DecodeN: // No change to NULL-ness, so peek thru
coleenp@548 710 adr = adr->in(1);
coleenp@548 711 continue;
coleenp@548 712
duke@435 713 case Op_CastPP:
duke@435 714 // If the CastPP is useless, just peek on through it.
duke@435 715 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 716 // Remember the cast that we've peeked though. If we peek
duke@435 717 // through more than one, then we end up remembering the highest
duke@435 718 // one, that is, if in a loop, the one closest to the top.
duke@435 719 skipped_cast = adr;
duke@435 720 adr = adr->in(1);
duke@435 721 continue;
duke@435 722 }
duke@435 723 // CastPP is going away in this pass! We need this memory op to be
duke@435 724 // control-dependent on the test that is guarding the CastPP.
kvn@598 725 ccp->hash_delete(n);
kvn@598 726 n->set_req(MemNode::Control, adr->in(0));
kvn@598 727 ccp->hash_insert(n);
kvn@598 728 return n;
duke@435 729
duke@435 730 case Op_Phi:
duke@435 731 // Attempt to float above a Phi to some dominating point.
duke@435 732 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 733 // If we've already peeked through a Cast (which could have set the
duke@435 734 // control), we can't float above a Phi, because the skipped Cast
duke@435 735 // may not be loop invariant.
duke@435 736 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 737 adr = adr->in(1);
duke@435 738 continue;
duke@435 739 }
duke@435 740 }
duke@435 741
duke@435 742 // Intentional fallthrough!
duke@435 743
duke@435 744 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 745 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 746 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 747 // behind the controls leading to the Phi.
duke@435 748 case Op_CheckCastPP:
duke@435 749 // These usually stick around to change address type, however a
duke@435 750 // useless one can be elided and we still need to pick up a control edge
duke@435 751 if (adr->in(0) == NULL) {
duke@435 752 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 753 // need check further up the ancestor chain for a control input to keep
duke@435 754 // the node in place. 4959717.
duke@435 755 skipped_cast = adr;
duke@435 756 adr = adr->in(1);
duke@435 757 continue;
duke@435 758 }
kvn@598 759 ccp->hash_delete(n);
kvn@598 760 n->set_req(MemNode::Control, adr->in(0));
kvn@598 761 ccp->hash_insert(n);
kvn@598 762 return n;
duke@435 763
duke@435 764 // List of "safe" opcodes; those that implicitly block the memory
duke@435 765 // op below any null check.
duke@435 766 case Op_CastX2P: // no null checks on native pointers
duke@435 767 case Op_Parm: // 'this' pointer is not null
duke@435 768 case Op_LoadP: // Loading from within a klass
coleenp@548 769 case Op_LoadN: // Loading from within a klass
duke@435 770 case Op_LoadKlass: // Loading from within a klass
kvn@599 771 case Op_LoadNKlass: // Loading from within a klass
duke@435 772 case Op_ConP: // Loading from a klass
kvn@598 773 case Op_ConN: // Loading from a klass
duke@435 774 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 775 case Op_Con: // Reading from TLS
duke@435 776 case Op_CMoveP: // CMoveP is pinned
kvn@599 777 case Op_CMoveN: // CMoveN is pinned
duke@435 778 break; // No progress
duke@435 779
duke@435 780 case Op_Proj: // Direct call to an allocation routine
duke@435 781 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 782 #ifdef ASSERT
duke@435 783 {
duke@435 784 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 785 const Node* call = adr->in(0);
kvn@598 786 if (call->is_CallJava()) {
kvn@598 787 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 788 const TypeTuple *r = call_java->tf()->range();
kvn@499 789 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 790 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 791 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 792 // We further presume that this is one of
duke@435 793 // new_instance_Java, new_array_Java, or
duke@435 794 // the like, but do not assert for this.
duke@435 795 } else if (call->is_Allocate()) {
duke@435 796 // similar case to new_instance_Java, etc.
duke@435 797 } else if (!call->is_CallLeaf()) {
duke@435 798 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 799 ShouldNotReachHere();
duke@435 800 }
duke@435 801 }
duke@435 802 #endif
duke@435 803 break;
duke@435 804 default:
duke@435 805 ShouldNotReachHere();
duke@435 806 }
duke@435 807 break;
duke@435 808 }
duke@435 809 }
duke@435 810
duke@435 811 return NULL; // No progress
duke@435 812 }
duke@435 813
duke@435 814
duke@435 815 //=============================================================================
duke@435 816 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 817 uint LoadNode::cmp( const Node &n ) const
duke@435 818 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 819 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 820 uint LoadNode::ideal_reg() const {
duke@435 821 return Matcher::base2reg[_type->base()];
duke@435 822 }
duke@435 823
duke@435 824 #ifndef PRODUCT
duke@435 825 void LoadNode::dump_spec(outputStream *st) const {
duke@435 826 MemNode::dump_spec(st);
duke@435 827 if( !Verbose && !WizardMode ) {
duke@435 828 // standard dump does this in Verbose and WizardMode
duke@435 829 st->print(" #"); _type->dump_on(st);
duke@435 830 }
duke@435 831 }
duke@435 832 #endif
duke@435 833
kvn@1964 834 #ifdef ASSERT
kvn@1964 835 //----------------------------is_immutable_value-------------------------------
kvn@1964 836 // Helper function to allow a raw load without control edge for some cases
kvn@1964 837 bool LoadNode::is_immutable_value(Node* adr) {
kvn@1964 838 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
kvn@1964 839 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1964 840 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
kvn@1964 841 in_bytes(JavaThread::osthread_offset())));
kvn@1964 842 }
kvn@1964 843 #endif
duke@435 844
duke@435 845 //----------------------------LoadNode::make-----------------------------------
duke@435 846 // Polymorphic factory method:
coleenp@548 847 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 848 Compile* C = gvn.C;
coleenp@548 849
duke@435 850 // sanity check the alias category against the created node type
duke@435 851 assert(!(adr_type->isa_oopptr() &&
duke@435 852 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 853 "use LoadKlassNode instead");
duke@435 854 assert(!(adr_type->isa_aryptr() &&
duke@435 855 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 856 "use LoadRangeNode instead");
kvn@1964 857 // Check control edge of raw loads
kvn@1964 858 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 859 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 860 rt->isa_oopptr() || is_immutable_value(adr),
kvn@1964 861 "raw memory operations should have control edge");
duke@435 862 switch (bt) {
twisti@1059 863 case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 864 case T_BYTE: return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 865 case T_INT: return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 866 case T_CHAR: return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 867 case T_SHORT: return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 868 case T_LONG: return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
twisti@993 869 case T_FLOAT: return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt );
twisti@993 870 case T_DOUBLE: return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt );
twisti@993 871 case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 872 case T_OBJECT:
coleenp@548 873 #ifdef _LP64
kvn@598 874 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 875 Node* load = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@656 876 return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 877 } else
coleenp@548 878 #endif
kvn@598 879 {
kvn@598 880 assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@598 881 return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 882 }
duke@435 883 }
duke@435 884 ShouldNotReachHere();
duke@435 885 return (LoadNode*)NULL;
duke@435 886 }
duke@435 887
duke@435 888 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 889 bool require_atomic = true;
duke@435 890 return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 891 }
duke@435 892
duke@435 893
duke@435 894
duke@435 895
duke@435 896 //------------------------------hash-------------------------------------------
duke@435 897 uint LoadNode::hash() const {
duke@435 898 // unroll addition of interesting fields
duke@435 899 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 900 }
duke@435 901
duke@435 902 //---------------------------can_see_stored_value------------------------------
duke@435 903 // This routine exists to make sure this set of tests is done the same
duke@435 904 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 905 // will change the graph shape in a way which makes memory alive twice at the
duke@435 906 // same time (uses the Oracle model of aliasing), then some
duke@435 907 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 908 // of aliasing.
duke@435 909 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 910 Node* ld_adr = in(MemNode::Address);
duke@435 911
never@452 912 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
never@452 913 Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
never@452 914 if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
never@452 915 atp->field() != NULL && !atp->field()->is_volatile()) {
never@452 916 uint alias_idx = atp->index();
never@452 917 bool final = atp->field()->is_final();
never@452 918 Node* result = NULL;
never@452 919 Node* current = st;
never@452 920 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 921 // new states for the slice of this load. Stop once any other
never@452 922 // kind of node is encountered. Loads from final memory can skip
never@452 923 // through any kind of MemBar but normal loads shouldn't skip
never@452 924 // through MemBarAcquire since the could allow them to move out of
never@452 925 // a synchronized region.
never@452 926 while (current->is_Proj()) {
never@452 927 int opc = current->in(0)->Opcode();
never@452 928 if ((final && opc == Op_MemBarAcquire) ||
never@452 929 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
never@452 930 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 931 if (mem->is_MergeMem()) {
never@452 932 MergeMemNode* merge = mem->as_MergeMem();
never@452 933 Node* new_st = merge->memory_at(alias_idx);
never@452 934 if (new_st == merge->base_memory()) {
never@452 935 // Keep searching
never@452 936 current = merge->base_memory();
never@452 937 continue;
never@452 938 }
never@452 939 // Save the new memory state for the slice and fall through
never@452 940 // to exit.
never@452 941 result = new_st;
never@452 942 }
never@452 943 }
never@452 944 break;
never@452 945 }
never@452 946 if (result != NULL) {
never@452 947 st = result;
never@452 948 }
never@452 949 }
never@452 950
never@452 951
duke@435 952 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 953 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 954 for (int trip = 0; trip <= 1; trip++) {
duke@435 955
duke@435 956 if (st->is_Store()) {
duke@435 957 Node* st_adr = st->in(MemNode::Address);
duke@435 958 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 959 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 960 intptr_t st_off = 0;
duke@435 961 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 962 if (alloc == NULL) return NULL;
duke@435 963 intptr_t ld_off = 0;
duke@435 964 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
duke@435 965 if (alloc != allo2) return NULL;
duke@435 966 if (ld_off != st_off) return NULL;
duke@435 967 // At this point we have proven something like this setup:
duke@435 968 // A = Allocate(...)
duke@435 969 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 970 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 971 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 972 // In other words, we are loading from a casted version of
duke@435 973 // the same pointer-and-offset that we stored to.
duke@435 974 // Thus, we are able to replace L by V.
duke@435 975 }
duke@435 976 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 977 if (store_Opcode() != st->Opcode())
duke@435 978 return NULL;
duke@435 979 return st->in(MemNode::ValueIn);
duke@435 980 }
duke@435 981
duke@435 982 intptr_t offset = 0; // scratch
duke@435 983
duke@435 984 // A load from a freshly-created object always returns zero.
duke@435 985 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 986 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 987 if (st->is_Proj() && st->in(0)->is_Allocate() &&
duke@435 988 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
duke@435 989 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
duke@435 990 // return a zero value for the load's basic type
duke@435 991 // (This is one of the few places where a generic PhaseTransform
duke@435 992 // can create new nodes. Think of it as lazily manifesting
duke@435 993 // virtually pre-existing constants.)
duke@435 994 return phase->zerocon(memory_type());
duke@435 995 }
duke@435 996
duke@435 997 // A load from an initialization barrier can match a captured store.
duke@435 998 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 999 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 1000 AllocateNode* alloc = init->allocation();
duke@435 1001 if (alloc != NULL &&
duke@435 1002 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
duke@435 1003 // examine a captured store value
duke@435 1004 st = init->find_captured_store(offset, memory_size(), phase);
duke@435 1005 if (st != NULL)
duke@435 1006 continue; // take one more trip around
duke@435 1007 }
duke@435 1008 }
duke@435 1009
duke@435 1010 break;
duke@435 1011 }
duke@435 1012
duke@435 1013 return NULL;
duke@435 1014 }
duke@435 1015
kvn@499 1016 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 1017 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@499 1018 if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
kvn@499 1019 in(MemNode::Address)->is_AddP() ) {
kvn@499 1020 const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@499 1021 // Only instances.
kvn@658 1022 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@499 1023 t_oop->offset() != Type::OffsetBot &&
kvn@499 1024 t_oop->offset() != Type::OffsetTop) {
kvn@499 1025 return true;
kvn@499 1026 }
kvn@499 1027 }
kvn@499 1028 return false;
kvn@499 1029 }
kvn@499 1030
duke@435 1031 //------------------------------Identity---------------------------------------
duke@435 1032 // Loads are identity if previous store is to same address
duke@435 1033 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 1034 // If the previous store-maker is the right kind of Store, and the store is
duke@435 1035 // to the same address, then we are equal to the value stored.
duke@435 1036 Node* mem = in(MemNode::Memory);
duke@435 1037 Node* value = can_see_stored_value(mem, phase);
duke@435 1038 if( value ) {
duke@435 1039 // byte, short & char stores truncate naturally.
duke@435 1040 // A load has to load the truncated value which requires
duke@435 1041 // some sort of masking operation and that requires an
duke@435 1042 // Ideal call instead of an Identity call.
duke@435 1043 if (memory_size() < BytesPerInt) {
duke@435 1044 // If the input to the store does not fit with the load's result type,
duke@435 1045 // it must be truncated via an Ideal call.
duke@435 1046 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 1047 return this;
duke@435 1048 }
duke@435 1049 // (This works even when value is a Con, but LoadNode::Value
duke@435 1050 // usually runs first, producing the singleton type of the Con.)
duke@435 1051 return value;
duke@435 1052 }
kvn@499 1053
kvn@499 1054 // Search for an existing data phi which was generated before for the same
twisti@1040 1055 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1056 Node *region = mem->in(0);
kvn@499 1057 if (is_instance_field_load_with_local_phi(region)) {
kvn@499 1058 const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
kvn@499 1059 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1060 int this_offset = addr_t->offset();
kvn@499 1061 int this_id = addr_t->is_oopptr()->instance_id();
kvn@499 1062 const Type* this_type = bottom_type();
kvn@499 1063 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1064 Node* phi = region->fast_out(i);
kvn@499 1065 if (phi->is_Phi() && phi != mem &&
kvn@499 1066 phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
kvn@499 1067 return phi;
kvn@499 1068 }
kvn@499 1069 }
kvn@499 1070 }
kvn@499 1071
duke@435 1072 return this;
duke@435 1073 }
duke@435 1074
never@452 1075
never@452 1076 // Returns true if the AliasType refers to the field that holds the
never@452 1077 // cached box array. Currently only handles the IntegerCache case.
never@452 1078 static bool is_autobox_cache(Compile::AliasType* atp) {
never@452 1079 if (atp != NULL && atp->field() != NULL) {
never@452 1080 ciField* field = atp->field();
never@452 1081 ciSymbol* klass = field->holder()->name();
never@452 1082 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1083 field->holder()->uses_default_loader() &&
never@452 1084 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1085 return true;
never@452 1086 }
never@452 1087 }
never@452 1088 return false;
never@452 1089 }
never@452 1090
never@452 1091 // Fetch the base value in the autobox array
never@452 1092 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
never@452 1093 if (atp != NULL && atp->field() != NULL) {
never@452 1094 ciField* field = atp->field();
never@452 1095 ciSymbol* klass = field->holder()->name();
never@452 1096 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1097 field->holder()->uses_default_loader() &&
never@452 1098 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1099 assert(field->is_constant(), "what?");
never@452 1100 ciObjArray* array = field->constant_value().as_object()->as_obj_array();
never@452 1101 // Fetch the box object at the base of the array and get its value
never@452 1102 ciInstance* box = array->obj_at(0)->as_instance();
never@452 1103 ciInstanceKlass* ik = box->klass()->as_instance_klass();
never@452 1104 if (ik->nof_nonstatic_fields() == 1) {
never@452 1105 // This should be true nonstatic_field_at requires calling
never@452 1106 // nof_nonstatic_fields so check it anyway
never@452 1107 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
never@452 1108 cache_offset = c.as_int();
never@452 1109 }
never@452 1110 return true;
never@452 1111 }
never@452 1112 }
never@452 1113 return false;
never@452 1114 }
never@452 1115
never@452 1116 // Returns true if the AliasType refers to the value field of an
never@452 1117 // autobox object. Currently only handles Integer.
never@452 1118 static bool is_autobox_object(Compile::AliasType* atp) {
never@452 1119 if (atp != NULL && atp->field() != NULL) {
never@452 1120 ciField* field = atp->field();
never@452 1121 ciSymbol* klass = field->holder()->name();
never@452 1122 if (field->name() == ciSymbol::value_name() &&
never@452 1123 field->holder()->uses_default_loader() &&
never@452 1124 klass == ciSymbol::java_lang_Integer()) {
never@452 1125 return true;
never@452 1126 }
never@452 1127 }
never@452 1128 return false;
never@452 1129 }
never@452 1130
never@452 1131
never@452 1132 // We're loading from an object which has autobox behaviour.
