src/share/vm/gc_implementation/g1/concurrentMark.cpp

Thu, 03 Jan 2013 16:28:22 -0800

author
johnc
date
Thu, 03 Jan 2013 16:28:22 -0800
changeset 4386
d275c3dc73e6
parent 4333
442f942757c0
child 4547
4700e77d44c1
permissions
-rw-r--r--

8004816: G1: Kitchensink failures after marking stack changes
Summary: Reset the marking state, including the mark stack overflow flag, in the event of a marking stack overflow during serial reference processing.
Reviewed-by: jmasa

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
tonyp@2968 27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
stefank@2314 28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
tonyp@3114 31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
brutisso@3710 32 #include "gc_implementation/g1/g1Log.hpp"
tonyp@2968 33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
stefank@2314 34 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@3416 35 #include "gc_implementation/g1/heapRegion.inline.hpp"
stefank@2314 36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
stefank@2314 37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
kamg@2445 38 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 39 #include "memory/genOopClosures.inline.hpp"
stefank@2314 40 #include "memory/referencePolicy.hpp"
stefank@2314 41 #include "memory/resourceArea.hpp"
stefank@2314 42 #include "oops/oop.inline.hpp"
stefank@2314 43 #include "runtime/handles.inline.hpp"
stefank@2314 44 #include "runtime/java.hpp"
zgu@3900 45 #include "services/memTracker.hpp"
ysr@777 46
brutisso@3455 47 // Concurrent marking bit map wrapper
ysr@777 48
johnc@4333 49 CMBitMapRO::CMBitMapRO(int shifter) :
johnc@4333 50 _bm(),
ysr@777 51 _shifter(shifter) {
johnc@4333 52 _bmStartWord = 0;
johnc@4333 53 _bmWordSize = 0;
ysr@777 54 }
ysr@777 55
ysr@777 56 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
ysr@777 57 HeapWord* limit) const {
ysr@777 58 // First we must round addr *up* to a possible object boundary.
ysr@777 59 addr = (HeapWord*)align_size_up((intptr_t)addr,
ysr@777 60 HeapWordSize << _shifter);
ysr@777 61 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 62 if (limit == NULL) {
tonyp@2973 63 limit = _bmStartWord + _bmWordSize;
tonyp@2973 64 }
ysr@777 65 size_t limitOffset = heapWordToOffset(limit);
ysr@777 66 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
ysr@777 67 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 68 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 69 assert(nextAddr == limit || isMarked(nextAddr),
ysr@777 70 "get_next_one postcondition");
ysr@777 71 return nextAddr;
ysr@777 72 }
ysr@777 73
ysr@777 74 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 75 HeapWord* limit) const {
ysr@777 76 size_t addrOffset = heapWordToOffset(addr);
tonyp@2973 77 if (limit == NULL) {
tonyp@2973 78 limit = _bmStartWord + _bmWordSize;
tonyp@2973 79 }
ysr@777 80 size_t limitOffset = heapWordToOffset(limit);
ysr@777 81 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
ysr@777 82 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
ysr@777 83 assert(nextAddr >= addr, "get_next_one postcondition");
ysr@777 84 assert(nextAddr == limit || !isMarked(nextAddr),
ysr@777 85 "get_next_one postcondition");
ysr@777 86 return nextAddr;
ysr@777 87 }
ysr@777 88
ysr@777 89 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
ysr@777 90 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
ysr@777 91 return (int) (diff >> _shifter);
ysr@777 92 }
ysr@777 93
ysr@777 94 #ifndef PRODUCT
johnc@4333 95 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
ysr@777 96 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
brutisso@4061 97 assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
ysr@777 98 "size inconsistency");
johnc@4333 99 return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
johnc@4333 100 _bmWordSize == heap_rs.size()>>LogHeapWordSize;
ysr@777 101 }
ysr@777 102 #endif
ysr@777 103
johnc@4333 104 bool CMBitMap::allocate(ReservedSpace heap_rs) {
johnc@4333 105 _bmStartWord = (HeapWord*)(heap_rs.base());
johnc@4333 106 _bmWordSize = heap_rs.size()/HeapWordSize; // heap_rs.size() is in bytes
johnc@4333 107 ReservedSpace brs(ReservedSpace::allocation_align_size_up(
johnc@4333 108 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
johnc@4333 109 if (!brs.is_reserved()) {
johnc@4333 110 warning("ConcurrentMark marking bit map allocation failure");
johnc@4333 111 return false;
johnc@4333 112 }
johnc@4333 113 MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
johnc@4333 114 // For now we'll just commit all of the bit map up front.
johnc@4333 115 // Later on we'll try to be more parsimonious with swap.
johnc@4333 116 if (!_virtual_space.initialize(brs, brs.size())) {
johnc@4333 117 warning("ConcurrentMark marking bit map backing store failure");
johnc@4333 118 return false;
johnc@4333 119 }
johnc@4333 120 assert(_virtual_space.committed_size() == brs.size(),
johnc@4333 121 "didn't reserve backing store for all of concurrent marking bit map?");
johnc@4333 122 _bm.set_map((uintptr_t*)_virtual_space.low());
johnc@4333 123 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
johnc@4333 124 _bmWordSize, "inconsistency in bit map sizing");
johnc@4333 125 _bm.set_size(_bmWordSize >> _shifter);
johnc@4333 126 return true;
johnc@4333 127 }
johnc@4333 128
ysr@777 129 void CMBitMap::clearAll() {
ysr@777 130 _bm.clear();
ysr@777 131 return;
ysr@777 132 }
ysr@777 133
ysr@777 134 void CMBitMap::markRange(MemRegion mr) {
ysr@777 135 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 136 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 137 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
ysr@777 138 ((HeapWord *) mr.end())),
ysr@777 139 "markRange memory region end is not card aligned");
ysr@777 140 // convert address range into offset range
ysr@777 141 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 142 heapWordToOffset(mr.end()), true);
ysr@777 143 }
ysr@777 144
ysr@777 145 void CMBitMap::clearRange(MemRegion mr) {
ysr@777 146 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
ysr@777 147 assert(!mr.is_empty(), "unexpected empty region");
ysr@777 148 // convert address range into offset range
ysr@777 149 _bm.at_put_range(heapWordToOffset(mr.start()),
ysr@777 150 heapWordToOffset(mr.end()), false);
ysr@777 151 }
ysr@777 152
ysr@777 153 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
ysr@777 154 HeapWord* end_addr) {
ysr@777 155 HeapWord* start = getNextMarkedWordAddress(addr);
ysr@777 156 start = MIN2(start, end_addr);
ysr@777 157 HeapWord* end = getNextUnmarkedWordAddress(start);
ysr@777 158 end = MIN2(end, end_addr);
ysr@777 159 assert(start <= end, "Consistency check");
ysr@777 160 MemRegion mr(start, end);
ysr@777 161 if (!mr.is_empty()) {
ysr@777 162 clearRange(mr);
ysr@777 163 }
ysr@777 164 return mr;
ysr@777 165 }
ysr@777 166
ysr@777 167 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
ysr@777 168 _base(NULL), _cm(cm)
ysr@777 169 #ifdef ASSERT
ysr@777 170 , _drain_in_progress(false)
ysr@777 171 , _drain_in_progress_yields(false)
ysr@777 172 #endif
ysr@777 173 {}
ysr@777 174
johnc@4333 175 bool CMMarkStack::allocate(size_t capacity) {
johnc@4333 176 // allocate a stack of the requisite depth
johnc@4333 177 ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
johnc@4333 178 if (!rs.is_reserved()) {
johnc@4333 179 warning("ConcurrentMark MarkStack allocation failure");
johnc@4333 180 return false;
tonyp@2973 181 }
johnc@4333 182 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
johnc@4333 183 if (!_virtual_space.initialize(rs, rs.size())) {
johnc@4333 184 warning("ConcurrentMark MarkStack backing store failure");
johnc@4333 185 // Release the virtual memory reserved for the marking stack
johnc@4333 186 rs.release();
johnc@4333 187 return false;
johnc@4333 188 }
johnc@4333 189 assert(_virtual_space.committed_size() == rs.size(),
johnc@4333 190 "Didn't reserve backing store for all of ConcurrentMark stack?");
johnc@4333 191 _base = (oop*) _virtual_space.low();
johnc@4333 192 setEmpty();
johnc@4333 193 _capacity = (jint) capacity;
tonyp@3416 194 _saved_index = -1;
johnc@4386 195 _should_expand = false;
ysr@777 196 NOT_PRODUCT(_max_depth = 0);
johnc@4333 197 return true;
johnc@4333 198 }
johnc@4333 199
johnc@4333 200 void CMMarkStack::expand() {
johnc@4333 201 // Called, during remark, if we've overflown the marking stack during marking.
johnc@4333 202 assert(isEmpty(), "stack should been emptied while handling overflow");
johnc@4333 203 assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
johnc@4333 204 // Clear expansion flag
johnc@4333 205 _should_expand = false;
johnc@4333 206 if (_capacity == (jint) MarkStackSizeMax) {
johnc@4333 207 if (PrintGCDetails && Verbose) {
johnc@4333 208 gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
johnc@4333 209 }
johnc@4333 210 return;
johnc@4333 211 }
johnc@4333 212 // Double capacity if possible
johnc@4333 213 jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
johnc@4333 214 // Do not give up existing stack until we have managed to
johnc@4333 215 // get the double capacity that we desired.
johnc@4333 216 ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
johnc@4333 217 sizeof(oop)));
johnc@4333 218 if (rs.is_reserved()) {
johnc@4333 219 // Release the backing store associated with old stack
johnc@4333 220 _virtual_space.release();
johnc@4333 221 // Reinitialize virtual space for new stack
johnc@4333 222 if (!_virtual_space.initialize(rs, rs.size())) {
johnc@4333 223 fatal("Not enough swap for expanded marking stack capacity");
johnc@4333 224 }
johnc@4333 225 _base = (oop*)(_virtual_space.low());
johnc@4333 226 _index = 0;
johnc@4333 227 _capacity = new_capacity;
johnc@4333 228 } else {
johnc@4333 229 if (PrintGCDetails && Verbose) {
johnc@4333 230 // Failed to double capacity, continue;
johnc@4333 231 gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
johnc@4333 232 SIZE_FORMAT"K to " SIZE_FORMAT"K",
johnc@4333 233 _capacity / K, new_capacity / K);
johnc@4333 234 }
johnc@4333 235 }
johnc@4333 236 }
johnc@4333 237
johnc@4333 238 void CMMarkStack::set_should_expand() {
johnc@4333 239 // If we're resetting the marking state because of an
johnc@4333 240 // marking stack overflow, record that we should, if
johnc@4333 241 // possible, expand the stack.
johnc@4333 242 _should_expand = _cm->has_overflown();
ysr@777 243 }
ysr@777 244
ysr@777 245 CMMarkStack::~CMMarkStack() {
tonyp@2973 246 if (_base != NULL) {
johnc@4333 247 _base = NULL;
johnc@4333 248 _virtual_space.release();
tonyp@2973 249 }
ysr@777 250 }
ysr@777 251
ysr@777 252 void CMMarkStack::par_push(oop ptr) {
ysr@777 253 while (true) {
ysr@777 254 if (isFull()) {
ysr@777 255 _overflow = true;
ysr@777 256 return;
ysr@777 257 }
ysr@777 258 // Otherwise...
ysr@777 259 jint index = _index;
ysr@777 260 jint next_index = index+1;
ysr@777 261 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 262 if (res == index) {
ysr@777 263 _base[index] = ptr;
ysr@777 264 // Note that we don't maintain this atomically. We could, but it
ysr@777 265 // doesn't seem necessary.
ysr@777 266 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 267 return;
ysr@777 268 }
ysr@777 269 // Otherwise, we need to try again.
ysr@777 270 }
ysr@777 271 }
ysr@777 272
ysr@777 273 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
ysr@777 274 while (true) {
ysr@777 275 if (isFull()) {
ysr@777 276 _overflow = true;
ysr@777 277 return;
ysr@777 278 }
ysr@777 279 // Otherwise...
ysr@777 280 jint index = _index;
ysr@777 281 jint next_index = index + n;
ysr@777 282 if (next_index > _capacity) {
ysr@777 283 _overflow = true;
ysr@777 284 return;
ysr@777 285 }
ysr@777 286 jint res = Atomic::cmpxchg(next_index, &_index, index);
ysr@777 287 if (res == index) {
ysr@777 288 for (int i = 0; i < n; i++) {
johnc@4333 289 int ind = index + i;
ysr@777 290 assert(ind < _capacity, "By overflow test above.");
ysr@777 291 _base[ind] = ptr_arr[i];
ysr@777 292 }
ysr@777 293 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 294 return;
ysr@777 295 }
ysr@777 296 // Otherwise, we need to try again.
ysr@777 297 }
ysr@777 298 }
ysr@777 299
ysr@777 300 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
ysr@777 301 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 302 jint start = _index;
ysr@777 303 jint next_index = start + n;
ysr@777 304 if (next_index > _capacity) {
ysr@777 305 _overflow = true;
ysr@777 306 return;
ysr@777 307 }
ysr@777 308 // Otherwise.
ysr@777 309 _index = next_index;
ysr@777 310 for (int i = 0; i < n; i++) {
ysr@777 311 int ind = start + i;
tonyp@1458 312 assert(ind < _capacity, "By overflow test above.");
ysr@777 313 _base[ind] = ptr_arr[i];
ysr@777 314 }
johnc@4333 315 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
ysr@777 316 }
ysr@777 317
ysr@777 318 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
ysr@777 319 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 320 jint index = _index;
ysr@777 321 if (index == 0) {
ysr@777 322 *n = 0;
ysr@777 323 return false;
ysr@777 324 } else {
ysr@777 325 int k = MIN2(max, index);
johnc@4333 326 jint new_ind = index - k;
ysr@777 327 for (int j = 0; j < k; j++) {
ysr@777 328 ptr_arr[j] = _base[new_ind + j];
ysr@777 329 }
ysr@777 330 _index = new_ind;
ysr@777 331 *n = k;
ysr@777 332 return true;
ysr@777 333 }
ysr@777 334 }
ysr@777 335
ysr@777 336 template<class OopClosureClass>
ysr@777 337 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
ysr@777 338 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
ysr@777 339 || SafepointSynchronize::is_at_safepoint(),
ysr@777 340 "Drain recursion must be yield-safe.");
ysr@777 341 bool res = true;
ysr@777 342 debug_only(_drain_in_progress = true);
ysr@777 343 debug_only(_drain_in_progress_yields = yield_after);
ysr@777 344 while (!isEmpty()) {
ysr@777 345 oop newOop = pop();
ysr@777 346 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
ysr@777 347 assert(newOop->is_oop(), "Expected an oop");
ysr@777 348 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
ysr@777 349 "only grey objects on this stack");
ysr@777 350 newOop->oop_iterate(cl);
ysr@777 351 if (yield_after && _cm->do_yield_check()) {
tonyp@2973 352 res = false;
tonyp@2973 353 break;
ysr@777 354 }
ysr@777 355 }
ysr@777 356 debug_only(_drain_in_progress = false);
ysr@777 357 return res;
ysr@777 358 }
ysr@777 359
tonyp@3416 360 void CMMarkStack::note_start_of_gc() {
tonyp@3416 361 assert(_saved_index == -1,
tonyp@3416 362 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
tonyp@3416 363 _saved_index = _index;
tonyp@3416 364 }
tonyp@3416 365
tonyp@3416 366 void CMMarkStack::note_end_of_gc() {
tonyp@3416 367 // This is intentionally a guarantee, instead of an assert. If we
tonyp@3416 368 // accidentally add something to the mark stack during GC, it
tonyp@3416 369 // will be a correctness issue so it's better if we crash. we'll
tonyp@3416 370 // only check this once per GC anyway, so it won't be a performance
tonyp@3416 371 // issue in any way.
tonyp@3416 372 guarantee(_saved_index == _index,
tonyp@3416 373 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 374 _saved_index = -1;
tonyp@3416 375 }
tonyp@3416 376
ysr@777 377 void CMMarkStack::oops_do(OopClosure* f) {
tonyp@3416 378 assert(_saved_index == _index,
tonyp@3416 379 err_msg("saved index: %d index: %d", _saved_index, _index));
tonyp@3416 380 for (int i = 0; i < _index; i += 1) {
ysr@777 381 f->do_oop(&_base[i]);
ysr@777 382 }
ysr@777 383 }
ysr@777 384
ysr@777 385 bool ConcurrentMark::not_yet_marked(oop obj) const {
coleenp@4037 386 return _g1h->is_obj_ill(obj);
ysr@777 387 }
ysr@777 388
tonyp@3464 389 CMRootRegions::CMRootRegions() :
tonyp@3464 390 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
tonyp@3464 391 _should_abort(false), _next_survivor(NULL) { }
tonyp@3464 392
tonyp@3464 393 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
tonyp@3464 394 _young_list = g1h->young_list();
tonyp@3464 395 _cm = cm;
tonyp@3464 396 }
tonyp@3464 397
tonyp@3464 398 void CMRootRegions::prepare_for_scan() {
tonyp@3464 399 assert(!scan_in_progress(), "pre-condition");
tonyp@3464 400
tonyp@3464 401 // Currently, only survivors can be root regions.
tonyp@3464 402 assert(_next_survivor == NULL, "pre-condition");
tonyp@3464 403 _next_survivor = _young_list->first_survivor_region();
tonyp@3464 404 _scan_in_progress = (_next_survivor != NULL);
tonyp@3464 405 _should_abort = false;
tonyp@3464 406 }
tonyp@3464 407
tonyp@3464 408 HeapRegion* CMRootRegions::claim_next() {
tonyp@3464 409 if (_should_abort) {
tonyp@3464 410 // If someone has set the should_abort flag, we return NULL to
tonyp@3464 411 // force the caller to bail out of their loop.
tonyp@3464 412 return NULL;
tonyp@3464 413 }
tonyp@3464 414
tonyp@3464 415 // Currently, only survivors can be root regions.
tonyp@3464 416 HeapRegion* res = _next_survivor;
tonyp@3464 417 if (res != NULL) {
tonyp@3464 418 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 419 // Read it again in case it changed while we were waiting for the lock.
tonyp@3464 420 res = _next_survivor;
tonyp@3464 421 if (res != NULL) {
tonyp@3464 422 if (res == _young_list->last_survivor_region()) {
tonyp@3464 423 // We just claimed the last survivor so store NULL to indicate
tonyp@3464 424 // that we're done.
tonyp@3464 425 _next_survivor = NULL;
tonyp@3464 426 } else {
tonyp@3464 427 _next_survivor = res->get_next_young_region();
tonyp@3464 428 }
tonyp@3464 429 } else {
tonyp@3464 430 // Someone else claimed the last survivor while we were trying
tonyp@3464 431 // to take the lock so nothing else to do.
tonyp@3464 432 }
tonyp@3464 433 }
tonyp@3464 434 assert(res == NULL || res->is_survivor(), "post-condition");
tonyp@3464 435
tonyp@3464 436 return res;
tonyp@3464 437 }
tonyp@3464 438
tonyp@3464 439 void CMRootRegions::scan_finished() {
tonyp@3464 440 assert(scan_in_progress(), "pre-condition");
tonyp@3464 441
tonyp@3464 442 // Currently, only survivors can be root regions.
tonyp@3464 443 if (!_should_abort) {
tonyp@3464 444 assert(_next_survivor == NULL, "we should have claimed all survivors");
tonyp@3464 445 }
tonyp@3464 446 _next_survivor = NULL;
tonyp@3464 447
tonyp@3464 448 {
tonyp@3464 449 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 450 _scan_in_progress = false;
tonyp@3464 451 RootRegionScan_lock->notify_all();
tonyp@3464 452 }
tonyp@3464 453 }
tonyp@3464 454
tonyp@3464 455 bool CMRootRegions::wait_until_scan_finished() {
tonyp@3464 456 if (!scan_in_progress()) return false;
tonyp@3464 457
tonyp@3464 458 {
tonyp@3464 459 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
tonyp@3464 460 while (scan_in_progress()) {
tonyp@3464 461 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
tonyp@3464 462 }
tonyp@3464 463 }
tonyp@3464 464 return true;
tonyp@3464 465 }
tonyp@3464 466
ysr@777 467 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 468 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 469 #endif // _MSC_VER
ysr@777 470
jmasa@3357 471 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
jmasa@3357 472 return MAX2((n_par_threads + 2) / 4, 1U);
jmasa@3294 473 }
jmasa@3294 474
johnc@4333 475 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
johnc@4333 476 _g1h(g1h),
johnc@4333 477 _markBitMap1(MinObjAlignment - 1),
johnc@4333 478 _markBitMap2(MinObjAlignment - 1),
ysr@777 479
ysr@777 480 _parallel_marking_threads(0),
jmasa@3294 481 _max_parallel_marking_threads(0),
ysr@777 482 _sleep_factor(0.0),
ysr@777 483 _marking_task_overhead(1.0),
ysr@777 484 _cleanup_sleep_factor(0.0),
ysr@777 485 _cleanup_task_overhead(1.0),
tonyp@2472 486 _cleanup_list("Cleanup List"),
johnc@4333 487 _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
johnc@4333 488 _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
johnc@4333 489 CardTableModRefBS::card_shift,
johnc@4333 490 false /* in_resource_area*/),
johnc@3463 491
ysr@777 492 _prevMarkBitMap(&_markBitMap1),
ysr@777 493 _nextMarkBitMap(&_markBitMap2),
ysr@777 494
ysr@777 495 _markStack(this),
ysr@777 496 // _finger set in set_non_marking_state
ysr@777 497
johnc@4173 498 _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
ysr@777 499 // _active_tasks set in set_non_marking_state
ysr@777 500 // _tasks set inside the constructor
johnc@4173 501 _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
johnc@4173 502 _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
ysr@777 503
ysr@777 504 _has_overflown(false),
ysr@777 505 _concurrent(false),
tonyp@1054 506 _has_aborted(false),
tonyp@1054 507 _restart_for_overflow(false),
tonyp@1054 508 _concurrent_marking_in_progress(false),
ysr@777 509
ysr@777 510 // _verbose_level set below
ysr@777 511
ysr@777 512 _init_times(),
ysr@777 513 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
ysr@777 514 _cleanup_times(),
ysr@777 515 _total_counting_time(0.0),
ysr@777 516 _total_rs_scrub_time(0.0),
johnc@3463 517
johnc@3463 518 _parallel_workers(NULL),
johnc@3463 519
johnc@3463 520 _count_card_bitmaps(NULL),
johnc@4333 521 _count_marked_bytes(NULL),
johnc@4333 522 _completed_initialization(false) {
tonyp@2973 523 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
tonyp@2973 524 if (verbose_level < no_verbose) {
ysr@777 525 verbose_level = no_verbose;
tonyp@2973 526 }
tonyp@2973 527 if (verbose_level > high_verbose) {
ysr@777 528 verbose_level = high_verbose;
tonyp@2973 529 }
ysr@777 530 _verbose_level = verbose_level;
ysr@777 531
tonyp@2973 532 if (verbose_low()) {
ysr@777 533 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
ysr@777 534 "heap end = "PTR_FORMAT, _heap_start, _heap_end);
tonyp@2973 535 }
ysr@777 536
johnc@4333 537 if (!_markBitMap1.allocate(heap_rs)) {
johnc@4333 538 warning("Failed to allocate first CM bit map");
johnc@4333 539 return;
johnc@4333 540 }
johnc@4333 541 if (!_markBitMap2.allocate(heap_rs)) {
johnc@4333 542 warning("Failed to allocate second CM bit map");
johnc@4333 543 return;
johnc@4333 544 }
ysr@777 545
ysr@777 546 // Create & start a ConcurrentMark thread.
ysr@1280 547 _cmThread = new ConcurrentMarkThread(this);
ysr@1280 548 assert(cmThread() != NULL, "CM Thread should have been created");
ysr@1280 549 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
ysr@1280 550
ysr@777 551 assert(CGC_lock != NULL, "Where's the CGC_lock?");
johnc@4333 552 assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
johnc@4333 553 assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
ysr@777 554
ysr@777 555 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@1717 556 satb_qs.set_buffer_size(G1SATBBufferSize);
ysr@777 557
tonyp@3464 558 _root_regions.init(_g1h, this);
tonyp@3464 559
jmasa@1719 560 if (ConcGCThreads > ParallelGCThreads) {
johnc@4333 561 warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
johnc@4333 562 "than ParallelGCThreads (" UINT32_FORMAT ").",
johnc@4333 563 ConcGCThreads, ParallelGCThreads);
johnc@4333 564 return;
ysr@777 565 }
ysr@777 566 if (ParallelGCThreads == 0) {
ysr@777 567 // if we are not running with any parallel GC threads we will not
ysr@777 568 // spawn any marking threads either
jmasa@3294 569 _parallel_marking_threads = 0;
jmasa@3294 570 _max_parallel_marking_threads = 0;
jmasa@3294 571 _sleep_factor = 0.0;
jmasa@3294 572 _marking_task_overhead = 1.0;
ysr@777 573 } else {
jmasa@1719 574 if (ConcGCThreads > 0) {
jmasa@1719 575 // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
ysr@777 576 // if both are set
ysr@777 577
jmasa@3357 578 _parallel_marking_threads = (uint) ConcGCThreads;
jmasa@3294 579 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 580 _sleep_factor = 0.0;
ysr@777 581 _marking_task_overhead = 1.0;
johnc@1186 582 } else if (G1MarkingOverheadPercent > 0) {
ysr@777 583 // we will calculate the number of parallel marking threads
ysr@777 584 // based on a target overhead with respect to the soft real-time
ysr@777 585 // goal
ysr@777 586
johnc@1186 587 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
ysr@777 588 double overall_cm_overhead =
johnc@1186 589 (double) MaxGCPauseMillis * marking_overhead /
johnc@1186 590 (double) GCPauseIntervalMillis;
ysr@777 591 double cpu_ratio = 1.0 / (double) os::processor_count();
ysr@777 592 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
ysr@777 593 double marking_task_overhead =
ysr@777 594 overall_cm_overhead / marking_thread_num *
ysr@777 595 (double) os::processor_count();
ysr@777 596 double sleep_factor =
ysr@777 597 (1.0 - marking_task_overhead) / marking_task_overhead;
ysr@777 598
jmasa@3357 599 _parallel_marking_threads = (uint) marking_thread_num;
jmasa@3294 600 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 601 _sleep_factor = sleep_factor;
ysr@777 602 _marking_task_overhead = marking_task_overhead;
ysr@777 603 } else {
jmasa@3357 604 _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
jmasa@3294 605 _max_parallel_marking_threads = _parallel_marking_threads;
ysr@777 606 _sleep_factor = 0.0;
ysr@777 607 _marking_task_overhead = 1.0;
ysr@777 608 }
ysr@777 609
tonyp@2973 610 if (parallel_marking_threads() > 1) {
ysr@777 611 _cleanup_task_overhead = 1.0;
tonyp@2973 612 } else {
ysr@777 613 _cleanup_task_overhead = marking_task_overhead();
tonyp@2973 614 }
ysr@777 615 _cleanup_sleep_factor =
ysr@777 616 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
ysr@777 617
ysr@777 618 #if 0
ysr@777 619 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
ysr@777 620 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
ysr@777 621 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
ysr@777 622 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
ysr@777 623 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
ysr@777 624 #endif
ysr@777 625
tonyp@1458 626 guarantee(parallel_marking_threads() > 0, "peace of mind");
jmasa@2188 627 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
jmasa@3357 628 _max_parallel_marking_threads, false, true);
jmasa@2188 629 if (_parallel_workers == NULL) {
ysr@777 630 vm_exit_during_initialization("Failed necessary allocation.");
jmasa@2188 631 } else {
jmasa@2188 632 _parallel_workers->initialize_workers();
jmasa@2188 633 }
ysr@777 634 }
ysr@777 635
johnc@4333 636 if (FLAG_IS_DEFAULT(MarkStackSize)) {
johnc@4333 637 uintx mark_stack_size =
johnc@4333 638 MIN2(MarkStackSizeMax,
johnc@4333 639 MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
johnc@4333 640 // Verify that the calculated value for MarkStackSize is in range.
