src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1424
148e5441d916
child 1601
7b0e9cba0307
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parallelScavengeHeap.cpp.incl"
    28 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    29 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    30 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    36 static void trace_gen_sizes(const char* const str,
    37                             size_t pg_min, size_t pg_max,
    38                             size_t og_min, size_t og_max,
    39                             size_t yg_min, size_t yg_max)
    40 {
    41   if (TracePageSizes) {
    42     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    43                   SIZE_FORMAT "," SIZE_FORMAT " "
    44                   SIZE_FORMAT "," SIZE_FORMAT " "
    45                   SIZE_FORMAT,
    46                   str, pg_min / K, pg_max / K,
    47                   og_min / K, og_max / K,
    48                   yg_min / K, yg_max / K,
    49                   (pg_max + og_max + yg_max) / K);
    50   }
    51 }
    53 jint ParallelScavengeHeap::initialize() {
    54   // Cannot be initialized until after the flags are parsed
    55   GenerationSizer flag_parser;
    57   size_t yg_min_size = flag_parser.min_young_gen_size();
    58   size_t yg_max_size = flag_parser.max_young_gen_size();
    59   size_t og_min_size = flag_parser.min_old_gen_size();
    60   size_t og_max_size = flag_parser.max_old_gen_size();
    61   // Why isn't there a min_perm_gen_size()?
    62   size_t pg_min_size = flag_parser.perm_gen_size();
    63   size_t pg_max_size = flag_parser.max_perm_gen_size();
    65   trace_gen_sizes("ps heap raw",
    66                   pg_min_size, pg_max_size,
    67                   og_min_size, og_max_size,
    68                   yg_min_size, yg_max_size);
    70   // The ReservedSpace ctor used below requires that the page size for the perm
    71   // gen is <= the page size for the rest of the heap (young + old gens).
    72   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    73                                                      yg_max_size + og_max_size,
    74                                                      8);
    75   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    76                                                           pg_max_size, 16),
    77                                  og_page_sz);
    79   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
    80   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
    81   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
    83   // Update sizes to reflect the selected page size(s).
    84   //
    85   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
    86   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
    87   // move to the common code.
    88   yg_min_size = align_size_up(yg_min_size, yg_align);
    89   yg_max_size = align_size_up(yg_max_size, yg_align);
    90   size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
    91   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
    93   og_min_size = align_size_up(og_min_size, og_align);
    94   og_max_size = align_size_up(og_max_size, og_align);
    95   size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
    96   og_cur_size = MAX2(og_cur_size, og_min_size);
    98   pg_min_size = align_size_up(pg_min_size, pg_align);
    99   pg_max_size = align_size_up(pg_max_size, pg_align);
   100   size_t pg_cur_size = pg_min_size;
   102   trace_gen_sizes("ps heap rnd",
   103                   pg_min_size, pg_max_size,
   104                   og_min_size, og_max_size,
   105                   yg_min_size, yg_max_size);
   107   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   108   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   110   // The main part of the heap (old gen + young gen) can often use a larger page
   111   // size than is needed or wanted for the perm gen.  Use the "compound
   112   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   113   // all gens.
   115   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   116                             og_align, addr);
   118   if (UseCompressedOops) {
   119     if (addr != NULL && !heap_rs.is_reserved()) {
   120       // Failed to reserve at specified address - the requested memory
   121       // region is taken already, for example, by 'java' launcher.
   122       // Try again to reserver heap higher.
   123       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   124       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   125                                  og_align, addr);
   126       if (addr != NULL && !heap_rs0.is_reserved()) {
   127         // Failed to reserve at specified address again - give up.
   128         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   129         assert(addr == NULL, "");
   130         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   131                                    og_align, addr);
   132         heap_rs = heap_rs1;
   133       } else {
   134         heap_rs = heap_rs0;
   135       }
   136     }
   137   }
   139   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   140                        heap_rs.base(), pg_max_size);
   141   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   142                        og_max_size + yg_max_size, og_page_sz,
   143                        heap_rs.base() + pg_max_size,
   144                        heap_rs.size() - pg_max_size);
   145   if (!heap_rs.is_reserved()) {
   146     vm_shutdown_during_initialization(
   147       "Could not reserve enough space for object heap");
   148     return JNI_ENOMEM;
   149   }
   151   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   152                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   154   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   155   _barrier_set = barrier_set;
   156   oopDesc::set_bs(_barrier_set);
   157   if (_barrier_set == NULL) {
   158     vm_shutdown_during_initialization(
   159       "Could not reserve enough space for barrier set");
   160     return JNI_ENOMEM;
   161   }
   163   // Initial young gen size is 4 Mb
   164   //
   165   // XXX - what about flag_parser.young_gen_size()?