never@452 1133 // If this object is result of a valueOf call we'll have a phi
never@452 1134 // merging a newly allocated object and a load from the cache.
never@452 1135 // We want to replace this load with the original incoming
never@452 1136 // argument to the valueOf call.
never@452 1137 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
never@452 1138 Node* base = in(Address)->in(AddPNode::Base);
never@452 1139 if (base->is_Phi() && base->req() == 3) {
never@452 1140 AllocateNode* allocation = NULL;
never@452 1141 int allocation_index = -1;
never@452 1142 int load_index = -1;
never@452 1143 for (uint i = 1; i < base->req(); i++) {
never@452 1144 allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
never@452 1145 if (allocation != NULL) {
never@452 1146 allocation_index = i;
never@452 1147 load_index = 3 - allocation_index;
never@452 1148 break;
never@452 1149 }
never@452 1150 }
kvn@1018 1151 bool has_load = ( allocation != NULL &&
kvn@1018 1152 (base->in(load_index)->is_Load() ||
kvn@1018 1153 base->in(load_index)->is_DecodeN() &&
kvn@1018 1154 base->in(load_index)->in(1)->is_Load()) );
kvn@1018 1155 if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
never@452 1156 // Push the loads from the phi that comes from valueOf up
never@452 1157 // through it to allow elimination of the loads and the recovery
never@452 1158 // of the original value.
never@452 1159 Node* mem_phi = in(Memory);
never@452 1160 Node* offset = in(Address)->in(AddPNode::Offset);
never@988 1161 Node* region = base->in(0);
never@452 1162
never@452 1163 Node* in1 = clone();
never@452 1164 Node* in1_addr = in1->in(Address)->clone();
never@452 1165 in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
never@452 1166 in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
never@452 1167 in1_addr->set_req(AddPNode::Offset, offset);
never@988 1168 in1->set_req(0, region->in(allocation_index));
never@452 1169 in1->set_req(Address, in1_addr);
never@452 1170 in1->set_req(Memory, mem_phi->in(allocation_index));
never@452 1171
never@452 1172 Node* in2 = clone();
never@452 1173 Node* in2_addr = in2->in(Address)->clone();
never@452 1174 in2_addr->set_req(AddPNode::Base, base->in(load_index));
never@452 1175 in2_addr->set_req(AddPNode::Address, base->in(load_index));
never@452 1176 in2_addr->set_req(AddPNode::Offset, offset);
never@988 1177 in2->set_req(0, region->in(load_index));
never@452 1178 in2->set_req(Address, in2_addr);
never@452 1179 in2->set_req(Memory, mem_phi->in(load_index));
never@452 1180
never@452 1181 in1_addr = phase->transform(in1_addr);
never@452 1182 in1 = phase->transform(in1);
never@452 1183 in2_addr = phase->transform(in2_addr);
never@452 1184 in2 = phase->transform(in2);
never@452 1185
never@988 1186 PhiNode* result = PhiNode::make_blank(region, this);
never@452 1187 result->set_req(allocation_index, in1);
never@452 1188 result->set_req(load_index, in2);
never@452 1189 return result;
never@452 1190 }
kvn@1018 1191 } else if (base->is_Load() ||
kvn@1018 1192 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@1018 1193 if (base->is_DecodeN()) {
kvn@1018 1194 // Get LoadN node which loads cached Integer object
kvn@1018 1195 base = base->in(1);
kvn@1018 1196 }
never@452 1197 // Eliminate the load of Integer.value for integers from the cache
never@452 1198 // array by deriving the value from the index into the array.
never@452 1199 // Capture the offset of the load and then reverse the computation.
never@452 1200 Node* load_base = base->in(Address)->in(AddPNode::Base);
kvn@1018 1201 if (load_base->is_DecodeN()) {
kvn@1018 1202 // Get LoadN node which loads IntegerCache.cache field
kvn@1018 1203 load_base = load_base->in(1);
kvn@1018 1204 }
never@452 1205 if (load_base != NULL) {
never@452 1206 Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
never@452 1207 intptr_t cache_offset;
never@452 1208 int shift = -1;
never@452 1209 Node* cache = NULL;
never@452 1210 if (is_autobox_cache(atp)) {
kvn@464 1211 shift = exact_log2(type2aelembytes(T_OBJECT));
never@452 1212 cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
never@452 1213 }
never@452 1214 if (cache != NULL && base->in(Address)->is_AddP()) {
never@452 1215 Node* elements[4];
never@452 1216 int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@452 1217 int cache_low;
never@452 1218 if (count > 0 && fetch_autobox_base(atp, cache_low)) {
never@452 1219 int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
never@452 1220 // Add up all the offsets making of the address of the load
never@452 1221 Node* result = elements[0];
never@452 1222 for (int i = 1; i < count; i++) {
never@452 1223 result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
never@452 1224 }
never@452 1225 // Remove the constant offset from the address and then
never@452 1226 // remove the scaling of the offset to recover the original index.
never@452 1227 result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
never@452 1228 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
never@452 1229 // Peel the shift off directly but wrap it in a dummy node
never@452 1230 // since Ideal can't return existing nodes
never@452 1231 result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
never@452 1232 } else {
never@452 1233 result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
never@452 1234 }
never@452 1235 #ifdef _LP64
never@452 1236 result = new (phase->C, 2) ConvL2INode(phase->transform(result));
never@452 1237 #endif
never@452 1238 return result;
never@452 1239 }
never@452 1240 }
never@452 1241 }
never@452 1242 }
never@452 1243 return NULL;
never@452 1244 }
never@452 1245
kvn@598 1246 //------------------------------split_through_phi------------------------------
kvn@598 1247 // Split instance field load through Phi.
kvn@598 1248 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@598 1249 Node* mem = in(MemNode::Memory);
kvn@598 1250 Node* address = in(MemNode::Address);
kvn@598 1251 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@598 1252 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@598 1253
kvn@598 1254 assert(mem->is_Phi() && (t_oop != NULL) &&
kvn@658 1255 t_oop->is_known_instance_field(), "invalide conditions");
kvn@598 1256
kvn@598 1257 Node *region = mem->in(0);
kvn@598 1258 if (region == NULL) {
kvn@598 1259 return NULL; // Wait stable graph
kvn@598 1260 }
kvn@598 1261 uint cnt = mem->req();
kvn@2810 1262 for (uint i = 1; i < cnt; i++) {
kvn@2810 1263 Node* rc = region->in(i);
kvn@2810 1264 if (rc == NULL || phase->type(rc) == Type::TOP)
kvn@2810 1265 return NULL; // Wait stable graph
kvn@598 1266 Node *in = mem->in(i);
kvn@2810 1267 if (in == NULL) {
kvn@598 1268 return NULL; // Wait stable graph
kvn@598 1269 }
kvn@598 1270 }
kvn@598 1271 // Check for loop invariant.
kvn@598 1272 if (cnt == 3) {
kvn@2810 1273 for (uint i = 1; i < cnt; i++) {
kvn@598 1274 Node *in = mem->in(i);
kvn@598 1275 Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
kvn@598 1276 if (m == mem) {
kvn@598 1277 set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
kvn@598 1278 return this;
kvn@598 1279 }
kvn@598 1280 }
kvn@598 1281 }
kvn@598 1282 // Split through Phi (see original code in loopopts.cpp).
kvn@598 1283 assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
kvn@598 1284
kvn@598 1285 // Do nothing here if Identity will find a value
kvn@598 1286 // (to avoid infinite chain of value phis generation).
kvn@2810 1287 if (!phase->eqv(this, this->Identity(phase)))
kvn@598 1288 return NULL;
kvn@598 1289
kvn@598 1290 // Skip the split if the region dominates some control edge of the address.
kvn@2810 1291 if (!MemNode::all_controls_dominate(address, region))
kvn@598 1292 return NULL;
kvn@598 1293
kvn@598 1294 const Type* this_type = this->bottom_type();
kvn@598 1295 int this_index = phase->C->get_alias_index(addr_t);
kvn@598 1296 int this_offset = addr_t->offset();
kvn@598 1297 int this_iid = addr_t->is_oopptr()->instance_id();
kvn@598 1298 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@598 1299 Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@2810 1300 for (uint i = 1; i < region->req(); i++) {
kvn@598 1301 Node *x;
kvn@598 1302 Node* the_clone = NULL;
kvn@2810 1303 if (region->in(i) == phase->C->top()) {
kvn@598 1304 x = phase->C->top(); // Dead path? Use a dead data op
kvn@598 1305 } else {
kvn@598 1306 x = this->clone(); // Else clone up the data op
kvn@598 1307 the_clone = x; // Remember for possible deletion.
kvn@598 1308 // Alter data node to use pre-phi inputs
kvn@2810 1309 if (this->in(0) == region) {
kvn@2810 1310 x->set_req(0, region->in(i));
kvn@598 1311 } else {
kvn@2810 1312 x->set_req(0, NULL);
kvn@598 1313 }
kvn@2810 1314 for (uint j = 1; j < this->req(); j++) {
kvn@598 1315 Node *in = this->in(j);
kvn@2810 1316 if (in->is_Phi() && in->in(0) == region)
kvn@2810 1317 x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
kvn@598 1318 }
kvn@598 1319 }
kvn@598 1320 // Check for a 'win' on some paths
kvn@598 1321 const Type *t = x->Value(igvn);
kvn@598 1322
kvn@598 1323 bool singleton = t->singleton();
kvn@598 1324
kvn@598 1325 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@2810 1326 if (singleton && t == Type::TOP) {
kvn@598 1327 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1328 }
kvn@598 1329
kvn@2810 1330 if (singleton) {
kvn@598 1331 x = igvn->makecon(t);
kvn@598 1332 } else {
kvn@598 1333 // We now call Identity to try to simplify the cloned node.
kvn@598 1334 // Note that some Identity methods call phase->type(this).
kvn@598 1335 // Make sure that the type array is big enough for
kvn@598 1336 // our new node, even though we may throw the node away.
kvn@598 1337 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1338 igvn->set_type(x, t);
kvn@728 1339 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1340 // otherwise it will be not updated during igvn->transform since
kvn@728 1341 // igvn->type(x) is set to x->Value() already.
kvn@728 1342 x->raise_bottom_type(t);
kvn@598 1343 Node *y = x->Identity(igvn);
kvn@2810 1344 if (y != x) {
kvn@598 1345 x = y;
kvn@598 1346 } else {
kvn@598 1347 y = igvn->hash_find(x);
kvn@2810 1348 if (y) {
kvn@598 1349 x = y;
kvn@598 1350 } else {
kvn@598 1351 // Else x is a new node we are keeping
kvn@598 1352 // We do not need register_new_node_with_optimizer
kvn@598 1353 // because set_type has already been called.
kvn@598 1354 igvn->_worklist.push(x);
kvn@598 1355 }
kvn@598 1356 }
kvn@598 1357 }
kvn@598 1358 if (x != the_clone && the_clone != NULL)
kvn@598 1359 igvn->remove_dead_node(the_clone);
kvn@598 1360 phi->set_req(i, x);
kvn@598 1361 }
kvn@2810 1362 // Record Phi
kvn@2810 1363 igvn->register_new_node_with_optimizer(phi);
kvn@2810 1364 return phi;
kvn@598 1365 }
never@452 1366
duke@435 1367 //------------------------------Ideal------------------------------------------
duke@435 1368 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1369 // zero out the control input.
duke@435 1370 // If the offset is constant and the base is an object allocation,
duke@435 1371 // try to hook me up to the exact initializing store.
duke@435 1372 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1373 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1374 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1375
duke@435 1376 Node* ctrl = in(MemNode::Control);
duke@435 1377 Node* address = in(MemNode::Address);
duke@435 1378
duke@435 1379 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1380 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1381 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1382 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1383 ctrl = ctrl->in(0);
duke@435 1384 set_req(MemNode::Control,ctrl);
duke@435 1385 }
duke@435 1386
kvn@1143 1387 intptr_t ignore = 0;
kvn@1143 1388 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1389 if (base != NULL
kvn@1143 1390 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1391 // Check for useless control edge in some common special cases
kvn@1143 1392 if (in(MemNode::Control) != NULL
duke@435 1393 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1394 && all_controls_dominate(base, phase->C->start())) {
duke@435 1395 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1396 set_req(MemNode::Control, NULL);
duke@435 1397 }
kvn@1143 1398
kvn@1143 1399 if (EliminateAutoBox && can_reshape) {
kvn@1143 1400 assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
never@452 1401 Compile::AliasType* atp = phase->C->alias_type(adr_type());
never@452 1402 if (is_autobox_object(atp)) {
never@452 1403 Node* result = eliminate_autobox(phase);
never@452 1404 if (result != NULL) return result;
never@452 1405 }
never@452 1406 }
never@452 1407 }
never@452 1408
kvn@509 1409 Node* mem = in(MemNode::Memory);
kvn@509 1410 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1411
kvn@509 1412 if (addr_t != NULL) {
kvn@509 1413 // try to optimize our memory input
kvn@509 1414 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
kvn@509 1415 if (opt_mem != mem) {
kvn@509 1416 set_req(MemNode::Memory, opt_mem);
kvn@740 1417 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1418 return this;
kvn@509 1419 }
kvn@509 1420 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@509 1421 if (can_reshape && opt_mem->is_Phi() &&
kvn@658 1422 (t_oop != NULL) && t_oop->is_known_instance_field()) {
kvn@598 1423 // Split instance field load through Phi.
kvn@598 1424 Node* result = split_through_phi(phase);
kvn@598 1425 if (result != NULL) return result;
kvn@509 1426 }
kvn@509 1427 }
kvn@509 1428
duke@435 1429 // Check for prior store with a different base or offset; make Load
duke@435 1430 // independent. Skip through any number of them. Bail out if the stores
duke@435 1431 // are in an endless dead cycle and report no progress. This is a key
duke@435 1432 // transform for Reflection. However, if after skipping through the Stores
duke@435 1433 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1434 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1435 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1436 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1437 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1438 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1439 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1440 // fold up, do so.
duke@435 1441 Node* prev_mem = find_previous_store(phase);
duke@435 1442 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1443 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1444 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1445 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1446 // just return a prior value, which is done by Identity calls.
duke@435 1447 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1448 // Make ready for step (d):
duke@435 1449 set_req(MemNode::Memory, prev_mem);
duke@435 1450 return this;
duke@435 1451 }
duke@435 1452 }
duke@435 1453
duke@435 1454 return NULL; // No further progress
duke@435 1455 }
duke@435 1456
duke@435 1457 // Helper to recognize certain Klass fields which are invariant across
duke@435 1458 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1459 const Type*
duke@435 1460 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1461 ciKlass* klass) const {
duke@435 1462 if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1463 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1464 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1465 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1466 return TypeInt::make(klass->modifier_flags());
duke@435 1467 }
duke@435 1468 if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1469 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1470 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1471 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1472 return TypeInt::make(klass->access_flags());
duke@435 1473 }
duke@435 1474 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1475 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1476 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1477 return TypeInt::make(klass->layout_helper());
duke@435 1478 }
duke@435 1479
duke@435 1480 // No match.
duke@435 1481 return NULL;
duke@435 1482 }
duke@435 1483
duke@435 1484 //------------------------------Value-----------------------------------------
duke@435 1485 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1486 // Either input is TOP ==> the result is TOP
duke@435 1487 Node* mem = in(MemNode::Memory);
duke@435 1488 const Type *t1 = phase->type(mem);
duke@435 1489 if (t1 == Type::TOP) return Type::TOP;
duke@435 1490 Node* adr = in(MemNode::Address);
duke@435 1491 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1492 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1493 int off = tp->offset();
duke@435 1494 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
duke@435 1495
duke@435 1496 // Try to guess loaded type from pointer type
duke@435 1497 if (tp->base() == Type::AryPtr) {
duke@435 1498 const Type *t = tp->is_aryptr()->elem();
duke@435 1499 // Don't do this for integer types. There is only potential profit if
duke@435 1500 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1501 // more restrictive than t. This only happens here if one is short and the other
duke@435 1502 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1503 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1504 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1505 //
duke@435 1506 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1507 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1508 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1509 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1510 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1511 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1512 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1513 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1514 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@728 1515 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1516 // t might actually be lower than _type, if _type is a unique
duke@435 1517 // concrete subclass of abstract class t.
duke@435 1518 // Make sure the reference is not into the header, by comparing
duke@435 1519 // the offset against the offset of the start of the array's data.
duke@435 1520 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1521 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1522 // as to alignment, which will therefore produce the smallest
duke@435 1523 // possible base offset.
