src/share/vm/runtime/sharedRuntime.cpp

Tue, 16 Feb 2010 16:17:46 -0800

author
kvn
date
Tue, 16 Feb 2010 16:17:46 -0800
changeset 1698
e7b1cc79bd25
parent 1692
7b4415a18c8a
child 1730
3cf667df43ef
permissions
-rw-r--r--

6926697: "optimized" VM build failed: The type "AdapterHandlerTableIterator" is incomplete
Summary: Define AdapterHandlerTableIterator class as non product instead of debug.
Reviewed-by: never

duke@435 1 /*
never@1622 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime.cpp.incl"
duke@435 27 #include <math.h>
duke@435 28
duke@435 29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 31 char*, int, char*, int, char*, int);
duke@435 32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 33 char*, int, char*, int, char*, int);
duke@435 34
duke@435 35 // Implementation of SharedRuntime
duke@435 36
duke@435 37 #ifndef PRODUCT
duke@435 38 // For statistics
duke@435 39 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 40 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 41 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 42 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 44 int SharedRuntime::_implicit_null_throws = 0;
duke@435 45 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 46 int SharedRuntime::_throw_null_ctr = 0;
duke@435 47
duke@435 48 int SharedRuntime::_nof_normal_calls = 0;
duke@435 49 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 50 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 51 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 52 int SharedRuntime::_nof_static_calls = 0;
duke@435 53 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 54 int SharedRuntime::_nof_interface_calls = 0;
duke@435 55 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 56 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 58 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 59
duke@435 60 int SharedRuntime::_new_instance_ctr=0;
duke@435 61 int SharedRuntime::_new_array_ctr=0;
duke@435 62 int SharedRuntime::_multi1_ctr=0;
duke@435 63 int SharedRuntime::_multi2_ctr=0;
duke@435 64 int SharedRuntime::_multi3_ctr=0;
duke@435 65 int SharedRuntime::_multi4_ctr=0;
duke@435 66 int SharedRuntime::_multi5_ctr=0;
duke@435 67 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 68 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 69 int SharedRuntime::_mon_enter_ctr=0;
duke@435 70 int SharedRuntime::_mon_exit_ctr=0;
duke@435 71 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 72 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 73 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 74 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 75 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 76 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 77 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 78 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 79 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 80 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 81 int SharedRuntime::_find_handler_ctr=0;
duke@435 82 int SharedRuntime::_rethrow_ctr=0;
duke@435 83
duke@435 84 int SharedRuntime::_ICmiss_index = 0;
duke@435 85 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 87
duke@435 88 void SharedRuntime::trace_ic_miss(address at) {
duke@435 89 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 90 if (_ICmiss_at[i] == at) {
duke@435 91 _ICmiss_count[i]++;
duke@435 92 return;
duke@435 93 }
duke@435 94 }
duke@435 95 int index = _ICmiss_index++;
duke@435 96 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 97 _ICmiss_at[index] = at;
duke@435 98 _ICmiss_count[index] = 1;
duke@435 99 }
duke@435 100
duke@435 101 void SharedRuntime::print_ic_miss_histogram() {
duke@435 102 if (ICMissHistogram) {
duke@435 103 tty->print_cr ("IC Miss Histogram:");
duke@435 104 int tot_misses = 0;
duke@435 105 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 106 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 107 tot_misses += _ICmiss_count[i];
duke@435 108 }
duke@435 109 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 110 }
duke@435 111 }
duke@435 112 #endif // PRODUCT
duke@435 113
ysr@777 114 #ifndef SERIALGC
ysr@777 115
ysr@777 116 // G1 write-barrier pre: executed before a pointer store.
ysr@777 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 118 if (orig == NULL) {
ysr@777 119 assert(false, "should be optimized out");
ysr@777 120 return;
ysr@777 121 }
ysr@1280 122 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 123 // store the original value that was in the field reference
ysr@777 124 thread->satb_mark_queue().enqueue(orig);
ysr@777 125 JRT_END
ysr@777 126
ysr@777 127 // G1 write-barrier post: executed after a pointer store.
ysr@777 128 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 129 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 130 JRT_END
ysr@777 131
ysr@777 132 #endif // !SERIALGC
ysr@777 133
duke@435 134
duke@435 135 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 136 return x * y;
duke@435 137 JRT_END
duke@435 138
duke@435 139
duke@435 140 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 141 if (x == min_jlong && y == CONST64(-1)) {
duke@435 142 return x;
duke@435 143 } else {
duke@435 144 return x / y;
duke@435 145 }
duke@435 146 JRT_END
duke@435 147
duke@435 148
duke@435 149 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 150 if (x == min_jlong && y == CONST64(-1)) {
duke@435 151 return 0;
duke@435 152 } else {
duke@435 153 return x % y;
duke@435 154 }
duke@435 155 JRT_END
duke@435 156
duke@435 157
duke@435 158 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 159 const juint float_infinity = 0x7F800000;
duke@435 160 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 161 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 162
duke@435 163 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 164 #ifdef _WIN64
duke@435 165 // 64-bit Windows on amd64 returns the wrong values for
duke@435 166 // infinity operands.
duke@435 167 union { jfloat f; juint i; } xbits, ybits;
duke@435 168 xbits.f = x;
duke@435 169 ybits.f = y;
duke@435 170 // x Mod Infinity == x unless x is infinity
duke@435 171 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 172 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 173 return x;
duke@435 174 }
duke@435 175 #endif
duke@435 176 return ((jfloat)fmod((double)x,(double)y));
duke@435 177 JRT_END
duke@435 178
duke@435 179
duke@435 180 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 181 #ifdef _WIN64
duke@435 182 union { jdouble d; julong l; } xbits, ybits;
duke@435 183 xbits.d = x;
duke@435 184 ybits.d = y;
duke@435 185 // x Mod Infinity == x unless x is infinity
duke@435 186 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 187 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 188 return x;
duke@435 189 }
duke@435 190 #endif
duke@435 191 return ((jdouble)fmod((double)x,(double)y));
duke@435 192 JRT_END
duke@435 193
duke@435 194
duke@435 195 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 196 if (g_isnan(x))
kvn@943 197 return 0;
kvn@943 198 if (x >= (jfloat) max_jint)
kvn@943 199 return max_jint;
kvn@943 200 if (x <= (jfloat) min_jint)
kvn@943 201 return min_jint;
kvn@943 202 return (jint) x;
duke@435 203 JRT_END
duke@435 204
duke@435 205
duke@435 206 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 207 if (g_isnan(x))
kvn@943 208 return 0;
kvn@943 209 if (x >= (jfloat) max_jlong)
kvn@943 210 return max_jlong;
kvn@943 211 if (x <= (jfloat) min_jlong)
kvn@943 212 return min_jlong;
kvn@943 213 return (jlong) x;
duke@435 214 JRT_END
duke@435 215
duke@435 216
duke@435 217 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 218 if (g_isnan(x))
kvn@943 219 return 0;
kvn@943 220 if (x >= (jdouble) max_jint)
kvn@943 221 return max_jint;
kvn@943 222 if (x <= (jdouble) min_jint)
kvn@943 223 return min_jint;
kvn@943 224 return (jint) x;
duke@435 225 JRT_END
duke@435 226
duke@435 227
duke@435 228 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 229 if (g_isnan(x))
kvn@943 230 return 0;
kvn@943 231 if (x >= (jdouble) max_jlong)
kvn@943 232 return max_jlong;
kvn@943 233 if (x <= (jdouble) min_jlong)
kvn@943 234 return min_jlong;
kvn@943 235 return (jlong) x;
duke@435 236 JRT_END
duke@435 237
duke@435 238
duke@435 239 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 240 return (jfloat)x;
duke@435 241 JRT_END
duke@435 242
duke@435 243
duke@435 244 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 245 return (jfloat)x;
duke@435 246 JRT_END
duke@435 247
duke@435 248
duke@435 249 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 250 return (jdouble)x;
duke@435 251 JRT_END
duke@435 252
duke@435 253 // Exception handling accross interpreter/compiler boundaries
duke@435 254 //
duke@435 255 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 256 // The continuation address is the entry point of the exception handler of the
duke@435 257 // previous frame depending on the return address.
