src/share/vm/gc_implementation/g1/concurrentMark.cpp

Mon, 21 Jul 2014 09:59:46 +0200

author
tschatzl
date
Mon, 21 Jul 2014 09:59:46 +0200
changeset 7016
3bf2fc51186b
parent 6996
f3aeae1f9fc5
child 7020
e02e18f40eae
permissions
-rw-r--r--

8048085: Aborting marking just before remark results in useless additional clearing of the next mark bitmap
Summary: Skip clearing the next bitmap if we just recently aborted since the full GC already clears this bitmap.
Reviewed-by: brutisso

ysr@777 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@6992 27 #include "code/codeCache.hpp"
tonyp@2968 28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
tonyp@3114 32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
brutisso@3710 33 #include "gc_implementation/g1/g1Log.hpp"
tonyp@2968 34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
stefank@2314 35 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@3416 36 #include "gc_implementation/g1/heapRegion.inline.hpp"
stefank@2314 37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
kamg@2445 39 #include "gc_implementation/shared/vmGCOperations.hpp"
sla@5237 40 #include "gc_implementation/shared/gcTimer.hpp"
sla@5237 41 #include "gc_implementation/shared/gcTrace.hpp"
sla@5237 42 #include "gc_implementation/shared/gcTraceTime.hpp"
stefank@6992 43 #include "memory/allocation.hpp"
stefank@2314 44 #include "memory/genOopClosures.inline.hpp"
stefank@2314 45 #include "memory/referencePolicy.hpp"
stefank@2314 46 #include "memory/resourceArea.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "runtime/handles.inline.hpp"
stefank@2314 49 #include "runtime/java.hpp"
goetz@6912 50 #include "runtime/prefetch.inline.hpp"
zgu@3900 51 #include "services/memTracker.hpp"
ysr@777 52
brutisso@3455 53 // Concurrent marking bit map wrapper
ysr@777 54
johnc@4333 55 CMBitMapRO::CMBitMapRO(int shifter) :
johnc@4333 56 _bm(),
ysr@777 57 _shifter(shifter) {
johnc@4333 58 _bmStartWord = 0;
johnc@4333 59 _bmWordSize = 0;
ysr@777 60 }
ysr@777 61
stefank@6992 62 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
stefank@6992 63 const HeapWord* limit) const {
ysr@777 64 // First we must round addr *up* to a possible object boundary.
ysr@777 65 addr = (HeapWord*)align_size_up((intptr_t)addr,
ysr@777 66 HeapWordSize << _shifter);
ysr@777 67 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 68 if (limit == NULL) {
tonyp@2973 69 limit = _bmStartWord + _bmWordSize;
tonyp@2973 70 }
ysr@777 71 size_t limitOffset = heapWordToOffset(limit);
ysr@777 72 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
ysr@777 73 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 74 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 75 assert(nextAddr == limit || isMarked(nextAddr),
ysr@777 76 "get_next_one postcondition");
ysr@777 77 return nextAddr;
ysr@777 78 }
ysr@777 79
stefank@6992 80 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
stefank@6992 81 const HeapWord* limit) const {
ysr@777 82 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 83 if (limit == NULL) {
tonyp@2973 84 limit = _bmStartWord + _bmWordSize;
tonyp@2973 85 }
ysr@777 86 size_t limitOffset = heapWordToOffset(limit);
ysr@777 87 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
ysr@777 88 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 89 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 90 assert(nextAddr == limit || !isMarked(nextAddr),
ysr@777 91 "get_next_one postcondition");
ysr@777 92 return nextAddr;
ysr@777 93 }
ysr@777 94
ysr@777 95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
ysr@777 96 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
ysr@777 97 return (int) (diff >> _shifter);
ysr@777 98 }
ysr@777 99
ysr@777 100 #ifndef PRODUCT
johnc@4333 101 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
ysr@777 102 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
brutisso@4061 103 assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
ysr@777 104 "size inconsistency");
johnc@4333 105 return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
johnc@4333 106 _bmWordSize == heap_rs.size()>>LogHeapWordSize;
ysr@777 107 }
ysr@777 108 #endif
ysr@777 109
stefank@4904 110 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
stefank@4904 111 _bm.print_on_error(st, prefix);
stefank@4904 112 }
stefank@4904 113
johnc@4333 114 bool CMBitMap::allocate(ReservedSpace heap_rs) {
johnc@4333 115 _bmStartWord = (HeapWord*)(heap_rs.base());
johnc@4333 116 _bmWordSize = heap_rs.size()/HeapWordSize; // heap_rs.size() is in bytes
johnc@4333 117 ReservedSpace brs(ReservedSpace::allocation_align_size_up(
johnc@4333 118 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
johnc@4333 119 if (!brs.is_reserved()) {
johnc@4333 120 warning("ConcurrentMark marking bit map allocation failure");
johnc@4333 121 return false;
johnc@4333 122 }
johnc@4333 123 MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
johnc@4333 124 // For now we'll just commit all of the bit map up front.
johnc@4333 125 // Later on we'll try to be more parsimonious with swap.
johnc@4333 126 if (!_virtual_space.initialize(brs, brs.size())) {
johnc@4333 127 warning("ConcurrentMark marking bit map backing store failure");
johnc@4333 128 return false;
johnc@4333 129 }
johnc@4333 130 assert(_virtual_space.committed_size() == brs.size(),
johnc@4333 131 "didn't reserve backing store for all of concurrent marking bit map?");
tschatzl@6935 132 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
johnc@4333 133 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
johnc@4333 134 _bmWordSize, "inconsistency in bit map sizing");
johnc@4333 135 _bm.set_size(_bmWordSize >> _shifter);
johnc@4333 136 return true;
johnc@4333 137 }
johnc@4333 138
ysr@777 139 void CMBitMap::clearAll() {
ysr@777 140 _bm.clear();
ysr@777 141 return;
ysr@777 142 }
ysr@777 143
ysr@777 144 void CMBitMap::markRange(MemRegion mr) {
ysr@777 145 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 146 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 147 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
ysr@777 148 ((HeapWord *) mr.end())),
ysr@777 149 "markRange memory region end is not card aligned");
ysr@777 150 // convert address range into offset range
ysr@777 151 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 152 heapWordToOffset(mr.end()), true);
ysr@777 153 }
ysr@777 154
ysr@777 155 void CMBitMap::clearRange(MemRegion mr) {
ysr@777 156 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 157 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 158 // convert address range into offset range
ysr@777 159 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 160 heapWordToOffset(mr.end()), false);
ysr@777 161 }
ysr@777 162
ysr@777 163 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
ysr@777 164 HeapWord* end_addr) {
ysr@777 165 HeapWord* start = getNextMarkedWordAddress(addr);
ysr@777 166 start = MIN2(start, end_addr);
ysr@777 167 HeapWord* end = getNextUnmarkedWordAddress(start);
ysr@777 168 end = MIN2(end, end_addr);
ysr@777 169 assert(start <= end, "Consistency check");
ysr@777 170 MemRegion mr(start, end);
ysr@777 171 if (!mr.is_empty()) {
ysr@777 172 clearRange(mr);
ysr@777 173 }
ysr@777 174 return mr;
ysr@777 175 }
ysr@777 176
ysr@777 177 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
ysr@777 178 _base(NULL), _cm(cm)
ysr@777 179 #ifdef ASSERT
ysr@777 180 , _drain_in_progress(false)
ysr@777 181 , _drain_in_progress_yields(false)
ysr@777 182 #endif
ysr@777 183 {}
ysr@777 184
johnc@4333 185 bool CMMarkStack::allocate(size_t capacity) {
johnc@4333 186 // allocate a stack of the requisite depth
johnc@4333 187 ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
johnc@4333 188 if (!rs.is_reserved()) {
johnc@4333 189 warning("ConcurrentMark MarkStack allocation failure");
johnc@4333 190 return false;
tonyp@2973 191 }
johnc@4333 192 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
johnc@4333 193 if (!_virtual_space.initialize(rs, rs.size())) {
johnc@4333 194 warning("ConcurrentMark MarkStack backing store failure");
johnc@4333 195 // Release the virtual memory reserved for the marking stack
johnc@4333 196 rs.release();
johnc@4333 197 return false;
johnc@4333 198 }
johnc@4333 199 assert(_virtual_space.committed_size() == rs.size(),
johnc@4333 200 "Didn't reserve backing store for all of ConcurrentMark stack?");
johnc@4333 201 _base = (oop*) _virtual_space.low();
johnc@4333 202 setEmpty();
johnc@4333 203 _capacity = (jint) capacity;
tonyp@3416 204 _saved_index = -1;
johnc@4386 205 _should_expand = false;
ysr@777 206 NOT_PRODUCT(_max_depth = 0);
johnc@4333 207 return true;
johnc@4333 208 }
johnc@4333 209
johnc@4333 210 void CMMarkStack::expand() {
johnc@4333 211 // Called, during remark, if we've overflown the marking stack during marking.
johnc@4333 212 assert(isEmpty(), "stack should been emptied while handling overflow");
johnc@4333 213 assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
johnc@4333 214 // Clear expansion flag
johnc@4333 215 _should_expand = false;
johnc@4333 216 if (_capacity == (jint) MarkStackSizeMax) {
johnc@4333 217 if (PrintGCDetails && Verbose) {
johnc@4333 218 gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
johnc@4333 219 }
johnc@4333 220 return;
johnc@4333 221 }
johnc@4333 222 // Double capacity if possible
johnc@4333 223 jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
johnc@4333 224 // Do not give up existing stack until we have managed to
johnc@4333 225 // get the double capacity that we desired.
johnc@4333 226 ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
johnc@4333 227 sizeof(oop)));
johnc@4333 228 if (rs.is_reserved()) {
johnc@4333 229 // Release the backing store associated with old stack
johnc@4333 230 _virtual_space.release();
johnc@4333 231 // Reinitialize virtual space for new stack
johnc@4333 232 if (!_virtual_space.initialize(rs, rs.size())) {
johnc@4333 233 fatal("Not enough swap for expanded marking stack capacity");
johnc@4333 234 }
johnc@4333 235 _base = (oop*)(_virtual_space.low());
johnc@4333 236 _index = 0;
johnc@4333 237 _capacity = new_capacity;
johnc@4333 238 } else {
johnc@4333 239 if (PrintGCDetails && Verbose) {
johnc@4333 240 // Failed to double capacity, continue;
johnc@4333 241 gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
johnc@4333 242 SIZE_FORMAT"K to " SIZE_FORMAT"K",
johnc@4333 243 _capacity / K, new_capacity / K);
johnc@4333 244 }
johnc@4333 245 }
johnc@4333 246 }
johnc@4333 247
johnc@4333 248 void CMMarkStack::set_should_expand() {
johnc@4333 249 // If we're resetting the marking state because of an
johnc@4333 250 // marking stack overflow, record that we should, if
johnc@4333 251 // possible, expand the stack.
johnc@4333 252 _should_expand = _cm->has_overflown();
ysr@777 253 }
ysr@777 254
ysr@777 255 CMMarkStack::~CMMarkStack() {
tonyp@2973 256 if (_base != NULL) {
johnc@4333 257 _base = NULL;
johnc@4333 258 _virtual_space.release();
tonyp@2973 259 }
ysr@777 260 }
ysr@777 261
ysr@777 262 void CMMarkStack::par_push(oop ptr) {
ysr@777 263 while (true) {
ysr@777 264 if (isFull()) {
ysr@777 265 _overflow = true;
ysr@777 266 return;
ysr@777 267 }
ysr@777 268 // Otherwise...
ysr@777 269 jint index = _index;
ysr@777 270 jint next_index = index+1;
ysr@777 271 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 272 if (res == index) {
ysr@777 273 _base[index] = ptr;
ysr@777 274 // Note that we don't maintain this atomically. We could, but it
ysr@777 275 // doesn't seem necessary.
ysr@777 276 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 277 return;
ysr@777 278 }
ysr@777 279 // Otherwise, we need to try again.
ysr@777 280 }
ysr@777 281 }
ysr@777 282
ysr@777 283 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
ysr@777 284 while (true) {
ysr@777 285 if (isFull()) {
ysr@777 286 _overflow = true;
ysr@777 287 return;
ysr@777 288 }
ysr@777 289 // Otherwise...
ysr@777 290 jint index = _index;
ysr@777 291 jint next_index = index + n;
ysr@777 292 if (next_index > _capacity) {
ysr@777 293 _overflow = true;
ysr@777 294 return;
ysr@777 295 }
ysr@777 296 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 297 if (res == index) {
ysr@777 298 for (int i = 0; i < n; i++) {
johnc@4333 299 int ind = index + i;
ysr@777 300 assert(ind < _capacity, "By overflow test above.");
ysr@777 301 _base[ind] = ptr_arr[i];
ysr@777 302 }
ysr@777 303 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 304 return;
ysr@777 305 }
ysr@777 306 // Otherwise, we need to try again.
ysr@777 307 }
ysr@777 308 }
ysr@777 309
ysr@777 310 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
ysr@777 311 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 312 jint start = _index;
ysr@777 313 jint next_index = start + n;
ysr@777 314 if (next_index > _capacity) {
ysr@777 315 _overflow = true;
ysr@777 316 return;
ysr@777 317 }
ysr@777 318 // Otherwise.
ysr@777 319 _index = next_index;
ysr@777 320 for (int i = 0; i < n; i++) {
ysr@777 321 int ind = start + i;
tonyp@1458 322 assert(ind < _capacity, "By overflow test above.");
ysr@777 323 _base[ind] = ptr_arr[i];
ysr@777 324 }
johnc@4333 325 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 326 }
ysr@777 327
ysr@777 328 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
ysr@777 329 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 330 jint index = _index;
ysr@777 331 if (index == 0) {
ysr@777 332 *n = 0;
ysr@777 333 return false;
ysr@777 334 } else {
ysr@777 335 int k = MIN2(max, index);
johnc@4333 336 jint new_ind = index - k;
ysr@777 337 for (int j = 0; j < k; j++) {
ysr@777 338 ptr_arr[j] = _base[new_ind + j];
ysr@777 339 }
ysr@777 340 _index = new_ind;
ysr@777 341 *n = k;
ysr@777 342 return true;
ysr@777 343 }
ysr@777 344 }
ysr@777 345
ysr@777 346 template<class OopClosureClass>
ysr@777 347 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
ysr@777 348 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
ysr@777 349 || SafepointSynchronize::is_at_safepoint(),
ysr@777 350 "Drain recursion must be yield-safe.");
ysr@777 351 bool res = true;
ysr@777 352 debug_only(_drain_in_progress = true);
ysr@777 353 debug_only(_drain_in_progress_yields = yield_after);
ysr@777 354 while (!isEmpty()) {
ysr@777 355 oop newOop = pop();
ysr@777 356 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
ysr@777 357 assert(newOop->is_oop(), "Expected an oop");
ysr@777 358 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
ysr@777 359 "only grey objects on this stack");
ysr@777 360 newOop->oop_iterate(cl);
ysr@777 361 if (yield_after && _cm->do_yield_check()) {
tonyp@2973 362 res = false;
tonyp@2973 363 break;
ysr@777 364 }
ysr@777 365 }
ysr@777 366 debug_only(_drain_in_progress = false);
ysr@777 367 return res;
ysr@777 368 }
ysr@777 369
tonyp@3416 370 void CMMarkStack::note_start_of_gc() {
tonyp@3416 371 assert(_saved_index == -1,
tonyp@3416 372 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
tonyp@3416 373 _saved_index = _index;
tonyp@3416 374 }
tonyp@3416 375
tonyp@3416 376 void CMMarkStack::note_end_of_gc() {
tonyp@3416 377 // This is intentionally a guarantee, instead of an assert. If we
tonyp@3416 378 // accidentally add something to the mark stack during GC, it
tonyp@3416 379 // will be a correctness issue so it's better if we crash. we'll
tonyp@3416 380 // only check this once per GC anyway, so it won't be a performance
tonyp@3416 381 // issue in any way.
tonyp@3416 382 guarantee(_saved_index == _index,
tonyp@3416 383 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 384 _saved_index = -1;
tonyp@3416 385 }
tonyp@3416 386
ysr@777 387 void CMMarkStack::oops_do(OopClosure* f) {
tonyp@3416 388 assert(_saved_index == _index,
tonyp@3416 389 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 390 for (int i = 0; i < _index; i += 1) {
ysr@777 391 f->do_oop(&_base[i]);
ysr@777 392 }
ysr@777 393 }
ysr@777 394
ysr@777 395 bool ConcurrentMark::not_yet_marked(oop obj) const {
coleenp@4037 396 return _g1h->is_obj_ill(obj);
ysr@777 397 }
ysr@777 398
tonyp@3464 399 CMRootRegions::CMRootRegions() :
tonyp@3464 400 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
tonyp@3464 401 _should_abort(false), _next_survivor(NULL) { }
tonyp@3464 402
tonyp@3464 403 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
tonyp@3464 404 _young_list = g1h->young_list();
tonyp@3464 405 _cm = cm;
tonyp@3464 406 }
tonyp@3464 407
tonyp@3464 408 void CMRootRegions::prepare_for_scan() {
tonyp@3464 409 assert(!scan_in_progress(), "pre-condition");
tonyp@3464 410
tonyp@3464 411 // Currently, only survivors can be root regions.
tonyp@3464 412 assert(_next_survivor == NULL, "pre-condition");
tonyp@3464 413 _next_survivor = _young_list->first_survivor_region();
tonyp@3464 414 _scan_in_progress = (_next_survivor != NULL);
tonyp@3464 415 _should_abort = false;
tonyp@3464 416 }
tonyp@3464 417
tonyp@3464 418 HeapRegion* CMRootRegions::claim_next() {
tonyp@3464 419 if (_should_abort) {
tonyp@3464 420 // If someone has set the should_abort flag, we return NULL to
tonyp@3464 421 // force the caller to bail out of their loop.
tonyp@3464 422 return NULL;
tonyp@3464 423 }
tonyp@3464 424
tonyp@3464 425 // Currently, only survivors can be root regions.
tonyp@3464 426 HeapRegion* res = _next_survivor;
tonyp@3464 427 if (res != NULL) {
tonyp@3464 428 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 429 // Read it again in case it changed while we were waiting for the lock.
tonyp@3464 430 res = _next_survivor;
tonyp@3464 431 if (res != NULL) {
tonyp@3464 432 if (res == _young_list->last_survivor_region()) {
tonyp@3464 433 // We just claimed the last survivor so store NULL to indicate
tonyp@3464 434 // that we're done.
tonyp@3464 435 _next_survivor = NULL;
tonyp@3464 436 } else {
tonyp@3464 437 _next_survivor = res->get_next_young_region();
tonyp@3464 438 }
tonyp@3464 439 } else {
tonyp@3464 440 // Someone else claimed the last survivor while we were trying
tonyp@3464 441 // to take the lock so nothing else to do.
tonyp@3464 442 }
tonyp@3464 443 }
tonyp@3464 444 assert(res == NULL || res->is_survivor(), "post-condition");
tonyp@3464 445
tonyp@3464 446 return res;
tonyp@3464 447 }
tonyp@3464 448
tonyp@3464 449 void CMRootRegions::scan_finished() {
tonyp@3464 450 assert(scan_in_progress(), "pre-condition");
tonyp@3464 451
tonyp@3464 452 // Currently, only survivors can be root regions.
tonyp@3464 453 if (!_should_abort) {
tonyp@3464 454 assert(_next_survivor == NULL, "we should have claimed all survivors");
tonyp@3464 455 }
tonyp@3464 456 _next_survivor = NULL;
tonyp@3464 457
tonyp@3464 458 {
tonyp@3464 459 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 460 _scan_in_progress = false;
tonyp@3464 461 RootRegionScan_lock->notify_all();
tonyp@3464 462 }
tonyp@3464 463 }
tonyp@3464 464
tonyp@3464 465 bool CMRootRegions::wait_until_scan_finished() {
tonyp@3464 466 if (!scan_in_progress()) return false;
tonyp@3464 467
tonyp@3464 468 {
tonyp@3464 469 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 470 while (scan_in_progress()) {
tonyp@3464 471 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
tonyp@3464 472 }
tonyp@3464 473 }
tonyp@3464 474 return true;
tonyp@3464 475 }
tonyp@3464 476
ysr@777 477 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 478 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 479 #endif // _MSC_VER
ysr@777 480
jmasa@3357 481 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
jmasa@3357 482 return MAX2((n_par_threads + 2) / 4, 1U);
jmasa@3294 483 }
jmasa@3294 484
johnc@4333 485 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
johnc@4333 486 _g1h(g1h),
tschatzl@5697 487 _markBitMap1(log2_intptr(MinObjAlignment)),
tschatzl@5697 488 _markBitMap2(log2_intptr(MinObjAlignment)),
ysr@777 489 _parallel_marking_threads(0),
jmasa@3294 490 _max_parallel_marking_threads(0),
ysr@777 491 _sleep_factor(0.0),
ysr@777 492 _marking_task_overhead(1.0),
ysr@777 493 _cleanup_sleep_factor(0.0),
ysr@777 494 _cleanup_task_overhead(1.0),
tonyp@2472 495 _cleanup_list("Cleanup List"),
johnc@4333 496 _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
johnc@4333 497 _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
johnc@4333 498 CardTableModRefBS::card_shift,
johnc@4333 499 false /* in_resource_area*/),
johnc@3463 500
ysr@777 501 _prevMarkBitMap(&_markBitMap1),
ysr@777 502 _nextMarkBitMap(&_markBitMap2),
ysr@777 503
ysr@777 504 _markStack(this),
ysr@777 505 // _finger set in set_non_marking_state
ysr@777 506
johnc@4173 507 _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
ysr@777 508 // _active_tasks set in set_non_marking_state
ysr@777 509 // _tasks set inside the constructor
johnc@4173 510 _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
johnc@4173 511 _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
ysr@777 512
ysr@777 513 _has_overflown(false),
ysr@777 514 _concurrent(false),
tonyp@1054 515 _has_aborted(false),
brutisso@6904 516 _aborted_gc_id(GCId::undefined()),
tonyp@1054 517 _restart_for_overflow(false),
tonyp@1054 518 _concurrent_marking_in_progress(false),
ysr@777 519
ysr@777 520 // _verbose_level set below
ysr@777 521
ysr@777 522 _init_times(),
ysr@777 523 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
ysr@777 524 _cleanup_times(),
ysr@777 525 _total_counting_time(0.0),
ysr@777 526 _total_rs_scrub_time(0.0),
johnc@3463 527
johnc@3463 528 _parallel_workers(NULL),
johnc@3463 529
johnc@3463 530 _count_card_bitmaps(NULL),
johnc@4333 531 _count_marked_bytes(NULL),
johnc@4333 532 _completed_initialization(false) {
tonyp@2973 533 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
tonyp@2973 534 if (verbose_level < no_verbose) {
ysr@777 535 verbose_level = no_verbose;
tonyp@2973 536 }
tonyp@2973 537 if (verbose_level > high_verbose) {
ysr@777 538 verbose_level = high_verbose;
tonyp@2973 539 }
ysr@777 540 _verbose_level = verbose_level;
ysr@777 541
tonyp@2973 542 if (verbose_low()) {
ysr@777 543 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
drchase@6680 544 "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
tonyp@2973 545 }
ysr@777 546
johnc@4333 547 if (!_markBitMap1.allocate(heap_rs)) {
johnc@4333 548 warning("Failed to allocate first CM bit map");
johnc@4333 549 return;
johnc@4333 550 }
johnc@4333 551 if (!_markBitMap2.allocate(heap_rs)) {
johnc@4333 552 warning("Failed to allocate second CM bit map");
johnc@4333 553 return;
johnc@4333 554 }
ysr@777 555
ysr@777 556 // Create & start a ConcurrentMark thread.
ysr@1280 557 _cmThread = new ConcurrentMarkThread(this);
ysr@1280 558 assert(cmThread() != NULL, "CM Thread should have been created");
ysr@1280 559 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
ehelin@6168 560 if (_cmThread->osthread() == NULL) {
ehelin@6168 561 vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
ehelin@6168 562 }
ysr@1280 563
ysr@777 564 assert(CGC_lock != NULL, "Where's the CGC_lock?");
johnc@4333 565 assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
johnc@4333 566 assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
ysr@777 567
ysr@777 568 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@1717 569 satb_qs.set_buffer_size(G1SATBBufferSize);
ysr@777 570
tonyp@3464 571 _root_regions.init(_g1h, this);
tonyp@3464 572
jmasa@1719 573 if (ConcGCThreads > ParallelGCThreads) {
drchase@6680 574 warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
drchase@6680 575 "than ParallelGCThreads (" UINTX_FORMAT ").",
johnc@4333 576 ConcGCThreads, ParallelGCThreads);
johnc@4333 577 return;
ysr@777 578 }
ysr@777 579 if (ParallelGCThreads == 0) {
ysr@777 580 // if we are not running with any parallel GC threads we will not
ysr@777 581 // spawn any marking threads either
jmasa@3294 582 _parallel_marking_threads = 0;
jmasa@3294 583 _max_parallel_marking_threads = 0;
jmasa@3294 584 _sleep_factor = 0.0;
jmasa@3294 585 _marking_task_overhead = 1.0;
ysr@777 586 } else {
johnc@4547 587 if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
johnc@4547 588 // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
ysr@777 589 // if both are set
ysr@777 590 _sleep_factor = 0.0;
ysr@777 591 _marking_task_overhead = 1.0;
johnc@1186 592 } else if (G1MarkingOverheadPercent > 0) {
johnc@4547 593 // We will calculate the number of parallel marking threads based
johnc@4547 594 // on a target overhead with respect to the soft real-time goal
johnc@1186 595 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
ysr@777 596 double overall_cm_overhead =
johnc@1186 597 (double) MaxGCPauseMillis * marking_overhead /
johnc@1186 598 (double) GCPauseIntervalMillis;
ysr@777 599 double cpu_ratio = 1.0 / (double) os::processor_count();
ysr@777 600 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
ysr@777 601 double marking_task_overhead =
ysr@777 602 overall_cm_overhead / marking_thread_num *
ysr@777 603 (double) os::processor_count();
ysr@777 604 double sleep_factor =
ysr@777 605 (1.0 - marking_task_overhead) / marking_task_overhead;
ysr@777 606
johnc@4547 607 FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
ysr@777 608 _sleep_factor = sleep_factor;
ysr@777 609 _marking_task_overhead = marking_task_overhead;
ysr@777 610 } else {
johnc@4547 611 // Calculate the number of parallel marking threads by scaling
johnc@4547 612 // the number of parallel GC threads.
johnc@4547 613 uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
johnc@4547 614 FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
ysr@777 615 _sleep_factor = 0.0;
ysr@777 616 _marking_task_overhead = 1.0;
ysr@777 617 }
ysr@777 618
johnc@4547 619 assert(ConcGCThreads > 0, "Should have been set");
johnc@4547 620 _parallel_marking_threads = (uint) ConcGCThreads;
johnc@4547 621 _max_parallel_marking_threads = _parallel_marking_threads;
johnc@4547 622
tonyp@2973 623 if (parallel_marking_threads() > 1) {
ysr@777 624 _cleanup_task_overhead = 1.0;
tonyp@2973 625 } else {
ysr@777 626 _cleanup_task_overhead = marking_task_overhead();
tonyp@2973 627 }
ysr@777 628 _cleanup_sleep_factor =
ysr@777 629 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
ysr@777 630
ysr@777 631 #if 0
ysr@777 632 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
ysr@777 633 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
ysr@777 634 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
ysr@777 635 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
ysr@777 636 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
ysr@777 637 #endif
ysr@777 638
tonyp@1458 639 guarantee(parallel_marking_threads() > 0, "peace of mind");
jmasa@2188 640 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
jmasa@3357 641 _max_parallel_marking_threads, false, true);
jmasa@2188 642 if (_parallel_workers == NULL) {
ysr@777 643 vm_exit_during_initialization("Failed necessary allocation.");
jmasa@2188 644 } else {
jmasa@2188 645 _parallel_workers->initialize_workers();
jmasa@2188 646 }
ysr@777 647 }
ysr@777 648
johnc@4333 649 if (FLAG_IS_DEFAULT(MarkStackSize)) {
johnc@4333 650 uintx mark_stack_size =
johnc@4333 651 MIN2(MarkStackSizeMax,
johnc@4333 652 MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
johnc@4333 653 // Verify that the calculated value for MarkStackSize is in range.
johnc@4333 654 // It would be nice to use the private utility routine from Arguments.
johnc@4333 655 if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
johnc@4333 656 warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
johnc@4333 657 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
drchase@6680 658 mark_stack_size, (uintx) 1, MarkStackSizeMax);
johnc@4333 659 return;
johnc@4333 660 }
johnc@4333 661 FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
johnc@4333 662 } else {
johnc@4333 663 // Verify MarkStackSize is in range.