   166   const size_t init_young_size = align_size_up(4 * M, yg_align);
   167   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   169   // Split the reserved space into perm gen and the main heap (everything else).
   170   // The main heap uses a different alignment.
   171   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   172   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   174   // Make up the generations
   175   // Calculate the maximum size that a generation can grow.  This
   176   // includes growth into the other generation.  Note that the
   177   // parameter _max_gen_size is kept as the maximum
   178   // size of the generation as the boundaries currently stand.
   179   // _max_gen_size is still used as that value.
   180   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   181   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   183   _gens = new AdjoiningGenerations(main_rs,
   184                                    og_cur_size,
   185                                    og_min_size,
   186                                    og_max_size,
   187                                    yg_cur_size,
   188                                    yg_min_size,
   189                                    yg_max_size,
   190                                    yg_align);
   192   _old_gen = _gens->old_gen();
   193   _young_gen = _gens->young_gen();
   195   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   196   const size_t old_capacity = _old_gen->capacity_in_bytes();
   197   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   198   _size_policy =
   199     new PSAdaptiveSizePolicy(eden_capacity,
   200                              initial_promo_size,
   201                              young_gen()->to_space()->capacity_in_bytes(),
   202                              intra_heap_alignment(),
   203                              max_gc_pause_sec,
   204                              max_gc_minor_pause_sec,
   205                              GCTimeRatio
   206                              );
   208   _perm_gen = new PSPermGen(perm_rs,
   209                             pg_align,
   210                             pg_cur_size,
   211                             pg_cur_size,
   212                             pg_max_size,
   213                             "perm", 2);
   215   assert(!UseAdaptiveGCBoundary ||
   216     (old_gen()->virtual_space()->high_boundary() ==
   217      young_gen()->virtual_space()->low_boundary()),
   218     "Boundaries must meet");
   219   // initialize the policy counters - 2 collectors, 3 generations
   220   _gc_policy_counters =
   221     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   222   _psh = this;
   224   // Set up the GCTaskManager
   225   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   227   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   228     return JNI_ENOMEM;
   229   }
   231   return JNI_OK;
   232 }
   234 void ParallelScavengeHeap::post_initialize() {
   235   // Need to init the tenuring threshold
   236   PSScavenge::initialize();
   237   if (UseParallelOldGC) {
   238     PSParallelCompact::post_initialize();
   239   } else {
   240     PSMarkSweep::initialize();
   241   }
   242   PSPromotionManager::initialize();
   243 }
   245 void ParallelScavengeHeap::update_counters() {
   246   young_gen()->update_counters();
   247   old_gen()->update_counters();
   248   perm_gen()->update_counters();
   249 }
   251 size_t ParallelScavengeHeap::capacity() const {
   252   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   253   return value;
   254 }
   256 size_t ParallelScavengeHeap::used() const {
   257   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   258   return value;
   259 }
   261 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   262   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   263 }
   266 size_t ParallelScavengeHeap::permanent_capacity() const {
   267   return perm_gen()->capacity_in_bytes();
   268 }
   270 size_t ParallelScavengeHeap::permanent_used() const {
   271   return perm_gen()->used_in_bytes();
   272 }
   274 size_t ParallelScavengeHeap::max_capacity() const {
   275   size_t estimated = reserved_region().byte_size();
   276   estimated -= perm_gen()->reserved().byte_size();
   277   if (UseAdaptiveSizePolicy) {
   278     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   279   } else {
   280     estimated -= young_gen()->to_space()->capacity_in_bytes();
   281   }
   282   return MAX2(estimated, capacity());
   283 }
   285 bool ParallelScavengeHeap::is_in(const void* p) const {
   286   if (young_gen()->is_in(p)) {
   287     return true;
   288   }
   290   if (old_gen()->is_in(p)) {
   291     return true;
   292   }
   294   if (perm_gen()->is_in(p)) {
   295     return true;
   296   }
   298   return false;
   299 }
   301 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   302   if (young_gen()->is_in_reserved(p)) {
   303     return true;
   304   }
   306   if (old_gen()->is_in_reserved(p)) {
   307     return true;
   308   }
   310   if (perm_gen()->is_in_reserved(p)) {
   311     return true;
   312   }
   314   return false;
   315 }
   317 // There are two levels of allocation policy here.
