src/share/vm/runtime/sharedRuntime.cpp

Fri, 10 Jun 2011 15:08:36 -0700

author
minqi
date
Fri, 10 Jun 2011 15:08:36 -0700
changeset 2964
2a241e764894
parent 2895
167b70ff3abc
child 2950
cba7b5c2d53f
permissions
-rw-r--r--

6941923: RFE: Handling large log files produced by long running Java Applications
Summary: supply optinal flags to realize gc log rotation
Reviewed-by: ysr, jwilhelm

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
duke@435 83 #include <math.h>
duke@435 84
duke@435 85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 87 char*, int, char*, int, char*, int);
duke@435 88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 89 char*, int, char*, int, char*, int);
duke@435 90
never@2895 91 RicochetBlob* SharedRuntime::_ricochet_blob = NULL;
never@2895 92
duke@435 93 // Implementation of SharedRuntime
duke@435 94
duke@435 95 #ifndef PRODUCT
duke@435 96 // For statistics
duke@435 97 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 98 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 99 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 100 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 101 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 102 int SharedRuntime::_implicit_null_throws = 0;
duke@435 103 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 104 int SharedRuntime::_throw_null_ctr = 0;
duke@435 105
duke@435 106 int SharedRuntime::_nof_normal_calls = 0;
duke@435 107 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 108 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 109 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 110 int SharedRuntime::_nof_static_calls = 0;
duke@435 111 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 112 int SharedRuntime::_nof_interface_calls = 0;
duke@435 113 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 114 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 115 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 116 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 117
duke@435 118 int SharedRuntime::_new_instance_ctr=0;
duke@435 119 int SharedRuntime::_new_array_ctr=0;
duke@435 120 int SharedRuntime::_multi1_ctr=0;
duke@435 121 int SharedRuntime::_multi2_ctr=0;
duke@435 122 int SharedRuntime::_multi3_ctr=0;
duke@435 123 int SharedRuntime::_multi4_ctr=0;
duke@435 124 int SharedRuntime::_multi5_ctr=0;
duke@435 125 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 126 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 127 int SharedRuntime::_mon_enter_ctr=0;
duke@435 128 int SharedRuntime::_mon_exit_ctr=0;
duke@435 129 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 130 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 131 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 132 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 133 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 134 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 135 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 136 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 137 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 138 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 139 int SharedRuntime::_find_handler_ctr=0;
duke@435 140 int SharedRuntime::_rethrow_ctr=0;
duke@435 141
duke@435 142 int SharedRuntime::_ICmiss_index = 0;
duke@435 143 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 144 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 145
duke@435 146 void SharedRuntime::trace_ic_miss(address at) {
duke@435 147 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 148 if (_ICmiss_at[i] == at) {
duke@435 149 _ICmiss_count[i]++;
duke@435 150 return;
duke@435 151 }
duke@435 152 }
duke@435 153 int index = _ICmiss_index++;
duke@435 154 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 155 _ICmiss_at[index] = at;
duke@435 156 _ICmiss_count[index] = 1;
duke@435 157 }
duke@435 158
duke@435 159 void SharedRuntime::print_ic_miss_histogram() {
duke@435 160 if (ICMissHistogram) {
duke@435 161 tty->print_cr ("IC Miss Histogram:");
duke@435 162 int tot_misses = 0;
duke@435 163 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 164 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 165 tot_misses += _ICmiss_count[i];
duke@435 166 }
duke@435 167 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 168 }
duke@435 169 }
duke@435 170 #endif // PRODUCT
duke@435 171
ysr@777 172 #ifndef SERIALGC
ysr@777 173
ysr@777 174 // G1 write-barrier pre: executed before a pointer store.
ysr@777 175 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 176 if (orig == NULL) {
ysr@777 177 assert(false, "should be optimized out");
ysr@777 178 return;
ysr@777 179 }
ysr@1280 180 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 181 // store the original value that was in the field reference
ysr@777 182 thread->satb_mark_queue().enqueue(orig);
ysr@777 183 JRT_END
ysr@777 184
ysr@777 185 // G1 write-barrier post: executed after a pointer store.
ysr@777 186 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 187 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 188 JRT_END
ysr@777 189
ysr@777 190 #endif // !SERIALGC
ysr@777 191
duke@435 192
duke@435 193 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 194 return x * y;
duke@435 195 JRT_END
duke@435 196
duke@435 197
duke@435 198 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 199 if (x == min_jlong && y == CONST64(-1)) {
duke@435 200 return x;
duke@435 201 } else {
duke@435 202 return x / y;
duke@435 203 }
duke@435 204 JRT_END
duke@435 205
duke@435 206
duke@435 207 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 208 if (x == min_jlong && y == CONST64(-1)) {
duke@435 209 return 0;
duke@435 210 } else {
duke@435 211 return x % y;
duke@435 212 }
duke@435 213 JRT_END
duke@435 214
duke@435 215
duke@435 216 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 217 const juint float_infinity = 0x7F800000;
duke@435 218 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 219 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 220
duke@435 221 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 222 #ifdef _WIN64
duke@435 223 // 64-bit Windows on amd64 returns the wrong values for
duke@435 224 // infinity operands.
duke@435 225 union { jfloat f; juint i; } xbits, ybits;
duke@435 226 xbits.f = x;
duke@435 227 ybits.f = y;
duke@435 228 // x Mod Infinity == x unless x is infinity
duke@435 229 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 230 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 231 return x;
duke@435 232 }
duke@435 233 #endif
duke@435 234 return ((jfloat)fmod((double)x,(double)y));
duke@435 235 JRT_END
duke@435 236
duke@435 237
duke@435 238 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 239 #ifdef _WIN64
duke@435 240 union { jdouble d; julong l; } xbits, ybits;
duke@435 241 xbits.d = x;
duke@435 242 ybits.d = y;
duke@435 243 // x Mod Infinity == x unless x is infinity
duke@435 244 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 245 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 246 return x;
duke@435 247 }
duke@435 248 #endif
duke@435 249 return ((jdouble)fmod((double)x,(double)y));
duke@435 250 JRT_END
duke@435 251
bobv@2036 252 #ifdef __SOFTFP__
bobv@2036 253 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 254 return x + y;
bobv@2036 255 JRT_END
bobv@2036 256
bobv@2036 257 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 258 return x - y;
bobv@2036 259 JRT_END
bobv@2036 260
bobv@2036 261 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 262 return x * y;
bobv@2036 263 JRT_END
bobv@2036 264
bobv@2036 265 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 266 return x / y;
bobv@2036 267 JRT_END
bobv@2036 268
bobv@2036 269 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 270 return x + y;
bobv@2036 271 JRT_END
bobv@2036 272
bobv@2036 273 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 274 return x - y;
bobv@2036 275 JRT_END
bobv@2036 276
bobv@2036 277 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 278 return x * y;
bobv@2036 279 JRT_END
bobv@2036 280
bobv@2036 281 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 282 return x / y;
bobv@2036 283 JRT_END
bobv@2036 284
bobv@2036 285 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 286 return (jfloat)x;
bobv@2036 287 JRT_END
bobv@2036 288
bobv@2036 289 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 290 return (jdouble)x;
bobv@2036 291 JRT_END
bobv@2036 292
bobv@2036 293 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 294 return (jdouble)x;
bobv@2036 295 JRT_END
bobv@2036 296
bobv@2036 297 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 298 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 299 JRT_END
bobv@2036 300
bobv@2036 301 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 302 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 303 JRT_END
bobv@2036 304
bobv@2036 305 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 306 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 307 JRT_END
bobv@2036 308
bobv@2036 309 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 310 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 311 JRT_END
bobv@2036 312
bobv@2036 313 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 314 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 315 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 316 JRT_END
bobv@2036 317
bobv@2036 318 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 319 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 320 JRT_END
bobv@2036 321
bobv@2036 322 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 323 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 324 JRT_END
bobv@2036 325
bobv@2036 326 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 327 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 328 JRT_END
bobv@2036 329
bobv@2036 330 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 331 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 332 JRT_END
bobv@2036 333
bobv@2036 334 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 335 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 336 JRT_END
bobv@2036 337
bobv@2036 338 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 339 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 340 JRT_END
bobv@2036 341
bobv@2036 342 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 343 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 344 JRT_END
bobv@2036 345
bobv@2036 346 // Intrinsics make gcc generate code for these.
bobv@2036 347 float SharedRuntime::fneg(float f) {
bobv@2036 348 return -f;
bobv@2036 349 }
bobv@2036 350
bobv@2036 351 double SharedRuntime::dneg(double f) {
bobv@2036 352 return -f;
bobv@2036 353 }
bobv@2036 354
bobv@2036 355 #endif // __SOFTFP__
bobv@2036 356
bobv@2036 357 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 358 // Intrinsics make gcc generate code for these.
bobv@2036 359 double SharedRuntime::dabs(double f) {
bobv@2036 360 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 361 }
bobv@2036 362
bobv@2223 363 #endif
bobv@2223 364
bobv@2223 365 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 366 double SharedRuntime::dsqrt(double f) {
bobv@2036 367 return sqrt(f);
bobv@2036 368 }
bobv@2036 369 #endif
duke@435 370
duke@435 371 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 372 if (g_isnan(x))
kvn@943 373 return 0;
kvn@943 374 if (x >= (jfloat) max_jint)
kvn@943 375 return max_jint;
kvn@943 376 if (x <= (jfloat) min_jint)
kvn@943 377 return min_jint;
kvn@943 378 return (jint) x;
duke@435 379 JRT_END
duke@435 380
duke@435 381
duke@435 382 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 383 if (g_isnan(x))
kvn@943 384 return 0;
kvn@943 385 if (x >= (jfloat) max_jlong)
kvn@943 386 return max_jlong;
kvn@943 387 if (x <= (jfloat) min_jlong)
kvn@943 388 return min_jlong;
kvn@943 389 return (jlong) x;
duke@435 390 JRT_END
duke@435 391
duke@435 392
duke@435 393 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 394 if (g_isnan(x))
kvn@943 395 return 0;
kvn@943 396 if (x >= (jdouble) max_jint)
kvn@943 397 return max_jint;
kvn@943 398 if (x <= (jdouble) min_jint)
kvn@943 399 return min_jint;
kvn@943 400 return (jint) x;
duke@435 401 JRT_END
duke@435 402
duke@435 403
duke@435 404 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 405 if (g_isnan(x))
kvn@943 406 return 0;
kvn@943 407 if (x >= (jdouble) max_jlong)
kvn@943 408 return max_jlong;
kvn@943 409 if (x <= (jdouble) min_jlong)
kvn@943 410 return min_jlong;
kvn@943 411 return (jlong) x;
duke@435 412 JRT_END
duke@435 413
duke@435 414
duke@435 415 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 416 return (jfloat)x;
duke@435 417 JRT_END
duke@435 418
duke@435 419
duke@435 420 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 421 return (jfloat)x;
duke@435 422 JRT_END
duke@435 423
duke@435 424
duke@435 425 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 426 return (jdouble)x;
duke@435 427 JRT_END
duke@435 428
duke@435 429 // Exception handling accross interpreter/compiler boundaries
duke@435 430 //
duke@435 431 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 432 // The continuation address is the entry point of the exception handler of the
duke@435 433 // previous frame depending on the return address.
duke@435 434
twisti@1730 435 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 436 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 437
twisti@2603 438 // Reset method handle flag.
twisti@1803 439 thread->set_is_method_handle_return(false);
twisti@1803 440
twisti@2603 441 // The fastest case first
duke@435 442 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 443 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 444 if (nm != NULL) {
twisti@2603 445 // Set flag if return address is a method handle call site.