duke@435 258
duke@435 259 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
duke@435 260 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@435 261
duke@435 262 // the fastest case first
duke@435 263 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 264 if (blob != NULL && blob->is_nmethod()) {
duke@435 265 nmethod* code = (nmethod*)blob;
duke@435 266 assert(code != NULL, "nmethod must be present");
duke@435 267 // native nmethods don't have exception handlers
duke@435 268 assert(!code->is_native_method(), "no exception handler");
duke@435 269 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 270 if (code->is_deopt_pc(return_address)) {
duke@435 271 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 272 } else {
duke@435 273 return code->exception_begin();
duke@435 274 }
duke@435 275 }
duke@435 276
duke@435 277 // Entry code
duke@435 278 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 279 return StubRoutines::catch_exception_entry();
duke@435 280 }
duke@435 281 // Interpreted code
duke@435 282 if (Interpreter::contains(return_address)) {
duke@435 283 return Interpreter::rethrow_exception_entry();
duke@435 284 }
duke@435 285
duke@435 286 // Compiled code
duke@435 287 if (CodeCache::contains(return_address)) {
duke@435 288 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 289 if (blob->is_nmethod()) {
duke@435 290 nmethod* code = (nmethod*)blob;
duke@435 291 assert(code != NULL, "nmethod must be present");
duke@435 292 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 293 return code->exception_begin();
duke@435 294 }
duke@435 295 if (blob->is_runtime_stub()) {
duke@435 296 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@435 297 }
duke@435 298 }
duke@435 299 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@435 300 #ifndef PRODUCT
duke@435 301 { ResourceMark rm;
duke@435 302 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 303 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 304 tty->print_cr("b) other problem");
duke@435 305 }
duke@435 306 #endif // PRODUCT
duke@435 307 ShouldNotReachHere();
duke@435 308 return NULL;
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
duke@435 313 return raw_exception_handler_for_return_address(return_address);
duke@435 314 JRT_END
duke@435 315
duke@435 316 address SharedRuntime::get_poll_stub(address pc) {
duke@435 317 address stub;
duke@435 318 // Look up the code blob
duke@435 319 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 320
duke@435 321 // Should be an nmethod
duke@435 322 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 323
duke@435 324 // Look up the relocation information
duke@435 325 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 326 "safepoint polling: type must be poll" );
duke@435 327
duke@435 328 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 329 "Only polling locations are used for safepoint");
duke@435 330
duke@435 331 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 332 if (at_poll_return) {
duke@435 333 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 334 "polling page return stub not created yet");
duke@435 335 stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
duke@435 336 } else {
duke@435 337 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 338 "polling page safepoint stub not created yet");
duke@435 339 stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
duke@435 340 }
duke@435 341 #ifndef PRODUCT
duke@435 342 if( TraceSafepoint ) {
duke@435 343 char buf[256];
duke@435 344 jio_snprintf(buf, sizeof(buf),
duke@435 345 "... found polling page %s exception at pc = "
duke@435 346 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 347 at_poll_return ? "return" : "loop",
duke@435 348 (intptr_t)pc, (intptr_t)stub);
duke@435 349 tty->print_raw_cr(buf);
duke@435 350 }
duke@435 351 #endif // PRODUCT
duke@435 352 return stub;
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@435 357 assert(caller.is_interpreted_frame(), "");
duke@435 358 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 359 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 360 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 361 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 362 return result;
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 367 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 368 vframeStream vfst(thread, true);
duke@435 369 methodHandle method = methodHandle(thread, vfst.method());
duke@435 370 address bcp = method()->bcp_from(vfst.bci());
duke@435 371 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 372 }
duke@435 373 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 374 }
duke@435 375
duke@435 376 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@435 377 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 378 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 379 }
duke@435 380
dcubed@1045 381 // The interpreter code to call this tracing function is only
dcubed@1045 382 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 383 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 384 // to modify the compilers to generate calls to this function.
dcubed@1045 385 //
dcubed@1045 386 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 387 JavaThread* thread, methodOopDesc* method))
dcubed@1045 388 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 389
dcubed@1045 390 if (method->is_obsolete()) {
dcubed@1045 391 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 392 // an error. Our method could have been redefined just after we
dcubed@1045 393 // fetched the methodOop from the constant pool.
dcubed@1045 394
dcubed@1045 395 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 396 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 397 ("calling obsolete method '%s'",
dcubed@1045 398 method->name_and_sig_as_C_string()));
dcubed@1045 399 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 400 // this option is provided to debug calls to obsolete methods
dcubed@1045 401 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 402 }
dcubed@1045 403 }
dcubed@1045 404 return 0;
dcubed@1045 405 JRT_END
dcubed@1045 406
duke@435 407 // ret_pc points into caller; we are returning caller's exception handler
duke@435 408 // for given exception
duke@435 409 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 410 bool force_unwind, bool top_frame_only) {
duke@435 411 assert(nm != NULL, "must exist");
duke@435 412 ResourceMark rm;
duke@435 413
duke@435 414 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 415 // determine handler bci, if any
duke@435 416 EXCEPTION_MARK;
duke@435 417
duke@435 418 int handler_bci = -1;
duke@435 419 int scope_depth = 0;
duke@435 420 if (!force_unwind) {
duke@435 421 int bci = sd->bci();
duke@435 422 do {
duke@435 423 bool skip_scope_increment = false;
duke@435 424 // exception handler lookup
duke@435 425 KlassHandle ek (THREAD, exception->klass());
duke@435 426 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 427 if (HAS_PENDING_EXCEPTION) {
duke@435 428 // We threw an exception while trying to find the exception handler.
duke@435 429 // Transfer the new exception to the exception handle which will
duke@435 430 // be set into thread local storage, and do another lookup for an
duke@435 431 // exception handler for this exception, this time starting at the
duke@435 432 // BCI of the exception handler which caused the exception to be
duke@435 433 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 434 // argument to ensure that the correct exception is thrown (4870175).
duke@435 435 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 436 CLEAR_PENDING_EXCEPTION;
duke@435 437 if (handler_bci >= 0) {
duke@435 438 bci = handler_bci;
duke@435 439 handler_bci = -1;
duke@435 440 skip_scope_increment = true;
duke@435 441 }
duke@435 442 }
duke@435 443 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 444 sd = sd->sender();
duke@435 445 if (sd != NULL) {
duke@435 446 bci = sd->bci();
duke@435 447 }
duke@435 448 ++scope_depth;
duke@435 449 }
duke@435 450 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 451 }
duke@435 452
duke@435 453 // found handling method => lookup exception handler
duke@435 454 int catch_pco = ret_pc - nm->instructions_begin();
duke@435 455
duke@435 456 ExceptionHandlerTable table(nm);
duke@435 457 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 458 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 459 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 460 // to materialize its exceptions without committing to the exact
duke@435 461 // routing of exceptions. In particular this is needed for adding
duke@435 462 // a synthethic handler to unlock monitors when inlining
duke@435 463 // synchonized methods since the unlock path isn't represented in
duke@435 464 // the bytecodes.
duke@435 465 t = table.entry_for(catch_pco, -1, 0);
duke@435 466 }
duke@435 467
duke@435 468 #ifdef COMPILER1
duke@435 469 if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
duke@435 470 // Exception is not handled by this frame so unwind. Note that
duke@435 471 // this is not the same as how C2 does this. C2 emits a table
duke@435 472 // entry that dispatches to the unwind code in the nmethod.
duke@435 473 return NULL;
duke@435 474 }
duke@435 475 #endif /* COMPILER1 */
duke@435 476
duke@435 477
duke@435 478 if (t == NULL) {
duke@435 479 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 480 tty->print_cr(" Exception:");
duke@435 481 exception->print();
duke@435 482 tty->cr();
duke@435 483 tty->print_cr(" Compiled exception table :");
duke@435 484 table.print();
duke@435 485 nm->print_code();
duke@435 486 guarantee(false, "missing exception handler");
duke@435 487 return NULL;
duke@435 488 }
duke@435 489
duke@435 490 return nm->instructions_begin() + t->pco();
duke@435 491 }
duke@435 492
duke@435 493 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 494 // These errors occur only at call sites
duke@435 495 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 496 JRT_END
duke@435 497
dcubed@451 498 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 499 // These errors occur only at call sites
dcubed@451 500 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 501 JRT_END
dcubed@451 502
duke@435 503 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 504 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 505 JRT_END
duke@435 506
duke@435 507 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 508 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 509 JRT_END
duke@435 510
duke@435 511 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 512 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 513 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 514 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 515 JRT_END
duke@435 516
duke@435 517 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 518 // We avoid using the normal exception construction in this case because
duke@435 519 // it performs an upcall to Java, and we're already out of stack space.
duke@435 520 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 521 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 522 Handle exception (thread, exception_oop);
duke@435 523 if (StackTraceInThrowable) {
duke@435 524 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 525 }
duke@435 526 throw_and_post_jvmti_exception(thread, exception);
duke@435 527 JRT_END
duke@435 528
duke@435 529 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 530 address pc,
duke@435 531 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 532 {
duke@435 533 address target_pc = NULL;
duke@435 534
duke@435 535 if (Interpreter::contains(pc)) {
duke@435 536 #ifdef CC_INTERP
duke@435 537 // C++ interpreter doesn't throw implicit exceptions
duke@435 538 ShouldNotReachHere();
duke@435 539 #else
duke@435 540 switch (exception_kind) {
duke@435 541 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 542 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 543 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 544 default: ShouldNotReachHere();
duke@435 545 }
duke@435 546 #endif // !CC_INTERP
duke@435 547 } else {
duke@435 548 switch (exception_kind) {
duke@435 549 case STACK_OVERFLOW: {
duke@435 550 // Stack overflow only occurs upon frame setup; the callee is
duke@435 551 // going to be unwound. Dispatch to a shared runtime stub
duke@435 552 // which will cause the StackOverflowError to be fabricated
duke@435 553 // and processed.
duke@435 554 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 555 if (thread->deopt_mark() != NULL) {
duke@435 556 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 557 }
duke@435 558 return StubRoutines::throw_StackOverflowError_entry();
duke@435 559 }
duke@435 560
duke@435 561 case IMPLICIT_NULL: {
duke@435 562 if (VtableStubs::contains(pc)) {
duke@435 563 // We haven't yet entered the callee frame. Fabricate an
duke@435 564 // exception and begin dispatching it in the caller. Since
duke@435 565 // the caller was at a call site, it's safe to destroy all
duke@435 566 // caller-saved registers, as these entry points do.