johnc@4333 641 // It would be nice to use the private utility routine from Arguments.
johnc@4333 642 if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
johnc@4333 643 warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
johnc@4333 644 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
johnc@4333 645 mark_stack_size, 1, MarkStackSizeMax);
johnc@4333 646 return;
johnc@4333 647 }
johnc@4333 648 FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
johnc@4333 649 } else {
johnc@4333 650 // Verify MarkStackSize is in range.
johnc@4333 651 if (FLAG_IS_CMDLINE(MarkStackSize)) {
johnc@4333 652 if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
johnc@4333 653 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
johnc@4333 654 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
johnc@4333 655 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
johnc@4333 656 MarkStackSize, 1, MarkStackSizeMax);
johnc@4333 657 return;
johnc@4333 658 }
johnc@4333 659 } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
johnc@4333 660 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
johnc@4333 661 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
johnc@4333 662 " or for MarkStackSizeMax (" UINTX_FORMAT ")",
johnc@4333 663 MarkStackSize, MarkStackSizeMax);
johnc@4333 664 return;
johnc@4333 665 }
johnc@4333 666 }
johnc@4333 667 }
johnc@4333 668 }
johnc@4333 669
johnc@4333 670 if (!_markStack.allocate(MarkStackSize)) {
johnc@4333 671 warning("Failed to allocate CM marking stack");
johnc@4333 672 return;
johnc@4333 673 }
johnc@4333 674
johnc@4333 675 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
johnc@4333 676 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
johnc@4333 677
johnc@4333 678 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
johnc@4333 679 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
johnc@4333 680
johnc@4333 681 BitMap::idx_t card_bm_size = _card_bm.size();
johnc@4333 682
johnc@4333 683 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
johnc@4333 684 _active_tasks = _max_worker_id;
johnc@4333 685
johnc@4333 686 size_t max_regions = (size_t) _g1h->max_regions();
johnc@4333 687 for (uint i = 0; i < _max_worker_id; ++i) {
johnc@4333 688 CMTaskQueue* task_queue = new CMTaskQueue();
johnc@4333 689 task_queue->initialize();
johnc@4333 690 _task_queues->register_queue(i, task_queue);
johnc@4333 691
johnc@4333 692 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
johnc@4333 693 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
johnc@4333 694
johnc@4333 695 _tasks[i] = new CMTask(i, this,
johnc@4333 696 _count_marked_bytes[i],
johnc@4333 697 &_count_card_bitmaps[i],
johnc@4333 698 task_queue, _task_queues);
johnc@4333 699
johnc@4333 700 _accum_task_vtime[i] = 0.0;
johnc@4333 701 }
johnc@4333 702
johnc@4333 703 // Calculate the card number for the bottom of the heap. Used
johnc@4333 704 // in biasing indexes into the accounting card bitmaps.
johnc@4333 705 _heap_bottom_card_num =
johnc@4333 706 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
johnc@4333 707 CardTableModRefBS::card_shift);
johnc@4333 708
johnc@4333 709 // Clear all the liveness counting data
johnc@4333 710 clear_all_count_data();
johnc@4333 711
ysr@777 712 // so that the call below can read a sensible value
johnc@4333 713 _heap_start = (HeapWord*) heap_rs.base();
ysr@777 714 set_non_marking_state();
johnc@4333 715 _completed_initialization = true;
ysr@777 716 }
ysr@777 717
ysr@777 718 void ConcurrentMark::update_g1_committed(bool force) {
ysr@777 719 // If concurrent marking is not in progress, then we do not need to
tonyp@3691 720 // update _heap_end.
tonyp@2973 721 if (!concurrent_marking_in_progress() && !force) return;
ysr@777 722
ysr@777 723 MemRegion committed = _g1h->g1_committed();
tonyp@1458 724 assert(committed.start() == _heap_start, "start shouldn't change");
ysr@777 725 HeapWord* new_end = committed.end();
ysr@777 726 if (new_end > _heap_end) {
ysr@777 727 // The heap has been expanded.
ysr@777 728
ysr@777 729 _heap_end = new_end;
ysr@777 730 }
ysr@777 731 // Notice that the heap can also shrink. However, this only happens
ysr@777 732 // during a Full GC (at least currently) and the entire marking
ysr@777 733 // phase will bail out and the task will not be restarted. So, let's
ysr@777 734 // do nothing.
ysr@777 735 }
ysr@777 736
ysr@777 737 void ConcurrentMark::reset() {
ysr@777 738 // Starting values for these two. This should be called in a STW
ysr@777 739 // phase. CM will be notified of any future g1_committed expansions
ysr@777 740 // will be at the end of evacuation pauses, when tasks are
ysr@777 741 // inactive.
ysr@777 742 MemRegion committed = _g1h->g1_committed();
ysr@777 743 _heap_start = committed.start();
ysr@777 744 _heap_end = committed.end();
ysr@777 745
tonyp@1458 746 // Separated the asserts so that we know which one fires.
tonyp@1458 747 assert(_heap_start != NULL, "heap bounds should look ok");
tonyp@1458 748 assert(_heap_end != NULL, "heap bounds should look ok");
tonyp@1458 749 assert(_heap_start < _heap_end, "heap bounds should look ok");
ysr@777 750
johnc@4386 751 // Reset all the marking data structures and any necessary flags
johnc@4386 752 reset_marking_state();
ysr@777 753
tonyp@2973 754 if (verbose_low()) {
ysr@777 755 gclog_or_tty->print_cr("[global] resetting");
tonyp@2973 756 }
ysr@777 757
ysr@777 758 // We do reset all of them, since different phases will use
ysr@777 759 // different number of active threads. So, it's easiest to have all
ysr@777 760 // of them ready.
johnc@4173 761 for (uint i = 0; i < _max_worker_id; ++i) {
ysr@777 762 _tasks[i]->reset(_nextMarkBitMap);
johnc@2190 763 }
ysr@777 764
ysr@777 765 // we need this to make sure that the flag is on during the evac
ysr@777 766 // pause with initial mark piggy-backed
ysr@777 767 set_concurrent_marking_in_progress();
ysr@777 768 }
ysr@777 769
johnc@4386 770
johnc@4386 771 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
johnc@4386 772 _markStack.set_should_expand();
johnc@4386 773 _markStack.setEmpty(); // Also clears the _markStack overflow flag
johnc@4386 774 if (clear_overflow) {
johnc@4386 775 clear_has_overflown();
johnc@4386 776 } else {
johnc@4386 777 assert(has_overflown(), "pre-condition");
johnc@4386 778 }
johnc@4386 779 _finger = _heap_start;
johnc@4386 780
johnc@4386 781 for (uint i = 0; i < _max_worker_id; ++i) {
johnc@4386 782 CMTaskQueue* queue = _task_queues->queue(i);
johnc@4386 783 queue->set_empty();
johnc@4386 784 }
johnc@4386 785 }
johnc@4386 786
jmasa@3357 787 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
johnc@4173 788 assert(active_tasks <= _max_worker_id, "we should not have more");
ysr@777 789
ysr@777 790 _active_tasks = active_tasks;
ysr@777 791 // Need to update the three data structures below according to the
ysr@777 792 // number of active threads for this phase.
ysr@777 793 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
ysr@777 794 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 795 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
ysr@777 796
ysr@777 797 _concurrent = concurrent;
ysr@777 798 // We propagate this to all tasks, not just the active ones.
johnc@4173 799 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 800 _tasks[i]->set_concurrent(concurrent);
ysr@777 801
ysr@777 802 if (concurrent) {
ysr@777 803 set_concurrent_marking_in_progress();
ysr@777 804 } else {
ysr@777 805 // We currently assume that the concurrent flag has been set to
ysr@777 806 // false before we start remark. At this point we should also be
ysr@777 807 // in a STW phase.
tonyp@1458 808 assert(!concurrent_marking_in_progress(), "invariant");
tonyp@1458 809 assert(_finger == _heap_end, "only way to get here");
ysr@777 810 update_g1_committed(true);
ysr@777 811 }
ysr@777 812 }
ysr@777 813
ysr@777 814 void ConcurrentMark::set_non_marking_state() {
ysr@777 815 // We set the global marking state to some default values when we're
ysr@777 816 // not doing marking.
johnc@4386 817 reset_marking_state();
ysr@777 818 _active_tasks = 0;
ysr@777 819 clear_concurrent_marking_in_progress();
ysr@777 820 }
ysr@777 821
ysr@777 822 ConcurrentMark::~ConcurrentMark() {
stefank@3364 823 // The ConcurrentMark instance is never freed.
stefank@3364 824 ShouldNotReachHere();
ysr@777 825 }
ysr@777 826
ysr@777 827 void ConcurrentMark::clearNextBitmap() {
tonyp@1794 828 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@1794 829 G1CollectorPolicy* g1p = g1h->g1_policy();
tonyp@1794 830
tonyp@1794 831 // Make sure that the concurrent mark thread looks to still be in
tonyp@1794 832 // the current cycle.
tonyp@1794 833 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 834
tonyp@1794 835 // We are finishing up the current cycle by clearing the next
tonyp@1794 836 // marking bitmap and getting it ready for the next cycle. During
tonyp@1794 837 // this time no other cycle can start. So, let's make sure that this
tonyp@1794 838 // is the case.
tonyp@1794 839 guarantee(!g1h->mark_in_progress(), "invariant");
tonyp@1794 840
tonyp@1794 841 // clear the mark bitmap (no grey objects to start with).
tonyp@1794 842 // We need to do this in chunks and offer to yield in between
tonyp@1794 843 // each chunk.
tonyp@1794 844 HeapWord* start = _nextMarkBitMap->startWord();
tonyp@1794 845 HeapWord* end = _nextMarkBitMap->endWord();
tonyp@1794 846 HeapWord* cur = start;
tonyp@1794 847 size_t chunkSize = M;
tonyp@1794 848 while (cur < end) {
tonyp@1794 849 HeapWord* next = cur + chunkSize;
tonyp@2973 850 if (next > end) {
tonyp@1794 851 next = end;
tonyp@2973 852 }
tonyp@1794 853 MemRegion mr(cur,next);
tonyp@1794 854 _nextMarkBitMap->clearRange(mr);
tonyp@1794 855 cur = next;
tonyp@1794 856 do_yield_check();
tonyp@1794 857
tonyp@1794 858 // Repeat the asserts from above. We'll do them as asserts here to
tonyp@1794 859 // minimize their overhead on the product. However, we'll have
tonyp@1794 860 // them as guarantees at the beginning / end of the bitmap
tonyp@1794 861 // clearing to get some checking in the product.
tonyp@1794 862 assert(cmThread()->during_cycle(), "invariant");
tonyp@1794 863 assert(!g1h->mark_in_progress(), "invariant");
tonyp@1794 864 }
tonyp@1794 865
johnc@3463 866 // Clear the liveness counting data
johnc@3463 867 clear_all_count_data();
johnc@3463 868
tonyp@1794 869 // Repeat the asserts from above.
tonyp@1794 870 guarantee(cmThread()->during_cycle(), "invariant");
tonyp@1794 871 guarantee(!g1h->mark_in_progress(), "invariant");
ysr@777 872 }
ysr@777 873
ysr@777 874 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
ysr@777 875 public:
ysr@777 876 bool doHeapRegion(HeapRegion* r) {
ysr@777 877 if (!r->continuesHumongous()) {
tonyp@3416 878 r->note_start_of_marking();
ysr@777 879 }
ysr@777 880 return false;
ysr@777 881 }
ysr@777 882 };
ysr@777 883
ysr@777 884 void ConcurrentMark::checkpointRootsInitialPre() {
ysr@777 885 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 886 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 887
ysr@777 888 _has_aborted = false;
ysr@777 889
jcoomes@1902 890 #ifndef PRODUCT
tonyp@1479 891 if (G1PrintReachableAtInitialMark) {
tonyp@1823 892 print_reachable("at-cycle-start",
johnc@2969 893 VerifyOption_G1UsePrevMarking, true /* all */);
tonyp@1479 894 }
jcoomes@1902 895 #endif
ysr@777 896
ysr@777 897 // Initialise marking structures. This has to be done in a STW phase.
ysr@777 898 reset();
tonyp@3416 899
tonyp@3416 900 // For each region note start of marking.
tonyp@3416 901 NoteStartOfMarkHRClosure startcl;
tonyp@3416 902 g1h->heap_region_iterate(&startcl);
ysr@777 903 }
ysr@777 904
ysr@777 905
ysr@777 906 void ConcurrentMark::checkpointRootsInitialPost() {
ysr@777 907 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 908
tonyp@2848 909 // If we force an overflow during remark, the remark operation will
tonyp@2848 910 // actually abort and we'll restart concurrent marking. If we always
tonyp@2848 911 // force an oveflow during remark we'll never actually complete the
tonyp@2848 912 // marking phase. So, we initilize this here, at the start of the
tonyp@2848 913 // cycle, so that at the remaining overflow number will decrease at
tonyp@2848 914 // every remark and we'll eventually not need to cause one.
tonyp@2848 915 force_overflow_stw()->init();
tonyp@2848 916
johnc@3175 917 // Start Concurrent Marking weak-reference discovery.
johnc@3175 918 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3175 919 // enable ("weak") refs discovery
johnc@3175 920 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
ysr@892 921 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
ysr@777 922
ysr@777 923 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1752 924 // This is the start of the marking cycle, we're expected all
tonyp@1752 925 // threads to have SATB queues with active set to false.
tonyp@1752 926 satb_mq_set.set_active_all_threads(true, /* new active value */
tonyp@1752 927 false /* expected_active */);
ysr@777 928
tonyp@3464 929 _root_regions.prepare_for_scan();
tonyp@3464 930
ysr@777 931 // update_g1_committed() will be called at the end of an evac pause
ysr@777 932 // when marking is on. So, it's also called at the end of the
ysr@777 933 // initial-mark pause to update the heap end, if the heap expands
ysr@777 934 // during it. No need to call it here.
ysr@777 935 }
ysr@777 936
ysr@777 937 /*
tonyp@2848 938 * Notice that in the next two methods, we actually leave the STS
tonyp@2848 939 * during the barrier sync and join it immediately afterwards. If we
tonyp@2848 940 * do not do this, the following deadlock can occur: one thread could
tonyp@2848 941 * be in the barrier sync code, waiting for the other thread to also
tonyp@2848 942 * sync up, whereas another one could be trying to yield, while also
tonyp@2848 943 * waiting for the other threads to sync up too.
tonyp@2848 944 *
tonyp@2848 945 * Note, however, that this code is also used during remark and in
tonyp@2848 946 * this case we should not attempt to leave / enter the STS, otherwise
tonyp@2848 947 * we'll either hit an asseert (debug / fastdebug) or deadlock
tonyp@2848 948 * (product). So we should only leave / enter the STS if we are
tonyp@2848 949 * operating concurrently.
tonyp@2848 950 *
tonyp@2848 951 * Because the thread that does the sync barrier has left the STS, it
tonyp@2848 952 * is possible to be suspended for a Full GC or an evacuation pause
tonyp@2848 953 * could occur. This is actually safe, since the entering the sync
tonyp@2848 954 * barrier is one of the last things do_marking_step() does, and it
tonyp@2848 955 * doesn't manipulate any data structures afterwards.
tonyp@2848 956 */
ysr@777 957
johnc@4173 958 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
tonyp@2973 959 if (verbose_low()) {
johnc@4173 960 gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
tonyp@2973 961 }
ysr@777 962
tonyp@2848 963 if (concurrent()) {
tonyp@2848 964 ConcurrentGCThread::stsLeave();
tonyp@2848 965 }
ysr@777 966 _first_overflow_barrier_sync.enter();
tonyp@2848 967 if (concurrent()) {
tonyp@2848 968 ConcurrentGCThread::stsJoin();
tonyp@2848 969 }
ysr@777 970 // at this point everyone should have synced up and not be doing any
ysr@777 971 // more work
ysr@777 972
tonyp@2973 973 if (verbose_low()) {
johnc@4173 974 gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
tonyp@2973 975 }
ysr@777 976
johnc@4173 977 // let the task associated with with worker 0 do this
johnc@4173 978 if (worker_id == 0) {
ysr@777 979 // task 0 is responsible for clearing the global data structures
tonyp@2848 980 // We should be here because of an overflow. During STW we should
tonyp@2848 981 // not clear the overflow flag since we rely on it being true when
tonyp@2848 982 // we exit this method to abort the pause and restart concurent
tonyp@2848 983 // marking.
johnc@4386 984 reset_marking_state(concurrent() /* clear_overflow */);
tonyp@2848 985 force_overflow()->update();
ysr@777 986
brutisso@3710 987 if (G1Log::fine()) {
ysr@777 988 gclog_or_tty->date_stamp(PrintGCDateStamps);
ysr@777 989 gclog_or_tty->stamp(PrintGCTimeStamps);
ysr@777 990 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
ysr@777 991 }
ysr@777 992 }
ysr@777 993
ysr@777 994 // after this, each task should reset its own data structures then
ysr@777 995 // then go into the second barrier
ysr@777 996 }
ysr@777 997
johnc@4173 998 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
tonyp@2973 999 if (verbose_low()) {
johnc@4173 1000 gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
tonyp@2973 1001 }
ysr@777 1002
tonyp@2848 1003 if (concurrent()) {
tonyp@2848 1004 ConcurrentGCThread::stsLeave();
tonyp@2848 1005 }
ysr@777 1006 _second_overflow_barrier_sync.enter();
tonyp@2848 1007 if (concurrent()) {
tonyp@2848 1008 ConcurrentGCThread::stsJoin();
tonyp@2848 1009 }
ysr@777 1010 // at this point everything should be re-initialised and ready to go
ysr@777 1011
tonyp@2973 1012 if (verbose_low()) {
johnc@4173 1013 gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
tonyp@2973 1014 }
ysr@777 1015 }
ysr@777 1016
tonyp@2848 1017 #ifndef PRODUCT
tonyp@2848 1018 void ForceOverflowSettings::init() {
tonyp@2848 1019 _num_remaining = G1ConcMarkForceOverflow;
tonyp@2848 1020 _force = false;
tonyp@2848 1021 update();
tonyp@2848 1022 }
tonyp@2848 1023
tonyp@2848 1024 void ForceOverflowSettings::update() {
tonyp@2848 1025 if (_num_remaining > 0) {
tonyp@2848 1026 _num_remaining -= 1;
tonyp@2848 1027 _force = true;
tonyp@2848 1028 } else {
tonyp@2848 1029 _force = false;
tonyp@2848 1030 }
tonyp@2848 1031 }
tonyp@2848 1032
tonyp@2848 1033 bool ForceOverflowSettings::should_force() {
tonyp@2848 1034 if (_force) {
tonyp@2848 1035 _force = false;
tonyp@2848 1036 return true;
tonyp@2848 1037 } else {
tonyp@2848 1038 return false;
tonyp@2848 1039 }
tonyp@2848 1040 }
tonyp@2848 1041 #endif // !PRODUCT
tonyp@2848 1042
ysr@777 1043 class CMConcurrentMarkingTask: public AbstractGangTask {
ysr@777 1044 private:
ysr@777 1045 ConcurrentMark* _cm;
ysr@777 1046 ConcurrentMarkThread* _cmt;
ysr@777 1047
ysr@777 1048 public:
jmasa@3357 1049 void work(uint worker_id) {
tonyp@1458 1050 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@1458 1051 "this should only be done by a conc GC thread");
johnc@2316 1052 ResourceMark rm;
ysr@777 1053
ysr@777 1054 double start_vtime = os::elapsedVTime();
ysr@777 1055
ysr@777 1056 ConcurrentGCThread::stsJoin();
ysr@777 1057
jmasa@3357 1058 assert(worker_id < _cm->active_tasks(), "invariant");
jmasa@3357 1059 CMTask* the_task = _cm->task(worker_id);
ysr@777 1060 the_task->record_start_time();
ysr@777 1061 if (!_cm->has_aborted()) {
ysr@777 1062 do {
ysr@777 1063 double start_vtime_sec = os::elapsedVTime();
ysr@777 1064 double start_time_sec = os::elapsedTime();
johnc@2494 1065 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 1066
johnc@2494 1067 the_task->do_marking_step(mark_step_duration_ms,
johnc@2494 1068 true /* do_stealing */,
johnc@2494 1069 true /* do_termination */);
johnc@2494 1070
ysr@777 1071 double end_time_sec = os::elapsedTime();
ysr@777 1072 double end_vtime_sec = os::elapsedVTime();
ysr@777 1073 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
ysr@777 1074 double elapsed_time_sec = end_time_sec - start_time_sec;
ysr@777 1075 _cm->clear_has_overflown();
ysr@777 1076
jmasa@3357 1077 bool ret = _cm->do_yield_check(worker_id);
ysr@777 1078
ysr@777 1079 jlong sleep_time_ms;
ysr@777 1080 if (!_cm->has_aborted() && the_task->has_aborted()) {
ysr@777 1081 sleep_time_ms =
ysr@777 1082 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
ysr@777 1083 ConcurrentGCThread::stsLeave();
ysr@777 1084 os::sleep(Thread::current(), sleep_time_ms, false);
ysr@777 1085 ConcurrentGCThread::stsJoin();
ysr@777 1086 }
ysr@777 1087 double end_time2_sec = os::elapsedTime();
ysr@777 1088 double elapsed_time2_sec = end_time2_sec - start_time_sec;
ysr@777 1089
ysr@777 1090 #if 0
ysr@777 1091 gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
ysr@777 1092 "overhead %1.4lf",
ysr@777 1093 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
ysr@777 1094 the_task->conc_overhead(os::elapsedTime()) * 8.0);
ysr@777 1095 gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
ysr@777 1096 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
ysr@777 1097 #endif
ysr@777 1098 } while (!_cm->has_aborted() && the_task->has_aborted());
ysr@777 1099 }
ysr@777 1100 the_task->record_end_time();
tonyp@1458 1101 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
ysr@777 1102
ysr@777 1103 ConcurrentGCThread::stsLeave();
ysr@777 1104
ysr@777 1105 double end_vtime = os::elapsedVTime();
jmasa@3357 1106 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
ysr@777 1107 }
ysr@777 1108
ysr@777 1109 CMConcurrentMarkingTask(ConcurrentMark* cm,
ysr@777 1110 ConcurrentMarkThread* cmt) :
ysr@777 1111 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
ysr@777 1112
ysr@777 1113 ~CMConcurrentMarkingTask() { }
ysr@777 1114 };
ysr@777 1115
jmasa@3294 1116 // Calculates the number of active workers for a concurrent
jmasa@3294 1117 // phase.
jmasa@3357 1118 uint ConcurrentMark::calc_parallel_marking_threads() {
johnc@3338 1119 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1120 uint n_conc_workers = 0;
jmasa@3294 1121 if (!UseDynamicNumberOfGCThreads ||
jmasa@3294 1122 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
jmasa@3294 1123 !ForceDynamicNumberOfGCThreads)) {
jmasa@3294 1124 n_conc_workers = max_parallel_marking_threads();
jmasa@3294 1125 } else {
jmasa@3294 1126 n_conc_workers =
jmasa@3294 1127 AdaptiveSizePolicy::calc_default_active_workers(
jmasa@3294 1128 max_parallel_marking_threads(),
jmasa@3294 1129 1, /* Minimum workers */
jmasa@3294 1130 parallel_marking_threads(),
jmasa@3294 1131 Threads::number_of_non_daemon_threads());
jmasa@3294 1132 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
jmasa@3294 1133 // that scaling has already gone into "_max_parallel_marking_threads".
jmasa@3294 1134 }
johnc@3338 1135 assert(n_conc_workers > 0, "Always need at least 1");
johnc@3338 1136 return n_conc_workers;
jmasa@3294 1137 }
johnc@3338 1138 // If we are not running with any parallel GC threads we will not
johnc@3338 1139 // have spawned any marking threads either. Hence the number of
johnc@3338 1140 // concurrent workers should be 0.
johnc@3338 1141 return 0;
jmasa@3294 1142 }
jmasa@3294 1143
tonyp@3464 1144 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
tonyp@3464 1145 // Currently, only survivors can be root regions.
tonyp@3464 1146 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
tonyp@3464 1147 G1RootRegionScanClosure cl(_g1h, this, worker_id);
tonyp@3464 1148
tonyp@3464 1149 const uintx interval = PrefetchScanIntervalInBytes;
tonyp@3464 1150 HeapWord* curr = hr->bottom();
tonyp@3464 1151 const HeapWord* end = hr->top();
tonyp@3464 1152 while (curr < end) {
tonyp@3464 1153 Prefetch::read(curr, interval);
tonyp@3464 1154 oop obj = oop(curr);
tonyp@3464 1155 int size = obj->oop_iterate(&cl);
tonyp@3464 1156 assert(size == obj->size(), "sanity");
tonyp@3464 1157 curr += size;
tonyp@3464 1158 }
tonyp@3464 1159 }
tonyp@3464 1160
tonyp@3464 1161 class CMRootRegionScanTask : public AbstractGangTask {
tonyp@3464 1162 private:
tonyp@3464 1163 ConcurrentMark* _cm;
tonyp@3464 1164
tonyp@3464 1165 public:
tonyp@3464 1166 CMRootRegionScanTask(ConcurrentMark* cm) :
tonyp@3464 1167 AbstractGangTask("Root Region Scan"), _cm(cm) { }
tonyp@3464 1168
tonyp@3464 1169 void work(uint worker_id) {
tonyp@3464 1170 assert(Thread::current()->is_ConcurrentGC_thread(),
tonyp@3464 1171 "this should only be done by a conc GC thread");
tonyp@3464 1172
tonyp@3464 1173 CMRootRegions* root_regions = _cm->root_regions();
tonyp@3464 1174 HeapRegion* hr = root_regions->claim_next();
tonyp@3464 1175 while (hr != NULL) {
tonyp@3464 1176 _cm->scanRootRegion(hr, worker_id);
tonyp@3464 1177 hr = root_regions->claim_next();
tonyp@3464 1178 }
tonyp@3464 1179 }
tonyp@3464 1180 };
tonyp@3464 1181
tonyp@3464 1182 void ConcurrentMark::scanRootRegions() {
tonyp@3464 1183 // scan_in_progress() will have been set to true only if there was
tonyp@3464 1184 // at least one root region to scan. So, if it's false, we
tonyp@3464 1185 // should not attempt to do any further work.
tonyp@3464 1186 if (root_regions()->scan_in_progress()) {
tonyp@3464 1187 _parallel_marking_threads = calc_parallel_marking_threads();
tonyp@3464 1188 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
tonyp@3464 1189 "Maximum number of marking threads exceeded");
tonyp@3464 1190 uint active_workers = MAX2(1U, parallel_marking_threads());
tonyp@3464 1191
tonyp@3464 1192 CMRootRegionScanTask task(this);
tonyp@3464 1193 if (parallel_marking_threads() > 0) {
tonyp@3464 1194 _parallel_workers->set_active_workers((int) active_workers);
tonyp@3464 1195 _parallel_workers->run_task(&task);
tonyp@3464 1196 } else {
tonyp@3464 1197 task.work(0);
tonyp@3464 1198 }
tonyp@3464 1199
tonyp@3464 1200 // It's possible that has_aborted() is true here without actually
tonyp@3464 1201 // aborting the survivor scan earlier. This is OK as it's
tonyp@3464 1202 // mainly used for sanity checking.
tonyp@3464 1203 root_regions()->scan_finished();
tonyp@3464 1204 }
tonyp@3464 1205 }
tonyp@3464 1206
ysr@777 1207 void ConcurrentMark::markFromRoots() {
ysr@777 1208 // we might be tempted to assert that:
ysr@777 1209 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
ysr@777 1210 // "inconsistent argument?");
ysr@777 1211 // However that wouldn't be right, because it's possible that
ysr@777 1212 // a safepoint is indeed in progress as a younger generation
ysr@777 1213 // stop-the-world GC happens even as we mark in this generation.