twisti@2603 446 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 447 // native nmethods don't have exception handlers
twisti@2603 448 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 449 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 450 if (nm->is_deopt_pc(return_address)) {
duke@435 451 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 452 } else {
twisti@2603 453 return nm->exception_begin();
duke@435 454 }
duke@435 455 }
duke@435 456
duke@435 457 // Entry code
duke@435 458 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 459 return StubRoutines::catch_exception_entry();
duke@435 460 }
duke@435 461 // Interpreted code
duke@435 462 if (Interpreter::contains(return_address)) {
duke@435 463 return Interpreter::rethrow_exception_entry();
duke@435 464 }
never@2895 465 // Ricochet frame unwind code
never@2895 466 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
never@2895 467 return SharedRuntime::ricochet_blob()->exception_addr();
never@2895 468 }
duke@435 469
twisti@2603 470 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 471 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 472
duke@435 473 #ifndef PRODUCT
duke@435 474 { ResourceMark rm;
duke@435 475 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 476 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 477 tty->print_cr("b) other problem");
duke@435 478 }
duke@435 479 #endif // PRODUCT
twisti@2603 480
duke@435 481 ShouldNotReachHere();
duke@435 482 return NULL;
duke@435 483 }
duke@435 484
duke@435 485
twisti@1730 486 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 487 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 488 JRT_END
duke@435 489
twisti@1730 490
duke@435 491 address SharedRuntime::get_poll_stub(address pc) {
duke@435 492 address stub;
duke@435 493 // Look up the code blob
duke@435 494 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 495
duke@435 496 // Should be an nmethod
duke@435 497 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 498
duke@435 499 // Look up the relocation information
duke@435 500 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 501 "safepoint polling: type must be poll" );
duke@435 502
duke@435 503 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 504 "Only polling locations are used for safepoint");
duke@435 505
duke@435 506 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 507 if (at_poll_return) {
duke@435 508 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 509 "polling page return stub not created yet");
twisti@2103 510 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 511 } else {
duke@435 512 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 513 "polling page safepoint stub not created yet");
twisti@2103 514 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 515 }
duke@435 516 #ifndef PRODUCT
duke@435 517 if( TraceSafepoint ) {
duke@435 518 char buf[256];
duke@435 519 jio_snprintf(buf, sizeof(buf),
duke@435 520 "... found polling page %s exception at pc = "
duke@435 521 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 522 at_poll_return ? "return" : "loop",
duke@435 523 (intptr_t)pc, (intptr_t)stub);
duke@435 524 tty->print_raw_cr(buf);
duke@435 525 }
duke@435 526 #endif // PRODUCT
duke@435 527 return stub;
duke@435 528 }
duke@435 529
duke@435 530
coleenp@2497 531 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 532 assert(caller.is_interpreted_frame(), "");
duke@435 533 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 534 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 535 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 536 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 537 return result;
duke@435 538 }
duke@435 539
duke@435 540
duke@435 541 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 542 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 543 vframeStream vfst(thread, true);
duke@435 544 methodHandle method = methodHandle(thread, vfst.method());
duke@435 545 address bcp = method()->bcp_from(vfst.bci());
duke@435 546 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 547 }
duke@435 548 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 549 }
duke@435 550
coleenp@2497 551 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 552 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 553 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 554 }
duke@435 555
dcubed@1045 556 // The interpreter code to call this tracing function is only
dcubed@1045 557 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 558 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 559 // to modify the compilers to generate calls to this function.
dcubed@1045 560 //
dcubed@1045 561 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 562 JavaThread* thread, methodOopDesc* method))
dcubed@1045 563 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 564
dcubed@1045 565 if (method->is_obsolete()) {
dcubed@1045 566 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 567 // an error. Our method could have been redefined just after we
dcubed@1045 568 // fetched the methodOop from the constant pool.
dcubed@1045 569
dcubed@1045 570 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 571 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 572 ("calling obsolete method '%s'",
dcubed@1045 573 method->name_and_sig_as_C_string()));
dcubed@1045 574 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 575 // this option is provided to debug calls to obsolete methods
dcubed@1045 576 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 577 }
dcubed@1045 578 }
dcubed@1045 579 return 0;
dcubed@1045 580 JRT_END
dcubed@1045 581
duke@435 582 // ret_pc points into caller; we are returning caller's exception handler
duke@435 583 // for given exception
duke@435 584 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 585 bool force_unwind, bool top_frame_only) {
duke@435 586 assert(nm != NULL, "must exist");
duke@435 587 ResourceMark rm;
duke@435 588
duke@435 589 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 590 // determine handler bci, if any
duke@435 591 EXCEPTION_MARK;
duke@435 592
duke@435 593 int handler_bci = -1;
duke@435 594 int scope_depth = 0;
duke@435 595 if (!force_unwind) {
duke@435 596 int bci = sd->bci();
duke@435 597 do {
duke@435 598 bool skip_scope_increment = false;
duke@435 599 // exception handler lookup
duke@435 600 KlassHandle ek (THREAD, exception->klass());
duke@435 601 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 602 if (HAS_PENDING_EXCEPTION) {
duke@435 603 // We threw an exception while trying to find the exception handler.
duke@435 604 // Transfer the new exception to the exception handle which will
duke@435 605 // be set into thread local storage, and do another lookup for an
duke@435 606 // exception handler for this exception, this time starting at the
duke@435 607 // BCI of the exception handler which caused the exception to be
duke@435 608 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 609 // argument to ensure that the correct exception is thrown (4870175).
duke@435 610 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 611 CLEAR_PENDING_EXCEPTION;
duke@435 612 if (handler_bci >= 0) {
duke@435 613 bci = handler_bci;
duke@435 614 handler_bci = -1;
duke@435 615 skip_scope_increment = true;
duke@435 616 }
duke@435 617 }
duke@435 618 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 619 sd = sd->sender();
duke@435 620 if (sd != NULL) {
duke@435 621 bci = sd->bci();
duke@435 622 }
duke@435 623 ++scope_depth;
duke@435 624 }
duke@435 625 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 626 }
duke@435 627
duke@435 628 // found handling method => lookup exception handler
twisti@2103 629 int catch_pco = ret_pc - nm->code_begin();
duke@435 630
duke@435 631 ExceptionHandlerTable table(nm);
duke@435 632 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 633 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 634 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 635 // to materialize its exceptions without committing to the exact
duke@435 636 // routing of exceptions. In particular this is needed for adding
duke@435 637 // a synthethic handler to unlock monitors when inlining
duke@435 638 // synchonized methods since the unlock path isn't represented in
duke@435 639 // the bytecodes.
duke@435 640 t = table.entry_for(catch_pco, -1, 0);
duke@435 641 }
duke@435 642
never@1813 643 #ifdef COMPILER1
never@1813 644 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 645 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 646 return nm->unwind_handler_begin();
never@1813 647 }
never@1813 648 #endif
never@1813 649
duke@435 650 if (t == NULL) {
duke@435 651 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 652 tty->print_cr(" Exception:");
duke@435 653 exception->print();
duke@435 654 tty->cr();
duke@435 655 tty->print_cr(" Compiled exception table :");
duke@435 656 table.print();
duke@435 657 nm->print_code();
duke@435 658 guarantee(false, "missing exception handler");
duke@435 659 return NULL;
duke@435 660 }
duke@435 661
twisti@2103 662 return nm->code_begin() + t->pco();
duke@435 663 }
duke@435 664
duke@435 665 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 666 // These errors occur only at call sites
duke@435 667 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 668 JRT_END
duke@435 669
dcubed@451 670 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 671 // These errors occur only at call sites
dcubed@451 672 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 673 JRT_END
dcubed@451 674
duke@435 675 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 676 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 677 JRT_END
duke@435 678
duke@435 679 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 680 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 681 JRT_END
duke@435 682
duke@435 683 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 684 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 685 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 686 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 687 JRT_END
duke@435 688
duke@435 689 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 690 // We avoid using the normal exception construction in this case because
duke@435 691 // it performs an upcall to Java, and we're already out of stack space.
duke@435 692 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 693 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 694 Handle exception (thread, exception_oop);
duke@435 695 if (StackTraceInThrowable) {
duke@435 696 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 697 }
duke@435 698 throw_and_post_jvmti_exception(thread, exception);
duke@435 699 JRT_END
duke@435 700
duke@435 701 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 702 address pc,
duke@435 703 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 704 {
duke@435 705 address target_pc = NULL;
duke@435 706
duke@435 707 if (Interpreter::contains(pc)) {
duke@435 708 #ifdef CC_INTERP
duke@435 709 // C++ interpreter doesn't throw implicit exceptions
duke@435 710 ShouldNotReachHere();
duke@435 711 #else
duke@435 712 switch (exception_kind) {
duke@435 713 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 714 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 715 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 716 default: ShouldNotReachHere();
duke@435 717 }
duke@435 718 #endif // !CC_INTERP
duke@435 719 } else {
duke@435 720 switch (exception_kind) {
duke@435 721 case STACK_OVERFLOW: {
duke@435 722 // Stack overflow only occurs upon frame setup; the callee is
duke@435 723 // going to be unwound. Dispatch to a shared runtime stub
duke@435 724 // which will cause the StackOverflowError to be fabricated
duke@435 725 // and processed.
duke@435 726 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 727 if (thread->deopt_mark() != NULL) {
duke@435 728 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 729 }
duke@435 730 return StubRoutines::throw_StackOverflowError_entry();
duke@435 731 }
duke@435 732
duke@435 733 case IMPLICIT_NULL: {
duke@435 734 if (VtableStubs::contains(pc)) {
duke@435 735 // We haven't yet entered the callee frame. Fabricate an
duke@435 736 // exception and begin dispatching it in the caller. Since
duke@435 737 // the caller was at a call site, it's safe to destroy all
duke@435 738 // caller-saved registers, as these entry points do.
duke@435 739 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 740
poonam@900 741 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 742 if (vt_stub == NULL) return NULL;
poonam@900 743
duke@435 744 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 745 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 746 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 747 } else {
duke@435 748 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 749 }
duke@435 750 } else {
duke@435 751 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 752
poonam@900 753 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 754 if (cb == NULL) return NULL;
duke@435 755
duke@435 756 // Exception happened in CodeCache. Must be either:
duke@435 757 // 1. Inline-cache check in C2I handler blob,
duke@435 758 // 2. Inline-cache check in nmethod, or
duke@435 759 // 3. Implict null exception in nmethod
duke@435 760
duke@435 761 if (!cb->is_nmethod()) {
twisti@1734 762 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 763 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 764 // There is no handler here, so we will simply unwind.
duke@435 765 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 766 }
duke@435 767
duke@435 768 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 769 nmethod* nm = (nmethod*)cb;
duke@435 770 if (nm->inlinecache_check_contains(pc)) {
duke@435 771 // exception happened inside inline-cache check code
duke@435 772 // => the nmethod is not yet active (i.e., the frame
duke@435 773 // is not set up yet) => use return address pushed by
duke@435 774 // caller => don't push another return address
duke@435 775 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 776 }
duke@435 777
duke@435 778 #ifndef PRODUCT
duke@435 779 _implicit_null_throws++;
duke@435 780 #endif
duke@435 781 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 782 // If there's an unexpected fault, target_pc might be NULL,
never@1685 783 // in which case we want to fall through into the normal
never@1685 784 // error handling code.
duke@435 785 }
duke@435 786
duke@435 787 break; // fall through
duke@435 788 }
duke@435 789
duke@435 790
duke@435 791 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 792 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 793 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 794 #ifndef PRODUCT
duke@435 795 _implicit_div0_throws++;
duke@435 796 #endif
duke@435 797 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 798 // If there's an unexpected fault, target_pc might be NULL,
never@1685 799 // in which case we want to fall through into the normal
never@1685 800 // error handling code.