   318 //
   319 // When an allocation request fails, the requesting thread must invoke a VM
   320 // operation, transfer control to the VM thread, and await the results of a
   321 // garbage collection. That is quite expensive, and we should avoid doing it
   322 // multiple times if possible.
   323 //
   324 // To accomplish this, we have a basic allocation policy, and also a
   325 // failed allocation policy.
   326 //
   327 // The basic allocation policy controls how you allocate memory without
   328 // attempting garbage collection. It is okay to grab locks and
   329 // expand the heap, if that can be done without coming to a safepoint.
   330 // It is likely that the basic allocation policy will not be very
   331 // aggressive.
   332 //
   333 // The failed allocation policy is invoked from the VM thread after
   334 // the basic allocation policy is unable to satisfy a mem_allocate
   335 // request. This policy needs to cover the entire range of collection,
   336 // heap expansion, and out-of-memory conditions. It should make every
   337 // attempt to allocate the requested memory.
   339 // Basic allocation policy. Should never be called at a safepoint, or
   340 // from the VM thread.
   341 //
   342 // This method must handle cases where many mem_allocate requests fail
   343 // simultaneously. When that happens, only one VM operation will succeed,
   344 // and the rest will not be executed. For that reason, this method loops
   345 // during failed allocation attempts. If the java heap becomes exhausted,
   346 // we rely on the size_policy object to force a bail out.
   347 HeapWord* ParallelScavengeHeap::mem_allocate(
   348                                      size_t size,
   349                                      bool is_noref,
   350                                      bool is_tlab,
   351                                      bool* gc_overhead_limit_was_exceeded) {
   352   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   353   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   354   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   356   HeapWord* result = young_gen()->allocate(size, is_tlab);
   358   uint loop_count = 0;
   359   uint gc_count = 0;
   361   while (result == NULL) {
   362     // We don't want to have multiple collections for a single filled generation.
   363     // To prevent this, each thread tracks the total_collections() value, and if
   364     // the count has changed, does not do a new collection.
   365     //
   366     // The collection count must be read only while holding the heap lock. VM
   367     // operations also hold the heap lock during collections. There is a lock
   368     // contention case where thread A blocks waiting on the Heap_lock, while
   369     // thread B is holding it doing a collection. When thread A gets the lock,
   370     // the collection count has already changed. To prevent duplicate collections,
   371     // The policy MUST attempt allocations during the same period it reads the
   372     // total_collections() value!
   373     {
   374       MutexLocker ml(Heap_lock);
   375       gc_count = Universe::heap()->total_collections();
   377       result = young_gen()->allocate(size, is_tlab);
   379       // (1) If the requested object is too large to easily fit in the
   380       //     young_gen, or
   381       // (2) If GC is locked out via GCLocker, young gen is full and
   382       //     the need for a GC already signalled to GCLocker (done
   383       //     at a safepoint),
   384       // ... then, rather than force a safepoint and (a potentially futile)
   385       // collection (attempt) for each allocation, try allocation directly
   386       // in old_gen. For case (2) above, we may in the future allow
   387       // TLAB allocation directly in the old gen.
   388       if (result != NULL) {
   389         return result;
   390       }
   391       if (!is_tlab &&
   392           size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
   393         result = old_gen()->allocate(size, is_tlab);
   394         if (result != NULL) {
   395           return result;
   396         }
   397       }
   398       if (GC_locker::is_active_and_needs_gc()) {
   399         // GC is locked out. If this is a TLAB allocation,
   400         // return NULL; the requestor will retry allocation
   401         // of an idividual object at a time.
   402         if (is_tlab) {
   403           return NULL;
   404         }
   406         // If this thread is not in a jni critical section, we stall
   407         // the requestor until the critical section has cleared and
   408         // GC allowed. When the critical section clears, a GC is
   409         // initiated by the last thread exiting the critical section; so
   410         // we retry the allocation sequence from the beginning of the loop,
   411         // rather than causing more, now probably unnecessary, GC attempts.