ysr@777 1214
ysr@777 1215 _restart_for_overflow = false;
tonyp@2848 1216 force_overflow_conc()->init();
jmasa@3294 1217
jmasa@3294 1218 // _g1h has _n_par_threads
jmasa@3294 1219 _parallel_marking_threads = calc_parallel_marking_threads();
jmasa@3294 1220 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
jmasa@3294 1221 "Maximum number of marking threads exceeded");
johnc@3338 1222
jmasa@3357 1223 uint active_workers = MAX2(1U, parallel_marking_threads());
johnc@3338 1224
johnc@3338 1225 // Parallel task terminator is set in "set_phase()"
johnc@3338 1226 set_phase(active_workers, true /* concurrent */);
ysr@777 1227
ysr@777 1228 CMConcurrentMarkingTask markingTask(this, cmThread());
tonyp@2973 1229 if (parallel_marking_threads() > 0) {
johnc@3338 1230 _parallel_workers->set_active_workers((int)active_workers);
johnc@3338 1231 // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
johnc@3338 1232 // and the decisions on that MT processing is made elsewhere.
johnc@3338 1233 assert(_parallel_workers->active_workers() > 0, "Should have been set");
ysr@777 1234 _parallel_workers->run_task(&markingTask);
tonyp@2973 1235 } else {
ysr@777 1236 markingTask.work(0);
tonyp@2973 1237 }
ysr@777 1238 print_stats();
ysr@777 1239 }
ysr@777 1240
ysr@777 1241 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
ysr@777 1242 // world is stopped at this checkpoint
ysr@777 1243 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1244 "world should be stopped");
johnc@3175 1245
ysr@777 1246 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1247
ysr@777 1248 // If a full collection has happened, we shouldn't do this.
ysr@777 1249 if (has_aborted()) {
ysr@777 1250 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1251 return;
ysr@777 1252 }
ysr@777 1253
kamg@2445 1254 SvcGCMarker sgcm(SvcGCMarker::OTHER);
kamg@2445 1255
ysr@1280 1256 if (VerifyDuringGC) {
ysr@1280 1257 HandleMark hm; // handle scope
ysr@1280 1258 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1259 Universe::heap()->prepare_for_verify();
johnc@4176 1260 Universe::verify(/* silent */ false,
johnc@4176 1261 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1262 }
ysr@1280 1263
ysr@777 1264 G1CollectorPolicy* g1p = g1h->g1_policy();
ysr@777 1265 g1p->record_concurrent_mark_remark_start();
ysr@777 1266
ysr@777 1267 double start = os::elapsedTime();
ysr@777 1268
ysr@777 1269 checkpointRootsFinalWork();
ysr@777 1270
ysr@777 1271 double mark_work_end = os::elapsedTime();
ysr@777 1272
ysr@777 1273 weakRefsWork(clear_all_soft_refs);
ysr@777 1274
ysr@777 1275 if (has_overflown()) {
ysr@777 1276 // Oops. We overflowed. Restart concurrent marking.
ysr@777 1277 _restart_for_overflow = true;
johnc@4386 1278 // Clear the marking state because we will be restarting
johnc@4386 1279 // marking due to overflowing the global mark stack.
johnc@4386 1280 reset_marking_state();
tonyp@2973 1281 if (G1TraceMarkStackOverflow) {
ysr@777 1282 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
tonyp@2973 1283 }
ysr@777 1284 } else {
johnc@3463 1285 // Aggregate the per-task counting data that we have accumulated
johnc@3463 1286 // while marking.
johnc@3463 1287 aggregate_count_data();
johnc@3463 1288
tonyp@2469 1289 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 1290 // We're done with marking.
tonyp@1752 1291 // This is the end of the marking cycle, we're expected all
tonyp@1752 1292 // threads to have SATB queues with active set to true.
tonyp@2469 1293 satb_mq_set.set_active_all_threads(false, /* new active value */
tonyp@2469 1294 true /* expected_active */);
tonyp@1246 1295
tonyp@1246 1296 if (VerifyDuringGC) {
ysr@1280 1297 HandleMark hm; // handle scope
ysr@1280 1298 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 1299 Universe::heap()->prepare_for_verify();
johnc@4176 1300 Universe::verify(/* silent */ false,
johnc@4176 1301 /* option */ VerifyOption_G1UseNextMarking);
tonyp@1246 1302 }
johnc@2494 1303 assert(!restart_for_overflow(), "sanity");
johnc@4386 1304 // Completely reset the marking state since marking completed
johnc@4386 1305 set_non_marking_state();
johnc@2494 1306 }
johnc@2494 1307
johnc@4333 1308 // Expand the marking stack, if we have to and if we can.
johnc@4333 1309 if (_markStack.should_expand()) {
johnc@4333 1310 _markStack.expand();
johnc@4333 1311 }
johnc@4333 1312
ysr@777 1313 #if VERIFY_OBJS_PROCESSED
ysr@777 1314 _scan_obj_cl.objs_processed = 0;
ysr@777 1315 ThreadLocalObjQueue::objs_enqueued = 0;
ysr@777 1316 #endif
ysr@777 1317
ysr@777 1318 // Statistics
ysr@777 1319 double now = os::elapsedTime();
ysr@777 1320 _remark_mark_times.add((mark_work_end - start) * 1000.0);
ysr@777 1321 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
ysr@777 1322 _remark_times.add((now - start) * 1000.0);
ysr@777 1323
ysr@777 1324 g1p->record_concurrent_mark_remark_end();
ysr@777 1325 }
ysr@777 1326
johnc@3731 1327 // Base class of the closures that finalize and verify the
johnc@3731 1328 // liveness counting data.
johnc@3731 1329 class CMCountDataClosureBase: public HeapRegionClosure {
johnc@3731 1330 protected:
johnc@4123 1331 G1CollectedHeap* _g1h;
ysr@777 1332 ConcurrentMark* _cm;
johnc@4123 1333 CardTableModRefBS* _ct_bs;
johnc@4123 1334
johnc@3463 1335 BitMap* _region_bm;
johnc@3463 1336 BitMap* _card_bm;
johnc@3463 1337
johnc@4123 1338 // Takes a region that's not empty (i.e., it has at least one
tonyp@1264 1339 // live object in it and sets its corresponding bit on the region
tonyp@1264 1340 // bitmap to 1. If the region is "starts humongous" it will also set
tonyp@1264 1341 // to 1 the bits on the region bitmap that correspond to its
tonyp@1264 1342 // associated "continues humongous" regions.
tonyp@1264 1343 void set_bit_for_region(HeapRegion* hr) {
tonyp@1264 1344 assert(!hr->continuesHumongous(), "should have filtered those out");
tonyp@1264 1345
tonyp@3713 1346 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
tonyp@1264 1347 if (!hr->startsHumongous()) {
tonyp@1264 1348 // Normal (non-humongous) case: just set the bit.
tonyp@3713 1349 _region_bm->par_at_put(index, true);
tonyp@1264 1350 } else {
tonyp@1264 1351 // Starts humongous case: calculate how many regions are part of
johnc@3463 1352 // this humongous region and then set the bit range.
tonyp@3957 1353 BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
tonyp@3713 1354 _region_bm->par_at_put_range(index, end_index, true);
tonyp@1264 1355 }
tonyp@1264 1356 }
tonyp@1264 1357
johnc@3731 1358 public:
johnc@4123 1359 CMCountDataClosureBase(G1CollectedHeap* g1h,
johnc@3731 1360 BitMap* region_bm, BitMap* card_bm):
johnc@4123 1361 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 1362 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
johnc@4123 1363 _region_bm(region_bm), _card_bm(card_bm) { }
johnc@3731 1364 };
johnc@3731 1365
johnc@3731 1366 // Closure that calculates the # live objects per region. Used
johnc@3731 1367 // for verification purposes during the cleanup pause.
johnc@3731 1368 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
johnc@3731 1369 CMBitMapRO* _bm;
johnc@3731 1370 size_t _region_marked_bytes;
johnc@3731 1371
johnc@3731 1372 public:
johnc@4123 1373 CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
johnc@3731 1374 BitMap* region_bm, BitMap* card_bm) :
johnc@4123 1375 CMCountDataClosureBase(g1h, region_bm, card_bm),
johnc@3731 1376 _bm(bm), _region_marked_bytes(0) { }
johnc@3731 1377
ysr@777 1378 bool doHeapRegion(HeapRegion* hr) {
ysr@777 1379
iveresov@1074 1380 if (hr->continuesHumongous()) {
tonyp@1264 1381 // We will ignore these here and process them when their
tonyp@1264 1382 // associated "starts humongous" region is processed (see
tonyp@1264 1383 // set_bit_for_heap_region()). Note that we cannot rely on their
tonyp@1264 1384 // associated "starts humongous" region to have their bit set to
tonyp@1264 1385 // 1 since, due to the region chunking in the parallel region
tonyp@1264 1386 // iteration, a "continues humongous" region might be visited
tonyp@1264 1387 // before its associated "starts humongous".
iveresov@1074 1388 return false;
iveresov@1074 1389 }
ysr@777 1390
johnc@4123 1391 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@4123 1392 HeapWord* start = hr->bottom();
johnc@4123 1393
johnc@4123 1394 assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
johnc@3463 1395 err_msg("Preconditions not met - "
johnc@4123 1396 "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@4123 1397 start, ntams, hr->end()));
johnc@3463 1398
ysr@777 1399 // Find the first marked object at or after "start".
johnc@4123 1400 start = _bm->getNextMarkedWordAddress(start, ntams);
johnc@3463 1401
ysr@777 1402 size_t marked_bytes = 0;
ysr@777 1403
johnc@4123 1404 while (start < ntams) {
ysr@777 1405 oop obj = oop(start);
ysr@777 1406 int obj_sz = obj->size();
johnc@4123 1407 HeapWord* obj_end = start + obj_sz;
johnc@3731 1408
johnc@3731 1409 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@4123 1410 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
johnc@4123 1411
johnc@4123 1412 // Note: if we're looking at the last region in heap - obj_end
johnc@4123 1413 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1414 // will then correspond to a (non-existent) card that is also
johnc@4123 1415 // just beyond the heap.
johnc@4123 1416 if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
johnc@4123 1417 // end of object is not card aligned - increment to cover
johnc@4123 1418 // all the cards spanned by the object
johnc@4123 1419 end_idx += 1;
johnc@4123 1420 }
johnc@4123 1421
johnc@4123 1422 // Set the bits in the card BM for the cards spanned by this object.
johnc@4123 1423 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
johnc@3731 1424
johnc@3731 1425 // Add the size of this object to the number of marked bytes.
apetrusenko@1465 1426 marked_bytes += (size_t)obj_sz * HeapWordSize;
johnc@3463 1427
ysr@777 1428 // Find the next marked object after this one.
johnc@4123 1429 start = _bm->getNextMarkedWordAddress(obj_end, ntams);
tonyp@2973 1430 }
johnc@3463 1431
johnc@3463 1432 // Mark the allocated-since-marking portion...
johnc@3463 1433 HeapWord* top = hr->top();
johnc@4123 1434 if (ntams < top) {
johnc@4123 1435 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@4123 1436 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
johnc@4123 1437
johnc@4123 1438 // Note: if we're looking at the last region in heap - top
johnc@4123 1439 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1440 // will then correspond to a (non-existent) card that is also
johnc@4123 1441 // just beyond the heap.
johnc@4123 1442 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
johnc@4123 1443 // end of object is not card aligned - increment to cover
johnc@4123 1444 // all the cards spanned by the object
johnc@4123 1445 end_idx += 1;
johnc@4123 1446 }
johnc@4123 1447 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
johnc@3463 1448
johnc@3463 1449 // This definitely means the region has live objects.
johnc@3463 1450 set_bit_for_region(hr);
ysr@777 1451 }
ysr@777 1452
ysr@777 1453 // Update the live region bitmap.
ysr@777 1454 if (marked_bytes > 0) {
tonyp@1264 1455 set_bit_for_region(hr);
ysr@777 1456 }
johnc@3463 1457
johnc@3463 1458 // Set the marked bytes for the current region so that
johnc@3463 1459 // it can be queried by a calling verificiation routine
johnc@3463 1460 _region_marked_bytes = marked_bytes;
johnc@3463 1461
johnc@3463 1462 return false;
johnc@3463 1463 }
johnc@3463 1464
johnc@3463 1465 size_t region_marked_bytes() const { return _region_marked_bytes; }
johnc@3463 1466 };
johnc@3463 1467
johnc@3463 1468 // Heap region closure used for verifying the counting data
johnc@3463 1469 // that was accumulated concurrently and aggregated during
johnc@3463 1470 // the remark pause. This closure is applied to the heap
johnc@3463 1471 // regions during the STW cleanup pause.
johnc@3463 1472
johnc@3463 1473 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
johnc@4123 1474 G1CollectedHeap* _g1h;
johnc@3463 1475 ConcurrentMark* _cm;
johnc@3463 1476 CalcLiveObjectsClosure _calc_cl;
johnc@3463 1477 BitMap* _region_bm; // Region BM to be verified
johnc@3463 1478 BitMap* _card_bm; // Card BM to be verified
johnc@3463 1479 bool _verbose; // verbose output?
johnc@3463 1480
johnc@3463 1481 BitMap* _exp_region_bm; // Expected Region BM values
johnc@3463 1482 BitMap* _exp_card_bm; // Expected card BM values
johnc@3463 1483
johnc@3463 1484 int _failures;
johnc@3463 1485
johnc@3463 1486 public:
johnc@4123 1487 VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
johnc@3463 1488 BitMap* region_bm,
johnc@3463 1489 BitMap* card_bm,
johnc@3463 1490 BitMap* exp_region_bm,
johnc@3463 1491 BitMap* exp_card_bm,
johnc@3463 1492 bool verbose) :
johnc@4123 1493 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 1494 _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
johnc@3463 1495 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
johnc@3463 1496 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
johnc@3463 1497 _failures(0) { }
johnc@3463 1498
johnc@3463 1499 int failures() const { return _failures; }
johnc@3463 1500
johnc@3463 1501 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1502 if (hr->continuesHumongous()) {
johnc@3463 1503 // We will ignore these here and process them when their
johnc@3463 1504 // associated "starts humongous" region is processed (see
johnc@3463 1505 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1506 // associated "starts humongous" region to have their bit set to
johnc@3463 1507 // 1 since, due to the region chunking in the parallel region
johnc@3463 1508 // iteration, a "continues humongous" region might be visited
johnc@3463 1509 // before its associated "starts humongous".
johnc@3463 1510 return false;
johnc@3463 1511 }
johnc@3463 1512
johnc@3463 1513 int failures = 0;
johnc@3463 1514
johnc@3463 1515 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
johnc@3463 1516 // this region and set the corresponding bits in the expected region
johnc@3463 1517 // and card bitmaps.
johnc@3463 1518 bool res = _calc_cl.doHeapRegion(hr);
johnc@3463 1519 assert(res == false, "should be continuing");
johnc@3463 1520
johnc@3463 1521 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
johnc@3463 1522 Mutex::_no_safepoint_check_flag);
johnc@3463 1523
johnc@3463 1524 // Verify the marked bytes for this region.
johnc@3463 1525 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
johnc@3463 1526 size_t act_marked_bytes = hr->next_marked_bytes();
johnc@3463 1527
johnc@3463 1528 // We're not OK if expected marked bytes > actual marked bytes. It means
johnc@3463 1529 // we have missed accounting some objects during the actual marking.
johnc@3463 1530 if (exp_marked_bytes > act_marked_bytes) {
johnc@3463 1531 if (_verbose) {
tonyp@3713 1532 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
johnc@3463 1533 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
johnc@3463 1534 hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
johnc@3463 1535 }
johnc@3463 1536 failures += 1;
johnc@3463 1537 }
johnc@3463 1538
johnc@3463 1539 // Verify the bit, for this region, in the actual and expected
johnc@3463 1540 // (which was just calculated) region bit maps.
johnc@3463 1541 // We're not OK if the bit in the calculated expected region
johnc@3463 1542 // bitmap is set and the bit in the actual region bitmap is not.
tonyp@3713 1543 BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
johnc@3463 1544
johnc@3463 1545 bool expected = _exp_region_bm->at(index);
johnc@3463 1546 bool actual = _region_bm->at(index);
johnc@3463 1547 if (expected && !actual) {
johnc@3463 1548 if (_verbose) {
tonyp@3713 1549 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
tonyp@3713 1550 "expected: %s, actual: %s",
tonyp@3713 1551 hr->hrs_index(),
tonyp@3713 1552 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
johnc@3463 1553 }
johnc@3463 1554 failures += 1;
johnc@3463 1555 }
johnc@3463 1556
johnc@3463 1557 // Verify that the card bit maps for the cards spanned by the current
johnc@3463 1558 // region match. We have an error if we have a set bit in the expected
johnc@3463 1559 // bit map and the corresponding bit in the actual bitmap is not set.
johnc@3463 1560
johnc@3463 1561 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
johnc@3463 1562 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
johnc@3463 1563
johnc@3463 1564 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
johnc@3463 1565 expected = _exp_card_bm->at(i);
johnc@3463 1566 actual = _card_bm->at(i);
johnc@3463 1567
johnc@3463 1568 if (expected && !actual) {
johnc@3463 1569 if (_verbose) {
tonyp@3713 1570 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
tonyp@3713 1571 "expected: %s, actual: %s",
tonyp@3713 1572 hr->hrs_index(), i,
tonyp@3713 1573 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
ysr@777 1574 }
johnc@3463 1575 failures += 1;
ysr@777 1576 }
ysr@777 1577 }
ysr@777 1578
johnc@3463 1579 if (failures > 0 && _verbose) {
johnc@3463 1580 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
johnc@3463 1581 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
johnc@3463 1582 HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
johnc@3463 1583 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
johnc@3463 1584 }
johnc@3463 1585
johnc@3463 1586 _failures += failures;
johnc@3463 1587
johnc@3463 1588 // We could stop iteration over the heap when we
johnc@3731 1589 // find the first violating region by returning true.
ysr@777 1590 return false;
ysr@777 1591 }
ysr@777 1592 };
ysr@777 1593
ysr@777 1594
johnc@3463 1595 class G1ParVerifyFinalCountTask: public AbstractGangTask {
johnc@3463 1596 protected:
johnc@3463 1597 G1CollectedHeap* _g1h;
johnc@3463 1598 ConcurrentMark* _cm;
johnc@3463 1599 BitMap* _actual_region_bm;
johnc@3463 1600 BitMap* _actual_card_bm;
johnc@3463 1601
johnc@3463 1602 uint _n_workers;
johnc@3463 1603
johnc@3463 1604 BitMap* _expected_region_bm;
johnc@3463 1605 BitMap* _expected_card_bm;
johnc@3463 1606
johnc@3463 1607 int _failures;
johnc@3463 1608 bool _verbose;
johnc@3463 1609
johnc@3463 1610 public:
johnc@3463 1611 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
johnc@3463 1612 BitMap* region_bm, BitMap* card_bm,
johnc@3463 1613 BitMap* expected_region_bm, BitMap* expected_card_bm)
johnc@3463 1614 : AbstractGangTask("G1 verify final counting"),
johnc@3463 1615 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1616 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1617 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
johnc@3463 1618 _failures(0), _verbose(false),
johnc@3463 1619 _n_workers(0) {
johnc@3463 1620 assert(VerifyDuringGC, "don't call this otherwise");
johnc@3463 1621
johnc@3463 1622 // Use the value already set as the number of active threads
johnc@3463 1623 // in the call to run_task().
johnc@3463 1624 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1625 assert( _g1h->workers()->active_workers() > 0,
johnc@3463 1626 "Should have been previously set");
johnc@3463 1627 _n_workers = _g1h->workers()->active_workers();
johnc@3463 1628 } else {
johnc@3463 1629 _n_workers = 1;
johnc@3463 1630 }
johnc@3463 1631
johnc@3463 1632 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
johnc@3463 1633 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
johnc@3463 1634
johnc@3463 1635 _verbose = _cm->verbose_medium();
johnc@3463 1636 }
johnc@3463 1637
johnc@3463 1638 void work(uint worker_id) {
johnc@3463 1639 assert(worker_id < _n_workers, "invariant");
johnc@3463 1640
johnc@4123 1641 VerifyLiveObjectDataHRClosure verify_cl(_g1h,
johnc@3463 1642 _actual_region_bm, _actual_card_bm,
johnc@3463 1643 _expected_region_bm,
johnc@3463 1644 _expected_card_bm,
johnc@3463 1645 _verbose);
johnc@3463 1646
johnc@3463 1647 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1648 _g1h->heap_region_par_iterate_chunked(&verify_cl,
johnc@3463 1649 worker_id,
johnc@3463 1650 _n_workers,
johnc@3463 1651 HeapRegion::VerifyCountClaimValue);
johnc@3463 1652 } else {
johnc@3463 1653 _g1h->heap_region_iterate(&verify_cl);
johnc@3463 1654 }
johnc@3463 1655
johnc@3463 1656 Atomic::add(verify_cl.failures(), &_failures);
johnc@3463 1657 }
johnc@3463 1658
johnc@3463 1659 int failures() const { return _failures; }
johnc@3463 1660 };
johnc@3463 1661
johnc@3731 1662 // Closure that finalizes the liveness counting data.
johnc@3731 1663 // Used during the cleanup pause.
johnc@3731 1664 // Sets the bits corresponding to the interval [NTAMS, top]
johnc@3731 1665 // (which contains the implicitly live objects) in the
johnc@3731 1666 // card liveness bitmap. Also sets the bit for each region,
johnc@3731 1667 // containing live data, in the region liveness bitmap.
johnc@3731 1668
johnc@3731 1669 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
johnc@3463 1670 public:
johnc@4123 1671 FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
johnc@3463 1672 BitMap* region_bm,
johnc@3463 1673 BitMap* card_bm) :
johnc@4123 1674 CMCountDataClosureBase(g1h, region_bm, card_bm) { }
johnc@3463 1675
johnc@3463 1676 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 1677
johnc@3463 1678 if (hr->continuesHumongous()) {
johnc@3463 1679 // We will ignore these here and process them when their
johnc@3463 1680 // associated "starts humongous" region is processed (see
johnc@3463 1681 // set_bit_for_heap_region()). Note that we cannot rely on their
johnc@3463 1682 // associated "starts humongous" region to have their bit set to
johnc@3463 1683 // 1 since, due to the region chunking in the parallel region
johnc@3463 1684 // iteration, a "continues humongous" region might be visited
johnc@3463 1685 // before its associated "starts humongous".
johnc@3463 1686 return false;
johnc@3463 1687 }
johnc@3463 1688
johnc@3463 1689 HeapWord* ntams = hr->next_top_at_mark_start();
johnc@3463 1690 HeapWord* top = hr->top();
johnc@3463 1691
johnc@3731 1692 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
johnc@3463 1693
johnc@3463 1694 // Mark the allocated-since-marking portion...
johnc@3463 1695 if (ntams < top) {
johnc@3463 1696 // This definitely means the region has live objects.
johnc@3463 1697 set_bit_for_region(hr);
johnc@4123 1698
johnc@4123 1699 // Now set the bits in the card bitmap for [ntams, top)
johnc@4123 1700 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
johnc@4123 1701 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
johnc@4123 1702
johnc@4123 1703 // Note: if we're looking at the last region in heap - top
johnc@4123 1704 // could be actually just beyond the end of the heap; end_idx
johnc@4123 1705 // will then correspond to a (non-existent) card that is also
johnc@4123 1706 // just beyond the heap.
johnc@4123 1707 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
johnc@4123 1708 // end of object is not card aligned - increment to cover
johnc@4123 1709 // all the cards spanned by the object
johnc@4123 1710 end_idx += 1;
johnc@4123 1711 }
johnc@4123 1712
johnc@4123 1713 assert(end_idx <= _card_bm->size(),
johnc@4123 1714 err_msg("oob: end_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
johnc@4123 1715 end_idx, _card_bm->size()));
johnc@4123 1716 assert(start_idx < _card_bm->size(),
johnc@4123 1717 err_msg("oob: start_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
johnc@4123 1718 start_idx, _card_bm->size()));
johnc@4123 1719
johnc@4123 1720 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
coleenp@4037 1721 }
johnc@3463 1722
johnc@3463 1723 // Set the bit for the region if it contains live data
johnc@3463 1724 if (hr->next_marked_bytes() > 0) {
johnc@3463 1725 set_bit_for_region(hr);
johnc@3463 1726 }
johnc@3463 1727
johnc@3463 1728 return false;
johnc@3463 1729 }
johnc@3463 1730 };
ysr@777 1731
ysr@777 1732 class G1ParFinalCountTask: public AbstractGangTask {
ysr@777 1733 protected:
ysr@777 1734 G1CollectedHeap* _g1h;
johnc@3463 1735 ConcurrentMark* _cm;
johnc@3463 1736 BitMap* _actual_region_bm;
johnc@3463 1737 BitMap* _actual_card_bm;
johnc@3463 1738
jmasa@3357 1739 uint _n_workers;
johnc@3463 1740
ysr@777 1741 public:
johnc@3463 1742 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
johnc@3463 1743 : AbstractGangTask("G1 final counting"),
johnc@3463 1744 _g1h(g1h), _cm(_g1h->concurrent_mark()),
johnc@3463 1745 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
johnc@3463 1746 _n_workers(0) {
jmasa@3294 1747 // Use the value already set as the number of active threads
tonyp@3714 1748 // in the call to run_task().
jmasa@3294 1749 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 1750 assert( _g1h->workers()->active_workers() > 0,
jmasa@3294 1751 "Should have been previously set");
jmasa@3294 1752 _n_workers = _g1h->workers()->active_workers();
tonyp@2973 1753 } else {
ysr@777 1754 _n_workers = 1;
tonyp@2973 1755 }
ysr@777 1756 }
ysr@777 1757
jmasa@3357 1758 void work(uint worker_id) {
johnc@3463 1759 assert(worker_id < _n_workers, "invariant");
johnc@3463 1760
johnc@4123 1761 FinalCountDataUpdateClosure final_update_cl(_g1h,
johnc@3463 1762 _actual_region_bm,
johnc@3463 1763 _actual_card_bm);
johnc@3463 1764
jmasa@2188 1765 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1766 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
johnc@3463 1767 worker_id,
johnc@3463 1768 _n_workers,
tonyp@790 1769 HeapRegion::FinalCountClaimValue);
ysr@777 1770 } else {
johnc@3463 1771 _g1h->heap_region_iterate(&final_update_cl);
ysr@777 1772 }
ysr@777 1773 }
ysr@777 1774 };
ysr@777 1775
ysr@777 1776 class G1ParNoteEndTask;
ysr@777 1777
ysr@777 1778 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
ysr@777 1779 G1CollectedHeap* _g1;
ysr@777 1780 int _worker_num;
ysr@777 1781 size_t _max_live_bytes;
tonyp@3713 1782 uint _regions_claimed;
ysr@777 1783 size_t _freed_bytes;
tonyp@2493 1784 FreeRegionList* _local_cleanup_list;
tonyp@3268 1785 OldRegionSet* _old_proxy_set;
tonyp@2493 1786 HumongousRegionSet* _humongous_proxy_set;
tonyp@2493 1787 HRRSCleanupTask* _hrrs_cleanup_task;
ysr@777 1788 double _claimed_region_time;
ysr@777 1789 double _max_region_time;
ysr@777 1790
ysr@777 1791 public:
ysr@777 1792 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
tonyp@2493 1793 int worker_num,
tonyp@2493 1794 FreeRegionList* local_cleanup_list,
tonyp@3268 1795 OldRegionSet* old_proxy_set,
tonyp@2493 1796 HumongousRegionSet* humongous_proxy_set,
johnc@3292 1797 HRRSCleanupTask* hrrs_cleanup_task) :
johnc@3292 1798 _g1(g1), _worker_num(worker_num),
johnc@3292 1799 _max_live_bytes(0), _regions_claimed(0),
johnc@3292 1800 _freed_bytes(0),
johnc@3292 1801 _claimed_region_time(0.0), _max_region_time(0.0),
johnc@3292 1802 _local_cleanup_list(local_cleanup_list),
johnc@3292 1803 _old_proxy_set(old_proxy_set),
johnc@3292 1804 _humongous_proxy_set(humongous_proxy_set),
johnc@3292 1805 _hrrs_cleanup_task(hrrs_cleanup_task) { }
johnc@3292 1806
ysr@777 1807 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1808
johnc@3292 1809 bool doHeapRegion(HeapRegion *hr) {
tonyp@3957 1810 if (hr->continuesHumongous()) {
tonyp@3957 1811 return false;
tonyp@3957 1812 }
johnc@3292 1813 // We use a claim value of zero here because all regions
johnc@3292 1814 // were claimed with value 1 in the FinalCount task.