duke@435 567 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 568
poonam@900 569 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 570 if (vt_stub == NULL) return NULL;
poonam@900 571
duke@435 572 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 573 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 574 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 575 } else {
duke@435 576 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 577 }
duke@435 578 } else {
duke@435 579 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 580
poonam@900 581 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 582 if (cb == NULL) return NULL;
duke@435 583
duke@435 584 // Exception happened in CodeCache. Must be either:
duke@435 585 // 1. Inline-cache check in C2I handler blob,
duke@435 586 // 2. Inline-cache check in nmethod, or
duke@435 587 // 3. Implict null exception in nmethod
duke@435 588
duke@435 589 if (!cb->is_nmethod()) {
duke@435 590 guarantee(cb->is_adapter_blob(),
poonam@900 591 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 592 // There is no handler here, so we will simply unwind.
duke@435 593 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 594 }
duke@435 595
duke@435 596 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 597 nmethod* nm = (nmethod*)cb;
duke@435 598 if (nm->inlinecache_check_contains(pc)) {
duke@435 599 // exception happened inside inline-cache check code
duke@435 600 // => the nmethod is not yet active (i.e., the frame
duke@435 601 // is not set up yet) => use return address pushed by
duke@435 602 // caller => don't push another return address
duke@435 603 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 604 }
duke@435 605
duke@435 606 #ifndef PRODUCT
duke@435 607 _implicit_null_throws++;
duke@435 608 #endif
duke@435 609 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 610 // If there's an unexpected fault, target_pc might be NULL,
never@1685 611 // in which case we want to fall through into the normal
never@1685 612 // error handling code.
duke@435 613 }
duke@435 614
duke@435 615 break; // fall through
duke@435 616 }
duke@435 617
duke@435 618
duke@435 619 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 620 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 621 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 622 #ifndef PRODUCT
duke@435 623 _implicit_div0_throws++;
duke@435 624 #endif
duke@435 625 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 626 // If there's an unexpected fault, target_pc might be NULL,
never@1685 627 // in which case we want to fall through into the normal
never@1685 628 // error handling code.
duke@435 629 break; // fall through
duke@435 630 }
duke@435 631
duke@435 632 default: ShouldNotReachHere();
duke@435 633 }
duke@435 634
duke@435 635 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 636
duke@435 637 // for AbortVMOnException flag
duke@435 638 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 639 if (exception_kind == IMPLICIT_NULL) {
duke@435 640 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 641 } else {
duke@435 642 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 643 }
duke@435 644 return target_pc;
duke@435 645 }
duke@435 646
duke@435 647 ShouldNotReachHere();
duke@435 648 return NULL;
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 653 {
duke@435 654 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 655 }
duke@435 656 JNI_END
duke@435 657
duke@435 658
duke@435 659 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 660 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 661 }
duke@435 662
duke@435 663
duke@435 664 #ifndef PRODUCT
duke@435 665 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 666 const frame f = thread->last_frame();
duke@435 667 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 668 #ifndef PRODUCT
duke@435 669 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 670 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 671 #endif // !PRODUCT
duke@435 672 return preserve_this_value;
duke@435 673 JRT_END
duke@435 674 #endif // !PRODUCT
duke@435 675
duke@435 676
duke@435 677 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 678 os::yield_all(attempts);
duke@435 679 JRT_END
duke@435 680
duke@435 681
duke@435 682 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 683 assert(obj->is_oop(), "must be a valid oop");
duke@435 684 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 685 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 686 JRT_END
duke@435 687
duke@435 688
duke@435 689 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 690 if (thread != NULL) {
duke@435 691 if (thread->is_Java_thread()) {
duke@435 692 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 693 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 694 }
duke@435 695 }
duke@435 696 return 0;
duke@435 697 }
duke@435 698
duke@435 699 /**
duke@435 700 * This function ought to be a void function, but cannot be because
duke@435 701 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 702 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 703 */
duke@435 704 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 705 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 706 }
duke@435 707
duke@435 708 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 709 assert(DTraceAllocProbes, "wrong call");
duke@435 710 Klass* klass = o->blueprint();
duke@435 711 int size = o->size();
duke@435 712 symbolOop name = klass->name();
duke@435 713 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 714 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 715 return 0;
duke@435 716 }
duke@435 717
duke@435 718 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 719 JavaThread* thread, methodOopDesc* method))
duke@435 720 assert(DTraceMethodProbes, "wrong call");
duke@435 721 symbolOop kname = method->klass_name();
duke@435 722 symbolOop name = method->name();
duke@435 723 symbolOop sig = method->signature();
duke@435 724 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 725 kname->bytes(), kname->utf8_length(),
duke@435 726 name->bytes(), name->utf8_length(),
duke@435 727 sig->bytes(), sig->utf8_length());
duke@435 728 return 0;
duke@435 729 JRT_END
duke@435 730
duke@435 731 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 732 JavaThread* thread, methodOopDesc* method))
duke@435 733 assert(DTraceMethodProbes, "wrong call");
duke@435 734 symbolOop kname = method->klass_name();
duke@435 735 symbolOop name = method->name();
duke@435 736 symbolOop sig = method->signature();
duke@435 737 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 738 kname->bytes(), kname->utf8_length(),
duke@435 739 name->bytes(), name->utf8_length(),
duke@435 740 sig->bytes(), sig->utf8_length());
duke@435 741 return 0;
duke@435 742 JRT_END
duke@435 743
duke@435 744
duke@435 745 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 746 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 747 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 748 // vtable updates, etc. Caller frame must be compiled.
duke@435 749 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 750 ResourceMark rm(THREAD);
duke@435 751
duke@435 752 // last java frame on stack (which includes native call frames)
duke@435 753 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 754
duke@435 755 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 756 }
duke@435 757
duke@435 758
duke@435 759 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 760 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 761 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 762 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 763 vframeStream& vfst,
duke@435 764 Bytecodes::Code& bc,
duke@435 765 CallInfo& callinfo, TRAPS) {
duke@435 766 Handle receiver;
duke@435 767 Handle nullHandle; //create a handy null handle for exception returns
duke@435 768
duke@435 769 assert(!vfst.at_end(), "Java frame must exist");
duke@435 770
duke@435 771 // Find caller and bci from vframe
duke@435 772 methodHandle caller (THREAD, vfst.method());
duke@435 773 int bci = vfst.bci();
duke@435 774
duke@435 775 // Find bytecode
duke@435 776 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
duke@435 777 bc = bytecode->adjusted_invoke_code();
duke@435 778 int bytecode_index = bytecode->index();
duke@435 779
duke@435 780 // Find receiver for non-static call
duke@435 781 if (bc != Bytecodes::_invokestatic) {
duke@435 782 // This register map must be update since we need to find the receiver for
duke@435 783 // compiled frames. The receiver might be in a register.
duke@435 784 RegisterMap reg_map2(thread);
duke@435 785 frame stubFrame = thread->last_frame();
duke@435 786 // Caller-frame is a compiled frame
duke@435 787 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 788
duke@435 789 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@435 790 if (callee.is_null()) {
duke@435 791 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 792 }
duke@435 793 // Retrieve from a compiled argument list
duke@435 794 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 795
duke@435 796 if (receiver.is_null()) {
duke@435 797 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 798 }
duke@435 799 }
duke@435 800
duke@435 801 // Resolve method. This is parameterized by bytecode.
duke@435 802 constantPoolHandle constants (THREAD, caller->constants());
duke@435 803 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 804 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 805
duke@435 806 #ifdef ASSERT
duke@435 807 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 808 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 809 assert(receiver.not_null(), "should have thrown exception");
duke@435 810 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 811 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 812 // klass is already loaded
duke@435 813 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 814 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 815 if (receiver_klass->oop_is_instance()) {
duke@435 816 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 817 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 818 receiver_klass.print();
duke@435 819 }
duke@435 820 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 821 }
duke@435 822 }
duke@435 823 #endif
duke@435 824
duke@435 825 return receiver;
duke@435 826 }
duke@435 827
duke@435 828 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 829 ResourceMark rm(THREAD);
duke@435 830 // We need first to check if any Java activations (compiled, interpreted)
duke@435 831 // exist on the stack since last JavaCall. If not, we need
duke@435 832 // to get the target method from the JavaCall wrapper.
duke@435 833 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 834 methodHandle callee_method;
duke@435 835 if (vfst.at_end()) {
duke@435 836 // No Java frames were found on stack since we did the JavaCall.
duke@435 837 // Hence the stack can only contain an entry_frame. We need to
duke@435 838 // find the target method from the stub frame.
duke@435 839 RegisterMap reg_map(thread, false);
duke@435 840 frame fr = thread->last_frame();
duke@435 841 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 842 fr = fr.sender(&reg_map);
duke@435 843 assert(fr.is_entry_frame(), "must be");
duke@435 844 // fr is now pointing to the entry frame.
duke@435 845 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 846 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 847 } else {
duke@435 848 Bytecodes::Code bc;
duke@435 849 CallInfo callinfo;
duke@435 850 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 851 callee_method = callinfo.selected_method();
duke@435 852 }
duke@435 853 assert(callee_method()->is_method(), "must be");
duke@435 854 return callee_method;
duke@435 855 }
duke@435 856
duke@435 857 // Resolves a call.