   412         JavaThread* jthr = JavaThread::current();
   413         if (!jthr->in_critical()) {
   414           MutexUnlocker mul(Heap_lock);
   415           GC_locker::stall_until_clear();
   416           continue;
   417         } else {
   418           if (CheckJNICalls) {
   419             fatal("Possible deadlock due to allocating while"
   420                   " in jni critical section");
   421           }
   422           return NULL;
   423         }
   424       }
   425     }
   427     if (result == NULL) {
   429       // Exit the loop if if the gc time limit has been exceeded.
   430       // The allocation must have failed above (result must be NULL),
   431       // and the most recent collection must have exceeded the
   432       // gc time limit.  Exit the loop so that an out-of-memory
   433       // will be thrown (returning a NULL will do that), but
   434       // clear gc_time_limit_exceeded so that the next collection
   435       // will succeeded if the applications decides to handle the
   436       // out-of-memory and tries to go on.
   437       *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
   438       if (size_policy()->gc_time_limit_exceeded()) {
   439         size_policy()->set_gc_time_limit_exceeded(false);
   440         if (PrintGCDetails && Verbose) {
   441         gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   442           "return NULL because gc_time_limit_exceeded is set");
   443         }
   444         return NULL;
   445       }
   447       // Generate a VM operation
   448       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
   449       VMThread::execute(&op);
   451       // Did the VM operation execute? If so, return the result directly.
   452       // This prevents us from looping until time out on requests that can
   453       // not be satisfied.
   454       if (op.prologue_succeeded()) {
   455         assert(Universe::heap()->is_in_or_null(op.result()),
   456           "result not in heap");
   458         // If GC was locked out during VM operation then retry allocation
   459         // and/or stall as necessary.
   460         if (op.gc_locked()) {
   461           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   462           continue;  // retry and/or stall as necessary
   463         }
   464         // If a NULL result is being returned, an out-of-memory
   465         // will be thrown now.  Clear the gc_time_limit_exceeded
   466         // flag to avoid the following situation.
   467         //      gc_time_limit_exceeded is set during a collection
   468         //      the collection fails to return enough space and an OOM is thrown
   469         //      the next GC is skipped because the gc_time_limit_exceeded
   470         //        flag is set and another OOM is thrown
   471         if (op.result() == NULL) {
   472           size_policy()->set_gc_time_limit_exceeded(false);
   473         }
   474         return op.result();
   475       }
   476     }
   478     // The policy object will prevent us from looping forever. If the
   479     // time spent in gc crosses a threshold, we will bail out.
   480     loop_count++;
   481     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   482         (loop_count % QueuedAllocationWarningCount == 0)) {
   483       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   484               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
   485     }
   486   }
   488   return result;
   489 }
   491 // Failed allocation policy. Must be called from the VM thread, and
   492 // only at a safepoint! Note that this method has policy for allocation
   493 // flow, and NOT collection policy. So we do not check for gc collection
   494 // time over limit here, that is the responsibility of the heap specific
   495 // collection methods. This method decides where to attempt allocations,
   496 // and when to attempt collections, but no collection specific policy.
   497 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
   498   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   499   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   500   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   501   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   503   size_t mark_sweep_invocation_count = total_invocations();
   505   // We assume (and assert!) that an allocation at this point will fail
   506   // unless we collect.
   508   // First level allocation failure, scavenge and allocate in young gen.
   509   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   510   PSScavenge::invoke();
   511   HeapWord* result = young_gen()->allocate(size, is_tlab);
   513   // Second level allocation failure.
   514   //   Mark sweep and allocate in young generation.
   515   if (result == NULL) {
   516     // There is some chance the scavenge method decided to invoke mark_sweep.
   517     // Don't mark sweep twice if so.
   518     if (mark_sweep_invocation_count == total_invocations()) {
   519       invoke_full_gc(false);
   520       result = young_gen()->allocate(size, is_tlab);
   521     }
   522   }
   524   // Third level allocation failure.
   525   //   After mark sweep and young generation allocation failure,
   526   //   allocate in old generation.
   527   if (result == NULL && !is_tlab) {
   528     result = old_gen()->allocate(size, is_tlab);
   529   }
   531   // Fourth level allocation failure. We're running out of memory.
   532   //   More complete mark sweep and allocate in young generation.
   533   if (result == NULL) {
   534     invoke_full_gc(true);
   535     result = young_gen()->allocate(size, is_tlab);
   536   }
   538   // Fifth level allocation failure.
