src/share/vm/runtime/deoptimization.cpp

Tue, 26 Aug 2014 13:38:33 -0700

author
amurillo
date
Tue, 26 Aug 2014 13:38:33 -0700
changeset 7061
3374ec4c4448
parent 6957
e0c6fadce66e
child 7153
f6f9aec27858
permissions
-rw-r--r--

Merge

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/debugInfoRec.hpp"
stefank@2314 28 #include "code/nmethod.hpp"
stefank@2314 29 #include "code/pcDesc.hpp"
stefank@2314 30 #include "code/scopeDesc.hpp"
stefank@2314 31 #include "interpreter/bytecode.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "interpreter/oopMapCache.hpp"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/oopFactory.hpp"
stefank@2314 36 #include "memory/resourceArea.hpp"
coleenp@4037 37 #include "oops/method.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/jvmtiThreadState.hpp"
stefank@2314 40 #include "runtime/biasedLocking.hpp"
stefank@2314 41 #include "runtime/compilationPolicy.hpp"
stefank@2314 42 #include "runtime/deoptimization.hpp"
stefank@2314 43 #include "runtime/interfaceSupport.hpp"
stefank@2314 44 #include "runtime/sharedRuntime.hpp"
stefank@2314 45 #include "runtime/signature.hpp"
stefank@2314 46 #include "runtime/stubRoutines.hpp"
stefank@2314 47 #include "runtime/thread.hpp"
stefank@2314 48 #include "runtime/vframe.hpp"
stefank@2314 49 #include "runtime/vframeArray.hpp"
stefank@2314 50 #include "runtime/vframe_hp.hpp"
stefank@2314 51 #include "utilities/events.hpp"
stefank@2314 52 #include "utilities/xmlstream.hpp"
stefank@2314 53 #ifdef TARGET_ARCH_x86
stefank@2314 54 # include "vmreg_x86.inline.hpp"
stefank@2314 55 #endif
stefank@2314 56 #ifdef TARGET_ARCH_sparc
stefank@2314 57 # include "vmreg_sparc.inline.hpp"
stefank@2314 58 #endif
stefank@2314 59 #ifdef TARGET_ARCH_zero
stefank@2314 60 # include "vmreg_zero.inline.hpp"
stefank@2314 61 #endif
bobv@2508 62 #ifdef TARGET_ARCH_arm
bobv@2508 63 # include "vmreg_arm.inline.hpp"
bobv@2508 64 #endif
bobv@2508 65 #ifdef TARGET_ARCH_ppc
bobv@2508 66 # include "vmreg_ppc.inline.hpp"
bobv@2508 67 #endif
stefank@2314 68 #ifdef COMPILER2
stefank@2314 69 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 70 # include "adfiles/ad_x86_32.hpp"
stefank@2314 71 #endif
stefank@2314 72 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 73 # include "adfiles/ad_x86_64.hpp"
stefank@2314 74 #endif
stefank@2314 75 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 76 # include "adfiles/ad_sparc.hpp"
stefank@2314 77 #endif
stefank@2314 78 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 79 # include "adfiles/ad_zero.hpp"
stefank@2314 80 #endif
bobv@2508 81 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 82 # include "adfiles/ad_arm.hpp"
bobv@2508 83 #endif
goetz@6441 84 #ifdef TARGET_ARCH_MODEL_ppc_32
goetz@6441 85 # include "adfiles/ad_ppc_32.hpp"
bobv@2508 86 #endif
goetz@6441 87 #ifdef TARGET_ARCH_MODEL_ppc_64
goetz@6441 88 # include "adfiles/ad_ppc_64.hpp"
stefank@2314 89 #endif
goetz@6441 90 #endif // COMPILER2
duke@435 91
drchase@6680 92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 93
duke@435 94 bool DeoptimizationMarker::_is_active = false;
duke@435 95
duke@435 96 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 97 int caller_adjustment,
never@2901 98 int caller_actual_parameters,
duke@435 99 int number_of_frames,
duke@435 100 intptr_t* frame_sizes,
duke@435 101 address* frame_pcs,
duke@435 102 BasicType return_type) {
duke@435 103 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 104 _caller_adjustment = caller_adjustment;
never@2901 105 _caller_actual_parameters = caller_actual_parameters;
duke@435 106 _number_of_frames = number_of_frames;
duke@435 107 _frame_sizes = frame_sizes;
duke@435 108 _frame_pcs = frame_pcs;
zgu@3900 109 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
duke@435 110 _return_type = return_type;
bdelsart@3130 111 _initial_info = 0;
duke@435 112 // PD (x86 only)
duke@435 113 _counter_temp = 0;
duke@435 114 _unpack_kind = 0;
duke@435 115 _sender_sp_temp = 0;
duke@435 116
duke@435 117 _total_frame_sizes = size_of_frames();
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 Deoptimization::UnrollBlock::~UnrollBlock() {
zgu@3900 122 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
zgu@3900 123 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
zgu@3900 124 FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 129 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 130 return &_register_block[register_number * 2];
duke@435 131 }
duke@435 132
duke@435 133
duke@435 134
duke@435 135 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 136 // Acount first for the adjustment of the initial frame
duke@435 137 int result = _caller_adjustment;
duke@435 138 for (int index = 0; index < number_of_frames(); index++) {
duke@435 139 result += frame_sizes()[index];
duke@435 140 }
duke@435 141 return result;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 void Deoptimization::UnrollBlock::print() {
duke@435 146 ttyLocker ttyl;
duke@435 147 tty->print_cr("UnrollBlock");
duke@435 148 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 149 tty->print( " frame_sizes: ");
duke@435 150 for (int index = 0; index < number_of_frames(); index++) {
duke@435 151 tty->print("%d ", frame_sizes()[index]);
duke@435 152 }
duke@435 153 tty->cr();
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 // In order to make fetch_unroll_info work properly with escape
duke@435 158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 160 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 161 // called from the method fetch_unroll_info_helper below.
duke@435 162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 163 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 164 // but makes the entry a little slower. There is however a little dance we have to
duke@435 165 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 166
duke@435 167 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 168 // handler. Note this fact before we start generating temporary frames
duke@435 169 // that can confuse an asynchronous stack walker. This counter is
duke@435 170 // decremented at the end of unpack_frames().
duke@435 171 thread->inc_in_deopt_handler();
duke@435 172
duke@435 173 return fetch_unroll_info_helper(thread);
duke@435 174 JRT_END
duke@435 175
duke@435 176
duke@435 177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 179
duke@435 180 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 181 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 182 // the vframeArray is created.
duke@435 183 //
duke@435 184
duke@435 185 // Allocate our special deoptimization ResourceMark
duke@435 186 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 187 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 188 thread->set_deopt_mark(dmark);
duke@435 189
duke@435 190 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 191 RegisterMap map(thread, true);
duke@435 192 RegisterMap dummy_map(thread, false);
duke@435 193 // Now get the deoptee with a valid map
duke@435 194 frame deoptee = stub_frame.sender(&map);
iveresov@2169 195 // Set the deoptee nmethod
iveresov@2169 196 assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
iveresov@2169 197 thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
duke@435 198
never@2868 199 if (VerifyStack) {
never@2868 200 thread->validate_frame_layout();
never@2868 201 }
never@2868 202
duke@435 203 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 204 // Java frame. This storage is allocated with the usual system arena.
duke@435 205 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 206 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 207 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 208 while (!vf->is_top()) {
duke@435 209 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 210 chunk->push(compiledVFrame::cast(vf));
duke@435 211 vf = vf->sender();
duke@435 212 }
duke@435 213 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 214 chunk->push(compiledVFrame::cast(vf));
duke@435 215
duke@435 216 #ifdef COMPILER2
duke@435 217 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 218 // relock objects if synchronization on them was eliminated.
kvn@3406 219 if (DoEscapeAnalysis || EliminateNestedLocks) {
kvn@479 220 if (EliminateAllocations) {
kvn@518 221 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
kvn@479 222 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
kvn@1688 223
kvn@1688 224 // The flag return_oop() indicates call sites which return oop
kvn@1688 225 // in compiled code. Such sites include java method calls,
kvn@1688 226 // runtime calls (for example, used to allocate new objects/arrays
kvn@1688 227 // on slow code path) and any other calls generated in compiled code.
kvn@1688 228 // It is not guaranteed that we can get such information here only
kvn@1688 229 // by analyzing bytecode in deoptimized frames. This is why this flag
kvn@1688 230 // is set during method compilation (see Compile::Process_OopMap_Node()).
kvn@1688 231 bool save_oop_result = chunk->at(0)->scope()->return_oop();
kvn@1688 232 Handle return_value;
kvn@1688 233 if (save_oop_result) {
kvn@1688 234 // Reallocation may trigger GC. If deoptimization happened on return from
kvn@1688 235 // call which returns oop we need to save it since it is not in oopmap.
kvn@1688 236 oop result = deoptee.saved_oop_result(&map);
kvn@1688 237 assert(result == NULL || result->is_oop(), "must be oop");
kvn@1688 238 return_value = Handle(thread, result);
kvn@1688 239 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
kvn@1688 240 if (TraceDeoptimization) {
vlivanov@4154 241 ttyLocker ttyl;
hseigel@5784 242 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
kvn@1688 243 }
kvn@1688 244 }
kvn@479 245 bool reallocated = false;
kvn@479 246 if (objects != NULL) {
kvn@479 247 JRT_BLOCK
kvn@479 248 reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
kvn@479 249 JRT_END
duke@435 250 }
kvn@479 251 if (reallocated) {
kvn@479 252 reassign_fields(&deoptee, &map, objects);
duke@435 253 #ifndef PRODUCT
duke@435 254 if (TraceDeoptimization) {
duke@435 255 ttyLocker ttyl;
kvn@479 256 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@479 257 print_objects(objects);
kvn@1688 258 }
kvn@1688 259 #endif
kvn@479 260 }
kvn@1688 261 if (save_oop_result) {
kvn@1688 262 // Restore result.