duke@435 1524 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1525 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1526 const Type* jt = t->join(_type);
duke@435 1527 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1528 if (jt->empty() && !t->empty()) {
duke@435 1529 // This can happen if a interface-typed array narrows to a class type.
duke@435 1530 jt = _type;
duke@435 1531 }
never@452 1532
kvn@1143 1533 if (EliminateAutoBox && adr->is_AddP()) {
never@452 1534 // The pointers in the autobox arrays are always non-null
kvn@1143 1535 Node* base = adr->in(AddPNode::Base);
kvn@1143 1536 if (base != NULL &&
kvn@1143 1537 !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
never@452 1538 Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
never@452 1539 if (is_autobox_cache(atp)) {
never@452 1540 return jt->join(TypePtr::NOTNULL)->is_ptr();
never@452 1541 }
never@452 1542 }
never@452 1543 }
duke@435 1544 return jt;
duke@435 1545 }
duke@435 1546 }
duke@435 1547 } else if (tp->base() == Type::InstPtr) {
never@1515 1548 const TypeInstPtr* tinst = tp->is_instptr();
never@1515 1549 ciKlass* klass = tinst->klass();
duke@435 1550 assert( off != Type::OffsetBot ||
duke@435 1551 // arrays can be cast to Objects
duke@435 1552 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1553 // unsafe field access may not have a constant offset
duke@435 1554 phase->C->has_unsafe_access(),
duke@435 1555 "Field accesses must be precise" );
duke@435 1556 // For oop loads, we expect the _type to be precise
kvn@2602 1557 if (klass == phase->C->env()->String_klass() &&
never@1515 1558 adr->is_AddP() && off != Type::OffsetBot) {
kvn@2602 1559 // For constant Strings treat the final fields as compile time constants.
never@1515 1560 Node* base = adr->in(AddPNode::Base);
never@2121 1561 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
never@2121 1562 if (t != NULL && t->singleton()) {
kvn@2602 1563 ciField* field = phase->C->env()->String_klass()->get_field_by_offset(off, false);
kvn@2602 1564 if (field != NULL && field->is_final()) {
kvn@2602 1565 ciObject* string = t->const_oop();
kvn@2602 1566 ciConstant constant = string->as_instance()->field_value(field);
kvn@2602 1567 if (constant.basic_type() == T_INT) {
kvn@2602 1568 return TypeInt::make(constant.as_int());
kvn@2602 1569 } else if (constant.basic_type() == T_ARRAY) {
kvn@2602 1570 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
jcoomes@2661 1571 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
kvn@2602 1572 } else {
jcoomes@2661 1573 return TypeOopPtr::make_from_constant(constant.as_object(), true);
kvn@2602 1574 }
never@1515 1575 }
never@1515 1576 }
never@1515 1577 }
never@1515 1578 }
duke@435 1579 } else if (tp->base() == Type::KlassPtr) {
duke@435 1580 assert( off != Type::OffsetBot ||
duke@435 1581 // arrays can be cast to Objects
duke@435 1582 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1583 // also allow array-loading from the primary supertype
duke@435 1584 // array during subtype checks
duke@435 1585 Opcode() == Op_LoadKlass,
duke@435 1586 "Field accesses must be precise" );
duke@435 1587 // For klass/static loads, we expect the _type to be precise
duke@435 1588 }
duke@435 1589
duke@435 1590 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1591 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1592 ciKlass* klass = tkls->klass();
duke@435 1593 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1594 // We are loading a field from a Klass metaobject whose identity
duke@435 1595 // is known at compile time (the type is "exact" or "precise").
duke@435 1596 // Check for fields we know are maintained as constants by the VM.
duke@435 1597 if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1598 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1599 // (Folds up type checking code.)
duke@435 1600 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1601 return TypeInt::make(klass->super_check_offset());
duke@435 1602 }
duke@435 1603 // Compute index into primary_supers array
duke@435 1604 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1605 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1606 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1607 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1608 // (Folds up type checking code.)
duke@435 1609 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1610 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1611 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1612 }
duke@435 1613 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1614 if (aift != NULL) return aift;
duke@435 1615 if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
duke@435 1616 && klass->is_array_klass()) {
duke@435 1617 // The field is arrayKlass::_component_mirror. Return its (constant) value.
duke@435 1618 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1619 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1620 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1621 }
duke@435 1622 if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1623 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1624 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1625 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1626 return TypeInstPtr::make(klass->java_mirror());
duke@435 1627 }
duke@435 1628 }
duke@435 1629
duke@435 1630 // We can still check if we are loading from the primary_supers array at a
duke@435 1631 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1632 // than or equal to its super depth are correct.
duke@435 1633 if (klass->is_loaded() ) {
duke@435 1634 ciType *inner = klass->klass();
duke@435 1635 while( inner->is_obj_array_klass() )
duke@435 1636 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1637 if( inner->is_instance_klass() &&
duke@435 1638 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1639 // Compute index into primary_supers array
duke@435 1640 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1641 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1642 if( depth < ciKlass::primary_super_limit() &&
duke@435 1643 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1644 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1645 // (Folds up type checking code.)
duke@435 1646 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1647 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1648 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1649 }
duke@435 1650 }
duke@435 1651 }
duke@435 1652
duke@435 1653 // If the type is enough to determine that the thing is not an array,
duke@435 1654 // we can give the layout_helper a positive interval type.
duke@435 1655 // This will help short-circuit some reflective code.
duke@435 1656 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
duke@435 1657 && !klass->is_array_klass() // not directly typed as an array
duke@435 1658 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1659 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1660 ) {
duke@435 1661 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1662 // test to (klass != Serializable && klass != Cloneable).
duke@435 1663 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1664 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1665 // The key property of this type is that it folds up tests
duke@435 1666 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1667 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1668 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1669 }
duke@435 1670 }
duke@435 1671
duke@435 1672 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1673 // if the load is provably beyond the header of the object.
duke@435 1674 // (Also allow a variable load from a fresh array to produce zero.)
kvn@2810 1675 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@2810 1676 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
kvn@2810 1677 if (ReduceFieldZeroing || is_instance) {
duke@435 1678 Node* value = can_see_stored_value(mem,phase);
duke@435 1679 if (value != NULL && value->is_Con())
duke@435 1680 return value->bottom_type();
duke@435 1681 }
duke@435 1682
kvn@2810 1683 if (is_instance) {
kvn@499 1684 // If we have an instance type and our memory input is the
kvn@499 1685 // programs's initial memory state, there is no matching store,
kvn@499 1686 // so just return a zero of the appropriate type
kvn@499 1687 Node *mem = in(MemNode::Memory);
kvn@499 1688 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1689 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1690 return Type::get_zero_type(_type->basic_type());
kvn@499 1691 }
kvn@499 1692 }
duke@435 1693 return _type;
duke@435 1694 }
duke@435 1695
duke@435 1696 //------------------------------match_edge-------------------------------------
duke@435 1697 // Do we Match on this edge index or not? Match only the address.
duke@435 1698 uint LoadNode::match_edge(uint idx) const {
duke@435 1699 return idx == MemNode::Address;
duke@435 1700 }
duke@435 1701
duke@435 1702 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1703 //
duke@435 1704 // If the previous store is to the same address as this load,
duke@435 1705 // and the value stored was larger than a byte, replace this load
duke@435 1706 // with the value stored truncated to a byte. If no truncation is
duke@435 1707 // needed, the replacement is done in LoadNode::Identity().
duke@435 1708 //
duke@435 1709 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1710 Node* mem = in(MemNode::Memory);
duke@435 1711 Node* value = can_see_stored_value(mem,phase);
duke@435 1712 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1713 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
duke@435 1714 return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
duke@435 1715 }
duke@435 1716 // Identity call will handle the case where truncation is not needed.
duke@435 1717 return LoadNode::Ideal(phase, can_reshape);
duke@435 1718 }
duke@435 1719
twisti@1059 1720 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1721 //
twisti@1059 1722 // If the previous store is to the same address as this load,
twisti@1059 1723 // and the value stored was larger than a byte, replace this load
twisti@1059 1724 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1725 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1726 //
twisti@1059 1727 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1728 Node* mem = in(MemNode::Memory);
twisti@1059 1729 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1730 if (value && !phase->type(value)->higher_equal(_type))
twisti@1059 1731 return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
twisti@1059 1732 // Identity call will handle the case where truncation is not needed.
twisti@1059 1733 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1734 }
twisti@1059 1735
twisti@993 1736 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1737 //
duke@435 1738 // If the previous store is to the same address as this load,
duke@435 1739 // and the value stored was larger than a char, replace this load
duke@435 1740 // with the value stored truncated to a char. If no truncation is
duke@435 1741 // needed, the replacement is done in LoadNode::Identity().
duke@435 1742 //
twisti@993 1743 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1744 Node* mem = in(MemNode::Memory);
duke@435 1745 Node* value = can_see_stored_value(mem,phase);
duke@435 1746 if( value && !phase->type(value)->higher_equal( _type ) )
duke@435 1747 return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
duke@435 1748 // Identity call will handle the case where truncation is not needed.
duke@435 1749 return LoadNode::Ideal(phase, can_reshape);
duke@435 1750 }
duke@435 1751
duke@435 1752 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1753 //
duke@435 1754 // If the previous store is to the same address as this load,
duke@435 1755 // and the value stored was larger than a short, replace this load
duke@435 1756 // with the value stored truncated to a short. If no truncation is
duke@435 1757 // needed, the replacement is done in LoadNode::Identity().
duke@435 1758 //
duke@435 1759 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1760 Node* mem = in(MemNode::Memory);
duke@435 1761 Node* value = can_see_stored_value(mem,phase);
duke@435 1762 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1763 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
duke@435 1764 return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
duke@435 1765 }
duke@435 1766 // Identity call will handle the case where truncation is not needed.
duke@435 1767 return LoadNode::Ideal(phase, can_reshape);
duke@435 1768 }
duke@435 1769
duke@435 1770 //=============================================================================
kvn@599 1771 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1772 // Polymorphic factory method:
kvn@599 1773 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1774 Compile* C = gvn.C;
kvn@599 1775 Node *ctl = NULL;
kvn@599 1776 // sanity check the alias category against the created node type
kvn@599 1777 const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
kvn@599 1778 assert(adr_type != NULL, "expecting TypeOopPtr");
kvn@599 1779 #ifdef _LP64
kvn@599 1780 if (adr_type->is_ptr_to_narrowoop()) {
kvn@656 1781 Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
kvn@656 1782 return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1783 }
kvn@599 1784 #endif
kvn@603 1785 assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@603 1786 return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1787 }
kvn@599 1788
duke@435 1789 //------------------------------Value------------------------------------------
duke@435 1790 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1791 return klass_value_common(phase);
kvn@599 1792 }
kvn@599 1793
kvn@599 1794 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1795 // Either input is TOP ==> the result is TOP
duke@435 1796 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1797 if (t1 == Type::TOP) return Type::TOP;
duke@435 1798 Node *adr = in(MemNode::Address);
duke@435 1799 const Type *t2 = phase->type( adr );
duke@435 1800 if (t2 == Type::TOP) return Type::TOP;
duke@435 1801 const TypePtr *tp = t2->is_ptr();
duke@435 1802 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1803 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1804
duke@435 1805 // Return a more precise klass, if possible
duke@435 1806 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 1807 if (tinst != NULL) {
duke@435 1808 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 1809 int offset = tinst->offset();
duke@435 1810 if (ik == phase->C->env()->Class_klass()
duke@435 1811 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1812 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1813 // We are loading a special hidden field from a Class mirror object,
duke@435 1814 // the field which points to the VM's Klass metaobject.
duke@435 1815 ciType* t = tinst->java_mirror_type();
duke@435 1816 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 1817 if (t != NULL) {
duke@435 1818 // constant oop => constant klass
duke@435 1819 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1820 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 1821 }
duke@435 1822 if (!t->is_klass()) {
duke@435 1823 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 1824 return TypePtr::NULL_PTR;
duke@435 1825 }
duke@435 1826 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 1827 return TypeKlassPtr::make(t->as_klass());
duke@435 1828 }
duke@435 1829 // non-constant mirror, so we can't tell what's going on
duke@435 1830 }
duke@435 1831 if( !ik->is_loaded() )
duke@435 1832 return _type; // Bail out if not loaded
duke@435 1833 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1834 if (tinst->klass_is_exact()) {
duke@435 1835 return TypeKlassPtr::make(ik);
duke@435 1836 }
duke@435 1837 // See if we can become precise: no subklasses and no interface
duke@435 1838 // (Note: We need to support verified interfaces.)
duke@435 1839 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1840 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1841 // Add a dependence; if any subclass added we need to recompile
duke@435 1842 if (!ik->is_final()) {
duke@435 1843 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 1844 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1845 }
duke@435 1846 // Return precise klass
duke@435 1847 return TypeKlassPtr::make(ik);
duke@435 1848 }
duke@435 1849
duke@435 1850 // Return root of possible klass
duke@435 1851 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 1852 }
duke@435 1853 }
duke@435 1854
duke@435 1855 // Check for loading klass from an array
duke@435 1856 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 1857 if( tary != NULL ) {
duke@435 1858 ciKlass *tary_klass = tary->klass();
duke@435 1859 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 1860 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 1861 if (tary->klass_is_exact()) {
duke@435 1862 return TypeKlassPtr::make(tary_klass);
duke@435 1863 }
duke@435 1864 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 1865 // If the klass is an object array, we defer the question to the
duke@435 1866 // array component klass.
duke@435 1867 if( ak->is_obj_array_klass() ) {
duke@435 1868 assert( ak->is_loaded(), "" );
duke@435 1869 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 1870 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 1871 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 1872 // See if we can become precise: no subklasses and no interface
duke@435 1873 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1874 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1875 // Add a dependence; if any subclass added we need to recompile
duke@435 1876 if (!ik->is_final()) {
duke@435 1877 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1878 }
duke@435 1879 // Return precise array klass
duke@435 1880 return TypeKlassPtr::make(ak);
duke@435 1881 }
duke@435 1882 }
duke@435 1883 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 1884 } else { // Found a type-array?
duke@435 1885 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1886 assert( ak->is_type_array_klass(), "" );
duke@435 1887 return TypeKlassPtr::make(ak); // These are always precise
duke@435 1888 }
duke@435 1889 }
duke@435 1890 }
duke@435 1891
duke@435 1892 // Check for loading klass from an array klass
duke@435 1893 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1894 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1895 ciKlass* klass = tkls->klass();
duke@435 1896 if( !klass->is_loaded() )
duke@435 1897 return _type; // Bail out if not loaded
duke@435 1898 if( klass->is_obj_array_klass() &&
duke@435 1899 (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1900 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 1901 // // Always returning precise element type is incorrect,
duke@435 1902 // // e.g., element type could be object and array may contain strings
duke@435 1903 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 1904
duke@435 1905 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 1906 // according to the element type's subclassing.
duke@435 1907 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 1908 }
duke@435 1909 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
duke@435 1910 (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1911 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 1912 // The field is Klass::_super. Return its (constant) value.
duke@435 1913 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 1914 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 1915 }
duke@435 1916 }
duke@435 1917
duke@435 1918 // Bailout case
duke@435 1919 return LoadNode::Value(phase);
duke@435 1920 }
duke@435 1921
duke@435 1922 //------------------------------Identity---------------------------------------
duke@435 1923 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 1924 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 1925 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 1926 return klass_identity_common(phase);
kvn@599 1927 }
kvn@599 1928
kvn@599 1929 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 1930 Node* x = LoadNode::Identity(phase);
duke@435 1931 if (x != this) return x;
duke@435 1932
duke@435 1933 // Take apart the address into an oop and and offset.
duke@435 1934 // Return 'this' if we cannot.
duke@435 1935 Node* adr = in(MemNode::Address);
duke@435 1936 intptr_t offset = 0;
duke@435 1937 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 1938 if (base == NULL) return this;
duke@435 1939 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 1940 if (toop == NULL) return this;
duke@435 1941
duke@435 1942 // We can fetch the klass directly through an AllocateNode.
duke@435 1943 // This works even if the klass is not constant (clone or newArray).
duke@435 1944 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1945 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 1946 if (allocated_klass != NULL) {
duke@435 1947 return allocated_klass;
duke@435 1948 }
duke@435 1949 }
duke@435 1950
duke@435 1951 // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
duke@435 1952 // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
duke@435 1953 // See inline_native_Class_query for occurrences of these patterns.
duke@435 1954 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 1955 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 1956 //
duke@435 1957 // This improves reflective code, often making the Class
duke@435 1958 // mirror go completely dead. (Current exception: Class
duke@435 1959 // mirrors may appear in debug info, but we could clean them out by
duke@435 1960 // introducing a new debug info operator for klassOop.java_mirror).