   539   //   After more complete mark sweep, allocate in old generation.
   540   if (result == NULL && !is_tlab) {
   541     result = old_gen()->allocate(size, is_tlab);
   542   }
   544   return result;
   545 }
   547 //
   548 // This is the policy loop for allocating in the permanent generation.
   549 // If the initial allocation fails, we create a vm operation which will
   550 // cause a collection.
   551 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   552   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   553   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   554   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   556   HeapWord* result;
   558   uint loop_count = 0;
   559   uint gc_count = 0;
   560   uint full_gc_count = 0;
   562   do {
   563     // We don't want to have multiple collections for a single filled generation.
   564     // To prevent this, each thread tracks the total_collections() value, and if
   565     // the count has changed, does not do a new collection.
   566     //
   567     // The collection count must be read only while holding the heap lock. VM
   568     // operations also hold the heap lock during collections. There is a lock
   569     // contention case where thread A blocks waiting on the Heap_lock, while
   570     // thread B is holding it doing a collection. When thread A gets the lock,
   571     // the collection count has already changed. To prevent duplicate collections,
   572     // The policy MUST attempt allocations during the same period it reads the
   573     // total_collections() value!
   574     {
   575       MutexLocker ml(Heap_lock);
   576       gc_count      = Universe::heap()->total_collections();
   577       full_gc_count = Universe::heap()->total_full_collections();
   579       result = perm_gen()->allocate_permanent(size);
   581       if (result != NULL) {
   582         return result;
   583       }
   585       if (GC_locker::is_active_and_needs_gc()) {
   586         // If this thread is not in a jni critical section, we stall
   587         // the requestor until the critical section has cleared and
   588         // GC allowed. When the critical section clears, a GC is
   589         // initiated by the last thread exiting the critical section; so
   590         // we retry the allocation sequence from the beginning of the loop,
   591         // rather than causing more, now probably unnecessary, GC attempts.
   592         JavaThread* jthr = JavaThread::current();
   593         if (!jthr->in_critical()) {
   594           MutexUnlocker mul(Heap_lock);
   595           GC_locker::stall_until_clear();
   596           continue;
   597         } else {
   598           if (CheckJNICalls) {
   599             fatal("Possible deadlock due to allocating while"
   600                   " in jni critical section");
   601           }
   602           return NULL;
   603         }
   604       }
   605     }
   607     if (result == NULL) {
   609       // Exit the loop if the gc time limit has been exceeded.
   610       // The allocation must have failed above (result must be NULL),
   611       // and the most recent collection must have exceeded the
   612       // gc time limit.  Exit the loop so that an out-of-memory
   613       // will be thrown (returning a NULL will do that), but
   614       // clear gc_time_limit_exceeded so that the next collection
   615       // will succeeded if the applications decides to handle the
   616       // out-of-memory and tries to go on.
   617       if (size_policy()->gc_time_limit_exceeded()) {
   618         size_policy()->set_gc_time_limit_exceeded(false);
   619         if (PrintGCDetails && Verbose) {
   620         gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
   621           "return NULL because gc_time_limit_exceeded is set");
   622         }
   623         assert(result == NULL, "Allocation did not fail");
   624         return NULL;
   625       }
   627       // Generate a VM operation
   628       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   629       VMThread::execute(&op);
   631       // Did the VM operation execute? If so, return the result directly.
   632       // This prevents us from looping until time out on requests that can
   633       // not be satisfied.
   634       if (op.prologue_succeeded()) {
   635         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   636           "result not in heap");
   637         // If GC was locked out during VM operation then retry allocation
   638         // and/or stall as necessary.
   639         if (op.gc_locked()) {
   640           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   641           continue;  // retry and/or stall as necessary
   642         }
   643         // If a NULL results is being returned, an out-of-memory
   644         // will be thrown now.  Clear the gc_time_limit_exceeded
   645         // flag to avoid the following situation.
   646         //      gc_time_limit_exceeded is set during a collection
   647         //      the collection fails to return enough space and an OOM is thrown
   648         //      the next GC is skipped because the gc_time_limit_exceeded
   649         //        flag is set and another OOM is thrown
   650         if (op.result() == NULL) {
   651           size_policy()->set_gc_time_limit_exceeded(false);
   652         }
   653         return op.result();
   654       }
   655     }
   657     // The policy object will prevent us from looping forever. If the
   658     // time spent in gc crosses a threshold, we will bail out.