duke@435 801 break; // fall through
duke@435 802 }
duke@435 803
duke@435 804 default: ShouldNotReachHere();
duke@435 805 }
duke@435 806
duke@435 807 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 808
duke@435 809 // for AbortVMOnException flag
duke@435 810 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 811 if (exception_kind == IMPLICIT_NULL) {
duke@435 812 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 813 } else {
duke@435 814 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 815 }
duke@435 816 return target_pc;
duke@435 817 }
duke@435 818
duke@435 819 ShouldNotReachHere();
duke@435 820 return NULL;
duke@435 821 }
duke@435 822
duke@435 823
duke@435 824 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 825 {
duke@435 826 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 827 }
duke@435 828 JNI_END
duke@435 829
duke@435 830
duke@435 831 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 832 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 833 }
duke@435 834
duke@435 835
duke@435 836 #ifndef PRODUCT
duke@435 837 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 838 const frame f = thread->last_frame();
duke@435 839 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 840 #ifndef PRODUCT
duke@435 841 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 842 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 843 #endif // !PRODUCT
duke@435 844 return preserve_this_value;
duke@435 845 JRT_END
duke@435 846 #endif // !PRODUCT
duke@435 847
duke@435 848
duke@435 849 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 850 os::yield_all(attempts);
duke@435 851 JRT_END
duke@435 852
duke@435 853
duke@435 854 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 855 assert(obj->is_oop(), "must be a valid oop");
duke@435 856 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 857 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 858 JRT_END
duke@435 859
duke@435 860
duke@435 861 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 862 if (thread != NULL) {
duke@435 863 if (thread->is_Java_thread()) {
duke@435 864 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 865 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 866 }
duke@435 867 }
duke@435 868 return 0;
duke@435 869 }
duke@435 870
duke@435 871 /**
duke@435 872 * This function ought to be a void function, but cannot be because
duke@435 873 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 874 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 875 */
duke@435 876 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 877 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 878 }
duke@435 879
duke@435 880 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 881 assert(DTraceAllocProbes, "wrong call");
duke@435 882 Klass* klass = o->blueprint();
duke@435 883 int size = o->size();
coleenp@2497 884 Symbol* name = klass->name();
duke@435 885 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 886 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 887 return 0;
duke@435 888 }
duke@435 889
duke@435 890 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 891 JavaThread* thread, methodOopDesc* method))
duke@435 892 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 893 Symbol* kname = method->klass_name();
coleenp@2497 894 Symbol* name = method->name();
coleenp@2497 895 Symbol* sig = method->signature();
duke@435 896 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 897 kname->bytes(), kname->utf8_length(),
duke@435 898 name->bytes(), name->utf8_length(),
duke@435 899 sig->bytes(), sig->utf8_length());
duke@435 900 return 0;
duke@435 901 JRT_END
duke@435 902
duke@435 903 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 904 JavaThread* thread, methodOopDesc* method))
duke@435 905 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 906 Symbol* kname = method->klass_name();
coleenp@2497 907 Symbol* name = method->name();
coleenp@2497 908 Symbol* sig = method->signature();
duke@435 909 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 910 kname->bytes(), kname->utf8_length(),
duke@435 911 name->bytes(), name->utf8_length(),
duke@435 912 sig->bytes(), sig->utf8_length());
duke@435 913 return 0;
duke@435 914 JRT_END
duke@435 915
duke@435 916
duke@435 917 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 918 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 919 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 920 // vtable updates, etc. Caller frame must be compiled.
duke@435 921 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 922 ResourceMark rm(THREAD);
duke@435 923
duke@435 924 // last java frame on stack (which includes native call frames)
duke@435 925 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 926
duke@435 927 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 928 }
duke@435 929
duke@435 930
duke@435 931 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 932 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 933 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 934 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 935 vframeStream& vfst,
duke@435 936 Bytecodes::Code& bc,
duke@435 937 CallInfo& callinfo, TRAPS) {
duke@435 938 Handle receiver;
duke@435 939 Handle nullHandle; //create a handy null handle for exception returns
duke@435 940
duke@435 941 assert(!vfst.at_end(), "Java frame must exist");
duke@435 942
duke@435 943 // Find caller and bci from vframe
duke@435 944 methodHandle caller (THREAD, vfst.method());
duke@435 945 int bci = vfst.bci();
duke@435 946
duke@435 947 // Find bytecode
never@2462 948 Bytecode_invoke bytecode(caller, bci);
never@2462 949 bc = bytecode.java_code();
never@2462 950 int bytecode_index = bytecode.index();
duke@435 951
duke@435 952 // Find receiver for non-static call
duke@435 953 if (bc != Bytecodes::_invokestatic) {
duke@435 954 // This register map must be update since we need to find the receiver for
duke@435 955 // compiled frames. The receiver might be in a register.
duke@435 956 RegisterMap reg_map2(thread);
duke@435 957 frame stubFrame = thread->last_frame();
duke@435 958 // Caller-frame is a compiled frame
duke@435 959 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 960
never@2462 961 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 962 if (callee.is_null()) {
duke@435 963 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 964 }
duke@435 965 // Retrieve from a compiled argument list
duke@435 966 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 967
duke@435 968 if (receiver.is_null()) {
duke@435 969 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 970 }
duke@435 971 }
duke@435 972
duke@435 973 // Resolve method. This is parameterized by bytecode.
duke@435 974 constantPoolHandle constants (THREAD, caller->constants());
duke@435 975 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 976 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 977
duke@435 978 #ifdef ASSERT
duke@435 979 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 980 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 981 assert(receiver.not_null(), "should have thrown exception");
duke@435 982 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 983 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 984 // klass is already loaded
duke@435 985 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 986 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 987 if (receiver_klass->oop_is_instance()) {
duke@435 988 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 989 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 990 receiver_klass.print();
duke@435 991 }
duke@435 992 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 993 }
duke@435 994 }
duke@435 995 #endif
duke@435 996
duke@435 997 return receiver;
duke@435 998 }
duke@435 999
duke@435 1000 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1001 ResourceMark rm(THREAD);
duke@435 1002 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1003 // exist on the stack since last JavaCall. If not, we need
duke@435 1004 // to get the target method from the JavaCall wrapper.
duke@435 1005 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1006 methodHandle callee_method;
duke@435 1007 if (vfst.at_end()) {
duke@435 1008 // No Java frames were found on stack since we did the JavaCall.
duke@435 1009 // Hence the stack can only contain an entry_frame. We need to
duke@435 1010 // find the target method from the stub frame.
duke@435 1011 RegisterMap reg_map(thread, false);
duke@435 1012 frame fr = thread->last_frame();
duke@435 1013 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1014 fr = fr.sender(&reg_map);
duke@435 1015 assert(fr.is_entry_frame(), "must be");
duke@435 1016 // fr is now pointing to the entry frame.
duke@435 1017 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1018 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1019 } else {
duke@435 1020 Bytecodes::Code bc;
duke@435 1021 CallInfo callinfo;
duke@435 1022 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1023 callee_method = callinfo.selected_method();
duke@435 1024 }
duke@435 1025 assert(callee_method()->is_method(), "must be");
duke@435 1026 return callee_method;
duke@435 1027 }
duke@435 1028
duke@435 1029 // Resolves a call.
duke@435 1030 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1031 bool is_virtual,
duke@435 1032 bool is_optimized, TRAPS) {
duke@435 1033 methodHandle callee_method;
duke@435 1034 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1035 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1036 int retry_count = 0;
duke@435 1037 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1038 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1039 // If has a pending exception then there is no need to re-try to
duke@435 1040 // resolve this method.
duke@435 1041 // If the method has been redefined, we need to try again.
duke@435 1042 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1043 // require that java.lang.Object has been updated.
duke@435 1044
duke@435 1045 // It is very unlikely that method is redefined more than 100 times
duke@435 1046 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1047 // means then there could be a bug here.
duke@435 1048 guarantee((retry_count++ < 100),
duke@435 1049 "Could not resolve to latest version of redefined method");
duke@435 1050 // method is redefined in the middle of resolve so re-try.
duke@435 1051 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1052 }
duke@435 1053 }
duke@435 1054 return callee_method;
duke@435 1055 }
duke@435 1056
duke@435 1057 // Resolves a call. The compilers generate code for calls that go here
duke@435 1058 // and are patched with the real destination of the call.
duke@435 1059 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1060 bool is_virtual,
duke@435 1061 bool is_optimized, TRAPS) {
duke@435 1062
duke@435 1063 ResourceMark rm(thread);
duke@435 1064 RegisterMap cbl_map(thread, false);
duke@435 1065 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1066
twisti@1730 1067 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1068 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1069 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1070 // make sure caller is not getting deoptimized
duke@435 1071 // and removed before we are done with it.
duke@435 1072 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1073 nmethodLocker caller_lock(caller_nm);
duke@435 1074
duke@435 1075
duke@435 1076 // determine call info & receiver
duke@435 1077 // note: a) receiver is NULL for static calls
duke@435 1078 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1079 CallInfo call_info;
duke@435 1080 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1081 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1082 call_info, CHECK_(methodHandle()));
duke@435 1083 methodHandle callee_method = call_info.selected_method();
duke@435 1084
duke@435 1085 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1086 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1087
duke@435 1088 #ifndef PRODUCT
duke@435 1089 // tracing/debugging/statistics
duke@435 1090 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1091 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1092 (&_resolve_static_ctr);
duke@435 1093 Atomic::inc(addr);
duke@435 1094
duke@435 1095 if (TraceCallFixup) {
duke@435 1096 ResourceMark rm(thread);
duke@435 1097 tty->print("resolving %s%s (%s) call to",
duke@435 1098 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1099 Bytecodes::name(invoke_code));
duke@435 1100 callee_method->print_short_name(tty);
duke@435 1101 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1102 }
duke@435 1103 #endif
duke@435 1104
twisti@1730 1105 // JSR 292
twisti@1730 1106 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1107 // site must be a MethodHandle call site.
twisti@1730 1108 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1109 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1110 }
twisti@1730 1111
duke@435 1112 // Compute entry points. This might require generation of C2I converter
duke@435 1113 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1114 // computation of the entry points is independent of patching the call. We
duke@435 1115 // always return the entry-point, but we only patch the stub if the call has
duke@435 1116 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1117 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1118 // virtual this is just a destination address.
duke@435 1119
duke@435 1120 StaticCallInfo static_call_info;
duke@435 1121 CompiledICInfo virtual_call_info;
duke@435 1122
duke@435 1123 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1124 // we are done patching the code.
twisti@1730 1125 nmethod* callee_nm = callee_method->code();
twisti@1730 1126 nmethodLocker nl_callee(callee_nm);
duke@435 1127 #ifdef ASSERT
twisti@1730 1128 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1129 #endif
duke@435 1130
duke@435 1131 if (is_virtual) {
duke@435 1132 assert(receiver.not_null(), "sanity check");
duke@435 1133 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1134 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1135 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1136 is_optimized, static_bound, virtual_call_info,
duke@435 1137 CHECK_(methodHandle()));
duke@435 1138 } else {
duke@435 1139 // static call
duke@435 1140 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1141 }
duke@435 1142
duke@435 1143 // grab lock, check for deoptimization and potentially patch caller
duke@435 1144 {
duke@435 1145 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1146
duke@435 1147 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1148 // don't update call site and let the caller retry.
duke@435 1149
duke@435 1150 if (!callee_method->is_old()) {
duke@435 1151 #ifdef ASSERT
duke@435 1152 // We must not try to patch to jump to an already unloaded method.