duke@435 1961 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 1962 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1963 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1964 // We are loading a special hidden field from a Class mirror,
duke@435 1965 // the field which points to its Klass or arrayKlass metaobject.
duke@435 1966 if (base->is_Load()) {
duke@435 1967 Node* adr2 = base->in(MemNode::Address);
duke@435 1968 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 1969 if (tkls != NULL && !tkls->empty()
duke@435 1970 && (tkls->klass()->is_instance_klass() ||
duke@435 1971 tkls->klass()->is_array_klass())
duke@435 1972 && adr2->is_AddP()
duke@435 1973 ) {
duke@435 1974 int mirror_field = Klass::java_mirror_offset_in_bytes();
duke@435 1975 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1976 mirror_field = in_bytes(arrayKlass::component_mirror_offset());
duke@435 1977 }
duke@435 1978 if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
duke@435 1979 return adr2->in(AddPNode::Base);
duke@435 1980 }
duke@435 1981 }
duke@435 1982 }
duke@435 1983 }
duke@435 1984
duke@435 1985 return this;
duke@435 1986 }
duke@435 1987
kvn@599 1988
kvn@599 1989 //------------------------------Value------------------------------------------
kvn@599 1990 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1991 const Type *t = klass_value_common(phase);
kvn@656 1992 if (t == Type::TOP)
kvn@656 1993 return t;
kvn@656 1994
kvn@656 1995 return t->make_narrowoop();
kvn@599 1996 }
kvn@599 1997
kvn@599 1998 //------------------------------Identity---------------------------------------
kvn@599 1999 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 2000 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 2001 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2002 Node *x = klass_identity_common(phase);
kvn@599 2003
kvn@599 2004 const Type *t = phase->type( x );
kvn@599 2005 if( t == Type::TOP ) return x;
kvn@599 2006 if( t->isa_narrowoop()) return x;
kvn@599 2007
kvn@656 2008 return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
kvn@599 2009 }
kvn@599 2010
duke@435 2011 //------------------------------Value-----------------------------------------
duke@435 2012 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 2013 // Either input is TOP ==> the result is TOP
duke@435 2014 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2015 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2016 Node *adr = in(MemNode::Address);
duke@435 2017 const Type *t2 = phase->type( adr );
duke@435 2018 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2019 const TypePtr *tp = t2->is_ptr();
duke@435 2020 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 2021 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 2022 if( !tap ) return _type;
duke@435 2023 return tap->size();
duke@435 2024 }
duke@435 2025
rasbold@801 2026 //-------------------------------Ideal---------------------------------------
rasbold@801 2027 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 2028 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 2029 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 2030 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 2031
rasbold@801 2032 // Take apart the address into an oop and and offset.
rasbold@801 2033 // Return 'this' if we cannot.
rasbold@801 2034 Node* adr = in(MemNode::Address);
rasbold@801 2035 intptr_t offset = 0;
rasbold@801 2036 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 2037 if (base == NULL) return NULL;
rasbold@801 2038 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 2039 if (tary == NULL) return NULL;
rasbold@801 2040
rasbold@801 2041 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 2042 // This works even if the length is not constant (clone or newArray).
rasbold@801 2043 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2044 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2045 if (alloc != NULL) {
rasbold@801 2046 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2047 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 2048 if (allocated_length != len) {
rasbold@801 2049 // New CastII improves on this.
rasbold@801 2050 return len;
rasbold@801 2051 }
rasbold@801 2052 }
rasbold@801 2053 }
rasbold@801 2054
rasbold@801 2055 return NULL;
rasbold@801 2056 }
rasbold@801 2057
duke@435 2058 //------------------------------Identity---------------------------------------
duke@435 2059 // Feed through the length in AllocateArray(...length...)._length.
duke@435 2060 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 2061 Node* x = LoadINode::Identity(phase);
duke@435 2062 if (x != this) return x;
duke@435 2063
duke@435 2064 // Take apart the address into an oop and and offset.
duke@435 2065 // Return 'this' if we cannot.
duke@435 2066 Node* adr = in(MemNode::Address);
duke@435 2067 intptr_t offset = 0;
duke@435 2068 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2069 if (base == NULL) return this;
duke@435 2070 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 2071 if (tary == NULL) return this;
duke@435 2072
duke@435 2073 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2074 // This works even if the length is not constant (clone or newArray).
duke@435 2075 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2076 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2077 if (alloc != NULL) {
rasbold@801 2078 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2079 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2080 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2081 if (allocated_length == len) {
rasbold@801 2082 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2083 return allocated_length;
rasbold@801 2084 }
duke@435 2085 }
duke@435 2086 }
duke@435 2087
duke@435 2088 return this;
duke@435 2089
duke@435 2090 }
rasbold@801 2091
duke@435 2092 //=============================================================================
duke@435 2093 //---------------------------StoreNode::make-----------------------------------
duke@435 2094 // Polymorphic factory method:
coleenp@548 2095 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 2096 Compile* C = gvn.C;
kvn@1964 2097 assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 2098 ctl != NULL, "raw memory operations should have control edge");
coleenp@548 2099
duke@435 2100 switch (bt) {
duke@435 2101 case T_BOOLEAN:
duke@435 2102 case T_BYTE: return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
duke@435 2103 case T_INT: return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 2104 case T_CHAR:
duke@435 2105 case T_SHORT: return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
duke@435 2106 case T_LONG: return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
duke@435 2107 case T_FLOAT: return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
duke@435 2108 case T_DOUBLE: return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
duke@435 2109 case T_ADDRESS:
coleenp@548 2110 case T_OBJECT:
coleenp@548 2111 #ifdef _LP64
kvn@598 2112 if (adr->bottom_type()->is_ptr_to_narrowoop() ||
coleenp@548 2113 (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
coleenp@548 2114 adr->bottom_type()->isa_rawptr())) {
kvn@656 2115 val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@656 2116 return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
coleenp@548 2117 } else
coleenp@548 2118 #endif
kvn@656 2119 {
kvn@656 2120 return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 2121 }
duke@435 2122 }
duke@435 2123 ShouldNotReachHere();
duke@435 2124 return (StoreNode*)NULL;
duke@435 2125 }
duke@435 2126
duke@435 2127 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 2128 bool require_atomic = true;
duke@435 2129 return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2130 }
duke@435 2131
duke@435 2132
duke@435 2133 //--------------------------bottom_type----------------------------------------
duke@435 2134 const Type *StoreNode::bottom_type() const {
duke@435 2135 return Type::MEMORY;
duke@435 2136 }
duke@435 2137
duke@435 2138 //------------------------------hash-------------------------------------------
duke@435 2139 uint StoreNode::hash() const {
duke@435 2140 // unroll addition of interesting fields
duke@435 2141 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2142
duke@435 2143 // Since they are not commoned, do not hash them:
duke@435 2144 return NO_HASH;
duke@435 2145 }
duke@435 2146
duke@435 2147 //------------------------------Ideal------------------------------------------
duke@435 2148 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2149 // When a store immediately follows a relevant allocation/initialization,
duke@435 2150 // try to capture it into the initialization, or hoist it above.
duke@435 2151 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2152 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2153 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2154
duke@435 2155 Node* mem = in(MemNode::Memory);
duke@435 2156 Node* address = in(MemNode::Address);
duke@435 2157
never@2780 2158 // Back-to-back stores to same address? Fold em up. Generally
never@2780 2159 // unsafe if I have intervening uses... Also disallowed for StoreCM
never@2780 2160 // since they must follow each StoreP operation. Redundant StoreCMs
never@2780 2161 // are eliminated just before matching in final_graph_reshape.
never@2780 2162 if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address) &&
never@2780 2163 mem->Opcode() != Op_StoreCM) {
duke@435 2164 // Looking at a dead closed cycle of memory?
duke@435 2165 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2166
duke@435 2167 assert(Opcode() == mem->Opcode() ||
duke@435 2168 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2169 "no mismatched stores, except on raw memory");
duke@435 2170
duke@435 2171 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2172 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2173 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2174 // For example, 'mem' might be the final state at a conditional return.
duke@435 2175 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2176 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2177 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2178 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2179 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2180 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2181 phase->is_IterGVN());
duke@435 2182 } else {
duke@435 2183 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2184 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2185 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2186 }
duke@435 2187 return this;
duke@435 2188 }
duke@435 2189 }
duke@435 2190
duke@435 2191 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2192 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2193 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2194 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2195 InitializeNode* init = mem->in(0)->as_Initialize();
duke@435 2196 intptr_t offset = init->can_capture_store(this, phase);
duke@435 2197 if (offset > 0) {
duke@435 2198 Node* moved = init->capture_store(this, offset, phase);
duke@435 2199 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2200 // and I need to disappear.
duke@435 2201 if (moved != NULL) {
duke@435 2202 // %%% hack to ensure that Ideal returns a new node:
duke@435 2203 mem = MergeMemNode::make(phase->C, mem);
duke@435 2204 return mem; // fold me away
duke@435 2205 }
duke@435 2206 }
duke@435 2207 }
duke@435 2208
duke@435 2209 return NULL; // No further progress
duke@435 2210 }
duke@435 2211
duke@435 2212 //------------------------------Value-----------------------------------------
duke@435 2213 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2214 // Either input is TOP ==> the result is TOP
duke@435 2215 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2216 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2217 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2218 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2219 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2220 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2221 return Type::MEMORY;
duke@435 2222 }
duke@435 2223
duke@435 2224 //------------------------------Identity---------------------------------------
duke@435 2225 // Remove redundant stores:
duke@435 2226 // Store(m, p, Load(m, p)) changes to m.
duke@435 2227 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2228 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2229 Node* mem = in(MemNode::Memory);
duke@435 2230 Node* adr = in(MemNode::Address);
duke@435 2231 Node* val = in(MemNode::ValueIn);
duke@435 2232
duke@435 2233 // Load then Store? Then the Store is useless
duke@435 2234 if (val->is_Load() &&
duke@435 2235 phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
duke@435 2236 phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
duke@435 2237 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2238 return mem;
duke@435 2239 }
duke@435 2240
duke@435 2241 // Two stores in a row of the same value?
duke@435 2242 if (mem->is_Store() &&
duke@435 2243 phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
duke@435 2244 phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
duke@435 2245 mem->Opcode() == Opcode()) {
duke@435 2246 return mem;
duke@435 2247 }
duke@435 2248
duke@435 2249 // Store of zero anywhere into a freshly-allocated object?
duke@435 2250 // Then the store is useless.
duke@435 2251 // (It must already have been captured by the InitializeNode.)
duke@435 2252 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2253 // a newly allocated object is already all-zeroes everywhere
duke@435 2254 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2255 return mem;
duke@435 2256 }
duke@435 2257
duke@435 2258 // the store may also apply to zero-bits in an earlier object
duke@435 2259 Node* prev_mem = find_previous_store(phase);
duke@435 2260 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2261 if (prev_mem != NULL) {
duke@435 2262 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2263 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2264 // prev_val and val might differ by a cast; it would be good
duke@435 2265 // to keep the more informative of the two.
duke@435 2266 return mem;
duke@435 2267 }
duke@435 2268 }
duke@435 2269 }
duke@435 2270
duke@435 2271 return this;
duke@435 2272 }
duke@435 2273
duke@435 2274 //------------------------------match_edge-------------------------------------
duke@435 2275 // Do we Match on this edge index or not? Match only memory & value
duke@435 2276 uint StoreNode::match_edge(uint idx) const {
duke@435 2277 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2278 }
duke@435 2279
duke@435 2280 //------------------------------cmp--------------------------------------------
duke@435 2281 // Do not common stores up together. They generally have to be split
duke@435 2282 // back up anyways, so do not bother.
duke@435 2283 uint StoreNode::cmp( const Node &n ) const {
duke@435 2284 return (&n == this); // Always fail except on self
duke@435 2285 }
duke@435 2286
duke@435 2287 //------------------------------Ideal_masked_input-----------------------------
duke@435 2288 // Check for a useless mask before a partial-word store
duke@435 2289 // (StoreB ... (AndI valIn conIa) )
duke@435 2290 // If (conIa & mask == mask) this simplifies to
duke@435 2291 // (StoreB ... (valIn) )
duke@435 2292 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2293 Node *val = in(MemNode::ValueIn);
duke@435 2294 if( val->Opcode() == Op_AndI ) {
duke@435 2295 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2296 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2297 set_req(MemNode::ValueIn, val->in(1));
duke@435 2298 return this;
duke@435 2299 }
duke@435 2300 }
duke@435 2301 return NULL;
duke@435 2302 }
duke@435 2303
duke@435 2304
duke@435 2305 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2306 // Check for useless sign-extension before a partial-word store
duke@435 2307 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2308 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2309 // (StoreB ... (valIn) )
duke@435 2310 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2311 Node *val = in(MemNode::ValueIn);
duke@435 2312 if( val->Opcode() == Op_RShiftI ) {
duke@435 2313 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2314 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2315 Node *shl = val->in(1);
duke@435 2316 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2317 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2318 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2319 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2320 return this;
duke@435 2321 }
duke@435 2322 }
duke@435 2323 }
duke@435 2324 }
duke@435 2325 return NULL;
duke@435 2326 }
duke@435 2327
duke@435 2328 //------------------------------value_never_loaded-----------------------------------
duke@435 2329 // Determine whether there are any possible loads of the value stored.
duke@435 2330 // For simplicity, we actually check if there are any loads from the
duke@435 2331 // address stored to, not just for loads of the value stored by this node.
duke@435 2332 //
duke@435 2333 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2334 Node *adr = in(Address);
duke@435 2335 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2336 if (adr_oop == NULL)
duke@435 2337 return false;
kvn@658 2338 if (!adr_oop->is_known_instance_field())
duke@435 2339 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2340 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2341 Node *use = adr->fast_out(i);
duke@435 2342 int opc = use->Opcode();
duke@435 2343 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2344 return false;
duke@435 2345 }
duke@435 2346 }
duke@435 2347 return true;
duke@435 2348 }
duke@435 2349
duke@435 2350 //=============================================================================
duke@435 2351 //------------------------------Ideal------------------------------------------
duke@435 2352 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2353 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2354 // (a left shift, then right shift) we can skip both.
duke@435 2355 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2356 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2357 if( progress != NULL ) return progress;
duke@435 2358
duke@435 2359 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2360 if( progress != NULL ) return progress;
duke@435 2361
duke@435 2362 // Finally check the default case
duke@435 2363 return StoreNode::Ideal(phase, can_reshape);
duke@435 2364 }
duke@435 2365
duke@435 2366 //=============================================================================
duke@435 2367 //------------------------------Ideal------------------------------------------
duke@435 2368 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2369 // we can skip the AND operation
duke@435 2370 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2371 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2372 if( progress != NULL ) return progress;
duke@435 2373
duke@435 2374 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2375 if( progress != NULL ) return progress;
duke@435 2376
duke@435 2377 // Finally check the default case
duke@435 2378 return StoreNode::Ideal(phase, can_reshape);
duke@435 2379 }
duke@435 2380
duke@435 2381 //=============================================================================
duke@435 2382 //------------------------------Identity---------------------------------------
duke@435 2383 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2384 // No need to card mark when storing a null ptr
duke@435 2385 Node* my_store = in(MemNode::OopStore);
duke@435 2386 if (my_store->is_Store()) {
duke@435 2387 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2388 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2389 return in(MemNode::Memory);
duke@435 2390 }
duke@435 2391 }
duke@435 2392 return this;
duke@435 2393 }
duke@435 2394
cfang@1420 2395 //=============================================================================
cfang@1420 2396 //------------------------------Ideal---------------------------------------
cfang@1420 2397 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1420 2398 Node* progress = StoreNode::Ideal(phase, can_reshape);
cfang@1420 2399 if (progress != NULL) return progress;
cfang@1420 2400
cfang@1420 2401 Node* my_store = in(MemNode::OopStore);
cfang@1420 2402 if (my_store->is_MergeMem()) {
cfang@1420 2403 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
cfang@1420 2404 set_req(MemNode::OopStore, mem);
cfang@1420 2405 return this;
cfang@1420 2406 }
cfang@1420 2407
cfang@1420 2408 return NULL;
cfang@1420 2409 }
cfang@1420 2410
duke@435 2411 //------------------------------Value-----------------------------------------
duke@435 2412 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2413 // Either input is TOP ==> the result is TOP
kvn@478 2414 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2415 if( t == Type::TOP ) return Type::TOP;
kvn@478 2416 t = phase->type( in(MemNode::Address) );
kvn@478 2417 if( t == Type::TOP ) return Type::TOP;
kvn@478 2418 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2419 if( t == Type::TOP ) return Type::TOP;
duke@435 2420 // If extra input is TOP ==> the result is TOP
kvn@478 2421 t = phase->type( in(MemNode::OopStore) );
kvn@478 2422 if( t == Type::TOP ) return Type::TOP;
duke@435 2423
duke@435 2424 return StoreNode::Value( phase );
duke@435 2425 }
duke@435 2426
duke@435 2427
duke@435 2428 //=============================================================================
duke@435 2429 //----------------------------------SCMemProjNode------------------------------
duke@435 2430 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2431 {
duke@435 2432 return bottom_type();
duke@435 2433 }
duke@435 2434
duke@435 2435 //=============================================================================
duke@435 2436 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
duke@435 2437 init_req(MemNode::Control, c );
duke@435 2438 init_req(MemNode::Memory , mem);
duke@435 2439 init_req(MemNode::Address, adr);
duke@435 2440 init_req(MemNode::ValueIn, val);
duke@435 2441 init_req( ExpectedIn, ex );
duke@435 2442 init_class_id(Class_LoadStore);
duke@435 2443
duke@435 2444 }
duke@435 2445
duke@435 2446 //=============================================================================
duke@435 2447 //-------------------------------adr_type--------------------------------------
duke@435 2448 // Do we Match on this edge index or not? Do not match memory
duke@435 2449 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2450 Node *adr = in(3);
duke@435 2451 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2452 }
duke@435 2453
duke@435 2454 //------------------------------match_edge-------------------------------------
duke@435 2455 // Do we Match on this edge index or not? Do not match memory
duke@435 2456 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2457 return idx > 1;
duke@435 2458 }
duke@435 2459
duke@435 2460 //------------------------------Identity---------------------------------------
duke@435 2461 // Clearing a zero length array does nothing
duke@435 2462 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2463 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2464 }
duke@435 2465
duke@435 2466 //------------------------------Idealize---------------------------------------
duke@435 2467 // Clearing a short array is faster with stores
duke@435 2468 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2469 const int unit = BytesPerLong;
duke@435 2470 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2471 if (!t) return NULL;
duke@435 2472 if (!t->is_con()) return NULL;
duke@435 2473 intptr_t raw_count = t->get_con();
duke@435 2474 intptr_t size = raw_count;
duke@435 2475 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2476 // Clearing nothing uses the Identity call.