kvn@1688 263 deoptee.set_saved_oop_result(&map, return_value());
kvn@479 264 }
kvn@479 265 }
kvn@479 266 if (EliminateLocks) {
kvn@518 267 #ifndef PRODUCT
kvn@518 268 bool first = true;
kvn@518 269 #endif
kvn@479 270 for (int i = 0; i < chunk->length(); i++) {
kvn@518 271 compiledVFrame* cvf = chunk->at(i);
kvn@518 272 assert (cvf->scope() != NULL,"expect only compiled java frames");
kvn@518 273 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
kvn@518 274 if (monitors->is_nonempty()) {
kvn@518 275 relock_objects(monitors, thread);
kvn@479 276 #ifndef PRODUCT
kvn@479 277 if (TraceDeoptimization) {
kvn@479 278 ttyLocker ttyl;
kvn@479 279 for (int j = 0; j < monitors->length(); j++) {
kvn@518 280 MonitorInfo* mi = monitors->at(j);
kvn@518 281 if (mi->eliminated()) {
kvn@518 282 if (first) {
kvn@518 283 first = false;
kvn@518 284 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@518 285 }
hseigel@5784 286 tty->print_cr(" object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
kvn@479 287 }
duke@435 288 }
duke@435 289 }
kvn@479 290 #endif
duke@435 291 }
duke@435 292 }
duke@435 293 }
duke@435 294 }
duke@435 295 #endif // COMPILER2
duke@435 296 // Ensure that no safepoint is taken after pointers have been stored
duke@435 297 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 298 // out the java state residing in the vframeArray will be missed.
duke@435 299 No_Safepoint_Verifier no_safepoint;
duke@435 300
duke@435 301 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
duke@435 302
duke@435 303 assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
duke@435 304 thread->set_vframe_array_head(array);
duke@435 305
duke@435 306 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 307 // added by jvmti then we can free up that structure as the data is now in the
duke@435 308 // vframeArray
duke@435 309
duke@435 310 if (thread->deferred_locals() != NULL) {
duke@435 311 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 312 int i = 0;
duke@435 313 do {
duke@435 314 // Because of inlining we could have multiple vframes for a single frame
duke@435 315 // and several of the vframes could have deferred writes. Find them all.
duke@435 316 if (list->at(i)->id() == array->original().id()) {
duke@435 317 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 318 list->remove_at(i);
duke@435 319 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 320 delete dlv;
duke@435 321 } else {
duke@435 322 i++;
duke@435 323 }
duke@435 324 } while ( i < list->length() );
duke@435 325 if (list->length() == 0) {
duke@435 326 thread->set_deferred_locals(NULL);
duke@435 327 // free the list and elements back to C heap.
duke@435 328 delete list;
duke@435 329 }
duke@435 330
duke@435 331 }
duke@435 332
twisti@2047 333 #ifndef SHARK
duke@435 334 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 335 CodeBlob* cb = stub_frame.cb();
duke@435 336 // Verify we have the right vframeArray
duke@435 337 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 338 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 339
twisti@1639 340 // If the deopt call site is a MethodHandle invoke call site we have
twisti@1639 341 // to adjust the unpack_sp.
twisti@1639 342 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
twisti@1639 343 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
twisti@1639 344 unpack_sp = deoptee.unextended_sp();
twisti@1639 345
duke@435 346 #ifdef ASSERT
duke@435 347 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 348 #endif
twisti@2047 349 #else
twisti@2047 350 intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
twisti@2047 351 #endif // !SHARK
twisti@2047 352
duke@435 353 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 354 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 355 // where it will be very difficult to figure out what went wrong. Better
duke@435 356 // to die an early death here than some very obscure death later when the
duke@435 357 // trail is cold.
duke@435 358 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 359 // in that it will fail to detect a problem when there is one. This needs
duke@435 360 // more work in tiger timeframe.
duke@435 361 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 362
duke@435 363 int number_of_frames = array->frames();
duke@435 364
duke@435 365 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 366 // virtual activation, which is the reverse of the elements in the vframes array.
zgu@3900 367 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
duke@435 368 // +1 because we always have an interpreter return address for the final slot.
zgu@3900 369 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
duke@435 370 int popframe_extra_args = 0;
duke@435 371 // Create an interpreter return address for the stub to use as its return
duke@435 372 // address so the skeletal frames are perfectly walkable
duke@435 373 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 374
duke@435 375 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 376 // activation be put back on the expression stack of the caller for reexecution
duke@435 377 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 378 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 379 }
duke@435 380
never@2901 381 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
never@2901 382 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
never@2901 383 // than simply use array->sender.pc(). This requires us to walk the current set of frames
never@2901 384 //
never@2901 385 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
never@2901 386 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
never@2901 387
never@2901 388 // It's possible that the number of paramters at the call site is
never@2901 389 // different than number of arguments in the callee when method
never@2901 390 // handles are used. If the caller is interpreted get the real
never@2901 391 // value so that the proper amount of space can be added to it's
never@2901 392 // frame.
twisti@3238 393 bool caller_was_method_handle = false;
never@2901 394 if (deopt_sender.is_interpreted_frame()) {
never@2901 395 methodHandle method = deopt_sender.interpreter_frame_method();
twisti@3251 396 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
twisti@3969 397 if (cur.is_invokedynamic() || cur.is_invokehandle()) {
twisti@3238 398 // Method handle invokes may involve fairly arbitrary chains of
twisti@3238 399 // calls so it's impossible to know how much actual space the
twisti@3238 400 // caller has for locals.
twisti@3238 401 caller_was_method_handle = true;
twisti@3238 402 }
never@2901 403 }
never@2901 404
duke@435 405 //
duke@435 406 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 407 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 408 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 409 //
duke@435 410 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 411 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 412 //
duke@435 413 // The vframe array can address vframes with indices running from
duke@435 414 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 415 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 416 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 417 // so things look a little strange in this loop.
duke@435 418 //
twisti@3238 419 int callee_parameters = 0;
twisti@3238 420 int callee_locals = 0;
duke@435 421 for (int index = 0; index < array->frames(); index++ ) {
duke@435 422 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 423 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 424 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
roland@6723 425 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 426 callee_locals,
duke@435 427 index == 0,
duke@435 428 popframe_extra_args);
duke@435 429 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 430 // as interpreted so the skeleton frame will be walkable
duke@435 431 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 432 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 433 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 434
duke@435 435 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 436 callee_locals = array->element(index)->method()->max_locals();
duke@435 437 popframe_extra_args = 0;
duke@435 438 }
duke@435 439
duke@435 440 // Compute whether the root vframe returns a float or double value.
duke@435 441 BasicType return_type;
duke@435 442 {
duke@435 443 HandleMark hm;
duke@435 444 methodHandle method(thread, array->element(0)->method());
never@2462 445 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
coleenp@2497 446 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
duke@435 447 }
duke@435 448
duke@435 449 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 450 int caller_adjustment = 0;
duke@435 451
duke@435 452 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 453 // its caller's stack by. If the caller is a compiled frame then
duke@435 454 // we pretend that the callee has no parameters so that the
duke@435 455 // extension counts for the full amount of locals and not just
duke@435 456 // locals-parms. This is because without a c2i adapter the parm
duke@435 457 // area as created by the compiled frame will not be usable by
duke@435 458 // the interpreter. (Depending on the calling convention there
duke@435 459 // may not even be enough space).
duke@435 460
duke@435 461 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 462 // and have it take the sender (aka caller).
duke@435 463
twisti@3238 464 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
duke@435 465 caller_adjustment = last_frame_adjust(0, callee_locals);
twisti@3238 466 } else if (callee_locals > callee_parameters) {
duke@435 467 // The caller frame may need extending to accommodate
duke@435 468 // non-parameter locals of the first unpacked interpreted frame.
duke@435 469 // Compute that adjustment.
twisti@3238 470 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 471 }
duke@435 472
duke@435 473 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 474 // since the frame will "magically" show the original pc before the deopt
duke@435 475 // and we'd undo the deopt.
duke@435 476
duke@435 477 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 478
twisti@2047 479 #ifndef SHARK
duke@435 480 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
twisti@2047 481 #endif // SHARK
duke@435 482
duke@435 483 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 484 caller_adjustment * BytesPerWord,
twisti@3238 485 caller_was_method_handle ? 0 : callee_parameters,
duke@435 486 number_of_frames,
duke@435 487 frame_sizes,
duke@435 488 frame_pcs,
duke@435 489 return_type);
bdelsart@3130 490 // On some platforms, we need a way to pass some platform dependent
bdelsart@3130 491 // information to the unpacking code so the skeletal frames come out
bdelsart@3130 492 // correct (initial fp value, unextended sp, ...)