johnc@4333 664 if (FLAG_IS_CMDLINE(MarkStackSize)) {
johnc@4333 665 if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
johnc@4333 666 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
johnc@4333 667 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
johnc@4333 668 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
drchase@6680 669 MarkStackSize, (uintx) 1, MarkStackSizeMax);
johnc@4333 670 return;
johnc@4333 671 }
johnc@4333 672 } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
johnc@4333 673 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
johnc@4333 674 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
johnc@4333 675 " or for MarkStackSizeMax (" UINTX_FORMAT ")",
johnc@4333 676 MarkStackSize, MarkStackSizeMax);
johnc@4333 677 return;
johnc@4333 678 }
johnc@4333 679 }
johnc@4333 680 }
johnc@4333 681 }
johnc@4333 682
johnc@4333 683 if (!_markStack.allocate(MarkStackSize)) {
johnc@4333 684 warning("Failed to allocate CM marking stack");
johnc@4333 685 return;
johnc@4333 686 }
johnc@4333 687
johnc@4333 688 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
johnc@4333 689 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
johnc@4333 690
johnc@4333 691 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
johnc@4333 692 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
johnc@4333 693
johnc@4333 694 BitMap::idx_t card_bm_size = _card_bm.size();
johnc@4333 695
johnc@4333 696 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
johnc@4333 697 _active_tasks = _max_worker_id;
johnc@4333 698
johnc@4333 699 size_t max_regions = (size_t) _g1h->max_regions();
johnc@4333 700 for (uint i = 0; i < _max_worker_id; ++i) {
johnc@4333 701 CMTaskQueue* task_queue = new CMTaskQueue();
johnc@4333 702 task_queue->initialize();
johnc@4333 703 _task_queues->register_queue(i, task_queue);
johnc@4333 704
johnc@4333 705 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
johnc@4333 706 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
johnc@4333 707
johnc@4333 708 _tasks[i] = new CMTask(i, this,
johnc@4333 709 _count_marked_bytes[i],
johnc@4333 710 &_count_card_bitmaps[i],
johnc@4333 711 task_queue, _task_queues);
johnc@4333 712
johnc@4333 713 _accum_task_vtime[i] = 0.0;
johnc@4333 714 }
johnc@4333 715
johnc@4333 716 // Calculate the card number for the bottom of the heap. Used
johnc@4333 717 // in biasing indexes into the accounting card bitmaps.
johnc@4333 718 _heap_bottom_card_num =
johnc@4333 719 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
johnc@4333 720 CardTableModRefBS::card_shift);
johnc@4333 721
johnc@4333 722 // Clear all the liveness counting data
johnc@4333 723 clear_all_count_data();
johnc@4333 724
ysr@777 725 // so that the call below can read a sensible value
johnc@4333 726 _heap_start = (HeapWord*) heap_rs.base();
ysr@777 727 set_non_marking_state();
johnc@4333 728 _completed_initialization = true;
ysr@777 729 }
ysr@777 730
ysr@777 731 void ConcurrentMark::update_g1_committed(bool force) {
ysr@777 732 // If concurrent marking is not in progress, then we do not need to
tonyp@3691 733 // update _heap_end.
tonyp@2973 734 if (!concurrent_marking_in_progress() && !force) return;
ysr@777 735
ysr@777 736 MemRegion committed = _g1h->g1_committed();
tonyp@1458 737 assert(committed.start() == _heap_start, "start shouldn't change");
ysr@777 738 HeapWord* new_end = committed.end();
ysr@777 739 if (new_end > _heap_end) {
ysr@777 740 // The heap has been expanded.
ysr@777 741
ysr@777 742 _heap_end = new_end;
ysr@777 743 }
ysr@777 744 // Notice that the heap can also shrink. However, this only happens
ysr@777 745 // during a Full GC (at least currently) and the entire marking
ysr@777 746 // phase will bail out and the task will not be restarted. So, let's
ysr@777 747 // do nothing.
ysr@777 748 }
ysr@777 749
ysr@777 750 void ConcurrentMark::reset() {
ysr@777 751 // Starting values for these two. This should be called in a STW
ysr@777 752 // phase. CM will be notified of any future g1_committed expansions
ysr@777 753 // will be at the end of evacuation pauses, when tasks are
ysr@777 754 // inactive.
ysr@777 755 MemRegion committed = _g1h->g1_committed();
ysr@777 756 _heap_start = committed.start();
ysr@777 757 _heap_end = committed.end();
ysr@777 758
tonyp@1458 759 // Separated the asserts so that we know which one fires.
tonyp@1458 760 assert(_heap_start != NULL, "heap bounds should look ok");
tonyp@1458 761 assert(_heap_end != NULL, "heap bounds should look ok");
tonyp@1458 762 assert(_heap_start < _heap_end, "heap bounds should look ok");
ysr@777 763
johnc@4386 764 // Reset all the marking data structures and any necessary flags
johnc@4386 765 reset_marking_state();
ysr@777 766
tonyp@2973 767 if (verbose_low()) {
ysr@777 768 gclog_or_tty->print_cr("[global] resetting");
tonyp@2973 769 }
ysr@777 770
ysr@777 771 // We do reset all of them, since different phases will use
ysr@777 772 // different number of active threads. So, it's easiest to have all
ysr@777 773 // of them ready.
johnc@4173 774 for (uint i = 0; i < _max_worker_id; ++i) {
ysr@777 775 _tasks[i]->reset(_nextMarkBitMap);
johnc@2190 776 }
ysr@777 777
ysr@777 778 // we need this to make sure that the flag is on during the evac
ysr@777 779 // pause with initial mark piggy-backed
ysr@777 780 set_concurrent_marking_in_progress();
ysr@777 781 }
ysr@777 782
johnc@4386 783
johnc@4386 784 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
johnc@4386 785 _markStack.set_should_expand();
johnc@4386 786 _markStack.setEmpty(); // Also clears the _markStack overflow flag
johnc@4386 787 if (clear_overflow) {
johnc@4386 788 clear_has_overflown();
johnc@4386 789 } else {
johnc@4386 790 assert(has_overflown(), "pre-condition");
johnc@4386 791 }
johnc@4386 792 _finger = _heap_start;
johnc@4386 793
johnc@4386 794 for (uint i = 0; i < _max_worker_id; ++i) {
johnc@4386 795 CMTaskQueue* queue = _task_queues->queue(i);
johnc@4386 796 queue->set_empty();
johnc@4386 797 }
johnc@4386 798 }
johnc@4386 799
johnc@4788 800 void ConcurrentMark::set_concurrency(uint active_tasks) {
johnc@4173 801 assert(active_tasks <= _max_worker_id, "we should not have more");
ysr@777 802
ysr@777 803 _active_tasks = active_tasks;
ysr@777 804 // Need to update the three data structures below according to the
ysr@777 805 // number of active threads for this phase.
ysr@777 806 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
ysr@777 807 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 808 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
johnc@4788 809 }
johnc@4788 810
johnc@4788 811 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
johnc@4788 812 set_concurrency(active_tasks);
ysr@777 813
ysr@777 814 _concurrent = concurrent;
ysr@777 815 // We propagate this to all tasks, not just the active ones.
johnc@4173 816 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 817 _tasks[i]->set_concurrent(concurrent);
ysr@777 818
ysr@777 819 if (concurrent) {
ysr@777 820 set_concurrent_marking_in_progress();
ysr@777 821 } else {
ysr@777 822 // We currently assume that the concurrent flag has been set to
ysr@777 823 // false before we start remark. At this point we should also be
ysr@777 824 // in a STW phase.
tonyp@1458 825 assert(!concurrent_marking_in_progress(), "invariant");
pliden@6693 826 assert(out_of_regions(),
johnc@4788 827 err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
drchase@6680 828 p2i(_finger), p2i(_heap_end)));
ysr@777 829 update_g1_committed(true);
ysr@777 830 }
ysr@777 831 }
ysr@777 832
ysr@777 833 void ConcurrentMark::set_non_marking_state() {
ysr@777 834 // We set the global marking state to some default values when we're
ysr@777 835 // not doing marking.
johnc@4386 836 reset_marking_state();
ysr@777 837 _active_tasks = 0;
ysr@777 838 clear_concurrent_marking_in_progress();
ysr@777 839 }
ysr@777 840
ysr@777 841 ConcurrentMark::~ConcurrentMark() {
stefank@3364 842 // The ConcurrentMark instance is never freed.
stefank@3364 843 ShouldNotReachHere();
ysr@777 844 }
ysr@777 845
ysr@777 846 void ConcurrentMark::clearNextBitmap() {
tonyp@1794 847 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@1794 848 G1CollectorPolicy* g1p = g1h->g1_policy();
tonyp@1794 849
tonyp@1794 850 // Make sure that the concurrent mark thread looks to still be in
tonyp@1794 851 // the current cycle.
tonyp@1794 852 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 853
tonyp@1794 854 // We are finishing up the current cycle by clearing the next
tonyp@1794 855 // marking bitmap and getting it ready for the next cycle. During
tonyp@1794 856 // this time no other cycle can start. So, let's make sure that this
tonyp@1794 857 // is the case.
tonyp@1794 858 guarantee(!g1h->mark_in_progress(), "invariant");
tonyp@1794 859
tonyp@1794 860 // clear the mark bitmap (no grey objects to start with).
tonyp@1794 861 // We need to do this in chunks and offer to yield in between
tonyp@1794 862 // each chunk.
tonyp@1794 863 HeapWord* start = _nextMarkBitMap->startWord();
tonyp@1794 864 HeapWord* end = _nextMarkBitMap->endWord();
tonyp@1794 865 HeapWord* cur = start;
tonyp@1794 866 size_t chunkSize = M;
tonyp@1794 867 while (cur < end) {
tonyp@1794 868 HeapWord* next = cur + chunkSize;
tonyp@2973 869 if (next > end) {
tonyp@1794 870 next = end;
tonyp@2973 871 }
tonyp@1794 872 MemRegion mr(cur,next);
tonyp@1794 873 _nextMarkBitMap->clearRange(mr);
tonyp@1794 874 cur = next;
tonyp@1794 875 do_yield_check();
tonyp@1794 876
tonyp@1794 877 // Repeat the asserts from above. We'll do them as asserts here to
tonyp@1794 878 // minimize their overhead on the product. However, we'll have
tonyp@1794 879 // them as guarantees at the beginning / end of the bitmap
tonyp@1794 880 // clearing to get some checking in the product.
tonyp@1794 881 assert(cmThread()->during_cycle(), "invariant");
tonyp@1794 882 assert(!g1h->mark_in_progress(), "invariant");
tonyp@1794 883 }
tonyp@1794 884
johnc@3463 885 // Clear the liveness counting data
johnc@3463 886 clear_all_count_data();
johnc@3463 887
tonyp@1794 888 // Repeat the asserts from above.
tonyp@1794 889 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 890 guarantee(!g1h->mark_in_progress(), "invariant");
ysr@777 891 }
ysr@777 892
tschatzl@7016 893 bool ConcurrentMark::nextMarkBitmapIsClear() {
tschatzl@7016 894 return _nextMarkBitMap->getNextMarkedWordAddress(_heap_start, _heap_end) == _heap_end;
tschatzl@7016 895 }
tschatzl@7016 896
ysr@777 897 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
ysr@777 898 public:
ysr@777 899 bool doHeapRegion(HeapRegion* r) {
ysr@777 900 if (!r->continuesHumongous()) {
tonyp@3416 901 r->note_start_of_marking();
ysr@777 902 }
ysr@777 903 return false;
ysr@777 904 }
ysr@777 905 };
ysr@777 906
ysr@777 907 void ConcurrentMark::checkpointRootsInitialPre() {
ysr@777 908 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 909 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 910
ysr@777 911 _has_aborted = false;
ysr@777 912
jcoomes@1902 913 #ifndef PRODUCT
tonyp@1479 914 if (G1PrintReachableAtInitialMark) {
tonyp@1823 915 print_reachable("at-cycle-start",
johnc@2969 916 VerifyOption_G1UsePrevMarking, true /* all */);
tonyp@1479 917 }
jcoomes@1902 918 #endif
ysr@777 919
ysr@777 920 // Initialise marking structures. This has to be done in a STW phase.
ysr@777 921 reset();
tonyp@3416 922
tonyp@3416 923 // For each region note start of marking.
tonyp@3416 924 NoteStartOfMarkHRClosure startcl;
tonyp@3416 925 g1h->heap_region_iterate(&startcl);
ysr@777 926 }
ysr@777 927
ysr@777 928
ysr@777 929 void ConcurrentMark::checkpointRootsInitialPost() {
ysr@777 930 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 931
tonyp@2848 932 // If we force an overflow during remark, the remark operation will
tonyp@2848 933 // actually abort and we'll restart concurrent marking. If we always
tonyp@2848 934 // force an oveflow during remark we'll never actually complete the
tonyp@2848 935 // marking phase. So, we initilize this here, at the start of the
tonyp@2848 936 // cycle, so that at the remaining overflow number will decrease at
tonyp@2848 937 // every remark and we'll eventually not need to cause one.
tonyp@2848 938 force_overflow_stw()->init();
tonyp@2848 939
johnc@3175 940 // Start Concurrent Marking weak-reference discovery.
johnc@3175 941 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3175 942 // enable ("weak") refs discovery
johnc@3175 943 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 944 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
ysr@777 945
ysr@777 946 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1752 947 // This is the start of the marking cycle, we're expected all
tonyp@1752 948 // threads to have SATB queues with active set to false.
tonyp@1752 949 satb_mq_set.set_active_all_threads(true, /* new active value */
tonyp@1752 950 false /* expected_active */);
ysr@777 951
tonyp@3464 952 _root_regions.prepare_for_scan();
tonyp@3464 953
ysr@777 954 // update_g1_committed() will be called at the end of an evac pause
ysr@777 955 // when marking is on. So, it's also called at the end of the
ysr@777 956 // initial-mark pause to update the heap end, if the heap expands
ysr@777 957 // during it. No need to call it here.
ysr@777 958 }
ysr@777 959
ysr@777 960 /*
tonyp@2848 961 * Notice that in the next two methods, we actually leave the STS
tonyp@2848 962 * during the barrier sync and join it immediately afterwards. If we
tonyp@2848 963 * do not do this, the following deadlock can occur: one thread could
tonyp@2848 964 * be in the barrier sync code, waiting for the other thread to also
tonyp@2848 965 * sync up, whereas another one could be trying to yield, while also
tonyp@2848 966 * waiting for the other threads to sync up too.
tonyp@2848 967 *
tonyp@2848 968 * Note, however, that this code is also used during remark and in
tonyp@2848 969 * this case we should not attempt to leave / enter the STS, otherwise
tonyp@2848 970 * we'll either hit an asseert (debug / fastdebug) or deadlock
tonyp@2848 971 * (product). So we should only leave / enter the STS if we are
tonyp@2848 972 * operating concurrently.
tonyp@2848 973 *
tonyp@2848 974 * Because the thread that does the sync barrier has left the STS, it
tonyp@2848 975 * is possible to be suspended for a Full GC or an evacuation pause
tonyp@2848 976 * could occur. This is actually safe, since the entering the sync
tonyp@2848 977 * barrier is one of the last things do_marking_step() does, and it
tonyp@2848 978 * doesn't manipulate any data structures afterwards.
tonyp@2848 979 */
ysr@777 980
johnc@4173 981 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
tonyp@2973 982 if (verbose_low()) {
johnc@4173 983 gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
tonyp@2973 984 }
ysr@777 985
tonyp@2848 986 if (concurrent()) {
pliden@6906 987 SuspendibleThreadSet::leave();
tonyp@2848 988 }
pliden@6692 989
pliden@6692 990 bool barrier_aborted = !_first_overflow_barrier_sync.enter();
pliden@6692 991
tonyp@2848 992 if (concurrent()) {
pliden@6906 993 SuspendibleThreadSet::join();
tonyp@2848 994 }
ysr@777 995 // at this point everyone should have synced up and not be doing any
ysr@777 996 // more work
ysr@777 997
tonyp@2973 998 if (verbose_low()) {
pliden@6692 999 if (barrier_aborted) {
pliden@6692 1000 gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
pliden@6692 1001 } else {
pliden@6692 1002 gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
pliden@6692 1003 }
pliden@6692 1004 }
pliden@6692 1005
pliden@6692 1006 if (barrier_aborted) {
pliden@6692 1007 // If the barrier aborted we ignore the overflow condition and
pliden@6692 1008 // just abort the whole marking phase as quickly as possible.
pliden@6692 1009 return;
tonyp@2973 1010 }
ysr@777 1011
johnc@4788 1012 // If we're executing the concurrent phase of marking, reset the marking
johnc@4788 1013 // state; otherwise the marking state is reset after reference processing,
johnc@4788 1014 // during the remark pause.
johnc@4788 1015 // If we reset here as a result of an overflow during the remark we will
johnc@4788 1016 // see assertion failures from any subsequent set_concurrency_and_phase()
johnc@4788 1017 // calls.
johnc@4788 1018 if (concurrent()) {
johnc@4788 1019 // let the task associated with with worker 0 do this
johnc@4788 1020 if (worker_id == 0) {
johnc@4788 1021 // task 0 is responsible for clearing the global data structures
johnc@4788 1022 // We should be here because of an overflow. During STW we should
johnc@4788 1023 // not clear the overflow flag since we rely on it being true when
johnc@4788 1024 // we exit this method to abort the pause and restart concurent
johnc@4788 1025 // marking.
johnc@4788 1026 reset_marking_state(true /* clear_overflow */);
johnc@4788 1027 force_overflow()->update();
johnc@4788 1028
johnc@4788 1029 if (G1Log::fine()) {
brutisso@6904 1030 gclog_or_tty->gclog_stamp(concurrent_gc_id());
johnc@4788 1031 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
johnc@4788 1032 }
ysr@777 1033 }
ysr@777 1034 }
ysr@777 1035
ysr@777 1036 // after this, each task should reset its own data structures then
ysr@777 1037 // then go into the second barrier
ysr@777 1038 }
ysr@777 1039
johnc@4173 1040 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
tonyp@2973 1041 if (verbose_low()) {
johnc@4173 1042 gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
tonyp@2973 1043 }
ysr@777 1044
tonyp@2848 1045 if (concurrent()) {
pliden@6906 1046 SuspendibleThreadSet::leave();
tonyp@2848 1047 }
pliden@6692 1048
pliden@6692 1049 bool barrier_aborted = !_second_overflow_barrier_sync.enter();
pliden@6692 1050
tonyp@2848 1051 if (concurrent()) {
pliden@6906 1052 SuspendibleThreadSet::join();
tonyp@2848 1053 }
johnc@4788 1054 // at this point everything should be re-initialized and ready to go
ysr@777 1055
tonyp@2973 1056 if (verbose_low()) {
pliden@6692 1057 if (barrier_aborted) {
pliden@6692 1058 gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
pliden@6692 1059 } else {
pliden@6692 1060 gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
pliden@6692 1061 }
tonyp@2973 1062 }
ysr@777 1063 }
ysr@777 1064
tonyp@2848 1065 #ifndef PRODUCT
tonyp@2848 1066 void ForceOverflowSettings::init() {
tonyp@2848 1067 _num_remaining = G1ConcMarkForceOverflow;
tonyp@2848 1068 _force = false;
tonyp@2848 1069 update();
tonyp@2848 1070 }
tonyp@2848 1071
tonyp@2848 1072 void ForceOverflowSettings::update() {
tonyp@2848 1073 if (_num_remaining > 0) {
tonyp@2848 1074 _num_remaining -= 1;
tonyp@2848 1075 _force = true;
tonyp@2848 1076 } else {
tonyp@2848 1077 _force = false;
tonyp@2848 1078 }
tonyp@2848 1079 }
tonyp@2848 1080
tonyp@2848 1081 bool ForceOverflowSettings::should_force() {
tonyp@2848 1082 if (_force) {
tonyp@2848 1083 _force = false;
tonyp@2848 1084 return true;
tonyp@2848 1085 } else {
tonyp@2848 1086 return false;
tonyp@2848 1087 }
tonyp@2848 1088 }
tonyp@2848 1089 #endif // !PRODUCT
tonyp@2848 1090
ysr@777 1091 class CMConcurrentMarkingTask: public AbstractGangTask {
ysr@777 1092 private:
ysr@777 1093 ConcurrentMark* _cm;
ysr@777 1094 ConcurrentMarkThread* _cmt;
ysr@777 1095
ysr@777 1096 public:
jmasa@3357 1097 void work(uint worker_id) {
tonyp@1458 1098 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@1458 1099 "this should only be done by a conc GC thread");
johnc@2316 1100 ResourceMark rm;
ysr@777 1101
ysr@777 1102 double start_vtime = os::elapsedVTime();
ysr@777 1103
pliden@6906 1104 SuspendibleThreadSet::join();
ysr@777 1105
jmasa@3357 1106 assert(worker_id < _cm->active_tasks(), "invariant");
jmasa@3357 1107 CMTask* the_task = _cm->task(worker_id);
ysr@777 1108 the_task->record_start_time();
ysr@777 1109 if (!_cm->has_aborted()) {
ysr@777 1110 do {
ysr@777 1111 double start_vtime_sec = os::elapsedVTime();
ysr@777 1112 double start_time_sec = os::elapsedTime();
johnc@2494 1113 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 1114
johnc@2494 1115 the_task->do_marking_step(mark_step_duration_ms,
johnc@4787 1116 true /* do_termination */,
johnc@4787 1117 false /* is_serial*/);
johnc@2494 1118
ysr@777 1119 double end_time_sec = os::elapsedTime();
ysr@777 1120 double end_vtime_sec = os::elapsedVTime();
ysr@777 1121 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
ysr@777 1122 double elapsed_time_sec = end_time_sec - start_time_sec;
ysr@777 1123 _cm->clear_has_overflown();
ysr@777 1124
jmasa@3357 1125 bool ret = _cm->do_yield_check(worker_id);
ysr@777 1126
ysr@777 1127 jlong sleep_time_ms;
ysr@777 1128 if (!_cm->has_aborted() && the_task->has_aborted()) {
ysr@777 1129 sleep_time_ms =
ysr@777 1130 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
pliden@6906 1131 SuspendibleThreadSet::leave();
ysr@777 1132 os::sleep(Thread::current(), sleep_time_ms, false);
pliden@6906 1133 SuspendibleThreadSet::join();
ysr@777 1134 }
ysr@777 1135 double end_time2_sec = os::elapsedTime();
ysr@777 1136 double elapsed_time2_sec = end_time2_sec - start_time_sec;
ysr@777 1137
ysr@777 1138 #if 0
ysr@777 1139 gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
ysr@777 1140 "overhead %1.4lf",
ysr@777 1141 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
ysr@777 1142 the_task->conc_overhead(os::elapsedTime()) * 8.0);
ysr@777 1143 gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
ysr@777 1144 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
ysr@777 1145 #endif
ysr@777 1146 } while (!_cm->has_aborted() && the_task->has_aborted());
ysr@777 1147 }
ysr@777 1148 the_task->record_end_time();
tonyp@1458 1149 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ysr@777 1150
pliden@6906 1151 SuspendibleThreadSet::leave();
ysr@777 1152
ysr@777 1153 double end_vtime = os::elapsedVTime();
jmasa@3357 1154 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
ysr@777 1155 }
ysr@777 1156
ysr@777 1157 CMConcurrentMarkingTask(ConcurrentMark* cm,
ysr@777 1158 ConcurrentMarkThread* cmt) :
ysr@777 1159 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
ysr@777 1160
ysr@777 1161 ~CMConcurrentMarkingTask() { }
ysr@777 1162 };
ysr@777 1163
jmasa@3294 1164 // Calculates the number of active workers for a concurrent
jmasa@3294 1165 // phase.
jmasa@3357 1166 uint ConcurrentMark::calc_parallel_marking_threads() {
johnc@3338 1167 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1168 uint n_conc_workers = 0;
jmasa@3294 1169 if (!UseDynamicNumberOfGCThreads ||
jmasa@3294 1170 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
jmasa@3294 1171 !ForceDynamicNumberOfGCThreads)) {
jmasa@3294 1172 n_conc_workers = max_parallel_marking_threads();
jmasa@3294 1173 } else {
jmasa@3294 1174 n_conc_workers =
jmasa@3294 1175 AdaptiveSizePolicy::calc_default_active_workers(
jmasa@3294 1176 max_parallel_marking_threads(),
jmasa@3294 1177 1, /* Minimum workers */
jmasa@3294 1178 parallel_marking_threads(),
jmasa@3294 1179 Threads::number_of_non_daemon_threads());
jmasa@3294 1180 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
jmasa@3294 1181 // that scaling has already gone into "_max_parallel_marking_threads".
jmasa@3294 1182 }
johnc@3338 1183 assert(n_conc_workers > 0, "Always need at least 1");
johnc@3338 1184 return n_conc_workers;
jmasa@3294 1185 }
johnc@3338 1186 // If we are not running with any parallel GC threads we will not
johnc@3338 1187 // have spawned any marking threads either. Hence the number of
johnc@3338 1188 // concurrent workers should be 0.
johnc@3338 1189 return 0;
jmasa@3294 1190 }
jmasa@3294 1191
tonyp@3464 1192 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
tonyp@3464 1193 // Currently, only survivors can be root regions.
tonyp@3464 1194 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
tonyp@3464 1195 G1RootRegionScanClosure cl(_g1h, this, worker_id);
tonyp@3464 1196
tonyp@3464 1197 const uintx interval = PrefetchScanIntervalInBytes;
tonyp@3464 1198 HeapWord* curr = hr->bottom();
tonyp@3464 1199 const HeapWord* end = hr->top();
tonyp@3464 1200 while (curr < end) {
tonyp@3464 1201 Prefetch::read(curr, interval);
tonyp@3464 1202 oop obj = oop(curr);
tonyp@3464 1203 int size = obj->oop_iterate(&cl);
tonyp@3464 1204 assert(size == obj->size(), "sanity");
tonyp@3464 1205 curr += size;
tonyp@3464 1206 }
tonyp@3464 1207 }
tonyp@3464 1208
tonyp@3464 1209 class CMRootRegionScanTask : public AbstractGangTask {
tonyp@3464 1210 private:
tonyp@3464 1211 ConcurrentMark* _cm;
tonyp@3464 1212
tonyp@3464 1213 public:
tonyp@3464 1214 CMRootRegionScanTask(ConcurrentMark* cm) :
tonyp@3464 1215 AbstractGangTask("Root Region Scan"), _cm(cm) { }
tonyp@3464 1216
tonyp@3464 1217 void work(uint worker_id) {
tonyp@3464 1218 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@3464 1219 "this should only be done by a conc GC thread");
tonyp@3464 1220
tonyp@3464 1221 CMRootRegions* root_regions = _cm->root_regions();
tonyp@3464 1222 HeapRegion* hr = root_regions->claim_next();
tonyp@3464 1223 while (hr != NULL) {
tonyp@3464 1224 _cm->scanRootRegion(hr, worker_id);
tonyp@3464 1225 hr = root_regions->claim_next();
tonyp@3464 1226 }
tonyp@3464 1227 }
tonyp@3464 1228 };
tonyp@3464 1229
tonyp@3464 1230 void ConcurrentMark::scanRootRegions() {
stefank@6992 1231 // Start of concurrent marking.
stefank@6992 1232 ClassLoaderDataGraph::clear_claimed_marks();
stefank@6992 1233
tonyp@3464 1234 // scan_in_progress() will have been set to true only if there was
tonyp@3464 1235 // at least one root region to scan. So, if it's false, we
tonyp@3464 1236 // should not attempt to do any further work.
tonyp@3464 1237 if (root_regions()->scan_in_progress()) {
tonyp@3464 1238 _parallel_marking_threads = calc_parallel_marking_threads();
tonyp@3464 1239 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
tonyp@3464 1240 "Maximum number of marking threads exceeded");
tonyp@3464 1241 uint active_workers = MAX2(1U, parallel_marking_threads());
tonyp@3464 1242
tonyp@3464 1243 CMRootRegionScanTask task(this);
johnc@4549 1244 if (use_parallel_marking_threads()) {
tonyp@3464 1245 _parallel_workers->set_active_workers((int) active_workers);
tonyp@3464 1246 _parallel_workers->run_task(&task);
tonyp@3464 1247 } else {
tonyp@3464 1248 task.work(0);
tonyp@3464 1249 }
tonyp@3464 1250
tonyp@3464 1251 // It's possible that has_aborted() is true here without actually
tonyp@3464 1252 // aborting the survivor scan earlier. This is OK as it's
tonyp@3464 1253 // mainly used for sanity checking.
tonyp@3464 1254 root_regions()->scan_finished();
tonyp@3464 1255 }
tonyp@3464 1256 }
tonyp@3464 1257
ysr@777 1258 void ConcurrentMark::markFromRoots() {
ysr@777 1259 // we might be tempted to assert that:
ysr@777 1260 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
ysr@777 1261 // "inconsistent argument?");
ysr@777 1262 // However that wouldn't be right, because it's possible that
ysr@777 1263 // a safepoint is indeed in progress as a younger generation
ysr@777 1264 // stop-the-world GC happens even as we mark in this generation.
ysr@777 1265
ysr@777 1266 _restart_for_overflow = false;
tonyp@2848 1267 force_overflow_conc()->init();
jmasa@3294 1268
jmasa@3294 1269 // _g1h has _n_par_threads
jmasa@3294 1270 _parallel_marking_threads = calc_parallel_marking_threads();
jmasa@3294 1271 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
jmasa@3294 1272 "Maximum number of marking threads exceeded");
johnc@3338 1273
jmasa@3357 1274 uint active_workers = MAX2(1U, parallel_marking_threads());
johnc@3338 1275
johnc@4788 1276 // Parallel task terminator is set in "set_concurrency_and_phase()"
johnc@4788 1277 set_concurrency_and_phase(active_workers, true /* concurrent */);
ysr@777 1278
ysr@777 1279 CMConcurrentMarkingTask markingTask(this, cmThread());
johnc@4549 1280 if (use_parallel_marking_threads()) {
johnc@3338 1281 _parallel_workers->set_active_workers((int)active_workers);
stefank@6992 1282 // Don't set _n_par_threads because it affects MT in process_roots()
johnc@3338 1283 // and the decisions on that MT processing is made elsewhere.