duke@435 2477 // Negative clears are possible on dead ClearArrays
duke@435 2478 // (see jck test stmt114.stmt11402.val).
duke@435 2479 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2480 intptr_t count = size / unit;
duke@435 2481 // Length too long; use fast hardware clear
duke@435 2482 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2483 Node *mem = in(1);
duke@435 2484 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2485 Node *adr = in(3);
duke@435 2486 const Type* at = phase->type(adr);
duke@435 2487 if( at==Type::TOP ) return NULL;
duke@435 2488 const TypePtr* atp = at->isa_ptr();
duke@435 2489 // adjust atp to be the correct array element address type
duke@435 2490 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2491 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2492 // Get base for derived pointer purposes
duke@435 2493 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2494 Node *base = adr->in(1);
duke@435 2495
duke@435 2496 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2497 Node *off = phase->MakeConX(BytesPerLong);
duke@435 2498 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2499 count--;
duke@435 2500 while( count-- ) {
duke@435 2501 mem = phase->transform(mem);
duke@435 2502 adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
duke@435 2503 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2504 }
duke@435 2505 return mem;
duke@435 2506 }
duke@435 2507
kvn@1535 2508 //----------------------------step_through----------------------------------
kvn@1535 2509 // Return allocation input memory edge if it is different instance
kvn@1535 2510 // or itself if it is the one we are looking for.
kvn@1535 2511 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
kvn@1535 2512 Node* n = *np;
kvn@1535 2513 assert(n->is_ClearArray(), "sanity");
kvn@1535 2514 intptr_t offset;
kvn@1535 2515 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
kvn@1535 2516 // This method is called only before Allocate nodes are expanded during
kvn@1535 2517 // macro nodes expansion. Before that ClearArray nodes are only generated
kvn@1535 2518 // in LibraryCallKit::generate_arraycopy() which follows allocations.
kvn@1535 2519 assert(alloc != NULL, "should have allocation");
kvn@1535 2520 if (alloc->_idx == instance_id) {
kvn@1535 2521 // Can not bypass initialization of the instance we are looking for.
kvn@1535 2522 return false;
kvn@1535 2523 }
kvn@1535 2524 // Otherwise skip it.
kvn@1535 2525 InitializeNode* init = alloc->initialization();
kvn@1535 2526 if (init != NULL)
kvn@1535 2527 *np = init->in(TypeFunc::Memory);
kvn@1535 2528 else
kvn@1535 2529 *np = alloc->in(TypeFunc::Memory);
kvn@1535 2530 return true;
kvn@1535 2531 }
kvn@1535 2532
duke@435 2533 //----------------------------clear_memory-------------------------------------
duke@435 2534 // Generate code to initialize object storage to zero.
duke@435 2535 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2536 intptr_t start_offset,
duke@435 2537 Node* end_offset,
duke@435 2538 PhaseGVN* phase) {
duke@435 2539 Compile* C = phase->C;
duke@435 2540 intptr_t offset = start_offset;
duke@435 2541
duke@435 2542 int unit = BytesPerLong;
duke@435 2543 if ((offset % unit) != 0) {
duke@435 2544 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2545 adr = phase->transform(adr);
duke@435 2546 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2547 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2548 mem = phase->transform(mem);
duke@435 2549 offset += BytesPerInt;
duke@435 2550 }
duke@435 2551 assert((offset % unit) == 0, "");
duke@435 2552
duke@435 2553 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2554 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2555 }
duke@435 2556
duke@435 2557 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2558 Node* start_offset,
duke@435 2559 Node* end_offset,
duke@435 2560 PhaseGVN* phase) {
never@503 2561 if (start_offset == end_offset) {
never@503 2562 // nothing to do
never@503 2563 return mem;
never@503 2564 }
never@503 2565
duke@435 2566 Compile* C = phase->C;
duke@435 2567 int unit = BytesPerLong;
duke@435 2568 Node* zbase = start_offset;
duke@435 2569 Node* zend = end_offset;
duke@435 2570
duke@435 2571 // Scale to the unit required by the CPU:
duke@435 2572 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2573 Node* shift = phase->intcon(exact_log2(unit));
duke@435 2574 zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
duke@435 2575 zend = phase->transform( new(C,3) URShiftXNode(zend, shift) );
duke@435 2576 }
duke@435 2577
duke@435 2578 Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
duke@435 2579 Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
duke@435 2580
duke@435 2581 // Bulk clear double-words
duke@435 2582 Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
duke@435 2583 mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2584 return phase->transform(mem);
duke@435 2585 }
duke@435 2586
duke@435 2587 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2588 intptr_t start_offset,
duke@435 2589 intptr_t end_offset,
duke@435 2590 PhaseGVN* phase) {
never@503 2591 if (start_offset == end_offset) {
never@503 2592 // nothing to do
never@503 2593 return mem;
never@503 2594 }
never@503 2595
duke@435 2596 Compile* C = phase->C;
duke@435 2597 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2598 intptr_t done_offset = end_offset;
duke@435 2599 if ((done_offset % BytesPerLong) != 0) {
duke@435 2600 done_offset -= BytesPerInt;
duke@435 2601 }
duke@435 2602 if (done_offset > start_offset) {
duke@435 2603 mem = clear_memory(ctl, mem, dest,
duke@435 2604 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2605 }
duke@435 2606 if (done_offset < end_offset) { // emit the final 32-bit store
duke@435 2607 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2608 adr = phase->transform(adr);
duke@435 2609 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2610 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2611 mem = phase->transform(mem);
duke@435 2612 done_offset += BytesPerInt;
duke@435 2613 }
duke@435 2614 assert(done_offset == end_offset, "");
duke@435 2615 return mem;
duke@435 2616 }
duke@435 2617
duke@435 2618 //=============================================================================
kvn@2694 2619 // Do not match memory edge.
kvn@2694 2620 uint StrIntrinsicNode::match_edge(uint idx) const {
kvn@2694 2621 return idx == 2 || idx == 3;
duke@435 2622 }
duke@435 2623
duke@435 2624 //------------------------------Ideal------------------------------------------
duke@435 2625 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2626 // control copies
kvn@2694 2627 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2694 2628 if (remove_dead_region(phase, can_reshape)) return this;
kvn@2694 2629
kvn@2699 2630 if (can_reshape) {
kvn@2699 2631 Node* mem = phase->transform(in(MemNode::Memory));
kvn@2699 2632 // If transformed to a MergeMem, get the desired slice
kvn@2699 2633 uint alias_idx = phase->C->get_alias_index(adr_type());
kvn@2699 2634 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
kvn@2699 2635 if (mem != in(MemNode::Memory)) {
kvn@2699 2636 set_req(MemNode::Memory, mem);
kvn@2699 2637 return this;
kvn@2699 2638 }
kvn@2699 2639 }
kvn@2694 2640 return NULL;
rasbold@604 2641 }
rasbold@604 2642
duke@435 2643 //=============================================================================
duke@435 2644 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2645 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2646 _adr_type(C->get_adr_type(alias_idx))
duke@435 2647 {
duke@435 2648 init_class_id(Class_MemBar);
duke@435 2649 Node* top = C->top();
duke@435 2650 init_req(TypeFunc::I_O,top);
duke@435 2651 init_req(TypeFunc::FramePtr,top);
duke@435 2652 init_req(TypeFunc::ReturnAdr,top);
duke@435 2653 if (precedent != NULL)
duke@435 2654 init_req(TypeFunc::Parms, precedent);
duke@435 2655 }
duke@435 2656
duke@435 2657 //------------------------------cmp--------------------------------------------
duke@435 2658 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2659 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2660 return (&n == this); // Always fail except on self
duke@435 2661 }
duke@435 2662
duke@435 2663 //------------------------------make-------------------------------------------
duke@435 2664 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2665 int len = Precedent + (pn == NULL? 0: 1);
duke@435 2666 switch (opcode) {
duke@435 2667 case Op_MemBarAcquire: return new(C, len) MemBarAcquireNode(C, atp, pn);
duke@435 2668 case Op_MemBarRelease: return new(C, len) MemBarReleaseNode(C, atp, pn);
duke@435 2669 case Op_MemBarVolatile: return new(C, len) MemBarVolatileNode(C, atp, pn);
duke@435 2670 case Op_MemBarCPUOrder: return new(C, len) MemBarCPUOrderNode(C, atp, pn);
duke@435 2671 case Op_Initialize: return new(C, len) InitializeNode(C, atp, pn);
duke@435 2672 default: ShouldNotReachHere(); return NULL;
duke@435 2673 }
duke@435 2674 }
duke@435 2675
duke@435 2676 //------------------------------Ideal------------------------------------------
duke@435 2677 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2678 // control copies
duke@435 2679 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1535 2680 if (remove_dead_region(phase, can_reshape)) return this;
kvn@1535 2681
kvn@1535 2682 // Eliminate volatile MemBars for scalar replaced objects.
kvn@1535 2683 if (can_reshape && req() == (Precedent+1) &&
kvn@1535 2684 (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
kvn@1535 2685 // Volatile field loads and stores.
kvn@1535 2686 Node* my_mem = in(MemBarNode::Precedent);
kvn@1535 2687 if (my_mem != NULL && my_mem->is_Mem()) {
kvn@1535 2688 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@1535 2689 // Check for scalar replaced object reference.
kvn@1535 2690 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@1535 2691 t_oop->offset() != Type::OffsetBot &&
kvn@1535 2692 t_oop->offset() != Type::OffsetTop) {
kvn@1535 2693 // Replace MemBar projections by its inputs.
kvn@1535 2694 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@1535 2695 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
kvn@1535 2696 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
kvn@1535 2697 // Must return either the original node (now dead) or a new node
kvn@1535 2698 // (Do not return a top here, since that would break the uniqueness of top.)
kvn@1535 2699 return new (phase->C, 1) ConINode(TypeInt::ZERO);
kvn@1535 2700 }
kvn@1535 2701 }
kvn@1535 2702 }
kvn@1535 2703 return NULL;
duke@435 2704 }
duke@435 2705
duke@435 2706 //------------------------------Value------------------------------------------
duke@435 2707 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2708 if( !in(0) ) return Type::TOP;
duke@435 2709 if( phase->type(in(0)) == Type::TOP )
duke@435 2710 return Type::TOP;
duke@435 2711 return TypeTuple::MEMBAR;
duke@435 2712 }
duke@435 2713
duke@435 2714 //------------------------------match------------------------------------------
duke@435 2715 // Construct projections for memory.
duke@435 2716 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 2717 switch (proj->_con) {
duke@435 2718 case TypeFunc::Control:
duke@435 2719 case TypeFunc::Memory:
duke@435 2720 return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 2721 }
duke@435 2722 ShouldNotReachHere();
duke@435 2723 return NULL;
duke@435 2724 }
duke@435 2725
duke@435 2726 //===========================InitializeNode====================================
duke@435 2727 // SUMMARY:
duke@435 2728 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 2729 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 2730 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 2731 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 2732 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 2733 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 2734 //
duke@435 2735 // EXAMPLE:
duke@435 2736 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 2737 // ctl = incoming control; mem* = incoming memory
duke@435 2738 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 2739 // First allocate uninitialized memory and fill in the header:
duke@435 2740 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 2741 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 2742 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 2743 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 2744 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 2745 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 2746 // After the initialize node executes, the object is ready for service:
duke@435 2747 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 2748 // Suppose its body is immediately initialized as {1,2}:
duke@435 2749 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2750 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2751 // mem.SLICE(#short[*]) := store2
duke@435 2752 //
duke@435 2753 // DETAILS:
duke@435 2754 // An InitializeNode collects and isolates object initialization after
duke@435 2755 // an AllocateNode and before the next possible safepoint. As a
duke@435 2756 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 2757 // down past any safepoint or any publication of the allocation.
duke@435 2758 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 2759 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 2760 //
duke@435 2761 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 2762 // the new object from object header to the end of the object.
duke@435 2763 // (The object header and end are determined by the AllocateNode.)
duke@435 2764 //
duke@435 2765 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 2766 // These stores must update raw memory, and they must be to addresses
duke@435 2767 // derived from the raw address produced by AllocateNode, and with
duke@435 2768 // a constant offset. They must be ordered by increasing offset.
duke@435 2769 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 2770 // Unlike most memory operations, they are not linked in a chain,
duke@435 2771 // but are displayed in parallel as users of the rawmem output of
duke@435 2772 // the allocation.
duke@435 2773 //
duke@435 2774 // (See comments in InitializeNode::capture_store, which continue
duke@435 2775 // the example given above.)
duke@435 2776 //
duke@435 2777 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 2778 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 2779 // may also be created at that point to represent any required zeroing.
duke@435 2780 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 2781 // capturing of nearby memory operations.
duke@435 2782 //
duke@435 2783 // During macro-expansion, all captured initializations which store
twisti@1040 2784 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 2785 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 2786 // initialized in fewer memory operations. Memory words which are
duke@435 2787 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 2788 // by explicit stores of zero. (The code shape happens to do all
duke@435 2789 // zeroing first, then all other stores, with both sequences occurring
duke@435 2790 // in order of ascending offsets.)
duke@435 2791 //
duke@435 2792 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 2793 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 2794 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 2795 // The initialization must then be marked as 'complete' disable the
duke@435 2796 // built-in zeroing semantics and the collection of initializing stores.
duke@435 2797 //
duke@435 2798 // While an InitializeNode is incomplete, reads from the memory state
duke@435 2799 // produced by it are optimizable if they match the control edge and
duke@435 2800 // new oop address associated with the allocation/initialization.
duke@435 2801 // They return a stored value (if the offset matches) or else zero.
duke@435 2802 // A write to the memory state, if it matches control and address,
duke@435 2803 // and if it is to a constant offset, may be 'captured' by the
duke@435 2804 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 2805 // inside the initialization, to the raw oop produced by the allocation.
duke@435 2806 // Operations on addresses which are provably distinct (e.g., to
duke@435 2807 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 2808 //
duke@435 2809 // The effect of all this is to consolidate object initialization
duke@435 2810 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 2811 // single location, where it can be optimized as a unit.
duke@435 2812 //
duke@435 2813 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 2814 // will be considered for capture by an InitializeNode. This puts a
duke@435 2815 // reasonable limit on the complexity of optimized initializations.