   659     loop_count++;
   660     if ((QueuedAllocationWarningCount > 0) &&
   661         (loop_count % QueuedAllocationWarningCount == 0)) {
   662       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   663               " size=%d", loop_count, size);
   664     }
   665   } while (result == NULL);
   667   return result;
   668 }
   670 //
   671 // This is the policy code for permanent allocations which have failed
   672 // and require a collection. Note that just as in failed_mem_allocate,
   673 // we do not set collection policy, only where & when to allocate and
   674 // collect.
   675 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   676   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   677   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   678   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   679   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   680   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   682   // We assume (and assert!) that an allocation at this point will fail
   683   // unless we collect.
   685   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   686   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   687   invoke_full_gc(false);
   688   HeapWord* result = perm_gen()->allocate_permanent(size);
   690   // Second level allocation failure. We're running out of memory.
   691   if (result == NULL) {
   692     invoke_full_gc(true);
   693     result = perm_gen()->allocate_permanent(size);
   694   }
   696   return result;
   697 }
   699 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   700   CollectedHeap::ensure_parsability(retire_tlabs);
   701   young_gen()->eden_space()->ensure_parsability();
   702 }
   704 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   705   return young_gen()->eden_space()->free_in_bytes();
   706 }
   708 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   709   return young_gen()->eden_space()->tlab_capacity(thr);
   710 }
   712 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   713   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   714 }
   716 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   717   return young_gen()->allocate(size, true);
   718 }
   720 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
   721   CollectedHeap::fill_all_tlabs(retire);
   722 }
   724 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   725   CollectedHeap::accumulate_statistics_all_tlabs();
   726 }
   728 void ParallelScavengeHeap::resize_all_tlabs() {
   729   CollectedHeap::resize_all_tlabs();
   730 }
   732 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   733   // We don't need barriers for stores to objects in the
   734   // young gen and, a fortiori, for initializing stores to
   735   // objects therein.
   736   return is_in_young(new_obj);
   737 }
   739 // This method is used by System.gc() and JVMTI.
   740 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   741   assert(!Heap_lock->owned_by_self(),
   742     "this thread should not own the Heap_lock");
   744   unsigned int gc_count      = 0;
   745   unsigned int full_gc_count = 0;
   746   {
   747     MutexLocker ml(Heap_lock);
   748     // This value is guarded by the Heap_lock
   749     gc_count      = Universe::heap()->total_collections();
   750     full_gc_count = Universe::heap()->total_full_collections();
   751   }
   753   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   754   VMThread::execute(&op);
   755 }
   757 // This interface assumes that it's being called by the
   758 // vm thread. It collects the heap assuming that the
   759 // heap lock is already held and that we are executing in
   760 // the context of the vm thread.
   761 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   762   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   763   assert(Heap_lock->is_locked(), "Precondition#2");
   764   GCCauseSetter gcs(this, cause);
   765   switch (cause) {
   766     case GCCause::_heap_inspection:
   767     case GCCause::_heap_dump: {
   768       HandleMark hm;
   769       invoke_full_gc(false);
   770       break;
   771     }
   772     default: // XXX FIX ME
   773       ShouldNotReachHere();
   774   }
   775 }
   778 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   779   Unimplemented();
   780 }
   782 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   783   young_gen()->object_iterate(cl);
   784   old_gen()->object_iterate(cl);
   785   perm_gen()->object_iterate(cl);
   786 }
   788 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   789   Unimplemented();
   790 }
   792 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   793   perm_gen()->object_iterate(cl);
   794 }
   796 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   797   if (young_gen()->is_in_reserved(addr)) {
   798     assert(young_gen()->is_in(addr),
   799            "addr should be in allocated part of young gen");
   800     if (Debugging)  return NULL;  // called from find() in debug.cpp
   801     Unimplemented();
   802   } else if (old_gen()->is_in_reserved(addr)) {
   803     assert(old_gen()->is_in(addr),
   804            "addr should be in allocated part of old gen");
   805     return old_gen()->start_array()->object_start((HeapWord*)addr);
   806   } else if (perm_gen()->is_in_reserved(addr)) {
   807     assert(perm_gen()->is_in(addr),
   808            "addr should be in allocated part of perm gen");
   809     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   810   }
   811   return 0;
   812 }
   814 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   815   return oop(addr)->size();
   816 }
   818 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   819   return block_start(addr) == addr;
   820 }
   822 jlong ParallelScavengeHeap::millis_since_last_gc() {
   823   return UseParallelOldGC ?