johnc@3338 1284 assert(_parallel_workers->active_workers() > 0, "Should have been set");
ysr@777 1285 _parallel_workers->run_task(&markingTask);
tonyp@2973 1286 } else {
ysr@777 1287 markingTask.work(0);
tonyp@2973 1288 }
ysr@777 1289 print_stats();
ysr@777 1290 }
ysr@777 1291
ysr@777 1292 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
ysr@777 1293 // world is stopped at this checkpoint
ysr@777 1294 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1295 "world should be stopped");
johnc@3175 1296
ysr@777 1297 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1298
ysr@777 1299 // If a full collection has happened, we shouldn't do this.
ysr@777 1300 if (has_aborted()) {
ysr@777 1301 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1302 return;
ysr@777 1303 }
ysr@777 1304
kamg@2445 1305 SvcGCMarker sgcm(SvcGCMarker::OTHER);
kamg@2445 1306
ysr@1280 1307 if (VerifyDuringGC) {
ysr@1280 1308 HandleMark hm; // handle scope
ysr@1280 1309 Universe::heap()->prepare_for_verify();
stefank@5018 1310 Universe::verify(VerifyOption_G1UsePrevMarking,
stefank@5018 1311 " VerifyDuringGC:(before)");
ysr@1280 1312 }
ysr@1280 1313
ysr@777 1314 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 1315 g1p->record_concurrent_mark_remark_start();
ysr@777 1316
ysr@777 1317 double start = os::elapsedTime();
ysr@777 1318
ysr@777 1319 checkpointRootsFinalWork();
ysr@777 1320
ysr@777 1321 double mark_work_end = os::elapsedTime();
ysr@777 1322
ysr@777 1323 weakRefsWork(clear_all_soft_refs);
ysr@777 1324
ysr@777 1325 if (has_overflown()) {
ysr@777 1326 // Oops. We overflowed. Restart concurrent marking.
ysr@777 1327 _restart_for_overflow = true;
johnc@4789 1328 if (G1TraceMarkStackOverflow) {
johnc@4789 1329 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
johnc@4789 1330 }
johnc@4789 1331
johnc@4789 1332 // Verify the heap w.r.t. the previous marking bitmap.
johnc@4789 1333 if (VerifyDuringGC) {
johnc@4789 1334 HandleMark hm; // handle scope
johnc@4789 1335 Universe::heap()->prepare_for_verify();
stefank@5018 1336 Universe::verify(VerifyOption_G1UsePrevMarking,
stefank@5018 1337 " VerifyDuringGC:(overflow)");
johnc@4789 1338 }
johnc@4789 1339
johnc@4386 1340 // Clear the marking state because we will be restarting
johnc@4386 1341 // marking due to overflowing the global mark stack.
johnc@4386 1342 reset_marking_state();
ysr@777 1343 } else {
johnc@3463 1344 // Aggregate the per-task counting data that we have accumulated
johnc@3463 1345 // while marking.
johnc@3463 1346 aggregate_count_data();
johnc@3463 1347
tonyp@2469 1348 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 1349 // We're done with marking.
tonyp@1752 1350 // This is the end of the marking cycle, we're expected all
tonyp@1752 1351 // threads to have SATB queues with active set to true.
tonyp@2469 1352 satb_mq_set.set_active_all_threads(false, /* new active value */
tonyp@2469 1353 true /* expected_active */);
tonyp@1246 1354
tonyp@1246 1355 if (VerifyDuringGC) {
ysr@1280 1356 HandleMark hm; // handle scope
ysr@1280 1357 Universe::heap()->prepare_for_verify();
stefank@5018 1358 Universe::verify(VerifyOption_G1UseNextMarking,
stefank@5018 1359 " VerifyDuringGC:(after)");
tonyp@1246 1360 }
johnc@2494 1361 assert(!restart_for_overflow(), "sanity");
johnc@4386 1362 // Completely reset the marking state since marking completed
johnc@4386 1363 set_non_marking_state();
johnc@2494 1364 }
johnc@2494 1365
johnc@4333 1366 // Expand the marking stack, if we have to and if we can.
johnc@4333 1367 if (_markStack.should_expand()) {
johnc@4333 1368 _markStack.expand();
johnc@4333 1369 }
johnc@4333 1370
ysr@777 1371 // Statistics
ysr@777 1372 double now = os::elapsedTime();
ysr@777 1373 _remark_mark_times.add((mark_work_end - start) * 1000.0);
ysr@777 1374 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
ysr@777 1375 _remark_times.add((now - start) * 1000.0);
ysr@777 1376
ysr@777 1377 g1p->record_concurrent_mark_remark_end();
sla@5237 1378
sla@5237 1379 G1CMIsAliveClosure is_alive(g1h);
sla@5237 1380 g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
ysr@777 1381 }
ysr@777 1382
johnc@3731 1383 // Base class of the closures that finalize and verify the
johnc@3731 1384 // liveness counting data.
johnc@3731 1385 class CMCountDataClosureBase: public HeapRegionClosure {
johnc@3731 1386 protected:
johnc@4123 1387 G1CollectedHeap* _g1h;
ysr@777 1388 ConcurrentMark* _cm;
johnc@4123 1389 CardTableModRefBS* _ct_bs;
johnc@4123 1390
johnc@3463 1391 BitMap* _region_bm;
johnc@3463 1392 BitMap* _card_bm;
johnc@3463 1393
johnc@4123 1394 // Takes a region that's not empty (i.e., it has at least one
tonyp@1264 1395 // live object in it and sets its corresponding bit on the region
tonyp@1264 1396 // bitmap to 1. If the region is "starts humongous" it will also set
tonyp@1264 1397 // to 1 the bits on the region bitmap that correspond to its
tonyp@1264 1398 // associated "continues humongous" regions.
tonyp@1264 1399 void set_bit_for_region(HeapRegion* hr) {
tonyp@1264 1400 assert(!hr->continuesHumongous(), "should have filtered those out");
tonyp@1264 1401
tonyp@3713 1402 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
tonyp@1264 1403 if (!hr->startsHumongous()) {
tonyp@1264 1404 // Normal (non-humongous) case: just set the bit.
tonyp@3713 1405 _region_bm->par_at_put(index, true);
tonyp@1264 1406 } else {
tonyp@1264 1407 // Starts humongous case: calculate how many regions are part of
johnc@3463 1408 // this humongous region and then set the bit range.
tonyp@3957 1409 BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
tonyp@3713 1410 _region_bm->par_at_put_range(index, end_index, true);
tonyp@1264 1411 }
tonyp@1264 1412 }
tonyp@1264 1413
johnc@3731 1414 public:
johnc@4123 1415 CMCountDataClosureBase(G1CollectedHeap* g1h,
johnc@3731 1416 BitMap* region_bm, BitMap* card_bm):
johnc@4123 1417 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 1418 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
johnc@4123 1419 _region_bm(region_bm), _card_bm(card_bm) { }
johnc@3731 1420 };
johnc@3731 1421
johnc@3731 1422 // Closure that calculates the # live objects per region. Used
johnc@3731 1423 // for verification purposes during the cleanup pause.
johnc@3731 1424 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
johnc@3731 1425 CMBitMapRO* _bm;
johnc@3731 1426 size_t _region_marked_bytes;
johnc@3731 1427
johnc@3731 1428 public:
johnc@4123 1429 CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
johnc@3731 1430 BitMap* region_bm, BitMap* card_bm) :
johnc@4123 1431 CMCountDataClosureBase(g1h, region_bm, card_bm),
johnc@3731 1432 _bm(bm), _region_marked_bytes(0) { }
johnc@3731 1433
ysr@777 1434 bool doHeapRegion(HeapRegion* hr) {
ysr@777 1435
iveresov@1074 1436 if (hr->continuesHumongous()) {
tonyp@1264 1437 // We will ignore these here and process them when their
tonyp@1264 1438 // associated "starts humongous" region is processed (see
tonyp@1264 1439 // set_bit_for_heap_region()). Note that we cannot rely on their
tonyp@1264 1440 // associated "starts humongous" region to have their bit set to
tonyp@1264 1441 // 1 since, due to the region chunking in the parallel region
tonyp@1264 1442 // iteration, a "continues humongous" region might be visited
tonyp@1264 1443 // before its associated "starts humongous".
iveresov@1074 1444 return false;
iveresov@1074 1445 }
ysr@777 1446
johnc@4123 1447 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@4123 1448 HeapWord* start = hr->bottom();
johnc@4123 1449
johnc@4123 1450 assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
johnc@3463 1451 err_msg("Preconditions not met - "
johnc@4123 1452 "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
drchase@6680 1453 p2i(start), p2i(ntams), p2i(hr->end())));
johnc@3463 1454
ysr@777 1455 // Find the first marked object at or after "start".
johnc@4123 1456 start = _bm->getNextMarkedWordAddress(start, ntams);
johnc@3463 1457
ysr@777 1458 size_t marked_bytes = 0;
ysr@777 1459
johnc@4123 1460 while (start < ntams) {
ysr@777 1461 oop obj = oop(start);
ysr@777 1462 int obj_sz = obj->size();
johnc@4123 1463 HeapWord* obj_end = start + obj_sz;
johnc@3731 1464
johnc@3731 1465 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@4123 1466 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
johnc@4123 1467
johnc@4123 1468 // Note: if we're looking at the last region in heap - obj_end
johnc@4123 1469 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1470 // will then correspond to a (non-existent) card that is also
johnc@4123 1471 // just beyond the heap.
johnc@4123 1472 if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
johnc@4123 1473 // end of object is not card aligned - increment to cover
johnc@4123 1474 // all the cards spanned by the object
johnc@4123 1475 end_idx += 1;
johnc@4123 1476 }
johnc@4123 1477
johnc@4123 1478 // Set the bits in the card BM for the cards spanned by this object.
johnc@4123 1479 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
johnc@3731 1480
johnc@3731 1481 // Add the size of this object to the number of marked bytes.
apetrusenko@1465 1482 marked_bytes += (size_t)obj_sz * HeapWordSize;
johnc@3463 1483
ysr@777 1484 // Find the next marked object after this one.
johnc@4123 1485 start = _bm->getNextMarkedWordAddress(obj_end, ntams);
tonyp@2973 1486 }
johnc@3463 1487
johnc@3463 1488 // Mark the allocated-since-marking portion...
johnc@3463 1489 HeapWord* top = hr->top();
johnc@4123 1490 if (ntams < top) {
johnc@4123 1491 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@4123 1492 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
johnc@4123 1493
johnc@4123 1494 // Note: if we're looking at the last region in heap - top
johnc@4123 1495 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1496 // will then correspond to a (non-existent) card that is also
johnc@4123 1497 // just beyond the heap.
johnc@4123 1498 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
johnc@4123 1499 // end of object is not card aligned - increment to cover
johnc@4123 1500 // all the cards spanned by the object
johnc@4123 1501 end_idx += 1;
johnc@4123 1502 }
johnc@4123 1503 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
johnc@3463 1504
johnc@3463 1505 // This definitely means the region has live objects.
johnc@3463 1506 set_bit_for_region(hr);
ysr@777 1507 }
ysr@777 1508
ysr@777 1509 // Update the live region bitmap.
ysr@777 1510 if (marked_bytes > 0) {
tonyp@1264 1511 set_bit_for_region(hr);
ysr@777 1512 }
johnc@3463 1513
johnc@3463 1514 // Set the marked bytes for the current region so that
johnc@3463 1515 // it can be queried by a calling verificiation routine
johnc@3463 1516 _region_marked_bytes = marked_bytes;
johnc@3463 1517
johnc@3463 1518 return false;
johnc@3463 1519 }
johnc@3463 1520
johnc@3463 1521 size_t region_marked_bytes() const { return _region_marked_bytes; }
johnc@3463 1522 };
johnc@3463 1523
johnc@3463 1524 // Heap region closure used for verifying the counting data
johnc@3463 1525 // that was accumulated concurrently and aggregated during
johnc@3463 1526 // the remark pause. This closure is applied to the heap
johnc@3463 1527 // regions during the STW cleanup pause.
johnc@3463 1528
johnc@3463 1529 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
johnc@4123 1530 G1CollectedHeap* _g1h;
johnc@3463 1531 ConcurrentMark* _cm;
johnc@3463 1532 CalcLiveObjectsClosure _calc_cl;
johnc@3463 1533 BitMap* _region_bm; // Region BM to be verified
johnc@3463 1534 BitMap* _card_bm; // Card BM to be verified
johnc@3463 1535 bool _verbose; // verbose output?
johnc@3463 1536
johnc@3463 1537 BitMap* _exp_region_bm; // Expected Region BM values
johnc@3463 1538 BitMap* _exp_card_bm; // Expected card BM values
johnc@3463 1539
johnc@3463 1540 int _failures;
johnc@3463 1541
johnc@3463 1542 public:
johnc@4123 1543 VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
johnc@3463 1544 BitMap* region_bm,
johnc@3463 1545 BitMap* card_bm,
johnc@3463 1546 BitMap* exp_region_bm,
johnc@3463 1547 BitMap* exp_card_bm,
johnc@3463 1548 bool verbose) :
johnc@4123 1549 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 1550 _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
johnc@3463 1551 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
johnc@3463 1552 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
johnc@3463 1553 _failures(0) { }
johnc@3463 1554
johnc@3463 1555 int failures() const { return _failures; }
johnc@3463 1556
johnc@3463 1557 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1558 if (hr->continuesHumongous()) {
johnc@3463 1559 // We will ignore these here and process them when their
johnc@3463 1560 // associated "starts humongous" region is processed (see
johnc@3463 1561 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1562 // associated "starts humongous" region to have their bit set to
johnc@3463 1563 // 1 since, due to the region chunking in the parallel region
johnc@3463 1564 // iteration, a "continues humongous" region might be visited
johnc@3463 1565 // before its associated "starts humongous".
johnc@3463 1566 return false;
johnc@3463 1567 }
johnc@3463 1568
johnc@3463 1569 int failures = 0;
johnc@3463 1570
johnc@3463 1571 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
johnc@3463 1572 // this region and set the corresponding bits in the expected region
johnc@3463 1573 // and card bitmaps.
johnc@3463 1574 bool res = _calc_cl.doHeapRegion(hr);
johnc@3463 1575 assert(res == false, "should be continuing");
johnc@3463 1576
johnc@3463 1577 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
johnc@3463 1578 Mutex::_no_safepoint_check_flag);
johnc@3463 1579
johnc@3463 1580 // Verify the marked bytes for this region.
johnc@3463 1581 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
johnc@3463 1582 size_t act_marked_bytes = hr->next_marked_bytes();
johnc@3463 1583
johnc@3463 1584 // We're not OK if expected marked bytes > actual marked bytes. It means
johnc@3463 1585 // we have missed accounting some objects during the actual marking.
johnc@3463 1586 if (exp_marked_bytes > act_marked_bytes) {
johnc@3463 1587 if (_verbose) {
tonyp@3713 1588 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
johnc@3463 1589 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
johnc@3463 1590 hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
johnc@3463 1591 }
johnc@3463 1592 failures += 1;
johnc@3463 1593 }
johnc@3463 1594
johnc@3463 1595 // Verify the bit, for this region, in the actual and expected
johnc@3463 1596 // (which was just calculated) region bit maps.
johnc@3463 1597 // We're not OK if the bit in the calculated expected region
johnc@3463 1598 // bitmap is set and the bit in the actual region bitmap is not.
tonyp@3713 1599 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
johnc@3463 1600
johnc@3463 1601 bool expected = _exp_region_bm->at(index);
johnc@3463 1602 bool actual = _region_bm->at(index);
johnc@3463 1603 if (expected && !actual) {
johnc@3463 1604 if (_verbose) {
tonyp@3713 1605 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
tonyp@3713 1606 "expected: %s, actual: %s",
tonyp@3713 1607 hr->hrs_index(),
tonyp@3713 1608 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
johnc@3463 1609 }
johnc@3463 1610 failures += 1;
johnc@3463 1611 }
johnc@3463 1612
johnc@3463 1613 // Verify that the card bit maps for the cards spanned by the current
johnc@3463 1614 // region match. We have an error if we have a set bit in the expected
johnc@3463 1615 // bit map and the corresponding bit in the actual bitmap is not set.
johnc@3463 1616
johnc@3463 1617 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
johnc@3463 1618 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
johnc@3463 1619
johnc@3463 1620 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
johnc@3463 1621 expected = _exp_card_bm->at(i);
johnc@3463 1622 actual = _card_bm->at(i);
johnc@3463 1623
johnc@3463 1624 if (expected && !actual) {
johnc@3463 1625 if (_verbose) {
tonyp@3713 1626 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
tonyp@3713 1627 "expected: %s, actual: %s",
tonyp@3713 1628 hr->hrs_index(), i,
tonyp@3713 1629 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
ysr@777 1630 }
johnc@3463 1631 failures += 1;
ysr@777 1632 }
ysr@777 1633 }
ysr@777 1634
johnc@3463 1635 if (failures > 0 && _verbose) {
johnc@3463 1636 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
johnc@3463 1637 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
drchase@6680 1638 HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
johnc@3463 1639 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
johnc@3463 1640 }
johnc@3463 1641
johnc@3463 1642 _failures += failures;
johnc@3463 1643
johnc@3463 1644 // We could stop iteration over the heap when we
johnc@3731 1645 // find the first violating region by returning true.
ysr@777 1646 return false;
ysr@777 1647 }
ysr@777 1648 };
ysr@777 1649
johnc@3463 1650 class G1ParVerifyFinalCountTask: public AbstractGangTask {
johnc@3463 1651 protected:
johnc@3463 1652 G1CollectedHeap* _g1h;
johnc@3463 1653 ConcurrentMark* _cm;
johnc@3463 1654 BitMap* _actual_region_bm;
johnc@3463 1655 BitMap* _actual_card_bm;
johnc@3463 1656
johnc@3463 1657 uint _n_workers;
johnc@3463 1658
johnc@3463 1659 BitMap* _expected_region_bm;
johnc@3463 1660 BitMap* _expected_card_bm;
johnc@3463 1661
johnc@3463 1662 int _failures;
johnc@3463 1663 bool _verbose;
johnc@3463 1664
johnc@3463 1665 public:
johnc@3463 1666 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
johnc@3463 1667 BitMap* region_bm, BitMap* card_bm,
johnc@3463 1668 BitMap* expected_region_bm, BitMap* expected_card_bm)
johnc@3463 1669 : AbstractGangTask("G1 verify final counting"),
johnc@3463 1670 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1671 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1672 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
johnc@3463 1673 _failures(0), _verbose(false),
johnc@3463 1674 _n_workers(0) {
johnc@3463 1675 assert(VerifyDuringGC, "don't call this otherwise");
johnc@3463 1676
johnc@3463 1677 // Use the value already set as the number of active threads
johnc@3463 1678 // in the call to run_task().
johnc@3463 1679 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1680 assert( _g1h->workers()->active_workers() > 0,
johnc@3463 1681 "Should have been previously set");
johnc@3463 1682 _n_workers = _g1h->workers()->active_workers();
johnc@3463 1683 } else {
johnc@3463 1684 _n_workers = 1;
johnc@3463 1685 }
johnc@3463 1686
johnc@3463 1687 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
johnc@3463 1688 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
johnc@3463 1689
johnc@3463 1690 _verbose = _cm->verbose_medium();
johnc@3463 1691 }
johnc@3463 1692
johnc@3463 1693 void work(uint worker_id) {
johnc@3463 1694 assert(worker_id < _n_workers, "invariant");
johnc@3463 1695
johnc@4123 1696 VerifyLiveObjectDataHRClosure verify_cl(_g1h,
johnc@3463 1697 _actual_region_bm, _actual_card_bm,
johnc@3463 1698 _expected_region_bm,
johnc@3463 1699 _expected_card_bm,
johnc@3463 1700 _verbose);
johnc@3463 1701
johnc@3463 1702 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1703 _g1h->heap_region_par_iterate_chunked(&verify_cl,
johnc@3463 1704 worker_id,
johnc@3463 1705 _n_workers,
johnc@3463 1706 HeapRegion::VerifyCountClaimValue);
johnc@3463 1707 } else {
johnc@3463 1708 _g1h->heap_region_iterate(&verify_cl);
johnc@3463 1709 }
johnc@3463 1710
johnc@3463 1711 Atomic::add(verify_cl.failures(), &_failures);
johnc@3463 1712 }
johnc@3463 1713
johnc@3463 1714 int failures() const { return _failures; }
johnc@3463 1715 };
johnc@3463 1716
johnc@3731 1717 // Closure that finalizes the liveness counting data.
johnc@3731 1718 // Used during the cleanup pause.
johnc@3731 1719 // Sets the bits corresponding to the interval [NTAMS, top]
johnc@3731 1720 // (which contains the implicitly live objects) in the
johnc@3731 1721 // card liveness bitmap. Also sets the bit for each region,
johnc@3731 1722 // containing live data, in the region liveness bitmap.
johnc@3731 1723
johnc@3731 1724 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
johnc@3463 1725 public:
johnc@4123 1726 FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
johnc@3463 1727 BitMap* region_bm,
johnc@3463 1728 BitMap* card_bm) :
johnc@4123 1729 CMCountDataClosureBase(g1h, region_bm, card_bm) { }
johnc@3463 1730
johnc@3463 1731 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1732
johnc@3463 1733 if (hr->continuesHumongous()) {
johnc@3463 1734 // We will ignore these here and process them when their
johnc@3463 1735 // associated "starts humongous" region is processed (see
johnc@3463 1736 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1737 // associated "starts humongous" region to have their bit set to
johnc@3463 1738 // 1 since, due to the region chunking in the parallel region
johnc@3463 1739 // iteration, a "continues humongous" region might be visited
johnc@3463 1740 // before its associated "starts humongous".
johnc@3463 1741 return false;
johnc@3463 1742 }
johnc@3463 1743
johnc@3463 1744 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@3463 1745 HeapWord* top = hr->top();
johnc@3463 1746
johnc@3731 1747 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
johnc@3463 1748
johnc@3463 1749 // Mark the allocated-since-marking portion...
johnc@3463 1750 if (ntams < top) {
johnc@3463 1751 // This definitely means the region has live objects.
johnc@3463 1752 set_bit_for_region(hr);
johnc@4123 1753
johnc@4123 1754 // Now set the bits in the card bitmap for [ntams, top)
johnc@4123 1755 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@4123 1756 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
johnc@4123 1757
johnc@4123 1758 // Note: if we're looking at the last region in heap - top
johnc@4123 1759 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1760 // will then correspond to a (non-existent) card that is also
johnc@4123 1761 // just beyond the heap.
johnc@4123 1762 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
johnc@4123 1763 // end of object is not card aligned - increment to cover
johnc@4123 1764 // all the cards spanned by the object
johnc@4123 1765 end_idx += 1;
johnc@4123 1766 }
johnc@4123 1767
johnc@4123 1768 assert(end_idx <= _card_bm->size(),
johnc@4123 1769 err_msg("oob: end_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
johnc@4123 1770 end_idx, _card_bm->size()));
johnc@4123 1771 assert(start_idx < _card_bm->size(),
johnc@4123 1772 err_msg("oob: start_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
johnc@4123 1773 start_idx, _card_bm->size()));
johnc@4123 1774
johnc@4123 1775 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
coleenp@4037 1776 }
johnc@3463 1777
johnc@3463 1778 // Set the bit for the region if it contains live data
johnc@3463 1779 if (hr->next_marked_bytes() > 0) {
johnc@3463 1780 set_bit_for_region(hr);
johnc@3463 1781 }
johnc@3463 1782
johnc@3463 1783 return false;
johnc@3463 1784 }
johnc@3463 1785 };
ysr@777 1786
ysr@777 1787 class G1ParFinalCountTask: public AbstractGangTask {
ysr@777 1788 protected:
ysr@777 1789 G1CollectedHeap* _g1h;
johnc@3463 1790 ConcurrentMark* _cm;
johnc@3463 1791 BitMap* _actual_region_bm;
johnc@3463 1792 BitMap* _actual_card_bm;
johnc@3463 1793
jmasa@3357 1794 uint _n_workers;
johnc@3463 1795
ysr@777 1796 public:
johnc@3463 1797 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
johnc@3463 1798 : AbstractGangTask("G1 final counting"),
johnc@3463 1799 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1800 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1801 _n_workers(0) {
jmasa@3294 1802 // Use the value already set as the number of active threads
tonyp@3714 1803 // in the call to run_task().
jmasa@3294 1804 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1805 assert( _g1h->workers()->active_workers() > 0,
jmasa@3294 1806 "Should have been previously set");
jmasa@3294 1807 _n_workers = _g1h->workers()->active_workers();
tonyp@2973 1808 } else {
ysr@777 1809 _n_workers = 1;
tonyp@2973 1810 }
ysr@777 1811 }
ysr@777 1812
jmasa@3357 1813 void work(uint worker_id) {
johnc@3463 1814 assert(worker_id < _n_workers, "invariant");
johnc@3463 1815
johnc@4123 1816 FinalCountDataUpdateClosure final_update_cl(_g1h,
johnc@3463 1817 _actual_region_bm,
johnc@3463 1818 _actual_card_bm);
johnc@3463 1819
jmasa@2188 1820 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1821 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
johnc@3463 1822 worker_id,
johnc@3463 1823 _n_workers,
tonyp@790 1824 HeapRegion::FinalCountClaimValue);
ysr@777 1825 } else {
johnc@3463 1826 _g1h->heap_region_iterate(&final_update_cl);
ysr@777 1827 }
ysr@777 1828 }
ysr@777 1829 };
ysr@777 1830
ysr@777 1831 class G1ParNoteEndTask;
ysr@777 1832
ysr@777 1833 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
ysr@777 1834 G1CollectedHeap* _g1;
ysr@777 1835 size_t _max_live_bytes;
tonyp@3713 1836 uint _regions_claimed;
ysr@777 1837 size_t _freed_bytes;
tonyp@2493 1838 FreeRegionList* _local_cleanup_list;
brutisso@6385 1839 HeapRegionSetCount _old_regions_removed;
brutisso@6385 1840 HeapRegionSetCount _humongous_regions_removed;
tonyp@2493 1841 HRRSCleanupTask* _hrrs_cleanup_task;
ysr@777 1842 double _claimed_region_time;
ysr@777 1843 double _max_region_time;
ysr@777 1844
ysr@777 1845 public:
ysr@777 1846 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
tonyp@2493 1847 FreeRegionList* local_cleanup_list,
johnc@3292 1848 HRRSCleanupTask* hrrs_cleanup_task) :
vkempik@6552 1849 _g1(g1),
johnc@3292 1850 _max_live_bytes(0), _regions_claimed(0),
johnc@3292 1851 _freed_bytes(0),
johnc@3292 1852 _claimed_region_time(0.0), _max_region_time(0.0),
johnc@3292 1853 _local_cleanup_list(local_cleanup_list),
brutisso@6385 1854 _old_regions_removed(),
brutisso@6385 1855 _humongous_regions_removed(),
johnc@3292 1856 _hrrs_cleanup_task(hrrs_cleanup_task) { }
johnc@3292 1857
ysr@777 1858 size_t freed_bytes() { return _freed_bytes; }
brutisso@6385 1859 const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
brutisso@6385 1860 const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
ysr@777 1861
johnc@3292 1862 bool doHeapRegion(HeapRegion *hr) {
tonyp@3957 1863 if (hr->continuesHumongous()) {
tonyp@3957 1864 return false;
tonyp@3957 1865 }
johnc@3292 1866 // We use a claim value of zero here because all regions
johnc@3292 1867 // were claimed with value 1 in the FinalCount task.