duke@435 2816
duke@435 2817 //---------------------------InitializeNode------------------------------------
duke@435 2818 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
duke@435 2819 : _is_complete(false),
duke@435 2820 MemBarNode(C, adr_type, rawoop)
duke@435 2821 {
duke@435 2822 init_class_id(Class_Initialize);
duke@435 2823
duke@435 2824 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 2825 assert(in(RawAddress) == rawoop, "proper init");
duke@435 2826 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 2827 }
duke@435 2828
duke@435 2829 // Since this node is not matched, it will be processed by the
duke@435 2830 // register allocator. Declare that there are no constraints
duke@435 2831 // on the allocation of the RawAddress edge.
duke@435 2832 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 2833 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 2834 if (idx == InitializeNode::RawAddress)
duke@435 2835 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 2836 return RegMask::Empty;
duke@435 2837 }
duke@435 2838
duke@435 2839 Node* InitializeNode::memory(uint alias_idx) {
duke@435 2840 Node* mem = in(Memory);
duke@435 2841 if (mem->is_MergeMem()) {
duke@435 2842 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 2843 } else {
duke@435 2844 // incoming raw memory is not split
duke@435 2845 return mem;
duke@435 2846 }
duke@435 2847 }
duke@435 2848
duke@435 2849 bool InitializeNode::is_non_zero() {
duke@435 2850 if (is_complete()) return false;
duke@435 2851 remove_extra_zeroes();
duke@435 2852 return (req() > RawStores);
duke@435 2853 }
duke@435 2854
duke@435 2855 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 2856 assert(!is_complete(), "caller responsibility");
duke@435 2857 _is_complete = true;
duke@435 2858
duke@435 2859 // After this node is complete, it contains a bunch of
duke@435 2860 // raw-memory initializations. There is no need for
duke@435 2861 // it to have anything to do with non-raw memory effects.
duke@435 2862 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 2863 // after skipping the memory effects of this initialization.
duke@435 2864 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 2865 if (igvn) igvn->add_users_to_worklist(this);
duke@435 2866 }
duke@435 2867
duke@435 2868 // convenience function
duke@435 2869 // return false if the init contains any stores already
duke@435 2870 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 2871 InitializeNode* init = initialization();
duke@435 2872 if (init == NULL || init->is_complete()) return false;
duke@435 2873 init->remove_extra_zeroes();
duke@435 2874 // for now, if this allocation has already collected any inits, bail:
duke@435 2875 if (init->is_non_zero()) return false;
duke@435 2876 init->set_complete(phase);
duke@435 2877 return true;
duke@435 2878 }
duke@435 2879
duke@435 2880 void InitializeNode::remove_extra_zeroes() {
duke@435 2881 if (req() == RawStores) return;
duke@435 2882 Node* zmem = zero_memory();
duke@435 2883 uint fill = RawStores;
duke@435 2884 for (uint i = fill; i < req(); i++) {
duke@435 2885 Node* n = in(i);
duke@435 2886 if (n->is_top() || n == zmem) continue; // skip
duke@435 2887 if (fill < i) set_req(fill, n); // compact
duke@435 2888 ++fill;
duke@435 2889 }
duke@435 2890 // delete any empty spaces created:
duke@435 2891 while (fill < req()) {
duke@435 2892 del_req(fill);
duke@435 2893 }
duke@435 2894 }
duke@435 2895
duke@435 2896 // Helper for remembering which stores go with which offsets.
duke@435 2897 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 2898 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 2899 intptr_t offset = -1;
duke@435 2900 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 2901 phase, offset);
duke@435 2902 if (base == NULL) return -1; // something is dead,
duke@435 2903 if (offset < 0) return -1; // dead, dead
duke@435 2904 return offset;
duke@435 2905 }
duke@435 2906
duke@435 2907 // Helper for proving that an initialization expression is
duke@435 2908 // "simple enough" to be folded into an object initialization.
duke@435 2909 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 2910 // within the initialization without creating a vicious cycle, such as:
duke@435 2911 // { Foo p = new Foo(); p.next = p; }
duke@435 2912 // True for constants and parameters and small combinations thereof.
duke@435 2913 bool InitializeNode::detect_init_independence(Node* n,
duke@435 2914 bool st_is_pinned,
duke@435 2915 int& count) {
duke@435 2916 if (n == NULL) return true; // (can this really happen?)
duke@435 2917 if (n->is_Proj()) n = n->in(0);
duke@435 2918 if (n == this) return false; // found a cycle
duke@435 2919 if (n->is_Con()) return true;
duke@435 2920 if (n->is_Start()) return true; // params, etc., are OK
duke@435 2921 if (n->is_Root()) return true; // even better
duke@435 2922
duke@435 2923 Node* ctl = n->in(0);
duke@435 2924 if (ctl != NULL && !ctl->is_top()) {
duke@435 2925 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 2926 if (ctl == this) return false;
duke@435 2927
duke@435 2928 // If we already know that the enclosing memory op is pinned right after
duke@435 2929 // the init, then any control flow that the store has picked up
duke@435 2930 // must have preceded the init, or else be equal to the init.
duke@435 2931 // Even after loop optimizations (which might change control edges)
duke@435 2932 // a store is never pinned *before* the availability of its inputs.
kvn@554 2933 if (!MemNode::all_controls_dominate(n, this))
duke@435 2934 return false; // failed to prove a good control
duke@435 2935
duke@435 2936 }
duke@435 2937
duke@435 2938 // Check data edges for possible dependencies on 'this'.
duke@435 2939 if ((count += 1) > 20) return false; // complexity limit
duke@435 2940 for (uint i = 1; i < n->req(); i++) {
duke@435 2941 Node* m = n->in(i);
duke@435 2942 if (m == NULL || m == n || m->is_top()) continue;
duke@435 2943 uint first_i = n->find_edge(m);
duke@435 2944 if (i != first_i) continue; // process duplicate edge just once
duke@435 2945 if (!detect_init_independence(m, st_is_pinned, count)) {
duke@435 2946 return false;
duke@435 2947 }
duke@435 2948 }
duke@435 2949
duke@435 2950 return true;
duke@435 2951 }
duke@435 2952
duke@435 2953 // Here are all the checks a Store must pass before it can be moved into
duke@435 2954 // an initialization. Returns zero if a check fails.
duke@435 2955 // On success, returns the (constant) offset to which the store applies,
duke@435 2956 // within the initialized memory.
duke@435 2957 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
duke@435 2958 const int FAIL = 0;
duke@435 2959 if (st->req() != MemNode::ValueIn + 1)
duke@435 2960 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 2961 Node* ctl = st->in(MemNode::Control);
duke@435 2962 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 2963 return FAIL; // must be unconditional after the initialization
duke@435 2964 Node* mem = st->in(MemNode::Memory);
duke@435 2965 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 2966 return FAIL; // must not be preceded by other stores
duke@435 2967 Node* adr = st->in(MemNode::Address);
duke@435 2968 intptr_t offset;
duke@435 2969 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 2970 if (alloc == NULL)
duke@435 2971 return FAIL; // inscrutable address
duke@435 2972 if (alloc != allocation())
duke@435 2973 return FAIL; // wrong allocation! (store needs to float up)
duke@435 2974 Node* val = st->in(MemNode::ValueIn);
duke@435 2975 int complexity_count = 0;
duke@435 2976 if (!detect_init_independence(val, true, complexity_count))
duke@435 2977 return FAIL; // stored value must be 'simple enough'
duke@435 2978
duke@435 2979 return offset; // success
duke@435 2980 }
duke@435 2981
duke@435 2982 // Find the captured store in(i) which corresponds to the range
duke@435 2983 // [start..start+size) in the initialized object.
duke@435 2984 // If there is one, return its index i. If there isn't, return the
duke@435 2985 // negative of the index where it should be inserted.
duke@435 2986 // Return 0 if the queried range overlaps an initialization boundary
duke@435 2987 // or if dead code is encountered.
duke@435 2988 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 2989 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 2990 int size_in_bytes,
duke@435 2991 PhaseTransform* phase) {
duke@435 2992 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 2993
duke@435 2994 if (is_complete())
duke@435 2995 return FAIL; // arraycopy got here first; punt
duke@435 2996
duke@435 2997 assert(allocation() != NULL, "must be present");
duke@435 2998
duke@435 2999 // no negatives, no header fields:
coleenp@548 3000 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 3001
duke@435 3002 // after a certain size, we bail out on tracking all the stores:
duke@435 3003 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3004 if (start >= ti_limit) return FAIL;
duke@435 3005
duke@435 3006 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 3007 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 3008
duke@435 3009 Node* st = in(i);
duke@435 3010 intptr_t st_off = get_store_offset(st, phase);
duke@435 3011 if (st_off < 0) {
duke@435 3012 if (st != zero_memory()) {
duke@435 3013 return FAIL; // bail out if there is dead garbage
duke@435 3014 }
duke@435 3015 } else if (st_off > start) {
duke@435 3016 // ...we are done, since stores are ordered
duke@435 3017 if (st_off < start + size_in_bytes) {
duke@435 3018 return FAIL; // the next store overlaps
duke@435 3019 }
duke@435 3020 return -(int)i; // not found; here is where to put it
duke@435 3021 } else if (st_off < start) {
duke@435 3022 if (size_in_bytes != 0 &&
duke@435 3023 start < st_off + MAX_STORE &&
duke@435 3024 start < st_off + st->as_Store()->memory_size()) {
duke@435 3025 return FAIL; // the previous store overlaps
duke@435 3026 }
duke@435 3027 } else {
duke@435 3028 if (size_in_bytes != 0 &&
duke@435 3029 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 3030 return FAIL; // mismatched store size
duke@435 3031 }
duke@435 3032 return i;
duke@435 3033 }
duke@435 3034
duke@435 3035 ++i;
duke@435 3036 }
duke@435 3037 }
duke@435 3038
duke@435 3039 // Look for a captured store which initializes at the offset 'start'
duke@435 3040 // with the given size. If there is no such store, and no other
duke@435 3041 // initialization interferes, then return zero_memory (the memory
duke@435 3042 // projection of the AllocateNode).
duke@435 3043 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 3044 PhaseTransform* phase) {
duke@435 3045 assert(stores_are_sane(phase), "");
duke@435 3046 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3047 if (i == 0) {
duke@435 3048 return NULL; // something is dead
duke@435 3049 } else if (i < 0) {
duke@435 3050 return zero_memory(); // just primordial zero bits here
duke@435 3051 } else {
duke@435 3052 Node* st = in(i); // here is the store at this position
duke@435 3053 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 3054 return st;
duke@435 3055 }
duke@435 3056 }
duke@435 3057
duke@435 3058 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 3059 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 3060 PhaseTransform* phase) {
duke@435 3061 Node* addr = in(RawAddress);
duke@435 3062 if (offset != 0) {
duke@435 3063 Compile* C = phase->C;
duke@435 3064 addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
duke@435 3065 phase->MakeConX(offset)) );
duke@435 3066 }
duke@435 3067 return addr;
duke@435 3068 }
duke@435 3069
duke@435 3070 // Clone the given store, converting it into a raw store
duke@435 3071 // initializing a field or element of my new object.
duke@435 3072 // Caller is responsible for retiring the original store,
duke@435 3073 // with subsume_node or the like.
duke@435 3074 //
duke@435 3075 // From the example above InitializeNode::InitializeNode,
duke@435 3076 // here are the old stores to be captured:
duke@435 3077 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3078 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3079 //
duke@435 3080 // Here is the changed code; note the extra edges on init:
duke@435 3081 // alloc = (Allocate ...)
duke@435 3082 // rawoop = alloc.RawAddress
duke@435 3083 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 3084 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 3085 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 3086 // rawstore1 rawstore2)
duke@435 3087 //
duke@435 3088 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
duke@435 3089 PhaseTransform* phase) {
duke@435 3090 assert(stores_are_sane(phase), "");
duke@435 3091
duke@435 3092 if (start < 0) return NULL;
duke@435 3093 assert(can_capture_store(st, phase) == start, "sanity");
duke@435 3094
duke@435 3095 Compile* C = phase->C;
duke@435 3096 int size_in_bytes = st->memory_size();
duke@435 3097 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3098 if (i == 0) return NULL; // bail out
duke@435 3099 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 3100 if (i > 0) {
duke@435 3101 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 3102 set_req(i, C->top()); // temporarily disconnect it
duke@435 3103 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 3104 } else {
duke@435 3105 i = -i; // no pre-existing store
duke@435 3106 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 3107 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 3108 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 3109 else
duke@435 3110 ins_req(i, C->top()); // build a new edge
duke@435 3111 }
duke@435 3112 Node* new_st = st->clone();
duke@435 3113 new_st->set_req(MemNode::Control, in(Control));
duke@435 3114 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 3115 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 3116 new_st = phase->transform(new_st);
duke@435 3117
duke@435 3118 // At this point, new_st might have swallowed a pre-existing store
duke@435 3119 // at the same offset, or perhaps new_st might have disappeared,
duke@435 3120 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 3121
duke@435 3122 // In any case, wire it in:
duke@435 3123 set_req(i, new_st);
duke@435 3124
duke@435 3125 // The caller may now kill the old guy.
duke@435 3126 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3127 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3128 assert(!is_complete(), "");
duke@435 3129 return new_st;
duke@435 3130 }
duke@435 3131
duke@435 3132 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3133 intptr_t st_off, int st_size,
duke@435 3134 jlong con) {
duke@435 3135 if ((st_off & (st_size-1)) != 0)
duke@435 3136 return false; // strange store offset (assume size==2**N)
duke@435 3137 address addr = (address)tiles + st_off;
duke@435 3138 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3139 switch (st_size) {
duke@435 3140 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3141 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3142 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3143 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3144 default: return false; // strange store size (detect size!=2**N here)
duke@435 3145 }
duke@435 3146 return true; // return success to caller
duke@435 3147 }
duke@435 3148
duke@435 3149 // Coalesce subword constants into int constants and possibly
duke@435 3150 // into long constants. The goal, if the CPU permits,
duke@435 3151 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3152 // Also, convert floating-point constants to bit patterns.
duke@435 3153 // Non-constants are not relevant to this pass.
duke@435 3154 //
duke@435 3155 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3156 // and InitializeNode::capture_store, here is the transformation
duke@435 3157 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3158 // alloc = (Allocate ...)
duke@435 3159 // rawoop = alloc.RawAddress
duke@435 3160 // tile12 = 0x00010002
duke@435 3161 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3162 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3163 //
duke@435 3164 void
duke@435 3165 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3166 Node* size_in_bytes,
duke@435 3167 PhaseGVN* phase) {
duke@435 3168 Compile* C = phase->C;
duke@435 3169
duke@435 3170 assert(stores_are_sane(phase), "");
duke@435 3171 // Note: After this pass, they are not completely sane,
duke@435 3172 // since there may be some overlaps.
duke@435 3173
duke@435 3174 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3175
duke@435 3176 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3177 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3178 size_limit = MIN2(size_limit, ti_limit);
duke@435 3179 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3180 int num_tiles = size_limit / BytesPerLong;
duke@435 3181
duke@435 3182 // allocate space for the tile map:
duke@435 3183 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3184 jlong tiles_buf[small_len];
duke@435 3185 Node* nodes_buf[small_len];
duke@435 3186 jlong inits_buf[small_len];
duke@435 3187 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3188 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3189 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3190 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3191 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3192 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3193 // tiles: exact bitwise model of all primitive constants
duke@435 3194 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3195 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3196
duke@435 3197 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3198
duke@435 3199 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3200 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3201 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3202 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3203 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3204 Node* st = in(i);
duke@435 3205 intptr_t st_off = get_store_offset(st, phase);
duke@435 3206
duke@435 3207 // Figure out the store's offset and constant value:
duke@435 3208 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3209 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3210 int st_size = st->as_Store()->memory_size();
duke@435 3211 if (st_off + st_size > size_limit) break;
duke@435 3212
duke@435 3213 // Record which bytes are touched, whether by constant or not.
duke@435 3214 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3215 continue; // skip (strange store size)
duke@435 3216
duke@435 3217 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3218 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3219 BasicType type = val->basic_type();
duke@435 3220
duke@435 3221 jlong con = 0;
duke@435 3222 switch (type) {
duke@435 3223 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3224 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3225 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3226 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3227 default: continue; //skip (odd store type)
duke@435 3228 }
duke@435 3229
duke@435 3230 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3231 st->Opcode() == Op_StoreL) {
duke@435 3232 continue; // This StoreL is already optimal.
duke@435 3233 }
duke@435 3234
duke@435 3235 // Store down the constant.