bdelsart@3130 493 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
duke@435 494
duke@435 495 if (array->frames() > 1) {
duke@435 496 if (VerifyStack && TraceDeoptimization) {
vlivanov@4154 497 ttyLocker ttyl;
duke@435 498 tty->print_cr("Deoptimizing method containing inlining");
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502 array->set_unroll_block(info);
duke@435 503 return info;
duke@435 504 }
duke@435 505
duke@435 506 // Called to cleanup deoptimization data structures in normal case
duke@435 507 // after unpacking to stack and when stack overflow error occurs
duke@435 508 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 509 vframeArray *array) {
duke@435 510
duke@435 511 // Get array if coming from exception
duke@435 512 if (array == NULL) {
duke@435 513 array = thread->vframe_array_head();
duke@435 514 }
duke@435 515 thread->set_vframe_array_head(NULL);
duke@435 516
duke@435 517 // Free the previous UnrollBlock
duke@435 518 vframeArray* old_array = thread->vframe_array_last();
duke@435 519 thread->set_vframe_array_last(array);
duke@435 520
duke@435 521 if (old_array != NULL) {
duke@435 522 UnrollBlock* old_info = old_array->unroll_block();
duke@435 523 old_array->set_unroll_block(NULL);
duke@435 524 delete old_info;
duke@435 525 delete old_array;
duke@435 526 }
duke@435 527
duke@435 528 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 529 // inside the vframeArray (StackValueCollections)
duke@435 530
duke@435 531 delete thread->deopt_mark();
duke@435 532 thread->set_deopt_mark(NULL);
iveresov@2169 533 thread->set_deopt_nmethod(NULL);
duke@435 534
duke@435 535
duke@435 536 if (JvmtiExport::can_pop_frame()) {
duke@435 537 #ifndef CC_INTERP
duke@435 538 // Regardless of whether we entered this routine with the pending
duke@435 539 // popframe condition bit set, we should always clear it now
duke@435 540 thread->clear_popframe_condition();
duke@435 541 #else
duke@435 542 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 543 // with method_resume. For deopt_resume2 we clear it now.
duke@435 544 if (thread->popframe_forcing_deopt_reexecution())
duke@435 545 thread->clear_popframe_condition();
duke@435 546 #endif /* CC_INTERP */
duke@435 547 }
duke@435 548
duke@435 549 // unpack_frames() is called at the end of the deoptimization handler
duke@435 550 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 551 // so that an asynchronous stack walker can work again. This counter is
duke@435 552 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 553 // the beginning of uncommon_trap().
duke@435 554 thread->dec_in_deopt_handler();
duke@435 555 }
duke@435 556
duke@435 557
duke@435 558 // Return BasicType of value being returned
duke@435 559 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 560
duke@435 561 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 562 // allocate will be freed at the end of the routine.
duke@435 563
duke@435 564 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 565 // but makes the entry a little slower. There is however a little dance we have to
duke@435 566 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 567 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 568 HandleMark hm;
duke@435 569
duke@435 570 frame stub_frame = thread->last_frame();
duke@435 571
duke@435 572 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 573 // must point to the vframeArray for the unpack frame.
duke@435 574 vframeArray* array = thread->vframe_array_head();
duke@435 575
duke@435 576 #ifndef PRODUCT
duke@435 577 if (TraceDeoptimization) {
vlivanov@4154 578 ttyLocker ttyl;
duke@435 579 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 580 }
duke@435 581 #endif
never@3499 582 Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
never@3499 583 stub_frame.pc(), stub_frame.sp(), exec_mode);
duke@435 584
duke@435 585 UnrollBlock* info = array->unroll_block();
duke@435 586
duke@435 587 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
never@2901 588 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
duke@435 589
duke@435 590 BasicType bt = info->return_type();
duke@435 591
duke@435 592 // If we have an exception pending, claim that the return type is an oop
duke@435 593 // so the deopt_blob does not overwrite the exception_oop.
duke@435 594
duke@435 595 if (exec_mode == Unpack_exception)
duke@435 596 bt = T_OBJECT;
duke@435 597
duke@435 598 // Cleanup thread deopt data
duke@435 599 cleanup_deopt_info(thread, array);
duke@435 600
duke@435 601 #ifndef PRODUCT
duke@435 602 if (VerifyStack) {
duke@435 603 ResourceMark res_mark;
duke@435 604
never@2868 605 thread->validate_frame_layout();
never@2868 606
duke@435 607 // Verify that the just-unpacked frames match the interpreter's
duke@435 608 // notions of expression stack and locals
duke@435 609 vframeArray* cur_array = thread->vframe_array_last();
duke@435 610 RegisterMap rm(thread, false);
duke@435 611 rm.set_include_argument_oops(false);
duke@435 612 bool is_top_frame = true;
duke@435 613 int callee_size_of_parameters = 0;
duke@435 614 int callee_max_locals = 0;
duke@435 615 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 616 vframeArrayElement* el = cur_array->element(i);
duke@435 617 frame* iframe = el->iframe();
duke@435 618 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 619
duke@435 620 // Get the oop map for this bci
duke@435 621 InterpreterOopMap mask;
duke@435 622 int cur_invoke_parameter_size = 0;
duke@435 623 bool try_next_mask = false;
duke@435 624 int next_mask_expression_stack_size = -1;
duke@435 625 int top_frame_expression_stack_adjustment = 0;
duke@435 626 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 627 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 628 BytecodeStream str(mh);
duke@435 629 str.set_start(iframe->interpreter_frame_bci());
duke@435 630 int max_bci = mh->code_size();
duke@435 631 // Get to the next bytecode if possible
duke@435 632 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 633 // Check to see if we can grab the number of outgoing arguments
duke@435 634 // at an uncommon trap for an invoke (where the compiler
duke@435 635 // generates debug info before the invoke has executed)
duke@435 636 Bytecodes::Code cur_code = str.next();
roland@5222 637 if (cur_code == Bytecodes::_invokevirtual ||
roland@5222 638 cur_code == Bytecodes::_invokespecial ||
roland@5222 639 cur_code == Bytecodes::_invokestatic ||
roland@5222 640 cur_code == Bytecodes::_invokeinterface ||
roland@5222 641 cur_code == Bytecodes::_invokedynamic) {
never@2462 642 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
coleenp@2497 643 Symbol* signature = invoke.signature();
duke@435 644 ArgumentSizeComputer asc(signature);
duke@435 645 cur_invoke_parameter_size = asc.size();
roland@5222 646 if (invoke.has_receiver()) {
duke@435 647 // Add in receiver
duke@435 648 ++cur_invoke_parameter_size;
duke@435 649 }
roland@5222 650 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
roland@5222 651 callee_size_of_parameters++;
roland@5222 652 }
duke@435 653 }
duke@435 654 if (str.bci() < max_bci) {
duke@435 655 Bytecodes::Code bc = str.next();
duke@435 656 if (bc >= 0) {
duke@435 657 // The interpreter oop map generator reports results before
duke@435 658 // the current bytecode has executed except in the case of
duke@435 659 // calls. It seems to be hard to tell whether the compiler
duke@435 660 // has emitted debug information matching the "state before"
duke@435 661 // a given bytecode or the state after, so we try both
duke@435 662 switch (cur_code) {
duke@435 663 case Bytecodes::_invokevirtual:
duke@435 664 case Bytecodes::_invokespecial:
duke@435 665 case Bytecodes::_invokestatic:
duke@435 666 case Bytecodes::_invokeinterface:
roland@5222 667 case Bytecodes::_invokedynamic:
duke@435 668 case Bytecodes::_athrow:
duke@435 669 break;
duke@435 670 default: {
duke@435 671 InterpreterOopMap next_mask;
duke@435 672 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 673 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 674 // Need to subtract off the size of the result type of
duke@435 675 // the bytecode because this is not described in the
duke@435 676 // debug info but returned to the interpreter in the TOS
duke@435 677 // caching register
duke@435 678 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 679 if (bytecode_result_type != T_ILLEGAL) {
duke@435 680 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 681 }
duke@435 682 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 683 try_next_mask = true;
duke@435 684 break;
duke@435 685 }
duke@435 686 }
duke@435 687 }
duke@435 688 }
duke@435 689
duke@435 690 // Verify stack depth and oops in frame
duke@435 691 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 692 if (!(
duke@435 693 /* SPARC */
duke@435 694 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 695 /* x86 */
duke@435 696 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 697 (try_next_mask &&
duke@435 698 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 699 top_frame_expression_stack_adjustment))) ||
duke@435 700 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
kvn@6957 701 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
duke@435 702 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 703 )) {
duke@435 704 ttyLocker ttyl;
duke@435 705
duke@435 706 // Print out some information that will help us debug the problem
duke@435 707 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 708 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 709 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 710 iframe->interpreter_frame_expression_stack_size());
duke@435 711 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 712 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 713 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 714 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 715 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 716 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 717 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 718 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 719 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 720 tty->print_cr(" Interpreted frames:");
duke@435 721 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 722 vframeArrayElement* el = cur_array->element(k);
duke@435 723 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 724 }
duke@435 725 cur_array->print_on_2(tty);
duke@435 726 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 727 }
duke@435 728 VerifyOopClosure verify;
stefank@4298 729 iframe->oops_interpreted_do(&verify, NULL, &rm, false);
duke@435 730 callee_size_of_parameters = mh->size_of_parameters();
duke@435 731 callee_max_locals = mh->max_locals();
duke@435 732 is_top_frame = false;
duke@435 733 }
duke@435 734 }
duke@435 735 #endif /* !PRODUCT */
duke@435 736
duke@435 737
duke@435 738 return bt;
duke@435 739 JRT_END
duke@435 740
duke@435 741
duke@435 742 int Deoptimization::deoptimize_dependents() {
duke@435 743 Threads::deoptimized_wrt_marked_nmethods();
duke@435 744 return 0;
duke@435 745 }
duke@435 746
duke@435 747
duke@435 748 #ifdef COMPILER2
duke@435 749 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 750 Handle pending_exception(thread->pending_exception());
duke@435 751 const char* exception_file = thread->exception_file();
duke@435 752 int exception_line = thread->exception_line();
duke@435 753 thread->clear_pending_exception();
duke@435 754
duke@435 755 for (int i = 0; i < objects->length(); i++) {
duke@435 756 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 757 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 758
coleenp@4037 759 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 760 oop obj = NULL;
duke@435 761
duke@435 762 if (k->oop_is_instance()) {
coleenp@4037 763 InstanceKlass* ik = InstanceKlass::cast(k());
duke@435 764 obj = ik->allocate_instance(CHECK_(false));
duke@435 765 } else if (k->oop_is_typeArray()) {
coleenp@4142 766 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 767 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 768 int len = sv->field_size() / type2size[ak->element_type()];
duke@435 769 obj = ak->allocate(len, CHECK_(false));
duke@435 770 } else if (k->oop_is_objArray()) {
coleenp@4142 771 ObjArrayKlass* ak = ObjArrayKlass::cast(k());
duke@435 772 obj = ak->allocate(sv->field_size(), CHECK_(false));
duke@435 773 }
duke@435 774
duke@435 775 assert(obj != NULL, "allocation failed");
duke@435 776 assert(sv->value().is_null(), "redundant reallocation");
duke@435 777 sv->set_value(obj);
duke@435 778 }
duke@435 779
duke@435 780 if (pending_exception.not_null()) {
duke@435 781 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 782 }
duke@435 783
duke@435 784 return true;
duke@435 785 }
duke@435 786
duke@435 787 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 788 // they are yielded by do_nonstatic_fields.