duke@435 858 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 859 bool is_virtual,
duke@435 860 bool is_optimized, TRAPS) {
duke@435 861 methodHandle callee_method;
duke@435 862 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 863 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 864 int retry_count = 0;
duke@435 865 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 866 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 867 // If has a pending exception then there is no need to re-try to
duke@435 868 // resolve this method.
duke@435 869 // If the method has been redefined, we need to try again.
duke@435 870 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 871 // require that java.lang.Object has been updated.
duke@435 872
duke@435 873 // It is very unlikely that method is redefined more than 100 times
duke@435 874 // in the middle of resolve. If it is looping here more than 100 times
duke@435 875 // means then there could be a bug here.
duke@435 876 guarantee((retry_count++ < 100),
duke@435 877 "Could not resolve to latest version of redefined method");
duke@435 878 // method is redefined in the middle of resolve so re-try.
duke@435 879 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 880 }
duke@435 881 }
duke@435 882 return callee_method;
duke@435 883 }
duke@435 884
duke@435 885 // Resolves a call. The compilers generate code for calls that go here
duke@435 886 // and are patched with the real destination of the call.
duke@435 887 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 888 bool is_virtual,
duke@435 889 bool is_optimized, TRAPS) {
duke@435 890
duke@435 891 ResourceMark rm(thread);
duke@435 892 RegisterMap cbl_map(thread, false);
duke@435 893 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 894
duke@435 895 CodeBlob* cb = caller_frame.cb();
duke@435 896 guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
duke@435 897 // make sure caller is not getting deoptimized
duke@435 898 // and removed before we are done with it.
duke@435 899 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 900 nmethodLocker caller_lock((nmethod*)cb);
duke@435 901
duke@435 902
duke@435 903 // determine call info & receiver
duke@435 904 // note: a) receiver is NULL for static calls
duke@435 905 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 906 CallInfo call_info;
duke@435 907 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 908 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 909 call_info, CHECK_(methodHandle()));
duke@435 910 methodHandle callee_method = call_info.selected_method();
duke@435 911
duke@435 912 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 913 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 914
duke@435 915 #ifndef PRODUCT
duke@435 916 // tracing/debugging/statistics
duke@435 917 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 918 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 919 (&_resolve_static_ctr);
duke@435 920 Atomic::inc(addr);
duke@435 921
duke@435 922 if (TraceCallFixup) {
duke@435 923 ResourceMark rm(thread);
duke@435 924 tty->print("resolving %s%s (%s) call to",
duke@435 925 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 926 Bytecodes::name(invoke_code));
duke@435 927 callee_method->print_short_name(tty);
duke@435 928 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 929 }
duke@435 930 #endif
duke@435 931
duke@435 932 // Compute entry points. This might require generation of C2I converter
duke@435 933 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 934 // computation of the entry points is independent of patching the call. We
duke@435 935 // always return the entry-point, but we only patch the stub if the call has
duke@435 936 // not been deoptimized. Return values: For a virtual call this is an
duke@435 937 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 938 // virtual this is just a destination address.
duke@435 939
duke@435 940 StaticCallInfo static_call_info;
duke@435 941 CompiledICInfo virtual_call_info;
duke@435 942
duke@435 943
duke@435 944 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 945 // we are done patching the code.
duke@435 946 nmethod* nm = callee_method->code();
duke@435 947 nmethodLocker nl_callee(nm);
duke@435 948 #ifdef ASSERT
duke@435 949 address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
duke@435 950 #endif
duke@435 951
duke@435 952 if (is_virtual) {
duke@435 953 assert(receiver.not_null(), "sanity check");
duke@435 954 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 955 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 956 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 957 is_optimized, static_bound, virtual_call_info,
duke@435 958 CHECK_(methodHandle()));
duke@435 959 } else {
duke@435 960 // static call
duke@435 961 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 962 }
duke@435 963
duke@435 964 // grab lock, check for deoptimization and potentially patch caller
duke@435 965 {
duke@435 966 MutexLocker ml_patch(CompiledIC_lock);
duke@435 967
duke@435 968 // Now that we are ready to patch if the methodOop was redefined then
duke@435 969 // don't update call site and let the caller retry.
duke@435 970
duke@435 971 if (!callee_method->is_old()) {
duke@435 972 #ifdef ASSERT
duke@435 973 // We must not try to patch to jump to an already unloaded method.
duke@435 974 if (dest_entry_point != 0) {
duke@435 975 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 976 "should not unload nmethod while locked");
duke@435 977 }
duke@435 978 #endif
duke@435 979 if (is_virtual) {
duke@435 980 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 981 if (inline_cache->is_clean()) {
duke@435 982 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 983 }
duke@435 984 } else {
duke@435 985 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 986 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 987 }
duke@435 988 }
duke@435 989
duke@435 990 } // unlock CompiledIC_lock
duke@435 991
duke@435 992 return callee_method;
duke@435 993 }
duke@435 994
duke@435 995
duke@435 996 // Inline caches exist only in compiled code
duke@435 997 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 998 #ifdef ASSERT
duke@435 999 RegisterMap reg_map(thread, false);
duke@435 1000 frame stub_frame = thread->last_frame();
duke@435 1001 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1002 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1003 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1004 #endif /* ASSERT */
duke@435 1005
duke@435 1006 methodHandle callee_method;
duke@435 1007 JRT_BLOCK
duke@435 1008 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1009 // Return methodOop through TLS
duke@435 1010 thread->set_vm_result(callee_method());
duke@435 1011 JRT_BLOCK_END
duke@435 1012 // return compiled code entry point after potential safepoints
duke@435 1013 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1014 return callee_method->verified_code_entry();
duke@435 1015 JRT_END
duke@435 1016
duke@435 1017
duke@435 1018 // Handle call site that has been made non-entrant
duke@435 1019 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1020 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1021 // as we race to call it. We don't want to take a safepoint if
duke@435 1022 // the caller was interpreted because the caller frame will look
duke@435 1023 // interpreted to the stack walkers and arguments are now
duke@435 1024 // "compiled" so it is much better to make this transition
duke@435 1025 // invisible to the stack walking code. The i2c path will
duke@435 1026 // place the callee method in the callee_target. It is stashed
duke@435 1027 // there because if we try and find the callee by normal means a
duke@435 1028 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1029 RegisterMap reg_map(thread, false);
duke@435 1030 frame stub_frame = thread->last_frame();
duke@435 1031 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1032 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1033
twisti@1570 1034 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1035 // simply redispatch to the callee_target.
twisti@1570 1036 address sender_pc = caller_frame.pc();
twisti@1570 1037 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1038 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1039 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1040 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1041 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1042 // adapter.
twisti@1639 1043 methodOop callee = thread->callee_target();
twisti@1639 1044 if (callee != NULL) {
twisti@1639 1045 assert(callee->is_method(), "sanity");
twisti@1639 1046 is_mh_invoke_via_adapter = true;
twisti@1639 1047 }
twisti@1639 1048 }
twisti@1570 1049
twisti@1570 1050 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1051 caller_frame.is_entry_frame() ||
twisti@1639 1052 is_mh_invoke_via_adapter) {
duke@435 1053 methodOop callee = thread->callee_target();
duke@435 1054 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1055 thread->set_vm_result(callee);
duke@435 1056 thread->set_callee_target(NULL);
duke@435 1057 return callee->get_c2i_entry();
duke@435 1058 }
duke@435 1059
duke@435 1060 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1061 methodHandle callee_method;
duke@435 1062 JRT_BLOCK
duke@435 1063 // Force resolving of caller (if we called from compiled frame)
duke@435 1064 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1065 thread->set_vm_result(callee_method());
duke@435 1066 JRT_BLOCK_END
duke@435 1067 // return compiled code entry point after potential safepoints
duke@435 1068 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1069 return callee_method->verified_code_entry();
duke@435 1070 JRT_END
duke@435 1071
duke@435 1072
duke@435 1073 // resolve a static call and patch code
duke@435 1074 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1075 methodHandle callee_method;
duke@435 1076 JRT_BLOCK
duke@435 1077 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1078 thread->set_vm_result(callee_method());
duke@435 1079 JRT_BLOCK_END
duke@435 1080 // return compiled code entry point after potential safepoints
duke@435 1081 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1082 return callee_method->verified_code_entry();
duke@435 1083 JRT_END
duke@435 1084
duke@435 1085
duke@435 1086 // resolve virtual call and update inline cache to monomorphic
duke@435 1087 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1088 methodHandle callee_method;
duke@435 1089 JRT_BLOCK
duke@435 1090 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1091 thread->set_vm_result(callee_method());
duke@435 1092 JRT_BLOCK_END
duke@435 1093 // return compiled code entry point after potential safepoints
duke@435 1094 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1095 return callee_method->verified_code_entry();
duke@435 1096 JRT_END
duke@435 1097
duke@435 1098
duke@435 1099 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1100 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1101 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1102 methodHandle callee_method;
duke@435 1103 JRT_BLOCK
duke@435 1104 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1105 thread->set_vm_result(callee_method());
duke@435 1106 JRT_BLOCK_END
duke@435 1107 // return compiled code entry point after potential safepoints
duke@435 1108 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1109 return callee_method->verified_code_entry();
duke@435 1110 JRT_END
duke@435 1111
duke@435 1112
duke@435 1113
duke@435 1114
duke@435 1115
duke@435 1116 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1117 ResourceMark rm(thread);
duke@435 1118 CallInfo call_info;
duke@435 1119 Bytecodes::Code bc;
duke@435 1120
duke@435 1121 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1122 // receivers for non-static calls
duke@435 1123 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1124 CHECK_(methodHandle()));
duke@435 1125 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1126 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1127 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1128 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1129 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1130 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1131 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1132 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1133 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1134 //
duke@435 1135 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1136 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1137 if (TraceCallFixup) {
duke@435 1138 RegisterMap reg_map(thread, false);
duke@435 1139 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1140 ResourceMark rm(thread);
duke@435 1141 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1142 callee_method->print_short_name(tty);
duke@435 1143 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1144 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1145 }
duke@435 1146 return callee_method;
duke@435 1147 }
duke@435 1148
duke@435 1149 methodHandle callee_method = call_info.selected_method();
duke@435 1150
duke@435 1151 bool should_be_mono = false;
duke@435 1152
duke@435 1153 #ifndef PRODUCT
duke@435 1154 Atomic::inc(&_ic_miss_ctr);
duke@435 1155
duke@435 1156 // Statistics & Tracing
duke@435 1157 if (TraceCallFixup) {
duke@435 1158 ResourceMark rm(thread);
duke@435 1159 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1160 callee_method->print_short_name(tty);
duke@435 1161 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1162 }
duke@435 1163
duke@435 1164 if (ICMissHistogram) {
duke@435 1165 MutexLocker m(VMStatistic_lock);
duke@435 1166 RegisterMap reg_map(thread, false);
duke@435 1167 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1168 // produce statistics under the lock
duke@435 1169 trace_ic_miss(f.pc());
duke@435 1170 }
duke@435 1171 #endif
duke@435 1172
duke@435 1173 // install an event collector so that when a vtable stub is created the
duke@435 1174 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1175 // event can't be posted when the stub is created as locks are held
duke@435 1176 // - instead the event will be deferred until the event collector goes
duke@435 1177 // out of scope.