duke@435 3236 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3237
duke@435 3238 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3239
duke@435 3240 if (type == T_INT && st_size == BytesPerInt
duke@435 3241 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3242 jlong lcon = tiles[j];
duke@435 3243 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3244 st->Opcode() == Op_StoreI) {
duke@435 3245 // This StoreI is already optimal by itself.
duke@435 3246 jint* intcon = (jint*) &tiles[j];
duke@435 3247 intcon[1] = 0; // undo the store_constant()
duke@435 3248
duke@435 3249 // If the previous store is also optimal by itself, back up and
duke@435 3250 // undo the action of the previous loop iteration... if we can.
duke@435 3251 // But if we can't, just let the previous half take care of itself.
duke@435 3252 st = nodes[j];
duke@435 3253 st_off -= BytesPerInt;
duke@435 3254 con = intcon[0];
duke@435 3255 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3256 assert(st_off >= header_size, "still ignoring header");
duke@435 3257 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3258 assert(in(i-1) == zmem, "must be");
duke@435 3259 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3260 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3261 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3262 intcon[0] = 0; // undo store_constant()
duke@435 3263 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3264 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3265 --old_subword; // undo ++old_subword
duke@435 3266 }
duke@435 3267 continue; // This StoreI is already optimal.
duke@435 3268 }
duke@435 3269 }
duke@435 3270
duke@435 3271 // This store is not needed.
duke@435 3272 set_req(i, zmem);
duke@435 3273 nodes[j] = st; // record for the moment
duke@435 3274 if (st_size < BytesPerLong) // something has changed
duke@435 3275 ++old_subword; // includes int/float, but who's counting...
duke@435 3276 else ++old_long;
duke@435 3277 }
duke@435 3278
duke@435 3279 if ((old_subword + old_long) == 0)
duke@435 3280 return; // nothing more to do
duke@435 3281
duke@435 3282 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3283 // Be sure to insert them before overlapping non-constant stores.
duke@435 3284 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3285 for (int j = 0; j < num_tiles; j++) {
duke@435 3286 jlong con = tiles[j];
duke@435 3287 jlong init = inits[j];
duke@435 3288 if (con == 0) continue;
duke@435 3289 jint con0, con1; // split the constant, address-wise
duke@435 3290 jint init0, init1; // split the init map, address-wise
duke@435 3291 { union { jlong con; jint intcon[2]; } u;
duke@435 3292 u.con = con;
duke@435 3293 con0 = u.intcon[0];
duke@435 3294 con1 = u.intcon[1];
duke@435 3295 u.con = init;
duke@435 3296 init0 = u.intcon[0];
duke@435 3297 init1 = u.intcon[1];
duke@435 3298 }
duke@435 3299
duke@435 3300 Node* old = nodes[j];
duke@435 3301 assert(old != NULL, "need the prior store");
duke@435 3302 intptr_t offset = (j * BytesPerLong);
duke@435 3303
duke@435 3304 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3305
duke@435 3306 if (offset < header_size) {
duke@435 3307 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3308 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3309 split = true; // only the second word counts
duke@435 3310 // Example: int a[] = { 42 ... }
duke@435 3311 } else if (con0 == 0 && init0 == -1) {
duke@435 3312 split = true; // first word is covered by full inits
duke@435 3313 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3314 } else if (con1 == 0 && init1 == -1) {
duke@435 3315 split = true; // second word is covered by full inits
duke@435 3316 // Example: int a[] = { ... 42, foo() ... }
duke@435 3317 }
duke@435 3318
duke@435 3319 // Here's a case where init0 is neither 0 nor -1:
duke@435 3320 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3321 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3322 // In this case the tile is not split; it is (jlong)42.
duke@435 3323 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3324 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3325
duke@435 3326 Node* ctl = old->in(MemNode::Control);
duke@435 3327 Node* adr = make_raw_address(offset, phase);
duke@435 3328 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3329
duke@435 3330 // One or two coalesced stores to plop down.
duke@435 3331 Node* st[2];
duke@435 3332 intptr_t off[2];
duke@435 3333 int nst = 0;
duke@435 3334 if (!split) {
duke@435 3335 ++new_long;
duke@435 3336 off[nst] = offset;
coleenp@548 3337 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3338 phase->longcon(con), T_LONG);
duke@435 3339 } else {
duke@435 3340 // Omit either if it is a zero.
duke@435 3341 if (con0 != 0) {
duke@435 3342 ++new_int;
duke@435 3343 off[nst] = offset;
coleenp@548 3344 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3345 phase->intcon(con0), T_INT);
duke@435 3346 }
duke@435 3347 if (con1 != 0) {
duke@435 3348 ++new_int;
duke@435 3349 offset += BytesPerInt;
duke@435 3350 adr = make_raw_address(offset, phase);
duke@435 3351 off[nst] = offset;
coleenp@548 3352 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3353 phase->intcon(con1), T_INT);
duke@435 3354 }
duke@435 3355 }
duke@435 3356
duke@435 3357 // Insert second store first, then the first before the second.
duke@435 3358 // Insert each one just before any overlapping non-constant stores.
duke@435 3359 while (nst > 0) {
duke@435 3360 Node* st1 = st[--nst];
duke@435 3361 C->copy_node_notes_to(st1, old);
duke@435 3362 st1 = phase->transform(st1);
duke@435 3363 offset = off[nst];
duke@435 3364 assert(offset >= header_size, "do not smash header");
duke@435 3365 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3366 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3367 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3368 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3369 set_req(--ins_idx, st1);
duke@435 3370 else
duke@435 3371 ins_req(ins_idx, st1);
duke@435 3372 }
duke@435 3373 }
duke@435 3374
duke@435 3375 if (PrintCompilation && WizardMode)
duke@435 3376 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3377 old_subword, old_long, new_int, new_long);
duke@435 3378 if (C->log() != NULL)
duke@435 3379 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3380 old_subword, old_long, new_int, new_long);
duke@435 3381
duke@435 3382 // Clean up any remaining occurrences of zmem:
duke@435 3383 remove_extra_zeroes();
duke@435 3384 }
duke@435 3385
duke@435 3386 // Explore forward from in(start) to find the first fully initialized
duke@435 3387 // word, and return its offset. Skip groups of subword stores which
duke@435 3388 // together initialize full words. If in(start) is itself part of a
duke@435 3389 // fully initialized word, return the offset of in(start). If there
duke@435 3390 // are no following full-word stores, or if something is fishy, return
duke@435 3391 // a negative value.
duke@435 3392 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3393 int int_map = 0;
duke@435 3394 intptr_t int_map_off = 0;
duke@435 3395 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3396
duke@435 3397 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3398 Node* st = in(i);
duke@435 3399
duke@435 3400 intptr_t st_off = get_store_offset(st, phase);
duke@435 3401 if (st_off < 0) break; // return conservative answer
duke@435 3402
duke@435 3403 int st_size = st->as_Store()->memory_size();
duke@435 3404 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3405 return st_off; // we found a complete word init
duke@435 3406 }
duke@435 3407
duke@435 3408 // update the map:
duke@435 3409
duke@435 3410 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3411 if (this_int_off != int_map_off) {
duke@435 3412 // reset the map:
duke@435 3413 int_map = 0;
duke@435 3414 int_map_off = this_int_off;
duke@435 3415 }
duke@435 3416
duke@435 3417 int subword_off = st_off - this_int_off;
duke@435 3418 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3419 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3420 return this_int_off; // we found a complete word init
duke@435 3421 }
duke@435 3422
duke@435 3423 // Did this store hit or cross the word boundary?
duke@435 3424 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3425 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3426 // We passed the current int, without fully initializing it.
duke@435 3427 int_map_off = next_int_off;
duke@435 3428 int_map >>= BytesPerInt;
duke@435 3429 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3430 // We passed the current and next int.
duke@435 3431 return this_int_off + BytesPerInt;
duke@435 3432 }
duke@435 3433 }
duke@435 3434
duke@435 3435 return -1;
duke@435 3436 }
duke@435 3437
duke@435 3438
duke@435 3439 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3440 // At this point, we may perform additional optimizations.
duke@435 3441 // Linearize the stores by ascending offset, to make memory
duke@435 3442 // activity as coherent as possible.
duke@435 3443 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3444 intptr_t header_size,
duke@435 3445 Node* size_in_bytes,
duke@435 3446 PhaseGVN* phase) {
duke@435 3447 assert(!is_complete(), "not already complete");
duke@435 3448 assert(stores_are_sane(phase), "");
duke@435 3449 assert(allocation() != NULL, "must be present");
duke@435 3450
duke@435 3451 remove_extra_zeroes();
duke@435 3452
duke@435 3453 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3454 // reduce instruction count for common initialization patterns
duke@435 3455 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3456
duke@435 3457 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3458 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3459 #ifdef ASSERT
coleenp@548 3460 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3461 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3462 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3463 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3464 #endif
duke@435 3465 intptr_t zeroes_done = header_size;
duke@435 3466
duke@435 3467 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3468 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3469
duke@435 3470 if (ZeroTLAB) do_zeroing = false;
duke@435 3471 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3472
duke@435 3473 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3474 Node* st = in(i);
duke@435 3475 intptr_t st_off = get_store_offset(st, phase);
duke@435 3476 if (st_off < 0)
duke@435 3477 break; // unknown junk in the inits
duke@435 3478 if (st->in(MemNode::Memory) != zmem)
duke@435 3479 break; // complicated store chains somehow in list
duke@435 3480
duke@435 3481 int st_size = st->as_Store()->memory_size();
duke@435 3482 intptr_t next_init_off = st_off + st_size;
duke@435 3483
duke@435 3484 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3485 // See if this store needs a zero before it or under it.
duke@435 3486 intptr_t zeroes_needed = st_off;
duke@435 3487
duke@435 3488 if (st_size < BytesPerInt) {
duke@435 3489 // Look for subword stores which only partially initialize words.
duke@435 3490 // If we find some, we must lay down some word-level zeroes first,
duke@435 3491 // underneath the subword stores.
duke@435 3492 //
duke@435 3493 // Examples:
duke@435 3494 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3495 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3496 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3497 //
duke@435 3498 // Note: coalesce_subword_stores may have already done this,
duke@435 3499 // if it was prompted by constant non-zero subword initializers.
duke@435 3500 // But this case can still arise with non-constant stores.
duke@435 3501
duke@435 3502 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3503
duke@435 3504 // In the examples above:
duke@435 3505 // in(i) p q r s x y z
duke@435 3506 // st_off 12 13 14 15 12 13 14
duke@435 3507 // st_size 1 1 1 1 1 1 1
duke@435 3508 // next_full_s. 12 16 16 16 16 16 16
duke@435 3509 // z's_done 12 16 16 16 12 16 12
duke@435 3510 // z's_needed 12 16 16 16 16 16 16
duke@435 3511 // zsize 0 0 0 0 4 0 4
duke@435 3512 if (next_full_store < 0) {
duke@435 3513 // Conservative tack: Zero to end of current word.
duke@435 3514 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3515 } else {
duke@435 3516 // Zero to beginning of next fully initialized word.
duke@435 3517 // Or, don't zero at all, if we are already in that word.
duke@435 3518 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3519 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3520 zeroes_needed = next_full_store;
duke@435 3521 }
duke@435 3522 }
duke@435 3523
duke@435 3524 if (zeroes_needed > zeroes_done) {
duke@435 3525 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3526 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3527 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3528 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3529 zeroes_done, zeroes_needed,
duke@435 3530 phase);
duke@435 3531 zeroes_done = zeroes_needed;
duke@435 3532 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3533 do_zeroing = false; // leave the hole, next time
duke@435 3534 }
duke@435 3535 }
duke@435 3536
duke@435 3537 // Collect the store and move on:
duke@435 3538 st->set_req(MemNode::Memory, inits);
duke@435 3539 inits = st; // put it on the linearized chain
duke@435 3540 set_req(i, zmem); // unhook from previous position
duke@435 3541
duke@435 3542 if (zeroes_done == st_off)
duke@435 3543 zeroes_done = next_init_off;
duke@435 3544
duke@435 3545 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3546
duke@435 3547 #ifdef ASSERT
duke@435 3548 // Various order invariants. Weaker than stores_are_sane because
duke@435 3549 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3550 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3551 last_init_off = st_off;
duke@435 3552 const Type* val = NULL;
duke@435 3553 if (st_size >= BytesPerInt &&
duke@435 3554 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3555 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3556 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3557 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3558 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3559 } else {
duke@435 3560 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3561 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3562 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3563 last_init_end = next_init_off; // it's a non-tile
duke@435 3564 }
duke@435 3565 #endif //ASSERT
duke@435 3566 }
duke@435 3567
duke@435 3568 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3569 add_req(inits);
duke@435 3570
duke@435 3571 if (!ZeroTLAB) {
duke@435 3572 // If anything remains to be zeroed, zero it all now.
duke@435 3573 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3574 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3575 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3576 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3577 assert(allocation() != NULL, "");
never@2346 3578 if (allocation()->Opcode() == Op_Allocate) {
never@2346 3579 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
never@2346 3580 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
never@2346 3581 if (zeroes_done == k->layout_helper())
never@2346 3582 zeroes_done = size_limit;
never@2346 3583 }
duke@435 3584 }
duke@435 3585 if (zeroes_done < size_limit) {
duke@435 3586 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3587 zeroes_done, size_in_bytes, phase);
duke@435 3588 }
duke@435 3589 }
duke@435 3590
duke@435 3591 set_complete(phase);
duke@435 3592 return rawmem;
duke@435 3593 }
duke@435 3594
duke@435 3595
duke@435 3596 #ifdef ASSERT
duke@435 3597 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3598 if (is_complete())
duke@435 3599 return true; // stores could be anything at this point
coleenp@548 3600 assert(allocation() != NULL, "must be present");
coleenp@548 3601 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3602 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3603 Node* st = in(i);
duke@435 3604 intptr_t st_off = get_store_offset(st, phase);
duke@435 3605 if (st_off < 0) continue; // ignore dead garbage
duke@435 3606 if (last_off > st_off) {
duke@435 3607 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3608 this->dump(2);
duke@435 3609 assert(false, "ascending store offsets");
duke@435 3610 return false;
duke@435 3611 }
duke@435 3612 last_off = st_off + st->as_Store()->memory_size();
duke@435 3613 }
duke@435 3614 return true;
duke@435 3615 }
duke@435 3616 #endif //ASSERT
duke@435 3617
duke@435 3618
duke@435 3619
duke@435 3620
duke@435 3621 //============================MergeMemNode=====================================
duke@435 3622 //
duke@435 3623 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3624 // contributing store or call operations. Each contributor provides the memory
duke@435 3625 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3626 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3627 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3628 // to using the MergeMem as a whole.
duke@435 3629 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3630 //
duke@435 3631 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3632 //
duke@435 3633 // In one special case (and more cases in the future), alias categories overlap.
duke@435 3634 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 3635 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 3636 // it is exactly equivalent to that state W:
duke@435 3637 // MergeMem(<Bot>: W) <==> W
duke@435 3638 //
duke@435 3639 // Usually, the merge has more than one input. In that case, where inputs
duke@435 3640 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 3641 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 3642 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 3643 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 3644 //
duke@435 3645 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 3646 // This simply means that the merge observes out only the relevant parts of
duke@435 3647 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 3648 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 3649 //
duke@435 3650 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 3651 // and that memory slices "leak through":
duke@435 3652 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 3653 //
duke@435 3654 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 3655 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 3656 //
duke@435 3657 // In the last example, Y is not part of the combined memory state of the
duke@435 3658 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 3659 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 3660 // a precursor to state Y'.
duke@435 3661 //
duke@435 3662 //
duke@435 3663 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 3664 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 3665 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 3666 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 3667 //
duke@435 3668 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 3669 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 3670 // without the need to reach out via TLS to Compile::current.)
duke@435 3671 //
duke@435 3672 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 3673 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 3674 // containing all alias categories.
duke@435 3675 //
duke@435 3676 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 3677 //
duke@435 3678 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 3679 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 3680 // there is no particular input for that alias type. Note that the length of
duke@435 3681 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 3682 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 3683 // filled with "top" in the unused in() positions.
duke@435 3684 //
duke@435 3685 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 3686 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 3687 //
duke@435 3688 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 3689 // the type of random VM bits like TLS references.) Since it is always the
duke@435 3690 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 3691 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 3692 //
duke@435 3693 //
duke@435 3694 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 3695 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 3696 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 3697 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 3698 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 3699 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 3700 //
duke@435 3701 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 3702 // really that different from the other memory inputs. An abbreviation called
duke@435 3703 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 3704 //
duke@435 3705 //
duke@435 3706 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 3707 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 3708 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 3709 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 3710 //
duke@435 3711 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 3712 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 3713 //
duke@435 3714 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 3715 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 3716 // actually a disjoint union of memory states, rather than an overlay.