   824     PSParallelCompact::millis_since_last_gc() :
   825     PSMarkSweep::millis_since_last_gc();
   826 }
   828 void ParallelScavengeHeap::prepare_for_verify() {
   829   ensure_parsability(false);  // no need to retire TLABs for verification
   830 }
   832 void ParallelScavengeHeap::print() const { print_on(tty); }
   834 void ParallelScavengeHeap::print_on(outputStream* st) const {
   835   young_gen()->print_on(st);
   836   old_gen()->print_on(st);
   837   perm_gen()->print_on(st);
   838 }
   840 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   841   PSScavenge::gc_task_manager()->threads_do(tc);
   842 }
   844 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   845   PSScavenge::gc_task_manager()->print_threads_on(st);
   846 }
   848 void ParallelScavengeHeap::print_tracing_info() const {
   849   if (TraceGen0Time) {
   850     double time = PSScavenge::accumulated_time()->seconds();
   851     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   852   }
   853   if (TraceGen1Time) {
   854     double time = PSMarkSweep::accumulated_time()->seconds();
   855     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   856   }
   857 }
   860 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
   861   // Why do we need the total_collections()-filter below?
   862   if (total_collections() > 0) {
   863     if (!silent) {
   864       gclog_or_tty->print("permanent ");
   865     }
   866     perm_gen()->verify(allow_dirty);
   868     if (!silent) {
   869       gclog_or_tty->print("tenured ");
   870     }
   871     old_gen()->verify(allow_dirty);
   873     if (!silent) {
   874       gclog_or_tty->print("eden ");
   875     }
   876     young_gen()->verify(allow_dirty);
   877   }
   878   if (!silent) {
   879     gclog_or_tty->print("ref_proc ");
   880   }
   881   ReferenceProcessor::verify();
   882 }
   884 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   885   if (PrintGCDetails && Verbose) {
   886     gclog_or_tty->print(" "  SIZE_FORMAT
   887                         "->" SIZE_FORMAT
   888                         "("  SIZE_FORMAT ")",
   889                         prev_used, used(), capacity());
   890   } else {
   891     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   892                         "->" SIZE_FORMAT "K"
   893                         "("  SIZE_FORMAT "K)",
   894                         prev_used / K, used() / K, capacity() / K);
   895   }
   896 }
   898 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   899   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   900   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   901   return _psh;
   902 }
   904 // Before delegating the resize to the young generation,
   905 // the reserved space for the young and old generations
   906 // may be changed to accomodate the desired resize.
   907 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   908     size_t survivor_size) {
   909   if (UseAdaptiveGCBoundary) {
   910     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   911       size_policy()->reset_bytes_absorbed_from_eden();
   912       return;  // The generation changed size already.
   913     }
   914     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   915   }
   917   // Delegate the resize to the generation.
   918   _young_gen->resize(eden_size, survivor_size);
   919 }
   921 // Before delegating the resize to the old generation,
   922 // the reserved space for the young and old generations
   923 // may be changed to accomodate the desired resize.
   924 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   925   if (UseAdaptiveGCBoundary) {
   926     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   927       size_policy()->reset_bytes_absorbed_from_eden();
   928       return;  // The generation changed size already.
   929     }
   930     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   931   }
   933   // Delegate the resize to the generation.
   934   _old_gen->resize(desired_free_space);
   935 }
   937 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   938   // nothing particular
   939 }
   941 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   942   // nothing particular
   943 }
   945 #ifndef PRODUCT
   946 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   947   if (ZapUnusedHeapArea) {
   948     young_gen()->record_spaces_top();
   949     old_gen()->record_spaces_top();
   950     perm_gen()->record_spaces_top();
   951   }
   952 }
   954 void ParallelScavengeHeap::gen_mangle_unused_area() {
   955   if (ZapUnusedHeapArea) {
   956     young_gen()->eden_space()->mangle_unused_area();
   957     young_gen()->to_space()->mangle_unused_area();
   958     young_gen()->from_space()->mangle_unused_area();
   959     old_gen()->object_space()->mangle_unused_area();
   960     perm_gen()->object_space()->mangle_unused_area();
   961   }
   962 }
   963 #endif

mercurial