duke@435 1178 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1179
duke@435 1180 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1181 // made non-entrant or we are called from interpreted.
duke@435 1182 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1183 RegisterMap reg_map(thread, false);
duke@435 1184 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1185 CodeBlob* cb = caller_frame.cb();
duke@435 1186 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1187 // Not a non-entrant nmethod, so find inline_cache
duke@435 1188 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1189 bool should_be_mono = false;
duke@435 1190 if (inline_cache->is_optimized()) {
duke@435 1191 if (TraceCallFixup) {
duke@435 1192 ResourceMark rm(thread);
duke@435 1193 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1194 callee_method->print_short_name(tty);
duke@435 1195 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1196 }
duke@435 1197 should_be_mono = true;
duke@435 1198 } else {
duke@435 1199 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1200 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1201
duke@435 1202 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1203 // This isn't a real miss. We must have seen that compiled code
duke@435 1204 // is now available and we want the call site converted to a
duke@435 1205 // monomorphic compiled call site.
duke@435 1206 // We can't assert for callee_method->code() != NULL because it
duke@435 1207 // could have been deoptimized in the meantime
duke@435 1208 if (TraceCallFixup) {
duke@435 1209 ResourceMark rm(thread);
duke@435 1210 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1211 callee_method->print_short_name(tty);
duke@435 1212 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1213 }
duke@435 1214 should_be_mono = true;
duke@435 1215 }
duke@435 1216 }
duke@435 1217 }
duke@435 1218
duke@435 1219 if (should_be_mono) {
duke@435 1220
duke@435 1221 // We have a path that was monomorphic but was going interpreted
duke@435 1222 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1223 // by using a new icBuffer.
duke@435 1224 CompiledICInfo info;
duke@435 1225 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1226 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1227 receiver_klass,
duke@435 1228 inline_cache->is_optimized(),
duke@435 1229 false,
duke@435 1230 info, CHECK_(methodHandle()));
duke@435 1231 inline_cache->set_to_monomorphic(info);
duke@435 1232 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1233 // Change to megamorphic
duke@435 1234 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1235 } else {
duke@435 1236 // Either clean or megamorphic
duke@435 1237 }
duke@435 1238 }
duke@435 1239 } // Release CompiledIC_lock
duke@435 1240
duke@435 1241 return callee_method;
duke@435 1242 }
duke@435 1243
duke@435 1244 //
duke@435 1245 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1246 // This routines handles both virtual call sites, optimized virtual call
duke@435 1247 // sites, and static call sites. Typically used to change a call sites
duke@435 1248 // destination from compiled to interpreted.
duke@435 1249 //
duke@435 1250 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1251 ResourceMark rm(thread);
duke@435 1252 RegisterMap reg_map(thread, false);
duke@435 1253 frame stub_frame = thread->last_frame();
duke@435 1254 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1255 frame caller = stub_frame.sender(&reg_map);
duke@435 1256
duke@435 1257 // Do nothing if the frame isn't a live compiled frame.
duke@435 1258 // nmethod could be deoptimized by the time we get here
duke@435 1259 // so no update to the caller is needed.
duke@435 1260
duke@435 1261 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1262
duke@435 1263 address pc = caller.pc();
duke@435 1264 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1265
duke@435 1266 // Default call_addr is the location of the "basic" call.
duke@435 1267 // Determine the address of the call we a reresolving. With
duke@435 1268 // Inline Caches we will always find a recognizable call.
duke@435 1269 // With Inline Caches disabled we may or may not find a
duke@435 1270 // recognizable call. We will always find a call for static
duke@435 1271 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1272 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1273 //
duke@435 1274 // With Inline Caches disabled we can get here for a virtual call
duke@435 1275 // for two reasons:
duke@435 1276 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1277 // will run us thru handle_wrong_method and we will eventually
duke@435 1278 // end up in the interpreter to throw the ame.
duke@435 1279 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1280 // call and between the time we fetch the entry address and
duke@435 1281 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1282 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1283 //
duke@435 1284 address call_addr = NULL;
duke@435 1285 {
duke@435 1286 // Get call instruction under lock because another thread may be
duke@435 1287 // busy patching it.
duke@435 1288 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1289 // Location of call instruction
duke@435 1290 if (NativeCall::is_call_before(pc)) {
duke@435 1291 NativeCall *ncall = nativeCall_before(pc);
duke@435 1292 call_addr = ncall->instruction_address();
duke@435 1293 }
duke@435 1294 }
duke@435 1295
duke@435 1296 // Check for static or virtual call
duke@435 1297 bool is_static_call = false;
duke@435 1298 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1299 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1300 // this is done with it.
duke@435 1301 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1302 nmethodLocker nmlock(caller_nm);
duke@435 1303
duke@435 1304 if (call_addr != NULL) {
duke@435 1305 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1306 int ret = iter.next(); // Get item
duke@435 1307 if (ret) {
duke@435 1308 assert(iter.addr() == call_addr, "must find call");
duke@435 1309 if (iter.type() == relocInfo::static_call_type) {
duke@435 1310 is_static_call = true;
duke@435 1311 } else {
duke@435 1312 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1313 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1314 , "unexpected relocInfo. type");
duke@435 1315 }
duke@435 1316 } else {
duke@435 1317 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1318 }
duke@435 1319
duke@435 1320 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1321 // than directly setting it to the new destination, since resolving of calls
duke@435 1322 // is always done through the same code path. (experience shows that it
duke@435 1323 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1324 // to a wrong method). It should not be performance critical, since the
duke@435 1325 // resolve is only done once.
duke@435 1326
duke@435 1327 MutexLocker ml(CompiledIC_lock);
duke@435 1328 //
duke@435 1329 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1330 // as it is a waste of time
duke@435 1331 //
duke@435 1332 if (caller_nm->is_in_use()) {
duke@435 1333 if (is_static_call) {
duke@435 1334 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1335 ssc->set_to_clean();
duke@435 1336 } else {
duke@435 1337 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1338 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1339 inline_cache->set_to_clean();
duke@435 1340 }
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344 }
duke@435 1345
duke@435 1346 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1347
duke@435 1348
duke@435 1349 #ifndef PRODUCT
duke@435 1350 Atomic::inc(&_wrong_method_ctr);
duke@435 1351
duke@435 1352 if (TraceCallFixup) {
duke@435 1353 ResourceMark rm(thread);
duke@435 1354 tty->print("handle_wrong_method reresolving call to");
duke@435 1355 callee_method->print_short_name(tty);
duke@435 1356 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1357 }
duke@435 1358 #endif
duke@435 1359
duke@435 1360 return callee_method;
duke@435 1361 }
duke@435 1362
duke@435 1363 // ---------------------------------------------------------------------------
duke@435 1364 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1365 // we were called by a compiled method. However we could have lost a race
duke@435 1366 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1367 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1368 // so he no longer calls into the interpreter.
duke@435 1369 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1370 methodOop moop(method);
duke@435 1371
duke@435 1372 address entry_point = moop->from_compiled_entry();
duke@435 1373
duke@435 1374 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1375 // been resolved yet, in which case this function will be called from
duke@435 1376 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1377 // request for a fixup.
duke@435 1378 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1379 // is now back to the i2c in that case we don't need to patch and if
duke@435 1380 // we did we'd leap into space because the callsite needs to use
duke@435 1381 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1382 // ask me how I know this...