duke@435 789 class FieldReassigner: public FieldClosure {
duke@435 790 frame* _fr;
duke@435 791 RegisterMap* _reg_map;
duke@435 792 ObjectValue* _sv;
coleenp@4037 793 InstanceKlass* _ik;
duke@435 794 oop _obj;
duke@435 795
duke@435 796 int _i;
duke@435 797 public:
duke@435 798 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 799 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 800
duke@435 801 int i() const { return _i; }
duke@435 802
duke@435 803
duke@435 804 void do_field(fieldDescriptor* fd) {
kvn@479 805 intptr_t val;
duke@435 806 StackValue* value =
duke@435 807 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 808 int offset = fd->offset();
duke@435 809 switch (fd->field_type()) {
duke@435 810 case T_OBJECT: case T_ARRAY:
duke@435 811 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 812 _obj->obj_field_put(offset, value->get_obj()());
duke@435 813 break;
duke@435 814
duke@435 815 case T_LONG: case T_DOUBLE: {
duke@435 816 assert(value->type() == T_INT, "Agreement.");
duke@435 817 StackValue* low =
duke@435 818 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
kvn@479 819 #ifdef _LP64
kvn@479 820 jlong res = (jlong)low->get_int();
kvn@479 821 #else
kvn@479 822 #ifdef SPARC
kvn@479 823 // For SPARC we have to swap high and low words.
kvn@479 824 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 825 #else
duke@435 826 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 827 #endif //SPARC
kvn@479 828 #endif
duke@435 829 _obj->long_field_put(offset, res);
duke@435 830 break;
duke@435 831 }
kvn@479 832 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
duke@435 833 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 834 assert(value->type() == T_INT, "Agreement.");
kvn@479 835 val = value->get_int();
kvn@479 836 _obj->int_field_put(offset, (jint)*((jint*)&val));
duke@435 837 break;
duke@435 838
duke@435 839 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 840 assert(value->type() == T_INT, "Agreement.");
kvn@479 841 val = value->get_int();
kvn@479 842 _obj->short_field_put(offset, (jshort)*((jint*)&val));
duke@435 843 break;
duke@435 844
kvn@479 845 case T_BOOLEAN: case T_BYTE: // 1 byte
duke@435 846 assert(value->type() == T_INT, "Agreement.");
kvn@479 847 val = value->get_int();
kvn@479 848 _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
duke@435 849 break;
duke@435 850
duke@435 851 default:
duke@435 852 ShouldNotReachHere();
duke@435 853 }
duke@435 854 _i++;
duke@435 855 }
duke@435 856 };
duke@435 857
duke@435 858 // restore elements of an eliminated type array
duke@435 859 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 860 int index = 0;
kvn@479 861 intptr_t val;
duke@435 862
duke@435 863 for (int i = 0; i < sv->field_size(); i++) {
duke@435 864 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 865 switch(type) {
kvn@479 866 case T_LONG: case T_DOUBLE: {
kvn@479 867 assert(value->type() == T_INT, "Agreement.");
kvn@479 868 StackValue* low =
kvn@479 869 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
kvn@479 870 #ifdef _LP64
kvn@479 871 jlong res = (jlong)low->get_int();
kvn@479 872 #else
kvn@479 873 #ifdef SPARC
kvn@479 874 // For SPARC we have to swap high and low words.
kvn@479 875 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 876 #else
kvn@479 877 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 878 #endif //SPARC
kvn@479 879 #endif
kvn@479 880 obj->long_at_put(index, res);
kvn@479 881 break;
kvn@479 882 }
kvn@479 883
kvn@479 884 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
kvn@479 885 case T_INT: case T_FLOAT: // 4 bytes.
kvn@479 886 assert(value->type() == T_INT, "Agreement.");
kvn@479 887 val = value->get_int();
kvn@479 888 obj->int_at_put(index, (jint)*((jint*)&val));
kvn@479 889 break;
kvn@479 890
kvn@479 891 case T_SHORT: case T_CHAR: // 2 bytes
kvn@479 892 assert(value->type() == T_INT, "Agreement.");
kvn@479 893 val = value->get_int();
kvn@479 894 obj->short_at_put(index, (jshort)*((jint*)&val));
kvn@479 895 break;
kvn@479 896
kvn@479 897 case T_BOOLEAN: case T_BYTE: // 1 byte
kvn@479 898 assert(value->type() == T_INT, "Agreement.");
kvn@479 899 val = value->get_int();
kvn@479 900 obj->bool_at_put(index, (jboolean)*((jint*)&val));
kvn@479 901 break;
kvn@479 902
duke@435 903 default:
duke@435 904 ShouldNotReachHere();
duke@435 905 }
duke@435 906 index++;
duke@435 907 }
duke@435 908 }
duke@435 909
duke@435 910
duke@435 911 // restore fields of an eliminated object array
duke@435 912 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 913 for (int i = 0; i < sv->field_size(); i++) {
duke@435 914 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 915 assert(value->type() == T_OBJECT, "object element expected");
duke@435 916 obj->obj_at_put(i, value->get_obj()());
duke@435 917 }
duke@435 918 }
duke@435 919
duke@435 920
duke@435 921 // restore fields of all eliminated objects and arrays
duke@435 922 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
duke@435 923 for (int i = 0; i < objects->length(); i++) {
duke@435 924 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 925 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 926 Handle obj = sv->value();
duke@435 927 assert(obj.not_null(), "reallocation was missed");
duke@435 928
duke@435 929 if (k->oop_is_instance()) {
coleenp@4037 930 InstanceKlass* ik = InstanceKlass::cast(k());
duke@435 931 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 932 ik->do_nonstatic_fields(&reassign);
duke@435 933 } else if (k->oop_is_typeArray()) {
coleenp@4142 934 TypeArrayKlass* ak = TypeArrayKlass::cast(k());
duke@435 935 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 936 } else if (k->oop_is_objArray()) {
duke@435 937 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 938 }
duke@435 939 }
duke@435 940 }
duke@435 941
duke@435 942
duke@435 943 // relock objects for which synchronization was eliminated
kvn@518 944 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
duke@435 945 for (int i = 0; i < monitors->length(); i++) {
kvn@518 946 MonitorInfo* mon_info = monitors->at(i);
kvn@518 947 if (mon_info->eliminated()) {
kvn@518 948 assert(mon_info->owner() != NULL, "reallocation was missed");
kvn@518 949 Handle obj = Handle(mon_info->owner());
kvn@518 950 markOop mark = obj->mark();
kvn@518 951 if (UseBiasedLocking && mark->has_bias_pattern()) {
kvn@518 952 // New allocated objects may have the mark set to anonymously biased.
kvn@518 953 // Also the deoptimized method may called methods with synchronization
kvn@518 954 // where the thread-local object is bias locked to the current thread.
kvn@518 955 assert(mark->is_biased_anonymously() ||
kvn@518 956 mark->biased_locker() == thread, "should be locked to current thread");
kvn@518 957 // Reset mark word to unbiased prototype.
kvn@518 958 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
kvn@518 959 obj->set_mark(unbiased_prototype);
kvn@518 960 }
kvn@518 961 BasicLock* lock = mon_info->lock();
kvn@518 962 ObjectSynchronizer::slow_enter(obj, lock, thread);
duke@435 963 }
kvn@518 964 assert(mon_info->owner()->is_locked(), "object must be locked now");
duke@435 965 }
duke@435 966 }
duke@435 967
duke@435 968
duke@435 969 #ifndef PRODUCT
duke@435 970 // print information about reallocated objects
duke@435 971 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
duke@435 972 fieldDescriptor fd;
duke@435 973
duke@435 974 for (int i = 0; i < objects->length(); i++) {
duke@435 975 ObjectValue* sv = (ObjectValue*) objects->at(i);
coleenp@4037 976 KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
duke@435 977 Handle obj = sv->value();
duke@435 978
hseigel@5784 979 tty->print(" object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
coleenp@4037 980 k->print_value();
duke@435 981 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
duke@435 982 tty->cr();
duke@435 983
duke@435 984 if (Verbose) {
duke@435 985 k->oop_print_on(obj(), tty);
duke@435 986 }
duke@435 987 }
duke@435 988 }
duke@435 989 #endif
duke@435 990 #endif // COMPILER2
duke@435 991
duke@435 992 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
never@3499 993 Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
duke@435 994
duke@435 995 #ifndef PRODUCT
duke@435 996 if (TraceDeoptimization) {
duke@435 997 ttyLocker ttyl;
duke@435 998 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 999 fr.print_on(tty);
duke@435 1000 tty->print_cr(" Virtual frames (innermost first):");
duke@435 1001 for (int index = 0; index < chunk->length(); index++) {
duke@435 1002 compiledVFrame* vf = chunk->at(index);
duke@435 1003 tty->print(" %2d - ", index);
duke@435 1004 vf->print_value();
duke@435 1005 int bci = chunk->at(index)->raw_bci();
duke@435 1006 const char* code_name;
duke@435 1007 if (bci == SynchronizationEntryBCI) {
duke@435 1008 code_name = "sync entry";
duke@435 1009 } else {
never@2462 1010 Bytecodes::Code code = vf->method()->code_at(bci);
duke@435 1011 code_name = Bytecodes::name(code);
duke@435 1012 }
duke@435 1013 tty->print(" - %s", code_name);
duke@435 1014 tty->print_cr(" @ bci %d ", bci);
duke@435 1015 if (Verbose) {
duke@435 1016 vf->print();
duke@435 1017 tty->cr();
duke@435 1018 }
duke@435 1019 }
duke@435 1020 }
duke@435 1021 #endif
duke@435 1022
duke@435 1023 // Register map for next frame (used for stack crawl). We capture
duke@435 1024 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 1025 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 1026 // register locations.