duke@435 3717 //
duke@435 3718
duke@435 3719 //------------------------------MergeMemNode-----------------------------------
duke@435 3720 Node* MergeMemNode::make_empty_memory() {
duke@435 3721 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 3722 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 3723 return empty_memory;
duke@435 3724 }
duke@435 3725
duke@435 3726 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 3727 init_class_id(Class_MergeMem);
duke@435 3728 // all inputs are nullified in Node::Node(int)
duke@435 3729 // set_input(0, NULL); // no control input
duke@435 3730
duke@435 3731 // Initialize the edges uniformly to top, for starters.
duke@435 3732 Node* empty_mem = make_empty_memory();
duke@435 3733 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 3734 init_req(i,empty_mem);
duke@435 3735 }
duke@435 3736 assert(empty_memory() == empty_mem, "");
duke@435 3737
duke@435 3738 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 3739 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 3740 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 3741 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 3742 mms.set_memory(mms.memory2());
duke@435 3743 }
duke@435 3744 assert(base_memory() == mdef->base_memory(), "");
duke@435 3745 } else {
duke@435 3746 set_base_memory(new_base);
duke@435 3747 }
duke@435 3748 }
duke@435 3749
duke@435 3750 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 3751 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 3752 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
duke@435 3753 return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
duke@435 3754 }
duke@435 3755
duke@435 3756 //------------------------------cmp--------------------------------------------
duke@435 3757 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 3758 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 3759 return (&n == this); // Always fail except on self
duke@435 3760 }
duke@435 3761
duke@435 3762 //------------------------------Identity---------------------------------------
duke@435 3763 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 3764 // Identity if this merge point does not record any interesting memory
duke@435 3765 // disambiguations.
duke@435 3766 Node* base_mem = base_memory();
duke@435 3767 Node* empty_mem = empty_memory();
duke@435 3768 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 3769 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3770 Node* mem = in(i);
duke@435 3771 if (mem != empty_mem && mem != base_mem) {
duke@435 3772 return this; // Many memory splits; no change
duke@435 3773 }
duke@435 3774 }
duke@435 3775 }
duke@435 3776 return base_mem; // No memory splits; ID on the one true input
duke@435 3777 }
duke@435 3778
duke@435 3779 //------------------------------Ideal------------------------------------------
duke@435 3780 // This method is invoked recursively on chains of MergeMem nodes
duke@435 3781 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 3782 // Remove chain'd MergeMems
duke@435 3783 //
duke@435 3784 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 3785 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 3786 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 3787 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 3788 Node *progress = NULL;
duke@435 3789
duke@435 3790
duke@435 3791 Node* old_base = base_memory();
duke@435 3792 Node* empty_mem = empty_memory();
duke@435 3793 if (old_base == empty_mem)
duke@435 3794 return NULL; // Dead memory path.
duke@435 3795
duke@435 3796 MergeMemNode* old_mbase;
duke@435 3797 if (old_base != NULL && old_base->is_MergeMem())
duke@435 3798 old_mbase = old_base->as_MergeMem();
duke@435 3799 else
duke@435 3800 old_mbase = NULL;
duke@435 3801 Node* new_base = old_base;
duke@435 3802
duke@435 3803 // simplify stacked MergeMems in base memory
duke@435 3804 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 3805
duke@435 3806 // the base memory might contribute new slices beyond my req()
duke@435 3807 if (old_mbase) grow_to_match(old_mbase);
duke@435 3808
duke@435 3809 // Look carefully at the base node if it is a phi.
duke@435 3810 PhiNode* phi_base;
duke@435 3811 if (new_base != NULL && new_base->is_Phi())
duke@435 3812 phi_base = new_base->as_Phi();
duke@435 3813 else
duke@435 3814 phi_base = NULL;
duke@435 3815
duke@435 3816 Node* phi_reg = NULL;
duke@435 3817 uint phi_len = (uint)-1;
duke@435 3818 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 3819 // do not examine phi if degraded to a copy
duke@435 3820 phi_reg = phi_base->region();
duke@435 3821 phi_len = phi_base->req();
duke@435 3822 // see if the phi is unfinished
duke@435 3823 for (uint i = 1; i < phi_len; i++) {
duke@435 3824 if (phi_base->in(i) == NULL) {
duke@435 3825 // incomplete phi; do not look at it yet!
duke@435 3826 phi_reg = NULL;
duke@435 3827 phi_len = (uint)-1;
duke@435 3828 break;
duke@435 3829 }
duke@435 3830 }
duke@435 3831 }
duke@435 3832
duke@435 3833 // Note: We do not call verify_sparse on entry, because inputs
duke@435 3834 // can normalize to the base_memory via subsume_node or similar
duke@435 3835 // mechanisms. This method repairs that damage.
duke@435 3836
duke@435 3837 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3838
duke@435 3839 // Look at each slice.
duke@435 3840 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3841 Node* old_in = in(i);
duke@435 3842 // calculate the old memory value
duke@435 3843 Node* old_mem = old_in;
duke@435 3844 if (old_mem == empty_mem) old_mem = old_base;
duke@435 3845 assert(old_mem == memory_at(i), "");
duke@435 3846
duke@435 3847 // maybe update (reslice) the old memory value
duke@435 3848
duke@435 3849 // simplify stacked MergeMems
duke@435 3850 Node* new_mem = old_mem;
duke@435 3851 MergeMemNode* old_mmem;
duke@435 3852 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 3853 old_mmem = old_mem->as_MergeMem();
duke@435 3854 else
duke@435 3855 old_mmem = NULL;
duke@435 3856 if (old_mmem == this) {
duke@435 3857 // This can happen if loops break up and safepoints disappear.
duke@435 3858 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 3859 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 3860 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 3861 // also, we can end up with a self-loop of the mergemem.
duke@435 3862 // In general, if loops degenerate and memory effects disappear,
duke@435 3863 // a mergemem can be left looking at itself. This simply means
duke@435 3864 // that the mergemem's default should be used, since there is
duke@435 3865 // no longer any apparent effect on this slice.
duke@435 3866 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 3867 // from start. Update the input to TOP.
duke@435 3868 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 3869 }
duke@435 3870 else if (old_mmem != NULL) {
duke@435 3871 new_mem = old_mmem->memory_at(i);
duke@435 3872 }
twisti@1040 3873 // else preceding memory was not a MergeMem
duke@435 3874
duke@435 3875 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 3876 if (new_mem != NULL && new_mem != new_base &&
duke@435 3877 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 3878 if (new_mem->is_Phi()) {
duke@435 3879 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 3880 for (uint i = 1; i < phi_len; i++) {
duke@435 3881 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 3882 phi_mem = NULL;
duke@435 3883 break;
duke@435 3884 }
duke@435 3885 }
duke@435 3886 if (phi_mem != NULL) {
duke@435 3887 // equivalent phi nodes; revert to the def
duke@435 3888 new_mem = new_base;
duke@435 3889 }
duke@435 3890 }
duke@435 3891 }
duke@435 3892
duke@435 3893 // maybe store down a new value
duke@435 3894 Node* new_in = new_mem;
duke@435 3895 if (new_in == new_base) new_in = empty_mem;
duke@435 3896
duke@435 3897 if (new_in != old_in) {
duke@435 3898 // Warning: Do not combine this "if" with the previous "if"
duke@435 3899 // A memory slice might have be be rewritten even if it is semantically
duke@435 3900 // unchanged, if the base_memory value has changed.
duke@435 3901 set_req(i, new_in);
duke@435 3902 progress = this; // Report progress
duke@435 3903 }
duke@435 3904 }
duke@435 3905
duke@435 3906 if (new_base != old_base) {
duke@435 3907 set_req(Compile::AliasIdxBot, new_base);
duke@435 3908 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 3909 assert(base_memory() == new_base, "");
duke@435 3910 progress = this;
duke@435 3911 }
duke@435 3912
duke@435 3913 if( base_memory() == this ) {
duke@435 3914 // a self cycle indicates this memory path is dead
duke@435 3915 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3916 }
duke@435 3917
duke@435 3918 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 3919 // Recursion must occur after the self cycle check above
duke@435 3920 if( base_memory()->is_MergeMem() ) {
duke@435 3921 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 3922 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 3923 if( m != NULL && (m->is_top() ||
duke@435 3924 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 3925 // propagate rollup of dead cycle to self
duke@435 3926 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3927 }
duke@435 3928 }
duke@435 3929
duke@435 3930 if( base_memory() == empty_mem ) {
duke@435 3931 progress = this;
duke@435 3932 // Cut inputs during Parse phase only.
duke@435 3933 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 3934 if( !can_reshape ) {
duke@435 3935 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3936 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 3937 }
duke@435 3938 }
duke@435 3939 }
duke@435 3940
duke@435 3941 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 3942 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 3943 // transform should be attempted. Look for this->phi->this cycle.
duke@435 3944 uint merge_width = req();
duke@435 3945 if (merge_width > Compile::AliasIdxRaw) {
duke@435 3946 PhiNode* phi = base_memory()->as_Phi();
duke@435 3947 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 3948 if (phi->in(i) == this) {
duke@435 3949 phase->is_IterGVN()->_worklist.push(phi);
duke@435 3950 break;
duke@435 3951 }
duke@435 3952 }
duke@435 3953 }
duke@435 3954 }
duke@435 3955
kvn@499 3956 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 3957 return progress;
duke@435 3958 }
duke@435 3959
duke@435 3960 //-------------------------set_base_memory-------------------------------------
duke@435 3961 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 3962 Node* empty_mem = empty_memory();
duke@435 3963 set_req(Compile::AliasIdxBot, new_base);
duke@435 3964 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 3965 // Clear out other occurrences of new_base:
duke@435 3966 if (new_base != empty_mem) {
duke@435 3967 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3968 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 3969 }
duke@435 3970 }
duke@435 3971 }
duke@435 3972
duke@435 3973 //------------------------------out_RegMask------------------------------------
duke@435 3974 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 3975 return RegMask::Empty;
duke@435 3976 }
duke@435 3977
duke@435 3978 //------------------------------dump_spec--------------------------------------
duke@435 3979 #ifndef PRODUCT
duke@435 3980 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 3981 st->print(" {");
duke@435 3982 Node* base_mem = base_memory();
duke@435 3983 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 3984 Node* mem = memory_at(i);
duke@435 3985 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 3986 st->print( " N%d:", mem->_idx );
duke@435 3987 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 3988 }
duke@435 3989 st->print(" }");
duke@435 3990 }
duke@435 3991 #endif // !PRODUCT
duke@435 3992
duke@435 3993
duke@435 3994 #ifdef ASSERT
duke@435 3995 static bool might_be_same(Node* a, Node* b) {
duke@435 3996 if (a == b) return true;
duke@435 3997 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 3998 // phis shift around during optimization
duke@435 3999 return true; // pretty stupid...
duke@435 4000 }
duke@435 4001
duke@435 4002 // verify a narrow slice (either incoming or outgoing)
duke@435 4003 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 4004 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 4005 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 4006 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 4007 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 4008 assert(n != NULL, "");
duke@435 4009 // Elide intervening MergeMem's
duke@435 4010 while (n->is_MergeMem()) {
duke@435 4011 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 4012 }
duke@435 4013 Compile* C = Compile::current();
duke@435 4014 const TypePtr* n_adr_type = n->adr_type();
duke@435 4015 if (n == m->empty_memory()) {
duke@435 4016 // Implicit copy of base_memory()
duke@435 4017 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 4018 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 4019 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 4020 } else {
duke@435 4021 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 4022 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 4023 bool expected_wide_mem = false;
duke@435 4024 if (n == m->base_memory()) {
duke@435 4025 expected_wide_mem = true;
duke@435 4026 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 4027 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 4028 expected_wide_mem = true;
duke@435 4029 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 4030 // memory can "leak through" calls on channels that
duke@435 4031 // are write-once. Allow this also.
duke@435 4032 expected_wide_mem = true;
duke@435 4033 }
duke@435 4034 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 4035 }
duke@435 4036 }
duke@435 4037 #else // !ASSERT
duke@435 4038 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
duke@435 4039 #endif
duke@435 4040
duke@435 4041
duke@435 4042 //-----------------------------memory_at---------------------------------------
duke@435 4043 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 4044 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 4045 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 4046 "must avoid base_memory and AliasIdxTop");
duke@435 4047
duke@435 4048 // Otherwise, it is a narrow slice.
duke@435 4049 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 4050 Compile *C = Compile::current();
duke@435 4051 if (is_empty_memory(n)) {
duke@435 4052 // the array is sparse; empty slots are the "top" node
duke@435 4053 n = base_memory();
duke@435 4054 assert(Node::in_dump()
duke@435 4055 || n == NULL || n->bottom_type() == Type::TOP
kvn@2599 4056 || n->adr_type() == NULL // address is TOP
duke@435 4057 || n->adr_type() == TypePtr::BOTTOM
duke@435 4058 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 4059 || Compile::current()->AliasLevel() == 0,
duke@435 4060 "must be a wide memory");
duke@435 4061 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 4062 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 4063 } else {
duke@435 4064 // make sure the stored slice is sane
duke@435 4065 #ifdef ASSERT
duke@435 4066 if (is_error_reported() || Node::in_dump()) {
duke@435 4067 } else if (might_be_same(n, base_memory())) {
duke@435 4068 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 4069 // This can arise normally from node subsumption during optimization.
duke@435 4070 } else {
duke@435 4071 verify_memory_slice(this, alias_idx, n);
duke@435 4072 }
duke@435 4073 #endif
duke@435 4074 }
duke@435 4075 return n;
duke@435 4076 }
duke@435 4077
duke@435 4078 //---------------------------set_memory_at-------------------------------------
duke@435 4079 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 4080 verify_memory_slice(this, alias_idx, n);
duke@435 4081 Node* empty_mem = empty_memory();
duke@435 4082 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 4083 uint need_req = alias_idx+1;
duke@435 4084 if (req() < need_req) {
duke@435 4085 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 4086 // grow the sparse array
duke@435 4087 do {
duke@435 4088 add_req(empty_mem);
duke@435 4089 } while (req() < need_req);
duke@435 4090 }
duke@435 4091 set_req( alias_idx, n );
duke@435 4092 }
duke@435 4093
duke@435 4094
duke@435 4095
duke@435 4096 //--------------------------iteration_setup------------------------------------
duke@435 4097 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 4098 if (other != NULL) {
duke@435 4099 grow_to_match(other);
duke@435 4100 // invariant: the finite support of mm2 is within mm->req()
duke@435 4101 #ifdef ASSERT
duke@435 4102 for (uint i = req(); i < other->req(); i++) {
duke@435 4103 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 4104 }
duke@435 4105 #endif
duke@435 4106 }
duke@435 4107 // Replace spurious copies of base_memory by top.
duke@435 4108 Node* base_mem = base_memory();
duke@435 4109 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 4110 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 4111 if (in(i) == base_mem)
duke@435 4112 set_req(i, empty_memory());
duke@435 4113 }
duke@435 4114 }
duke@435 4115 }
duke@435 4116
duke@435 4117 //---------------------------grow_to_match-------------------------------------
duke@435 4118 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 4119 Node* empty_mem = empty_memory();
duke@435 4120 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4121 // look for the finite support of the other memory
duke@435 4122 for (uint i = other->req(); --i >= req(); ) {
duke@435 4123 if (other->in(i) != empty_mem) {
duke@435 4124 uint new_len = i+1;
duke@435 4125 while (req() < new_len) add_req(empty_mem);
duke@435 4126 break;
duke@435 4127 }
duke@435 4128 }
duke@435 4129 }
duke@435 4130
duke@435 4131 //---------------------------verify_sparse-------------------------------------
duke@435 4132 #ifndef PRODUCT
duke@435 4133 bool MergeMemNode::verify_sparse() const {
duke@435 4134 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4135 Node* base_mem = base_memory();
duke@435 4136 // The following can happen in degenerate cases, since empty==top.
duke@435 4137 if (is_empty_memory(base_mem)) return true;
duke@435 4138 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4139 assert(in(i) != NULL, "sane slice");
duke@435 4140 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4141 }
duke@435 4142 return true;
duke@435 4143 }
duke@435 4144
duke@435 4145 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4146 Node* n;
duke@435 4147 n = mm->in(idx);
duke@435 4148 if (mem == n) return true; // might be empty_memory()
duke@435 4149 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4150 if (mem == n) return true;
duke@435 4151 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4152 if (mem == n) return true;
duke@435 4153 if (n == NULL) break;
duke@435 4154 }
duke@435 4155 return false;
duke@435 4156 }
duke@435 4157 #endif // !PRODUCT

mercurial