tonyp@3957 1868 _g1->reset_gc_time_stamps(hr);
tonyp@3957 1869 double start = os::elapsedTime();
tonyp@3957 1870 _regions_claimed++;
tonyp@3957 1871 hr->note_end_of_marking();
tonyp@3957 1872 _max_live_bytes += hr->max_live_bytes();
brutisso@6385 1873
brutisso@6385 1874 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
brutisso@6385 1875 _freed_bytes += hr->used();
brutisso@6385 1876 hr->set_containing_set(NULL);
brutisso@6385 1877 if (hr->isHumongous()) {
brutisso@6385 1878 assert(hr->startsHumongous(), "we should only see starts humongous");
brutisso@6385 1879 _humongous_regions_removed.increment(1u, hr->capacity());
brutisso@6385 1880 _g1->free_humongous_region(hr, _local_cleanup_list, true);
brutisso@6385 1881 } else {
brutisso@6385 1882 _old_regions_removed.increment(1u, hr->capacity());
brutisso@6385 1883 _g1->free_region(hr, _local_cleanup_list, true);
brutisso@6385 1884 }
brutisso@6385 1885 } else {
brutisso@6385 1886 hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
brutisso@6385 1887 }
brutisso@6385 1888
tonyp@3957 1889 double region_time = (os::elapsedTime() - start);
tonyp@3957 1890 _claimed_region_time += region_time;
tonyp@3957 1891 if (region_time > _max_region_time) {
tonyp@3957 1892 _max_region_time = region_time;
johnc@3292 1893 }
johnc@3292 1894 return false;
johnc@3292 1895 }
ysr@777 1896
ysr@777 1897 size_t max_live_bytes() { return _max_live_bytes; }
tonyp@3713 1898 uint regions_claimed() { return _regions_claimed; }
ysr@777 1899 double claimed_region_time_sec() { return _claimed_region_time; }
ysr@777 1900 double max_region_time_sec() { return _max_region_time; }
ysr@777 1901 };
ysr@777 1902
ysr@777 1903 class G1ParNoteEndTask: public AbstractGangTask {
ysr@777 1904 friend class G1NoteEndOfConcMarkClosure;
tonyp@2472 1905
ysr@777 1906 protected:
ysr@777 1907 G1CollectedHeap* _g1h;
ysr@777 1908 size_t _max_live_bytes;
ysr@777 1909 size_t _freed_bytes;
tonyp@2472 1910 FreeRegionList* _cleanup_list;
tonyp@2472 1911
ysr@777 1912 public:
ysr@777 1913 G1ParNoteEndTask(G1CollectedHeap* g1h,
tonyp@2472 1914 FreeRegionList* cleanup_list) :
ysr@777 1915 AbstractGangTask("G1 note end"), _g1h(g1h),
tonyp@2472 1916 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
ysr@777 1917
jmasa@3357 1918 void work(uint worker_id) {
ysr@777 1919 double start = os::elapsedTime();
tonyp@2493 1920 FreeRegionList local_cleanup_list("Local Cleanup List");
tonyp@2493 1921 HRRSCleanupTask hrrs_cleanup_task;
vkempik@6552 1922 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
tonyp@2493 1923 &hrrs_cleanup_task);
jmasa@2188 1924 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1925 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
jmasa@3294 1926 _g1h->workers()->active_workers(),
tonyp@790 1927 HeapRegion::NoteEndClaimValue);
ysr@777 1928 } else {
ysr@777 1929 _g1h->heap_region_iterate(&g1_note_end);
ysr@777 1930 }
ysr@777 1931 assert(g1_note_end.complete(), "Shouldn't have yielded!");
ysr@777 1932
tonyp@2472 1933 // Now update the lists
brutisso@6385 1934 _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
ysr@777 1935 {
ysr@777 1936 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
brutisso@6385 1937 _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
ysr@777 1938 _max_live_bytes += g1_note_end.max_live_bytes();
ysr@777 1939 _freed_bytes += g1_note_end.freed_bytes();
tonyp@2472 1940
tonyp@2975 1941 // If we iterate over the global cleanup list at the end of
tonyp@2975 1942 // cleanup to do this printing we will not guarantee to only
tonyp@2975 1943 // generate output for the newly-reclaimed regions (the list
tonyp@2975 1944 // might not be empty at the beginning of cleanup; we might
tonyp@2975 1945 // still be working on its previous contents). So we do the
tonyp@2975 1946 // printing here, before we append the new regions to the global
tonyp@2975 1947 // cleanup list.
tonyp@2975 1948
tonyp@2975 1949 G1HRPrinter* hr_printer = _g1h->hr_printer();
tonyp@2975 1950 if (hr_printer->is_active()) {
brutisso@6385 1951 FreeRegionListIterator iter(&local_cleanup_list);
tonyp@2975 1952 while (iter.more_available()) {
tonyp@2975 1953 HeapRegion* hr = iter.get_next();
tonyp@2975 1954 hr_printer->cleanup(hr);
tonyp@2975 1955 }
tonyp@2975 1956 }
tonyp@2975 1957
jwilhelm@6422 1958 _cleanup_list->add_ordered(&local_cleanup_list);
tonyp@2493 1959 assert(local_cleanup_list.is_empty(), "post-condition");
tonyp@2493 1960
tonyp@2493 1961 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
ysr@777 1962 }
ysr@777 1963 }
ysr@777 1964 size_t max_live_bytes() { return _max_live_bytes; }
ysr@777 1965 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1966 };
ysr@777 1967
ysr@777 1968 class G1ParScrubRemSetTask: public AbstractGangTask {
ysr@777 1969 protected:
ysr@777 1970 G1RemSet* _g1rs;
ysr@777 1971 BitMap* _region_bm;
ysr@777 1972 BitMap* _card_bm;
ysr@777 1973 public:
ysr@777 1974 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
ysr@777 1975 BitMap* region_bm, BitMap* card_bm) :
ysr@777 1976 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
johnc@3463 1977 _region_bm(region_bm), _card_bm(card_bm) { }
ysr@777 1978
jmasa@3357 1979 void work(uint worker_id) {
jmasa@2188 1980 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1981 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
tonyp@790 1982 HeapRegion::ScrubRemSetClaimValue);
ysr@777 1983 } else {
ysr@777 1984 _g1rs->scrub(_region_bm, _card_bm);
ysr@777 1985 }
ysr@777 1986 }
ysr@777 1987
ysr@777 1988 };
ysr@777 1989
ysr@777 1990 void ConcurrentMark::cleanup() {
ysr@777 1991 // world is stopped at this checkpoint
ysr@777 1992 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1993 "world should be stopped");
ysr@777 1994 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1995
ysr@777 1996 // If a full collection has happened, we shouldn't do this.
ysr@777 1997 if (has_aborted()) {
ysr@777 1998 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1999 return;
ysr@777 2000 }
ysr@777 2001
tonyp@2472 2002 g1h->verify_region_sets_optional();
tonyp@2472 2003
ysr@1280 2004 if (VerifyDuringGC) {
ysr@1280 2005 HandleMark hm; // handle scope
ysr@1280 2006 Universe::heap()->prepare_for_verify();
stefank@5018 2007 Universe::verify(VerifyOption_G1UsePrevMarking,
stefank@5018 2008 " VerifyDuringGC:(before)");
ysr@1280 2009 }
ysr@1280 2010
ysr@777 2011 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
ysr@777 2012 g1p->record_concurrent_mark_cleanup_start();
ysr@777 2013
ysr@777 2014 double start = os::elapsedTime();
ysr@777 2015
tonyp@2493 2016 HeapRegionRemSet::reset_for_cleanup_tasks();
tonyp@2493 2017
jmasa@3357 2018 uint n_workers;
jmasa@3294 2019
ysr@777 2020 // Do counting once more with the world stopped for good measure.
johnc@3463 2021 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
johnc@3463 2022
jmasa@2188 2023 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 2024 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@790 2025 "sanity check");
tonyp@790 2026
johnc@3338 2027 g1h->set_par_threads();
johnc@3338 2028 n_workers = g1h->n_par_threads();
jmasa@3357 2029 assert(g1h->n_par_threads() == n_workers,
johnc@3338 2030 "Should not have been reset");
ysr@777 2031 g1h->workers()->run_task(&g1_par_count_task);
jmasa@3294 2032 // Done with the parallel phase so reset to 0.
ysr@777 2033 g1h->set_par_threads(0);
tonyp@790 2034
johnc@3463 2035 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
tonyp@790 2036 "sanity check");
ysr@777 2037 } else {
johnc@3338 2038 n_workers = 1;
ysr@777 2039 g1_par_count_task.work(0);
ysr@777 2040 }
ysr@777 2041
johnc@3463 2042 if (VerifyDuringGC) {
johnc@3463 2043 // Verify that the counting data accumulated during marking matches
johnc@3463 2044 // that calculated by walking the marking bitmap.
johnc@3463 2045
johnc@3463 2046 // Bitmaps to hold expected values
mgerdin@6977 2047 BitMap expected_region_bm(_region_bm.size(), true);
mgerdin@6977 2048 BitMap expected_card_bm(_card_bm.size(), true);
johnc@3463 2049
johnc@3463 2050 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
johnc@3463 2051 &_region_bm,
johnc@3463 2052 &_card_bm,
johnc@3463 2053 &expected_region_bm,
johnc@3463 2054 &expected_card_bm);
johnc@3463 2055
johnc@3463 2056 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 2057 g1h->set_par_threads((int)n_workers);
johnc@3463 2058 g1h->workers()->run_task(&g1_par_verify_task);
johnc@3463 2059 // Done with the parallel phase so reset to 0.
johnc@3463 2060 g1h->set_par_threads(0);
johnc@3463 2061
johnc@3463 2062 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
johnc@3463 2063 "sanity check");
johnc@3463 2064 } else {
johnc@3463 2065 g1_par_verify_task.work(0);
johnc@3463 2066 }
johnc@3463 2067
johnc@3463 2068 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
johnc@3463 2069 }
johnc@3463 2070
ysr@777 2071 size_t start_used_bytes = g1h->used();
ysr@777 2072 g1h->set_marking_complete();
ysr@777 2073
ysr@777 2074 double count_end = os::elapsedTime();
ysr@777 2075 double this_final_counting_time = (count_end - start);
ysr@777 2076 _total_counting_time += this_final_counting_time;
ysr@777 2077
tonyp@2717 2078 if (G1PrintRegionLivenessInfo) {
tonyp@2717 2079 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
tonyp@2717 2080 _g1h->heap_region_iterate(&cl);
tonyp@2717 2081 }
tonyp@2717 2082
ysr@777 2083 // Install newly created mark bitMap as "prev".
ysr@777 2084 swapMarkBitMaps();
ysr@777 2085
ysr@777 2086 g1h->reset_gc_time_stamp();
ysr@777 2087
ysr@777 2088 // Note end of marking in all heap regions.
tonyp@2472 2089 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
jmasa@2188 2090 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 2091 g1h->set_par_threads((int)n_workers);
ysr@777 2092 g1h->workers()->run_task(&g1_par_note_end_task);
ysr@777 2093 g1h->set_par_threads(0);
tonyp@790 2094
tonyp@790 2095 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
tonyp@790 2096 "sanity check");
ysr@777 2097 } else {
ysr@777 2098 g1_par_note_end_task.work(0);
ysr@777 2099 }
tonyp@3957 2100 g1h->check_gc_time_stamps();
tonyp@2472 2101
tonyp@2472 2102 if (!cleanup_list_is_empty()) {
tonyp@2472 2103 // The cleanup list is not empty, so we'll have to process it
tonyp@2472 2104 // concurrently. Notify anyone else that might be wanting free
tonyp@2472 2105 // regions that there will be more free regions coming soon.
tonyp@2472 2106 g1h->set_free_regions_coming();
tonyp@2472 2107 }
ysr@777 2108
ysr@777 2109 // call below, since it affects the metric by which we sort the heap
ysr@777 2110 // regions.
ysr@777 2111 if (G1ScrubRemSets) {
ysr@777 2112 double rs_scrub_start = os::elapsedTime();
ysr@777 2113 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
jmasa@2188 2114 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 2115 g1h->set_par_threads((int)n_workers);
ysr@777 2116 g1h->workers()->run_task(&g1_par_scrub_rs_task);
ysr@777 2117 g1h->set_par_threads(0);
tonyp@790 2118
tonyp@790 2119 assert(g1h->check_heap_region_claim_values(
tonyp@790 2120 HeapRegion::ScrubRemSetClaimValue),
tonyp@790 2121 "sanity check");
ysr@777 2122 } else {
ysr@777 2123 g1_par_scrub_rs_task.work(0);
ysr@777 2124 }
ysr@777 2125
ysr@777 2126 double rs_scrub_end = os::elapsedTime();
ysr@777 2127 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
ysr@777 2128 _total_rs_scrub_time += this_rs_scrub_time;
ysr@777 2129 }
ysr@777 2130
ysr@777 2131 // this will also free any regions totally full of garbage objects,
ysr@777 2132 // and sort the regions.
jmasa@3294 2133 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
ysr@777 2134
ysr@777 2135 // Statistics.
ysr@777 2136 double end = os::elapsedTime();
ysr@777 2137 _cleanup_times.add((end - start) * 1000.0);
ysr@777 2138
brutisso@3710 2139 if (G1Log::fine()) {
ysr@777 2140 g1h->print_size_transition(gclog_or_tty,
ysr@777 2141 start_used_bytes,
ysr@777 2142 g1h->used(),
ysr@777 2143 g1h->capacity());
ysr@777 2144 }
ysr@777 2145
johnc@3175 2146 // Clean up will have freed any regions completely full of garbage.
johnc@3175 2147 // Update the soft reference policy with the new heap occupancy.
johnc@3175 2148 Universe::update_heap_info_at_gc();
johnc@3175 2149
johnc@1186 2150 if (VerifyDuringGC) {
ysr@1280 2151 HandleMark hm; // handle scope
ysr@1280 2152 Universe::heap()->prepare_for_verify();
stefank@5018 2153 Universe::verify(VerifyOption_G1UsePrevMarking,
stefank@5018 2154 " VerifyDuringGC:(after)");
ysr@777 2155 }
tonyp@2472 2156
tonyp@2472 2157 g1h->verify_region_sets_optional();
stefank@6992 2158
stefank@6992 2159 // We need to make this be a "collection" so any collection pause that
stefank@6992 2160 // races with it goes around and waits for completeCleanup to finish.
stefank@6992 2161 g1h->increment_total_collections();
stefank@6992 2162
stefank@6992 2163 // Clean out dead classes and update Metaspace sizes.
stefank@6996 2164 if (ClassUnloadingWithConcurrentMark) {
stefank@6996 2165 ClassLoaderDataGraph::purge();
stefank@6996 2166 }
stefank@6992 2167 MetaspaceGC::compute_new_size();
stefank@6992 2168
stefank@6992 2169 // We reclaimed old regions so we should calculate the sizes to make
stefank@6992 2170 // sure we update the old gen/space data.
stefank@6992 2171 g1h->g1mm()->update_sizes();
stefank@6992 2172
sla@5237 2173 g1h->trace_heap_after_concurrent_cycle();
ysr@777 2174 }
ysr@777 2175
ysr@777 2176 void ConcurrentMark::completeCleanup() {
ysr@777 2177 if (has_aborted()) return;
ysr@777 2178
tonyp@2472 2179 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2472 2180
jwilhelm@6549 2181 _cleanup_list.verify_optional();
tonyp@2643 2182 FreeRegionList tmp_free_list("Tmp Free List");
tonyp@2472 2183
tonyp@2472 2184 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 2185 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 2186 "cleanup list has %u entries",
tonyp@2472 2187 _cleanup_list.length());
tonyp@2472 2188 }
tonyp@2472 2189
tonyp@2472 2190 // Noone else should be accessing the _cleanup_list at this point,
tonyp@2472 2191 // so it's not necessary to take any locks
tonyp@2472 2192 while (!_cleanup_list.is_empty()) {
tonyp@2472 2193 HeapRegion* hr = _cleanup_list.remove_head();
jwilhelm@6422 2194 assert(hr != NULL, "Got NULL from a non-empty list");
tonyp@2849 2195 hr->par_clear();
jwilhelm@6422 2196 tmp_free_list.add_ordered(hr);
tonyp@2472 2197
tonyp@2472 2198 // Instead of adding one region at a time to the secondary_free_list,
tonyp@2472 2199 // we accumulate them in the local list and move them a few at a
tonyp@2472 2200 // time. This also cuts down on the number of notify_all() calls
tonyp@2472 2201 // we do during this process. We'll also append the local list when
tonyp@2472 2202 // _cleanup_list is empty (which means we just removed the last
tonyp@2472 2203 // region from the _cleanup_list).
tonyp@2643 2204 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
tonyp@2472 2205 _cleanup_list.is_empty()) {
tonyp@2472 2206 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 2207 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 2208 "appending %u entries to the secondary_free_list, "
tonyp@3713 2209 "cleanup list still has %u entries",
tonyp@2643 2210 tmp_free_list.length(),
tonyp@2472 2211 _cleanup_list.length());
ysr@777 2212 }
tonyp@2472 2213
tonyp@2472 2214 {
tonyp@2472 2215 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
jwilhelm@6422 2216 g1h->secondary_free_list_add(&tmp_free_list);
tonyp@2472 2217 SecondaryFreeList_lock->notify_all();
tonyp@2472 2218 }
tonyp@2472 2219
tonyp@2472 2220 if (G1StressConcRegionFreeing) {
tonyp@2472 2221 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
tonyp@2472 2222 os::sleep(Thread::current(), (jlong) 1, false);
tonyp@2472 2223 }
tonyp@2472 2224 }
ysr@777 2225 }
ysr@777 2226 }
tonyp@2643 2227 assert(tmp_free_list.is_empty(), "post-condition");
ysr@777 2228 }
ysr@777 2229
johnc@4555 2230 // Supporting Object and Oop closures for reference discovery
johnc@4555 2231 // and processing in during marking
johnc@2494 2232
johnc@2379 2233 bool G1CMIsAliveClosure::do_object_b(oop obj) {
johnc@2379 2234 HeapWord* addr = (HeapWord*)obj;
johnc@2379 2235 return addr != NULL &&
johnc@2379 2236 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
johnc@2379 2237 }
ysr@777 2238
johnc@4555 2239 // 'Keep Alive' oop closure used by both serial parallel reference processing.
johnc@4555 2240 // Uses the CMTask associated with a worker thread (for serial reference
johnc@4555 2241 // processing the CMTask for worker 0 is used) to preserve (mark) and
johnc@4555 2242 // trace referent objects.
johnc@4555 2243 //
johnc@4555 2244 // Using the CMTask and embedded local queues avoids having the worker
johnc@4555 2245 // threads operating on the global mark stack. This reduces the risk
johnc@4555 2246 // of overflowing the stack - which we would rather avoid at this late
johnc@4555 2247 // state. Also using the tasks' local queues removes the potential
johnc@4555 2248 // of the workers interfering with each other that could occur if
johnc@4555 2249 // operating on the global stack.
johnc@4555 2250
johnc@4555 2251 class G1CMKeepAliveAndDrainClosure: public OopClosure {
johnc@4787 2252 ConcurrentMark* _cm;
johnc@4787 2253 CMTask* _task;
johnc@4787 2254 int _ref_counter_limit;
johnc@4787 2255 int _ref_counter;
johnc@4787 2256 bool _is_serial;
johnc@2494 2257 public:
johnc@4787 2258 G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
johnc@4787 2259 _cm(cm), _task(task), _is_serial(is_serial),
johnc@4787 2260 _ref_counter_limit(G1RefProcDrainInterval) {
johnc@2494 2261 assert(_ref_counter_limit > 0, "sanity");
johnc@4787 2262 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
johnc@2494 2263 _ref_counter = _ref_counter_limit;
johnc@2494 2264 }
johnc@2494 2265
johnc@2494 2266 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
johnc@2494 2267 virtual void do_oop( oop* p) { do_oop_work(p); }
johnc@2494 2268
johnc@2494 2269 template <class T> void do_oop_work(T* p) {
johnc@2494 2270 if (!_cm->has_overflown()) {
johnc@2494 2271 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@2973 2272 if (_cm->verbose_high()) {
johnc@4173 2273 gclog_or_tty->print_cr("\t[%u] we're looking at location "
johnc@2494 2274 "*"PTR_FORMAT" = "PTR_FORMAT,
drchase@6680 2275 _task->worker_id(), p2i(p), p2i((void*) obj));
tonyp@2973 2276 }
johnc@2494 2277
johnc@2494 2278 _task->deal_with_reference(obj);
johnc@2494 2279 _ref_counter--;
johnc@2494 2280
johnc@2494 2281 if (_ref_counter == 0) {
johnc@4555 2282 // We have dealt with _ref_counter_limit references, pushing them
johnc@4555 2283 // and objects reachable from them on to the local stack (and
johnc@4555 2284 // possibly the global stack). Call CMTask::do_marking_step() to
johnc@4555 2285 // process these entries.
johnc@4555 2286 //
johnc@4555 2287 // We call CMTask::do_marking_step() in a loop, which we'll exit if
johnc@4555 2288 // there's nothing more to do (i.e. we're done with the entries that
johnc@4555 2289 // were pushed as a result of the CMTask::deal_with_reference() calls
johnc@4555 2290 // above) or we overflow.
johnc@4555 2291 //
johnc@4555 2292 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
johnc@4555 2293 // flag while there may still be some work to do. (See the comment at
johnc@4555 2294 // the beginning of CMTask::do_marking_step() for those conditions -
johnc@4555 2295 // one of which is reaching the specified time target.) It is only
johnc@4555 2296 // when CMTask::do_marking_step() returns without setting the
johnc@4555 2297 // has_aborted() flag that the marking step has completed.
johnc@2494 2298 do {
johnc@2494 2299 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 2300 _task->do_marking_step(mark_step_duration_ms,
johnc@4787 2301 false /* do_termination */,
johnc@4787 2302 _is_serial);
johnc@2494 2303 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2304 _ref_counter = _ref_counter_limit;
johnc@2494 2305 }
johnc@2494 2306 } else {
tonyp@2973 2307 if (_cm->verbose_high()) {
johnc@4173 2308 gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
tonyp@2973 2309 }
johnc@2494 2310 }
johnc@2494 2311 }
johnc@2494 2312 };
johnc@2494 2313
johnc@4555 2314 // 'Drain' oop closure used by both serial and parallel reference processing.
johnc@4555 2315 // Uses the CMTask associated with a given worker thread (for serial
johnc@4555 2316 // reference processing the CMtask for worker 0 is used). Calls the
johnc@4555 2317 // do_marking_step routine, with an unbelievably large timeout value,
johnc@4555 2318 // to drain the marking data structures of the remaining entries
johnc@4555 2319 // added by the 'keep alive' oop closure above.
johnc@4555 2320
johnc@4555 2321 class G1CMDrainMarkingStackClosure: public VoidClosure {
johnc@2494 2322 ConcurrentMark* _cm;
johnc@4555 2323 CMTask* _task;
johnc@4787 2324 bool _is_serial;
johnc@2494 2325 public:
johnc@4787 2326 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
johnc@4787 2327 _cm(cm), _task(task), _is_serial(is_serial) {
johnc@4787 2328 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
johnc@4555 2329 }
johnc@2494 2330
johnc@2494 2331 void do_void() {
johnc@2494 2332 do {
tonyp@2973 2333 if (_cm->verbose_high()) {
johnc@4787 2334 gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
johnc@4787 2335 _task->worker_id(), BOOL_TO_STR(_is_serial));
tonyp@2973 2336 }
johnc@2494 2337
johnc@4555 2338 // We call CMTask::do_marking_step() to completely drain the local
johnc@4555 2339 // and global marking stacks of entries pushed by the 'keep alive'
johnc@4555 2340 // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
johnc@4555 2341 //
johnc@4555 2342 // CMTask::do_marking_step() is called in a loop, which we'll exit
johnc@4555 2343 // if there's nothing more to do (i.e. we'completely drained the
johnc@4555 2344 // entries that were pushed as a a result of applying the 'keep alive'
johnc@4555 2345 // closure to the entries on the discovered ref lists) or we overflow
johnc@4555 2346 // the global marking stack.
johnc@4555 2347 //
johnc@4555 2348 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
johnc@4555 2349 // flag while there may still be some work to do. (See the comment at
johnc@4555 2350 // the beginning of CMTask::do_marking_step() for those conditions -
johnc@4555 2351 // one of which is reaching the specified time target.) It is only
johnc@4555 2352 // when CMTask::do_marking_step() returns without setting the
johnc@4555 2353 // has_aborted() flag that the marking step has completed.
johnc@2494 2354
johnc@2494 2355 _task->do_marking_step(1000000000.0 /* something very large */,
johnc@4787 2356 true /* do_termination */,
johnc@4787 2357 _is_serial);
johnc@2494 2358 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2359 }
johnc@2494 2360 };
johnc@2494 2361
johnc@3175 2362 // Implementation of AbstractRefProcTaskExecutor for parallel
johnc@3175 2363 // reference processing at the end of G1 concurrent marking
johnc@3175 2364
johnc@3175 2365 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
johnc@2494 2366 private:
johnc@2494 2367 G1CollectedHeap* _g1h;
johnc@2494 2368 ConcurrentMark* _cm;
johnc@2494 2369 WorkGang* _workers;
johnc@2494 2370 int _active_workers;
johnc@2494 2371
johnc@2494 2372 public:
johnc@3175 2373 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
johnc@2494 2374 ConcurrentMark* cm,
johnc@2494 2375 WorkGang* workers,
johnc@2494 2376 int n_workers) :
johnc@3292 2377 _g1h(g1h), _cm(cm),
johnc@3292 2378 _workers(workers), _active_workers(n_workers) { }
johnc@2494 2379
johnc@2494 2380 // Executes the given task using concurrent marking worker threads.
johnc@2494 2381 virtual void execute(ProcessTask& task);
johnc@2494 2382 virtual void execute(EnqueueTask& task);
johnc@2494 2383 };
johnc@2494 2384
johnc@3175 2385 class G1CMRefProcTaskProxy: public AbstractGangTask {
johnc@2494 2386 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
johnc@2494 2387 ProcessTask& _proc_task;
johnc@2494 2388 G1CollectedHeap* _g1h;
johnc@2494 2389 ConcurrentMark* _cm;
johnc@2494 2390
johnc@2494 2391 public:
johnc@3175 2392 G1CMRefProcTaskProxy(ProcessTask& proc_task,
johnc@2494 2393 G1CollectedHeap* g1h,
johnc@3292 2394 ConcurrentMark* cm) :
johnc@2494 2395 AbstractGangTask("Process reference objects in parallel"),
johnc@4555 2396 _proc_task(proc_task), _g1h(g1h), _cm(cm) {
johnc@4787 2397 ReferenceProcessor* rp = _g1h->ref_processor_cm();
johnc@4787 2398 assert(rp->processing_is_mt(), "shouldn't be here otherwise");
johnc@4787 2399 }
johnc@2494 2400
jmasa@3357 2401 virtual void work(uint worker_id) {
johnc@4787 2402 CMTask* task = _cm->task(worker_id);
johnc@2494 2403 G1CMIsAliveClosure g1_is_alive(_g1h);
johnc@4787 2404 G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
johnc@4787 2405 G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
johnc@2494 2406
jmasa@3357 2407 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
johnc@2494 2408 }
johnc@2494 2409 };
johnc@2494 2410
johnc@3175 2411 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
johnc@2494 2412 assert(_workers != NULL, "Need parallel worker threads.");
johnc@4555 2413 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
johnc@2494 2414
johnc@3292 2415 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
johnc@2494 2416
johnc@4788 2417 // We need to reset the concurrency level before each
johnc@4788 2418 // proxy task execution, so that the termination protocol
johnc@4788 2419 // and overflow handling in CMTask::do_marking_step() knows
johnc@4788 2420 // how many workers to wait for.
johnc@4788 2421 _cm->set_concurrency(_active_workers);
johnc@2494 2422 _g1h->set_par_threads(_active_workers);
johnc@2494 2423 _workers->run_task(&proc_task_proxy);
johnc@2494 2424 _g1h->set_par_threads(0);
johnc@2494 2425 }
johnc@2494 2426
johnc@3175 2427 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
johnc@2494 2428 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
johnc@2494 2429 EnqueueTask& _enq_task;
johnc@2494 2430
johnc@2494 2431 public:
johnc@3175 2432 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
johnc@2494 2433 AbstractGangTask("Enqueue reference objects in parallel"),
johnc@3292 2434 _enq_task(enq_task) { }
johnc@2494 2435
jmasa@3357 2436 virtual void work(uint worker_id) {
jmasa@3357 2437 _enq_task.work(worker_id);
johnc@2494 2438 }
johnc@2494 2439 };
johnc@2494 2440
johnc@3175 2441 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
johnc@2494 2442 assert(_workers != NULL, "Need parallel worker threads.");
johnc@4555 2443 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
johnc@2494 2444
johnc@3175 2445 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
johnc@2494 2446
johnc@4788 2447 // Not strictly necessary but...
johnc@4788 2448 //
johnc@4788 2449 // We need to reset the concurrency level before each
johnc@4788 2450 // proxy task execution, so that the termination protocol
johnc@4788 2451 // and overflow handling in CMTask::do_marking_step() knows
johnc@4788 2452 // how many workers to wait for.
johnc@4788 2453 _cm->set_concurrency(_active_workers);
johnc@2494 2454 _g1h->set_par_threads(_active_workers);
johnc@2494 2455 _workers->run_task(&enq_task_proxy);
johnc@2494 2456 _g1h->set_par_threads(0);
johnc@2494 2457 }
johnc@2494 2458
stefank@6992 2459 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
stefank@6992 2460 G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
stefank@6992 2461 }
stefank@6992 2462
stefank@6992 2463 // Helper class to get rid of some boilerplate code.
stefank@6992 2464 class G1RemarkGCTraceTime : public GCTraceTime {
stefank@6992 2465 static bool doit_and_prepend(bool doit) {
stefank@6992 2466 if (doit) {
stefank@6992 2467 gclog_or_tty->put(' ');
stefank@6992 2468 }
stefank@6992 2469 return doit;
stefank@6992 2470 }
stefank@6992 2471
stefank@6992 2472 public:
stefank@6992 2473 G1RemarkGCTraceTime(const char* title, bool doit)
stefank@6992 2474 : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
stefank@6992 2475 G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
stefank@6992 2476 }
stefank@6992 2477 };
stefank@6992 2478
ysr@777 2479 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
johnc@4788 2480 if (has_overflown()) {
johnc@4788 2481 // Skip processing the discovered references if we have
johnc@4788 2482 // overflown the global marking stack. Reference objects
johnc@4788 2483 // only get discovered once so it is OK to not
johnc@4788 2484 // de-populate the discovered reference lists. We could have,
johnc@4788 2485 // but the only benefit would be that, when marking restarts,
johnc@4788 2486 // less reference objects are discovered.