duke@435 1027 frame caller = fr.sender(reg_map);
duke@435 1028 int frame_size = caller.sp() - fr.sp();
duke@435 1029
duke@435 1030 frame sender = caller;
duke@435 1031
duke@435 1032 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 1033 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 1034 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
duke@435 1035 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
duke@435 1036
duke@435 1037 // Compare the vframeArray to the collected vframes
duke@435 1038 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 1039
duke@435 1040 #ifndef PRODUCT
duke@435 1041 if (TraceDeoptimization) {
duke@435 1042 ttyLocker ttyl;
duke@435 1043 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 1044 }
duke@435 1045 #endif // PRODUCT
duke@435 1046
duke@435 1047 return array;
duke@435 1048 }
duke@435 1049
duke@435 1050
duke@435 1051 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 1052 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 1053 for (int i = 0; i < monitors->length(); i++) {
duke@435 1054 MonitorInfo* mon_info = monitors->at(i);
kvn@1253 1055 if (!mon_info->eliminated() && mon_info->owner() != NULL) {
duke@435 1056 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 1057 }
duke@435 1058 }
duke@435 1059 }
duke@435 1060
duke@435 1061
duke@435 1062 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 1063 if (!UseBiasedLocking) {
duke@435 1064 return;
duke@435 1065 }
duke@435 1066
duke@435 1067 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1068
duke@435 1069 // Unfortunately we don't have a RegisterMap available in most of
duke@435 1070 // the places we want to call this routine so we need to walk the
duke@435 1071 // stack again to update the register map.
duke@435 1072 if (map == NULL || !map->update_map()) {
duke@435 1073 StackFrameStream sfs(thread, true);
duke@435 1074 bool found = false;
duke@435 1075 while (!found && !sfs.is_done()) {
duke@435 1076 frame* cur = sfs.current();
duke@435 1077 sfs.next();
duke@435 1078 found = cur->id() == fr.id();
duke@435 1079 }
duke@435 1080 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 1081 map = sfs.register_map();
duke@435 1082 }
duke@435 1083
duke@435 1084 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 1085 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1086 // Revoke monitors' biases in all scopes
duke@435 1087 while (!cvf->is_top()) {
duke@435 1088 collect_monitors(cvf, objects_to_revoke);
duke@435 1089 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1090 }
duke@435 1091 collect_monitors(cvf, objects_to_revoke);
duke@435 1092
duke@435 1093 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 1094 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1095 } else {
duke@435 1096 BiasedLocking::revoke(objects_to_revoke);
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100
duke@435 1101 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 1102 if (!UseBiasedLocking) {
duke@435 1103 return;
duke@435 1104 }
duke@435 1105
duke@435 1106 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 1107 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 1108 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 1109 if (jt->has_last_Java_frame()) {
duke@435 1110 StackFrameStream sfs(jt, true);
duke@435 1111 while (!sfs.is_done()) {
duke@435 1112 frame* cur = sfs.current();
duke@435 1113 if (cb->contains(cur->pc())) {
duke@435 1114 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 1115 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1116 // Revoke monitors' biases in all scopes
duke@435 1117 while (!cvf->is_top()) {
duke@435 1118 collect_monitors(cvf, objects_to_revoke);
duke@435 1119 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1120 }
duke@435 1121 collect_monitors(cvf, objects_to_revoke);
duke@435 1122 }
duke@435 1123 sfs.next();
duke@435 1124 }
duke@435 1125 }
duke@435 1126 }
duke@435 1127 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 1132 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 1133
duke@435 1134 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 1135
duke@435 1136 // Patch the nmethod so that when execution returns to it we will
duke@435 1137 // deopt the execution state and return to the interpreter.
duke@435 1138 fr.deoptimize(thread);
duke@435 1139 }
duke@435 1140
duke@435 1141 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 1142 // Deoptimize only if the frame comes from compile code.
duke@435 1143 // Do not deoptimize the frame which is already patched
duke@435 1144 // during the execution of the loops below.
duke@435 1145 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 1146 return;
duke@435 1147 }
duke@435 1148 ResourceMark rm;
duke@435 1149 DeoptimizationMarker dm;
duke@435 1150 if (UseBiasedLocking) {
duke@435 1151 revoke_biases_of_monitors(thread, fr, map);
duke@435 1152 }
duke@435 1153 deoptimize_single_frame(thread, fr);
duke@435 1154
duke@435 1155 }
duke@435 1156
duke@435 1157
never@2260 1158 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
never@2260 1159 assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
never@2260 1160 "can only deoptimize other thread at a safepoint");
duke@435 1161 // Compute frame and register map based on thread and sp.
duke@435 1162 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1163 frame fr = thread->last_frame();
duke@435 1164 while (fr.id() != id) {
duke@435 1165 fr = fr.sender(&reg_map);
duke@435 1166 }
duke@435 1167 deoptimize(thread, fr, &reg_map);
duke@435 1168 }
duke@435 1169
duke@435 1170
never@2260 1171 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
never@2260 1172 if (thread == Thread::current()) {
never@2260 1173 Deoptimization::deoptimize_frame_internal(thread, id);
never@2260 1174 } else {
never@2260 1175 VM_DeoptimizeFrame deopt(thread, id);
never@2260 1176 VMThread::execute(&deopt);
never@2260 1177 }
never@2260 1178 }
never@2260 1179
never@2260 1180
duke@435 1181 // JVMTI PopFrame support
duke@435 1182 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 1183 {
duke@435 1184 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 1185 }
duke@435 1186 JRT_END
duke@435 1187
duke@435 1188
twisti@2047 1189 #if defined(COMPILER2) || defined(SHARK)
duke@435 1190 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1191 // in case of an unresolved klass entry, load the class.
duke@435 1192 if (constant_pool->tag_at(index).is_unresolved_klass()) {
coleenp@4037 1193 Klass* tk = constant_pool->klass_at(index, CHECK);
duke@435 1194 return;
duke@435 1195 }
duke@435 1196
duke@435 1197 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1198
coleenp@4251 1199 Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
coleenp@2497 1200 Symbol* symbol = constant_pool->symbol_at(index);
duke@435 1201
duke@435 1202 // class name?
duke@435 1203 if (symbol->byte_at(0) != '(') {
coleenp@4251 1204 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1205 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1206 return;
duke@435 1207 }
duke@435 1208
duke@435 1209 // then it must be a signature!
coleenp@2497 1210 ResourceMark rm(THREAD);
duke@435 1211 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1212 if (ss.is_object()) {
coleenp@2497 1213 Symbol* class_name = ss.as_symbol(CHECK);
coleenp@4251 1214 Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
duke@435 1215 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1216 }
duke@435 1217 }
duke@435 1218 }
duke@435 1219
duke@435 1220
duke@435 1221 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1222 EXCEPTION_MARK;
duke@435 1223 load_class_by_index(constant_pool, index, THREAD);
duke@435 1224 if (HAS_PENDING_EXCEPTION) {
duke@435 1225 // Exception happened during classloading. We ignore the exception here, since it
roland@6215 1226 // is going to be rethrown since the current activation is going to be deoptimized and
duke@435 1227 // the interpreter will re-execute the bytecode.
duke@435 1228 CLEAR_PENDING_EXCEPTION;
roland@6215 1229 // Class loading called java code which may have caused a stack
roland@6215 1230 // overflow. If the exception was thrown right before the return
roland@6215 1231 // to the runtime the stack is no longer guarded. Reguard the
roland@6215 1232 // stack otherwise if we return to the uncommon trap blob and the
roland@6215 1233 // stack bang causes a stack overflow we crash.
roland@6215 1234 assert(THREAD->is_Java_thread(), "only a java thread can be here");
roland@6215 1235 JavaThread* thread = (JavaThread*)THREAD;
roland@6215 1236 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
roland@6215 1237 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
roland@6215 1238 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
duke@435 1239 }
duke@435 1240 }
duke@435 1241
duke@435 1242 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1243 HandleMark hm;
duke@435 1244
duke@435 1245 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1246 // handler. Note this fact before we start generating temporary frames
duke@435 1247 // that can confuse an asynchronous stack walker. This counter is
duke@435 1248 // decremented at the end of unpack_frames().
duke@435 1249 thread->inc_in_deopt_handler();
duke@435 1250
duke@435 1251 // We need to update the map if we have biased locking.
duke@435 1252 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1253 frame stub_frame = thread->last_frame();
duke@435 1254 frame fr = stub_frame.sender(&reg_map);
duke@435 1255 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1256 // before we are done with it.