tonyp@3957 1815 _g1->reset_gc_time_stamps(hr);
tonyp@3957 1816 double start = os::elapsedTime();
tonyp@3957 1817 _regions_claimed++;
tonyp@3957 1818 hr->note_end_of_marking();
tonyp@3957 1819 _max_live_bytes += hr->max_live_bytes();
tonyp@3957 1820 _g1->free_region_if_empty(hr,
tonyp@3957 1821 &_freed_bytes,
tonyp@3957 1822 _local_cleanup_list,
tonyp@3957 1823 _old_proxy_set,
tonyp@3957 1824 _humongous_proxy_set,
tonyp@3957 1825 _hrrs_cleanup_task,
tonyp@3957 1826 true /* par */);
tonyp@3957 1827 double region_time = (os::elapsedTime() - start);
tonyp@3957 1828 _claimed_region_time += region_time;
tonyp@3957 1829 if (region_time > _max_region_time) {
tonyp@3957 1830 _max_region_time = region_time;
johnc@3292 1831 }
johnc@3292 1832 return false;
johnc@3292 1833 }
ysr@777 1834
ysr@777 1835 size_t max_live_bytes() { return _max_live_bytes; }
tonyp@3713 1836 uint regions_claimed() { return _regions_claimed; }
ysr@777 1837 double claimed_region_time_sec() { return _claimed_region_time; }
ysr@777 1838 double max_region_time_sec() { return _max_region_time; }
ysr@777 1839 };
ysr@777 1840
ysr@777 1841 class G1ParNoteEndTask: public AbstractGangTask {
ysr@777 1842 friend class G1NoteEndOfConcMarkClosure;
tonyp@2472 1843
ysr@777 1844 protected:
ysr@777 1845 G1CollectedHeap* _g1h;
ysr@777 1846 size_t _max_live_bytes;
ysr@777 1847 size_t _freed_bytes;
tonyp@2472 1848 FreeRegionList* _cleanup_list;
tonyp@2472 1849
ysr@777 1850 public:
ysr@777 1851 G1ParNoteEndTask(G1CollectedHeap* g1h,
tonyp@2472 1852 FreeRegionList* cleanup_list) :
ysr@777 1853 AbstractGangTask("G1 note end"), _g1h(g1h),
tonyp@2472 1854 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
ysr@777 1855
jmasa@3357 1856 void work(uint worker_id) {
ysr@777 1857 double start = os::elapsedTime();
tonyp@2493 1858 FreeRegionList local_cleanup_list("Local Cleanup List");
tonyp@3268 1859 OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
tonyp@2493 1860 HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
tonyp@2493 1861 HRRSCleanupTask hrrs_cleanup_task;
jmasa@3357 1862 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
tonyp@3268 1863 &old_proxy_set,
tonyp@2493 1864 &humongous_proxy_set,
tonyp@2493 1865 &hrrs_cleanup_task);
jmasa@2188 1866 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1867 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
jmasa@3294 1868 _g1h->workers()->active_workers(),
tonyp@790 1869 HeapRegion::NoteEndClaimValue);
ysr@777 1870 } else {
ysr@777 1871 _g1h->heap_region_iterate(&g1_note_end);
ysr@777 1872 }
ysr@777 1873 assert(g1_note_end.complete(), "Shouldn't have yielded!");
ysr@777 1874
tonyp@2472 1875 // Now update the lists
tonyp@2472 1876 _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
tonyp@2472 1877 NULL /* free_list */,
tonyp@3268 1878 &old_proxy_set,
tonyp@2493 1879 &humongous_proxy_set,
tonyp@2472 1880 true /* par */);
ysr@777 1881 {
ysr@777 1882 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 1883 _max_live_bytes += g1_note_end.max_live_bytes();
ysr@777 1884 _freed_bytes += g1_note_end.freed_bytes();
tonyp@2472 1885
tonyp@2975 1886 // If we iterate over the global cleanup list at the end of
tonyp@2975 1887 // cleanup to do this printing we will not guarantee to only
tonyp@2975 1888 // generate output for the newly-reclaimed regions (the list
tonyp@2975 1889 // might not be empty at the beginning of cleanup; we might
tonyp@2975 1890 // still be working on its previous contents). So we do the
tonyp@2975 1891 // printing here, before we append the new regions to the global
tonyp@2975 1892 // cleanup list.
tonyp@2975 1893
tonyp@2975 1894 G1HRPrinter* hr_printer = _g1h->hr_printer();
tonyp@2975 1895 if (hr_printer->is_active()) {
tonyp@2975 1896 HeapRegionLinkedListIterator iter(&local_cleanup_list);
tonyp@2975 1897 while (iter.more_available()) {
tonyp@2975 1898 HeapRegion* hr = iter.get_next();
tonyp@2975 1899 hr_printer->cleanup(hr);
tonyp@2975 1900 }
tonyp@2975 1901 }
tonyp@2975 1902
tonyp@2493 1903 _cleanup_list->add_as_tail(&local_cleanup_list);
tonyp@2493 1904 assert(local_cleanup_list.is_empty(), "post-condition");
tonyp@2493 1905
tonyp@2493 1906 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
ysr@777 1907 }
ysr@777 1908 }
ysr@777 1909 size_t max_live_bytes() { return _max_live_bytes; }
ysr@777 1910 size_t freed_bytes() { return _freed_bytes; }
ysr@777 1911 };
ysr@777 1912
ysr@777 1913 class G1ParScrubRemSetTask: public AbstractGangTask {
ysr@777 1914 protected:
ysr@777 1915 G1RemSet* _g1rs;
ysr@777 1916 BitMap* _region_bm;
ysr@777 1917 BitMap* _card_bm;
ysr@777 1918 public:
ysr@777 1919 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
ysr@777 1920 BitMap* region_bm, BitMap* card_bm) :
ysr@777 1921 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
johnc@3463 1922 _region_bm(region_bm), _card_bm(card_bm) { }
ysr@777 1923
jmasa@3357 1924 void work(uint worker_id) {
jmasa@2188 1925 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3357 1926 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
tonyp@790 1927 HeapRegion::ScrubRemSetClaimValue);
ysr@777 1928 } else {
ysr@777 1929 _g1rs->scrub(_region_bm, _card_bm);
ysr@777 1930 }
ysr@777 1931 }
ysr@777 1932
ysr@777 1933 };
ysr@777 1934
ysr@777 1935 void ConcurrentMark::cleanup() {
ysr@777 1936 // world is stopped at this checkpoint
ysr@777 1937 assert(SafepointSynchronize::is_at_safepoint(),
ysr@777 1938 "world should be stopped");
ysr@777 1939 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 1940
ysr@777 1941 // If a full collection has happened, we shouldn't do this.
ysr@777 1942 if (has_aborted()) {
ysr@777 1943 g1h->set_marking_complete(); // So bitmap clearing isn't confused
ysr@777 1944 return;
ysr@777 1945 }
ysr@777 1946
tonyp@3268 1947 HRSPhaseSetter x(HRSPhaseCleanup);
tonyp@2472 1948 g1h->verify_region_sets_optional();
tonyp@2472 1949
ysr@1280 1950 if (VerifyDuringGC) {
ysr@1280 1951 HandleMark hm; // handle scope
ysr@1280 1952 gclog_or_tty->print(" VerifyDuringGC:(before)");
ysr@1280 1953 Universe::heap()->prepare_for_verify();
johnc@4176 1954 Universe::verify(/* silent */ false,
johnc@4176 1955 /* option */ VerifyOption_G1UsePrevMarking);
ysr@1280 1956 }
ysr@1280 1957
ysr@777 1958 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
ysr@777 1959 g1p->record_concurrent_mark_cleanup_start();
ysr@777 1960
ysr@777 1961 double start = os::elapsedTime();
ysr@777 1962
tonyp@2493 1963 HeapRegionRemSet::reset_for_cleanup_tasks();
tonyp@2493 1964
jmasa@3357 1965 uint n_workers;
jmasa@3294 1966
ysr@777 1967 // Do counting once more with the world stopped for good measure.
johnc@3463 1968 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
johnc@3463 1969
jmasa@2188 1970 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 1971 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@790 1972 "sanity check");
tonyp@790 1973
johnc@3338 1974 g1h->set_par_threads();
johnc@3338 1975 n_workers = g1h->n_par_threads();
jmasa@3357 1976 assert(g1h->n_par_threads() == n_workers,
johnc@3338 1977 "Should not have been reset");
ysr@777 1978 g1h->workers()->run_task(&g1_par_count_task);
jmasa@3294 1979 // Done with the parallel phase so reset to 0.
ysr@777 1980 g1h->set_par_threads(0);
tonyp@790 1981
johnc@3463 1982 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
tonyp@790 1983 "sanity check");
ysr@777 1984 } else {
johnc@3338 1985 n_workers = 1;
ysr@777 1986 g1_par_count_task.work(0);
ysr@777 1987 }
ysr@777 1988
johnc@3463 1989 if (VerifyDuringGC) {
johnc@3463 1990 // Verify that the counting data accumulated during marking matches
johnc@3463 1991 // that calculated by walking the marking bitmap.
johnc@3463 1992
johnc@3463 1993 // Bitmaps to hold expected values
johnc@3463 1994 BitMap expected_region_bm(_region_bm.size(), false);
johnc@3463 1995 BitMap expected_card_bm(_card_bm.size(), false);
johnc@3463 1996
johnc@3463 1997 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
johnc@3463 1998 &_region_bm,
johnc@3463 1999 &_card_bm,
johnc@3463 2000 &expected_region_bm,
johnc@3463 2001 &expected_card_bm);
johnc@3463 2002
johnc@3463 2003 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 2004 g1h->set_par_threads((int)n_workers);
johnc@3463 2005 g1h->workers()->run_task(&g1_par_verify_task);
johnc@3463 2006 // Done with the parallel phase so reset to 0.
johnc@3463 2007 g1h->set_par_threads(0);
johnc@3463 2008
johnc@3463 2009 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
johnc@3463 2010 "sanity check");
johnc@3463 2011 } else {
johnc@3463 2012 g1_par_verify_task.work(0);
johnc@3463 2013 }
johnc@3463 2014
johnc@3463 2015 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
johnc@3463 2016 }
johnc@3463 2017
ysr@777 2018 size_t start_used_bytes = g1h->used();
ysr@777 2019 g1h->set_marking_complete();
ysr@777 2020
ysr@777 2021 double count_end = os::elapsedTime();
ysr@777 2022 double this_final_counting_time = (count_end - start);
ysr@777 2023 _total_counting_time += this_final_counting_time;
ysr@777 2024
tonyp@2717 2025 if (G1PrintRegionLivenessInfo) {
tonyp@2717 2026 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
tonyp@2717 2027 _g1h->heap_region_iterate(&cl);
tonyp@2717 2028 }
tonyp@2717 2029
ysr@777 2030 // Install newly created mark bitMap as "prev".
ysr@777 2031 swapMarkBitMaps();
ysr@777 2032
ysr@777 2033 g1h->reset_gc_time_stamp();
ysr@777 2034
ysr@777 2035 // Note end of marking in all heap regions.
tonyp@2472 2036 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
jmasa@2188 2037 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 2038 g1h->set_par_threads((int)n_workers);
ysr@777 2039 g1h->workers()->run_task(&g1_par_note_end_task);
ysr@777 2040 g1h->set_par_threads(0);
tonyp@790 2041
tonyp@790 2042 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
tonyp@790 2043 "sanity check");
ysr@777 2044 } else {
ysr@777 2045 g1_par_note_end_task.work(0);
ysr@777 2046 }
tonyp@3957 2047 g1h->check_gc_time_stamps();
tonyp@2472 2048
tonyp@2472 2049 if (!cleanup_list_is_empty()) {
tonyp@2472 2050 // The cleanup list is not empty, so we'll have to process it
tonyp@2472 2051 // concurrently. Notify anyone else that might be wanting free
tonyp@2472 2052 // regions that there will be more free regions coming soon.
tonyp@2472 2053 g1h->set_free_regions_coming();
tonyp@2472 2054 }
ysr@777 2055
ysr@777 2056 // call below, since it affects the metric by which we sort the heap
ysr@777 2057 // regions.
ysr@777 2058 if (G1ScrubRemSets) {
ysr@777 2059 double rs_scrub_start = os::elapsedTime();
ysr@777 2060 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
jmasa@2188 2061 if (G1CollectedHeap::use_parallel_gc_threads()) {
jmasa@3294 2062 g1h->set_par_threads((int)n_workers);
ysr@777 2063 g1h->workers()->run_task(&g1_par_scrub_rs_task);
ysr@777 2064 g1h->set_par_threads(0);
tonyp@790 2065
tonyp@790 2066 assert(g1h->check_heap_region_claim_values(
tonyp@790 2067 HeapRegion::ScrubRemSetClaimValue),
tonyp@790 2068 "sanity check");
ysr@777 2069 } else {
ysr@777 2070 g1_par_scrub_rs_task.work(0);
ysr@777 2071 }
ysr@777 2072
ysr@777 2073 double rs_scrub_end = os::elapsedTime();
ysr@777 2074 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
ysr@777 2075 _total_rs_scrub_time += this_rs_scrub_time;
ysr@777 2076 }
ysr@777 2077
ysr@777 2078 // this will also free any regions totally full of garbage objects,
ysr@777 2079 // and sort the regions.
jmasa@3294 2080 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
ysr@777 2081
ysr@777 2082 // Statistics.
ysr@777 2083 double end = os::elapsedTime();
ysr@777 2084 _cleanup_times.add((end - start) * 1000.0);
ysr@777 2085
brutisso@3710 2086 if (G1Log::fine()) {
ysr@777 2087 g1h->print_size_transition(gclog_or_tty,
ysr@777 2088 start_used_bytes,
ysr@777 2089 g1h->used(),
ysr@777 2090 g1h->capacity());
ysr@777 2091 }
ysr@777 2092
johnc@3175 2093 // Clean up will have freed any regions completely full of garbage.
johnc@3175 2094 // Update the soft reference policy with the new heap occupancy.
johnc@3175 2095 Universe::update_heap_info_at_gc();
johnc@3175 2096
ysr@777 2097 // We need to make this be a "collection" so any collection pause that
ysr@777 2098 // races with it goes around and waits for completeCleanup to finish.
ysr@777 2099 g1h->increment_total_collections();
ysr@777 2100
tonyp@3457 2101 // We reclaimed old regions so we should calculate the sizes to make
tonyp@3457 2102 // sure we update the old gen/space data.
tonyp@3457 2103 g1h->g1mm()->update_sizes();
tonyp@3457 2104
johnc@1186 2105 if (VerifyDuringGC) {
ysr@1280 2106 HandleMark hm; // handle scope
ysr@1280 2107 gclog_or_tty->print(" VerifyDuringGC:(after)");
ysr@1280 2108 Universe::heap()->prepare_for_verify();
johnc@4176 2109 Universe::verify(/* silent */ false,
johnc@4176 2110 /* option */ VerifyOption_G1UsePrevMarking);
ysr@777 2111 }
tonyp@2472 2112
tonyp@2472 2113 g1h->verify_region_sets_optional();
ysr@777 2114 }
ysr@777 2115
ysr@777 2116 void ConcurrentMark::completeCleanup() {
ysr@777 2117 if (has_aborted()) return;
ysr@777 2118
tonyp@2472 2119 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2472 2120
tonyp@2472 2121 _cleanup_list.verify_optional();
tonyp@2643 2122 FreeRegionList tmp_free_list("Tmp Free List");
tonyp@2472 2123
tonyp@2472 2124 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 2125 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 2126 "cleanup list has %u entries",
tonyp@2472 2127 _cleanup_list.length());
tonyp@2472 2128 }
tonyp@2472 2129
tonyp@2472 2130 // Noone else should be accessing the _cleanup_list at this point,
tonyp@2472 2131 // so it's not necessary to take any locks
tonyp@2472 2132 while (!_cleanup_list.is_empty()) {
tonyp@2472 2133 HeapRegion* hr = _cleanup_list.remove_head();
tonyp@2472 2134 assert(hr != NULL, "the list was not empty");
tonyp@2849 2135 hr->par_clear();
tonyp@2643 2136 tmp_free_list.add_as_tail(hr);
tonyp@2472 2137
tonyp@2472 2138 // Instead of adding one region at a time to the secondary_free_list,
tonyp@2472 2139 // we accumulate them in the local list and move them a few at a
tonyp@2472 2140 // time. This also cuts down on the number of notify_all() calls
tonyp@2472 2141 // we do during this process. We'll also append the local list when
tonyp@2472 2142 // _cleanup_list is empty (which means we just removed the last
tonyp@2472 2143 // region from the _cleanup_list).
tonyp@2643 2144 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
tonyp@2472 2145 _cleanup_list.is_empty()) {
tonyp@2472 2146 if (G1ConcRegionFreeingVerbose) {
tonyp@2472 2147 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
tonyp@3713 2148 "appending %u entries to the secondary_free_list, "
tonyp@3713 2149 "cleanup list still has %u entries",
tonyp@2643 2150 tmp_free_list.length(),
tonyp@2472 2151 _cleanup_list.length());
ysr@777 2152 }
tonyp@2472 2153
tonyp@2472 2154 {
tonyp@2472 2155 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2643 2156 g1h->secondary_free_list_add_as_tail(&tmp_free_list);
tonyp@2472 2157 SecondaryFreeList_lock->notify_all();
tonyp@2472 2158 }
tonyp@2472 2159
tonyp@2472 2160 if (G1StressConcRegionFreeing) {
tonyp@2472 2161 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
tonyp@2472 2162 os::sleep(Thread::current(), (jlong) 1, false);
tonyp@2472 2163 }
tonyp@2472 2164 }
ysr@777 2165 }
ysr@777 2166 }
tonyp@2643 2167 assert(tmp_free_list.is_empty(), "post-condition");
ysr@777 2168 }
ysr@777 2169
johnc@2494 2170 // Support closures for reference procssing in G1
johnc@2494 2171
johnc@2379 2172 bool G1CMIsAliveClosure::do_object_b(oop obj) {
johnc@2379 2173 HeapWord* addr = (HeapWord*)obj;
johnc@2379 2174 return addr != NULL &&
johnc@2379 2175 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
johnc@2379 2176 }
ysr@777 2177
coleenp@4037 2178 class G1CMKeepAliveClosure: public ExtendedOopClosure {
ysr@777 2179 G1CollectedHeap* _g1;
ysr@777 2180 ConcurrentMark* _cm;
ysr@777 2181 public:
johnc@3463 2182 G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
johnc@3463 2183 _g1(g1), _cm(cm) {
johnc@3463 2184 assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
johnc@3463 2185 }
ysr@777 2186
ysr@1280 2187 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2188 virtual void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2189
ysr@1280 2190 template <class T> void do_oop_work(T* p) {
johnc@2494 2191 oop obj = oopDesc::load_decode_heap_oop(p);
johnc@2494 2192 HeapWord* addr = (HeapWord*)obj;
johnc@2494 2193
tonyp@2973 2194 if (_cm->verbose_high()) {
johnc@2494 2195 gclog_or_tty->print_cr("\t[0] we're looking at location "
tonyp@2973 2196 "*"PTR_FORMAT" = "PTR_FORMAT,
tonyp@2973 2197 p, (void*) obj);
tonyp@2973 2198 }
johnc@2494 2199
johnc@2494 2200 if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
johnc@3463 2201 _cm->mark_and_count(obj);
johnc@2494 2202 _cm->mark_stack_push(obj);
ysr@777 2203 }
ysr@777 2204 }
ysr@777 2205 };
ysr@777 2206
ysr@777 2207 class G1CMDrainMarkingStackClosure: public VoidClosure {
johnc@3463 2208 ConcurrentMark* _cm;
ysr@777 2209 CMMarkStack* _markStack;
ysr@777 2210 G1CMKeepAliveClosure* _oopClosure;
ysr@777 2211 public:
johnc@3463 2212 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
ysr@777 2213 G1CMKeepAliveClosure* oopClosure) :
johnc@3463 2214 _cm(cm),
ysr@777 2215 _markStack(markStack),
johnc@3463 2216 _oopClosure(oopClosure) { }
ysr@777 2217
ysr@777 2218 void do_void() {
coleenp@4037 2219 _markStack->drain(_oopClosure, _cm->nextMarkBitMap(), false);
ysr@777 2220 }
ysr@777 2221 };
ysr@777 2222
johnc@2494 2223 // 'Keep Alive' closure used by parallel reference processing.
johnc@2494 2224 // An instance of this closure is used in the parallel reference processing
johnc@2494 2225 // code rather than an instance of G1CMKeepAliveClosure. We could have used
johnc@2494 2226 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
johnc@2494 2227 // placed on to discovered ref lists once so we can mark and push with no
johnc@2494 2228 // need to check whether the object has already been marked. Using the
johnc@2494 2229 // G1CMKeepAliveClosure would mean, however, having all the worker threads
johnc@2494 2230 // operating on the global mark stack. This means that an individual
johnc@2494 2231 // worker would be doing lock-free pushes while it processes its own
johnc@2494 2232 // discovered ref list followed by drain call. If the discovered ref lists
johnc@2494 2233 // are unbalanced then this could cause interference with the other
johnc@2494 2234 // workers. Using a CMTask (and its embedded local data structures)
johnc@2494 2235 // avoids that potential interference.
johnc@2494 2236 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
johnc@2494 2237 ConcurrentMark* _cm;
johnc@2494 2238 CMTask* _task;
johnc@2494 2239 int _ref_counter_limit;
johnc@2494 2240 int _ref_counter;
johnc@2494 2241 public:
johnc@3292 2242 G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3292 2243 _cm(cm), _task(task),
johnc@3292 2244 _ref_counter_limit(G1RefProcDrainInterval) {
johnc@2494 2245 assert(_ref_counter_limit > 0, "sanity");
johnc@2494 2246 _ref_counter = _ref_counter_limit;
johnc@2494 2247 }
johnc@2494 2248
johnc@2494 2249 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
johnc@2494 2250 virtual void do_oop( oop* p) { do_oop_work(p); }
johnc@2494 2251
johnc@2494 2252 template <class T> void do_oop_work(T* p) {
johnc@2494 2253 if (!_cm->has_overflown()) {
johnc@2494 2254 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@2973 2255 if (_cm->verbose_high()) {
johnc@4173 2256 gclog_or_tty->print_cr("\t[%u] we're looking at location "
johnc@2494 2257 "*"PTR_FORMAT" = "PTR_FORMAT,
johnc@4173 2258 _task->worker_id(), p, (void*) obj);
tonyp@2973 2259 }
johnc@2494 2260
johnc@2494 2261 _task->deal_with_reference(obj);
johnc@2494 2262 _ref_counter--;
johnc@2494 2263
johnc@2494 2264 if (_ref_counter == 0) {
johnc@2494 2265 // We have dealt with _ref_counter_limit references, pushing them and objects
johnc@2494 2266 // reachable from them on to the local stack (and possibly the global stack).
johnc@2494 2267 // Call do_marking_step() to process these entries. We call the routine in a
johnc@2494 2268 // loop, which we'll exit if there's nothing more to do (i.e. we're done
johnc@2494 2269 // with the entries that we've pushed as a result of the deal_with_reference
johnc@2494 2270 // calls above) or we overflow.
johnc@2494 2271 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2272 // while there may still be some work to do. (See the comment at the
johnc@2494 2273 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2274 // is reaching the specified time target.) It is only when
johnc@2494 2275 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2276 // that the marking has completed.
johnc@2494 2277 do {
johnc@2494 2278 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
johnc@2494 2279 _task->do_marking_step(mark_step_duration_ms,
johnc@2494 2280 false /* do_stealing */,
johnc@2494 2281 false /* do_termination */);
johnc@2494 2282 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2283 _ref_counter = _ref_counter_limit;
johnc@2494 2284 }
johnc@2494 2285 } else {
tonyp@2973 2286 if (_cm->verbose_high()) {
johnc@4173 2287 gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
tonyp@2973 2288 }
johnc@2494 2289 }
johnc@2494 2290 }
johnc@2494 2291 };
johnc@2494 2292
johnc@2494 2293 class G1CMParDrainMarkingStackClosure: public VoidClosure {
johnc@2494 2294 ConcurrentMark* _cm;
johnc@2494 2295 CMTask* _task;
johnc@2494 2296 public:
johnc@2494 2297 G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
johnc@3463 2298 _cm(cm), _task(task) { }
johnc@2494 2299
johnc@2494 2300 void do_void() {
johnc@2494 2301 do {
tonyp@2973 2302 if (_cm->verbose_high()) {
johnc@4173 2303 gclog_or_tty->print_cr("\t[%u] Drain: Calling do marking_step",
johnc@4173 2304 _task->worker_id());
tonyp@2973 2305 }
johnc@2494 2306
johnc@2494 2307 // We call CMTask::do_marking_step() to completely drain the local and
johnc@2494 2308 // global marking stacks. The routine is called in a loop, which we'll
johnc@2494 2309 // exit if there's nothing more to do (i.e. we'completely drained the
johnc@2494 2310 // entries that were pushed as a result of applying the
johnc@2494 2311 // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
johnc@2494 2312 // lists above) or we overflow the global marking stack.
johnc@2494 2313 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
johnc@2494 2314 // while there may still be some work to do. (See the comment at the
johnc@2494 2315 // beginning of CMTask::do_marking_step() for those conditions - one of which
johnc@2494 2316 // is reaching the specified time target.) It is only when
johnc@2494 2317 // CMTask::do_marking_step() returns without setting the has_aborted() flag
johnc@2494 2318 // that the marking has completed.
johnc@2494 2319
johnc@2494 2320 _task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2321 true /* do_stealing */,
johnc@2494 2322 true /* do_termination */);
johnc@2494 2323 } while (_task->has_aborted() && !_cm->has_overflown());
johnc@2494 2324 }
johnc@2494 2325 };
johnc@2494 2326
johnc@3175 2327 // Implementation of AbstractRefProcTaskExecutor for parallel
johnc@3175 2328 // reference processing at the end of G1 concurrent marking
johnc@3175 2329
johnc@3175 2330 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
johnc@2494 2331 private:
johnc@2494 2332 G1CollectedHeap* _g1h;
johnc@2494 2333 ConcurrentMark* _cm;
johnc@2494 2334 WorkGang* _workers;
johnc@2494 2335 int _active_workers;
johnc@2494 2336
johnc@2494 2337 public:
johnc@3175 2338 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
johnc@2494 2339 ConcurrentMark* cm,
johnc@2494 2340 WorkGang* workers,
johnc@2494 2341 int n_workers) :
johnc@3292 2342 _g1h(g1h), _cm(cm),
johnc@3292 2343 _workers(workers), _active_workers(n_workers) { }
johnc@2494 2344
johnc@2494 2345 // Executes the given task using concurrent marking worker threads.