duke@435 1153 if (dest_entry_point != 0) {
duke@435 1154 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1155 "should not unload nmethod while locked");
duke@435 1156 }
duke@435 1157 #endif
duke@435 1158 if (is_virtual) {
duke@435 1159 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1160 if (inline_cache->is_clean()) {
duke@435 1161 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1162 }
duke@435 1163 } else {
duke@435 1164 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1165 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1166 }
duke@435 1167 }
duke@435 1168
duke@435 1169 } // unlock CompiledIC_lock
duke@435 1170
duke@435 1171 return callee_method;
duke@435 1172 }
duke@435 1173
duke@435 1174
duke@435 1175 // Inline caches exist only in compiled code
duke@435 1176 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1177 #ifdef ASSERT
duke@435 1178 RegisterMap reg_map(thread, false);
duke@435 1179 frame stub_frame = thread->last_frame();
duke@435 1180 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1181 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1182 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
never@2895 1183 assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
duke@435 1184 #endif /* ASSERT */
duke@435 1185
duke@435 1186 methodHandle callee_method;
duke@435 1187 JRT_BLOCK
duke@435 1188 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1189 // Return methodOop through TLS
duke@435 1190 thread->set_vm_result(callee_method());
duke@435 1191 JRT_BLOCK_END
duke@435 1192 // return compiled code entry point after potential safepoints
duke@435 1193 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1194 return callee_method->verified_code_entry();
duke@435 1195 JRT_END
duke@435 1196
duke@435 1197
duke@435 1198 // Handle call site that has been made non-entrant
duke@435 1199 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1200 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1201 // as we race to call it. We don't want to take a safepoint if
duke@435 1202 // the caller was interpreted because the caller frame will look
duke@435 1203 // interpreted to the stack walkers and arguments are now
duke@435 1204 // "compiled" so it is much better to make this transition
duke@435 1205 // invisible to the stack walking code. The i2c path will
duke@435 1206 // place the callee method in the callee_target. It is stashed
duke@435 1207 // there because if we try and find the callee by normal means a
duke@435 1208 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1209 RegisterMap reg_map(thread, false);
duke@435 1210 frame stub_frame = thread->last_frame();
duke@435 1211 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1212 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1213
twisti@1570 1214 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1215 // simply redispatch to the callee_target.
twisti@1570 1216 address sender_pc = caller_frame.pc();
twisti@1570 1217 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1218 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1219 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1220 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1221 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1222 // adapter.
twisti@1639 1223 methodOop callee = thread->callee_target();
twisti@1639 1224 if (callee != NULL) {
twisti@1639 1225 assert(callee->is_method(), "sanity");
twisti@1639 1226 is_mh_invoke_via_adapter = true;
twisti@1639 1227 }
twisti@1639 1228 }
twisti@1570 1229
twisti@1570 1230 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1231 caller_frame.is_entry_frame() ||
never@2895 1232 caller_frame.is_ricochet_frame() ||
twisti@1639 1233 is_mh_invoke_via_adapter) {
duke@435 1234 methodOop callee = thread->callee_target();
duke@435 1235 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1236 thread->set_vm_result(callee);
duke@435 1237 thread->set_callee_target(NULL);
duke@435 1238 return callee->get_c2i_entry();
duke@435 1239 }
duke@435 1240
duke@435 1241 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1242 methodHandle callee_method;
duke@435 1243 JRT_BLOCK
duke@435 1244 // Force resolving of caller (if we called from compiled frame)
duke@435 1245 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1246 thread->set_vm_result(callee_method());
duke@435 1247 JRT_BLOCK_END
duke@435 1248 // return compiled code entry point after potential safepoints
duke@435 1249 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1250 return callee_method->verified_code_entry();
duke@435 1251 JRT_END
duke@435 1252
duke@435 1253
duke@435 1254 // resolve a static call and patch code
duke@435 1255 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1256 methodHandle callee_method;
duke@435 1257 JRT_BLOCK
duke@435 1258 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1259 thread->set_vm_result(callee_method());
duke@435 1260 JRT_BLOCK_END
duke@435 1261 // return compiled code entry point after potential safepoints
duke@435 1262 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1263 return callee_method->verified_code_entry();
duke@435 1264 JRT_END
duke@435 1265
duke@435 1266
duke@435 1267 // resolve virtual call and update inline cache to monomorphic
duke@435 1268 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1269 methodHandle callee_method;
duke@435 1270 JRT_BLOCK
duke@435 1271 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1272 thread->set_vm_result(callee_method());
duke@435 1273 JRT_BLOCK_END
duke@435 1274 // return compiled code entry point after potential safepoints
duke@435 1275 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1276 return callee_method->verified_code_entry();
duke@435 1277 JRT_END
duke@435 1278
duke@435 1279
duke@435 1280 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1281 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1282 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1283 methodHandle callee_method;
duke@435 1284 JRT_BLOCK
duke@435 1285 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1286 thread->set_vm_result(callee_method());
duke@435 1287 JRT_BLOCK_END
duke@435 1288 // return compiled code entry point after potential safepoints
duke@435 1289 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1290 return callee_method->verified_code_entry();
duke@435 1291 JRT_END
duke@435 1292
duke@435 1293
duke@435 1294
duke@435 1295
duke@435 1296
duke@435 1297 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1298 ResourceMark rm(thread);
duke@435 1299 CallInfo call_info;
duke@435 1300 Bytecodes::Code bc;
duke@435 1301
duke@435 1302 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1303 // receivers for non-static calls
duke@435 1304 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1305 CHECK_(methodHandle()));
duke@435 1306 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1307 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1308 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1309 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1310 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1311 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1312 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1313 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1314 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1315 //
duke@435 1316 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1317 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1318 if (TraceCallFixup) {
duke@435 1319 RegisterMap reg_map(thread, false);
duke@435 1320 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1321 ResourceMark rm(thread);
duke@435 1322 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1323 callee_method->print_short_name(tty);
duke@435 1324 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1325 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1326 }
duke@435 1327 return callee_method;
duke@435 1328 }
duke@435 1329
duke@435 1330 methodHandle callee_method = call_info.selected_method();
duke@435 1331
duke@435 1332 bool should_be_mono = false;
duke@435 1333
duke@435 1334 #ifndef PRODUCT
duke@435 1335 Atomic::inc(&_ic_miss_ctr);
duke@435 1336
duke@435 1337 // Statistics & Tracing
duke@435 1338 if (TraceCallFixup) {
duke@435 1339 ResourceMark rm(thread);
duke@435 1340 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1341 callee_method->print_short_name(tty);
duke@435 1342 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1343 }
duke@435 1344
duke@435 1345 if (ICMissHistogram) {
duke@435 1346 MutexLocker m(VMStatistic_lock);
duke@435 1347 RegisterMap reg_map(thread, false);
duke@435 1348 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1349 // produce statistics under the lock
duke@435 1350 trace_ic_miss(f.pc());
duke@435 1351 }
duke@435 1352 #endif
duke@435 1353
duke@435 1354 // install an event collector so that when a vtable stub is created the
duke@435 1355 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1356 // event can't be posted when the stub is created as locks are held
duke@435 1357 // - instead the event will be deferred until the event collector goes
duke@435 1358 // out of scope.
duke@435 1359 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1360
duke@435 1361 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1362 // made non-entrant or we are called from interpreted.
duke@435 1363 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1364 RegisterMap reg_map(thread, false);
duke@435 1365 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1366 CodeBlob* cb = caller_frame.cb();
duke@435 1367 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1368 // Not a non-entrant nmethod, so find inline_cache
duke@435 1369 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1370 bool should_be_mono = false;
duke@435 1371 if (inline_cache->is_optimized()) {
duke@435 1372 if (TraceCallFixup) {
duke@435 1373 ResourceMark rm(thread);
duke@435 1374 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1375 callee_method->print_short_name(tty);
duke@435 1376 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1377 }
duke@435 1378 should_be_mono = true;
duke@435 1379 } else {
duke@435 1380 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1381 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1382
duke@435 1383 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1384 // This isn't a real miss. We must have seen that compiled code
duke@435 1385 // is now available and we want the call site converted to a
duke@435 1386 // monomorphic compiled call site.
duke@435 1387 // We can't assert for callee_method->code() != NULL because it
duke@435 1388 // could have been deoptimized in the meantime
duke@435 1389 if (TraceCallFixup) {
duke@435 1390 ResourceMark rm(thread);
duke@435 1391 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1392 callee_method->print_short_name(tty);
duke@435 1393 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1394 }
duke@435 1395 should_be_mono = true;
duke@435 1396 }
duke@435 1397 }
duke@435 1398 }
duke@435 1399
duke@435 1400 if (should_be_mono) {
duke@435 1401
duke@435 1402 // We have a path that was monomorphic but was going interpreted
duke@435 1403 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1404 // by using a new icBuffer.
duke@435 1405 CompiledICInfo info;
duke@435 1406 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1407 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1408 receiver_klass,
duke@435 1409 inline_cache->is_optimized(),
duke@435 1410 false,
duke@435 1411 info, CHECK_(methodHandle()));
duke@435 1412 inline_cache->set_to_monomorphic(info);
duke@435 1413 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1414 // Change to megamorphic
duke@435 1415 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1416 } else {
duke@435 1417 // Either clean or megamorphic
duke@435 1418 }
duke@435 1419 }
duke@435 1420 } // Release CompiledIC_lock
duke@435 1421
duke@435 1422 return callee_method;
duke@435 1423 }
duke@435 1424
duke@435 1425 //
duke@435 1426 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1427 // This routines handles both virtual call sites, optimized virtual call
duke@435 1428 // sites, and static call sites. Typically used to change a call sites
duke@435 1429 // destination from compiled to interpreted.
duke@435 1430 //
duke@435 1431 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1432 ResourceMark rm(thread);
duke@435 1433 RegisterMap reg_map(thread, false);
duke@435 1434 frame stub_frame = thread->last_frame();
duke@435 1435 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1436 frame caller = stub_frame.sender(&reg_map);
duke@435 1437
duke@435 1438 // Do nothing if the frame isn't a live compiled frame.
duke@435 1439 // nmethod could be deoptimized by the time we get here
duke@435 1440 // so no update to the caller is needed.
duke@435 1441
duke@435 1442 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1443
duke@435 1444 address pc = caller.pc();
duke@435 1445 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1446
duke@435 1447 // Default call_addr is the location of the "basic" call.
duke@435 1448 // Determine the address of the call we a reresolving. With
duke@435 1449 // Inline Caches we will always find a recognizable call.
duke@435 1450 // With Inline Caches disabled we may or may not find a
duke@435 1451 // recognizable call. We will always find a call for static
duke@435 1452 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1453 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1454 //
duke@435 1455 // With Inline Caches disabled we can get here for a virtual call
duke@435 1456 // for two reasons:
duke@435 1457 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1458 // will run us thru handle_wrong_method and we will eventually
duke@435 1459 // end up in the interpreter to throw the ame.
duke@435 1460 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1461 // call and between the time we fetch the entry address and
duke@435 1462 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1463 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1464 //
duke@435 1465 address call_addr = NULL;
duke@435 1466 {
duke@435 1467 // Get call instruction under lock because another thread may be
duke@435 1468 // busy patching it.
duke@435 1469 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1470 // Location of call instruction
duke@435 1471 if (NativeCall::is_call_before(pc)) {
duke@435 1472 NativeCall *ncall = nativeCall_before(pc);
duke@435 1473 call_addr = ncall->instruction_address();
duke@435 1474 }
duke@435 1475 }
duke@435 1476
duke@435 1477 // Check for static or virtual call
duke@435 1478 bool is_static_call = false;
duke@435 1479 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1480 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1481 // this is done with it.