duke@435 1257 nmethodLocker nl(fr.pc());
duke@435 1258
never@3499 1259 // Log a message
vlivanov@4312 1260 Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
vlivanov@4312 1261 trap_request, fr.pc());
never@3499 1262
duke@435 1263 {
duke@435 1264 ResourceMark rm;
duke@435 1265
duke@435 1266 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1267 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1268
duke@435 1269 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1270 DeoptAction action = trap_request_action(trap_request);
duke@435 1271 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1272
duke@435 1273 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1274 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1275
duke@435 1276 nmethod* nm = cvf->code();
duke@435 1277
duke@435 1278 ScopeDesc* trap_scope = cvf->scope();
duke@435 1279 methodHandle trap_method = trap_scope->method();
duke@435 1280 int trap_bci = trap_scope->bci();
never@2462 1281 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci);
duke@435 1282
duke@435 1283 // Record this event in the histogram.
duke@435 1284 gather_statistics(reason, action, trap_bc);
duke@435 1285
duke@435 1286 // Ensure that we can record deopt. history:
kvn@6429 1287 // Need MDO to record RTM code generation state.
kvn@6429 1288 bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
duke@435 1289
coleenp@4037 1290 MethodData* trap_mdo =
coleenp@4037 1291 get_method_data(thread, trap_method, create_if_missing);
duke@435 1292
vlivanov@4312 1293 // Log a message
vlivanov@4312 1294 Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
vlivanov@4312 1295 trap_reason_name(reason), trap_action_name(action), fr.pc(),
vlivanov@4312 1296 trap_method->name_and_sig_as_C_string(), trap_bci);
vlivanov@4312 1297
duke@435 1298 // Print a bunch of diagnostics, if requested.
duke@435 1299 if (TraceDeoptimization || LogCompilation) {
duke@435 1300 ResourceMark rm;
duke@435 1301 ttyLocker ttyl;
duke@435 1302 char buf[100];
duke@435 1303 if (xtty != NULL) {
duke@435 1304 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1305 os::current_thread_id(),
duke@435 1306 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1307 nm->log_identity(xtty);
duke@435 1308 }
coleenp@2497 1309 Symbol* class_name = NULL;
duke@435 1310 bool unresolved = false;
duke@435 1311 if (unloaded_class_index >= 0) {
duke@435 1312 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1313 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
coleenp@2497 1314 class_name = constants->klass_name_at(unloaded_class_index);
duke@435 1315 unresolved = true;
duke@435 1316 if (xtty != NULL)
duke@435 1317 xtty->print(" unresolved='1'");
duke@435 1318 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
coleenp@2497 1319 class_name = constants->symbol_at(unloaded_class_index);
duke@435 1320 }
duke@435 1321 if (xtty != NULL)
duke@435 1322 xtty->name(class_name);
duke@435 1323 }
coleenp@4037 1324 if (xtty != NULL && trap_mdo != NULL) {
duke@435 1325 // Dump the relevant MDO state.
duke@435 1326 // This is the deopt count for the current reason, any previous
duke@435 1327 // reasons or recompiles seen at this point.
duke@435 1328 int dcnt = trap_mdo->trap_count(reason);
duke@435 1329 if (dcnt != 0)
duke@435 1330 xtty->print(" count='%d'", dcnt);
duke@435 1331 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1332 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1333 if (dos != 0) {
duke@435 1334 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1335 if (trap_state_is_recompiled(dos)) {
duke@435 1336 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1337 if (recnt2 != 0)
duke@435 1338 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1339 }
duke@435 1340 }
duke@435 1341 }
duke@435 1342 if (xtty != NULL) {
duke@435 1343 xtty->stamp();
duke@435 1344 xtty->end_head();
duke@435 1345 }
duke@435 1346 if (TraceDeoptimization) { // make noise on the tty
duke@435 1347 tty->print("Uncommon trap occurred in");
duke@435 1348 nm->method()->print_short_name(tty);
vlivanov@4154 1349 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
duke@435 1350 fr.pc(),
vlivanov@4154 1351 os::current_thread_id(),
duke@435 1352 trap_reason_name(reason),
duke@435 1353 trap_action_name(action),
duke@435 1354 unloaded_class_index);
coleenp@2497 1355 if (class_name != NULL) {
duke@435 1356 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1357 class_name->print_symbol_on(tty);
duke@435 1358 }
duke@435 1359 tty->cr();
duke@435 1360 }
duke@435 1361 if (xtty != NULL) {
duke@435 1362 // Log the precise location of the trap.
duke@435 1363 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1364 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1365 xtty->method(sd->method());
duke@435 1366 xtty->end_elem();
duke@435 1367 if (sd->is_top()) break;
duke@435 1368 }
duke@435 1369 xtty->tail("uncommon_trap");
duke@435 1370 }
duke@435 1371 }
duke@435 1372 // (End diagnostic printout.)
duke@435 1373
duke@435 1374 // Load class if necessary
duke@435 1375 if (unloaded_class_index >= 0) {
duke@435 1376 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1377 load_class_by_index(constants, unloaded_class_index);
duke@435 1378 }
duke@435 1379
duke@435 1380 // Flush the nmethod if necessary and desirable.
duke@435 1381 //
duke@435 1382 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1383 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1384 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1385 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1386 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1387 // and deoptimization. There are several such measures:
duke@435 1388 //
duke@435 1389 // 1. If a recompilation is ordered a second time at some site X
duke@435 1390 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1391 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1392 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1393 //
duke@435 1394 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1395 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1396 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1397 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1398 // to the interpreter. This is a performance hit for hot methods,
duke@435 1399 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1400 // (Actually, only the method containing the site X is abandoned.)
duke@435 1401 //
duke@435 1402 // 3. In parallel with the previous measures, if the total number of
duke@435 1403 // recompilations of a method exceeds the much larger set limit
duke@435 1404 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1405 // This should only happen if the method is very large and has
duke@435 1406 // many "lukewarm" deoptimizations. The code which enforces this
coleenp@4037 1407 // limit is elsewhere (class nmethod, class Method).
duke@435 1408 //
duke@435 1409 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1410 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1411 //
duke@435 1412 // The decision to update code is up to the compiler, and is encoded
duke@435 1413 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1414 // no trap state is changed, no compiled code is changed, and the
duke@435 1415 // computation suffers along in the interpreter.
duke@435 1416 //
duke@435 1417 // The other action codes specify various tactics for decompilation
duke@435 1418 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1419 // allows the compiled code to stay around until enough traps are seen,
duke@435 1420 // and until the compiler gets around to recompiling the trapping method.
duke@435 1421 //
duke@435 1422 // The other actions cause immediate removal of the present code.
duke@435 1423
duke@435 1424 bool update_trap_state = true;
duke@435 1425 bool make_not_entrant = false;
duke@435 1426 bool make_not_compilable = false;
iveresov@2138 1427 bool reprofile = false;
duke@435 1428 switch (action) {
duke@435 1429 case Action_none:
duke@435 1430 // Keep the old code.
duke@435 1431 update_trap_state = false;
duke@435 1432 break;
duke@435 1433 case Action_maybe_recompile:
duke@435 1434 // Do not need to invalidate the present code, but we can
duke@435 1435 // initiate another
duke@435 1436 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1437 // The system will tolerate the old code, but new code should be
duke@435 1438 // generated when possible.
duke@435 1439 break;
duke@435 1440 case Action_reinterpret:
duke@435 1441 // Go back into the interpreter for a while, and then consider
duke@435 1442 // recompiling form scratch.
duke@435 1443 make_not_entrant = true;
duke@435 1444 // Reset invocation counter for outer most method.
duke@435 1445 // This will allow the interpreter to exercise the bytecodes
duke@435 1446 // for a while before recompiling.
duke@435 1447 // By contrast, Action_make_not_entrant is immediate.
duke@435 1448 //
duke@435 1449 // Note that the compiler will track null_check, null_assert,
duke@435 1450 // range_check, and class_check events and log them as if they
duke@435 1451 // had been traps taken from compiled code. This will update
duke@435 1452 // the MDO trap history so that the next compilation will
duke@435 1453 // properly detect hot trap sites.
iveresov@2138 1454 reprofile = true;
duke@435 1455 break;
duke@435 1456 case Action_make_not_entrant:
duke@435 1457 // Request immediate recompilation, and get rid of the old code.
duke@435 1458 // Make them not entrant, so next time they are called they get
duke@435 1459 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1460 // time they are called. Same for uninitialized. The interpreter will
duke@435 1461 // link the missing class, if any.
duke@435 1462 make_not_entrant = true;
duke@435 1463 break;
duke@435 1464 case Action_make_not_compilable:
duke@435 1465 // Give up on compiling this method at all.
duke@435 1466 make_not_entrant = true;
duke@435 1467 make_not_compilable = true;
duke@435 1468 break;
duke@435 1469 default:
duke@435 1470 ShouldNotReachHere();
duke@435 1471 }
duke@435 1472
duke@435 1473 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1474 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1475 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
coleenp@4037 1476 // recompile relies on a MethodData* to record heroic opt failures.
duke@435 1477
duke@435 1478 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1479 // to use the MDO to detect hot deoptimization points and control
duke@435 1480 // aggressive optimization.
kvn@1641 1481 bool inc_recompile_count = false;
kvn@1641 1482 ProfileData* pdata = NULL;
coleenp@4037 1483 if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
coleenp@4037 1484 assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
duke@435 1485 uint this_trap_count = 0;
duke@435 1486 bool maybe_prior_trap = false;
duke@435 1487 bool maybe_prior_recompile = false;
kvn@1641 1488 pdata = query_update_method_data(trap_mdo, trap_bci, reason,
roland@6377 1489 nm->method(),
duke@435 1490 //outputs:
duke@435 1491 this_trap_count,
duke@435 1492 maybe_prior_trap,
duke@435 1493 maybe_prior_recompile);
duke@435 1494 // Because the interpreter also counts null, div0, range, and class
duke@435 1495 // checks, these traps from compiled code are double-counted.
duke@435 1496 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1497 // are in effect a little smaller than they look.
duke@435 1498
duke@435 1499 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1500 if (per_bc_reason != Reason_none) {
duke@435 1501 // Now take action based on the partially known per-BCI history.