johnc@2494 2346 virtual void execute(ProcessTask& task);
johnc@2494 2347 virtual void execute(EnqueueTask& task);
johnc@2494 2348 };
johnc@2494 2349
johnc@3175 2350 class G1CMRefProcTaskProxy: public AbstractGangTask {
johnc@2494 2351 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
johnc@2494 2352 ProcessTask& _proc_task;
johnc@2494 2353 G1CollectedHeap* _g1h;
johnc@2494 2354 ConcurrentMark* _cm;
johnc@2494 2355
johnc@2494 2356 public:
johnc@3175 2357 G1CMRefProcTaskProxy(ProcessTask& proc_task,
johnc@2494 2358 G1CollectedHeap* g1h,
johnc@3292 2359 ConcurrentMark* cm) :
johnc@2494 2360 AbstractGangTask("Process reference objects in parallel"),
johnc@3292 2361 _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
johnc@2494 2362
jmasa@3357 2363 virtual void work(uint worker_id) {
jmasa@3357 2364 CMTask* marking_task = _cm->task(worker_id);
johnc@2494 2365 G1CMIsAliveClosure g1_is_alive(_g1h);
johnc@3292 2366 G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
johnc@2494 2367 G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
johnc@2494 2368
jmasa@3357 2369 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
johnc@2494 2370 }
johnc@2494 2371 };
johnc@2494 2372
johnc@3175 2373 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
johnc@2494 2374 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2375
johnc@3292 2376 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
johnc@2494 2377
johnc@2494 2378 // We need to reset the phase for each task execution so that
johnc@2494 2379 // the termination protocol of CMTask::do_marking_step works.
johnc@2494 2380 _cm->set_phase(_active_workers, false /* concurrent */);
johnc@2494 2381 _g1h->set_par_threads(_active_workers);
johnc@2494 2382 _workers->run_task(&proc_task_proxy);
johnc@2494 2383 _g1h->set_par_threads(0);
johnc@2494 2384 }
johnc@2494 2385
johnc@3175 2386 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
johnc@2494 2387 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
johnc@2494 2388 EnqueueTask& _enq_task;
johnc@2494 2389
johnc@2494 2390 public:
johnc@3175 2391 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
johnc@2494 2392 AbstractGangTask("Enqueue reference objects in parallel"),
johnc@3292 2393 _enq_task(enq_task) { }
johnc@2494 2394
jmasa@3357 2395 virtual void work(uint worker_id) {
jmasa@3357 2396 _enq_task.work(worker_id);
johnc@2494 2397 }
johnc@2494 2398 };
johnc@2494 2399
johnc@3175 2400 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
johnc@2494 2401 assert(_workers != NULL, "Need parallel worker threads.");
johnc@2494 2402
johnc@3175 2403 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
johnc@2494 2404
johnc@2494 2405 _g1h->set_par_threads(_active_workers);
johnc@2494 2406 _workers->run_task(&enq_task_proxy);
johnc@2494 2407 _g1h->set_par_threads(0);
johnc@2494 2408 }
johnc@2494 2409
ysr@777 2410 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
ysr@777 2411 ResourceMark rm;
ysr@777 2412 HandleMark hm;
johnc@3171 2413
johnc@3171 2414 G1CollectedHeap* g1h = G1CollectedHeap::heap();
johnc@3171 2415
johnc@3171 2416 // Is alive closure.
johnc@3171 2417 G1CMIsAliveClosure g1_is_alive(g1h);
johnc@3171 2418
johnc@3171 2419 // Inner scope to exclude the cleaning of the string and symbol
johnc@3171 2420 // tables from the displayed time.
johnc@3171 2421 {
brutisso@3710 2422 if (G1Log::finer()) {
johnc@3171 2423 gclog_or_tty->put(' ');
johnc@3171 2424 }
brutisso@3710 2425 TraceTime t("GC ref-proc", G1Log::finer(), false, gclog_or_tty);
johnc@3171 2426
johnc@3175 2427 ReferenceProcessor* rp = g1h->ref_processor_cm();
johnc@3171 2428
johnc@3171 2429 // See the comment in G1CollectedHeap::ref_processing_init()
johnc@3171 2430 // about how reference processing currently works in G1.
johnc@3171 2431
johnc@3171 2432 // Process weak references.
johnc@3171 2433 rp->setup_policy(clear_all_soft_refs);
johnc@3171 2434 assert(_markStack.isEmpty(), "mark stack should be empty");
johnc@3171 2435
johnc@3463 2436 G1CMKeepAliveClosure g1_keep_alive(g1h, this);
johnc@3171 2437 G1CMDrainMarkingStackClosure
johnc@3463 2438 g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
johnc@3171 2439
johnc@3171 2440 // We use the work gang from the G1CollectedHeap and we utilize all
johnc@3171 2441 // the worker threads.
jmasa@3357 2442 uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
johnc@4173 2443 active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
johnc@3171 2444
johnc@3292 2445 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
johnc@3175 2446 g1h->workers(), active_workers);
johnc@3171 2447
johnc@3171 2448 if (rp->processing_is_mt()) {
johnc@3171 2449 // Set the degree of MT here. If the discovery is done MT, there
johnc@3171 2450 // may have been a different number of threads doing the discovery
johnc@3171 2451 // and a different number of discovered lists may have Ref objects.
johnc@3171 2452 // That is OK as long as the Reference lists are balanced (see
johnc@3171 2453 // balance_all_queues() and balance_queues()).
johnc@3171 2454 rp->set_active_mt_degree(active_workers);
johnc@3171 2455
johnc@3171 2456 rp->process_discovered_references(&g1_is_alive,
johnc@2494 2457 &g1_keep_alive,
johnc@2494 2458 &g1_drain_mark_stack,
johnc@2494 2459 &par_task_executor);
johnc@2494 2460
johnc@3171 2461 // The work routines of the parallel keep_alive and drain_marking_stack
johnc@3171 2462 // will set the has_overflown flag if we overflow the global marking
johnc@3171 2463 // stack.
johnc@3171 2464 } else {
johnc@3171 2465 rp->process_discovered_references(&g1_is_alive,
johnc@3171 2466 &g1_keep_alive,
johnc@3171 2467 &g1_drain_mark_stack,
johnc@3171 2468 NULL);
johnc@3171 2469 }
johnc@3171 2470
johnc@3171 2471 assert(_markStack.overflow() || _markStack.isEmpty(),
johnc@3171 2472 "mark stack should be empty (unless it overflowed)");
johnc@3171 2473 if (_markStack.overflow()) {
johnc@3171 2474 // Should have been done already when we tried to push an
johnc@3171 2475 // entry on to the global mark stack. But let's do it again.
johnc@3171 2476 set_has_overflown();
johnc@3171 2477 }
johnc@3171 2478
johnc@3171 2479 if (rp->processing_is_mt()) {
johnc@3171 2480 assert(rp->num_q() == active_workers, "why not");
johnc@3171 2481 rp->enqueue_discovered_references(&par_task_executor);
johnc@3171 2482 } else {
johnc@3171 2483 rp->enqueue_discovered_references();
johnc@3171 2484 }
johnc@3171 2485
johnc@3171 2486 rp->verify_no_references_recorded();
johnc@3175 2487 assert(!rp->discovery_enabled(), "Post condition");
johnc@2494 2488 }
johnc@2494 2489
coleenp@2497 2490 // Now clean up stale oops in StringTable
johnc@2379 2491 StringTable::unlink(&g1_is_alive);
coleenp@2497 2492 // Clean up unreferenced symbols in symbol table.
coleenp@2497 2493 SymbolTable::unlink();
ysr@777 2494 }
ysr@777 2495
ysr@777 2496 void ConcurrentMark::swapMarkBitMaps() {
ysr@777 2497 CMBitMapRO* temp = _prevMarkBitMap;
ysr@777 2498 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
ysr@777 2499 _nextMarkBitMap = (CMBitMap*) temp;
ysr@777 2500 }
ysr@777 2501
ysr@777 2502 class CMRemarkTask: public AbstractGangTask {
ysr@777 2503 private:
ysr@777 2504 ConcurrentMark *_cm;
ysr@777 2505
ysr@777 2506 public:
jmasa@3357 2507 void work(uint worker_id) {
ysr@777 2508 // Since all available tasks are actually started, we should
ysr@777 2509 // only proceed if we're supposed to be actived.
jmasa@3357 2510 if (worker_id < _cm->active_tasks()) {
jmasa@3357 2511 CMTask* task = _cm->task(worker_id);
ysr@777 2512 task->record_start_time();
ysr@777 2513 do {
johnc@2494 2514 task->do_marking_step(1000000000.0 /* something very large */,
johnc@2494 2515 true /* do_stealing */,
johnc@2494 2516 true /* do_termination */);
ysr@777 2517 } while (task->has_aborted() && !_cm->has_overflown());
ysr@777 2518 // If we overflow, then we do not want to restart. We instead
ysr@777 2519 // want to abort remark and do concurrent marking again.
ysr@777 2520 task->record_end_time();
ysr@777 2521 }
ysr@777 2522 }
ysr@777 2523
johnc@3338 2524 CMRemarkTask(ConcurrentMark* cm, int active_workers) :
jmasa@3294 2525 AbstractGangTask("Par Remark"), _cm(cm) {
johnc@3338 2526 _cm->terminator()->reset_for_reuse(active_workers);
jmasa@3294 2527 }
ysr@777 2528 };
ysr@777 2529
ysr@777 2530 void ConcurrentMark::checkpointRootsFinalWork() {
ysr@777 2531 ResourceMark rm;
ysr@777 2532 HandleMark hm;
ysr@777 2533 G1CollectedHeap* g1h = G1CollectedHeap::heap();
ysr@777 2534
ysr@777 2535 g1h->ensure_parsability(false);
ysr@777 2536
jmasa@2188 2537 if (G1CollectedHeap::use_parallel_gc_threads()) {
jrose@1424 2538 G1CollectedHeap::StrongRootsScope srs(g1h);
jmasa@3294 2539 // this is remark, so we'll use up all active threads
jmasa@3357 2540 uint active_workers = g1h->workers()->active_workers();
jmasa@3294 2541 if (active_workers == 0) {
jmasa@3294 2542 assert(active_workers > 0, "Should have been set earlier");
jmasa@3357 2543 active_workers = (uint) ParallelGCThreads;
jmasa@3294 2544 g1h->workers()->set_active_workers(active_workers);
jmasa@3294 2545 }
johnc@2494 2546 set_phase(active_workers, false /* concurrent */);
jmasa@3294 2547 // Leave _parallel_marking_threads at it's
jmasa@3294 2548 // value originally calculated in the ConcurrentMark
jmasa@3294 2549 // constructor and pass values of the active workers
jmasa@3294 2550 // through the gang in the task.
ysr@777 2551
johnc@3338 2552 CMRemarkTask remarkTask(this, active_workers);
jmasa@3294 2553 g1h->set_par_threads(active_workers);
ysr@777 2554 g1h->workers()->run_task(&remarkTask);
ysr@777 2555 g1h->set_par_threads(0);
ysr@777 2556 } else {
jrose@1424 2557 G1CollectedHeap::StrongRootsScope srs(g1h);
ysr@777 2558 // this is remark, so we'll use up all available threads
jmasa@3357 2559 uint active_workers = 1;
johnc@2494 2560 set_phase(active_workers, false /* concurrent */);
ysr@777 2561
johnc@3338 2562 CMRemarkTask remarkTask(this, active_workers);
ysr@777 2563 // We will start all available threads, even if we decide that the
ysr@777 2564 // active_workers will be fewer. The extra ones will just bail out
ysr@777 2565 // immediately.
ysr@777 2566 remarkTask.work(0);
ysr@777 2567 }
tonyp@1458 2568 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@1458 2569 guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 2570
ysr@777 2571 print_stats();
ysr@777 2572
ysr@777 2573 #if VERIFY_OBJS_PROCESSED
ysr@777 2574 if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
ysr@777 2575 gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
ysr@777 2576 _scan_obj_cl.objs_processed,
ysr@777 2577 ThreadLocalObjQueue::objs_enqueued);
ysr@777 2578 guarantee(_scan_obj_cl.objs_processed ==
ysr@777 2579 ThreadLocalObjQueue::objs_enqueued,
ysr@777 2580 "Different number of objs processed and enqueued.");
ysr@777 2581 }
ysr@777 2582 #endif
ysr@777 2583 }
ysr@777 2584
tonyp@1479 2585 #ifndef PRODUCT
tonyp@1479 2586
tonyp@1823 2587 class PrintReachableOopClosure: public OopClosure {
ysr@777 2588 private:
ysr@777 2589 G1CollectedHeap* _g1h;
ysr@777 2590 outputStream* _out;
johnc@2969 2591 VerifyOption _vo;
tonyp@1823 2592 bool _all;
ysr@777 2593
ysr@777 2594 public:
johnc@2969 2595 PrintReachableOopClosure(outputStream* out,
johnc@2969 2596 VerifyOption vo,
tonyp@1823 2597 bool all) :
tonyp@1479 2598 _g1h(G1CollectedHeap::heap()),
johnc@2969 2599 _out(out), _vo(vo), _all(all) { }
ysr@777 2600
ysr@1280 2601 void do_oop(narrowOop* p) { do_oop_work(p); }
ysr@1280 2602 void do_oop( oop* p) { do_oop_work(p); }
ysr@1280 2603
ysr@1280 2604 template <class T> void do_oop_work(T* p) {
ysr@1280 2605 oop obj = oopDesc::load_decode_heap_oop(p);
ysr@777 2606 const char* str = NULL;
ysr@777 2607 const char* str2 = "";
ysr@777 2608
tonyp@1823 2609 if (obj == NULL) {
tonyp@1823 2610 str = "";
tonyp@1823 2611 } else if (!_g1h->is_in_g1_reserved(obj)) {
tonyp@1823 2612 str = " O";
tonyp@1823 2613 } else {
ysr@777 2614 HeapRegion* hr = _g1h->heap_region_containing(obj);
tonyp@1458 2615 guarantee(hr != NULL, "invariant");
tonyp@3957 2616 bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
tonyp@3957 2617 bool marked = _g1h->is_marked(obj, _vo);
tonyp@1479 2618
tonyp@1479 2619 if (over_tams) {
tonyp@1823 2620 str = " >";
tonyp@1823 2621 if (marked) {
ysr@777 2622 str2 = " AND MARKED";
tonyp@1479 2623 }
tonyp@1823 2624 } else if (marked) {
tonyp@1823 2625 str = " M";
tonyp@1479 2626 } else {
tonyp@1823 2627 str = " NOT";
tonyp@1479 2628 }
ysr@777 2629 }
ysr@777 2630
tonyp@1823 2631 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
ysr@777 2632 p, (void*) obj, str, str2);
ysr@777 2633 }
ysr@777 2634 };
ysr@777 2635
tonyp@1823 2636 class PrintReachableObjectClosure : public ObjectClosure {
ysr@777 2637 private:
johnc@2969 2638 G1CollectedHeap* _g1h;
johnc@2969 2639 outputStream* _out;
johnc@2969 2640 VerifyOption _vo;
johnc@2969 2641 bool _all;
johnc@2969 2642 HeapRegion* _hr;
ysr@777 2643
ysr@777 2644 public:
johnc@2969 2645 PrintReachableObjectClosure(outputStream* out,
johnc@2969 2646 VerifyOption vo,
tonyp@1823 2647 bool all,
tonyp@1823 2648 HeapRegion* hr) :
johnc@2969 2649 _g1h(G1CollectedHeap::heap()),
johnc@2969 2650 _out(out), _vo(vo), _all(all), _hr(hr) { }
tonyp@1823 2651
tonyp@1823 2652 void do_object(oop o) {
tonyp@3957 2653 bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
tonyp@3957 2654 bool marked = _g1h->is_marked(o, _vo);
tonyp@1823 2655 bool print_it = _all || over_tams || marked;
tonyp@1823 2656
tonyp@1823 2657 if (print_it) {
tonyp@1823 2658 _out->print_cr(" "PTR_FORMAT"%s",
tonyp@1823 2659 o, (over_tams) ? " >" : (marked) ? " M" : "");
johnc@2969 2660 PrintReachableOopClosure oopCl(_out, _vo, _all);
coleenp@4037 2661 o->oop_iterate_no_header(&oopCl);
tonyp@1823 2662 }
ysr@777 2663 }
ysr@777 2664 };
ysr@777 2665
tonyp@1823 2666 class PrintReachableRegionClosure : public HeapRegionClosure {
ysr@777 2667 private:
tonyp@3957 2668 G1CollectedHeap* _g1h;
tonyp@3957 2669 outputStream* _out;
tonyp@3957 2670 VerifyOption _vo;
tonyp@3957 2671 bool _all;
ysr@777 2672
ysr@777 2673 public:
ysr@777 2674 bool doHeapRegion(HeapRegion* hr) {
ysr@777 2675 HeapWord* b = hr->bottom();
ysr@777 2676 HeapWord* e = hr->end();
ysr@777 2677 HeapWord* t = hr->top();
tonyp@3957 2678 HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
ysr@777 2679 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
tonyp@1479 2680 "TAMS: "PTR_FORMAT, b, e, t, p);
tonyp@1823 2681 _out->cr();
tonyp@1823 2682
tonyp@1823 2683 HeapWord* from = b;
tonyp@1823 2684 HeapWord* to = t;
tonyp@1823 2685
tonyp@1823 2686 if (to > from) {
tonyp@1823 2687 _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
tonyp@1823 2688 _out->cr();
johnc@2969 2689 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
tonyp@1823 2690 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
tonyp@1823 2691 _out->cr();
tonyp@1823 2692 }
ysr@777 2693
ysr@777 2694 return false;
ysr@777 2695 }
ysr@777 2696
johnc@2969 2697 PrintReachableRegionClosure(outputStream* out,
johnc@2969 2698 VerifyOption vo,
tonyp@1823 2699 bool all) :
tonyp@3957 2700 _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
ysr@777 2701 };
ysr@777 2702
tonyp@1823 2703 void ConcurrentMark::print_reachable(const char* str,
johnc@2969 2704 VerifyOption vo,
tonyp@1823 2705 bool all) {
tonyp@1823 2706 gclog_or_tty->cr();
tonyp@1823 2707 gclog_or_tty->print_cr("== Doing heap dump... ");
tonyp@1479 2708
tonyp@1479 2709 if (G1PrintReachableBaseFile == NULL) {
tonyp@1479 2710 gclog_or_tty->print_cr(" #### error: no base file defined");
tonyp@1479 2711 return;
tonyp@1479 2712 }
tonyp@1479 2713
tonyp@1479 2714 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
tonyp@1479 2715 (JVM_MAXPATHLEN - 1)) {
tonyp@1479 2716 gclog_or_tty->print_cr(" #### error: file name too long");
tonyp@1479 2717 return;
tonyp@1479 2718 }
tonyp@1479 2719
tonyp@1479 2720 char file_name[JVM_MAXPATHLEN];
tonyp@1479 2721 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
tonyp@1479 2722 gclog_or_tty->print_cr(" dumping to file %s", file_name);
tonyp@1479 2723
tonyp@1479 2724 fileStream fout(file_name);
tonyp@1479 2725 if (!fout.is_open()) {
tonyp@1479 2726 gclog_or_tty->print_cr(" #### error: could not open file");
tonyp@1479 2727 return;
tonyp@1479 2728 }
tonyp@1479 2729
tonyp@1479 2730 outputStream* out = &fout;
tonyp@3957 2731 out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
tonyp@1479 2732 out->cr();
tonyp@1479 2733
tonyp@1823 2734 out->print_cr("--- ITERATING OVER REGIONS");
tonyp@1479 2735 out->cr();
johnc@2969 2736 PrintReachableRegionClosure rcl(out, vo, all);
ysr@777 2737 _g1h->heap_region_iterate(&rcl);
tonyp@1479 2738 out->cr();
tonyp@1479 2739
tonyp@1479 2740 gclog_or_tty->print_cr(" done");
tonyp@1823 2741 gclog_or_tty->flush();
ysr@777 2742 }
ysr@777 2743
tonyp@1479 2744 #endif // PRODUCT
tonyp@1479 2745
tonyp@3416 2746 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
ysr@777 2747 // Note we are overriding the read-only view of the prev map here, via
ysr@777 2748 // the cast.
ysr@777 2749 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
tonyp@3416 2750 }
tonyp@3416 2751
tonyp@3416 2752 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
ysr@777 2753 _nextMarkBitMap->clearRange(mr);
ysr@777 2754 }
ysr@777 2755
tonyp@3416 2756 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
tonyp@3416 2757 clearRangePrevBitmap(mr);
tonyp@3416 2758 clearRangeNextBitmap(mr);
tonyp@3416 2759 }
tonyp@3416 2760
ysr@777 2761 HeapRegion*
johnc@4173 2762 ConcurrentMark::claim_region(uint worker_id) {
ysr@777 2763 // "checkpoint" the finger
ysr@777 2764 HeapWord* finger = _finger;
ysr@777 2765
ysr@777 2766 // _heap_end will not change underneath our feet; it only changes at
ysr@777 2767 // yield points.
ysr@777 2768 while (finger < _heap_end) {
tonyp@1458 2769 assert(_g1h->is_in_g1_reserved(finger), "invariant");
ysr@777 2770
tonyp@2968 2771 // Note on how this code handles humongous regions. In the
tonyp@2968 2772 // normal case the finger will reach the start of a "starts
tonyp@2968 2773 // humongous" (SH) region. Its end will either be the end of the
tonyp@2968 2774 // last "continues humongous" (CH) region in the sequence, or the
tonyp@2968 2775 // standard end of the SH region (if the SH is the only region in
tonyp@2968 2776 // the sequence). That way claim_region() will skip over the CH
tonyp@2968 2777 // regions. However, there is a subtle race between a CM thread
tonyp@2968 2778 // executing this method and a mutator thread doing a humongous
tonyp@2968 2779 // object allocation. The two are not mutually exclusive as the CM
tonyp@2968 2780 // thread does not need to hold the Heap_lock when it gets
tonyp@2968 2781 // here. So there is a chance that claim_region() will come across
tonyp@2968 2782 // a free region that's in the progress of becoming a SH or a CH
tonyp@2968 2783 // region. In the former case, it will either
tonyp@2968 2784 // a) Miss the update to the region's end, in which case it will
tonyp@2968 2785 // visit every subsequent CH region, will find their bitmaps
tonyp@2968 2786 // empty, and do nothing, or
tonyp@2968 2787 // b) Will observe the update of the region's end (in which case
tonyp@2968 2788 // it will skip the subsequent CH regions).
tonyp@2968 2789 // If it comes across a region that suddenly becomes CH, the
tonyp@2968 2790 // scenario will be similar to b). So, the race between
tonyp@2968 2791 // claim_region() and a humongous object allocation might force us
tonyp@2968 2792 // to do a bit of unnecessary work (due to some unnecessary bitmap
tonyp@2968 2793 // iterations) but it should not introduce and correctness issues.
tonyp@2968 2794 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
ysr@777 2795 HeapWord* bottom = curr_region->bottom();
ysr@777 2796 HeapWord* end = curr_region->end();
ysr@777 2797 HeapWord* limit = curr_region->next_top_at_mark_start();
ysr@777 2798
tonyp@2968 2799 if (verbose_low()) {
johnc@4173 2800 gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
ysr@777 2801 "["PTR_FORMAT", "PTR_FORMAT"), "
ysr@777 2802 "limit = "PTR_FORMAT,
johnc@4173 2803 worker_id, curr_region, bottom, end, limit);
tonyp@2968 2804 }
tonyp@2968 2805
tonyp@2968 2806 // Is the gap between reading the finger and doing the CAS too long?
tonyp@2968 2807 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
ysr@777 2808 if (res == finger) {
ysr@777 2809 // we succeeded
ysr@777 2810
ysr@777 2811 // notice that _finger == end cannot be guaranteed here since,
ysr@777 2812 // someone else might have moved the finger even further
tonyp@1458 2813 assert(_finger >= end, "the finger should have moved forward");
ysr@777 2814
tonyp@2973 2815 if (verbose_low()) {
johnc@4173 2816 gclog_or_tty->print_cr("[%u] we were successful with region = "
johnc@4173 2817 PTR_FORMAT, worker_id, curr_region);
tonyp@2973 2818 }
ysr@777 2819
ysr@777 2820 if (limit > bottom) {
tonyp@2973 2821 if (verbose_low()) {
johnc@4173 2822 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
johnc@4173 2823 "returning it ", worker_id, curr_region);
tonyp@2973 2824 }
ysr@777 2825 return curr_region;
ysr@777 2826 } else {
tonyp@1458 2827 assert(limit == bottom,
tonyp@1458 2828 "the region limit should be at bottom");
tonyp@2973 2829 if (verbose_low()) {
johnc@4173 2830 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
johnc@4173 2831 "returning NULL", worker_id, curr_region);
tonyp@2973 2832 }
ysr@777 2833 // we return NULL and the caller should try calling
ysr@777 2834 // claim_region() again.
ysr@777 2835 return NULL;
ysr@777 2836 }
ysr@777 2837 } else {
tonyp@1458 2838 assert(_finger > finger, "the finger should have moved forward");
tonyp@2973 2839 if (verbose_low()) {
johnc@4173 2840 gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
ysr@777 2841 "global finger = "PTR_FORMAT", "
ysr@777 2842 "our finger = "PTR_FORMAT,
johnc@4173 2843 worker_id, _finger, finger);
tonyp@2973 2844 }
ysr@777 2845
ysr@777 2846 // read it again
ysr@777 2847 finger = _finger;
ysr@777 2848 }
ysr@777 2849 }
ysr@777 2850
ysr@777 2851 return NULL;
ysr@777 2852 }
ysr@777 2853
tonyp@3416 2854 #ifndef PRODUCT
tonyp@3416 2855 enum VerifyNoCSetOopsPhase {
tonyp@3416 2856 VerifyNoCSetOopsStack,
tonyp@3416 2857 VerifyNoCSetOopsQueues,
tonyp@3416 2858 VerifyNoCSetOopsSATBCompleted,
tonyp@3416 2859 VerifyNoCSetOopsSATBThread
tonyp@3416 2860 };
tonyp@3416 2861
tonyp@3416 2862 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
tonyp@3416 2863 private:
tonyp@3416 2864 G1CollectedHeap* _g1h;
tonyp@3416 2865 VerifyNoCSetOopsPhase _phase;
tonyp@3416 2866 int _info;
tonyp@3416 2867
tonyp@3416 2868 const char* phase_str() {
tonyp@3416 2869 switch (_phase) {
tonyp@3416 2870 case VerifyNoCSetOopsStack: return "Stack";
tonyp@3416 2871 case VerifyNoCSetOopsQueues: return "Queue";
tonyp@3416 2872 case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
tonyp@3416 2873 case VerifyNoCSetOopsSATBThread: return "Thread SATB Buffers";
tonyp@3416 2874 default: ShouldNotReachHere();
tonyp@3416 2875 }
tonyp@3416 2876 return NULL;
ysr@777 2877 }
johnc@2190 2878
tonyp@3416 2879 void do_object_work(oop obj) {
tonyp@3416 2880 guarantee(!_g1h->obj_in_cs(obj),
tonyp@3416 2881 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
tonyp@3416 2882 (void*) obj, phase_str(), _info));
johnc@2190 2883 }
johnc@2190 2884
tonyp@3416 2885 public:
tonyp@3416 2886 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
tonyp@3416 2887
tonyp@3416 2888 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
tonyp@3416 2889 _phase = phase;
tonyp@3416 2890 _info = info;
tonyp@3416 2891 }
tonyp@3416 2892
tonyp@3416 2893 virtual void do_oop(oop* p) {
tonyp@3416 2894 oop obj = oopDesc::load_decode_heap_oop(p);
tonyp@3416 2895 do_object_work(obj);
tonyp@3416 2896 }
tonyp@3416 2897
tonyp@3416 2898 virtual void do_oop(narrowOop* p) {
tonyp@3416 2899 // We should not come across narrow oops while scanning marking
tonyp@3416 2900 // stacks and SATB buffers.