johnc@4788 2487 return;
johnc@4788 2488 }
johnc@4788 2489
ysr@777 2490 ResourceMark rm;
ysr@777 2491 HandleMark hm;
johnc@3171 2492
johnc@3171 2493 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3171 2494
johnc@3171 2495 // Is alive closure.
johnc@3171 2496 G1CMIsAliveClosure g1_is_alive(g1h);
johnc@3171 2497
johnc@3171 2498 // Inner scope to exclude the cleaning of the string and symbol
johnc@3171 2499 // tables from the displayed time.
johnc@3171 2500 {
brutisso@3710 2501 if (G1Log::finer()) {
johnc@3171 2502 gclog_or_tty->put(' ');
johnc@3171 2503 }
brutisso@6904 2504 GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
johnc@3171 2505
johnc@3175 2506 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3171 2507
johnc@3171 2508 // See the comment in G1CollectedHeap::ref_processing_init()
johnc@3171 2509 // about how reference processing currently works in G1.
johnc@3171 2510
johnc@4555 2511 // Set the soft reference policy
johnc@3171 2512 rp->setup_policy(clear_all_soft_refs);
johnc@3171 2513 assert(_markStack.isEmpty(), "mark stack should be empty");
johnc@3171 2514
johnc@4787 2515 // Instances of the 'Keep Alive' and 'Complete GC' closures used
johnc@4787 2516 // in serial reference processing. Note these closures are also
johnc@4787 2517 // used for serially processing (by the the current thread) the
johnc@4787 2518 // JNI references during parallel reference processing.
johnc@4787 2519 //
johnc@4787 2520 // These closures do not need to synchronize with the worker
johnc@4787 2521 // threads involved in parallel reference processing as these
johnc@4787 2522 // instances are executed serially by the current thread (e.g.
johnc@4787 2523 // reference processing is not multi-threaded and is thus
johnc@4787 2524 // performed by the current thread instead of a gang worker).
johnc@4787 2525 //
johnc@4787 2526 // The gang tasks involved in parallel reference procssing create
johnc@4787 2527 // their own instances of these closures, which do their own
johnc@4787 2528 // synchronization among themselves.
johnc@4787 2529 G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
johnc@4787 2530 G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
johnc@4787 2531
johnc@4787 2532 // We need at least one active thread. If reference processing
johnc@4787 2533 // is not multi-threaded we use the current (VMThread) thread,
johnc@4787 2534 // otherwise we use the work gang from the G1CollectedHeap and
johnc@4787 2535 // we utilize all the worker threads we can.
johnc@4787 2536 bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
johnc@4787 2537 uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
johnc@4173 2538 active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
johnc@3171 2539
johnc@4787 2540 // Parallel processing task executor.
johnc@3292 2541 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
johnc@3175 2542 g1h->workers(), active_workers);
johnc@4787 2543 AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
johnc@4555 2544
johnc@4788 2545 // Set the concurrency level. The phase was already set prior to
johnc@4788 2546 // executing the remark task.
johnc@4788 2547 set_concurrency(active_workers);
johnc@4788 2548
johnc@4555 2549 // Set the degree of MT processing here. If the discovery was done MT,
johnc@4555 2550 // the number of threads involved during discovery could differ from
johnc@4555 2551 // the number of active workers. This is OK as long as the discovered
johnc@4555 2552 // Reference lists are balanced (see balance_all_queues() and balance_queues()).
johnc@4555 2553 rp->set_active_mt_degree(active_workers);
johnc@4555 2554
johnc@4555 2555 // Process the weak references.
sla@5237 2556 const ReferenceProcessorStats& stats =
sla@5237 2557 rp->process_discovered_references(&g1_is_alive,
sla@5237 2558 &g1_keep_alive,
sla@5237 2559 &g1_drain_mark_stack,
sla@5237 2560 executor,
brutisso@6904 2561 g1h->gc_timer_cm(),
brutisso@6904 2562 concurrent_gc_id());
sla@5237 2563 g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
johnc@4555 2564
johnc@4555 2565 // The do_oop work routines of the keep_alive and drain_marking_stack
johnc@4555 2566 // oop closures will set the has_overflown flag if we overflow the
johnc@4555 2567 // global marking stack.
johnc@3171 2568
johnc@3171 2569 assert(_markStack.overflow() || _markStack.isEmpty(),
johnc@3171 2570 "mark stack should be empty (unless it overflowed)");
johnc@4787 2571
johnc@3171 2572 if (_markStack.overflow()) {
johnc@4555 2573 // This should have been done already when we tried to push an
johnc@3171 2574 // entry on to the global mark stack. But let's do it again.
johnc@3171 2575 set_has_overflown();
johnc@3171 2576 }
johnc@3171 2577
johnc@4555 2578 assert(rp->num_q() == active_workers, "why not");
johnc@4555 2579
johnc@4555 2580 rp->enqueue_discovered_references(executor);
johnc@3171 2581
johnc@3171 2582 rp->verify_no_references_recorded();
johnc@3175 2583 assert(!rp->discovery_enabled(), "Post condition");
johnc@2494 2584 }
johnc@2494 2585
pliden@6399 2586 if (has_overflown()) {
pliden@6399 2587 // We can not trust g1_is_alive if the marking stack overflowed
pliden@6399 2588 return;
pliden@6399 2589 }
pliden@6399 2590
stefank@6992 2591 assert(_markStack.isEmpty(), "Marking should have completed");
stefank@6992 2592
stefank@6992 2593 // Unload Klasses, String, Symbols, Code Cache, etc.
stefank@6992 2594 {
stefank@6996 2595 G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
stefank@6996 2596
stefank@6996 2597 if (ClassUnloadingWithConcurrentMark) {
stefank@6996 2598 bool purged_classes;
stefank@6996 2599
stefank@6996 2600 {
stefank@6996 2601 G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
stefank@6996 2602 purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
stefank@6996 2603 }
stefank@6996 2604
stefank@6996 2605 {
stefank@6996 2606 G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
stefank@6996 2607 weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
stefank@6996 2608 }
stefank@6996 2609 }
stefank@6996 2610
stefank@6996 2611 if (G1StringDedup::is_enabled()) {
stefank@6996 2612 G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
stefank@6996 2613 G1StringDedup::unlink(&g1_is_alive);
stefank@6996 2614 }
stefank@6992 2615 }
ysr@777 2616 }
ysr@777 2617
ysr@777 2618 void ConcurrentMark::swapMarkBitMaps() {
ysr@777 2619 CMBitMapRO* temp = _prevMarkBitMap;
ysr@777 2620 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
ysr@777 2621 _nextMarkBitMap = (CMBitMap*) temp;
ysr@777 2622 }
ysr@777 2623
stefank@6992 2624 class CMObjectClosure;
stefank@6992 2625
stefank@6992 2626 // Closure for iterating over objects, currently only used for
stefank@6992 2627 // processing SATB buffers.
stefank@6992 2628 class CMObjectClosure : public ObjectClosure {
stefank@6992 2629 private:
stefank@6992 2630 CMTask* _task;
stefank@6992 2631
stefank@6992 2632 public:
stefank@6992 2633 void do_object(oop obj) {
stefank@6992 2634 _task->deal_with_reference(obj);
stefank@6992 2635 }
stefank@6992 2636
stefank@6992 2637 CMObjectClosure(CMTask* task) : _task(task) { }
stefank@6992 2638 };
stefank@6992 2639
stefank@6992 2640 class G1RemarkThreadsClosure : public ThreadClosure {
stefank@6992 2641 CMObjectClosure _cm_obj;
stefank@6992 2642 G1CMOopClosure _cm_cl;
stefank@6992 2643 MarkingCodeBlobClosure _code_cl;
stefank@6992 2644 int _thread_parity;
stefank@6992 2645 bool _is_par;
stefank@6992 2646
stefank@6992 2647 public:
stefank@6992 2648 G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
stefank@6992 2649 _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
stefank@6992 2650 _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
stefank@6992 2651
stefank@6992 2652 void do_thread(Thread* thread) {
stefank@6992 2653 if (thread->is_Java_thread()) {
stefank@6992 2654 if (thread->claim_oops_do(_is_par, _thread_parity)) {
stefank@6992 2655 JavaThread* jt = (JavaThread*)thread;
stefank@6992 2656
stefank@6992 2657 // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
stefank@6992 2658 // however the liveness of oops reachable from nmethods have very complex lifecycles:
stefank@6992 2659 // * Alive if on the stack of an executing method
stefank@6992 2660 // * Weakly reachable otherwise
stefank@6992 2661 // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
stefank@6992 2662 // live by the SATB invariant but other oops recorded in nmethods may behave differently.
stefank@6992 2663 jt->nmethods_do(&_code_cl);
stefank@6992 2664
stefank@6992 2665 jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
stefank@6992 2666 }
stefank@6992 2667 } else if (thread->is_VM_thread()) {
stefank@6992 2668 if (thread->claim_oops_do(_is_par, _thread_parity)) {
stefank@6992 2669 JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
stefank@6992 2670 }
stefank@6992 2671 }
stefank@6992 2672 }
stefank@6992 2673 };
stefank@6992 2674
ysr@777 2675 class CMRemarkTask: public AbstractGangTask {
ysr@777 2676 private:
johnc@4787 2677 ConcurrentMark* _cm;
johnc@4787 2678 bool _is_serial;
ysr@777 2679 public:
jmasa@3357 2680 void work(uint worker_id) {
ysr@777 2681 // Since all available tasks are actually started, we should
ysr@777 2682 // only proceed if we're supposed to be actived.
jmasa@3357 2683 if (worker_id < _cm->active_tasks()) {
jmasa@3357 2684 CMTask* task = _cm->task(worker_id);
ysr@777 2685 task->record_start_time();
stefank@6992 2686 {
stefank@6992 2687 ResourceMark rm;
stefank@6992 2688 HandleMark hm;
stefank@6992 2689
stefank@6992 2690 G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
stefank@6992 2691 Threads::threads_do(&threads_f);
stefank@6992 2692 }
stefank@6992 2693
ysr@777 2694 do {
johnc@2494 2695 task->do_marking_step(1000000000.0 /* something very large */,
johnc@4787 2696 true /* do_termination */,
johnc@4787 2697 _is_serial);
ysr@777 2698 } while (task->has_aborted() && !_cm->has_overflown());
ysr@777 2699 // If we overflow, then we do not want to restart. We instead
ysr@777 2700 // want to abort remark and do concurrent marking again.
ysr@777 2701 task->record_end_time();
ysr@777 2702 }
ysr@777 2703 }
ysr@777 2704
johnc@4787 2705 CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
johnc@4787 2706 AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
johnc@3338 2707 _cm->terminator()->reset_for_reuse(active_workers);
jmasa@3294 2708 }
ysr@777 2709 };
ysr@777 2710
ysr@777 2711 void ConcurrentMark::checkpointRootsFinalWork() {
ysr@777 2712 ResourceMark rm;
ysr@777 2713 HandleMark hm;
ysr@777 2714 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 2715
stefank@6992 2716 G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
stefank@6992 2717
ysr@777 2718 g1h->ensure_parsability(false);
ysr@777 2719
jmasa@2188 2720 if (G1CollectedHeap::use_parallel_gc_threads()) {
jrose@1424 2721 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3294 2722 // this is remark, so we'll use up all active threads
jmasa@3357 2723 uint active_workers = g1h->workers()->active_workers();
jmasa@3294 2724 if (active_workers == 0) {
jmasa@3294 2725 assert(active_workers > 0, "Should have been set earlier");
jmasa@3357 2726 active_workers = (uint) ParallelGCThreads;
jmasa@3294 2727 g1h->workers()->set_active_workers(active_workers);
jmasa@3294 2728 }
johnc@4788 2729 set_concurrency_and_phase(active_workers, false /* concurrent */);
jmasa@3294 2730 // Leave _parallel_marking_threads at it's
jmasa@3294 2731 // value originally calculated in the ConcurrentMark
jmasa@3294 2732 // constructor and pass values of the active workers
jmasa@3294 2733 // through the gang in the task.
ysr@777 2734
johnc@4787 2735 CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
johnc@4787 2736 // We will start all available threads, even if we decide that the
johnc@4787 2737 // active_workers will be fewer. The extra ones will just bail out
johnc@4787 2738 // immediately.
jmasa@3294 2739 g1h->set_par_threads(active_workers);
ysr@777 2740 g1h->workers()->run_task(&remarkTask);
ysr@777 2741 g1h->set_par_threads(0);
ysr@777 2742 } else {
jrose@1424 2743 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3357 2744 uint active_workers = 1;
johnc@4788 2745 set_concurrency_and_phase(active_workers, false /* concurrent */);
ysr@777 2746
johnc@4787 2747 // Note - if there's no work gang then the VMThread will be
johnc@4787 2748 // the thread to execute the remark - serially. We have
johnc@4787 2749 // to pass true for the is_serial parameter so that
johnc@4787 2750 // CMTask::do_marking_step() doesn't enter the sync
johnc@4787 2751 // barriers in the event of an overflow. Doing so will
johnc@4787 2752 // cause an assert that the current thread is not a
johnc@4787 2753 // concurrent GC thread.
johnc@4787 2754 CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
ysr@777 2755 remarkTask.work(0);
ysr@777 2756 }
tonyp@1458 2757 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
johnc@4789 2758 guarantee(has_overflown() ||
johnc@4789 2759 satb_mq_set.completed_buffers_num() == 0,
johnc@4789 2760 err_msg("Invariant: has_overflown = %s, num buffers = %d",
johnc@4789 2761 BOOL_TO_STR(has_overflown()),
johnc@4789 2762 satb_mq_set.completed_buffers_num()));
ysr@777 2763
ysr@777 2764 print_stats();
ysr@777 2765 }
ysr@777 2766
tonyp@1479 2767 #ifndef PRODUCT
tonyp@1479 2768
tonyp@1823 2769 class PrintReachableOopClosure: public OopClosure {
ysr@777 2770 private:
ysr@777 2771 G1CollectedHeap* _g1h;
ysr@777 2772 outputStream* _out;
johnc@2969 2773 VerifyOption _vo;
tonyp@1823 2774 bool _all;
ysr@777 2775
ysr@777 2776 public:
johnc@2969 2777 PrintReachableOopClosure(outputStream* out,
johnc@2969 2778 VerifyOption vo,
tonyp@1823 2779 bool all) :
tonyp@1479 2780 _g1h(G1CollectedHeap::heap()),
johnc@2969 2781 _out(out), _vo(vo), _all(all) { }
ysr@777 2782
ysr@1280 2783 void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2784 void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2785
ysr@1280 2786 template <class T> void do_oop_work(T* p) {
ysr@1280 2787 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@777 2788 const char* str = NULL;
ysr@777 2789 const char* str2 = "";
ysr@777 2790
tonyp@1823 2791 if (obj == NULL) {
tonyp@1823 2792 str = "";
tonyp@1823 2793 } else if (!_g1h->is_in_g1_reserved(obj)) {
tonyp@1823 2794 str = " O";
tonyp@1823 2795 } else {
ysr@777 2796 HeapRegion* hr = _g1h->heap_region_containing(obj);
tonyp@1458 2797 guarantee(hr != NULL, "invariant");
tonyp@3957 2798 bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
tonyp@3957 2799 bool marked = _g1h->is_marked(obj, _vo);
tonyp@1479 2800
tonyp@1479 2801 if (over_tams) {
tonyp@1823 2802 str = " >";
tonyp@1823 2803 if (marked) {
ysr@777 2804 str2 = " AND MARKED";
tonyp@1479 2805 }
tonyp@1823 2806 } else if (marked) {
tonyp@1823 2807 str = " M";
tonyp@1479 2808 } else {
tonyp@1823 2809 str = " NOT";
tonyp@1479 2810 }
ysr@777 2811 }
ysr@777 2812
tonyp@1823 2813 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
drchase@6680 2814 p2i(p), p2i((void*) obj), str, str2);
ysr@777 2815 }
ysr@777 2816 };
ysr@777 2817
tonyp@1823 2818 class PrintReachableObjectClosure : public ObjectClosure {
ysr@777 2819 private:
johnc@2969 2820 G1CollectedHeap* _g1h;
johnc@2969 2821 outputStream* _out;
johnc@2969 2822 VerifyOption _vo;
johnc@2969 2823 bool _all;
johnc@2969 2824 HeapRegion* _hr;
ysr@777 2825
ysr@777 2826 public:
johnc@2969 2827 PrintReachableObjectClosure(outputStream* out,
johnc@2969 2828 VerifyOption vo,
tonyp@1823 2829 bool all,
tonyp@1823 2830 HeapRegion* hr) :
johnc@2969 2831 _g1h(G1CollectedHeap::heap()),
johnc@2969 2832 _out(out), _vo(vo), _all(all), _hr(hr) { }
tonyp@1823 2833
tonyp@1823 2834 void do_object(oop o) {
tonyp@3957 2835 bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
tonyp@3957 2836 bool marked = _g1h->is_marked(o, _vo);
tonyp@1823 2837 bool print_it = _all || over_tams || marked;
tonyp@1823 2838
tonyp@1823 2839 if (print_it) {
tonyp@1823 2840 _out->print_cr(" "PTR_FORMAT"%s",
drchase@6680 2841 p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
johnc@2969 2842 PrintReachableOopClosure oopCl(_out, _vo, _all);
coleenp@4037 2843 o->oop_iterate_no_header(&oopCl);
tonyp@1823 2844 }
ysr@777 2845 }
ysr@777 2846 };
ysr@777 2847
tonyp@1823 2848 class PrintReachableRegionClosure : public HeapRegionClosure {
ysr@777 2849 private:
tonyp@3957 2850 G1CollectedHeap* _g1h;
tonyp@3957 2851 outputStream* _out;
tonyp@3957 2852 VerifyOption _vo;
tonyp@3957 2853 bool _all;
ysr@777 2854
ysr@777 2855 public:
ysr@777 2856 bool doHeapRegion(HeapRegion* hr) {
ysr@777 2857 HeapWord* b = hr->bottom();
ysr@777 2858 HeapWord* e = hr->end();
ysr@777 2859 HeapWord* t = hr->top();
tonyp@3957 2860 HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
ysr@777 2861 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
drchase@6680 2862 "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
tonyp@1823 2863 _out->cr();
tonyp@1823 2864
tonyp@1823 2865 HeapWord* from = b;
tonyp@1823 2866 HeapWord* to = t;
tonyp@1823 2867
tonyp@1823 2868 if (to > from) {
drchase@6680 2869 _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
tonyp@1823 2870 _out->cr();
johnc@2969 2871 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
tonyp@1823 2872 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
tonyp@1823 2873 _out->cr();
tonyp@1823 2874 }
ysr@777 2875
ysr@777 2876 return false;
ysr@777 2877 }
ysr@777 2878
johnc@2969 2879 PrintReachableRegionClosure(outputStream* out,
johnc@2969 2880 VerifyOption vo,
tonyp@1823 2881 bool all) :
tonyp@3957 2882 _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
ysr@777 2883 };
ysr@777 2884
tonyp@1823 2885 void ConcurrentMark::print_reachable(const char* str,
johnc@2969 2886 VerifyOption vo,
tonyp@1823 2887 bool all) {
tonyp@1823 2888 gclog_or_tty->cr();
tonyp@1823 2889 gclog_or_tty->print_cr("== Doing heap dump... ");
tonyp@1479 2890
tonyp@1479 2891 if (G1PrintReachableBaseFile == NULL) {
tonyp@1479 2892 gclog_or_tty->print_cr(" #### error: no base file defined");
tonyp@1479 2893 return;
tonyp@1479 2894 }
tonyp@1479 2895
tonyp@1479 2896 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
tonyp@1479 2897 (JVM_MAXPATHLEN - 1)) {
tonyp@1479 2898 gclog_or_tty->print_cr(" #### error: file name too long");
tonyp@1479 2899 return;
tonyp@1479 2900 }
tonyp@1479 2901
tonyp@1479 2902 char file_name[JVM_MAXPATHLEN];
tonyp@1479 2903 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
tonyp@1479 2904 gclog_or_tty->print_cr(" dumping to file %s", file_name);
tonyp@1479 2905
tonyp@1479 2906 fileStream fout(file_name);
tonyp@1479 2907 if (!fout.is_open()) {
tonyp@1479 2908 gclog_or_tty->print_cr(" #### error: could not open file");
tonyp@1479 2909 return;
tonyp@1479 2910 }
tonyp@1479 2911
tonyp@1479 2912 outputStream* out = &fout;
tonyp@3957 2913 out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
tonyp@1479 2914 out->cr();
tonyp@1479 2915
tonyp@1823 2916 out->print_cr("--- ITERATING OVER REGIONS");
tonyp@1479 2917 out->cr();
johnc@2969 2918 PrintReachableRegionClosure rcl(out, vo, all);
ysr@777 2919 _g1h->heap_region_iterate(&rcl);
tonyp@1479 2920 out->cr();
tonyp@1479 2921
tonyp@1479 2922 gclog_or_tty->print_cr(" done");
tonyp@1823 2923 gclog_or_tty->flush();
ysr@777 2924 }
ysr@777 2925
tonyp@1479 2926 #endif // PRODUCT
tonyp@1479 2927
tonyp@3416 2928 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
ysr@777 2929 // Note we are overriding the read-only view of the prev map here, via
ysr@777 2930 // the cast.
ysr@777 2931 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
tonyp@3416 2932 }
tonyp@3416 2933
tonyp@3416 2934 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
ysr@777 2935 _nextMarkBitMap->clearRange(mr);
ysr@777 2936 }
ysr@777 2937
tonyp@3416 2938 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
tonyp@3416 2939 clearRangePrevBitmap(mr);
tonyp@3416 2940 clearRangeNextBitmap(mr);
tonyp@3416 2941 }
tonyp@3416 2942
ysr@777 2943 HeapRegion*
johnc@4173 2944 ConcurrentMark::claim_region(uint worker_id) {
ysr@777 2945 // "checkpoint" the finger
ysr@777 2946 HeapWord* finger = _finger;
ysr@777 2947
ysr@777 2948 // _heap_end will not change underneath our feet; it only changes at
ysr@777 2949 // yield points.
ysr@777 2950 while (finger < _heap_end) {
tonyp@1458 2951 assert(_g1h->is_in_g1_reserved(finger), "invariant");
ysr@777 2952
tonyp@2968 2953 // Note on how this code handles humongous regions. In the
tonyp@2968 2954 // normal case the finger will reach the start of a "starts
tonyp@2968 2955 // humongous" (SH) region. Its end will either be the end of the
tonyp@2968 2956 // last "continues humongous" (CH) region in the sequence, or the
tonyp@2968 2957 // standard end of the SH region (if the SH is the only region in
tonyp@2968 2958 // the sequence). That way claim_region() will skip over the CH
tonyp@2968 2959 // regions. However, there is a subtle race between a CM thread
tonyp@2968 2960 // executing this method and a mutator thread doing a humongous
tonyp@2968 2961 // object allocation. The two are not mutually exclusive as the CM
tonyp@2968 2962 // thread does not need to hold the Heap_lock when it gets
tonyp@2968 2963 // here. So there is a chance that claim_region() will come across
tonyp@2968 2964 // a free region that's in the progress of becoming a SH or a CH
tonyp@2968 2965 // region. In the former case, it will either
tonyp@2968 2966 // a) Miss the update to the region's end, in which case it will
tonyp@2968 2967 // visit every subsequent CH region, will find their bitmaps
tonyp@2968 2968 // empty, and do nothing, or
tonyp@2968 2969 // b) Will observe the update of the region's end (in which case
tonyp@2968 2970 // it will skip the subsequent CH regions).
tonyp@2968 2971 // If it comes across a region that suddenly becomes CH, the
tonyp@2968 2972 // scenario will be similar to b). So, the race between
tonyp@2968 2973 // claim_region() and a humongous object allocation might force us
tonyp@2968 2974 // to do a bit of unnecessary work (due to some unnecessary bitmap
tonyp@2968 2975 // iterations) but it should not introduce and correctness issues.
tonyp@2968 2976 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
ysr@777 2977 HeapWord* bottom = curr_region->bottom();
ysr@777 2978 HeapWord* end = curr_region->end();
ysr@777 2979 HeapWord* limit = curr_region->next_top_at_mark_start();
ysr@777 2980
tonyp@2968 2981 if (verbose_low()) {
johnc@4173 2982 gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
ysr@777 2983 "["PTR_FORMAT", "PTR_FORMAT"), "
ysr@777 2984 "limit = "PTR_FORMAT,
drchase@6680 2985 worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
tonyp@2968 2986 }
tonyp@2968 2987
tonyp@2968 2988 // Is the gap between reading the finger and doing the CAS too long?
tonyp@2968 2989 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
ysr@777 2990 if (res == finger) {
ysr@777 2991 // we succeeded
ysr@777 2992
ysr@777 2993 // notice that _finger == end cannot be guaranteed here since,
ysr@777 2994 // someone else might have moved the finger even further
tonyp@1458 2995 assert(_finger >= end, "the finger should have moved forward");
ysr@777 2996
tonyp@2973 2997 if (verbose_low()) {
johnc@4173 2998 gclog_or_tty->print_cr("[%u] we were successful with region = "
drchase@6680 2999 PTR_FORMAT, worker_id, p2i(curr_region));
tonyp@2973 3000 }
ysr@777 3001
ysr@777 3002 if (limit > bottom) {
tonyp@2973 3003 if (verbose_low()) {
johnc@4173 3004 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
drchase@6680 3005 "returning it ", worker_id, p2i(curr_region));
tonyp@2973 3006 }
ysr@777 3007 return curr_region;
ysr@777 3008 } else {
tonyp@1458 3009 assert(limit == bottom,
tonyp@1458 3010 "the region limit should be at bottom");
tonyp@2973 3011 if (verbose_low()) {
johnc@4173 3012 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
drchase@6680 3013 "returning NULL", worker_id, p2i(curr_region));
tonyp@2973 3014 }
ysr@777 3015 // we return NULL and the caller should try calling
ysr@777 3016 // claim_region() again.
ysr@777 3017 return NULL;
ysr@777 3018 }
ysr@777 3019 } else {
tonyp@1458 3020 assert(_finger > finger, "the finger should have moved forward");
tonyp@2973 3021 if (verbose_low()) {
johnc@4173 3022 gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
ysr@777 3023 "global finger = "PTR_FORMAT", "
ysr@777 3024 "our finger = "PTR_FORMAT,
drchase@6680 3025 worker_id, p2i(_finger), p2i(finger));
tonyp@2973 3026 }
ysr@777 3027
ysr@777 3028 // read it again
ysr@777 3029 finger = _finger;
ysr@777 3030 }
ysr@777 3031 }
ysr@777 3032
ysr@777 3033 return NULL;
ysr@777 3034 }
ysr@777 3035
tonyp@3416 3036 #ifndef PRODUCT
tonyp@3416 3037 enum VerifyNoCSetOopsPhase {
tonyp@3416 3038 VerifyNoCSetOopsStack,
tonyp@3416 3039 VerifyNoCSetOopsQueues,
tonyp@3416 3040 VerifyNoCSetOopsSATBCompleted,
tonyp@3416 3041 VerifyNoCSetOopsSATBThread
tonyp@3416 3042 };
tonyp@3416 3043
tonyp@3416 3044 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
tonyp@3416 3045 private:
tonyp@3416 3046 G1CollectedHeap* _g1h;
tonyp@3416 3047 VerifyNoCSetOopsPhase _phase;
tonyp@3416 3048 int _info;
tonyp@3416 3049
tonyp@3416 3050 const char* phase_str() {
tonyp@3416 3051 switch (_phase) {
tonyp@3416 3052 case VerifyNoCSetOopsStack: return "Stack";
tonyp@3416 3053 case VerifyNoCSetOopsQueues: return "Queue";
tonyp@3416 3054 case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
tonyp@3416 3055 case VerifyNoCSetOopsSATBThread: return "Thread SATB Buffers";
tonyp@3416 3056 default: ShouldNotReachHere();
tonyp@3416 3057 }
tonyp@3416 3058 return NULL;
ysr@777 3059 }
johnc@2190 3060
tonyp@3416 3061 void do_object_work(oop obj) {
tonyp@3416 3062 guarantee(!_g1h->obj_in_cs(obj),
tonyp@3416 3063 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
drchase@6680 3064 p2i((void*) obj), phase_str(), _info));
johnc@2190 3065 }
johnc@2190 3066
tonyp@3416 3067 public:
tonyp@3416 3068 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
tonyp@3416 3069
tonyp@3416 3070 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
tonyp@3416 3071 _phase = phase;
tonyp@3416 3072 _info = info;
tonyp@3416 3073 }
tonyp@3416 3074
tonyp@3416 3075 virtual void do_oop(oop* p) {
tonyp@3416 3076 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@3416 3077 do_object_work(obj);
tonyp@3416 3078 }
tonyp@3416 3079
tonyp@3416 3080 virtual void do_oop(narrowOop* p) {
tonyp@3416 3081 // We should not come across narrow oops while scanning marking
tonyp@3416 3082 // stacks and SATB buffers.