duke@435 1502 if (maybe_prior_trap
duke@435 1503 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1504 // If there are too many traps at this BCI, force a recompile.
duke@435 1505 // This will allow the compiler to see the limit overflow, and
duke@435 1506 // take corrective action, if possible. The compiler generally
duke@435 1507 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1508 // changes its tactics if it sees any traps at all. This provides
duke@435 1509 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1510 // several times.
duke@435 1511 //
duke@435 1512 // Actually, since there is only one bit of counter per BCI,
duke@435 1513 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1514 // This produces accurate results if in fact there is only
duke@435 1515 // one hot trap site, but begins to get fuzzy if there are
duke@435 1516 // many sites. For example, if there are ten sites each
duke@435 1517 // trapping two or more times, they each get the blame for
duke@435 1518 // all of their traps.
duke@435 1519 make_not_entrant = true;
duke@435 1520 }
duke@435 1521
duke@435 1522 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1523 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1524 // More than one recompile at this point.
kvn@1641 1525 inc_recompile_count = maybe_prior_trap;
duke@435 1526 }
duke@435 1527 } else {
duke@435 1528 // For reasons which are not recorded per-bytecode, we simply
duke@435 1529 // force recompiles unconditionally.
duke@435 1530 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1531 make_not_entrant = true;
duke@435 1532 }
duke@435 1533
duke@435 1534 // Go back to the compiler if there are too many traps in this method.
roland@6377 1535 if (this_trap_count >= per_method_trap_limit(reason)) {
duke@435 1536 // If there are too many traps in this method, force a recompile.
duke@435 1537 // This will allow the compiler to see the limit overflow, and
duke@435 1538 // take corrective action, if possible.
duke@435 1539 // (This condition is an unlikely backstop only, because the
duke@435 1540 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1541 // if it is applicable.)
duke@435 1542 make_not_entrant = true;
duke@435 1543 }
duke@435 1544
duke@435 1545 // Here's more hysteresis: If there has been a recompile at
duke@435 1546 // this trap point already, run the method in the interpreter
duke@435 1547 // for a while to exercise it more thoroughly.
duke@435 1548 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
iveresov@2138 1549 reprofile = true;
duke@435 1550 }
duke@435 1551
kvn@1641 1552 }
kvn@1641 1553
kvn@1641 1554 // Take requested actions on the method:
kvn@1641 1555
kvn@1641 1556 // Recompile
kvn@1641 1557 if (make_not_entrant) {
kvn@1641 1558 if (!nm->make_not_entrant()) {
kvn@1641 1559 return; // the call did not change nmethod's state
kvn@1641 1560 }
kvn@1641 1561
kvn@1641 1562 if (pdata != NULL) {
duke@435 1563 // Record the recompilation event, if any.
duke@435 1564 int tstate0 = pdata->trap_state();
duke@435 1565 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1566 if (tstate1 != tstate0)
duke@435 1567 pdata->set_trap_state(tstate1);
duke@435 1568 }
kvn@6429 1569
kvn@6429 1570 #if INCLUDE_RTM_OPT
kvn@6429 1571 // Restart collecting RTM locking abort statistic if the method
kvn@6429 1572 // is recompiled for a reason other than RTM state change.
kvn@6429 1573 // Assume that in new recompiled code the statistic could be different,
kvn@6429 1574 // for example, due to different inlining.
kvn@6429 1575 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
kvn@6429 1576 UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
kvn@6429 1577 trap_mdo->atomic_set_rtm_state(ProfileRTM);
kvn@6429 1578 }
kvn@6429 1579 #endif
duke@435 1580 }
duke@435 1581
kvn@1641 1582 if (inc_recompile_count) {
kvn@1641 1583 trap_mdo->inc_overflow_recompile_count();
kvn@1641 1584 if ((uint)trap_mdo->overflow_recompile_count() >
kvn@1641 1585 (uint)PerBytecodeRecompilationCutoff) {
kvn@1641 1586 // Give up on the method containing the bad BCI.
kvn@1641 1587 if (trap_method() == nm->method()) {
kvn@1641 1588 make_not_compilable = true;
kvn@1641 1589 } else {
vlivanov@4539 1590 trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
kvn@1641 1591 // But give grace to the enclosing nm->method().
kvn@1641 1592 }
kvn@1641 1593 }
kvn@1641 1594 }
duke@435 1595
iveresov@2138 1596 // Reprofile
iveresov@2138 1597 if (reprofile) {
iveresov@2138 1598 CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
duke@435 1599 }
duke@435 1600
duke@435 1601 // Give up compiling
iveresov@2138 1602 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
duke@435 1603 assert(make_not_entrant, "consistent");
iveresov@2138 1604 nm->method()->set_not_compilable(CompLevel_full_optimization);
duke@435 1605 }
duke@435 1606
duke@435 1607 } // Free marked resources
duke@435 1608
duke@435 1609 }
duke@435 1610 JRT_END
duke@435 1611
coleenp@4037 1612 MethodData*
duke@435 1613 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1614 bool create_if_missing) {
duke@435 1615 Thread* THREAD = thread;
coleenp@4037 1616 MethodData* mdo = m()->method_data();
duke@435 1617 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1618 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1619 // that simply means we won't have an MDO to update.
coleenp@4037 1620 Method::build_interpreter_method_data(m, THREAD);
duke@435 1621 if (HAS_PENDING_EXCEPTION) {
duke@435 1622 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1623 CLEAR_PENDING_EXCEPTION;
duke@435 1624 }
duke@435 1625 mdo = m()->method_data();
duke@435 1626 }
duke@435 1627 return mdo;
duke@435 1628 }
duke@435 1629
duke@435 1630 ProfileData*
coleenp@4037 1631 Deoptimization::query_update_method_data(MethodData* trap_mdo,
duke@435 1632 int trap_bci,
duke@435 1633 Deoptimization::DeoptReason reason,
roland@6377 1634 Method* compiled_method,
duke@435 1635 //outputs:
duke@435 1636 uint& ret_this_trap_count,
duke@435 1637 bool& ret_maybe_prior_trap,
duke@435 1638 bool& ret_maybe_prior_recompile) {
duke@435 1639 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1640 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1641
duke@435 1642 // If the runtime cannot find a place to store trap history,
duke@435 1643 // it is estimated based on the general condition of the method.
duke@435 1644 // If the method has ever been recompiled, or has ever incurred
duke@435 1645 // a trap with the present reason , then this BCI is assumed
duke@435 1646 // (pessimistically) to be the culprit.
duke@435 1647 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1648 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1649 ProfileData* pdata = NULL;
duke@435 1650
duke@435 1651
duke@435 1652 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1653 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1654 if (per_bc_reason != Reason_none) {
duke@435 1655 // Find the profile data for this BCI. If there isn't one,
duke@435 1656 // try to allocate one from the MDO's set of spares.
duke@435 1657 // This will let us detect a repeated trap at this point.
roland@6377 1658 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
duke@435 1659
duke@435 1660 if (pdata != NULL) {
roland@6377 1661 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
roland@6377 1662 if (LogCompilation && xtty != NULL) {
roland@6377 1663 ttyLocker ttyl;
roland@6377 1664 // no more room for speculative traps in this MDO
roland@6377 1665 xtty->elem("speculative_traps_oom");
roland@6377 1666 }
roland@6377 1667 }
duke@435 1668 // Query the trap state of this profile datum.
duke@435 1669 int tstate0 = pdata->trap_state();
duke@435 1670 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1671 maybe_prior_trap = false;
duke@435 1672 if (!trap_state_is_recompiled(tstate0))
duke@435 1673 maybe_prior_recompile = false;
duke@435 1674
duke@435 1675 // Update the trap state of this profile datum.
duke@435 1676 int tstate1 = tstate0;
duke@435 1677 // Record the reason.
duke@435 1678 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1679 // Store the updated state on the MDO, for next time.
duke@435 1680 if (tstate1 != tstate0)
duke@435 1681 pdata->set_trap_state(tstate1);
duke@435 1682 } else {
kvn@1641 1683 if (LogCompilation && xtty != NULL) {
kvn@1641 1684 ttyLocker ttyl;
duke@435 1685 // Missing MDP? Leave a small complaint in the log.
duke@435 1686 xtty->elem("missing_mdp bci='%d'", trap_bci);
kvn@1641 1687 }
duke@435 1688 }
duke@435 1689 }
duke@435 1690
duke@435 1691 // Return results:
duke@435 1692 ret_this_trap_count = this_trap_count;
duke@435 1693 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1694 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1695 return pdata;
duke@435 1696 }
duke@435 1697
duke@435 1698 void
coleenp@4037 1699 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 1700 ResourceMark rm;
duke@435 1701 // Ignored outputs:
duke@435 1702 uint ignore_this_trap_count;
duke@435 1703 bool ignore_maybe_prior_trap;
duke@435 1704 bool ignore_maybe_prior_recompile;
roland@6377 1705 assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
duke@435 1706 query_update_method_data(trap_mdo, trap_bci,
duke@435 1707 (DeoptReason)reason,
roland@6377 1708 NULL,
duke@435 1709 ignore_this_trap_count,
duke@435 1710 ignore_maybe_prior_trap,
duke@435 1711 ignore_maybe_prior_recompile);
duke@435 1712 }
duke@435 1713
duke@435 1714 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1715
duke@435 1716 // Still in Java no safepoints
duke@435 1717 {
duke@435 1718 // This enters VM and may safepoint
duke@435 1719 uncommon_trap_inner(thread, trap_request);
duke@435 1720 }
duke@435 1721 return fetch_unroll_info_helper(thread);
duke@435 1722 }
duke@435 1723
duke@435 1724 // Local derived constants.