duke@435 1383
duke@435 1384 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1385 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1386 return;
twisti@1640 1387 }
twisti@1640 1388
twisti@1640 1389 // The check above makes sure this is a nmethod.
twisti@1640 1390 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1391 assert(nm, "must be");
twisti@1640 1392
twisti@1640 1393 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1394 // to implement MethodHandle actions.
twisti@1640 1395 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1396 return;
duke@435 1397 }
duke@435 1398
duke@435 1399 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1400 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1401 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1402 // call site with the same old data. clear_code will set code() to NULL
duke@435 1403 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1404 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1405 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1406 // and patch the code with the same old data. Asi es la vida.
duke@435 1407
duke@435 1408 if (moop->code() == NULL) return;
duke@435 1409
twisti@1640 1410 if (nm->is_in_use()) {
duke@435 1411
duke@435 1412 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1413 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1414 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1415 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1416 //
duke@435 1417 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1418 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1419 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1420 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1421 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1422 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1423 // for the rest of its life! Just another racing bug in the life of
duke@435 1424 // fixup_callers_callsite ...
duke@435 1425 //
duke@435 1426 RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
duke@435 1427 iter.next();
duke@435 1428 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1429 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1430 if ( typ != relocInfo::static_call_type &&
duke@435 1431 typ != relocInfo::opt_virtual_call_type &&
duke@435 1432 typ != relocInfo::static_stub_type) {
duke@435 1433 return;
duke@435 1434 }
duke@435 1435 address destination = call->destination();
duke@435 1436 if (destination != entry_point) {
duke@435 1437 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1438 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1439 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1440 // static call or optimized virtual
duke@435 1441 if (TraceCallFixup) {
twisti@1639 1442 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1443 moop->print_short_name(tty);
duke@435 1444 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1445 }
duke@435 1446 call->set_destination_mt_safe(entry_point);
duke@435 1447 } else {
duke@435 1448 if (TraceCallFixup) {
duke@435 1449 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1450 moop->print_short_name(tty);
duke@435 1451 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1452 }
duke@435 1453 // assert is too strong could also be resolve destinations.
duke@435 1454 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1455 }
duke@435 1456 } else {
duke@435 1457 if (TraceCallFixup) {
twisti@1639 1458 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1459 moop->print_short_name(tty);
duke@435 1460 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1461 }
duke@435 1462 }
duke@435 1463 }
duke@435 1464 }
duke@435 1465
duke@435 1466 IRT_END
duke@435 1467
duke@435 1468
duke@435 1469 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1470 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1471 oopDesc* dest, jint dest_pos,
duke@435 1472 jint length,
duke@435 1473 JavaThread* thread)) {
duke@435 1474 #ifndef PRODUCT
duke@435 1475 _slow_array_copy_ctr++;
duke@435 1476 #endif
duke@435 1477 // Check if we have null pointers
duke@435 1478 if (src == NULL || dest == NULL) {
duke@435 1479 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1480 }
duke@435 1481 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1482 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1483 // that src and dest are truly arrays (and are conformable).
duke@435 1484 // The copy_array mechanism is awkward and could be removed, but
duke@435 1485 // the compilers don't call this function except as a last resort,
duke@435 1486 // so it probably doesn't matter.
duke@435 1487 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1488 (arrayOopDesc*)dest, dest_pos,
duke@435 1489 length, thread);
duke@435 1490 }
duke@435 1491 JRT_END
duke@435 1492
duke@435 1493 char* SharedRuntime::generate_class_cast_message(
duke@435 1494 JavaThread* thread, const char* objName) {
duke@435 1495
duke@435 1496 // Get target class name from the checkcast instruction
duke@435 1497 vframeStream vfst(thread, true);
duke@435 1498 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1499 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@435 1500 vfst.method()->bcp_from(vfst.bci()));
duke@435 1501 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@435 1502 cc->index(), thread));
duke@435 1503 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1504 }
duke@435 1505
jrose@1145 1506 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1507 oopDesc* required,
jrose@1145 1508 oopDesc* actual) {
jrose@1145 1509 assert(EnableMethodHandles, "");
jrose@1145 1510 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@1145 1511 if (singleKlass != NULL) {
jrose@1145 1512 const char* objName = "argument or return value";
jrose@1145 1513 if (actual != NULL) {
jrose@1145 1514 // be flexible about the junk passed in:
jrose@1145 1515 klassOop ak = (actual->is_klass()
jrose@1145 1516 ? (klassOop)actual
jrose@1145 1517 : actual->klass());
jrose@1145 1518 objName = Klass::cast(ak)->external_name();
jrose@1145 1519 }
jrose@1145 1520 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1521 ? (klassOop)required
jrose@1145 1522 : java_lang_Class::as_klassOop(required));
jrose@1145 1523 return generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1524 } else {
jrose@1145 1525 // %%% need to get the MethodType string, without messing around too much
jrose@1145 1526 // Get a signature from the invoke instruction
jrose@1145 1527 const char* mhName = "method handle";
jrose@1145 1528 const char* targetType = "the required signature";
jrose@1145 1529 vframeStream vfst(thread, true);
jrose@1145 1530 if (!vfst.at_end()) {
jrose@1145 1531 Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
jrose@1145 1532 methodHandle target;
jrose@1145 1533 {
jrose@1145 1534 EXCEPTION_MARK;
jrose@1145 1535 target = call->static_target(THREAD);
jrose@1145 1536 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1537 }
jrose@1145 1538 if (target.not_null()
jrose@1145 1539 && target->is_method_handle_invoke()
jrose@1145 1540 && required == target->method_handle_type()) {
jrose@1145 1541 targetType = target->signature()->as_C_string();
jrose@1145 1542 }
jrose@1145 1543 }
jrose@1145 1544 klassOop kignore; int fignore;
jrose@1145 1545 methodOop actual_method = MethodHandles::decode_method(actual,
jrose@1145 1546 kignore, fignore);
jrose@1145 1547 if (actual_method != NULL) {
jrose@1145 1548 if (actual_method->name() == vmSymbols::invoke_name())
jrose@1145 1549 mhName = "$";
jrose@1145 1550 else
jrose@1145 1551 mhName = actual_method->signature()->as_C_string();
jrose@1145 1552 if (mhName[0] == '$')
jrose@1145 1553 mhName = actual_method->signature()->as_C_string();
jrose@1145 1554 }
jrose@1145 1555 return generate_class_cast_message(mhName, targetType,
jrose@1145 1556 " cannot be called as ");
jrose@1145 1557 }
jrose@1145 1558 }
jrose@1145 1559
jrose@1145 1560 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1561 oopDesc* required) {
jrose@1145 1562 if (required == NULL) return NULL;
never@1577 1563 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1564 return required;
jrose@1145 1565 if (required->is_klass())
jrose@1145 1566 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1567 return NULL;
jrose@1145 1568 }
jrose@1145 1569
jrose@1145 1570
duke@435 1571 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1572 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1573 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1574
kamg@488 1575 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1576 if (NULL == message) {
kamg@488 1577 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1578 message = const_cast<char*>(objName);
duke@435 1579 } else {
duke@435 1580 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1581 }
duke@435 1582 return message;
duke@435 1583 }
duke@435 1584
duke@435 1585 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1586 (void) JavaThread::current()->reguard_stack();
duke@435 1587 JRT_END
duke@435 1588
duke@435 1589
duke@435 1590 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1591 #ifndef PRODUCT
duke@435 1592 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1593 #endif
duke@435 1594 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1595 oop obj(_obj);
duke@435 1596 #ifndef PRODUCT
duke@435 1597 _monitor_enter_ctr++; // monitor enter slow
duke@435 1598 #endif
duke@435 1599 if (PrintBiasedLockingStatistics) {
duke@435 1600 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1601 }
duke@435 1602 Handle h_obj(THREAD, obj);
duke@435 1603 if (UseBiasedLocking) {
duke@435 1604 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1605 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1606 } else {
duke@435 1607 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1608 }
duke@435 1609 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1610 JRT_END
duke@435 1611
duke@435 1612 #ifndef PRODUCT
duke@435 1613 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1614 #endif
duke@435 1615 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1616 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1617 oop obj(_obj);
duke@435 1618 #ifndef PRODUCT
duke@435 1619 _monitor_exit_ctr++; // monitor exit slow
duke@435 1620 #endif
duke@435 1621 Thread* THREAD = JavaThread::current();
duke@435 1622 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1623 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1624 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1625 #undef MIGHT_HAVE_PENDING
duke@435 1626 #ifdef MIGHT_HAVE_PENDING
duke@435 1627 // Save and restore any pending_exception around the exception mark.
duke@435 1628 // While the slow_exit must not throw an exception, we could come into
duke@435 1629 // this routine with one set.