tonyp@3416 3083 ShouldNotReachHere();
tonyp@3416 3084 }
tonyp@3416 3085
tonyp@3416 3086 virtual void do_object(oop obj) {
tonyp@3416 3087 do_object_work(obj);
tonyp@3416 3088 }
tonyp@3416 3089 };
tonyp@3416 3090
tonyp@3416 3091 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
tonyp@3416 3092 bool verify_enqueued_buffers,
tonyp@3416 3093 bool verify_thread_buffers,
tonyp@3416 3094 bool verify_fingers) {
tonyp@3416 3095 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
tonyp@3416 3096 if (!G1CollectedHeap::heap()->mark_in_progress()) {
tonyp@3416 3097 return;
tonyp@3416 3098 }
tonyp@3416 3099
tonyp@3416 3100 VerifyNoCSetOopsClosure cl;
tonyp@3416 3101
tonyp@3416 3102 if (verify_stacks) {
tonyp@3416 3103 // Verify entries on the global mark stack
tonyp@3416 3104 cl.set_phase(VerifyNoCSetOopsStack);
tonyp@3416 3105 _markStack.oops_do(&cl);
tonyp@3416 3106
tonyp@3416 3107 // Verify entries on the task queues
johnc@4173 3108 for (uint i = 0; i < _max_worker_id; i += 1) {
tonyp@3416 3109 cl.set_phase(VerifyNoCSetOopsQueues, i);
johnc@4333 3110 CMTaskQueue* queue = _task_queues->queue(i);
tonyp@3416 3111 queue->oops_do(&cl);
tonyp@3416 3112 }
tonyp@3416 3113 }
tonyp@3416 3114
tonyp@3416 3115 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@3416 3116
tonyp@3416 3117 // Verify entries on the enqueued SATB buffers
tonyp@3416 3118 if (verify_enqueued_buffers) {
tonyp@3416 3119 cl.set_phase(VerifyNoCSetOopsSATBCompleted);
tonyp@3416 3120 satb_qs.iterate_completed_buffers_read_only(&cl);
tonyp@3416 3121 }
tonyp@3416 3122
tonyp@3416 3123 // Verify entries on the per-thread SATB buffers
tonyp@3416 3124 if (verify_thread_buffers) {
tonyp@3416 3125 cl.set_phase(VerifyNoCSetOopsSATBThread);
tonyp@3416 3126 satb_qs.iterate_thread_buffers_read_only(&cl);
tonyp@3416 3127 }
tonyp@3416 3128
tonyp@3416 3129 if (verify_fingers) {
tonyp@3416 3130 // Verify the global finger
tonyp@3416 3131 HeapWord* global_finger = finger();
tonyp@3416 3132 if (global_finger != NULL && global_finger < _heap_end) {
tonyp@3416 3133 // The global finger always points to a heap region boundary. We
tonyp@3416 3134 // use heap_region_containing_raw() to get the containing region
tonyp@3416 3135 // given that the global finger could be pointing to a free region
tonyp@3416 3136 // which subsequently becomes continues humongous. If that
tonyp@3416 3137 // happens, heap_region_containing() will return the bottom of the
tonyp@3416 3138 // corresponding starts humongous region and the check below will
tonyp@3416 3139 // not hold any more.
tonyp@3416 3140 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
tonyp@3416 3141 guarantee(global_finger == global_hr->bottom(),
tonyp@3416 3142 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
drchase@6680 3143 p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
tonyp@3416 3144 }
tonyp@3416 3145
tonyp@3416 3146 // Verify the task fingers
johnc@4173 3147 assert(parallel_marking_threads() <= _max_worker_id, "sanity");
tonyp@3416 3148 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
tonyp@3416 3149 CMTask* task = _tasks[i];
tonyp@3416 3150 HeapWord* task_finger = task->finger();
tonyp@3416 3151 if (task_finger != NULL && task_finger < _heap_end) {
tonyp@3416 3152 // See above note on the global finger verification.
tonyp@3416 3153 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
tonyp@3416 3154 guarantee(task_finger == task_hr->bottom() ||
tonyp@3416 3155 !task_hr->in_collection_set(),
tonyp@3416 3156 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
drchase@6680 3157 p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
tonyp@3416 3158 }
tonyp@3416 3159 }
tonyp@3416 3160 }
ysr@777 3161 }
tonyp@3416 3162 #endif // PRODUCT
ysr@777 3163
johnc@3463 3164 // Aggregate the counting data that was constructed concurrently
johnc@3463 3165 // with marking.
johnc@3463 3166 class AggregateCountDataHRClosure: public HeapRegionClosure {
johnc@4123 3167 G1CollectedHeap* _g1h;
johnc@3463 3168 ConcurrentMark* _cm;
johnc@4123 3169 CardTableModRefBS* _ct_bs;
johnc@3463 3170 BitMap* _cm_card_bm;
johnc@4173 3171 uint _max_worker_id;
johnc@3463 3172
johnc@3463 3173 public:
johnc@4123 3174 AggregateCountDataHRClosure(G1CollectedHeap* g1h,
johnc@3463 3175 BitMap* cm_card_bm,
johnc@4173 3176 uint max_worker_id) :
johnc@4123 3177 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 3178 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
johnc@4173 3179 _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
johnc@3463 3180
johnc@3463 3181 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 3182 if (hr->continuesHumongous()) {
johnc@3463 3183 // We will ignore these here and process them when their
johnc@3463 3184 // associated "starts humongous" region is processed.
johnc@3463 3185 // Note that we cannot rely on their associated
johnc@3463 3186 // "starts humongous" region to have their bit set to 1
johnc@3463 3187 // since, due to the region chunking in the parallel region
johnc@3463 3188 // iteration, a "continues humongous" region might be visited
johnc@3463 3189 // before its associated "starts humongous".
johnc@3463 3190 return false;
johnc@3463 3191 }
johnc@3463 3192
johnc@3463 3193 HeapWord* start = hr->bottom();
johnc@3463 3194 HeapWord* limit = hr->next_top_at_mark_start();
johnc@3463 3195 HeapWord* end = hr->end();
johnc@3463 3196
johnc@3463 3197 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
johnc@3463 3198 err_msg("Preconditions not met - "
johnc@3463 3199 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
johnc@3463 3200 "top: "PTR_FORMAT", end: "PTR_FORMAT,
drchase@6680 3201 p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
johnc@3463 3202
johnc@3463 3203 assert(hr->next_marked_bytes() == 0, "Precondition");
johnc@3463 3204
johnc@3463 3205 if (start == limit) {
johnc@3463 3206 // NTAMS of this region has not been set so nothing to do.
johnc@3463 3207 return false;
johnc@3463 3208 }
johnc@3463 3209
johnc@4123 3210 // 'start' should be in the heap.
johnc@4123 3211 assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
johnc@4123 3212 // 'end' *may* be just beyone the end of the heap (if hr is the last region)
johnc@4123 3213 assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
johnc@3463 3214
johnc@3463 3215 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3463 3216 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
johnc@3463 3217 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
johnc@3463 3218
johnc@4123 3219 // If ntams is not card aligned then we bump card bitmap index
johnc@4123 3220 // for limit so that we get the all the cards spanned by
johnc@4123 3221 // the object ending at ntams.
johnc@4123 3222 // Note: if this is the last region in the heap then ntams
johnc@4123 3223 // could be actually just beyond the end of the the heap;
johnc@4123 3224 // limit_idx will then correspond to a (non-existent) card
johnc@4123 3225 // that is also outside the heap.
johnc@4123 3226 if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
johnc@3463 3227 limit_idx += 1;
johnc@3463 3228 }
johnc@3463 3229
johnc@3463 3230 assert(limit_idx <= end_idx, "or else use atomics");
johnc@3463 3231
johnc@3463 3232 // Aggregate the "stripe" in the count data associated with hr.
tonyp@3713 3233 uint hrs_index = hr->hrs_index();
johnc@3463 3234 size_t marked_bytes = 0;
johnc@3463 3235
johnc@4173 3236 for (uint i = 0; i < _max_worker_id; i += 1) {
johnc@3463 3237 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
johnc@3463 3238 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
johnc@3463 3239
johnc@3463 3240 // Fetch the marked_bytes in this region for task i and
johnc@3463 3241 // add it to the running total for this region.
johnc@3463 3242 marked_bytes += marked_bytes_array[hrs_index];
johnc@3463 3243
johnc@4173 3244 // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
johnc@3463 3245 // into the global card bitmap.
johnc@3463 3246 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
johnc@3463 3247
johnc@3463 3248 while (scan_idx < limit_idx) {
johnc@3463 3249 assert(task_card_bm->at(scan_idx) == true, "should be");
johnc@3463 3250 _cm_card_bm->set_bit(scan_idx);
johnc@3463 3251 assert(_cm_card_bm->at(scan_idx) == true, "should be");
johnc@3463 3252
johnc@3463 3253 // BitMap::get_next_one_offset() can handle the case when
johnc@3463 3254 // its left_offset parameter is greater than its right_offset
johnc@4123 3255 // parameter. It does, however, have an early exit if
johnc@3463 3256 // left_offset == right_offset. So let's limit the value
johnc@3463 3257 // passed in for left offset here.
johnc@3463 3258 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
johnc@3463 3259 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
johnc@3463 3260 }
johnc@3463 3261 }
johnc@3463 3262
johnc@3463 3263 // Update the marked bytes for this region.
johnc@3463 3264 hr->add_to_marked_bytes(marked_bytes);
johnc@3463 3265
johnc@3463 3266 // Next heap region
johnc@3463 3267 return false;
johnc@3463 3268 }
johnc@3463 3269 };
johnc@3463 3270
johnc@3463 3271 class G1AggregateCountDataTask: public AbstractGangTask {
johnc@3463 3272 protected:
johnc@3463 3273 G1CollectedHeap* _g1h;
johnc@3463 3274 ConcurrentMark* _cm;
johnc@3463 3275 BitMap* _cm_card_bm;
johnc@4173 3276 uint _max_worker_id;
johnc@3463 3277 int _active_workers;
johnc@3463 3278
johnc@3463 3279 public:
johnc@3463 3280 G1AggregateCountDataTask(G1CollectedHeap* g1h,
johnc@3463 3281 ConcurrentMark* cm,
johnc@3463 3282 BitMap* cm_card_bm,
johnc@4173 3283 uint max_worker_id,
johnc@3463 3284 int n_workers) :
johnc@3463 3285 AbstractGangTask("Count Aggregation"),
johnc@3463 3286 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
johnc@4173 3287 _max_worker_id(max_worker_id),
johnc@3463 3288 _active_workers(n_workers) { }
johnc@3463 3289
johnc@3463 3290 void work(uint worker_id) {
johnc@4173 3291 AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
johnc@3463 3292
johnc@3463 3293 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3294 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
johnc@3463 3295 _active_workers,
johnc@3463 3296 HeapRegion::AggregateCountClaimValue);
johnc@3463 3297 } else {
johnc@3463 3298 _g1h->heap_region_iterate(&cl);
johnc@3463 3299 }
johnc@3463 3300 }
johnc@3463 3301 };
johnc@3463 3302
johnc@3463 3303
johnc@3463 3304 void ConcurrentMark::aggregate_count_data() {
johnc@3463 3305 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
johnc@3463 3306 _g1h->workers()->active_workers() :
johnc@3463 3307 1);
johnc@3463 3308
johnc@3463 3309 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
johnc@4173 3310 _max_worker_id, n_workers);
johnc@3463 3311
johnc@3463 3312 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3313 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
johnc@3463 3314 "sanity check");
johnc@3463 3315 _g1h->set_par_threads(n_workers);
johnc@3463 3316 _g1h->workers()->run_task(&g1_par_agg_task);
johnc@3463 3317 _g1h->set_par_threads(0);
johnc@3463 3318
johnc@3463 3319 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
johnc@3463 3320 "sanity check");
johnc@3463 3321 _g1h->reset_heap_region_claim_values();
johnc@3463 3322 } else {
johnc@3463 3323 g1_par_agg_task.work(0);
johnc@3463 3324 }
johnc@3463 3325 }
johnc@3463 3326
johnc@3463 3327 // Clear the per-worker arrays used to store the per-region counting data
johnc@3463 3328 void ConcurrentMark::clear_all_count_data() {
johnc@3463 3329 // Clear the global card bitmap - it will be filled during
johnc@3463 3330 // liveness count aggregation (during remark) and the
johnc@3463 3331 // final counting task.
johnc@3463 3332 _card_bm.clear();
johnc@3463 3333
johnc@3463 3334 // Clear the global region bitmap - it will be filled as part
johnc@3463 3335 // of the final counting task.
johnc@3463 3336 _region_bm.clear();
johnc@3463 3337
tonyp@3713 3338 uint max_regions = _g1h->max_regions();
johnc@4173 3339 assert(_max_worker_id > 0, "uninitialized");
johnc@4173 3340
johnc@4173 3341 for (uint i = 0; i < _max_worker_id; i += 1) {
johnc@3463 3342 BitMap* task_card_bm = count_card_bitmap_for(i);
johnc@3463 3343 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
johnc@3463 3344
johnc@3463 3345 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 3346 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 3347
tonyp@3713 3348 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
johnc@3463 3349 task_card_bm->clear();
johnc@3463 3350 }
johnc@3463 3351 }
johnc@3463 3352
ysr@777 3353 void ConcurrentMark::print_stats() {
ysr@777 3354 if (verbose_stats()) {
ysr@777 3355 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3356 for (size_t i = 0; i < _active_tasks; ++i) {
ysr@777 3357 _tasks[i]->print_stats();
ysr@777 3358 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3359 }
ysr@777 3360 }
ysr@777 3361 }
ysr@777 3362
ysr@777 3363 // abandon current marking iteration due to a Full GC
ysr@777 3364 void ConcurrentMark::abort() {
tschatzl@7016 3365 // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
tschatzl@7016 3366 // concurrent bitmap clearing.
ysr@777 3367 _nextMarkBitMap->clearAll();
johnc@3463 3368 // Clear the liveness counting data
johnc@3463 3369 clear_all_count_data();
ysr@777 3370 // Empty mark stack
johnc@4386 3371 reset_marking_state();
johnc@4173 3372 for (uint i = 0; i < _max_worker_id; ++i) {
ysr@777 3373 _tasks[i]->clear_region_fields();
johnc@2190 3374 }
pliden@6692 3375 _first_overflow_barrier_sync.abort();
pliden@6692 3376 _second_overflow_barrier_sync.abort();
brutisso@6904 3377 const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
brutisso@6904 3378 if (!gc_id.is_undefined()) {
brutisso@6904 3379 // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
brutisso@6904 3380 // to detect that it was aborted. Only keep track of the first GC id that we aborted.
brutisso@6904 3381 _aborted_gc_id = gc_id;
brutisso@6904 3382 }
ysr@777 3383 _has_aborted = true;
ysr@777 3384
ysr@777 3385 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3386 satb_mq_set.abandon_partial_marking();
tonyp@1752 3387 // This can be called either during or outside marking, we'll read
tonyp@1752 3388 // the expected_active value from the SATB queue set.
tonyp@1752 3389 satb_mq_set.set_active_all_threads(
tonyp@1752 3390 false, /* new active value */
tonyp@1752 3391 satb_mq_set.is_active() /* expected_active */);
sla@5237 3392
sla@5237 3393 _g1h->trace_heap_after_concurrent_cycle();
sla@5237 3394 _g1h->register_concurrent_cycle_end();
ysr@777 3395 }
ysr@777 3396
brutisso@6904 3397 const GCId& ConcurrentMark::concurrent_gc_id() {
brutisso@6904 3398 if (has_aborted()) {
brutisso@6904 3399 return _aborted_gc_id;
brutisso@6904 3400 }
brutisso@6904 3401 return _g1h->gc_tracer_cm()->gc_id();
brutisso@6904 3402 }
brutisso@6904 3403
ysr@777 3404 static void print_ms_time_info(const char* prefix, const char* name,
ysr@777 3405 NumberSeq& ns) {
ysr@777 3406 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3407 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
ysr@777 3408 if (ns.num() > 0) {
ysr@777 3409 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
ysr@777 3410 prefix, ns.sd(), ns.maximum());
ysr@777 3411 }
ysr@777 3412 }
ysr@777 3413
ysr@777 3414 void ConcurrentMark::print_summary_info() {
ysr@777 3415 gclog_or_tty->print_cr(" Concurrent marking:");
ysr@777 3416 print_ms_time_info(" ", "init marks", _init_times);
ysr@777 3417 print_ms_time_info(" ", "remarks", _remark_times);
ysr@777 3418 {
ysr@777 3419 print_ms_time_info(" ", "final marks", _remark_mark_times);
ysr@777 3420 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
ysr@777 3421
ysr@777 3422 }
ysr@777 3423 print_ms_time_info(" ", "cleanups", _cleanup_times);
ysr@777 3424 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3425 _total_counting_time,
ysr@777 3426 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
ysr@777 3427 (double)_cleanup_times.num()
ysr@777 3428 : 0.0));
ysr@777 3429 if (G1ScrubRemSets) {
ysr@777 3430 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3431 _total_rs_scrub_time,
ysr@777 3432 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
ysr@777 3433 (double)_cleanup_times.num()
ysr@777 3434 : 0.0));
ysr@777 3435 }
ysr@777 3436 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
ysr@777 3437 (_init_times.sum() + _remark_times.sum() +
ysr@777 3438 _cleanup_times.sum())/1000.0);
ysr@777 3439 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
johnc@3463 3440 "(%8.2f s marking).",
ysr@777 3441 cmThread()->vtime_accum(),
johnc@3463 3442 cmThread()->vtime_mark_accum());
ysr@777 3443 }
ysr@777 3444
tonyp@1454 3445 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
johnc@4549 3446 if (use_parallel_marking_threads()) {
johnc@4549 3447 _parallel_workers->print_worker_threads_on(st);
johnc@4549 3448 }
tonyp@1454 3449 }
tonyp@1454 3450
stefank@4904 3451 void ConcurrentMark::print_on_error(outputStream* st) const {
stefank@4904 3452 st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
drchase@6680 3453 p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
stefank@4904 3454 _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
stefank@4904 3455 _nextMarkBitMap->print_on_error(st, " Next Bits: ");
stefank@4904 3456 }
stefank@4904 3457
ysr@777 3458 // We take a break if someone is trying to stop the world.
jmasa@3357 3459 bool ConcurrentMark::do_yield_check(uint worker_id) {
pliden@6906 3460 if (SuspendibleThreadSet::should_yield()) {
jmasa@3357 3461 if (worker_id == 0) {
ysr@777 3462 _g1h->g1_policy()->record_concurrent_pause();
tonyp@2973 3463 }
pliden@6906 3464 SuspendibleThreadSet::yield();
ysr@777 3465 return true;
ysr@777 3466 } else {
ysr@777 3467 return false;
ysr@777 3468 }
ysr@777 3469 }
ysr@777 3470
ysr@777 3471 bool ConcurrentMark::containing_card_is_marked(void* p) {
ysr@777 3472 size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
ysr@777 3473 return _card_bm.at(offset >> CardTableModRefBS::card_shift);
ysr@777 3474 }
ysr@777 3475
ysr@777 3476 bool ConcurrentMark::containing_cards_are_marked(void* start,
ysr@777 3477 void* last) {
tonyp@2973 3478 return containing_card_is_marked(start) &&
tonyp@2973 3479 containing_card_is_marked(last);
ysr@777 3480 }
ysr@777 3481
ysr@777 3482 #ifndef PRODUCT
ysr@777 3483 // for debugging purposes
ysr@777 3484 void ConcurrentMark::print_finger() {
ysr@777 3485 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
drchase@6680 3486 p2i(_heap_start), p2i(_heap_end), p2i(_finger));
johnc@4173 3487 for (uint i = 0; i < _max_worker_id; ++i) {
drchase@6680 3488 gclog_or_tty->print(" %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
ysr@777 3489 }
drchase@6680 3490 gclog_or_tty->cr();
ysr@777 3491 }
ysr@777 3492 #endif
ysr@777 3493
tonyp@2968 3494 void CMTask::scan_object(oop obj) {
tonyp@2968 3495 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
tonyp@2968 3496
tonyp@2968 3497 if (_cm->verbose_high()) {
johnc@4173 3498 gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
drchase@6680 3499 _worker_id, p2i((void*) obj));
tonyp@2968 3500 }
tonyp@2968 3501
tonyp@2968 3502 size_t obj_size = obj->size();
tonyp@2968 3503 _words_scanned += obj_size;
tonyp@2968 3504
tonyp@2968 3505 obj->oop_iterate(_cm_oop_closure);
tonyp@2968 3506 statsOnly( ++_objs_scanned );
tonyp@2968 3507 check_limits();
tonyp@2968 3508 }
tonyp@2968 3509
ysr@777 3510 // Closure for iteration over bitmaps
ysr@777 3511 class CMBitMapClosure : public BitMapClosure {
ysr@777 3512 private:
ysr@777 3513 // the bitmap that is being iterated over
ysr@777 3514 CMBitMap* _nextMarkBitMap;
ysr@777 3515 ConcurrentMark* _cm;
ysr@777 3516 CMTask* _task;
ysr@777 3517
ysr@777 3518 public:
tonyp@3691 3519 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
tonyp@3691 3520 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
ysr@777 3521
ysr@777 3522 bool do_bit(size_t offset) {
ysr@777 3523 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tonyp@1458 3524 assert(_nextMarkBitMap->isMarked(addr), "invariant");
tonyp@1458 3525 assert( addr < _cm->finger(), "invariant");
ysr@777 3526
tonyp@3691 3527 statsOnly( _task->increase_objs_found_on_bitmap() );
tonyp@3691 3528 assert(addr >= _task->finger(), "invariant");
tonyp@3691 3529
tonyp@3691 3530 // We move that task's local finger along.
tonyp@3691 3531 _task->move_finger_to(addr);
ysr@777 3532
ysr@777 3533 _task->scan_object(oop(addr));
ysr@777 3534 // we only partially drain the local queue and global stack
ysr@777 3535 _task->drain_local_queue(true);
ysr@777 3536 _task->drain_global_stack(true);
ysr@777 3537
ysr@777 3538 // if the has_aborted flag has been raised, we need to bail out of
ysr@777 3539 // the iteration
ysr@777 3540 return !_task->has_aborted();
ysr@777 3541 }
ysr@777 3542 };
ysr@777 3543
tonyp@2968 3544 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
tonyp@2968 3545 ConcurrentMark* cm,
tonyp@2968 3546 CMTask* task)
tonyp@2968 3547 : _g1h(g1h), _cm(cm), _task(task) {
tonyp@2968 3548 assert(_ref_processor == NULL, "should be initialized to NULL");
tonyp@2968 3549
tonyp@2968 3550 if (G1UseConcMarkReferenceProcessing) {
johnc@3175 3551 _ref_processor = g1h->ref_processor_cm();
tonyp@2968 3552 assert(_ref_processor != NULL, "should not be NULL");
ysr@777 3553 }
tonyp@2968 3554 }
ysr@777 3555
ysr@777 3556 void CMTask::setup_for_region(HeapRegion* hr) {
tonyp@1458 3557 // Separated the asserts so that we know which one fires.
tonyp@1458 3558 assert(hr != NULL,
tonyp@1458 3559 "claim_region() should have filtered out continues humongous regions");
tonyp@1458 3560 assert(!hr->continuesHumongous(),
tonyp@1458 3561 "claim_region() should have filtered out continues humongous regions");
ysr@777 3562
tonyp@2973 3563 if (_cm->verbose_low()) {
johnc@4173 3564 gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
drchase@6680 3565 _worker_id, p2i(hr));
tonyp@2973 3566 }
ysr@777 3567
ysr@777 3568 _curr_region = hr;
ysr@777 3569 _finger = hr->bottom();
ysr@777 3570 update_region_limit();
ysr@777 3571 }
ysr@777 3572
ysr@777 3573 void CMTask::update_region_limit() {
ysr@777 3574 HeapRegion* hr = _curr_region;
ysr@777 3575 HeapWord* bottom = hr->bottom();
ysr@777 3576 HeapWord* limit = hr->next_top_at_mark_start();
ysr@777 3577
ysr@777 3578 if (limit == bottom) {
tonyp@2973 3579 if (_cm->verbose_low()) {
johnc@4173 3580 gclog_or_tty->print_cr("[%u] found an empty region "
ysr@777 3581 "["PTR_FORMAT", "PTR_FORMAT")",
drchase@6680 3582 _worker_id, p2i(bottom), p2i(limit));
tonyp@2973 3583 }
ysr@777 3584 // The region was collected underneath our feet.
ysr@777 3585 // We set the finger to bottom to ensure that the bitmap
ysr@777 3586 // iteration that will follow this will not do anything.
ysr@777 3587 // (this is not a condition that holds when we set the region up,
ysr@777 3588 // as the region is not supposed to be empty in the first place)
ysr@777 3589 _finger = bottom;
ysr@777 3590 } else if (limit >= _region_limit) {
tonyp@1458 3591 assert(limit >= _finger, "peace of mind");
ysr@777 3592 } else {
tonyp@1458 3593 assert(limit < _region_limit, "only way to get here");
ysr@777 3594 // This can happen under some pretty unusual circumstances. An
ysr@777 3595 // evacuation pause empties the region underneath our feet (NTAMS
ysr@777 3596 // at bottom). We then do some allocation in the region (NTAMS
ysr@777 3597 // stays at bottom), followed by the region being used as a GC
ysr@777 3598 // alloc region (NTAMS will move to top() and the objects
ysr@777 3599 // originally below it will be grayed). All objects now marked in
ysr@777 3600 // the region are explicitly grayed, if below the global finger,
ysr@777 3601 // and we do not need in fact to scan anything else. So, we simply
ysr@777 3602 // set _finger to be limit to ensure that the bitmap iteration
ysr@777 3603 // doesn't do anything.
ysr@777 3604 _finger = limit;
ysr@777 3605 }
ysr@777 3606
ysr@777 3607 _region_limit = limit;
ysr@777 3608 }
ysr@777 3609
ysr@777 3610 void CMTask::giveup_current_region() {
tonyp@1458 3611 assert(_curr_region != NULL, "invariant");
tonyp@2973 3612 if (_cm->verbose_low()) {
johnc@4173 3613 gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
drchase@6680 3614 _worker_id, p2i(_curr_region));
tonyp@2973 3615 }
ysr@777 3616 clear_region_fields();
ysr@777 3617 }
ysr@777 3618
ysr@777 3619 void CMTask::clear_region_fields() {
ysr@777 3620 // Values for these three fields that indicate that we're not
ysr@777 3621 // holding on to a region.
ysr@777 3622 _curr_region = NULL;
ysr@777 3623 _finger = NULL;
ysr@777 3624 _region_limit = NULL;
ysr@777 3625 }
ysr@777 3626
tonyp@2968 3627 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
tonyp@2968 3628 if (cm_oop_closure == NULL) {
tonyp@2968 3629 assert(_cm_oop_closure != NULL, "invariant");
tonyp@2968 3630 } else {
tonyp@2968 3631 assert(_cm_oop_closure == NULL, "invariant");
tonyp@2968 3632 }
tonyp@2968 3633 _cm_oop_closure = cm_oop_closure;
tonyp@2968 3634 }
tonyp@2968 3635
ysr@777 3636 void CMTask::reset(CMBitMap* nextMarkBitMap) {
tonyp@1458 3637 guarantee(nextMarkBitMap != NULL, "invariant");
ysr@777 3638
tonyp@2973 3639 if (_cm->verbose_low()) {
johnc@4173 3640 gclog_or_tty->print_cr("[%u] resetting", _worker_id);
tonyp@2973 3641 }
ysr@777 3642
ysr@777 3643 _nextMarkBitMap = nextMarkBitMap;
ysr@777 3644 clear_region_fields();
ysr@777 3645
ysr@777 3646 _calls = 0;
ysr@777 3647 _elapsed_time_ms = 0.0;
ysr@777 3648 _termination_time_ms = 0.0;
ysr@777 3649 _termination_start_time_ms = 0.0;
ysr@777 3650
ysr@777 3651 #if _MARKING_STATS_
ysr@777 3652 _local_pushes = 0;
ysr@777 3653 _local_pops = 0;
ysr@777 3654 _local_max_size = 0;
ysr@777 3655 _objs_scanned = 0;
ysr@777 3656 _global_pushes = 0;
ysr@777 3657 _global_pops = 0;
ysr@777 3658 _global_max_size = 0;
ysr@777 3659 _global_transfers_to = 0;
ysr@777 3660 _global_transfers_from = 0;
ysr@777 3661 _regions_claimed = 0;
ysr@777 3662 _objs_found_on_bitmap = 0;
ysr@777 3663 _satb_buffers_processed = 0;
ysr@777 3664 _steal_attempts = 0;
ysr@777 3665 _steals = 0;
ysr@777 3666 _aborted = 0;
ysr@777 3667 _aborted_overflow = 0;
ysr@777 3668 _aborted_cm_aborted = 0;
ysr@777 3669 _aborted_yield = 0;
ysr@777 3670 _aborted_timed_out = 0;
ysr@777 3671 _aborted_satb = 0;
ysr@777 3672 _aborted_termination = 0;
ysr@777 3673 #endif // _MARKING_STATS_
ysr@777 3674 }
ysr@777 3675
ysr@777 3676 bool CMTask::should_exit_termination() {
ysr@777 3677 regular_clock_call();
ysr@777 3678 // This is called when we are in the termination protocol. We should
ysr@777 3679 // quit if, for some reason, this task wants to abort or the global
ysr@777 3680 // stack is not empty (this means that we can get work from it).