tonyp@3416 2901 ShouldNotReachHere();
tonyp@3416 2902 }
tonyp@3416 2903
tonyp@3416 2904 virtual void do_object(oop obj) {
tonyp@3416 2905 do_object_work(obj);
tonyp@3416 2906 }
tonyp@3416 2907 };
tonyp@3416 2908
tonyp@3416 2909 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
tonyp@3416 2910 bool verify_enqueued_buffers,
tonyp@3416 2911 bool verify_thread_buffers,
tonyp@3416 2912 bool verify_fingers) {
tonyp@3416 2913 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
tonyp@3416 2914 if (!G1CollectedHeap::heap()->mark_in_progress()) {
tonyp@3416 2915 return;
tonyp@3416 2916 }
tonyp@3416 2917
tonyp@3416 2918 VerifyNoCSetOopsClosure cl;
tonyp@3416 2919
tonyp@3416 2920 if (verify_stacks) {
tonyp@3416 2921 // Verify entries on the global mark stack
tonyp@3416 2922 cl.set_phase(VerifyNoCSetOopsStack);
tonyp@3416 2923 _markStack.oops_do(&cl);
tonyp@3416 2924
tonyp@3416 2925 // Verify entries on the task queues
johnc@4173 2926 for (uint i = 0; i < _max_worker_id; i += 1) {
tonyp@3416 2927 cl.set_phase(VerifyNoCSetOopsQueues, i);
johnc@4333 2928 CMTaskQueue* queue = _task_queues->queue(i);
tonyp@3416 2929 queue->oops_do(&cl);
tonyp@3416 2930 }
tonyp@3416 2931 }
tonyp@3416 2932
tonyp@3416 2933 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
tonyp@3416 2934
tonyp@3416 2935 // Verify entries on the enqueued SATB buffers
tonyp@3416 2936 if (verify_enqueued_buffers) {
tonyp@3416 2937 cl.set_phase(VerifyNoCSetOopsSATBCompleted);
tonyp@3416 2938 satb_qs.iterate_completed_buffers_read_only(&cl);
tonyp@3416 2939 }
tonyp@3416 2940
tonyp@3416 2941 // Verify entries on the per-thread SATB buffers
tonyp@3416 2942 if (verify_thread_buffers) {
tonyp@3416 2943 cl.set_phase(VerifyNoCSetOopsSATBThread);
tonyp@3416 2944 satb_qs.iterate_thread_buffers_read_only(&cl);
tonyp@3416 2945 }
tonyp@3416 2946
tonyp@3416 2947 if (verify_fingers) {
tonyp@3416 2948 // Verify the global finger
tonyp@3416 2949 HeapWord* global_finger = finger();
tonyp@3416 2950 if (global_finger != NULL && global_finger < _heap_end) {
tonyp@3416 2951 // The global finger always points to a heap region boundary. We
tonyp@3416 2952 // use heap_region_containing_raw() to get the containing region
tonyp@3416 2953 // given that the global finger could be pointing to a free region
tonyp@3416 2954 // which subsequently becomes continues humongous. If that
tonyp@3416 2955 // happens, heap_region_containing() will return the bottom of the
tonyp@3416 2956 // corresponding starts humongous region and the check below will
tonyp@3416 2957 // not hold any more.
tonyp@3416 2958 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
tonyp@3416 2959 guarantee(global_finger == global_hr->bottom(),
tonyp@3416 2960 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2961 global_finger, HR_FORMAT_PARAMS(global_hr)));
tonyp@3416 2962 }
tonyp@3416 2963
tonyp@3416 2964 // Verify the task fingers
johnc@4173 2965 assert(parallel_marking_threads() <= _max_worker_id, "sanity");
tonyp@3416 2966 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
tonyp@3416 2967 CMTask* task = _tasks[i];
tonyp@3416 2968 HeapWord* task_finger = task->finger();
tonyp@3416 2969 if (task_finger != NULL && task_finger < _heap_end) {
tonyp@3416 2970 // See above note on the global finger verification.
tonyp@3416 2971 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
tonyp@3416 2972 guarantee(task_finger == task_hr->bottom() ||
tonyp@3416 2973 !task_hr->in_collection_set(),
tonyp@3416 2974 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
tonyp@3416 2975 task_finger, HR_FORMAT_PARAMS(task_hr)));
tonyp@3416 2976 }
tonyp@3416 2977 }
tonyp@3416 2978 }
ysr@777 2979 }
tonyp@3416 2980 #endif // PRODUCT
ysr@777 2981
johnc@3463 2982 // Aggregate the counting data that was constructed concurrently
johnc@3463 2983 // with marking.
johnc@3463 2984 class AggregateCountDataHRClosure: public HeapRegionClosure {
johnc@4123 2985 G1CollectedHeap* _g1h;
johnc@3463 2986 ConcurrentMark* _cm;
johnc@4123 2987 CardTableModRefBS* _ct_bs;
johnc@3463 2988 BitMap* _cm_card_bm;
johnc@4173 2989 uint _max_worker_id;
johnc@3463 2990
johnc@3463 2991 public:
johnc@4123 2992 AggregateCountDataHRClosure(G1CollectedHeap* g1h,
johnc@3463 2993 BitMap* cm_card_bm,
johnc@4173 2994 uint max_worker_id) :
johnc@4123 2995 _g1h(g1h), _cm(g1h->concurrent_mark()),
johnc@4123 2996 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
johnc@4173 2997 _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
johnc@3463 2998
johnc@3463 2999 bool doHeapRegion(HeapRegion* hr) {
johnc@3463 3000 if (hr->continuesHumongous()) {
johnc@3463 3001 // We will ignore these here and process them when their
johnc@3463 3002 // associated "starts humongous" region is processed.
johnc@3463 3003 // Note that we cannot rely on their associated
johnc@3463 3004 // "starts humongous" region to have their bit set to 1
johnc@3463 3005 // since, due to the region chunking in the parallel region
johnc@3463 3006 // iteration, a "continues humongous" region might be visited
johnc@3463 3007 // before its associated "starts humongous".
johnc@3463 3008 return false;
johnc@3463 3009 }
johnc@3463 3010
johnc@3463 3011 HeapWord* start = hr->bottom();
johnc@3463 3012 HeapWord* limit = hr->next_top_at_mark_start();
johnc@3463 3013 HeapWord* end = hr->end();
johnc@3463 3014
johnc@3463 3015 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
johnc@3463 3016 err_msg("Preconditions not met - "
johnc@3463 3017 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
johnc@3463 3018 "top: "PTR_FORMAT", end: "PTR_FORMAT,
johnc@3463 3019 start, limit, hr->top(), hr->end()));
johnc@3463 3020
johnc@3463 3021 assert(hr->next_marked_bytes() == 0, "Precondition");
johnc@3463 3022
johnc@3463 3023 if (start == limit) {
johnc@3463 3024 // NTAMS of this region has not been set so nothing to do.
johnc@3463 3025 return false;
johnc@3463 3026 }
johnc@3463 3027
johnc@4123 3028 // 'start' should be in the heap.
johnc@4123 3029 assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
johnc@4123 3030 // 'end' *may* be just beyone the end of the heap (if hr is the last region)
johnc@4123 3031 assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
johnc@3463 3032
johnc@3463 3033 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
johnc@3463 3034 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
johnc@3463 3035 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
johnc@3463 3036
johnc@4123 3037 // If ntams is not card aligned then we bump card bitmap index
johnc@4123 3038 // for limit so that we get the all the cards spanned by
johnc@4123 3039 // the object ending at ntams.
johnc@4123 3040 // Note: if this is the last region in the heap then ntams
johnc@4123 3041 // could be actually just beyond the end of the the heap;
johnc@4123 3042 // limit_idx will then correspond to a (non-existent) card
johnc@4123 3043 // that is also outside the heap.
johnc@4123 3044 if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
johnc@3463 3045 limit_idx += 1;
johnc@3463 3046 }
johnc@3463 3047
johnc@3463 3048 assert(limit_idx <= end_idx, "or else use atomics");
johnc@3463 3049
johnc@3463 3050 // Aggregate the "stripe" in the count data associated with hr.
tonyp@3713 3051 uint hrs_index = hr->hrs_index();
johnc@3463 3052 size_t marked_bytes = 0;
johnc@3463 3053
johnc@4173 3054 for (uint i = 0; i < _max_worker_id; i += 1) {
johnc@3463 3055 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
johnc@3463 3056 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
johnc@3463 3057
johnc@3463 3058 // Fetch the marked_bytes in this region for task i and
johnc@3463 3059 // add it to the running total for this region.
johnc@3463 3060 marked_bytes += marked_bytes_array[hrs_index];
johnc@3463 3061
johnc@4173 3062 // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
johnc@3463 3063 // into the global card bitmap.
johnc@3463 3064 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
johnc@3463 3065
johnc@3463 3066 while (scan_idx < limit_idx) {
johnc@3463 3067 assert(task_card_bm->at(scan_idx) == true, "should be");
johnc@3463 3068 _cm_card_bm->set_bit(scan_idx);
johnc@3463 3069 assert(_cm_card_bm->at(scan_idx) == true, "should be");
johnc@3463 3070
johnc@3463 3071 // BitMap::get_next_one_offset() can handle the case when
johnc@3463 3072 // its left_offset parameter is greater than its right_offset
johnc@4123 3073 // parameter. It does, however, have an early exit if
johnc@3463 3074 // left_offset == right_offset. So let's limit the value
johnc@3463 3075 // passed in for left offset here.
johnc@3463 3076 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
johnc@3463 3077 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
johnc@3463 3078 }
johnc@3463 3079 }
johnc@3463 3080
johnc@3463 3081 // Update the marked bytes for this region.
johnc@3463 3082 hr->add_to_marked_bytes(marked_bytes);
johnc@3463 3083
johnc@3463 3084 // Next heap region
johnc@3463 3085 return false;
johnc@3463 3086 }
johnc@3463 3087 };
johnc@3463 3088
johnc@3463 3089 class G1AggregateCountDataTask: public AbstractGangTask {
johnc@3463 3090 protected:
johnc@3463 3091 G1CollectedHeap* _g1h;
johnc@3463 3092 ConcurrentMark* _cm;
johnc@3463 3093 BitMap* _cm_card_bm;
johnc@4173 3094 uint _max_worker_id;
johnc@3463 3095 int _active_workers;
johnc@3463 3096
johnc@3463 3097 public:
johnc@3463 3098 G1AggregateCountDataTask(G1CollectedHeap* g1h,
johnc@3463 3099 ConcurrentMark* cm,
johnc@3463 3100 BitMap* cm_card_bm,
johnc@4173 3101 uint max_worker_id,
johnc@3463 3102 int n_workers) :
johnc@3463 3103 AbstractGangTask("Count Aggregation"),
johnc@3463 3104 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
johnc@4173 3105 _max_worker_id(max_worker_id),
johnc@3463 3106 _active_workers(n_workers) { }
johnc@3463 3107
johnc@3463 3108 void work(uint worker_id) {
johnc@4173 3109 AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
johnc@3463 3110
johnc@3463 3111 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3112 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
johnc@3463 3113 _active_workers,
johnc@3463 3114 HeapRegion::AggregateCountClaimValue);
johnc@3463 3115 } else {
johnc@3463 3116 _g1h->heap_region_iterate(&cl);
johnc@3463 3117 }
johnc@3463 3118 }
johnc@3463 3119 };
johnc@3463 3120
johnc@3463 3121
johnc@3463 3122 void ConcurrentMark::aggregate_count_data() {
johnc@3463 3123 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
johnc@3463 3124 _g1h->workers()->active_workers() :
johnc@3463 3125 1);
johnc@3463 3126
johnc@3463 3127 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
johnc@4173 3128 _max_worker_id, n_workers);
johnc@3463 3129
johnc@3463 3130 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@3463 3131 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
johnc@3463 3132 "sanity check");
johnc@3463 3133 _g1h->set_par_threads(n_workers);
johnc@3463 3134 _g1h->workers()->run_task(&g1_par_agg_task);
johnc@3463 3135 _g1h->set_par_threads(0);
johnc@3463 3136
johnc@3463 3137 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
johnc@3463 3138 "sanity check");
johnc@3463 3139 _g1h->reset_heap_region_claim_values();
johnc@3463 3140 } else {
johnc@3463 3141 g1_par_agg_task.work(0);
johnc@3463 3142 }
johnc@3463 3143 }
johnc@3463 3144
johnc@3463 3145 // Clear the per-worker arrays used to store the per-region counting data
johnc@3463 3146 void ConcurrentMark::clear_all_count_data() {
johnc@3463 3147 // Clear the global card bitmap - it will be filled during
johnc@3463 3148 // liveness count aggregation (during remark) and the
johnc@3463 3149 // final counting task.
johnc@3463 3150 _card_bm.clear();
johnc@3463 3151
johnc@3463 3152 // Clear the global region bitmap - it will be filled as part
johnc@3463 3153 // of the final counting task.
johnc@3463 3154 _region_bm.clear();
johnc@3463 3155
tonyp@3713 3156 uint max_regions = _g1h->max_regions();
johnc@4173 3157 assert(_max_worker_id > 0, "uninitialized");
johnc@4173 3158
johnc@4173 3159 for (uint i = 0; i < _max_worker_id; i += 1) {
johnc@3463 3160 BitMap* task_card_bm = count_card_bitmap_for(i);
johnc@3463 3161 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
johnc@3463 3162
johnc@3463 3163 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 3164 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 3165
tonyp@3713 3166 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
johnc@3463 3167 task_card_bm->clear();
johnc@3463 3168 }
johnc@3463 3169 }
johnc@3463 3170
ysr@777 3171 void ConcurrentMark::print_stats() {
ysr@777 3172 if (verbose_stats()) {
ysr@777 3173 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3174 for (size_t i = 0; i < _active_tasks; ++i) {
ysr@777 3175 _tasks[i]->print_stats();
ysr@777 3176 gclog_or_tty->print_cr("---------------------------------------------------------------------");
ysr@777 3177 }
ysr@777 3178 }
ysr@777 3179 }
ysr@777 3180
ysr@777 3181 // abandon current marking iteration due to a Full GC
ysr@777 3182 void ConcurrentMark::abort() {
ysr@777 3183 // Clear all marks to force marking thread to do nothing
ysr@777 3184 _nextMarkBitMap->clearAll();
johnc@3463 3185 // Clear the liveness counting data
johnc@3463 3186 clear_all_count_data();
ysr@777 3187 // Empty mark stack
johnc@4386 3188 reset_marking_state();
johnc@4173 3189 for (uint i = 0; i < _max_worker_id; ++i) {
ysr@777 3190 _tasks[i]->clear_region_fields();
johnc@2190 3191 }
ysr@777 3192 _has_aborted = true;
ysr@777 3193
ysr@777 3194 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3195 satb_mq_set.abandon_partial_marking();
tonyp@1752 3196 // This can be called either during or outside marking, we'll read
tonyp@1752 3197 // the expected_active value from the SATB queue set.
tonyp@1752 3198 satb_mq_set.set_active_all_threads(
tonyp@1752 3199 false, /* new active value */
tonyp@1752 3200 satb_mq_set.is_active() /* expected_active */);
ysr@777 3201 }
ysr@777 3202
ysr@777 3203 static void print_ms_time_info(const char* prefix, const char* name,
ysr@777 3204 NumberSeq& ns) {
ysr@777 3205 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3206 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
ysr@777 3207 if (ns.num() > 0) {
ysr@777 3208 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
ysr@777 3209 prefix, ns.sd(), ns.maximum());
ysr@777 3210 }
ysr@777 3211 }
ysr@777 3212
ysr@777 3213 void ConcurrentMark::print_summary_info() {
ysr@777 3214 gclog_or_tty->print_cr(" Concurrent marking:");
ysr@777 3215 print_ms_time_info(" ", "init marks", _init_times);
ysr@777 3216 print_ms_time_info(" ", "remarks", _remark_times);
ysr@777 3217 {
ysr@777 3218 print_ms_time_info(" ", "final marks", _remark_mark_times);
ysr@777 3219 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
ysr@777 3220
ysr@777 3221 }
ysr@777 3222 print_ms_time_info(" ", "cleanups", _cleanup_times);
ysr@777 3223 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3224 _total_counting_time,
ysr@777 3225 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
ysr@777 3226 (double)_cleanup_times.num()
ysr@777 3227 : 0.0));
ysr@777 3228 if (G1ScrubRemSets) {
ysr@777 3229 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
ysr@777 3230 _total_rs_scrub_time,
ysr@777 3231 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
ysr@777 3232 (double)_cleanup_times.num()
ysr@777 3233 : 0.0));
ysr@777 3234 }
ysr@777 3235 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
ysr@777 3236 (_init_times.sum() + _remark_times.sum() +
ysr@777 3237 _cleanup_times.sum())/1000.0);
ysr@777 3238 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
johnc@3463 3239 "(%8.2f s marking).",
ysr@777 3240 cmThread()->vtime_accum(),
johnc@3463 3241 cmThread()->vtime_mark_accum());
ysr@777 3242 }
ysr@777 3243
tonyp@1454 3244 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
tonyp@1454 3245 _parallel_workers->print_worker_threads_on(st);
tonyp@1454 3246 }
tonyp@1454 3247
ysr@777 3248 // We take a break if someone is trying to stop the world.
jmasa@3357 3249 bool ConcurrentMark::do_yield_check(uint worker_id) {
ysr@777 3250 if (should_yield()) {
jmasa@3357 3251 if (worker_id == 0) {
ysr@777 3252 _g1h->g1_policy()->record_concurrent_pause();
tonyp@2973 3253 }
ysr@777 3254 cmThread()->yield();
ysr@777 3255 return true;
ysr@777 3256 } else {
ysr@777 3257 return false;
ysr@777 3258 }
ysr@777 3259 }
ysr@777 3260
ysr@777 3261 bool ConcurrentMark::should_yield() {
ysr@777 3262 return cmThread()->should_yield();
ysr@777 3263 }
ysr@777 3264
ysr@777 3265 bool ConcurrentMark::containing_card_is_marked(void* p) {
ysr@777 3266 size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
ysr@777 3267 return _card_bm.at(offset >> CardTableModRefBS::card_shift);
ysr@777 3268 }
ysr@777 3269
ysr@777 3270 bool ConcurrentMark::containing_cards_are_marked(void* start,
ysr@777 3271 void* last) {
tonyp@2973 3272 return containing_card_is_marked(start) &&
tonyp@2973 3273 containing_card_is_marked(last);
ysr@777 3274 }
ysr@777 3275
ysr@777 3276 #ifndef PRODUCT
ysr@777 3277 // for debugging purposes
ysr@777 3278 void ConcurrentMark::print_finger() {
ysr@777 3279 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
ysr@777 3280 _heap_start, _heap_end, _finger);
johnc@4173 3281 for (uint i = 0; i < _max_worker_id; ++i) {
johnc@4173 3282 gclog_or_tty->print(" %u: "PTR_FORMAT, i, _tasks[i]->finger());
ysr@777 3283 }
ysr@777 3284 gclog_or_tty->print_cr("");
ysr@777 3285 }
ysr@777 3286 #endif
ysr@777 3287
tonyp@2968 3288 void CMTask::scan_object(oop obj) {
tonyp@2968 3289 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
tonyp@2968 3290
tonyp@2968 3291 if (_cm->verbose_high()) {
johnc@4173 3292 gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
johnc@4173 3293 _worker_id, (void*) obj);
tonyp@2968 3294 }
tonyp@2968 3295
tonyp@2968 3296 size_t obj_size = obj->size();
tonyp@2968 3297 _words_scanned += obj_size;
tonyp@2968 3298
tonyp@2968 3299 obj->oop_iterate(_cm_oop_closure);
tonyp@2968 3300 statsOnly( ++_objs_scanned );
tonyp@2968 3301 check_limits();
tonyp@2968 3302 }
tonyp@2968 3303
ysr@777 3304 // Closure for iteration over bitmaps
ysr@777 3305 class CMBitMapClosure : public BitMapClosure {
ysr@777 3306 private:
ysr@777 3307 // the bitmap that is being iterated over
ysr@777 3308 CMBitMap* _nextMarkBitMap;
ysr@777 3309 ConcurrentMark* _cm;
ysr@777 3310 CMTask* _task;
ysr@777 3311
ysr@777 3312 public:
tonyp@3691 3313 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
tonyp@3691 3314 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
ysr@777 3315
ysr@777 3316 bool do_bit(size_t offset) {
ysr@777 3317 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
tonyp@1458 3318 assert(_nextMarkBitMap->isMarked(addr), "invariant");
tonyp@1458 3319 assert( addr < _cm->finger(), "invariant");
ysr@777 3320
tonyp@3691 3321 statsOnly( _task->increase_objs_found_on_bitmap() );
tonyp@3691 3322 assert(addr >= _task->finger(), "invariant");
tonyp@3691 3323
tonyp@3691 3324 // We move that task's local finger along.
tonyp@3691 3325 _task->move_finger_to(addr);
ysr@777 3326
ysr@777 3327 _task->scan_object(oop(addr));
ysr@777 3328 // we only partially drain the local queue and global stack
ysr@777 3329 _task->drain_local_queue(true);
ysr@777 3330 _task->drain_global_stack(true);
ysr@777 3331
ysr@777 3332 // if the has_aborted flag has been raised, we need to bail out of
ysr@777 3333 // the iteration
ysr@777 3334 return !_task->has_aborted();
ysr@777 3335 }
ysr@777 3336 };
ysr@777 3337
ysr@777 3338 // Closure for iterating over objects, currently only used for
ysr@777 3339 // processing SATB buffers.
ysr@777 3340 class CMObjectClosure : public ObjectClosure {
ysr@777 3341 private:
ysr@777 3342 CMTask* _task;
ysr@777 3343
ysr@777 3344 public:
ysr@777 3345 void do_object(oop obj) {
ysr@777 3346 _task->deal_with_reference(obj);
ysr@777 3347 }
ysr@777 3348
ysr@777 3349 CMObjectClosure(CMTask* task) : _task(task) { }
ysr@777 3350 };
ysr@777 3351
tonyp@2968 3352 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
tonyp@2968 3353 ConcurrentMark* cm,
tonyp@2968 3354 CMTask* task)
tonyp@2968 3355 : _g1h(g1h), _cm(cm), _task(task) {
tonyp@2968 3356 assert(_ref_processor == NULL, "should be initialized to NULL");
tonyp@2968 3357
tonyp@2968 3358 if (G1UseConcMarkReferenceProcessing) {
johnc@3175 3359 _ref_processor = g1h->ref_processor_cm();
tonyp@2968 3360 assert(_ref_processor != NULL, "should not be NULL");
ysr@777 3361 }
tonyp@2968 3362 }
ysr@777 3363
ysr@777 3364 void CMTask::setup_for_region(HeapRegion* hr) {
tonyp@1458 3365 // Separated the asserts so that we know which one fires.
tonyp@1458 3366 assert(hr != NULL,
tonyp@1458 3367 "claim_region() should have filtered out continues humongous regions");
tonyp@1458 3368 assert(!hr->continuesHumongous(),
tonyp@1458 3369 "claim_region() should have filtered out continues humongous regions");
ysr@777 3370
tonyp@2973 3371 if (_cm->verbose_low()) {
johnc@4173 3372 gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
johnc@4173 3373 _worker_id, hr);
tonyp@2973 3374 }
ysr@777 3375
ysr@777 3376 _curr_region = hr;
ysr@777 3377 _finger = hr->bottom();
ysr@777 3378 update_region_limit();
ysr@777 3379 }
ysr@777 3380
ysr@777 3381 void CMTask::update_region_limit() {
ysr@777 3382 HeapRegion* hr = _curr_region;
ysr@777 3383 HeapWord* bottom = hr->bottom();
ysr@777 3384 HeapWord* limit = hr->next_top_at_mark_start();
ysr@777 3385
ysr@777 3386 if (limit == bottom) {
tonyp@2973 3387 if (_cm->verbose_low()) {
johnc@4173 3388 gclog_or_tty->print_cr("[%u] found an empty region "
ysr@777 3389 "["PTR_FORMAT", "PTR_FORMAT")",
johnc@4173 3390 _worker_id, bottom, limit);
tonyp@2973 3391 }
ysr@777 3392 // The region was collected underneath our feet.
ysr@777 3393 // We set the finger to bottom to ensure that the bitmap
ysr@777 3394 // iteration that will follow this will not do anything.
ysr@777 3395 // (this is not a condition that holds when we set the region up,
ysr@777 3396 // as the region is not supposed to be empty in the first place)
ysr@777 3397 _finger = bottom;
ysr@777 3398 } else if (limit >= _region_limit) {
tonyp@1458 3399 assert(limit >= _finger, "peace of mind");
ysr@777 3400 } else {
tonyp@1458 3401 assert(limit < _region_limit, "only way to get here");
ysr@777 3402 // This can happen under some pretty unusual circumstances. An
ysr@777 3403 // evacuation pause empties the region underneath our feet (NTAMS
ysr@777 3404 // at bottom). We then do some allocation in the region (NTAMS
ysr@777 3405 // stays at bottom), followed by the region being used as a GC
ysr@777 3406 // alloc region (NTAMS will move to top() and the objects
ysr@777 3407 // originally below it will be grayed). All objects now marked in
ysr@777 3408 // the region are explicitly grayed, if below the global finger,
ysr@777 3409 // and we do not need in fact to scan anything else. So, we simply
ysr@777 3410 // set _finger to be limit to ensure that the bitmap iteration
ysr@777 3411 // doesn't do anything.
ysr@777 3412 _finger = limit;
ysr@777 3413 }
ysr@777 3414
ysr@777 3415 _region_limit = limit;
ysr@777 3416 }
ysr@777 3417
ysr@777 3418 void CMTask::giveup_current_region() {
tonyp@1458 3419 assert(_curr_region != NULL, "invariant");
tonyp@2973 3420 if (_cm->verbose_low()) {
johnc@4173 3421 gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
johnc@4173 3422 _worker_id, _curr_region);
tonyp@2973 3423 }
ysr@777 3424 clear_region_fields();
ysr@777 3425 }
ysr@777 3426
ysr@777 3427 void CMTask::clear_region_fields() {
ysr@777 3428 // Values for these three fields that indicate that we're not
ysr@777 3429 // holding on to a region.
ysr@777 3430 _curr_region = NULL;
ysr@777 3431 _finger = NULL;
ysr@777 3432 _region_limit = NULL;
ysr@777 3433 }
ysr@777 3434
tonyp@2968 3435 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
tonyp@2968 3436 if (cm_oop_closure == NULL) {
tonyp@2968 3437 assert(_cm_oop_closure != NULL, "invariant");
tonyp@2968 3438 } else {
tonyp@2968 3439 assert(_cm_oop_closure == NULL, "invariant");
tonyp@2968 3440 }
tonyp@2968 3441 _cm_oop_closure = cm_oop_closure;
tonyp@2968 3442 }
tonyp@2968 3443
ysr@777 3444 void CMTask::reset(CMBitMap* nextMarkBitMap) {
tonyp@1458 3445 guarantee(nextMarkBitMap != NULL, "invariant");
ysr@777 3446
tonyp@2973 3447 if (_cm->verbose_low()) {
johnc@4173 3448 gclog_or_tty->print_cr("[%u] resetting", _worker_id);
tonyp@2973 3449 }
ysr@777 3450
ysr@777 3451 _nextMarkBitMap = nextMarkBitMap;
ysr@777 3452 clear_region_fields();
ysr@777 3453
ysr@777 3454 _calls = 0;
ysr@777 3455 _elapsed_time_ms = 0.0;
ysr@777 3456 _termination_time_ms = 0.0;
ysr@777 3457 _termination_start_time_ms = 0.0;
ysr@777 3458
ysr@777 3459 #if _MARKING_STATS_
ysr@777 3460 _local_pushes = 0;
ysr@777 3461 _local_pops = 0;
ysr@777 3462 _local_max_size = 0;
ysr@777 3463 _objs_scanned = 0;
ysr@777 3464 _global_pushes = 0;
ysr@777 3465 _global_pops = 0;
ysr@777 3466 _global_max_size = 0;
ysr@777 3467 _global_transfers_to = 0;
ysr@777 3468 _global_transfers_from = 0;
ysr@777 3469 _regions_claimed = 0;
ysr@777 3470 _objs_found_on_bitmap = 0;
ysr@777 3471 _satb_buffers_processed = 0;
ysr@777 3472 _steal_attempts = 0;
ysr@777 3473 _steals = 0;
ysr@777 3474 _aborted = 0;
ysr@777 3475 _aborted_overflow = 0;
ysr@777 3476 _aborted_cm_aborted = 0;
ysr@777 3477 _aborted_yield = 0;
ysr@777 3478 _aborted_timed_out = 0;
ysr@777 3479 _aborted_satb = 0;
ysr@777 3480 _aborted_termination = 0;
ysr@777 3481 #endif // _MARKING_STATS_
ysr@777 3482 }
ysr@777 3483
ysr@777 3484 bool CMTask::should_exit_termination() {
ysr@777 3485 regular_clock_call();
ysr@777 3486 // This is called when we are in the termination protocol. We should
ysr@777 3487 // quit if, for some reason, this task wants to abort or the global
ysr@777 3488 // stack is not empty (this means that we can get work from it).