duke@435 1630 oop pending_excep = NULL;
duke@435 1631 const char* pending_file;
duke@435 1632 int pending_line;
duke@435 1633 if (HAS_PENDING_EXCEPTION) {
duke@435 1634 pending_excep = PENDING_EXCEPTION;
duke@435 1635 pending_file = THREAD->exception_file();
duke@435 1636 pending_line = THREAD->exception_line();
duke@435 1637 CLEAR_PENDING_EXCEPTION;
duke@435 1638 }
duke@435 1639 #endif /* MIGHT_HAVE_PENDING */
duke@435 1640
duke@435 1641 {
duke@435 1642 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1643 EXCEPTION_MARK;
duke@435 1644 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1645 }
duke@435 1646
duke@435 1647 #ifdef MIGHT_HAVE_PENDING
duke@435 1648 if (pending_excep != NULL) {
duke@435 1649 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1650 }
duke@435 1651 #endif /* MIGHT_HAVE_PENDING */
duke@435 1652 JRT_END
duke@435 1653
duke@435 1654 #ifndef PRODUCT
duke@435 1655
duke@435 1656 void SharedRuntime::print_statistics() {
duke@435 1657 ttyLocker ttyl;
duke@435 1658 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1659
duke@435 1660 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1661 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1662 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1663
duke@435 1664 SharedRuntime::print_ic_miss_histogram();
duke@435 1665
duke@435 1666 if (CountRemovableExceptions) {
duke@435 1667 if (_nof_removable_exceptions > 0) {
duke@435 1668 Unimplemented(); // this counter is not yet incremented
duke@435 1669 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673 // Dump the JRT_ENTRY counters
duke@435 1674 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1675 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1676 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1677 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1678 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1679 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1680 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1681
duke@435 1682 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1683 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1684 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1685 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1686 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1687
duke@435 1688 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1689 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1690 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1691 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1692 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1693 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1694 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1695 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1696 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1697 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1698 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1699 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1700 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1701 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1702 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1703 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1704
never@1622 1705 AdapterHandlerLibrary::print_statistics();
never@1622 1706
duke@435 1707 if (xtty != NULL) xtty->tail("statistics");
duke@435 1708 }
duke@435 1709
duke@435 1710 inline double percent(int x, int y) {
duke@435 1711 return 100.0 * x / MAX2(y, 1);
duke@435 1712 }
duke@435 1713
duke@435 1714 class MethodArityHistogram {
duke@435 1715 public:
duke@435 1716 enum { MAX_ARITY = 256 };
duke@435 1717 private:
duke@435 1718 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1719 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1720 static int _max_arity; // max. arity seen
duke@435 1721 static int _max_size; // max. arg size seen
duke@435 1722
duke@435 1723 static void add_method_to_histogram(nmethod* nm) {
duke@435 1724 methodOop m = nm->method();
duke@435 1725 ArgumentCount args(m->signature());
duke@435 1726 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1727 int argsize = m->size_of_parameters();
duke@435 1728 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1729 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1730 int count = nm->method()->compiled_invocation_count();
duke@435 1731 _arity_histogram[arity] += count;
duke@435 1732 _size_histogram[argsize] += count;
duke@435 1733 _max_arity = MAX2(_max_arity, arity);
duke@435 1734 _max_size = MAX2(_max_size, argsize);
duke@435 1735 }
duke@435 1736
duke@435 1737 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1738 const int N = MIN2(5, n);
duke@435 1739 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1740 double sum = 0;
duke@435 1741 double weighted_sum = 0;
duke@435 1742 int i;
duke@435 1743 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1744 double rest = sum;
duke@435 1745 double percent = sum / 100;
duke@435 1746 for (i = 0; i <= N; i++) {
duke@435 1747 rest -= histo[i];
duke@435 1748 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1749 }
duke@435 1750 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1751 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1752 }
duke@435 1753
duke@435 1754 void print_histogram() {
duke@435 1755 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1756 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1757 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1758 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1759 tty->cr();
duke@435 1760 }
duke@435 1761
duke@435 1762 public:
duke@435 1763 MethodArityHistogram() {
duke@435 1764 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1765 _max_arity = _max_size = 0;
duke@435 1766 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1767 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1768 print_histogram();
duke@435 1769 }
duke@435 1770 };
duke@435 1771
duke@435 1772 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1773 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1774 int MethodArityHistogram::_max_arity;
duke@435 1775 int MethodArityHistogram::_max_size;
duke@435 1776
duke@435 1777 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1778 tty->print_cr("Calls from compiled code:");
duke@435 1779 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1780 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1781 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1782 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1783 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1784 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1785 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1786 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1787 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1788 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1789 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1790 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1791 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1792 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1793 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1794 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1795 tty->cr();
duke@435 1796 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1797 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1798 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1799 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1800 tty->cr();
duke@435 1801
duke@435 1802 MethodArityHistogram h;
duke@435 1803 }
duke@435 1804 #endif
duke@435 1805
duke@435 1806
never@1622 1807 // A simple wrapper class around the calling convention information
never@1622 1808 // that allows sharing of adapters for the same calling convention.
never@1622 1809 class AdapterFingerPrint : public CHeapObj {
never@1622 1810 private:
never@1622 1811 union {
never@1642 1812 int _compact[3];
never@1642 1813 int* _fingerprint;
never@1622 1814 } _value;
never@1642 1815 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 1816 // Otherwise _value._fingerprint is the array.
never@1622 1817
never@1642 1818 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 1819 // These are correct for the current system but someday it might be
never@1642 1820 // necessary to make this mapping platform dependent.
never@1642 1821 static BasicType adapter_encoding(BasicType in) {
never@1642 1822 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 1823 switch(in) {
never@1642 1824 case T_BOOLEAN:
never@1642 1825 case T_BYTE:
never@1642 1826 case T_SHORT:
never@1642 1827 case T_CHAR:
never@1642 1828 // There are all promoted to T_INT in the calling convention
never@1642 1829 return T_INT;
never@1642 1830
never@1642 1831 case T_OBJECT:
never@1642 1832 case T_ARRAY:
never@1642 1833 if (!TaggedStackInterpreter) {
never@1642 1834 #ifdef _LP64
never@1642 1835 return T_LONG;
never@1642 1836 #else
never@1642 1837 return T_INT;
never@1642 1838 #endif
never@1622 1839 }
never@1642 1840 return T_OBJECT;
never@1642 1841
never@1642 1842 case T_INT:
never@1642 1843 case T_LONG:
never@1642 1844 case T_FLOAT:
never@1642 1845 case T_DOUBLE:
never@1642 1846 case T_VOID:
never@1642 1847 return in;
never@1642 1848
never@1642 1849 default:
never@1642 1850 ShouldNotReachHere();
never@1642 1851 return T_CONFLICT;
never@1622 1852 }
never@1622 1853 }
never@1622 1854
never@1642 1855 public:
never@1642 1856 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 1857 // The fingerprint is based on the BasicType signature encoded
never@1642 1858 // into an array of ints with four entries per int.
never@1642 1859 int* ptr;
never@1642 1860 int len = (total_args_passed + 3) >> 2;
never@1642 1861 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 1862 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 1863 // Storing the signature encoded as signed chars hits about 98%
never@1642 1864 // of the time.