duke@435 1482 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1483 nmethodLocker nmlock(caller_nm);
duke@435 1484
duke@435 1485 if (call_addr != NULL) {
duke@435 1486 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1487 int ret = iter.next(); // Get item
duke@435 1488 if (ret) {
duke@435 1489 assert(iter.addr() == call_addr, "must find call");
duke@435 1490 if (iter.type() == relocInfo::static_call_type) {
duke@435 1491 is_static_call = true;
duke@435 1492 } else {
duke@435 1493 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1494 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1495 , "unexpected relocInfo. type");
duke@435 1496 }
duke@435 1497 } else {
duke@435 1498 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1499 }
duke@435 1500
duke@435 1501 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1502 // than directly setting it to the new destination, since resolving of calls
duke@435 1503 // is always done through the same code path. (experience shows that it
duke@435 1504 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1505 // to a wrong method). It should not be performance critical, since the
duke@435 1506 // resolve is only done once.
duke@435 1507
duke@435 1508 MutexLocker ml(CompiledIC_lock);
duke@435 1509 //
duke@435 1510 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1511 // as it is a waste of time
duke@435 1512 //
duke@435 1513 if (caller_nm->is_in_use()) {
duke@435 1514 if (is_static_call) {
duke@435 1515 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1516 ssc->set_to_clean();
duke@435 1517 } else {
duke@435 1518 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1519 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1520 inline_cache->set_to_clean();
duke@435 1521 }
duke@435 1522 }
duke@435 1523 }
duke@435 1524
duke@435 1525 }
duke@435 1526
duke@435 1527 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1528
duke@435 1529
duke@435 1530 #ifndef PRODUCT
duke@435 1531 Atomic::inc(&_wrong_method_ctr);
duke@435 1532
duke@435 1533 if (TraceCallFixup) {
duke@435 1534 ResourceMark rm(thread);
duke@435 1535 tty->print("handle_wrong_method reresolving call to");
duke@435 1536 callee_method->print_short_name(tty);
duke@435 1537 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1538 }
duke@435 1539 #endif
duke@435 1540
duke@435 1541 return callee_method;
duke@435 1542 }
duke@435 1543
duke@435 1544 // ---------------------------------------------------------------------------
duke@435 1545 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1546 // we were called by a compiled method. However we could have lost a race
duke@435 1547 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1548 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1549 // so he no longer calls into the interpreter.
duke@435 1550 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1551 methodOop moop(method);
duke@435 1552
duke@435 1553 address entry_point = moop->from_compiled_entry();
duke@435 1554
duke@435 1555 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1556 // been resolved yet, in which case this function will be called from
duke@435 1557 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1558 // request for a fixup.
duke@435 1559 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1560 // is now back to the i2c in that case we don't need to patch and if
duke@435 1561 // we did we'd leap into space because the callsite needs to use
duke@435 1562 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1563 // ask me how I know this...
duke@435 1564
duke@435 1565 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1566 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1567 return;
twisti@1640 1568 }
twisti@1640 1569
twisti@1640 1570 // The check above makes sure this is a nmethod.
twisti@1640 1571 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1572 assert(nm, "must be");
twisti@1640 1573
twisti@1640 1574 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1575 // to implement MethodHandle actions.
twisti@1640 1576 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1577 return;
duke@435 1578 }
duke@435 1579
duke@435 1580 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1581 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1582 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1583 // call site with the same old data. clear_code will set code() to NULL
duke@435 1584 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1585 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1586 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1587 // and patch the code with the same old data. Asi es la vida.
duke@435 1588
duke@435 1589 if (moop->code() == NULL) return;
duke@435 1590
twisti@1640 1591 if (nm->is_in_use()) {
duke@435 1592
duke@435 1593 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1594 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1595 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1596 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1597 //
duke@435 1598 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1599 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1600 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1601 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1602 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1603 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1604 // for the rest of its life! Just another racing bug in the life of
duke@435 1605 // fixup_callers_callsite ...
duke@435 1606 //
twisti@1918 1607 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1608 iter.next();
duke@435 1609 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1610 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1611 if ( typ != relocInfo::static_call_type &&
duke@435 1612 typ != relocInfo::opt_virtual_call_type &&
duke@435 1613 typ != relocInfo::static_stub_type) {
duke@435 1614 return;
duke@435 1615 }
duke@435 1616 address destination = call->destination();
duke@435 1617 if (destination != entry_point) {
duke@435 1618 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1619 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1620 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1621 // static call or optimized virtual
duke@435 1622 if (TraceCallFixup) {
twisti@1639 1623 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1624 moop->print_short_name(tty);
duke@435 1625 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1626 }
duke@435 1627 call->set_destination_mt_safe(entry_point);
duke@435 1628 } else {
duke@435 1629 if (TraceCallFixup) {
duke@435 1630 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1631 moop->print_short_name(tty);
duke@435 1632 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1633 }
duke@435 1634 // assert is too strong could also be resolve destinations.
duke@435 1635 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1636 }
duke@435 1637 } else {
duke@435 1638 if (TraceCallFixup) {
twisti@1639 1639 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1640 moop->print_short_name(tty);
duke@435 1641 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1642 }
duke@435 1643 }
duke@435 1644 }
duke@435 1645 }
duke@435 1646
duke@435 1647 IRT_END
duke@435 1648
duke@435 1649
duke@435 1650 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1651 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1652 oopDesc* dest, jint dest_pos,
duke@435 1653 jint length,
duke@435 1654 JavaThread* thread)) {
duke@435 1655 #ifndef PRODUCT
duke@435 1656 _slow_array_copy_ctr++;
duke@435 1657 #endif
duke@435 1658 // Check if we have null pointers
duke@435 1659 if (src == NULL || dest == NULL) {
duke@435 1660 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1661 }
duke@435 1662 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1663 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1664 // that src and dest are truly arrays (and are conformable).
duke@435 1665 // The copy_array mechanism is awkward and could be removed, but
duke@435 1666 // the compilers don't call this function except as a last resort,
duke@435 1667 // so it probably doesn't matter.
duke@435 1668 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1669 (arrayOopDesc*)dest, dest_pos,
duke@435 1670 length, thread);
duke@435 1671 }
duke@435 1672 JRT_END
duke@435 1673
duke@435 1674 char* SharedRuntime::generate_class_cast_message(
duke@435 1675 JavaThread* thread, const char* objName) {
duke@435 1676
duke@435 1677 // Get target class name from the checkcast instruction
duke@435 1678 vframeStream vfst(thread, true);
duke@435 1679 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1680 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
duke@435 1681 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
never@2462 1682 cc.index(), thread));
duke@435 1683 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1684 }
duke@435 1685
jrose@1145 1686 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1687 oopDesc* required,
jrose@1145 1688 oopDesc* actual) {
jrose@2148 1689 if (TraceMethodHandles) {
jrose@2148 1690 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1691 thread, required, actual);
jrose@2148 1692 }
twisti@2698 1693 assert(EnableInvokeDynamic, "");
jrose@1145 1694 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1695 char* message = NULL;
jrose@1145 1696 if (singleKlass != NULL) {
jrose@1145 1697 const char* objName = "argument or return value";
jrose@1145 1698 if (actual != NULL) {
jrose@1145 1699 // be flexible about the junk passed in:
jrose@1145 1700 klassOop ak = (actual->is_klass()
jrose@1145 1701 ? (klassOop)actual
jrose@1145 1702 : actual->klass());
jrose@1145 1703 objName = Klass::cast(ak)->external_name();
jrose@1145 1704 }
jrose@1145 1705 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1706 ? (klassOop)required
jrose@1145 1707 : java_lang_Class::as_klassOop(required));
jrose@2148 1708 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1709 } else {
jrose@1145 1710 // %%% need to get the MethodType string, without messing around too much
jrose@2743 1711 const char* desc = NULL;
jrose@1145 1712 // Get a signature from the invoke instruction
jrose@1145 1713 const char* mhName = "method handle";
jrose@1145 1714 const char* targetType = "the required signature";
jrose@2743 1715 int targetArity = -1, mhArity = -1;
jrose@1145 1716 vframeStream vfst(thread, true);
jrose@1145 1717 if (!vfst.at_end()) {
never@2462 1718 Bytecode_invoke call(vfst.method(), vfst.bci());
jrose@1145 1719 methodHandle target;
jrose@1145 1720 {
jrose@1145 1721 EXCEPTION_MARK;
never@2462 1722 target = call.static_target(THREAD);
jrose@1145 1723 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1724 }
jrose@1145 1725 if (target.not_null()
jrose@1145 1726 && target->is_method_handle_invoke()
jrose@1145 1727 && required == target->method_handle_type()) {
jrose@1145 1728 targetType = target->signature()->as_C_string();
jrose@2743 1729 targetArity = ArgumentCount(target->signature()).size();
jrose@1145 1730 }
jrose@1145 1731 }
twisti@2806 1732 KlassHandle kignore; int dmf_flags = 0;
twisti@2806 1733 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
jrose@2743 1734 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
jrose@2743 1735 MethodHandles::_dmf_does_dispatch |
jrose@2743 1736 MethodHandles::_dmf_from_interface)) != 0)
twisti@2806 1737 actual_method = methodHandle(); // MH does extra binds, drops, etc.
jrose@2743 1738 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
twisti@2806 1739 if (actual_method.not_null()) {
jrose@2743 1740 mhName = actual_method->signature()->as_C_string();
jrose@2743 1741 mhArity = ArgumentCount(actual_method->signature()).size();
jrose@2743 1742 if (!actual_method->is_static()) mhArity += 1;
jrose@2743 1743 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
jrose@2743 1744 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
jrose@2743 1745 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
jrose@2743 1746 stringStream st;
jrose@2743 1747 java_lang_invoke_MethodType::print_signature(mhType, &st);
jrose@2743 1748 mhName = st.as_string();
jrose@2743 1749 }
jrose@2743 1750 if (targetArity != -1 && targetArity != mhArity) {
jrose@2743 1751 if (has_receiver && targetArity == mhArity-1)
jrose@2743 1752 desc = " cannot be called without a receiver argument as ";
jrose@1145 1753 else
jrose@2743 1754 desc = " cannot be called with a different arity as ";
jrose@1145 1755 }
jrose@2148 1756 message = generate_class_cast_message(mhName, targetType,
jrose@2743 1757 desc != NULL ? desc :
jrose@2148 1758 " cannot be called as ");
jrose@1145 1759 }
jrose@2148 1760 if (TraceMethodHandles) {
jrose@2148 1761 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1762 }
jrose@2148 1763 return message;
jrose@1145 1764 }
jrose@1145 1765
jrose@1145 1766 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1767 oopDesc* required) {
jrose@1145 1768 if (required == NULL) return NULL;
never@1577 1769 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1770 return required;
jrose@1145 1771 if (required->is_klass())
jrose@1145 1772 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1773 return NULL;
jrose@1145 1774 }
jrose@1145 1775
jrose@1145 1776
duke@435 1777 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1778 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1779 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1780
kamg@488 1781 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1782 if (NULL == message) {
kamg@488 1783 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1784 message = const_cast<char*>(objName);
duke@435 1785 } else {
duke@435 1786 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1787 }
duke@435 1788 return message;
duke@435 1789 }
duke@435 1790
duke@435 1791 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1792 (void) JavaThread::current()->reguard_stack();
duke@435 1793 JRT_END
duke@435 1794
duke@435 1795
duke@435 1796 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1797 #ifndef PRODUCT
duke@435 1798 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1799 #endif
duke@435 1800 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1801 oop obj(_obj);
duke@435 1802 #ifndef PRODUCT
duke@435 1803 _monitor_enter_ctr++; // monitor enter slow
duke@435 1804 #endif
duke@435 1805 if (PrintBiasedLockingStatistics) {
duke@435 1806 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1807 }
duke@435 1808 Handle h_obj(THREAD, obj);
duke@435 1809 if (UseBiasedLocking) {
duke@435 1810 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1811 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1812 } else {
duke@435 1813 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1814 }
duke@435 1815 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1816 JRT_END
duke@435 1817
duke@435 1818 #ifndef PRODUCT
duke@435 1819 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1820 #endif
duke@435 1821 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1822 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1823 oop obj(_obj);
duke@435 1824 #ifndef PRODUCT
duke@435 1825 _monitor_exit_ctr++; // monitor exit slow
duke@435 1826 #endif
duke@435 1827 Thread* THREAD = JavaThread::current();
duke@435 1828 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1829 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1830 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1831 #undef MIGHT_HAVE_PENDING
duke@435 1832 #ifdef MIGHT_HAVE_PENDING
duke@435 1833 // Save and restore any pending_exception around the exception mark.