ysr@777 3681 return !_cm->mark_stack_empty() || has_aborted();
ysr@777 3682 }
ysr@777 3683
ysr@777 3684 void CMTask::reached_limit() {
tonyp@1458 3685 assert(_words_scanned >= _words_scanned_limit ||
tonyp@1458 3686 _refs_reached >= _refs_reached_limit ,
tonyp@1458 3687 "shouldn't have been called otherwise");
ysr@777 3688 regular_clock_call();
ysr@777 3689 }
ysr@777 3690
ysr@777 3691 void CMTask::regular_clock_call() {
tonyp@2973 3692 if (has_aborted()) return;
ysr@777 3693
ysr@777 3694 // First, we need to recalculate the words scanned and refs reached
ysr@777 3695 // limits for the next clock call.
ysr@777 3696 recalculate_limits();
ysr@777 3697
ysr@777 3698 // During the regular clock call we do the following
ysr@777 3699
ysr@777 3700 // (1) If an overflow has been flagged, then we abort.
ysr@777 3701 if (_cm->has_overflown()) {
ysr@777 3702 set_has_aborted();
ysr@777 3703 return;
ysr@777 3704 }
ysr@777 3705
ysr@777 3706 // If we are not concurrent (i.e. we're doing remark) we don't need
ysr@777 3707 // to check anything else. The other steps are only needed during
ysr@777 3708 // the concurrent marking phase.
tonyp@2973 3709 if (!concurrent()) return;
ysr@777 3710
ysr@777 3711 // (2) If marking has been aborted for Full GC, then we also abort.
ysr@777 3712 if (_cm->has_aborted()) {
ysr@777 3713 set_has_aborted();
ysr@777 3714 statsOnly( ++_aborted_cm_aborted );
ysr@777 3715 return;
ysr@777 3716 }
ysr@777 3717
ysr@777 3718 double curr_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3719
ysr@777 3720 // (3) If marking stats are enabled, then we update the step history.
ysr@777 3721 #if _MARKING_STATS_
tonyp@2973 3722 if (_words_scanned >= _words_scanned_limit) {
ysr@777 3723 ++_clock_due_to_scanning;
tonyp@2973 3724 }
tonyp@2973 3725 if (_refs_reached >= _refs_reached_limit) {
ysr@777 3726 ++_clock_due_to_marking;
tonyp@2973 3727 }
ysr@777 3728
ysr@777 3729 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
ysr@777 3730 _interval_start_time_ms = curr_time_ms;
ysr@777 3731 _all_clock_intervals_ms.add(last_interval_ms);
ysr@777 3732
ysr@777 3733 if (_cm->verbose_medium()) {
johnc@4173 3734 gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
tonyp@2973 3735 "scanned = %d%s, refs reached = %d%s",
johnc@4173 3736 _worker_id, last_interval_ms,
tonyp@2973 3737 _words_scanned,
tonyp@2973 3738 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
tonyp@2973 3739 _refs_reached,
tonyp@2973 3740 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
ysr@777 3741 }
ysr@777 3742 #endif // _MARKING_STATS_
ysr@777 3743
ysr@777 3744 // (4) We check whether we should yield. If we have to, then we abort.
pliden@6906 3745 if (SuspendibleThreadSet::should_yield()) {
ysr@777 3746 // We should yield. To do this we abort the task. The caller is
ysr@777 3747 // responsible for yielding.
ysr@777 3748 set_has_aborted();
ysr@777 3749 statsOnly( ++_aborted_yield );
ysr@777 3750 return;
ysr@777 3751 }
ysr@777 3752
ysr@777 3753 // (5) We check whether we've reached our time quota. If we have,
ysr@777 3754 // then we abort.
ysr@777 3755 double elapsed_time_ms = curr_time_ms - _start_time_ms;
ysr@777 3756 if (elapsed_time_ms > _time_target_ms) {
ysr@777 3757 set_has_aborted();
johnc@2494 3758 _has_timed_out = true;
ysr@777 3759 statsOnly( ++_aborted_timed_out );
ysr@777 3760 return;
ysr@777 3761 }
ysr@777 3762
ysr@777 3763 // (6) Finally, we check whether there are enough completed STAB
ysr@777 3764 // buffers available for processing. If there are, we abort.
ysr@777 3765 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3766 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
tonyp@2973 3767 if (_cm->verbose_low()) {
johnc@4173 3768 gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
johnc@4173 3769 _worker_id);
tonyp@2973 3770 }
ysr@777 3771 // we do need to process SATB buffers, we'll abort and restart
ysr@777 3772 // the marking task to do so
ysr@777 3773 set_has_aborted();
ysr@777 3774 statsOnly( ++_aborted_satb );
ysr@777 3775 return;
ysr@777 3776 }
ysr@777 3777 }
ysr@777 3778
ysr@777 3779 void CMTask::recalculate_limits() {
ysr@777 3780 _real_words_scanned_limit = _words_scanned + words_scanned_period;
ysr@777 3781 _words_scanned_limit = _real_words_scanned_limit;
ysr@777 3782
ysr@777 3783 _real_refs_reached_limit = _refs_reached + refs_reached_period;
ysr@777 3784 _refs_reached_limit = _real_refs_reached_limit;
ysr@777 3785 }
ysr@777 3786
ysr@777 3787 void CMTask::decrease_limits() {
ysr@777 3788 // This is called when we believe that we're going to do an infrequent
ysr@777 3789 // operation which will increase the per byte scanned cost (i.e. move
ysr@777 3790 // entries to/from the global stack). It basically tries to decrease the
ysr@777 3791 // scanning limit so that the clock is called earlier.
ysr@777 3792
tonyp@2973 3793 if (_cm->verbose_medium()) {
johnc@4173 3794 gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
tonyp@2973 3795 }
ysr@777 3796
ysr@777 3797 _words_scanned_limit = _real_words_scanned_limit -
ysr@777 3798 3 * words_scanned_period / 4;
ysr@777 3799 _refs_reached_limit = _real_refs_reached_limit -
ysr@777 3800 3 * refs_reached_period / 4;
ysr@777 3801 }
ysr@777 3802
ysr@777 3803 void CMTask::move_entries_to_global_stack() {
ysr@777 3804 // local array where we'll store the entries that will be popped
ysr@777 3805 // from the local queue
ysr@777 3806 oop buffer[global_stack_transfer_size];
ysr@777 3807
ysr@777 3808 int n = 0;
ysr@777 3809 oop obj;
ysr@777 3810 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
ysr@777 3811 buffer[n] = obj;
ysr@777 3812 ++n;
ysr@777 3813 }
ysr@777 3814
ysr@777 3815 if (n > 0) {
ysr@777 3816 // we popped at least one entry from the local queue
ysr@777 3817
ysr@777 3818 statsOnly( ++_global_transfers_to; _local_pops += n );
ysr@777 3819
ysr@777 3820 if (!_cm->mark_stack_push(buffer, n)) {
tonyp@2973 3821 if (_cm->verbose_low()) {
johnc@4173 3822 gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
johnc@4173 3823 _worker_id);
tonyp@2973 3824 }
ysr@777 3825 set_has_aborted();
ysr@777 3826 } else {
ysr@777 3827 // the transfer was successful
ysr@777 3828
tonyp@2973 3829 if (_cm->verbose_medium()) {
johnc@4173 3830 gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
johnc@4173 3831 _worker_id, n);
tonyp@2973 3832 }
ysr@777 3833 statsOnly( int tmp_size = _cm->mark_stack_size();
tonyp@2973 3834 if (tmp_size > _global_max_size) {
ysr@777 3835 _global_max_size = tmp_size;
tonyp@2973 3836 }
ysr@777 3837 _global_pushes += n );
ysr@777 3838 }
ysr@777 3839 }
ysr@777 3840
ysr@777 3841 // this operation was quite expensive, so decrease the limits
ysr@777 3842 decrease_limits();
ysr@777 3843 }
ysr@777 3844
ysr@777 3845 void CMTask::get_entries_from_global_stack() {
ysr@777 3846 // local array where we'll store the entries that will be popped
ysr@777 3847 // from the global stack.
ysr@777 3848 oop buffer[global_stack_transfer_size];
ysr@777 3849 int n;
ysr@777 3850 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tonyp@1458 3851 assert(n <= global_stack_transfer_size,
tonyp@1458 3852 "we should not pop more than the given limit");
ysr@777 3853 if (n > 0) {
ysr@777 3854 // yes, we did actually pop at least one entry
ysr@777 3855
ysr@777 3856 statsOnly( ++_global_transfers_from; _global_pops += n );
tonyp@2973 3857 if (_cm->verbose_medium()) {
johnc@4173 3858 gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
johnc@4173 3859 _worker_id, n);
tonyp@2973 3860 }
ysr@777 3861 for (int i = 0; i < n; ++i) {
ysr@777 3862 bool success = _task_queue->push(buffer[i]);
ysr@777 3863 // We only call this when the local queue is empty or under a
ysr@777 3864 // given target limit. So, we do not expect this push to fail.
tonyp@1458 3865 assert(success, "invariant");
ysr@777 3866 }
ysr@777 3867
ysr@777 3868 statsOnly( int tmp_size = _task_queue->size();
tonyp@2973 3869 if (tmp_size > _local_max_size) {
ysr@777 3870 _local_max_size = tmp_size;
tonyp@2973 3871 }
ysr@777 3872 _local_pushes += n );
ysr@777 3873 }
ysr@777 3874
ysr@777 3875 // this operation was quite expensive, so decrease the limits
ysr@777 3876 decrease_limits();
ysr@777 3877 }
ysr@777 3878
ysr@777 3879 void CMTask::drain_local_queue(bool partially) {
tonyp@2973 3880 if (has_aborted()) return;
ysr@777 3881
ysr@777 3882 // Decide what the target size is, depending whether we're going to
ysr@777 3883 // drain it partially (so that other tasks can steal if they run out
ysr@777 3884 // of things to do) or totally (at the very end).
ysr@777 3885 size_t target_size;
tonyp@2973 3886 if (partially) {
ysr@777 3887 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
tonyp@2973 3888 } else {
ysr@777 3889 target_size = 0;
tonyp@2973 3890 }
ysr@777 3891
ysr@777 3892 if (_task_queue->size() > target_size) {
tonyp@2973 3893 if (_cm->verbose_high()) {
drchase@6680 3894 gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
johnc@4173 3895 _worker_id, target_size);
tonyp@2973 3896 }
ysr@777 3897
ysr@777 3898 oop obj;
ysr@777 3899 bool ret = _task_queue->pop_local(obj);
ysr@777 3900 while (ret) {
ysr@777 3901 statsOnly( ++_local_pops );
ysr@777 3902
tonyp@2973 3903 if (_cm->verbose_high()) {
johnc@4173 3904 gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
drchase@6680 3905 p2i((void*) obj));
tonyp@2973 3906 }
ysr@777 3907
tonyp@1458 3908 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
tonyp@2643 3909 assert(!_g1h->is_on_master_free_list(
tonyp@2472 3910 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
ysr@777 3911
ysr@777 3912 scan_object(obj);
ysr@777 3913
tonyp@2973 3914 if (_task_queue->size() <= target_size || has_aborted()) {
ysr@777 3915 ret = false;
tonyp@2973 3916 } else {
ysr@777 3917 ret = _task_queue->pop_local(obj);
tonyp@2973 3918 }
ysr@777 3919 }
ysr@777 3920
tonyp@2973 3921 if (_cm->verbose_high()) {
johnc@4173 3922 gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
johnc@4173 3923 _worker_id, _task_queue->size());
tonyp@2973 3924 }
ysr@777 3925 }
ysr@777 3926 }
ysr@777 3927
ysr@777 3928 void CMTask::drain_global_stack(bool partially) {
tonyp@2973 3929 if (has_aborted()) return;
ysr@777 3930
ysr@777 3931 // We have a policy to drain the local queue before we attempt to
ysr@777 3932 // drain the global stack.
tonyp@1458 3933 assert(partially || _task_queue->size() == 0, "invariant");
ysr@777 3934
ysr@777 3935 // Decide what the target size is, depending whether we're going to
ysr@777 3936 // drain it partially (so that other tasks can steal if they run out
ysr@777 3937 // of things to do) or totally (at the very end). Notice that,
ysr@777 3938 // because we move entries from the global stack in chunks or
ysr@777 3939 // because another task might be doing the same, we might in fact
ysr@777 3940 // drop below the target. But, this is not a problem.
ysr@777 3941 size_t target_size;
tonyp@2973 3942 if (partially) {
ysr@777 3943 target_size = _cm->partial_mark_stack_size_target();
tonyp@2973 3944 } else {
ysr@777 3945 target_size = 0;
tonyp@2973 3946 }
ysr@777 3947
ysr@777 3948 if (_cm->mark_stack_size() > target_size) {
tonyp@2973 3949 if (_cm->verbose_low()) {
drchase@6680 3950 gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
johnc@4173 3951 _worker_id, target_size);
tonyp@2973 3952 }
ysr@777 3953
ysr@777 3954 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
ysr@777 3955 get_entries_from_global_stack();
ysr@777 3956 drain_local_queue(partially);
ysr@777 3957 }
ysr@777 3958
tonyp@2973 3959 if (_cm->verbose_low()) {
drchase@6680 3960 gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
johnc@4173 3961 _worker_id, _cm->mark_stack_size());
tonyp@2973 3962 }
ysr@777 3963 }
ysr@777 3964 }
ysr@777 3965
ysr@777 3966 // SATB Queue has several assumptions on whether to call the par or
ysr@777 3967 // non-par versions of the methods. this is why some of the code is
ysr@777 3968 // replicated. We should really get rid of the single-threaded version
ysr@777 3969 // of the code to simplify things.
ysr@777 3970 void CMTask::drain_satb_buffers() {
tonyp@2973 3971 if (has_aborted()) return;
ysr@777 3972
ysr@777 3973 // We set this so that the regular clock knows that we're in the
ysr@777 3974 // middle of draining buffers and doesn't set the abort flag when it
ysr@777 3975 // notices that SATB buffers are available for draining. It'd be
ysr@777 3976 // very counter productive if it did that. :-)
ysr@777 3977 _draining_satb_buffers = true;
ysr@777 3978
ysr@777 3979 CMObjectClosure oc(this);
ysr@777 3980 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@2973 3981 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@4173 3982 satb_mq_set.set_par_closure(_worker_id, &oc);
tonyp@2973 3983 } else {
ysr@777 3984 satb_mq_set.set_closure(&oc);
tonyp@2973 3985 }
ysr@777 3986
ysr@777 3987 // This keeps claiming and applying the closure to completed buffers
ysr@777 3988 // until we run out of buffers or we need to abort.
jmasa@2188 3989 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3990 while (!has_aborted() &&
johnc@4173 3991 satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
tonyp@2973 3992 if (_cm->verbose_medium()) {
johnc@4173 3993 gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
tonyp@2973 3994 }
ysr@777 3995 statsOnly( ++_satb_buffers_processed );
ysr@777 3996 regular_clock_call();
ysr@777 3997 }
ysr@777 3998 } else {
ysr@777 3999 while (!has_aborted() &&
ysr@777 4000 satb_mq_set.apply_closure_to_completed_buffer()) {
tonyp@2973 4001 if (_cm->verbose_medium()) {
johnc@4173 4002 gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
tonyp@2973 4003 }
ysr@777 4004 statsOnly( ++_satb_buffers_processed );
ysr@777 4005 regular_clock_call();
ysr@777 4006 }
ysr@777 4007 }
ysr@777 4008
ysr@777 4009 _draining_satb_buffers = false;
ysr@777 4010
tonyp@1458 4011 assert(has_aborted() ||
tonyp@1458 4012 concurrent() ||
tonyp@1458 4013 satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 4014
tonyp@2973 4015 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@4173 4016 satb_mq_set.set_par_closure(_worker_id, NULL);
tonyp@2973 4017 } else {
ysr@777 4018 satb_mq_set.set_closure(NULL);
tonyp@2973 4019 }
ysr@777 4020
ysr@777 4021 // again, this was a potentially expensive operation, decrease the
ysr@777 4022 // limits to get the regular clock call early
ysr@777 4023 decrease_limits();
ysr@777 4024 }
ysr@777 4025
ysr@777 4026 void CMTask::print_stats() {
johnc@4173 4027 gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
johnc@4173 4028 _worker_id, _calls);
ysr@777 4029 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
ysr@777 4030 _elapsed_time_ms, _termination_time_ms);
ysr@777 4031 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 4032 _step_times_ms.num(), _step_times_ms.avg(),
ysr@777 4033 _step_times_ms.sd());
ysr@777 4034 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 4035 _step_times_ms.maximum(), _step_times_ms.sum());
ysr@777 4036
ysr@777 4037 #if _MARKING_STATS_
ysr@777 4038 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 4039 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
ysr@777 4040 _all_clock_intervals_ms.sd());
ysr@777 4041 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 4042 _all_clock_intervals_ms.maximum(),
ysr@777 4043 _all_clock_intervals_ms.sum());
ysr@777 4044 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
ysr@777 4045 _clock_due_to_scanning, _clock_due_to_marking);
ysr@777 4046 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
ysr@777 4047 _objs_scanned, _objs_found_on_bitmap);
ysr@777 4048 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
ysr@777 4049 _local_pushes, _local_pops, _local_max_size);
ysr@777 4050 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
ysr@777 4051 _global_pushes, _global_pops, _global_max_size);
ysr@777 4052 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
ysr@777 4053 _global_transfers_to,_global_transfers_from);
tonyp@3691 4054 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
ysr@777 4055 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
ysr@777 4056 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
ysr@777 4057 _steal_attempts, _steals);
ysr@777 4058 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
ysr@777 4059 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
ysr@777 4060 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
ysr@777 4061 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
ysr@777 4062 _aborted_timed_out, _aborted_satb, _aborted_termination);
ysr@777 4063 #endif // _MARKING_STATS_
ysr@777 4064 }
ysr@777 4065
ysr@777 4066 /*****************************************************************************
ysr@777 4067
johnc@4787 4068 The do_marking_step(time_target_ms, ...) method is the building
johnc@4787 4069 block of the parallel marking framework. It can be called in parallel
ysr@777 4070 with other invocations of do_marking_step() on different tasks
ysr@777 4071 (but only one per task, obviously) and concurrently with the
ysr@777 4072 mutator threads, or during remark, hence it eliminates the need
ysr@777 4073 for two versions of the code. When called during remark, it will
ysr@777 4074 pick up from where the task left off during the concurrent marking
ysr@777 4075 phase. Interestingly, tasks are also claimable during evacuation
ysr@777 4076 pauses too, since do_marking_step() ensures that it aborts before
ysr@777 4077 it needs to yield.
ysr@777 4078
johnc@4787 4079 The data structures that it uses to do marking work are the
ysr@777 4080 following:
ysr@777 4081
ysr@777 4082 (1) Marking Bitmap. If there are gray objects that appear only
ysr@777 4083 on the bitmap (this happens either when dealing with an overflow
ysr@777 4084 or when the initial marking phase has simply marked the roots
ysr@777 4085 and didn't push them on the stack), then tasks claim heap
ysr@777 4086 regions whose bitmap they then scan to find gray objects. A
ysr@777 4087 global finger indicates where the end of the last claimed region
ysr@777 4088 is. A local finger indicates how far into the region a task has
ysr@777 4089 scanned. The two fingers are used to determine how to gray an
ysr@777 4090 object (i.e. whether simply marking it is OK, as it will be
ysr@777 4091 visited by a task in the future, or whether it needs to be also
ysr@777 4092 pushed on a stack).
ysr@777 4093
ysr@777 4094 (2) Local Queue. The local queue of the task which is accessed
ysr@777 4095 reasonably efficiently by the task. Other tasks can steal from
ysr@777 4096 it when they run out of work. Throughout the marking phase, a
ysr@777 4097 task attempts to keep its local queue short but not totally
ysr@777 4098 empty, so that entries are available for stealing by other
ysr@777 4099 tasks. Only when there is no more work, a task will totally
ysr@777 4100 drain its local queue.
ysr@777 4101
ysr@777 4102 (3) Global Mark Stack. This handles local queue overflow. During
ysr@777 4103 marking only sets of entries are moved between it and the local
ysr@777 4104 queues, as access to it requires a mutex and more fine-grain
ysr@777 4105 interaction with it which might cause contention. If it
ysr@777 4106 overflows, then the marking phase should restart and iterate
ysr@777 4107 over the bitmap to identify gray objects. Throughout the marking
ysr@777 4108 phase, tasks attempt to keep the global mark stack at a small
ysr@777 4109 length but not totally empty, so that entries are available for
ysr@777 4110 popping by other tasks. Only when there is no more work, tasks
ysr@777 4111 will totally drain the global mark stack.
ysr@777 4112
tonyp@3691 4113 (4) SATB Buffer Queue. This is where completed SATB buffers are
ysr@777 4114 made available. Buffers are regularly removed from this queue
ysr@777 4115 and scanned for roots, so that the queue doesn't get too
ysr@777 4116 long. During remark, all completed buffers are processed, as
ysr@777 4117 well as the filled in parts of any uncompleted buffers.
ysr@777 4118
ysr@777 4119 The do_marking_step() method tries to abort when the time target
ysr@777 4120 has been reached. There are a few other cases when the
ysr@777 4121 do_marking_step() method also aborts:
ysr@777 4122
ysr@777 4123 (1) When the marking phase has been aborted (after a Full GC).
ysr@777 4124
tonyp@3691 4125 (2) When a global overflow (on the global stack) has been
tonyp@3691 4126 triggered. Before the task aborts, it will actually sync up with
tonyp@3691 4127 the other tasks to ensure that all the marking data structures
johnc@4788 4128 (local queues, stacks, fingers etc.) are re-initialized so that
tonyp@3691 4129 when do_marking_step() completes, the marking phase can
tonyp@3691 4130 immediately restart.
ysr@777 4131
ysr@777 4132 (3) When enough completed SATB buffers are available. The
ysr@777 4133 do_marking_step() method only tries to drain SATB buffers right
ysr@777 4134 at the beginning. So, if enough buffers are available, the
ysr@777 4135 marking step aborts and the SATB buffers are processed at
ysr@777 4136 the beginning of the next invocation.
ysr@777 4137
ysr@777 4138 (4) To yield. when we have to yield then we abort and yield
ysr@777 4139 right at the end of do_marking_step(). This saves us from a lot
ysr@777 4140 of hassle as, by yielding we might allow a Full GC. If this
ysr@777 4141 happens then objects will be compacted underneath our feet, the
ysr@777 4142 heap might shrink, etc. We save checking for this by just
ysr@777 4143 aborting and doing the yield right at the end.
ysr@777 4144
ysr@777 4145 From the above it follows that the do_marking_step() method should
ysr@777 4146 be called in a loop (or, otherwise, regularly) until it completes.
ysr@777 4147
ysr@777 4148 If a marking step completes without its has_aborted() flag being
ysr@777 4149 true, it means it has completed the current marking phase (and
ysr@777 4150 also all other marking tasks have done so and have all synced up).
ysr@777 4151
ysr@777 4152 A method called regular_clock_call() is invoked "regularly" (in
ysr@777 4153 sub ms intervals) throughout marking. It is this clock method that
ysr@777 4154 checks all the abort conditions which were mentioned above and
ysr@777 4155 decides when the task should abort. A work-based scheme is used to
ysr@777 4156 trigger this clock method: when the number of object words the
ysr@777 4157 marking phase has scanned or the number of references the marking
ysr@777 4158 phase has visited reach a given limit. Additional invocations to
ysr@777 4159 the method clock have been planted in a few other strategic places
ysr@777 4160 too. The initial reason for the clock method was to avoid calling
ysr@777 4161 vtime too regularly, as it is quite expensive. So, once it was in
ysr@777 4162 place, it was natural to piggy-back all the other conditions on it
ysr@777 4163 too and not constantly check them throughout the code.
ysr@777 4164
johnc@4787 4165 If do_termination is true then do_marking_step will enter its
johnc@4787 4166 termination protocol.
johnc@4787 4167
johnc@4787 4168 The value of is_serial must be true when do_marking_step is being
johnc@4787 4169 called serially (i.e. by the VMThread) and do_marking_step should
johnc@4787 4170 skip any synchronization in the termination and overflow code.
johnc@4787 4171 Examples include the serial remark code and the serial reference
johnc@4787 4172 processing closures.
johnc@4787 4173
johnc@4787 4174 The value of is_serial must be false when do_marking_step is
johnc@4787 4175 being called by any of the worker threads in a work gang.
johnc@4787 4176 Examples include the concurrent marking code (CMMarkingTask),
johnc@4787 4177 the MT remark code, and the MT reference processing closures.
johnc@4787 4178
ysr@777 4179 *****************************************************************************/
ysr@777 4180
johnc@2494 4181 void CMTask::do_marking_step(double time_target_ms,
johnc@4787 4182 bool do_termination,
johnc@4787 4183 bool is_serial) {
tonyp@1458 4184 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
tonyp@1458 4185 assert(concurrent() == _cm->concurrent(), "they should be the same");
tonyp@1458 4186
ysr@777 4187 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
tonyp@1458 4188 assert(_task_queues != NULL, "invariant");
tonyp@1458 4189 assert(_task_queue != NULL, "invariant");
johnc@4173 4190 assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
tonyp@1458 4191
tonyp@1458 4192 assert(!_claimed,
tonyp@1458 4193 "only one thread should claim this task at any one time");
ysr@777 4194
ysr@777 4195 // OK, this doesn't safeguard again all possible scenarios, as it is
ysr@777 4196 // possible for two threads to set the _claimed flag at the same
ysr@777 4197 // time. But it is only for debugging purposes anyway and it will
ysr@777 4198 // catch most problems.
ysr@777 4199 _claimed = true;
ysr@777 4200
ysr@777 4201 _start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4202 statsOnly( _interval_start_time_ms = _start_time_ms );
ysr@777 4203
johnc@4787 4204 // If do_stealing is true then do_marking_step will attempt to
johnc@4787 4205 // steal work from the other CMTasks. It only makes sense to
johnc@4787 4206 // enable stealing when the termination protocol is enabled
johnc@4787 4207 // and do_marking_step() is not being called serially.
johnc@4787 4208 bool do_stealing = do_termination && !is_serial;
johnc@4787 4209
ysr@777 4210 double diff_prediction_ms =
ysr@777 4211 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
ysr@777 4212 _time_target_ms = time_target_ms - diff_prediction_ms;
ysr@777 4213
ysr@777 4214 // set up the variables that are used in the work-based scheme to
ysr@777 4215 // call the regular clock method
ysr@777 4216 _words_scanned = 0;
ysr@777 4217 _refs_reached = 0;
ysr@777 4218 recalculate_limits();
ysr@777 4219
ysr@777 4220 // clear all flags
ysr@777 4221 clear_has_aborted();
johnc@2494 4222 _has_timed_out = false;
ysr@777 4223 _draining_satb_buffers = false;
ysr@777 4224
ysr@777 4225 ++_calls;
ysr@777 4226
tonyp@2973 4227 if (_cm->verbose_low()) {
johnc@4173 4228 gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
ysr@777 4229 "target = %1.2lfms >>>>>>>>>>",
johnc@4173 4230 _worker_id, _calls, _time_target_ms);
tonyp@2973 4231 }
ysr@777 4232
ysr@777 4233 // Set up the bitmap and oop closures. Anything that uses them is
ysr@777 4234 // eventually called from this method, so it is OK to allocate these
ysr@777 4235 // statically.
ysr@777 4236 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
tonyp@2968 4237 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
tonyp@2968 4238 set_cm_oop_closure(&cm_oop_closure);
ysr@777 4239
ysr@777 4240 if (_cm->has_overflown()) {
tonyp@3691 4241 // This can happen if the mark stack overflows during a GC pause
tonyp@3691 4242 // and this task, after a yield point, restarts. We have to abort
tonyp@3691 4243 // as we need to get into the overflow protocol which happens
tonyp@3691 4244 // right at the end of this task.
ysr@777 4245 set_has_aborted();
ysr@777 4246 }
ysr@777 4247
ysr@777 4248 // First drain any available SATB buffers. After this, we will not
ysr@777 4249 // look at SATB buffers before the next invocation of this method.
ysr@777 4250 // If enough completed SATB buffers are queued up, the regular clock
ysr@777 4251 // will abort this task so that it restarts.
ysr@777 4252 drain_satb_buffers();
ysr@777 4253 // ...then partially drain the local queue and the global stack
ysr@777 4254 drain_local_queue(true);
ysr@777 4255 drain_global_stack(true);
ysr@777 4256
ysr@777 4257 do {
ysr@777 4258 if (!has_aborted() && _curr_region != NULL) {
ysr@777 4259 // This means that we're already holding on to a region.