duke@435 1725 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1726 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1727 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1728
duke@435 1729 //---------------------------trap_state_reason---------------------------------
duke@435 1730 Deoptimization::DeoptReason
duke@435 1731 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1732 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1733 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1734 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1735 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1736 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1737 trap_state -= recompile_bit;
duke@435 1738 if (trap_state == DS_REASON_MASK) {
duke@435 1739 return Reason_many;
duke@435 1740 } else {
duke@435 1741 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1742 return (DeoptReason)trap_state;
duke@435 1743 }
duke@435 1744 }
duke@435 1745 //-------------------------trap_state_has_reason-------------------------------
duke@435 1746 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1747 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1748 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1749 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1750 trap_state -= recompile_bit;
duke@435 1751 if (trap_state == DS_REASON_MASK) {
duke@435 1752 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1753 } else if (trap_state == reason) {
duke@435 1754 return 1; // true, definitely
duke@435 1755 } else if (trap_state == 0) {
duke@435 1756 return 0; // false, definitely (top of state lattice)
duke@435 1757 } else {
duke@435 1758 return 0; // false, definitely
duke@435 1759 }
duke@435 1760 }
duke@435 1761 //-------------------------trap_state_add_reason-------------------------------
duke@435 1762 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1763 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1764 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1765 trap_state -= recompile_bit;
duke@435 1766 if (trap_state == DS_REASON_MASK) {
duke@435 1767 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1768 } else if (trap_state == reason) {
duke@435 1769 return trap_state + recompile_bit; // the condition is already true
duke@435 1770 } else if (trap_state == 0) {
duke@435 1771 return reason + recompile_bit; // no condition has yet been true
duke@435 1772 } else {
duke@435 1773 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1774 }
duke@435 1775 }
duke@435 1776 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1777 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1778 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1779 }
duke@435 1780 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1781 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1782 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1783 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1784 }
duke@435 1785 //---------------------------format_trap_state---------------------------------
vlivanov@5725 1786 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1787 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1788 int trap_state) {
duke@435 1789 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1790 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1791 // Re-encode the state from its decoded components.
duke@435 1792 int decoded_state = 0;
duke@435 1793 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1794 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1795 if (recomp_flag)
duke@435 1796 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1797 // If the state re-encodes properly, format it symbolically.
duke@435 1798 // Because this routine is used for debugging and diagnostics,
duke@435 1799 // be robust even if the state is a strange value.
duke@435 1800 size_t len;
duke@435 1801 if (decoded_state != trap_state) {
duke@435 1802 // Random buggy state that doesn't decode??
duke@435 1803 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1804 } else {
duke@435 1805 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1806 trap_reason_name(reason),
duke@435 1807 recomp_flag ? " recompiled" : "");
duke@435 1808 }
duke@435 1809 if (len >= buflen)
duke@435 1810 buf[buflen-1] = '\0';
duke@435 1811 return buf;
duke@435 1812 }
duke@435 1813
duke@435 1814
duke@435 1815 //--------------------------------statics--------------------------------------
duke@435 1816 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1817 = Deoptimization::Action_reinterpret;
duke@435 1818 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1819 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1820 "none",
duke@435 1821 "null_check",
duke@435 1822 "null_assert",
duke@435 1823 "range_check",
duke@435 1824 "class_check",
duke@435 1825 "array_check",
duke@435 1826 "intrinsic",
kvn@1641 1827 "bimorphic",
duke@435 1828 "unloaded",
duke@435 1829 "uninitialized",
duke@435 1830 "unreached",
duke@435 1831 "unhandled",
duke@435 1832 "constraint",
duke@435 1833 "div0_check",
cfang@1607 1834 "age",
kvn@2877 1835 "predicate",
roland@6377 1836 "loop_limit_check",
kvn@6429 1837 "speculate_class_check",
kvn@6429 1838 "rtm_state_change"
duke@435 1839 };
duke@435 1840 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1841 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1842 "none",
duke@435 1843 "maybe_recompile",
duke@435 1844 "reinterpret",
duke@435 1845 "make_not_entrant",
duke@435 1846 "make_not_compilable"
duke@435 1847 };
duke@435 1848
duke@435 1849 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1850 if (reason == Reason_many) return "many";
duke@435 1851 if ((uint)reason < Reason_LIMIT)
duke@435 1852 return _trap_reason_name[reason];
duke@435 1853 static char buf[20];
duke@435 1854 sprintf(buf, "reason%d", reason);
duke@435 1855 return buf;
duke@435 1856 }
duke@435 1857 const char* Deoptimization::trap_action_name(int action) {
duke@435 1858 if ((uint)action < Action_LIMIT)
duke@435 1859 return _trap_action_name[action];
duke@435 1860 static char buf[20];
duke@435 1861 sprintf(buf, "action%d", action);
duke@435 1862 return buf;
duke@435 1863 }
duke@435 1864
vlivanov@5725 1865 // This is used for debugging and diagnostics, including LogFile output.
duke@435 1866 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1867 int trap_request) {
duke@435 1868 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1869 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1870 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1871 size_t len;
duke@435 1872 if (unloaded_class_index < 0) {
duke@435 1873 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1874 reason, action);
duke@435 1875 } else {
duke@435 1876 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1877 reason, action, unloaded_class_index);
duke@435 1878 }
duke@435 1879 if (len >= buflen)
duke@435 1880 buf[buflen-1] = '\0';
duke@435 1881 return buf;
duke@435 1882 }
duke@435 1883
duke@435 1884 juint Deoptimization::_deoptimization_hist
duke@435 1885 [Deoptimization::Reason_LIMIT]
duke@435 1886 [1 + Deoptimization::Action_LIMIT]
duke@435 1887 [Deoptimization::BC_CASE_LIMIT]
duke@435 1888 = {0};
duke@435 1889
duke@435 1890 enum {
duke@435 1891 LSB_BITS = 8,
duke@435 1892 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1893 };
duke@435 1894
duke@435 1895 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1896 Bytecodes::Code bc) {
duke@435 1897 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1898 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1899 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1900 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1901 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1902 juint* bc_counter_addr = NULL;
duke@435 1903 juint bc_counter = 0;
duke@435 1904 // Look for an unused counter, or an exact match to this BC.
duke@435 1905 if (bc != Bytecodes::_illegal) {
duke@435 1906 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1907 juint* counter_addr = &cases[bc_case];
duke@435 1908 juint counter = *counter_addr;
duke@435 1909 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1910 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1911 // this counter is either free or is already devoted to this BC
duke@435 1912 bc_counter_addr = counter_addr;
duke@435 1913 bc_counter = counter | bc;
duke@435 1914 }
duke@435 1915 }
duke@435 1916 }
duke@435 1917 if (bc_counter_addr == NULL) {
duke@435 1918 // Overflow, or no given bytecode.
duke@435 1919 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1920 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1921 }
duke@435 1922 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1923 }
duke@435 1924
duke@435 1925 jint Deoptimization::total_deoptimization_count() {
duke@435 1926 return _deoptimization_hist[Reason_none][0][0];
duke@435 1927 }
duke@435 1928
duke@435 1929 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1930 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1931 return _deoptimization_hist[reason][0][0];
duke@435 1932 }
duke@435 1933
duke@435 1934 void Deoptimization::print_statistics() {
duke@435 1935 juint total = total_deoptimization_count();
duke@435 1936 juint account = total;
duke@435 1937 if (total != 0) {
duke@435 1938 ttyLocker ttyl;
duke@435 1939 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1940 tty->print_cr("Deoptimization traps recorded:");
duke@435 1941 #define PRINT_STAT_LINE(name, r) \
duke@435 1942 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 1943 PRINT_STAT_LINE("total", total);
duke@435 1944 // For each non-zero entry in the histogram, print the reason,
duke@435 1945 // the action, and (if specifically known) the type of bytecode.
duke@435 1946 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 1947 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 1948 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1949 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1950 juint counter = cases[bc_case];
duke@435 1951 if (counter != 0) {
duke@435 1952 char name[1*K];
duke@435 1953 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 1954 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 1955 bc = Bytecodes::_illegal;
duke@435 1956 sprintf(name, "%s/%s/%s",
duke@435 1957 trap_reason_name(reason),
duke@435 1958 trap_action_name(action),
duke@435 1959 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 1960 juint r = counter >> LSB_BITS;
duke@435 1961 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 1962 account -= r;
duke@435 1963 }
duke@435 1964 }
duke@435 1965 }
duke@435 1966 }
duke@435 1967 if (account != 0) {
duke@435 1968 PRINT_STAT_LINE("unaccounted", account);
duke@435 1969 }
duke@435 1970 #undef PRINT_STAT_LINE
duke@435 1971 if (xtty != NULL) xtty->tail("statistics");
duke@435 1972 }
duke@435 1973 }
twisti@2047 1974 #else // COMPILER2 || SHARK
duke@435 1975
duke@435 1976
duke@435 1977 // Stubs for C1 only system.
duke@435 1978 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1979 return false;
duke@435 1980 }
duke@435 1981
duke@435 1982 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1983 return "unknown";
duke@435 1984 }
duke@435 1985
duke@435 1986 void Deoptimization::print_statistics() {
duke@435 1987 // no output
duke@435 1988 }
duke@435 1989
duke@435 1990 void
coleenp@4037 1991 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
duke@435 1992 // no udpate
duke@435 1993 }
duke@435 1994
duke@435 1995 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1996 return 0;
duke@435 1997 }
duke@435 1998
duke@435 1999 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 2000 Bytecodes::Code bc) {
duke@435 2001 // no update
duke@435 2002 }
duke@435 2003
duke@435 2004 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 2005 int trap_state) {
duke@435 2006 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 2007 return buf;
duke@435 2008 }
duke@435 2009
twisti@2047 2010 #endif // COMPILER2 || SHARK

mercurial