duke@435 1834 // While the slow_exit must not throw an exception, we could come into
duke@435 1835 // this routine with one set.
duke@435 1836 oop pending_excep = NULL;
duke@435 1837 const char* pending_file;
duke@435 1838 int pending_line;
duke@435 1839 if (HAS_PENDING_EXCEPTION) {
duke@435 1840 pending_excep = PENDING_EXCEPTION;
duke@435 1841 pending_file = THREAD->exception_file();
duke@435 1842 pending_line = THREAD->exception_line();
duke@435 1843 CLEAR_PENDING_EXCEPTION;
duke@435 1844 }
duke@435 1845 #endif /* MIGHT_HAVE_PENDING */
duke@435 1846
duke@435 1847 {
duke@435 1848 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1849 EXCEPTION_MARK;
duke@435 1850 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1851 }
duke@435 1852
duke@435 1853 #ifdef MIGHT_HAVE_PENDING
duke@435 1854 if (pending_excep != NULL) {
duke@435 1855 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1856 }
duke@435 1857 #endif /* MIGHT_HAVE_PENDING */
duke@435 1858 JRT_END
duke@435 1859
duke@435 1860 #ifndef PRODUCT
duke@435 1861
duke@435 1862 void SharedRuntime::print_statistics() {
duke@435 1863 ttyLocker ttyl;
duke@435 1864 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1865
duke@435 1866 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1867 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1868 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1869
duke@435 1870 SharedRuntime::print_ic_miss_histogram();
duke@435 1871
duke@435 1872 if (CountRemovableExceptions) {
duke@435 1873 if (_nof_removable_exceptions > 0) {
duke@435 1874 Unimplemented(); // this counter is not yet incremented
duke@435 1875 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1876 }
duke@435 1877 }
duke@435 1878
duke@435 1879 // Dump the JRT_ENTRY counters
duke@435 1880 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1881 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1882 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1883 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1884 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1885 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1886 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1887
duke@435 1888 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1889 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1890 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1891 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1892 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1893
duke@435 1894 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1895 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1896 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1897 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1898 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1899 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1900 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1901 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1902 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1903 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1904 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1905 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1906 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1907 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1908 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1909 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1910
never@1622 1911 AdapterHandlerLibrary::print_statistics();
never@1622 1912
duke@435 1913 if (xtty != NULL) xtty->tail("statistics");
duke@435 1914 }
duke@435 1915
duke@435 1916 inline double percent(int x, int y) {
duke@435 1917 return 100.0 * x / MAX2(y, 1);
duke@435 1918 }
duke@435 1919
duke@435 1920 class MethodArityHistogram {
duke@435 1921 public:
duke@435 1922 enum { MAX_ARITY = 256 };
duke@435 1923 private:
duke@435 1924 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1925 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1926 static int _max_arity; // max. arity seen
duke@435 1927 static int _max_size; // max. arg size seen
duke@435 1928
duke@435 1929 static void add_method_to_histogram(nmethod* nm) {
duke@435 1930 methodOop m = nm->method();
duke@435 1931 ArgumentCount args(m->signature());
duke@435 1932 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1933 int argsize = m->size_of_parameters();
duke@435 1934 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1935 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1936 int count = nm->method()->compiled_invocation_count();
duke@435 1937 _arity_histogram[arity] += count;
duke@435 1938 _size_histogram[argsize] += count;
duke@435 1939 _max_arity = MAX2(_max_arity, arity);
duke@435 1940 _max_size = MAX2(_max_size, argsize);
duke@435 1941 }
duke@435 1942
duke@435 1943 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1944 const int N = MIN2(5, n);
duke@435 1945 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1946 double sum = 0;
duke@435 1947 double weighted_sum = 0;
duke@435 1948 int i;
duke@435 1949 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1950 double rest = sum;
duke@435 1951 double percent = sum / 100;
duke@435 1952 for (i = 0; i <= N; i++) {
duke@435 1953 rest -= histo[i];
duke@435 1954 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1955 }
duke@435 1956 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1957 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1958 }
duke@435 1959
duke@435 1960 void print_histogram() {
duke@435 1961 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1962 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1963 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1964 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1965 tty->cr();
duke@435 1966 }
duke@435 1967
duke@435 1968 public:
duke@435 1969 MethodArityHistogram() {
duke@435 1970 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1971 _max_arity = _max_size = 0;
duke@435 1972 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1973 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1974 print_histogram();
duke@435 1975 }
duke@435 1976 };
duke@435 1977
duke@435 1978 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1979 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1980 int MethodArityHistogram::_max_arity;
duke@435 1981 int MethodArityHistogram::_max_size;
duke@435 1982
duke@435 1983 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1984 tty->print_cr("Calls from compiled code:");
duke@435 1985 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1986 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1987 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1988 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1989 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1990 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1991 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1992 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1993 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1994 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1995 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1996 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1997 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1998 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1999 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2000 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2001 tty->cr();
duke@435 2002 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2003 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2004 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2005 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2006 tty->cr();
duke@435 2007
duke@435 2008 MethodArityHistogram h;
duke@435 2009 }
duke@435 2010 #endif
duke@435 2011
duke@435 2012
never@1622 2013 // A simple wrapper class around the calling convention information
never@1622 2014 // that allows sharing of adapters for the same calling convention.
never@1622 2015 class AdapterFingerPrint : public CHeapObj {
never@1622 2016 private:
never@1622 2017 union {
never@1642 2018 int _compact[3];
never@1642 2019 int* _fingerprint;
never@1622 2020 } _value;
never@1642 2021 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2022 // Otherwise _value._fingerprint is the array.
never@1622 2023
never@1642 2024 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2025 // These are correct for the current system but someday it might be
never@1642 2026 // necessary to make this mapping platform dependent.
never@1642 2027 static BasicType adapter_encoding(BasicType in) {
never@1642 2028 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2029 switch(in) {
never@1642 2030 case T_BOOLEAN:
never@1642 2031 case T_BYTE:
never@1642 2032 case T_SHORT:
never@1642 2033 case T_CHAR:
never@1642 2034 // There are all promoted to T_INT in the calling convention
never@1642 2035 return T_INT;
never@1642 2036
never@1642 2037 case T_OBJECT:
never@1642 2038 case T_ARRAY:
never@1642 2039 #ifdef _LP64
twisti@1861 2040 return T_LONG;
never@1642 2041 #else
twisti@1861 2042 return T_INT;
never@1642 2043 #endif
never@1642 2044
never@1642 2045 case T_INT:
never@1642 2046 case T_LONG:
never@1642 2047 case T_FLOAT:
never@1642 2048 case T_DOUBLE:
never@1642 2049 case T_VOID:
never@1642 2050 return in;
never@1642 2051
never@1642 2052 default:
never@1642 2053 ShouldNotReachHere();
never@1642 2054 return T_CONFLICT;
never@1622 2055 }
never@1622 2056 }
never@1622 2057
never@1642 2058 public:
never@1642 2059 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2060 // The fingerprint is based on the BasicType signature encoded
never@1642 2061 // into an array of ints with four entries per int.
never@1642 2062 int* ptr;
never@1642 2063 int len = (total_args_passed + 3) >> 2;
never@1642 2064 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2065 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2066 // Storing the signature encoded as signed chars hits about 98%
never@1642 2067 // of the time.
never@1642 2068 _length = -len;
never@1642 2069 ptr = _value._compact;
never@1642 2070 } else {
never@1642 2071 _length = len;
never@1642 2072 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2073 ptr = _value._fingerprint;
never@1642 2074 }
never@1642 2075
never@1642 2076 // Now pack the BasicTypes with 4 per int
never@1642 2077 int sig_index = 0;
never@1642 2078 for (int index = 0; index < len; index++) {
never@1642 2079 int value = 0;
never@1642 2080 for (int byte = 0; byte < 4; byte++) {
never@1642 2081 if (sig_index < total_args_passed) {
never@1642 2082 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2083 }
never@1642 2084 }
never@1642 2085 ptr[index] = value;
never@1642 2086 }
never@1622 2087 }
never@1622 2088
never@1622 2089 ~AdapterFingerPrint() {
never@1622 2090 if (_length > 0) {
never@1622 2091 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2092 }
never@1622 2093 }
never@1622 2094
never@1642 2095 int value(int index) {
never@1622 2096 if (_length < 0) {
never@1622 2097 return _value._compact[index];
never@1622 2098 }
never@1622 2099 return _value._fingerprint[index];
never@1622 2100 }
never@1622 2101 int length() {
never@1622 2102 if (_length < 0) return -_length;
never@1622 2103 return _length;
never@1622 2104 }
never@1622 2105
never@1622 2106 bool is_compact() {
never@1622 2107 return _length <= 0;
never@1622 2108 }
never@1622 2109
never@1622 2110 unsigned int compute_hash() {
never@1642 2111 int hash = 0;
never@1622 2112 for (int i = 0; i < length(); i++) {
never@1642 2113 int v = value(i);
never@1622 2114 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2115 }
never@1622 2116 return (unsigned int)hash;
never@1622 2117 }
never@1622 2118
never@1622 2119 const char* as_string() {
never@1622 2120 stringStream st;
never@1622 2121 for (int i = 0; i < length(); i++) {
never@1622 2122 st.print(PTR_FORMAT, value(i));
never@1622 2123 }
never@1622 2124 return st.as_string();
never@1622 2125 }
never@1622 2126
never@1622 2127 bool equals(AdapterFingerPrint* other) {
never@1622 2128 if (other->_length != _length) {
never@1622 2129 return false;
never@1622 2130 }
never@1622 2131 if (_length < 0) {
never@1642 2132 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2133 _value._compact[1] == other->_value._compact[1] &&
never@1642 2134 _value._compact[2] == other->_value._compact[2];
never@1622 2135 } else {
never@1622 2136 for (int i = 0; i < _length; i++) {
never@1622 2137 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2138 return false;
never@1622 2139 }
never@1622 2140 }
never@1622 2141 }
never@1622 2142 return true;
never@1622 2143 }
never@1622 2144 };
never@1622 2145
never@1622 2146
never@1622 2147 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2148 class AdapterHandlerTable : public BasicHashtable {
never@1622 2149 friend class AdapterHandlerTableIterator;
never@1622 2150
never@1622 2151 private:
never@1622 2152
kvn@1698 2153 #ifndef PRODUCT
never@1622 2154 static int _lookups; // number of calls to lookup
never@1622 2155 static int _buckets; // number of buckets checked
never@1622 2156 static int _equals; // number of buckets checked with matching hash
never@1622 2157 static int _hits; // number of successful lookups
never@1622 2158 static int _compact; // number of equals calls with compact signature
never@1622 2159 #endif
never@1622 2160
never@1622 2161 AdapterHandlerEntry* bucket(int i) {
never@1622 2162 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2163 }
never@1622 2164
never@1622 2165 public:
never@1622 2166 AdapterHandlerTable()
never@1622 2167 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2168
never@1622 2169 // Create a new entry suitable for insertion in the table
never@1622 2170 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2171 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2172 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2173 return entry;
never@1622 2174 }
never@1622 2175
never@1622 2176 // Insert an entry into the table
never@1622 2177 void add(AdapterHandlerEntry* entry) {
never@1622 2178 int index = hash_to_index(entry->hash());
never@1622 2179 add_entry(index, entry);
never@1622 2180 }
never@1622 2181
never@1642 2182 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2183 entry->deallocate();
never@1642 2184 BasicHashtable::free_entry(entry);
never@1642 2185 }
never@1642 2186
never@1622 2187 // Find a entry with the same fingerprint if it exists
never@1642 2188 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2189 NOT_PRODUCT(_lookups++);
never@1642 2190 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2191 unsigned int hash = fp.compute_hash();
never@1622 2192 int index = hash_to_index(hash);
never@1622 2193 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2194 NOT_PRODUCT(_buckets++);
never@1622 2195 if (e->hash() == hash) {
kvn@1698 2196 NOT_PRODUCT(_equals++);
never@1622 2197 if (fp.equals(e->fingerprint())) {
kvn@1698 2198 #ifndef PRODUCT
never@1622 2199 if (fp.is_compact()) _compact++;
never@1622 2200 _hits++;
never@1622 2201 #endif
never@1622 2202 return e;
never@1622 2203 }
never@1622 2204 }
never@1622 2205 }
never@1622 2206 return NULL;
never@1622 2207 }
never@1622 2208
kvn@1698 2209 #ifndef PRODUCT
never@1622 2210 void print_statistics() {
never@1622 2211 ResourceMark rm;
never@1622 2212 int longest = 0;
never@1622 2213 int empty = 0;
never@1622 2214 int total = 0;
never@1622 2215 int nonempty = 0;
never@1622 2216 for (int index = 0; index < table_size(); index++) {
never@1622 2217 int count = 0;
never@1622 2218 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2219 count++;
never@1622 2220 }
never@1622 2221 if (count != 0) nonempty++;
never@1622 2222 if (count == 0) empty++;
never@1622 2223 if (count > longest) longest = count;
never@1622 2224 total += count;
never@1622 2225 }
never@1622 2226 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2227 empty, longest, total, total / (double)nonempty);
never@1622 2228 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2229 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2230 }
never@1622 2231 #endif
never@1622 2232 };
never@1622 2233
never@1622 2234
kvn@1698 2235 #ifndef PRODUCT
never@1622 2236
never@1622 2237 int AdapterHandlerTable::_lookups;
never@1622 2238 int AdapterHandlerTable::_buckets;
never@1622 2239 int AdapterHandlerTable::_equals;
never@1622 2240 int AdapterHandlerTable::_hits;
never@1622 2241 int AdapterHandlerTable::_compact;
never@1622 2242
bobv@2036 2243 #endif
bobv@2036 2244
never@1622 2245 class AdapterHandlerTableIterator : public StackObj {
never@1622 2246 private:
never@1622 2247 AdapterHandlerTable* _table;
never@1622 2248 int _index;
never@1622 2249 AdapterHandlerEntry* _current;
never@1622 2250
never@1622 2251 void scan() {
never@1622 2252 while (_index < _table->table_size()) {
never@1622 2253 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2254 _index++;
never@1622 2255 if (a != NULL) {
never@1622 2256 _current = a;
never@1622 2257 return;
never@1622 2258 }
never@1622 2259 }
never@1622 2260 }
never@1622 2261
never@1622 2262 public:
never@1622 2263 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2264 scan();
never@1622 2265 }
never@1622 2266 bool has_next() {
never@1622 2267 return _current != NULL;
never@1622 2268 }
never@1622 2269 AdapterHandlerEntry* next() {
never@1622 2270 if (_current != NULL) {
never@1622 2271 AdapterHandlerEntry* result = _current;
never@1622 2272 _current = _current->next();
never@1622 2273 if (_current == NULL) scan();
never@1622 2274 return result;
never@1622 2275 } else {
never@1622 2276 return NULL;
never@1622 2277 }
never@1622 2278 }
never@1622 2279 };
never@1622 2280
never@1622 2281
duke@435 2282 // ---------------------------------------------------------------------------
duke@435 2283 // Implementation of AdapterHandlerLibrary
never@1622 2284 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2285 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2286 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2287 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2288
kvn@1177 2289 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2290 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2291 if (_buffer == NULL) // Initialize lazily
kvn@1177 2292 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2293 return _buffer;
kvn@1177 2294 }
duke@435 2295
duke@435 2296 void AdapterHandlerLibrary::initialize() {
never@1622 2297 if (_adapters != NULL) return;
never@1622 2298 _adapters = new AdapterHandlerTable();
duke@435 2299
duke@435 2300 // Create a special handler for abstract methods. Abstract methods
duke@435 2301 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2302 // fill it in with something appropriate just in case. Pass handle
duke@435 2303 // wrong method for the c2i transitions.
duke@435 2304 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2305 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2306 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2307 wrong_method, wrong_method);
duke@435 2308 }
duke@435 2309
never@1622 2310 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2311 address i2c_entry,
never@1622 2312 address c2i_entry,
never@1622 2313 address c2i_unverified_entry) {
never@1622 2314 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2315 }
never@1622 2316
never@1622 2317 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2318 // Use customized signature handler. Need to lock around updates to
never@1622 2319 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2320 // and a single writer: this could be fixed if it becomes a
never@1622 2321 // problem).
duke@435 2322
duke@435 2323 // Get the address of the ic_miss handlers before we grab the
duke@435 2324 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2325 // was caused by the initialization of the stubs happening
duke@435 2326 // while we held the lock and then notifying jvmti while
duke@435 2327 // holding it. This just forces the initialization to be a little
duke@435 2328 // earlier.
duke@435 2329 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2330 assert(ic_miss != NULL, "must have handler");
duke@435 2331
never@1622 2332 ResourceMark rm;
never@1622 2333
twisti@2103 2334 NOT_PRODUCT(int insts_size);
twisti@1734 2335 AdapterBlob* B = NULL;
kvn@1177 2336 AdapterHandlerEntry* entry = NULL;
never@1622 2337 AdapterFingerPrint* fingerprint = NULL;
duke@435 2338 {
duke@435 2339 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2340 // make sure data structure is initialized
duke@435 2341 initialize();
duke@435 2342
duke@435 2343 if (method->is_abstract()) {
never@1622 2344 return _abstract_method_handler;
duke@435 2345 }
duke@435 2346
never@1622 2347 // Fill in the signature array, for the calling-convention call.
never@1622 2348 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2349
never@1622 2350 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2351 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2352 int i = 0;
never@1622 2353 if (!method->is_static()) // Pass in receiver first
never@1622 2354 sig_bt[i++] = T_OBJECT;
never@1622 2355 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2356 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2357 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2358 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2359 }
never@1622 2360 assert(i == total_args_passed, "");
never@1622 2361
never@1642 2362 // Lookup method signature's fingerprint
never@1642 2363 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2364
never@1642 2365 #ifdef ASSERT
never@1642 2366 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2367 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2368 shared_entry = entry;
never@1642 2369 entry = NULL;
never@1642 2370 }
never@1642 2371 #endif
never@1642 2372
never@1622 2373 if (entry != NULL) {
never@1622 2374 return entry;
duke@435 2375 }
duke@435 2376
never@1642 2377 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2378 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2379
never@1622 2380 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2381 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2382
duke@435 2383 // Create I2C & C2I handlers
duke@435 2384
twisti@1734 2385 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2386 if (buf != NULL) {
twisti@2103 2387 CodeBuffer buffer(buf);
kvn@1177 2388 short buffer_locs[20];
kvn@1177 2389 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2390 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2391 MacroAssembler _masm(&buffer);
duke@435 2392
kvn@1177 2393 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2394 total_args_passed,
kvn@1177 2395 comp_args_on_stack,
kvn@1177 2396 sig_bt,
never@1622 2397 regs,
never@1622 2398 fingerprint);
kvn@1177 2399
never@1642 2400 #ifdef ASSERT
never@1642 2401 if (VerifyAdapterSharing) {
never@1642 2402 if (shared_entry != NULL) {
twisti@2103 2403 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2404 "code must match");
never@1642 2405 // Release the one just created and return the original
never@1642 2406 _adapters->free_entry(entry);
never@1642 2407 return shared_entry;
never@1642 2408 } else {
twisti@2103 2409 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2410 }
never@1642 2411 }
never@1642 2412 #endif
never@1642 2413
twisti@1734 2414 B = AdapterBlob::create(&buffer);
twisti@2103 2415 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2416 }
kvn@463 2417 if (B == NULL) {
kvn@463 2418 // CodeCache is full, disable compilation
kvn@463 2419 // Ought to log this but compile log is only per compile thread
kvn@463 2420 // and we're some non descript Java thread.
kvn@1637 2421 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2422 CompileBroker::handle_full_code_cache();
never@1622 2423 return NULL; // Out of CodeCache space
kvn@463 2424 }
twisti@2103 2425 entry->relocate(B->content_begin());
duke@435 2426 #ifndef PRODUCT
duke@435 2427 // debugging suppport
duke@435 2428 if (PrintAdapterHandlers) {
duke@435 2429 tty->cr();
never@1622 2430 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2431 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2432 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2433 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2434 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2435 }
duke@435 2436 #endif
duke@435 2437
never@1622 2438 _adapters->add(entry);
duke@435 2439 }
duke@435 2440 // Outside of the lock
duke@435 2441 if (B != NULL) {
duke@435 2442 char blob_id[256];
duke@435 2443 jio_snprintf(blob_id,
duke@435 2444 sizeof(blob_id),
never@1622 2445 "%s(%s)@" PTR_FORMAT,
twisti@1734 2446 B->name(),
never@1622 2447 fingerprint->as_string(),
twisti@2103 2448 B->content_begin());
twisti@2103 2449 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2450
duke@435 2451 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2452 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2453 }
duke@435 2454 }
never@1622 2455 return entry;
duke@435 2456 }
duke@435 2457
duke@435 2458 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2459 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2460 _i2c_entry += delta;
duke@435 2461 _c2i_entry += delta;
duke@435 2462 _c2i_unverified_entry += delta;
duke@435 2463 }
duke@435 2464
never@1642 2465
never@1642 2466 void AdapterHandlerEntry::deallocate() {
never@1642 2467 delete _fingerprint;
never@1642 2468 #ifdef ASSERT
never@1642 2469 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2470 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2471 #endif
never@1642 2472 }
never@1642 2473
never@1642 2474
never@1642 2475 #ifdef ASSERT
never@1642 2476 // Capture the code before relocation so that it can be compared
never@1642 2477 // against other versions. If the code is captured after relocation
never@1642 2478 // then relative instructions won't be equivalent.
never@1642 2479 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2480 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2481 _code_length = length;
never@1642 2482 memcpy(_saved_code, buffer, length);
never@1642 2483 _total_args_passed = total_args_passed;
never@1642 2484 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2485 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2486 }
never@1642 2487
never@1642 2488
never@1642 2489 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2490 if (length != _code_length) {
never@1642 2491 return false;
never@1642 2492 }
never@1642 2493 for (int i = 0; i < length; i++) {
never@1642 2494 if (buffer[i] != _saved_code[i]) {
never@1642 2495 return false;
never@1642 2496 }
never@1642 2497 }
never@1642 2498 return true;
never@1642 2499 }
never@1642 2500 #endif
never@1642 2501
never@1642 2502
duke@435 2503 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2504 // java compiled calling convention to the native convention, handlizes
duke@435 2505 // arguments, and transitions to native. On return from the native we transition
duke@435 2506 // back to java blocking if a safepoint is in progress.