tonyp@1458 4260 assert(_finger != NULL, "if region is not NULL, then the finger "
tonyp@1458 4261 "should not be NULL either");
ysr@777 4262
ysr@777 4263 // We might have restarted this task after an evacuation pause
ysr@777 4264 // which might have evacuated the region we're holding on to
ysr@777 4265 // underneath our feet. Let's read its limit again to make sure
ysr@777 4266 // that we do not iterate over a region of the heap that
ysr@777 4267 // contains garbage (update_region_limit() will also move
ysr@777 4268 // _finger to the start of the region if it is found empty).
ysr@777 4269 update_region_limit();
ysr@777 4270 // We will start from _finger not from the start of the region,
ysr@777 4271 // as we might be restarting this task after aborting half-way
ysr@777 4272 // through scanning this region. In this case, _finger points to
ysr@777 4273 // the address where we last found a marked object. If this is a
ysr@777 4274 // fresh region, _finger points to start().
ysr@777 4275 MemRegion mr = MemRegion(_finger, _region_limit);
ysr@777 4276
tonyp@2973 4277 if (_cm->verbose_low()) {
johnc@4173 4278 gclog_or_tty->print_cr("[%u] we're scanning part "
ysr@777 4279 "["PTR_FORMAT", "PTR_FORMAT") "
johnc@4580 4280 "of region "HR_FORMAT,
drchase@6680 4281 _worker_id, p2i(_finger), p2i(_region_limit),
johnc@4580 4282 HR_FORMAT_PARAMS(_curr_region));
tonyp@2973 4283 }
ysr@777 4284
johnc@4580 4285 assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
johnc@4580 4286 "humongous regions should go around loop once only");
johnc@4580 4287
johnc@4580 4288 // Some special cases:
johnc@4580 4289 // If the memory region is empty, we can just give up the region.
johnc@4580 4290 // If the current region is humongous then we only need to check
johnc@4580 4291 // the bitmap for the bit associated with the start of the object,
johnc@4580 4292 // scan the object if it's live, and give up the region.
johnc@4580 4293 // Otherwise, let's iterate over the bitmap of the part of the region
johnc@4580 4294 // that is left.
johnc@4575 4295 // If the iteration is successful, give up the region.
johnc@4580 4296 if (mr.is_empty()) {
johnc@4580 4297 giveup_current_region();
johnc@4580 4298 regular_clock_call();
johnc@4580 4299 } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
johnc@4580 4300 if (_nextMarkBitMap->isMarked(mr.start())) {
johnc@4580 4301 // The object is marked - apply the closure
johnc@4580 4302 BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
johnc@4580 4303 bitmap_closure.do_bit(offset);
johnc@4580 4304 }
johnc@4580 4305 // Even if this task aborted while scanning the humongous object
johnc@4580 4306 // we can (and should) give up the current region.
johnc@4580 4307 giveup_current_region();
johnc@4580 4308 regular_clock_call();
johnc@4580 4309 } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
ysr@777 4310 giveup_current_region();
ysr@777 4311 regular_clock_call();
ysr@777 4312 } else {
tonyp@1458 4313 assert(has_aborted(), "currently the only way to do so");
ysr@777 4314 // The only way to abort the bitmap iteration is to return
ysr@777 4315 // false from the do_bit() method. However, inside the
ysr@777 4316 // do_bit() method we move the _finger to point to the
ysr@777 4317 // object currently being looked at. So, if we bail out, we
ysr@777 4318 // have definitely set _finger to something non-null.
tonyp@1458 4319 assert(_finger != NULL, "invariant");
ysr@777 4320
ysr@777 4321 // Region iteration was actually aborted. So now _finger
ysr@777 4322 // points to the address of the object we last scanned. If we
ysr@777 4323 // leave it there, when we restart this task, we will rescan
ysr@777 4324 // the object. It is easy to avoid this. We move the finger by
ysr@777 4325 // enough to point to the next possible object header (the
ysr@777 4326 // bitmap knows by how much we need to move it as it knows its
ysr@777 4327 // granularity).
apetrusenko@1749 4328 assert(_finger < _region_limit, "invariant");
tamao@4733 4329 HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
apetrusenko@1749 4330 // Check if bitmap iteration was aborted while scanning the last object
apetrusenko@1749 4331 if (new_finger >= _region_limit) {
tonyp@3691 4332 giveup_current_region();
apetrusenko@1749 4333 } else {
tonyp@3691 4334 move_finger_to(new_finger);
apetrusenko@1749 4335 }
ysr@777 4336 }
ysr@777 4337 }
ysr@777 4338 // At this point we have either completed iterating over the
ysr@777 4339 // region we were holding on to, or we have aborted.
ysr@777 4340
ysr@777 4341 // We then partially drain the local queue and the global stack.
ysr@777 4342 // (Do we really need this?)
ysr@777 4343 drain_local_queue(true);
ysr@777 4344 drain_global_stack(true);
ysr@777 4345
ysr@777 4346 // Read the note on the claim_region() method on why it might
ysr@777 4347 // return NULL with potentially more regions available for
ysr@777 4348 // claiming and why we have to check out_of_regions() to determine
ysr@777 4349 // whether we're done or not.
ysr@777 4350 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
ysr@777 4351 // We are going to try to claim a new region. We should have
ysr@777 4352 // given up on the previous one.
tonyp@1458 4353 // Separated the asserts so that we know which one fires.
tonyp@1458 4354 assert(_curr_region == NULL, "invariant");
tonyp@1458 4355 assert(_finger == NULL, "invariant");
tonyp@1458 4356 assert(_region_limit == NULL, "invariant");
tonyp@2973 4357 if (_cm->verbose_low()) {
johnc@4173 4358 gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
tonyp@2973 4359 }
johnc@4173 4360 HeapRegion* claimed_region = _cm->claim_region(_worker_id);
ysr@777 4361 if (claimed_region != NULL) {
ysr@777 4362 // Yes, we managed to claim one
ysr@777 4363 statsOnly( ++_regions_claimed );
ysr@777 4364
tonyp@2973 4365 if (_cm->verbose_low()) {
johnc@4173 4366 gclog_or_tty->print_cr("[%u] we successfully claimed "
ysr@777 4367 "region "PTR_FORMAT,
drchase@6680 4368 _worker_id, p2i(claimed_region));
tonyp@2973 4369 }
ysr@777 4370
ysr@777 4371 setup_for_region(claimed_region);
tonyp@1458 4372 assert(_curr_region == claimed_region, "invariant");
ysr@777 4373 }
ysr@777 4374 // It is important to call the regular clock here. It might take
ysr@777 4375 // a while to claim a region if, for example, we hit a large
ysr@777 4376 // block of empty regions. So we need to call the regular clock
ysr@777 4377 // method once round the loop to make sure it's called
ysr@777 4378 // frequently enough.
ysr@777 4379 regular_clock_call();
ysr@777 4380 }
ysr@777 4381
ysr@777 4382 if (!has_aborted() && _curr_region == NULL) {
tonyp@1458 4383 assert(_cm->out_of_regions(),
tonyp@1458 4384 "at this point we should be out of regions");
ysr@777 4385 }
ysr@777 4386 } while ( _curr_region != NULL && !has_aborted());
ysr@777 4387
ysr@777 4388 if (!has_aborted()) {
ysr@777 4389 // We cannot check whether the global stack is empty, since other
tonyp@3691 4390 // tasks might be pushing objects to it concurrently.
tonyp@1458 4391 assert(_cm->out_of_regions(),
tonyp@1458 4392 "at this point we should be out of regions");
ysr@777 4393
tonyp@2973 4394 if (_cm->verbose_low()) {
johnc@4173 4395 gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
tonyp@2973 4396 }
ysr@777 4397
ysr@777 4398 // Try to reduce the number of available SATB buffers so that
ysr@777 4399 // remark has less work to do.
ysr@777 4400 drain_satb_buffers();
ysr@777 4401 }
ysr@777 4402
ysr@777 4403 // Since we've done everything else, we can now totally drain the
ysr@777 4404 // local queue and global stack.
ysr@777 4405 drain_local_queue(false);
ysr@777 4406 drain_global_stack(false);
ysr@777 4407
ysr@777 4408 // Attempt at work stealing from other task's queues.
johnc@2494 4409 if (do_stealing && !has_aborted()) {
ysr@777 4410 // We have not aborted. This means that we have finished all that
ysr@777 4411 // we could. Let's try to do some stealing...
ysr@777 4412
ysr@777 4413 // We cannot check whether the global stack is empty, since other
tonyp@3691 4414 // tasks might be pushing objects to it concurrently.
tonyp@1458 4415 assert(_cm->out_of_regions() && _task_queue->size() == 0,
tonyp@1458 4416 "only way to reach here");
ysr@777 4417
tonyp@2973 4418 if (_cm->verbose_low()) {
johnc@4173 4419 gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
tonyp@2973 4420 }
ysr@777 4421
ysr@777 4422 while (!has_aborted()) {
ysr@777 4423 oop obj;
ysr@777 4424 statsOnly( ++_steal_attempts );
ysr@777 4425
johnc@4173 4426 if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
tonyp@2973 4427 if (_cm->verbose_medium()) {
johnc@4173 4428 gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
drchase@6680 4429 _worker_id, p2i((void*) obj));
tonyp@2973 4430 }
ysr@777 4431
ysr@777 4432 statsOnly( ++_steals );
ysr@777 4433
tonyp@1458 4434 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
tonyp@1458 4435 "any stolen object should be marked");
ysr@777 4436 scan_object(obj);
ysr@777 4437
ysr@777 4438 // And since we're towards the end, let's totally drain the
ysr@777 4439 // local queue and global stack.
ysr@777 4440 drain_local_queue(false);
ysr@777 4441 drain_global_stack(false);
ysr@777 4442 } else {
ysr@777 4443 break;
ysr@777 4444 }
ysr@777 4445 }
ysr@777 4446 }
ysr@777 4447
tonyp@2848 4448 // If we are about to wrap up and go into termination, check if we
tonyp@2848 4449 // should raise the overflow flag.
tonyp@2848 4450 if (do_termination && !has_aborted()) {
tonyp@2848 4451 if (_cm->force_overflow()->should_force()) {
tonyp@2848 4452 _cm->set_has_overflown();
tonyp@2848 4453 regular_clock_call();
tonyp@2848 4454 }
tonyp@2848 4455 }
tonyp@2848 4456
ysr@777 4457 // We still haven't aborted. Now, let's try to get into the
ysr@777 4458 // termination protocol.
johnc@2494 4459 if (do_termination && !has_aborted()) {
ysr@777 4460 // We cannot check whether the global stack is empty, since other
tonyp@3691 4461 // tasks might be concurrently pushing objects on it.
tonyp@1458 4462 // Separated the asserts so that we know which one fires.
tonyp@1458 4463 assert(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4464 assert(_task_queue->size() == 0, "only way to reach here");
ysr@777 4465
tonyp@2973 4466 if (_cm->verbose_low()) {
johnc@4173 4467 gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
tonyp@2973 4468 }
ysr@777 4469
ysr@777 4470 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
johnc@4787 4471
ysr@777 4472 // The CMTask class also extends the TerminatorTerminator class,
ysr@777 4473 // hence its should_exit_termination() method will also decide
ysr@777 4474 // whether to exit the termination protocol or not.
johnc@4787 4475 bool finished = (is_serial ||
johnc@4787 4476 _cm->terminator()->offer_termination(this));
ysr@777 4477 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4478 _termination_time_ms +=
ysr@777 4479 termination_end_time_ms - _termination_start_time_ms;
ysr@777 4480
ysr@777 4481 if (finished) {
ysr@777 4482 // We're all done.
ysr@777 4483
johnc@4173 4484 if (_worker_id == 0) {
ysr@777 4485 // let's allow task 0 to do this
ysr@777 4486 if (concurrent()) {
tonyp@1458 4487 assert(_cm->concurrent_marking_in_progress(), "invariant");
ysr@777 4488 // we need to set this to false before the next
ysr@777 4489 // safepoint. This way we ensure that the marking phase
ysr@777 4490 // doesn't observe any more heap expansions.
ysr@777 4491 _cm->clear_concurrent_marking_in_progress();
ysr@777 4492 }
ysr@777 4493 }
ysr@777 4494
ysr@777 4495 // We can now guarantee that the global stack is empty, since
tonyp@1458 4496 // all other tasks have finished. We separated the guarantees so
tonyp@1458 4497 // that, if a condition is false, we can immediately find out
tonyp@1458 4498 // which one.
tonyp@1458 4499 guarantee(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4500 guarantee(_cm->mark_stack_empty(), "only way to reach here");
tonyp@1458 4501 guarantee(_task_queue->size() == 0, "only way to reach here");
tonyp@1458 4502 guarantee(!_cm->has_overflown(), "only way to reach here");
tonyp@1458 4503 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
ysr@777 4504
tonyp@2973 4505 if (_cm->verbose_low()) {
johnc@4173 4506 gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
tonyp@2973 4507 }
ysr@777 4508 } else {
ysr@777 4509 // Apparently there's more work to do. Let's abort this task. It
ysr@777 4510 // will restart it and we can hopefully find more things to do.
ysr@777 4511
tonyp@2973 4512 if (_cm->verbose_low()) {
johnc@4173 4513 gclog_or_tty->print_cr("[%u] apparently there is more work to do",
johnc@4173 4514 _worker_id);
tonyp@2973 4515 }
ysr@777 4516
ysr@777 4517 set_has_aborted();
ysr@777 4518 statsOnly( ++_aborted_termination );
ysr@777 4519 }
ysr@777 4520 }
ysr@777 4521
ysr@777 4522 // Mainly for debugging purposes to make sure that a pointer to the
ysr@777 4523 // closure which was statically allocated in this frame doesn't
ysr@777 4524 // escape it by accident.
tonyp@2968 4525 set_cm_oop_closure(NULL);
ysr@777 4526 double end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4527 double elapsed_time_ms = end_time_ms - _start_time_ms;
ysr@777 4528 // Update the step history.
ysr@777 4529 _step_times_ms.add(elapsed_time_ms);
ysr@777 4530
ysr@777 4531 if (has_aborted()) {
ysr@777 4532 // The task was aborted for some reason.
ysr@777 4533
ysr@777 4534 statsOnly( ++_aborted );
ysr@777 4535
johnc@2494 4536 if (_has_timed_out) {
ysr@777 4537 double diff_ms = elapsed_time_ms - _time_target_ms;
ysr@777 4538 // Keep statistics of how well we did with respect to hitting
ysr@777 4539 // our target only if we actually timed out (if we aborted for
ysr@777 4540 // other reasons, then the results might get skewed).
ysr@777 4541 _marking_step_diffs_ms.add(diff_ms);
ysr@777 4542 }
ysr@777 4543
ysr@777 4544 if (_cm->has_overflown()) {
ysr@777 4545 // This is the interesting one. We aborted because a global
ysr@777 4546 // overflow was raised. This means we have to restart the
ysr@777 4547 // marking phase and start iterating over regions. However, in
ysr@777 4548 // order to do this we have to make sure that all tasks stop
ysr@777 4549 // what they are doing and re-initialise in a safe manner. We
ysr@777 4550 // will achieve this with the use of two barrier sync points.
ysr@777 4551
tonyp@2973 4552 if (_cm->verbose_low()) {
johnc@4173 4553 gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
tonyp@2973 4554 }
ysr@777 4555
johnc@4787 4556 if (!is_serial) {
johnc@4787 4557 // We only need to enter the sync barrier if being called
johnc@4787 4558 // from a parallel context
johnc@4787 4559 _cm->enter_first_sync_barrier(_worker_id);
johnc@4787 4560
johnc@4787 4561 // When we exit this sync barrier we know that all tasks have
johnc@4787 4562 // stopped doing marking work. So, it's now safe to
johnc@4787 4563 // re-initialise our data structures. At the end of this method,
johnc@4787 4564 // task 0 will clear the global data structures.
johnc@4787 4565 }
ysr@777 4566
ysr@777 4567 statsOnly( ++_aborted_overflow );
ysr@777 4568
ysr@777 4569 // We clear the local state of this task...
ysr@777 4570 clear_region_fields();
ysr@777 4571
johnc@4787 4572 if (!is_serial) {
johnc@4787 4573 // ...and enter the second barrier.
johnc@4787 4574 _cm->enter_second_sync_barrier(_worker_id);
johnc@4787 4575 }
johnc@4788 4576 // At this point, if we're during the concurrent phase of
johnc@4788 4577 // marking, everything has been re-initialized and we're
ysr@777 4578 // ready to restart.
ysr@777 4579 }
ysr@777 4580
ysr@777 4581 if (_cm->verbose_low()) {
johnc@4173 4582 gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
ysr@777 4583 "elapsed = %1.2lfms <<<<<<<<<<",
johnc@4173 4584 _worker_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4585 if (_cm->has_aborted()) {
johnc@4173 4586 gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
johnc@4173 4587 _worker_id);
tonyp@2973 4588 }
ysr@777 4589 }
ysr@777 4590 } else {
tonyp@2973 4591 if (_cm->verbose_low()) {
johnc@4173 4592 gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
ysr@777 4593 "elapsed = %1.2lfms <<<<<<<<<<",
johnc@4173 4594 _worker_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4595 }
ysr@777 4596 }
ysr@777 4597
ysr@777 4598 _claimed = false;
ysr@777 4599 }
ysr@777 4600
johnc@4173 4601 CMTask::CMTask(uint worker_id,
ysr@777 4602 ConcurrentMark* cm,
johnc@3463 4603 size_t* marked_bytes,
johnc@3463 4604 BitMap* card_bm,
ysr@777 4605 CMTaskQueue* task_queue,
ysr@777 4606 CMTaskQueueSet* task_queues)
ysr@777 4607 : _g1h(G1CollectedHeap::heap()),
johnc@4173 4608 _worker_id(worker_id), _cm(cm),
ysr@777 4609 _claimed(false),
ysr@777 4610 _nextMarkBitMap(NULL), _hash_seed(17),
ysr@777 4611 _task_queue(task_queue),
ysr@777 4612 _task_queues(task_queues),
tonyp@2968 4613 _cm_oop_closure(NULL),
johnc@3463 4614 _marked_bytes_array(marked_bytes),
johnc@3463 4615 _card_bm(card_bm) {
tonyp@1458 4616 guarantee(task_queue != NULL, "invariant");
tonyp@1458 4617 guarantee(task_queues != NULL, "invariant");
ysr@777 4618
ysr@777 4619 statsOnly( _clock_due_to_scanning = 0;
ysr@777 4620 _clock_due_to_marking = 0 );
ysr@777 4621
ysr@777 4622 _marking_step_diffs_ms.add(0.5);
ysr@777 4623 }
tonyp@2717 4624
tonyp@2717 4625 // These are formatting macros that are used below to ensure
tonyp@2717 4626 // consistent formatting. The *_H_* versions are used to format the
tonyp@2717 4627 // header for a particular value and they should be kept consistent
tonyp@2717 4628 // with the corresponding macro. Also note that most of the macros add
tonyp@2717 4629 // the necessary white space (as a prefix) which makes them a bit
tonyp@2717 4630 // easier to compose.
tonyp@2717 4631
tonyp@2717 4632 // All the output lines are prefixed with this string to be able to
tonyp@2717 4633 // identify them easily in a large log file.
tonyp@2717 4634 #define G1PPRL_LINE_PREFIX "###"
tonyp@2717 4635
tonyp@2717 4636 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
tonyp@2717 4637 #ifdef _LP64
tonyp@2717 4638 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
tonyp@2717 4639 #else // _LP64
tonyp@2717 4640 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
tonyp@2717 4641 #endif // _LP64
tonyp@2717 4642
tonyp@2717 4643 // For per-region info
tonyp@2717 4644 #define G1PPRL_TYPE_FORMAT " %-4s"
tonyp@2717 4645 #define G1PPRL_TYPE_H_FORMAT " %4s"
tonyp@2717 4646 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
tonyp@2717 4647 #define G1PPRL_BYTE_H_FORMAT " %9s"
tonyp@2717 4648 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
tonyp@2717 4649 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
tonyp@2717 4650
tonyp@2717 4651 // For summary info
tonyp@2717 4652 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4653 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
tonyp@2717 4654 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
tonyp@2717 4655 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
tonyp@2717 4656
tonyp@2717 4657 G1PrintRegionLivenessInfoClosure::
tonyp@2717 4658 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
tonyp@2717 4659 : _out(out),
tonyp@2717 4660 _total_used_bytes(0), _total_capacity_bytes(0),
tonyp@2717 4661 _total_prev_live_bytes(0), _total_next_live_bytes(0),
tonyp@2717 4662 _hum_used_bytes(0), _hum_capacity_bytes(0),
tschatzl@5122 4663 _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
johnc@5548 4664 _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
tonyp@2717 4665 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2717 4666 MemRegion g1_committed = g1h->g1_committed();
tonyp@2717 4667 MemRegion g1_reserved = g1h->g1_reserved();
tonyp@2717 4668 double now = os::elapsedTime();
tonyp@2717 4669
tonyp@2717 4670 // Print the header of the output.
tonyp@2717 4671 _out->cr();
tonyp@2717 4672 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
tonyp@2717 4673 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
tonyp@2717 4674 G1PPRL_SUM_ADDR_FORMAT("committed")
tonyp@2717 4675 G1PPRL_SUM_ADDR_FORMAT("reserved")
tonyp@2717 4676 G1PPRL_SUM_BYTE_FORMAT("region-size"),
drchase@6680 4677 p2i(g1_committed.start()), p2i(g1_committed.end()),
drchase@6680 4678 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
johnc@3182 4679 HeapRegion::GrainBytes);
tonyp@2717 4680 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4681 _out->print_cr(G1PPRL_LINE_PREFIX
tschatzl@5122 4682 G1PPRL_TYPE_H_FORMAT
tschatzl@5122 4683 G1PPRL_ADDR_BASE_H_FORMAT
tschatzl@5122 4684 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4685 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4686 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4687 G1PPRL_DOUBLE_H_FORMAT
johnc@5548 4688 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4689 G1PPRL_BYTE_H_FORMAT,
tschatzl@5122 4690 "type", "address-range",
johnc@5548 4691 "used", "prev-live", "next-live", "gc-eff",
johnc@5548 4692 "remset", "code-roots");
johnc@3173 4693 _out->print_cr(G1PPRL_LINE_PREFIX
tschatzl@5122 4694 G1PPRL_TYPE_H_FORMAT
tschatzl@5122 4695 G1PPRL_ADDR_BASE_H_FORMAT
tschatzl@5122 4696 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4697 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4698 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4699 G1PPRL_DOUBLE_H_FORMAT
johnc@5548 4700 G1PPRL_BYTE_H_FORMAT
tschatzl@5122 4701 G1PPRL_BYTE_H_FORMAT,
tschatzl@5122 4702 "", "",
johnc@5548 4703 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
johnc@5548 4704 "(bytes)", "(bytes)");
tonyp@2717 4705 }
tonyp@2717 4706
tonyp@2717 4707 // It takes as a parameter a reference to one of the _hum_* fields, it
tonyp@2717 4708 // deduces the corresponding value for a region in a humongous region
tonyp@2717 4709 // series (either the region size, or what's left if the _hum_* field
tonyp@2717 4710 // is < the region size), and updates the _hum_* field accordingly.
tonyp@2717 4711 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
tonyp@2717 4712 size_t bytes = 0;
tonyp@2717 4713 // The > 0 check is to deal with the prev and next live bytes which
tonyp@2717 4714 // could be 0.
tonyp@2717 4715 if (*hum_bytes > 0) {
johnc@3182 4716 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
tonyp@2717 4717 *hum_bytes -= bytes;
tonyp@2717 4718 }
tonyp@2717 4719 return bytes;
tonyp@2717 4720 }
tonyp@2717 4721
tonyp@2717 4722 // It deduces the values for a region in a humongous region series
tonyp@2717 4723 // from the _hum_* fields and updates those accordingly. It assumes
tonyp@2717 4724 // that that _hum_* fields have already been set up from the "starts
tonyp@2717 4725 // humongous" region and we visit the regions in address order.
tonyp@2717 4726 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
tonyp@2717 4727 size_t* capacity_bytes,
tonyp@2717 4728 size_t* prev_live_bytes,
tonyp@2717 4729 size_t* next_live_bytes) {
tonyp@2717 4730 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
tonyp@2717 4731 *used_bytes = get_hum_bytes(&_hum_used_bytes);
tonyp@2717 4732 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
tonyp@2717 4733 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
tonyp@2717 4734 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
tonyp@2717 4735 }
tonyp@2717 4736
tonyp@2717 4737 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
tonyp@2717 4738 const char* type = "";
tonyp@2717 4739 HeapWord* bottom = r->bottom();
tonyp@2717 4740 HeapWord* end = r->end();
tonyp@2717 4741 size_t capacity_bytes = r->capacity();
tonyp@2717 4742 size_t used_bytes = r->used();
tonyp@2717 4743 size_t prev_live_bytes = r->live_bytes();
tonyp@2717 4744 size_t next_live_bytes = r->next_live_bytes();
tonyp@2717 4745 double gc_eff = r->gc_efficiency();
tschatzl@5122 4746 size_t remset_bytes = r->rem_set()->mem_size();
johnc@5548 4747 size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
johnc@5548 4748
tonyp@2717 4749 if (r->used() == 0) {
tonyp@2717 4750 type = "FREE";
tonyp@2717 4751 } else if (r->is_survivor()) {
tonyp@2717 4752 type = "SURV";
tonyp@2717 4753 } else if (r->is_young()) {
tonyp@2717 4754 type = "EDEN";
tonyp@2717 4755 } else if (r->startsHumongous()) {
tonyp@2717 4756 type = "HUMS";
tonyp@2717 4757
tonyp@2717 4758 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
tonyp@2717 4759 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
tonyp@2717 4760 "they should have been zeroed after the last time we used them");
tonyp@2717 4761 // Set up the _hum_* fields.
tonyp@2717 4762 _hum_capacity_bytes = capacity_bytes;
tonyp@2717 4763 _hum_used_bytes = used_bytes;
tonyp@2717 4764 _hum_prev_live_bytes = prev_live_bytes;
tonyp@2717 4765 _hum_next_live_bytes = next_live_bytes;
tonyp@2717 4766 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4767 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4768 end = bottom + HeapRegion::GrainWords;
tonyp@2717 4769 } else if (r->continuesHumongous()) {
tonyp@2717 4770 type = "HUMC";
tonyp@2717 4771 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4772 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4773 assert(end == bottom + HeapRegion::GrainWords, "invariant");
tonyp@2717 4774 } else {
tonyp@2717 4775 type = "OLD";
tonyp@2717 4776 }
tonyp@2717 4777
tonyp@2717 4778 _total_used_bytes += used_bytes;
tonyp@2717 4779 _total_capacity_bytes += capacity_bytes;
tonyp@2717 4780 _total_prev_live_bytes += prev_live_bytes;
tonyp@2717 4781 _total_next_live_bytes += next_live_bytes;
tschatzl@5122 4782 _total_remset_bytes += remset_bytes;
johnc@5548 4783 _total_strong_code_roots_bytes += strong_code_roots_bytes;
tonyp@2717 4784
tonyp@2717 4785 // Print a line for this particular region.
tonyp@2717 4786 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4787 G1PPRL_TYPE_FORMAT
tonyp@2717 4788 G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4789 G1PPRL_BYTE_FORMAT
tonyp@2717 4790 G1PPRL_BYTE_FORMAT
tonyp@2717 4791 G1PPRL_BYTE_FORMAT
tschatzl@5122 4792 G1PPRL_DOUBLE_FORMAT
johnc@5548 4793 G1PPRL_BYTE_FORMAT
tschatzl@5122 4794 G1PPRL_BYTE_FORMAT,
drchase@6680 4795 type, p2i(bottom), p2i(end),
johnc@5548 4796 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
johnc@5548 4797 remset_bytes, strong_code_roots_bytes);
tonyp@2717 4798
tonyp@2717 4799 return false;
tonyp@2717 4800 }
tonyp@2717 4801
tonyp@2717 4802 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
tschatzl@5122 4803 // add static memory usages to remembered set sizes
tschatzl@5122 4804 _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
tonyp@2717 4805 // Print the footer of the output.
tonyp@2717 4806 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4807 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4808 " SUMMARY"
tonyp@2717 4809 G1PPRL_SUM_MB_FORMAT("capacity")
tonyp@2717 4810 G1PPRL_SUM_MB_PERC_FORMAT("used")
tonyp@2717 4811 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
tschatzl@5122 4812 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
johnc@5548 4813 G1PPRL_SUM_MB_FORMAT("remset")
johnc@5548 4814 G1PPRL_SUM_MB_FORMAT("code-roots"),
tonyp@2717 4815 bytes_to_mb(_total_capacity_bytes),
tonyp@2717 4816 bytes_to_mb(_total_used_bytes),
tonyp@2717 4817 perc(_total_used_bytes, _total_capacity_bytes),
tonyp@2717 4818 bytes_to_mb(_total_prev_live_bytes),
tonyp@2717 4819 perc(_total_prev_live_bytes, _total_capacity_bytes),
tonyp@2717 4820 bytes_to_mb(_total_next_live_bytes),
tschatzl@5122 4821 perc(_total_next_live_bytes, _total_capacity_bytes),
johnc@5548 4822 bytes_to_mb(_total_remset_bytes),
johnc@5548 4823 bytes_to_mb(_total_strong_code_roots_bytes));
tonyp@2717 4824 _out->cr();
tonyp@2717 4825 }

mercurial