ysr@777 3489 return !_cm->mark_stack_empty() || has_aborted();
ysr@777 3490 }
ysr@777 3491
ysr@777 3492 void CMTask::reached_limit() {
tonyp@1458 3493 assert(_words_scanned >= _words_scanned_limit ||
tonyp@1458 3494 _refs_reached >= _refs_reached_limit ,
tonyp@1458 3495 "shouldn't have been called otherwise");
ysr@777 3496 regular_clock_call();
ysr@777 3497 }
ysr@777 3498
ysr@777 3499 void CMTask::regular_clock_call() {
tonyp@2973 3500 if (has_aborted()) return;
ysr@777 3501
ysr@777 3502 // First, we need to recalculate the words scanned and refs reached
ysr@777 3503 // limits for the next clock call.
ysr@777 3504 recalculate_limits();
ysr@777 3505
ysr@777 3506 // During the regular clock call we do the following
ysr@777 3507
ysr@777 3508 // (1) If an overflow has been flagged, then we abort.
ysr@777 3509 if (_cm->has_overflown()) {
ysr@777 3510 set_has_aborted();
ysr@777 3511 return;
ysr@777 3512 }
ysr@777 3513
ysr@777 3514 // If we are not concurrent (i.e. we're doing remark) we don't need
ysr@777 3515 // to check anything else. The other steps are only needed during
ysr@777 3516 // the concurrent marking phase.
tonyp@2973 3517 if (!concurrent()) return;
ysr@777 3518
ysr@777 3519 // (2) If marking has been aborted for Full GC, then we also abort.
ysr@777 3520 if (_cm->has_aborted()) {
ysr@777 3521 set_has_aborted();
ysr@777 3522 statsOnly( ++_aborted_cm_aborted );
ysr@777 3523 return;
ysr@777 3524 }
ysr@777 3525
ysr@777 3526 double curr_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 3527
ysr@777 3528 // (3) If marking stats are enabled, then we update the step history.
ysr@777 3529 #if _MARKING_STATS_
tonyp@2973 3530 if (_words_scanned >= _words_scanned_limit) {
ysr@777 3531 ++_clock_due_to_scanning;
tonyp@2973 3532 }
tonyp@2973 3533 if (_refs_reached >= _refs_reached_limit) {
ysr@777 3534 ++_clock_due_to_marking;
tonyp@2973 3535 }
ysr@777 3536
ysr@777 3537 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
ysr@777 3538 _interval_start_time_ms = curr_time_ms;
ysr@777 3539 _all_clock_intervals_ms.add(last_interval_ms);
ysr@777 3540
ysr@777 3541 if (_cm->verbose_medium()) {
johnc@4173 3542 gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
tonyp@2973 3543 "scanned = %d%s, refs reached = %d%s",
johnc@4173 3544 _worker_id, last_interval_ms,
tonyp@2973 3545 _words_scanned,
tonyp@2973 3546 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
tonyp@2973 3547 _refs_reached,
tonyp@2973 3548 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
ysr@777 3549 }
ysr@777 3550 #endif // _MARKING_STATS_
ysr@777 3551
ysr@777 3552 // (4) We check whether we should yield. If we have to, then we abort.
ysr@777 3553 if (_cm->should_yield()) {
ysr@777 3554 // We should yield. To do this we abort the task. The caller is
ysr@777 3555 // responsible for yielding.
ysr@777 3556 set_has_aborted();
ysr@777 3557 statsOnly( ++_aborted_yield );
ysr@777 3558 return;
ysr@777 3559 }
ysr@777 3560
ysr@777 3561 // (5) We check whether we've reached our time quota. If we have,
ysr@777 3562 // then we abort.
ysr@777 3563 double elapsed_time_ms = curr_time_ms - _start_time_ms;
ysr@777 3564 if (elapsed_time_ms > _time_target_ms) {
ysr@777 3565 set_has_aborted();
johnc@2494 3566 _has_timed_out = true;
ysr@777 3567 statsOnly( ++_aborted_timed_out );
ysr@777 3568 return;
ysr@777 3569 }
ysr@777 3570
ysr@777 3571 // (6) Finally, we check whether there are enough completed STAB
ysr@777 3572 // buffers available for processing. If there are, we abort.
ysr@777 3573 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
ysr@777 3574 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
tonyp@2973 3575 if (_cm->verbose_low()) {
johnc@4173 3576 gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
johnc@4173 3577 _worker_id);
tonyp@2973 3578 }
ysr@777 3579 // we do need to process SATB buffers, we'll abort and restart
ysr@777 3580 // the marking task to do so
ysr@777 3581 set_has_aborted();
ysr@777 3582 statsOnly( ++_aborted_satb );
ysr@777 3583 return;
ysr@777 3584 }
ysr@777 3585 }
ysr@777 3586
ysr@777 3587 void CMTask::recalculate_limits() {
ysr@777 3588 _real_words_scanned_limit = _words_scanned + words_scanned_period;
ysr@777 3589 _words_scanned_limit = _real_words_scanned_limit;
ysr@777 3590
ysr@777 3591 _real_refs_reached_limit = _refs_reached + refs_reached_period;
ysr@777 3592 _refs_reached_limit = _real_refs_reached_limit;
ysr@777 3593 }
ysr@777 3594
ysr@777 3595 void CMTask::decrease_limits() {
ysr@777 3596 // This is called when we believe that we're going to do an infrequent
ysr@777 3597 // operation which will increase the per byte scanned cost (i.e. move
ysr@777 3598 // entries to/from the global stack). It basically tries to decrease the
ysr@777 3599 // scanning limit so that the clock is called earlier.
ysr@777 3600
tonyp@2973 3601 if (_cm->verbose_medium()) {
johnc@4173 3602 gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
tonyp@2973 3603 }
ysr@777 3604
ysr@777 3605 _words_scanned_limit = _real_words_scanned_limit -
ysr@777 3606 3 * words_scanned_period / 4;
ysr@777 3607 _refs_reached_limit = _real_refs_reached_limit -
ysr@777 3608 3 * refs_reached_period / 4;
ysr@777 3609 }
ysr@777 3610
ysr@777 3611 void CMTask::move_entries_to_global_stack() {
ysr@777 3612 // local array where we'll store the entries that will be popped
ysr@777 3613 // from the local queue
ysr@777 3614 oop buffer[global_stack_transfer_size];
ysr@777 3615
ysr@777 3616 int n = 0;
ysr@777 3617 oop obj;
ysr@777 3618 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
ysr@777 3619 buffer[n] = obj;
ysr@777 3620 ++n;
ysr@777 3621 }
ysr@777 3622
ysr@777 3623 if (n > 0) {
ysr@777 3624 // we popped at least one entry from the local queue
ysr@777 3625
ysr@777 3626 statsOnly( ++_global_transfers_to; _local_pops += n );
ysr@777 3627
ysr@777 3628 if (!_cm->mark_stack_push(buffer, n)) {
tonyp@2973 3629 if (_cm->verbose_low()) {
johnc@4173 3630 gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
johnc@4173 3631 _worker_id);
tonyp@2973 3632 }
ysr@777 3633 set_has_aborted();
ysr@777 3634 } else {
ysr@777 3635 // the transfer was successful
ysr@777 3636
tonyp@2973 3637 if (_cm->verbose_medium()) {
johnc@4173 3638 gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
johnc@4173 3639 _worker_id, n);
tonyp@2973 3640 }
ysr@777 3641 statsOnly( int tmp_size = _cm->mark_stack_size();
tonyp@2973 3642 if (tmp_size > _global_max_size) {
ysr@777 3643 _global_max_size = tmp_size;
tonyp@2973 3644 }
ysr@777 3645 _global_pushes += n );
ysr@777 3646 }
ysr@777 3647 }
ysr@777 3648
ysr@777 3649 // this operation was quite expensive, so decrease the limits
ysr@777 3650 decrease_limits();
ysr@777 3651 }
ysr@777 3652
ysr@777 3653 void CMTask::get_entries_from_global_stack() {
ysr@777 3654 // local array where we'll store the entries that will be popped
ysr@777 3655 // from the global stack.
ysr@777 3656 oop buffer[global_stack_transfer_size];
ysr@777 3657 int n;
ysr@777 3658 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
tonyp@1458 3659 assert(n <= global_stack_transfer_size,
tonyp@1458 3660 "we should not pop more than the given limit");
ysr@777 3661 if (n > 0) {
ysr@777 3662 // yes, we did actually pop at least one entry
ysr@777 3663
ysr@777 3664 statsOnly( ++_global_transfers_from; _global_pops += n );
tonyp@2973 3665 if (_cm->verbose_medium()) {
johnc@4173 3666 gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
johnc@4173 3667 _worker_id, n);
tonyp@2973 3668 }
ysr@777 3669 for (int i = 0; i < n; ++i) {
ysr@777 3670 bool success = _task_queue->push(buffer[i]);
ysr@777 3671 // We only call this when the local queue is empty or under a
ysr@777 3672 // given target limit. So, we do not expect this push to fail.
tonyp@1458 3673 assert(success, "invariant");
ysr@777 3674 }
ysr@777 3675
ysr@777 3676 statsOnly( int tmp_size = _task_queue->size();
tonyp@2973 3677 if (tmp_size > _local_max_size) {
ysr@777 3678 _local_max_size = tmp_size;
tonyp@2973 3679 }
ysr@777 3680 _local_pushes += n );
ysr@777 3681 }
ysr@777 3682
ysr@777 3683 // this operation was quite expensive, so decrease the limits
ysr@777 3684 decrease_limits();
ysr@777 3685 }
ysr@777 3686
ysr@777 3687 void CMTask::drain_local_queue(bool partially) {
tonyp@2973 3688 if (has_aborted()) return;
ysr@777 3689
ysr@777 3690 // Decide what the target size is, depending whether we're going to
ysr@777 3691 // drain it partially (so that other tasks can steal if they run out
ysr@777 3692 // of things to do) or totally (at the very end).
ysr@777 3693 size_t target_size;
tonyp@2973 3694 if (partially) {
ysr@777 3695 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
tonyp@2973 3696 } else {
ysr@777 3697 target_size = 0;
tonyp@2973 3698 }
ysr@777 3699
ysr@777 3700 if (_task_queue->size() > target_size) {
tonyp@2973 3701 if (_cm->verbose_high()) {
johnc@4173 3702 gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
johnc@4173 3703 _worker_id, target_size);
tonyp@2973 3704 }
ysr@777 3705
ysr@777 3706 oop obj;
ysr@777 3707 bool ret = _task_queue->pop_local(obj);
ysr@777 3708 while (ret) {
ysr@777 3709 statsOnly( ++_local_pops );
ysr@777 3710
tonyp@2973 3711 if (_cm->verbose_high()) {
johnc@4173 3712 gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
ysr@777 3713 (void*) obj);
tonyp@2973 3714 }
ysr@777 3715
tonyp@1458 3716 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
tonyp@2643 3717 assert(!_g1h->is_on_master_free_list(
tonyp@2472 3718 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
ysr@777 3719
ysr@777 3720 scan_object(obj);
ysr@777 3721
tonyp@2973 3722 if (_task_queue->size() <= target_size || has_aborted()) {
ysr@777 3723 ret = false;
tonyp@2973 3724 } else {
ysr@777 3725 ret = _task_queue->pop_local(obj);
tonyp@2973 3726 }
ysr@777 3727 }
ysr@777 3728
tonyp@2973 3729 if (_cm->verbose_high()) {
johnc@4173 3730 gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
johnc@4173 3731 _worker_id, _task_queue->size());
tonyp@2973 3732 }
ysr@777 3733 }
ysr@777 3734 }
ysr@777 3735
ysr@777 3736 void CMTask::drain_global_stack(bool partially) {
tonyp@2973 3737 if (has_aborted()) return;
ysr@777 3738
ysr@777 3739 // We have a policy to drain the local queue before we attempt to
ysr@777 3740 // drain the global stack.
tonyp@1458 3741 assert(partially || _task_queue->size() == 0, "invariant");
ysr@777 3742
ysr@777 3743 // Decide what the target size is, depending whether we're going to
ysr@777 3744 // drain it partially (so that other tasks can steal if they run out
ysr@777 3745 // of things to do) or totally (at the very end). Notice that,
ysr@777 3746 // because we move entries from the global stack in chunks or
ysr@777 3747 // because another task might be doing the same, we might in fact
ysr@777 3748 // drop below the target. But, this is not a problem.
ysr@777 3749 size_t target_size;
tonyp@2973 3750 if (partially) {
ysr@777 3751 target_size = _cm->partial_mark_stack_size_target();
tonyp@2973 3752 } else {
ysr@777 3753 target_size = 0;
tonyp@2973 3754 }
ysr@777 3755
ysr@777 3756 if (_cm->mark_stack_size() > target_size) {
tonyp@2973 3757 if (_cm->verbose_low()) {
johnc@4173 3758 gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
johnc@4173 3759 _worker_id, target_size);
tonyp@2973 3760 }
ysr@777 3761
ysr@777 3762 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
ysr@777 3763 get_entries_from_global_stack();
ysr@777 3764 drain_local_queue(partially);
ysr@777 3765 }
ysr@777 3766
tonyp@2973 3767 if (_cm->verbose_low()) {
johnc@4173 3768 gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
johnc@4173 3769 _worker_id, _cm->mark_stack_size());
tonyp@2973 3770 }
ysr@777 3771 }
ysr@777 3772 }
ysr@777 3773
ysr@777 3774 // SATB Queue has several assumptions on whether to call the par or
ysr@777 3775 // non-par versions of the methods. this is why some of the code is
ysr@777 3776 // replicated. We should really get rid of the single-threaded version
ysr@777 3777 // of the code to simplify things.
ysr@777 3778 void CMTask::drain_satb_buffers() {
tonyp@2973 3779 if (has_aborted()) return;
ysr@777 3780
ysr@777 3781 // We set this so that the regular clock knows that we're in the
ysr@777 3782 // middle of draining buffers and doesn't set the abort flag when it
ysr@777 3783 // notices that SATB buffers are available for draining. It'd be
ysr@777 3784 // very counter productive if it did that. :-)
ysr@777 3785 _draining_satb_buffers = true;
ysr@777 3786
ysr@777 3787 CMObjectClosure oc(this);
ysr@777 3788 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
tonyp@2973 3789 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@4173 3790 satb_mq_set.set_par_closure(_worker_id, &oc);
tonyp@2973 3791 } else {
ysr@777 3792 satb_mq_set.set_closure(&oc);
tonyp@2973 3793 }
ysr@777 3794
ysr@777 3795 // This keeps claiming and applying the closure to completed buffers
ysr@777 3796 // until we run out of buffers or we need to abort.
jmasa@2188 3797 if (G1CollectedHeap::use_parallel_gc_threads()) {
ysr@777 3798 while (!has_aborted() &&
johnc@4173 3799 satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
tonyp@2973 3800 if (_cm->verbose_medium()) {
johnc@4173 3801 gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
tonyp@2973 3802 }
ysr@777 3803 statsOnly( ++_satb_buffers_processed );
ysr@777 3804 regular_clock_call();
ysr@777 3805 }
ysr@777 3806 } else {
ysr@777 3807 while (!has_aborted() &&
ysr@777 3808 satb_mq_set.apply_closure_to_completed_buffer()) {
tonyp@2973 3809 if (_cm->verbose_medium()) {
johnc@4173 3810 gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
tonyp@2973 3811 }
ysr@777 3812 statsOnly( ++_satb_buffers_processed );
ysr@777 3813 regular_clock_call();
ysr@777 3814 }
ysr@777 3815 }
ysr@777 3816
ysr@777 3817 if (!concurrent() && !has_aborted()) {
ysr@777 3818 // We should only do this during remark.
tonyp@2973 3819 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@4173 3820 satb_mq_set.par_iterate_closure_all_threads(_worker_id);
tonyp@2973 3821 } else {
ysr@777 3822 satb_mq_set.iterate_closure_all_threads();
tonyp@2973 3823 }
ysr@777 3824 }
ysr@777 3825
ysr@777 3826 _draining_satb_buffers = false;
ysr@777 3827
tonyp@1458 3828 assert(has_aborted() ||
tonyp@1458 3829 concurrent() ||
tonyp@1458 3830 satb_mq_set.completed_buffers_num() == 0, "invariant");
ysr@777 3831
tonyp@2973 3832 if (G1CollectedHeap::use_parallel_gc_threads()) {
johnc@4173 3833 satb_mq_set.set_par_closure(_worker_id, NULL);
tonyp@2973 3834 } else {
ysr@777 3835 satb_mq_set.set_closure(NULL);
tonyp@2973 3836 }
ysr@777 3837
ysr@777 3838 // again, this was a potentially expensive operation, decrease the
ysr@777 3839 // limits to get the regular clock call early
ysr@777 3840 decrease_limits();
ysr@777 3841 }
ysr@777 3842
ysr@777 3843 void CMTask::print_stats() {
johnc@4173 3844 gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
johnc@4173 3845 _worker_id, _calls);
ysr@777 3846 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
ysr@777 3847 _elapsed_time_ms, _termination_time_ms);
ysr@777 3848 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3849 _step_times_ms.num(), _step_times_ms.avg(),
ysr@777 3850 _step_times_ms.sd());
ysr@777 3851 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3852 _step_times_ms.maximum(), _step_times_ms.sum());
ysr@777 3853
ysr@777 3854 #if _MARKING_STATS_
ysr@777 3855 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
ysr@777 3856 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
ysr@777 3857 _all_clock_intervals_ms.sd());
ysr@777 3858 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
ysr@777 3859 _all_clock_intervals_ms.maximum(),
ysr@777 3860 _all_clock_intervals_ms.sum());
ysr@777 3861 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
ysr@777 3862 _clock_due_to_scanning, _clock_due_to_marking);
ysr@777 3863 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
ysr@777 3864 _objs_scanned, _objs_found_on_bitmap);
ysr@777 3865 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
ysr@777 3866 _local_pushes, _local_pops, _local_max_size);
ysr@777 3867 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
ysr@777 3868 _global_pushes, _global_pops, _global_max_size);
ysr@777 3869 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
ysr@777 3870 _global_transfers_to,_global_transfers_from);
tonyp@3691 3871 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
ysr@777 3872 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
ysr@777 3873 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
ysr@777 3874 _steal_attempts, _steals);
ysr@777 3875 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
ysr@777 3876 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
ysr@777 3877 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
ysr@777 3878 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
ysr@777 3879 _aborted_timed_out, _aborted_satb, _aborted_termination);
ysr@777 3880 #endif // _MARKING_STATS_
ysr@777 3881 }
ysr@777 3882
ysr@777 3883 /*****************************************************************************
ysr@777 3884
ysr@777 3885 The do_marking_step(time_target_ms) method is the building block
ysr@777 3886 of the parallel marking framework. It can be called in parallel
ysr@777 3887 with other invocations of do_marking_step() on different tasks
ysr@777 3888 (but only one per task, obviously) and concurrently with the
ysr@777 3889 mutator threads, or during remark, hence it eliminates the need
ysr@777 3890 for two versions of the code. When called during remark, it will
ysr@777 3891 pick up from where the task left off during the concurrent marking
ysr@777 3892 phase. Interestingly, tasks are also claimable during evacuation
ysr@777 3893 pauses too, since do_marking_step() ensures that it aborts before
ysr@777 3894 it needs to yield.
ysr@777 3895
ysr@777 3896 The data structures that is uses to do marking work are the
ysr@777 3897 following:
ysr@777 3898
ysr@777 3899 (1) Marking Bitmap. If there are gray objects that appear only
ysr@777 3900 on the bitmap (this happens either when dealing with an overflow
ysr@777 3901 or when the initial marking phase has simply marked the roots
ysr@777 3902 and didn't push them on the stack), then tasks claim heap
ysr@777 3903 regions whose bitmap they then scan to find gray objects. A
ysr@777 3904 global finger indicates where the end of the last claimed region
ysr@777 3905 is. A local finger indicates how far into the region a task has
ysr@777 3906 scanned. The two fingers are used to determine how to gray an
ysr@777 3907 object (i.e. whether simply marking it is OK, as it will be
ysr@777 3908 visited by a task in the future, or whether it needs to be also
ysr@777 3909 pushed on a stack).
ysr@777 3910
ysr@777 3911 (2) Local Queue. The local queue of the task which is accessed
ysr@777 3912 reasonably efficiently by the task. Other tasks can steal from
ysr@777 3913 it when they run out of work. Throughout the marking phase, a
ysr@777 3914 task attempts to keep its local queue short but not totally
ysr@777 3915 empty, so that entries are available for stealing by other
ysr@777 3916 tasks. Only when there is no more work, a task will totally
ysr@777 3917 drain its local queue.
ysr@777 3918
ysr@777 3919 (3) Global Mark Stack. This handles local queue overflow. During
ysr@777 3920 marking only sets of entries are moved between it and the local
ysr@777 3921 queues, as access to it requires a mutex and more fine-grain
ysr@777 3922 interaction with it which might cause contention. If it
ysr@777 3923 overflows, then the marking phase should restart and iterate
ysr@777 3924 over the bitmap to identify gray objects. Throughout the marking
ysr@777 3925 phase, tasks attempt to keep the global mark stack at a small
ysr@777 3926 length but not totally empty, so that entries are available for
ysr@777 3927 popping by other tasks. Only when there is no more work, tasks
ysr@777 3928 will totally drain the global mark stack.
ysr@777 3929
tonyp@3691 3930 (4) SATB Buffer Queue. This is where completed SATB buffers are
ysr@777 3931 made available. Buffers are regularly removed from this queue
ysr@777 3932 and scanned for roots, so that the queue doesn't get too
ysr@777 3933 long. During remark, all completed buffers are processed, as
ysr@777 3934 well as the filled in parts of any uncompleted buffers.
ysr@777 3935
ysr@777 3936 The do_marking_step() method tries to abort when the time target
ysr@777 3937 has been reached. There are a few other cases when the
ysr@777 3938 do_marking_step() method also aborts:
ysr@777 3939
ysr@777 3940 (1) When the marking phase has been aborted (after a Full GC).
ysr@777 3941
tonyp@3691 3942 (2) When a global overflow (on the global stack) has been
tonyp@3691 3943 triggered. Before the task aborts, it will actually sync up with
tonyp@3691 3944 the other tasks to ensure that all the marking data structures
tonyp@3691 3945 (local queues, stacks, fingers etc.) are re-initialised so that
tonyp@3691 3946 when do_marking_step() completes, the marking phase can
tonyp@3691 3947 immediately restart.
ysr@777 3948
ysr@777 3949 (3) When enough completed SATB buffers are available. The
ysr@777 3950 do_marking_step() method only tries to drain SATB buffers right
ysr@777 3951 at the beginning. So, if enough buffers are available, the
ysr@777 3952 marking step aborts and the SATB buffers are processed at
ysr@777 3953 the beginning of the next invocation.
ysr@777 3954
ysr@777 3955 (4) To yield. when we have to yield then we abort and yield
ysr@777 3956 right at the end of do_marking_step(). This saves us from a lot
ysr@777 3957 of hassle as, by yielding we might allow a Full GC. If this
ysr@777 3958 happens then objects will be compacted underneath our feet, the
ysr@777 3959 heap might shrink, etc. We save checking for this by just
ysr@777 3960 aborting and doing the yield right at the end.
ysr@777 3961
ysr@777 3962 From the above it follows that the do_marking_step() method should
ysr@777 3963 be called in a loop (or, otherwise, regularly) until it completes.
ysr@777 3964
ysr@777 3965 If a marking step completes without its has_aborted() flag being
ysr@777 3966 true, it means it has completed the current marking phase (and
ysr@777 3967 also all other marking tasks have done so and have all synced up).
ysr@777 3968
ysr@777 3969 A method called regular_clock_call() is invoked "regularly" (in
ysr@777 3970 sub ms intervals) throughout marking. It is this clock method that
ysr@777 3971 checks all the abort conditions which were mentioned above and
ysr@777 3972 decides when the task should abort. A work-based scheme is used to
ysr@777 3973 trigger this clock method: when the number of object words the
ysr@777 3974 marking phase has scanned or the number of references the marking
ysr@777 3975 phase has visited reach a given limit. Additional invocations to
ysr@777 3976 the method clock have been planted in a few other strategic places
ysr@777 3977 too. The initial reason for the clock method was to avoid calling
ysr@777 3978 vtime too regularly, as it is quite expensive. So, once it was in
ysr@777 3979 place, it was natural to piggy-back all the other conditions on it
ysr@777 3980 too and not constantly check them throughout the code.
ysr@777 3981
ysr@777 3982 *****************************************************************************/
ysr@777 3983
johnc@2494 3984 void CMTask::do_marking_step(double time_target_ms,
johnc@2494 3985 bool do_stealing,
johnc@2494 3986 bool do_termination) {
tonyp@1458 3987 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
tonyp@1458 3988 assert(concurrent() == _cm->concurrent(), "they should be the same");
tonyp@1458 3989
ysr@777 3990 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
tonyp@1458 3991 assert(_task_queues != NULL, "invariant");
tonyp@1458 3992 assert(_task_queue != NULL, "invariant");
johnc@4173 3993 assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
tonyp@1458 3994
tonyp@1458 3995 assert(!_claimed,
tonyp@1458 3996 "only one thread should claim this task at any one time");
ysr@777 3997
ysr@777 3998 // OK, this doesn't safeguard again all possible scenarios, as it is
ysr@777 3999 // possible for two threads to set the _claimed flag at the same
ysr@777 4000 // time. But it is only for debugging purposes anyway and it will
ysr@777 4001 // catch most problems.
ysr@777 4002 _claimed = true;
ysr@777 4003
ysr@777 4004 _start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4005 statsOnly( _interval_start_time_ms = _start_time_ms );
ysr@777 4006
ysr@777 4007 double diff_prediction_ms =
ysr@777 4008 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
ysr@777 4009 _time_target_ms = time_target_ms - diff_prediction_ms;
ysr@777 4010
ysr@777 4011 // set up the variables that are used in the work-based scheme to
ysr@777 4012 // call the regular clock method
ysr@777 4013 _words_scanned = 0;
ysr@777 4014 _refs_reached = 0;
ysr@777 4015 recalculate_limits();
ysr@777 4016
ysr@777 4017 // clear all flags
ysr@777 4018 clear_has_aborted();
johnc@2494 4019 _has_timed_out = false;
ysr@777 4020 _draining_satb_buffers = false;
ysr@777 4021
ysr@777 4022 ++_calls;
ysr@777 4023
tonyp@2973 4024 if (_cm->verbose_low()) {
johnc@4173 4025 gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
ysr@777 4026 "target = %1.2lfms >>>>>>>>>>",
johnc@4173 4027 _worker_id, _calls, _time_target_ms);
tonyp@2973 4028 }
ysr@777 4029
ysr@777 4030 // Set up the bitmap and oop closures. Anything that uses them is
ysr@777 4031 // eventually called from this method, so it is OK to allocate these
ysr@777 4032 // statically.
ysr@777 4033 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
tonyp@2968 4034 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
tonyp@2968 4035 set_cm_oop_closure(&cm_oop_closure);
ysr@777 4036
ysr@777 4037 if (_cm->has_overflown()) {
tonyp@3691 4038 // This can happen if the mark stack overflows during a GC pause
tonyp@3691 4039 // and this task, after a yield point, restarts. We have to abort
tonyp@3691 4040 // as we need to get into the overflow protocol which happens
tonyp@3691 4041 // right at the end of this task.