twisti@2687 2507 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2508 ResourceMark rm;
duke@435 2509 nmethod* nm = NULL;
duke@435 2510
duke@435 2511 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2512
duke@435 2513 {
duke@435 2514 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2515 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2516 // See if somebody beat us to it
duke@435 2517 nm = method->code();
duke@435 2518 if (nm) {
duke@435 2519 return nm;
duke@435 2520 }
duke@435 2521
kvn@1177 2522 ResourceMark rm;
duke@435 2523
kvn@1177 2524 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2525 if (buf != NULL) {
twisti@2103 2526 CodeBuffer buffer(buf);
kvn@1177 2527 double locs_buf[20];
kvn@1177 2528 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2529 MacroAssembler _masm(&buffer);
duke@435 2530
kvn@1177 2531 // Fill in the signature array, for the calling-convention call.
kvn@1177 2532 int total_args_passed = method->size_of_parameters();
kvn@1177 2533
kvn@1177 2534 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2535 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2536 int i=0;
kvn@1177 2537 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2538 sig_bt[i++] = T_OBJECT;
kvn@1177 2539 SignatureStream ss(method->signature());
kvn@1177 2540 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2541 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2542 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2543 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2544 }
kvn@1177 2545 assert( i==total_args_passed, "" );
kvn@1177 2546 BasicType ret_type = ss.type();
kvn@1177 2547
kvn@1177 2548 // Now get the compiled-Java layout as input arguments
kvn@1177 2549 int comp_args_on_stack;
kvn@1177 2550 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2551
kvn@1177 2552 // Generate the compiled-to-native wrapper code
kvn@1177 2553 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2554 method,
twisti@2687 2555 compile_id,
kvn@1177 2556 total_args_passed,
kvn@1177 2557 comp_args_on_stack,
kvn@1177 2558 sig_bt,regs,
kvn@1177 2559 ret_type);
duke@435 2560 }
duke@435 2561 }
duke@435 2562
duke@435 2563 // Must unlock before calling set_code
never@2083 2564
duke@435 2565 // Install the generated code.
duke@435 2566 if (nm != NULL) {
twisti@2687 2567 if (PrintCompilation) {
twisti@2687 2568 ttyLocker ttyl;
twisti@2687 2569 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2570 }
duke@435 2571 method->set_code(method, nm);
duke@435 2572 nm->post_compiled_method_load_event();
duke@435 2573 } else {
duke@435 2574 // CodeCache is full, disable compilation
kvn@1637 2575 CompileBroker::handle_full_code_cache();
duke@435 2576 }
duke@435 2577 return nm;
duke@435 2578 }
duke@435 2579
kamg@551 2580 #ifdef HAVE_DTRACE_H
kamg@551 2581 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2582 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2583 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2584 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2585 // leaf no thread transition is needed.
kamg@551 2586
kamg@551 2587 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2588 ResourceMark rm;
kamg@551 2589 nmethod* nm = NULL;
kamg@551 2590
kamg@551 2591 if (PrintCompilation) {
kamg@551 2592 ttyLocker ttyl;
kamg@551 2593 tty->print("--- n%s ");
kamg@551 2594 method->print_short_name(tty);
kamg@551 2595 if (method->is_static()) {
kamg@551 2596 tty->print(" (static)");
kamg@551 2597 }
kamg@551 2598 tty->cr();
kamg@551 2599 }
kamg@551 2600
kamg@551 2601 {
kamg@551 2602 // perform the work while holding the lock, but perform any printing
kamg@551 2603 // outside the lock
kamg@551 2604 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2605 // See if somebody beat us to it
kamg@551 2606 nm = method->code();
kamg@551 2607 if (nm) {
kamg@551 2608 return nm;
kamg@551 2609 }
kamg@551 2610
kvn@1177 2611 ResourceMark rm;
kvn@1177 2612
kvn@1177 2613 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2614 if (buf != NULL) {
twisti@2103 2615 CodeBuffer buffer(buf);
kvn@1177 2616 // Need a few relocation entries
kvn@1177 2617 double locs_buf[20];
kvn@1177 2618 buffer.insts()->initialize_shared_locs(
kamg@551 2619 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2620 MacroAssembler _masm(&buffer);
kamg@551 2621
kvn@1177 2622 // Generate the compiled-to-native wrapper code
kvn@1177 2623 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2624 }
kamg@551 2625 }
kamg@551 2626 return nm;
kamg@551 2627 }
kamg@551 2628
kamg@551 2629 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2630 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2631 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2632 int jlsOffset = java_lang_String::offset(src);
kamg@551 2633 int jlsLen = java_lang_String::length(src);
kamg@551 2634 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2635 jlsValue->char_at_addr(jlsOffset);
bobv@2508 2636 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2637 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2638 }
kamg@551 2639 #endif // ndef HAVE_DTRACE_H
kamg@551 2640
duke@435 2641 // -------------------------------------------------------------------------
duke@435 2642 // Java-Java calling convention
duke@435 2643 // (what you use when Java calls Java)
duke@435 2644
duke@435 2645 //------------------------------name_for_receiver----------------------------------
duke@435 2646 // For a given signature, return the VMReg for parameter 0.
duke@435 2647 VMReg SharedRuntime::name_for_receiver() {
duke@435 2648 VMRegPair regs;
duke@435 2649 BasicType sig_bt = T_OBJECT;
duke@435 2650 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2651 // Return argument 0 register. In the LP64 build pointers
duke@435 2652 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2653 return regs.first();
duke@435 2654 }
duke@435 2655
coleenp@2497 2656 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2657 // This method is returning a data structure allocating as a
duke@435 2658 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2659 char *s = sig->as_C_string();
duke@435 2660 int len = (int)strlen(s);
duke@435 2661 *s++; len--; // Skip opening paren
duke@435 2662 char *t = s+len;
duke@435 2663 while( *(--t) != ')' ) ; // Find close paren
duke@435 2664
duke@435 2665 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2666 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2667 int cnt = 0;
twisti@1573 2668 if (has_receiver) {
duke@435 2669 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2670 }
duke@435 2671
duke@435 2672 while( s < t ) {
duke@435 2673 switch( *s++ ) { // Switch on signature character
duke@435 2674 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2675 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2676 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2677 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2678 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2679 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2680 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2681 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2682 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2683 case 'L': // Oop
duke@435 2684 while( *s++ != ';' ) ; // Skip signature
duke@435 2685 sig_bt[cnt++] = T_OBJECT;
duke@435 2686 break;
duke@435 2687 case '[': { // Array
duke@435 2688 do { // Skip optional size
duke@435 2689 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2690 } while( *s++ == '[' ); // Nested arrays?
duke@435 2691 // Skip element type
duke@435 2692 if( s[-1] == 'L' )
duke@435 2693 while( *s++ != ';' ) ; // Skip signature
duke@435 2694 sig_bt[cnt++] = T_ARRAY;
duke@435 2695 break;
duke@435 2696 }
duke@435 2697 default : ShouldNotReachHere();
duke@435 2698 }
duke@435 2699 }
duke@435 2700 assert( cnt < 256, "grow table size" );
duke@435 2701
duke@435 2702 int comp_args_on_stack;
duke@435 2703 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2704
duke@435 2705 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2706 // we must add that in to get "true" stack offsets.
duke@435 2707
duke@435 2708 if (comp_args_on_stack) {
duke@435 2709 for (int i = 0; i < cnt; i++) {
duke@435 2710 VMReg reg1 = regs[i].first();
duke@435 2711 if( reg1->is_stack()) {
duke@435 2712 // Yuck
duke@435 2713 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2714 }
duke@435 2715 VMReg reg2 = regs[i].second();
duke@435 2716 if( reg2->is_stack()) {
duke@435 2717 // Yuck
duke@435 2718 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2719 }
duke@435 2720 regs[i].set_pair(reg2, reg1);
duke@435 2721 }
duke@435 2722 }
duke@435 2723
duke@435 2724 // results
duke@435 2725 *arg_size = cnt;
duke@435 2726 return regs;
duke@435 2727 }
duke@435 2728
duke@435 2729 // OSR Migration Code
duke@435 2730 //
duke@435 2731 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2732 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2733 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2734 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2735 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2736 // back to the compiled code. The compiled code then pops the current
duke@435 2737 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2738 // copies the interpreter locals and displaced headers where it wants.
duke@435 2739 // Finally it calls back to free the temp buffer.
duke@435 2740 //
duke@435 2741 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2742
duke@435 2743 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2744
duke@435 2745 #ifdef IA64
duke@435 2746 ShouldNotReachHere(); // NYI
duke@435 2747 #endif /* IA64 */
duke@435 2748
duke@435 2749 //
duke@435 2750 // This code is dependent on the memory layout of the interpreter local
duke@435 2751 // array and the monitors. On all of our platforms the layout is identical
duke@435 2752 // so this code is shared. If some platform lays the their arrays out
duke@435 2753 // differently then this code could move to platform specific code or
duke@435 2754 // the code here could be modified to copy items one at a time using
duke@435 2755 // frame accessor methods and be platform independent.
duke@435 2756
duke@435 2757 frame fr = thread->last_frame();
duke@435 2758 assert( fr.is_interpreted_frame(), "" );
duke@435 2759 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2760
duke@435 2761 // Figure out how many monitors are active.
duke@435 2762 int active_monitor_count = 0;
duke@435 2763 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2764 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2765 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2766 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2767 }
duke@435 2768
duke@435 2769 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2770 // could double check it.
duke@435 2771
duke@435 2772 methodOop moop = fr.interpreter_frame_method();
duke@435 2773 int max_locals = moop->max_locals();
duke@435 2774 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2775 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2776 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2777
duke@435 2778 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2779 // Since there's no GC I can copy the oops blindly.
duke@435 2780 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2781 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2782 (HeapWord*)&buf[0],
duke@435 2783 max_locals);
duke@435 2784
duke@435 2785 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2786 int i = max_locals;
duke@435 2787 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2788 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2789 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2790 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2791 BasicLock *lock = kptr2->lock();
duke@435 2792 // Inflate so the displaced header becomes position-independent
duke@435 2793 if (lock->displaced_header()->is_unlocked())
duke@435 2794 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2795 // Now the displaced header is free to move
duke@435 2796 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2797 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2798 }
duke@435 2799 }
duke@435 2800 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2801
duke@435 2802 return buf;
duke@435 2803 JRT_END
duke@435 2804
duke@435 2805 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2806 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2807 JRT_END
duke@435 2808
duke@435 2809 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2810 AdapterHandlerTableIterator iter(_adapters);
never@1622 2811 while (iter.has_next()) {
never@1622 2812 AdapterHandlerEntry* a = iter.next();
never@1622 2813 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2814 }
duke@435 2815 return false;
duke@435 2816 }
duke@435 2817
bobv@2036 2818 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2819 AdapterHandlerTableIterator iter(_adapters);
never@1622 2820 while (iter.has_next()) {
never@1622 2821 AdapterHandlerEntry* a = iter.next();
never@1622 2822 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2823 st->print("Adapter for signature: ");
bobv@2036 2824 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2825 a->fingerprint()->as_string(),
bobv@2036 2826 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2827
duke@435 2828 return;
duke@435 2829 }
duke@435 2830 }
duke@435 2831 assert(false, "Should have found handler");
duke@435 2832 }
never@1622 2833
bobv@2036 2834 #ifndef PRODUCT
bobv@2036 2835
never@1622 2836 void AdapterHandlerLibrary::print_statistics() {
never@1622 2837 _adapters->print_statistics();
never@1622 2838 }
never@1622 2839
duke@435 2840 #endif /* PRODUCT */

mercurial