ysr@777 4042 set_has_aborted();
ysr@777 4043 }
ysr@777 4044
ysr@777 4045 // First drain any available SATB buffers. After this, we will not
ysr@777 4046 // look at SATB buffers before the next invocation of this method.
ysr@777 4047 // If enough completed SATB buffers are queued up, the regular clock
ysr@777 4048 // will abort this task so that it restarts.
ysr@777 4049 drain_satb_buffers();
ysr@777 4050 // ...then partially drain the local queue and the global stack
ysr@777 4051 drain_local_queue(true);
ysr@777 4052 drain_global_stack(true);
ysr@777 4053
ysr@777 4054 do {
ysr@777 4055 if (!has_aborted() && _curr_region != NULL) {
ysr@777 4056 // This means that we're already holding on to a region.
tonyp@1458 4057 assert(_finger != NULL, "if region is not NULL, then the finger "
tonyp@1458 4058 "should not be NULL either");
ysr@777 4059
ysr@777 4060 // We might have restarted this task after an evacuation pause
ysr@777 4061 // which might have evacuated the region we're holding on to
ysr@777 4062 // underneath our feet. Let's read its limit again to make sure
ysr@777 4063 // that we do not iterate over a region of the heap that
ysr@777 4064 // contains garbage (update_region_limit() will also move
ysr@777 4065 // _finger to the start of the region if it is found empty).
ysr@777 4066 update_region_limit();
ysr@777 4067 // We will start from _finger not from the start of the region,
ysr@777 4068 // as we might be restarting this task after aborting half-way
ysr@777 4069 // through scanning this region. In this case, _finger points to
ysr@777 4070 // the address where we last found a marked object. If this is a
ysr@777 4071 // fresh region, _finger points to start().
ysr@777 4072 MemRegion mr = MemRegion(_finger, _region_limit);
ysr@777 4073
tonyp@2973 4074 if (_cm->verbose_low()) {
johnc@4173 4075 gclog_or_tty->print_cr("[%u] we're scanning part "
ysr@777 4076 "["PTR_FORMAT", "PTR_FORMAT") "
ysr@777 4077 "of region "PTR_FORMAT,
johnc@4173 4078 _worker_id, _finger, _region_limit, _curr_region);
tonyp@2973 4079 }
ysr@777 4080
ysr@777 4081 // Let's iterate over the bitmap of the part of the
ysr@777 4082 // region that is left.
tonyp@3691 4083 if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
ysr@777 4084 // We successfully completed iterating over the region. Now,
ysr@777 4085 // let's give up the region.
ysr@777 4086 giveup_current_region();
ysr@777 4087 regular_clock_call();
ysr@777 4088 } else {
tonyp@1458 4089 assert(has_aborted(), "currently the only way to do so");
ysr@777 4090 // The only way to abort the bitmap iteration is to return
ysr@777 4091 // false from the do_bit() method. However, inside the
ysr@777 4092 // do_bit() method we move the _finger to point to the
ysr@777 4093 // object currently being looked at. So, if we bail out, we
ysr@777 4094 // have definitely set _finger to something non-null.
tonyp@1458 4095 assert(_finger != NULL, "invariant");
ysr@777 4096
ysr@777 4097 // Region iteration was actually aborted. So now _finger
ysr@777 4098 // points to the address of the object we last scanned. If we
ysr@777 4099 // leave it there, when we restart this task, we will rescan
ysr@777 4100 // the object. It is easy to avoid this. We move the finger by
ysr@777 4101 // enough to point to the next possible object header (the
ysr@777 4102 // bitmap knows by how much we need to move it as it knows its
ysr@777 4103 // granularity).
apetrusenko@1749 4104 assert(_finger < _region_limit, "invariant");
apetrusenko@1749 4105 HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
apetrusenko@1749 4106 // Check if bitmap iteration was aborted while scanning the last object
apetrusenko@1749 4107 if (new_finger >= _region_limit) {
tonyp@3691 4108 giveup_current_region();
apetrusenko@1749 4109 } else {
tonyp@3691 4110 move_finger_to(new_finger);
apetrusenko@1749 4111 }
ysr@777 4112 }
ysr@777 4113 }
ysr@777 4114 // At this point we have either completed iterating over the
ysr@777 4115 // region we were holding on to, or we have aborted.
ysr@777 4116
ysr@777 4117 // We then partially drain the local queue and the global stack.
ysr@777 4118 // (Do we really need this?)
ysr@777 4119 drain_local_queue(true);
ysr@777 4120 drain_global_stack(true);
ysr@777 4121
ysr@777 4122 // Read the note on the claim_region() method on why it might
ysr@777 4123 // return NULL with potentially more regions available for
ysr@777 4124 // claiming and why we have to check out_of_regions() to determine
ysr@777 4125 // whether we're done or not.
ysr@777 4126 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
ysr@777 4127 // We are going to try to claim a new region. We should have
ysr@777 4128 // given up on the previous one.
tonyp@1458 4129 // Separated the asserts so that we know which one fires.
tonyp@1458 4130 assert(_curr_region == NULL, "invariant");
tonyp@1458 4131 assert(_finger == NULL, "invariant");
tonyp@1458 4132 assert(_region_limit == NULL, "invariant");
tonyp@2973 4133 if (_cm->verbose_low()) {
johnc@4173 4134 gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
tonyp@2973 4135 }
johnc@4173 4136 HeapRegion* claimed_region = _cm->claim_region(_worker_id);
ysr@777 4137 if (claimed_region != NULL) {
ysr@777 4138 // Yes, we managed to claim one
ysr@777 4139 statsOnly( ++_regions_claimed );
ysr@777 4140
tonyp@2973 4141 if (_cm->verbose_low()) {
johnc@4173 4142 gclog_or_tty->print_cr("[%u] we successfully claimed "
ysr@777 4143 "region "PTR_FORMAT,
johnc@4173 4144 _worker_id, claimed_region);
tonyp@2973 4145 }
ysr@777 4146
ysr@777 4147 setup_for_region(claimed_region);
tonyp@1458 4148 assert(_curr_region == claimed_region, "invariant");
ysr@777 4149 }
ysr@777 4150 // It is important to call the regular clock here. It might take
ysr@777 4151 // a while to claim a region if, for example, we hit a large
ysr@777 4152 // block of empty regions. So we need to call the regular clock
ysr@777 4153 // method once round the loop to make sure it's called
ysr@777 4154 // frequently enough.
ysr@777 4155 regular_clock_call();
ysr@777 4156 }
ysr@777 4157
ysr@777 4158 if (!has_aborted() && _curr_region == NULL) {
tonyp@1458 4159 assert(_cm->out_of_regions(),
tonyp@1458 4160 "at this point we should be out of regions");
ysr@777 4161 }
ysr@777 4162 } while ( _curr_region != NULL && !has_aborted());
ysr@777 4163
ysr@777 4164 if (!has_aborted()) {
ysr@777 4165 // We cannot check whether the global stack is empty, since other
tonyp@3691 4166 // tasks might be pushing objects to it concurrently.
tonyp@1458 4167 assert(_cm->out_of_regions(),
tonyp@1458 4168 "at this point we should be out of regions");
ysr@777 4169
tonyp@2973 4170 if (_cm->verbose_low()) {
johnc@4173 4171 gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
tonyp@2973 4172 }
ysr@777 4173
ysr@777 4174 // Try to reduce the number of available SATB buffers so that
ysr@777 4175 // remark has less work to do.
ysr@777 4176 drain_satb_buffers();
ysr@777 4177 }
ysr@777 4178
ysr@777 4179 // Since we've done everything else, we can now totally drain the
ysr@777 4180 // local queue and global stack.
ysr@777 4181 drain_local_queue(false);
ysr@777 4182 drain_global_stack(false);
ysr@777 4183
ysr@777 4184 // Attempt at work stealing from other task's queues.
johnc@2494 4185 if (do_stealing && !has_aborted()) {
ysr@777 4186 // We have not aborted. This means that we have finished all that
ysr@777 4187 // we could. Let's try to do some stealing...
ysr@777 4188
ysr@777 4189 // We cannot check whether the global stack is empty, since other
tonyp@3691 4190 // tasks might be pushing objects to it concurrently.
tonyp@1458 4191 assert(_cm->out_of_regions() && _task_queue->size() == 0,
tonyp@1458 4192 "only way to reach here");
ysr@777 4193
tonyp@2973 4194 if (_cm->verbose_low()) {
johnc@4173 4195 gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
tonyp@2973 4196 }
ysr@777 4197
ysr@777 4198 while (!has_aborted()) {
ysr@777 4199 oop obj;
ysr@777 4200 statsOnly( ++_steal_attempts );
ysr@777 4201
johnc@4173 4202 if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
tonyp@2973 4203 if (_cm->verbose_medium()) {
johnc@4173 4204 gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
johnc@4173 4205 _worker_id, (void*) obj);
tonyp@2973 4206 }
ysr@777 4207
ysr@777 4208 statsOnly( ++_steals );
ysr@777 4209
tonyp@1458 4210 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
tonyp@1458 4211 "any stolen object should be marked");
ysr@777 4212 scan_object(obj);
ysr@777 4213
ysr@777 4214 // And since we're towards the end, let's totally drain the
ysr@777 4215 // local queue and global stack.
ysr@777 4216 drain_local_queue(false);
ysr@777 4217 drain_global_stack(false);
ysr@777 4218 } else {
ysr@777 4219 break;
ysr@777 4220 }
ysr@777 4221 }
ysr@777 4222 }
ysr@777 4223
tonyp@2848 4224 // If we are about to wrap up and go into termination, check if we
tonyp@2848 4225 // should raise the overflow flag.
tonyp@2848 4226 if (do_termination && !has_aborted()) {
tonyp@2848 4227 if (_cm->force_overflow()->should_force()) {
tonyp@2848 4228 _cm->set_has_overflown();
tonyp@2848 4229 regular_clock_call();
tonyp@2848 4230 }
tonyp@2848 4231 }
tonyp@2848 4232
ysr@777 4233 // We still haven't aborted. Now, let's try to get into the
ysr@777 4234 // termination protocol.
johnc@2494 4235 if (do_termination && !has_aborted()) {
ysr@777 4236 // We cannot check whether the global stack is empty, since other
tonyp@3691 4237 // tasks might be concurrently pushing objects on it.
tonyp@1458 4238 // Separated the asserts so that we know which one fires.
tonyp@1458 4239 assert(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4240 assert(_task_queue->size() == 0, "only way to reach here");
ysr@777 4241
tonyp@2973 4242 if (_cm->verbose_low()) {
johnc@4173 4243 gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
tonyp@2973 4244 }
ysr@777 4245
ysr@777 4246 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4247 // The CMTask class also extends the TerminatorTerminator class,
ysr@777 4248 // hence its should_exit_termination() method will also decide
ysr@777 4249 // whether to exit the termination protocol or not.
ysr@777 4250 bool finished = _cm->terminator()->offer_termination(this);
ysr@777 4251 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4252 _termination_time_ms +=
ysr@777 4253 termination_end_time_ms - _termination_start_time_ms;
ysr@777 4254
ysr@777 4255 if (finished) {
ysr@777 4256 // We're all done.
ysr@777 4257
johnc@4173 4258 if (_worker_id == 0) {
ysr@777 4259 // let's allow task 0 to do this
ysr@777 4260 if (concurrent()) {
tonyp@1458 4261 assert(_cm->concurrent_marking_in_progress(), "invariant");
ysr@777 4262 // we need to set this to false before the next
ysr@777 4263 // safepoint. This way we ensure that the marking phase
ysr@777 4264 // doesn't observe any more heap expansions.
ysr@777 4265 _cm->clear_concurrent_marking_in_progress();
ysr@777 4266 }
ysr@777 4267 }
ysr@777 4268
ysr@777 4269 // We can now guarantee that the global stack is empty, since
tonyp@1458 4270 // all other tasks have finished. We separated the guarantees so
tonyp@1458 4271 // that, if a condition is false, we can immediately find out
tonyp@1458 4272 // which one.
tonyp@1458 4273 guarantee(_cm->out_of_regions(), "only way to reach here");
tonyp@1458 4274 guarantee(_cm->mark_stack_empty(), "only way to reach here");
tonyp@1458 4275 guarantee(_task_queue->size() == 0, "only way to reach here");
tonyp@1458 4276 guarantee(!_cm->has_overflown(), "only way to reach here");
tonyp@1458 4277 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
ysr@777 4278
tonyp@2973 4279 if (_cm->verbose_low()) {
johnc@4173 4280 gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
tonyp@2973 4281 }
ysr@777 4282 } else {
ysr@777 4283 // Apparently there's more work to do. Let's abort this task. It
ysr@777 4284 // will restart it and we can hopefully find more things to do.
ysr@777 4285
tonyp@2973 4286 if (_cm->verbose_low()) {
johnc@4173 4287 gclog_or_tty->print_cr("[%u] apparently there is more work to do",
johnc@4173 4288 _worker_id);
tonyp@2973 4289 }
ysr@777 4290
ysr@777 4291 set_has_aborted();
ysr@777 4292 statsOnly( ++_aborted_termination );
ysr@777 4293 }
ysr@777 4294 }
ysr@777 4295
ysr@777 4296 // Mainly for debugging purposes to make sure that a pointer to the
ysr@777 4297 // closure which was statically allocated in this frame doesn't
ysr@777 4298 // escape it by accident.
tonyp@2968 4299 set_cm_oop_closure(NULL);
ysr@777 4300 double end_time_ms = os::elapsedVTime() * 1000.0;
ysr@777 4301 double elapsed_time_ms = end_time_ms - _start_time_ms;
ysr@777 4302 // Update the step history.
ysr@777 4303 _step_times_ms.add(elapsed_time_ms);
ysr@777 4304
ysr@777 4305 if (has_aborted()) {
ysr@777 4306 // The task was aborted for some reason.
ysr@777 4307
ysr@777 4308 statsOnly( ++_aborted );
ysr@777 4309
johnc@2494 4310 if (_has_timed_out) {
ysr@777 4311 double diff_ms = elapsed_time_ms - _time_target_ms;
ysr@777 4312 // Keep statistics of how well we did with respect to hitting
ysr@777 4313 // our target only if we actually timed out (if we aborted for
ysr@777 4314 // other reasons, then the results might get skewed).
ysr@777 4315 _marking_step_diffs_ms.add(diff_ms);
ysr@777 4316 }
ysr@777 4317
ysr@777 4318 if (_cm->has_overflown()) {
ysr@777 4319 // This is the interesting one. We aborted because a global
ysr@777 4320 // overflow was raised. This means we have to restart the
ysr@777 4321 // marking phase and start iterating over regions. However, in
ysr@777 4322 // order to do this we have to make sure that all tasks stop
ysr@777 4323 // what they are doing and re-initialise in a safe manner. We
ysr@777 4324 // will achieve this with the use of two barrier sync points.
ysr@777 4325
tonyp@2973 4326 if (_cm->verbose_low()) {
johnc@4173 4327 gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
tonyp@2973 4328 }
ysr@777 4329
johnc@4173 4330 _cm->enter_first_sync_barrier(_worker_id);
ysr@777 4331 // When we exit this sync barrier we know that all tasks have
ysr@777 4332 // stopped doing marking work. So, it's now safe to
ysr@777 4333 // re-initialise our data structures. At the end of this method,
ysr@777 4334 // task 0 will clear the global data structures.
ysr@777 4335
ysr@777 4336 statsOnly( ++_aborted_overflow );
ysr@777 4337
ysr@777 4338 // We clear the local state of this task...
ysr@777 4339 clear_region_fields();
ysr@777 4340
ysr@777 4341 // ...and enter the second barrier.
johnc@4173 4342 _cm->enter_second_sync_barrier(_worker_id);
ysr@777 4343 // At this point everything has bee re-initialised and we're
ysr@777 4344 // ready to restart.
ysr@777 4345 }
ysr@777 4346
ysr@777 4347 if (_cm->verbose_low()) {
johnc@4173 4348 gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
ysr@777 4349 "elapsed = %1.2lfms <<<<<<<<<<",
johnc@4173 4350 _worker_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4351 if (_cm->has_aborted()) {
johnc@4173 4352 gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
johnc@4173 4353 _worker_id);
tonyp@2973 4354 }
ysr@777 4355 }
ysr@777 4356 } else {
tonyp@2973 4357 if (_cm->verbose_low()) {
johnc@4173 4358 gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
ysr@777 4359 "elapsed = %1.2lfms <<<<<<<<<<",
johnc@4173 4360 _worker_id, _time_target_ms, elapsed_time_ms);
tonyp@2973 4361 }
ysr@777 4362 }
ysr@777 4363
ysr@777 4364 _claimed = false;
ysr@777 4365 }
ysr@777 4366
johnc@4173 4367 CMTask::CMTask(uint worker_id,
ysr@777 4368 ConcurrentMark* cm,
johnc@3463 4369 size_t* marked_bytes,
johnc@3463 4370 BitMap* card_bm,
ysr@777 4371 CMTaskQueue* task_queue,
ysr@777 4372 CMTaskQueueSet* task_queues)
ysr@777 4373 : _g1h(G1CollectedHeap::heap()),
johnc@4173 4374 _worker_id(worker_id), _cm(cm),
ysr@777 4375 _claimed(false),
ysr@777 4376 _nextMarkBitMap(NULL), _hash_seed(17),
ysr@777 4377 _task_queue(task_queue),
ysr@777 4378 _task_queues(task_queues),
tonyp@2968 4379 _cm_oop_closure(NULL),
johnc@3463 4380 _marked_bytes_array(marked_bytes),
johnc@3463 4381 _card_bm(card_bm) {
tonyp@1458 4382 guarantee(task_queue != NULL, "invariant");
tonyp@1458 4383 guarantee(task_queues != NULL, "invariant");
ysr@777 4384
ysr@777 4385 statsOnly( _clock_due_to_scanning = 0;
ysr@777 4386 _clock_due_to_marking = 0 );
ysr@777 4387
ysr@777 4388 _marking_step_diffs_ms.add(0.5);
ysr@777 4389 }
tonyp@2717 4390
tonyp@2717 4391 // These are formatting macros that are used below to ensure
tonyp@2717 4392 // consistent formatting. The *_H_* versions are used to format the
tonyp@2717 4393 // header for a particular value and they should be kept consistent
tonyp@2717 4394 // with the corresponding macro. Also note that most of the macros add
tonyp@2717 4395 // the necessary white space (as a prefix) which makes them a bit
tonyp@2717 4396 // easier to compose.
tonyp@2717 4397
tonyp@2717 4398 // All the output lines are prefixed with this string to be able to
tonyp@2717 4399 // identify them easily in a large log file.
tonyp@2717 4400 #define G1PPRL_LINE_PREFIX "###"
tonyp@2717 4401
tonyp@2717 4402 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
tonyp@2717 4403 #ifdef _LP64
tonyp@2717 4404 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
tonyp@2717 4405 #else // _LP64
tonyp@2717 4406 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
tonyp@2717 4407 #endif // _LP64
tonyp@2717 4408
tonyp@2717 4409 // For per-region info
tonyp@2717 4410 #define G1PPRL_TYPE_FORMAT " %-4s"
tonyp@2717 4411 #define G1PPRL_TYPE_H_FORMAT " %4s"
tonyp@2717 4412 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
tonyp@2717 4413 #define G1PPRL_BYTE_H_FORMAT " %9s"
tonyp@2717 4414 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
tonyp@2717 4415 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
tonyp@2717 4416
tonyp@2717 4417 // For summary info
tonyp@2717 4418 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4419 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
tonyp@2717 4420 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
tonyp@2717 4421 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
tonyp@2717 4422
tonyp@2717 4423 G1PrintRegionLivenessInfoClosure::
tonyp@2717 4424 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
tonyp@2717 4425 : _out(out),
tonyp@2717 4426 _total_used_bytes(0), _total_capacity_bytes(0),
tonyp@2717 4427 _total_prev_live_bytes(0), _total_next_live_bytes(0),
tonyp@2717 4428 _hum_used_bytes(0), _hum_capacity_bytes(0),
tonyp@2717 4429 _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
tonyp@2717 4430 G1CollectedHeap* g1h = G1CollectedHeap::heap();
tonyp@2717 4431 MemRegion g1_committed = g1h->g1_committed();
tonyp@2717 4432 MemRegion g1_reserved = g1h->g1_reserved();
tonyp@2717 4433 double now = os::elapsedTime();
tonyp@2717 4434
tonyp@2717 4435 // Print the header of the output.
tonyp@2717 4436 _out->cr();
tonyp@2717 4437 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
tonyp@2717 4438 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
tonyp@2717 4439 G1PPRL_SUM_ADDR_FORMAT("committed")
tonyp@2717 4440 G1PPRL_SUM_ADDR_FORMAT("reserved")
tonyp@2717 4441 G1PPRL_SUM_BYTE_FORMAT("region-size"),
tonyp@2717 4442 g1_committed.start(), g1_committed.end(),
tonyp@2717 4443 g1_reserved.start(), g1_reserved.end(),
johnc@3182 4444 HeapRegion::GrainBytes);
tonyp@2717 4445 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4446 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4447 G1PPRL_TYPE_H_FORMAT
tonyp@2717 4448 G1PPRL_ADDR_BASE_H_FORMAT
tonyp@2717 4449 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4450 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4451 G1PPRL_BYTE_H_FORMAT
tonyp@2717 4452 G1PPRL_DOUBLE_H_FORMAT,
tonyp@2717 4453 "type", "address-range",
tonyp@2717 4454 "used", "prev-live", "next-live", "gc-eff");
johnc@3173 4455 _out->print_cr(G1PPRL_LINE_PREFIX
johnc@3173 4456 G1PPRL_TYPE_H_FORMAT
johnc@3173 4457 G1PPRL_ADDR_BASE_H_FORMAT
johnc@3173 4458 G1PPRL_BYTE_H_FORMAT
johnc@3173 4459 G1PPRL_BYTE_H_FORMAT
johnc@3173 4460 G1PPRL_BYTE_H_FORMAT
johnc@3173 4461 G1PPRL_DOUBLE_H_FORMAT,
johnc@3173 4462 "", "",
johnc@3173 4463 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
tonyp@2717 4464 }
tonyp@2717 4465
tonyp@2717 4466 // It takes as a parameter a reference to one of the _hum_* fields, it
tonyp@2717 4467 // deduces the corresponding value for a region in a humongous region
tonyp@2717 4468 // series (either the region size, or what's left if the _hum_* field
tonyp@2717 4469 // is < the region size), and updates the _hum_* field accordingly.
tonyp@2717 4470 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
tonyp@2717 4471 size_t bytes = 0;
tonyp@2717 4472 // The > 0 check is to deal with the prev and next live bytes which
tonyp@2717 4473 // could be 0.
tonyp@2717 4474 if (*hum_bytes > 0) {
johnc@3182 4475 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
tonyp@2717 4476 *hum_bytes -= bytes;
tonyp@2717 4477 }
tonyp@2717 4478 return bytes;
tonyp@2717 4479 }
tonyp@2717 4480
tonyp@2717 4481 // It deduces the values for a region in a humongous region series
tonyp@2717 4482 // from the _hum_* fields and updates those accordingly. It assumes
tonyp@2717 4483 // that that _hum_* fields have already been set up from the "starts
tonyp@2717 4484 // humongous" region and we visit the regions in address order.
tonyp@2717 4485 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
tonyp@2717 4486 size_t* capacity_bytes,
tonyp@2717 4487 size_t* prev_live_bytes,
tonyp@2717 4488 size_t* next_live_bytes) {
tonyp@2717 4489 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
tonyp@2717 4490 *used_bytes = get_hum_bytes(&_hum_used_bytes);
tonyp@2717 4491 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
tonyp@2717 4492 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
tonyp@2717 4493 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
tonyp@2717 4494 }
tonyp@2717 4495
tonyp@2717 4496 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
tonyp@2717 4497 const char* type = "";
tonyp@2717 4498 HeapWord* bottom = r->bottom();
tonyp@2717 4499 HeapWord* end = r->end();
tonyp@2717 4500 size_t capacity_bytes = r->capacity();
tonyp@2717 4501 size_t used_bytes = r->used();
tonyp@2717 4502 size_t prev_live_bytes = r->live_bytes();
tonyp@2717 4503 size_t next_live_bytes = r->next_live_bytes();
tonyp@2717 4504 double gc_eff = r->gc_efficiency();
tonyp@2717 4505 if (r->used() == 0) {
tonyp@2717 4506 type = "FREE";
tonyp@2717 4507 } else if (r->is_survivor()) {
tonyp@2717 4508 type = "SURV";
tonyp@2717 4509 } else if (r->is_young()) {
tonyp@2717 4510 type = "EDEN";
tonyp@2717 4511 } else if (r->startsHumongous()) {
tonyp@2717 4512 type = "HUMS";
tonyp@2717 4513
tonyp@2717 4514 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
tonyp@2717 4515 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
tonyp@2717 4516 "they should have been zeroed after the last time we used them");
tonyp@2717 4517 // Set up the _hum_* fields.
tonyp@2717 4518 _hum_capacity_bytes = capacity_bytes;
tonyp@2717 4519 _hum_used_bytes = used_bytes;
tonyp@2717 4520 _hum_prev_live_bytes = prev_live_bytes;
tonyp@2717 4521 _hum_next_live_bytes = next_live_bytes;
tonyp@2717 4522 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4523 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4524 end = bottom + HeapRegion::GrainWords;
tonyp@2717 4525 } else if (r->continuesHumongous()) {
tonyp@2717 4526 type = "HUMC";
tonyp@2717 4527 get_hum_bytes(&used_bytes, &capacity_bytes,
tonyp@2717 4528 &prev_live_bytes, &next_live_bytes);
tonyp@2717 4529 assert(end == bottom + HeapRegion::GrainWords, "invariant");
tonyp@2717 4530 } else {
tonyp@2717 4531 type = "OLD";
tonyp@2717 4532 }
tonyp@2717 4533
tonyp@2717 4534 _total_used_bytes += used_bytes;
tonyp@2717 4535 _total_capacity_bytes += capacity_bytes;
tonyp@2717 4536 _total_prev_live_bytes += prev_live_bytes;
tonyp@2717 4537 _total_next_live_bytes += next_live_bytes;
tonyp@2717 4538
tonyp@2717 4539 // Print a line for this particular region.
tonyp@2717 4540 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4541 G1PPRL_TYPE_FORMAT
tonyp@2717 4542 G1PPRL_ADDR_BASE_FORMAT
tonyp@2717 4543 G1PPRL_BYTE_FORMAT
tonyp@2717 4544 G1PPRL_BYTE_FORMAT
tonyp@2717 4545 G1PPRL_BYTE_FORMAT
tonyp@2717 4546 G1PPRL_DOUBLE_FORMAT,
tonyp@2717 4547 type, bottom, end,
tonyp@2717 4548 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
tonyp@2717 4549
tonyp@2717 4550 return false;
tonyp@2717 4551 }
tonyp@2717 4552
tonyp@2717 4553 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
tonyp@2717 4554 // Print the footer of the output.
tonyp@2717 4555 _out->print_cr(G1PPRL_LINE_PREFIX);
tonyp@2717 4556 _out->print_cr(G1PPRL_LINE_PREFIX
tonyp@2717 4557 " SUMMARY"
tonyp@2717 4558 G1PPRL_SUM_MB_FORMAT("capacity")
tonyp@2717 4559 G1PPRL_SUM_MB_PERC_FORMAT("used")
tonyp@2717 4560 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
tonyp@2717 4561 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
tonyp@2717 4562 bytes_to_mb(_total_capacity_bytes),
tonyp@2717 4563 bytes_to_mb(_total_used_bytes),
tonyp@2717 4564 perc(_total_used_bytes, _total_capacity_bytes),
tonyp@2717 4565 bytes_to_mb(_total_prev_live_bytes),
tonyp@2717 4566 perc(_total_prev_live_bytes, _total_capacity_bytes),
tonyp@2717 4567 bytes_to_mb(_total_next_live_bytes),
tonyp@2717 4568 perc(_total_next_live_bytes, _total_capacity_bytes));
tonyp@2717 4569 _out->cr();
tonyp@2717 4570 }

mercurial