never@1642 1865 _length = -len;
never@1642 1866 ptr = _value._compact;
never@1642 1867 } else {
never@1642 1868 _length = len;
never@1642 1869 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 1870 ptr = _value._fingerprint;
never@1642 1871 }
never@1642 1872
never@1642 1873 // Now pack the BasicTypes with 4 per int
never@1642 1874 int sig_index = 0;
never@1642 1875 for (int index = 0; index < len; index++) {
never@1642 1876 int value = 0;
never@1642 1877 for (int byte = 0; byte < 4; byte++) {
never@1642 1878 if (sig_index < total_args_passed) {
never@1642 1879 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 1880 }
never@1642 1881 }
never@1642 1882 ptr[index] = value;
never@1642 1883 }
never@1622 1884 }
never@1622 1885
never@1622 1886 ~AdapterFingerPrint() {
never@1622 1887 if (_length > 0) {
never@1622 1888 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 1889 }
never@1622 1890 }
never@1622 1891
never@1642 1892 int value(int index) {
never@1622 1893 if (_length < 0) {
never@1622 1894 return _value._compact[index];
never@1622 1895 }
never@1622 1896 return _value._fingerprint[index];
never@1622 1897 }
never@1622 1898 int length() {
never@1622 1899 if (_length < 0) return -_length;
never@1622 1900 return _length;
never@1622 1901 }
never@1622 1902
never@1622 1903 bool is_compact() {
never@1622 1904 return _length <= 0;
never@1622 1905 }
never@1622 1906
never@1622 1907 unsigned int compute_hash() {
never@1642 1908 int hash = 0;
never@1622 1909 for (int i = 0; i < length(); i++) {
never@1642 1910 int v = value(i);
never@1622 1911 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 1912 }
never@1622 1913 return (unsigned int)hash;
never@1622 1914 }
never@1622 1915
never@1622 1916 const char* as_string() {
never@1622 1917 stringStream st;
never@1622 1918 for (int i = 0; i < length(); i++) {
never@1622 1919 st.print(PTR_FORMAT, value(i));
never@1622 1920 }
never@1622 1921 return st.as_string();
never@1622 1922 }
never@1622 1923
never@1622 1924 bool equals(AdapterFingerPrint* other) {
never@1622 1925 if (other->_length != _length) {
never@1622 1926 return false;
never@1622 1927 }
never@1622 1928 if (_length < 0) {
never@1642 1929 return _value._compact[0] == other->_value._compact[0] &&
never@1642 1930 _value._compact[1] == other->_value._compact[1] &&
never@1642 1931 _value._compact[2] == other->_value._compact[2];
never@1622 1932 } else {
never@1622 1933 for (int i = 0; i < _length; i++) {
never@1622 1934 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 1935 return false;
never@1622 1936 }
never@1622 1937 }
never@1622 1938 }
never@1622 1939 return true;
never@1622 1940 }
never@1622 1941 };
never@1622 1942
never@1622 1943
never@1622 1944 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 1945 class AdapterHandlerTable : public BasicHashtable {
never@1622 1946 friend class AdapterHandlerTableIterator;
never@1622 1947
never@1622 1948 private:
never@1622 1949
kvn@1698 1950 #ifndef PRODUCT
never@1622 1951 static int _lookups; // number of calls to lookup
never@1622 1952 static int _buckets; // number of buckets checked
never@1622 1953 static int _equals; // number of buckets checked with matching hash
never@1622 1954 static int _hits; // number of successful lookups
never@1622 1955 static int _compact; // number of equals calls with compact signature
never@1622 1956 #endif
never@1622 1957
never@1622 1958 AdapterHandlerEntry* bucket(int i) {
never@1622 1959 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 1960 }
never@1622 1961
never@1622 1962 public:
never@1622 1963 AdapterHandlerTable()
never@1622 1964 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 1965
never@1622 1966 // Create a new entry suitable for insertion in the table
never@1622 1967 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 1968 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 1969 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 1970 return entry;
never@1622 1971 }
never@1622 1972
never@1622 1973 // Insert an entry into the table
never@1622 1974 void add(AdapterHandlerEntry* entry) {
never@1622 1975 int index = hash_to_index(entry->hash());
never@1622 1976 add_entry(index, entry);
never@1622 1977 }
never@1622 1978
never@1642 1979 void free_entry(AdapterHandlerEntry* entry) {
never@1642 1980 entry->deallocate();
never@1642 1981 BasicHashtable::free_entry(entry);
never@1642 1982 }
never@1642 1983
never@1622 1984 // Find a entry with the same fingerprint if it exists
never@1642 1985 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 1986 NOT_PRODUCT(_lookups++);
never@1642 1987 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 1988 unsigned int hash = fp.compute_hash();
never@1622 1989 int index = hash_to_index(hash);
never@1622 1990 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 1991 NOT_PRODUCT(_buckets++);
never@1622 1992 if (e->hash() == hash) {
kvn@1698 1993 NOT_PRODUCT(_equals++);
never@1622 1994 if (fp.equals(e->fingerprint())) {
kvn@1698 1995 #ifndef PRODUCT
never@1622 1996 if (fp.is_compact()) _compact++;
never@1622 1997 _hits++;
never@1622 1998 #endif
never@1622 1999 return e;
never@1622 2000 }
never@1622 2001 }
never@1622 2002 }
never@1622 2003 return NULL;
never@1622 2004 }
never@1622 2005
kvn@1698 2006 #ifndef PRODUCT
never@1622 2007 void print_statistics() {
never@1622 2008 ResourceMark rm;
never@1622 2009 int longest = 0;
never@1622 2010 int empty = 0;
never@1622 2011 int total = 0;
never@1622 2012 int nonempty = 0;
never@1622 2013 for (int index = 0; index < table_size(); index++) {
never@1622 2014 int count = 0;
never@1622 2015 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2016 count++;
never@1622 2017 }
never@1622 2018 if (count != 0) nonempty++;
never@1622 2019 if (count == 0) empty++;
never@1622 2020 if (count > longest) longest = count;
never@1622 2021 total += count;
never@1622 2022 }
never@1622 2023 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2024 empty, longest, total, total / (double)nonempty);
never@1622 2025 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2026 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2027 }
never@1622 2028 #endif
never@1622 2029 };
never@1622 2030
never@1622 2031
kvn@1698 2032 #ifndef PRODUCT
never@1622 2033
never@1622 2034 int AdapterHandlerTable::_lookups;
never@1622 2035 int AdapterHandlerTable::_buckets;
never@1622 2036 int AdapterHandlerTable::_equals;
never@1622 2037 int AdapterHandlerTable::_hits;
never@1622 2038 int AdapterHandlerTable::_compact;
never@1622 2039
never@1622 2040 class AdapterHandlerTableIterator : public StackObj {
never@1622 2041 private:
never@1622 2042 AdapterHandlerTable* _table;
never@1622 2043 int _index;
never@1622 2044 AdapterHandlerEntry* _current;
never@1622 2045
never@1622 2046 void scan() {
never@1622 2047 while (_index < _table->table_size()) {
never@1622 2048 AdapterHandlerEntry* a = _table->bucket(_index);
never@1622 2049 if (a != NULL) {
never@1622 2050 _current = a;
never@1622 2051 return;
never@1622 2052 }
never@1622 2053 _index++;
never@1622 2054 }
never@1622 2055 }
never@1622 2056
never@1622 2057 public:
never@1622 2058 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2059 scan();
never@1622 2060 }
never@1622 2061 bool has_next() {
never@1622 2062 return _current != NULL;
never@1622 2063 }
never@1622 2064 AdapterHandlerEntry* next() {
never@1622 2065 if (_current != NULL) {
never@1622 2066 AdapterHandlerEntry* result = _current;
never@1622 2067 _current = _current->next();
never@1622 2068 if (_current == NULL) scan();
never@1622 2069 return result;
never@1622 2070 } else {
never@1622 2071 return NULL;
never@1622 2072 }
never@1622 2073 }
never@1622 2074 };
never@1622 2075 #endif
never@1622 2076
never@1622 2077
duke@435 2078 // ---------------------------------------------------------------------------
duke@435 2079 // Implementation of AdapterHandlerLibrary
duke@435 2080 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
never@1622 2081 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2082 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2083 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2084 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2085
kvn@1177 2086 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2087 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2088 if (_buffer == NULL) // Initialize lazily
kvn@1177 2089 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2090 return _buffer;
kvn@1177 2091 }
duke@435 2092
duke@435 2093 void AdapterHandlerLibrary::initialize() {
never@1622 2094 if (_adapters != NULL) return;
never@1622 2095 _adapters = new AdapterHandlerTable();
duke@435 2096
duke@435 2097 // Create a special handler for abstract methods. Abstract methods
duke@435 2098 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2099 // fill it in with something appropriate just in case. Pass handle
duke@435 2100 // wrong method for the c2i transitions.
duke@435 2101 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2102 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2103 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2104 wrong_method, wrong_method);
duke@435 2105 }
duke@435 2106
never@1622 2107 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2108 address i2c_entry,
never@1622 2109 address c2i_entry,
never@1622 2110 address c2i_unverified_entry) {
never@1622 2111 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2112 }
never@1622 2113
never@1622 2114 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2115 // Use customized signature handler. Need to lock around updates to
never@1622 2116 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2117 // and a single writer: this could be fixed if it becomes a
never@1622 2118 // problem).
duke@435 2119
duke@435 2120 // Get the address of the ic_miss handlers before we grab the
duke@435 2121 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2122 // was caused by the initialization of the stubs happening
duke@435 2123 // while we held the lock and then notifying jvmti while
duke@435 2124 // holding it. This just forces the initialization to be a little
duke@435 2125 // earlier.
duke@435 2126 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2127 assert(ic_miss != NULL, "must have handler");
duke@435 2128
never@1622 2129 ResourceMark rm;
never@1622 2130
kvn@1177 2131 NOT_PRODUCT(int code_size);
duke@435 2132 BufferBlob *B = NULL;
kvn@1177 2133 AdapterHandlerEntry* entry = NULL;
never@1622 2134 AdapterFingerPrint* fingerprint = NULL;
duke@435 2135 {
duke@435 2136 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2137 // make sure data structure is initialized
duke@435 2138 initialize();
duke@435 2139
duke@435 2140 if (method->is_abstract()) {
never@1622 2141 return _abstract_method_handler;
duke@435 2142 }
duke@435 2143
never@1622 2144 // Fill in the signature array, for the calling-convention call.
never@1622 2145 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2146
never@1622 2147 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2148 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2149 int i = 0;
never@1622 2150 if (!method->is_static()) // Pass in receiver first
never@1622 2151 sig_bt[i++] = T_OBJECT;
never@1622 2152 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2153 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2154 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2155 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2156 }
never@1622 2157 assert(i == total_args_passed, "");
never@1622 2158
never@1642 2159 // Lookup method signature's fingerprint
never@1642 2160 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2161
never@1642 2162 #ifdef ASSERT
never@1642 2163 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2164 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2165 shared_entry = entry;
never@1642 2166 entry = NULL;
never@1642 2167 }
never@1642 2168 #endif
never@1642 2169
never@1622 2170 if (entry != NULL) {
never@1622 2171 return entry;
duke@435 2172 }
duke@435 2173
never@1642 2174 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2175 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2176
never@1622 2177 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2178 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2179
duke@435 2180 // Create I2C & C2I handlers
duke@435 2181
kvn@1177 2182 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2183 if (buf != NULL) {
kvn@1177 2184 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@1177 2185 short buffer_locs[20];
kvn@1177 2186 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2187 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2188 MacroAssembler _masm(&buffer);
duke@435 2189
kvn@1177 2190 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2191 total_args_passed,
kvn@1177 2192 comp_args_on_stack,
kvn@1177 2193 sig_bt,
never@1622 2194 regs,
never@1622 2195 fingerprint);
kvn@1177 2196
never@1642 2197 #ifdef ASSERT
never@1642 2198 if (VerifyAdapterSharing) {
never@1642 2199 if (shared_entry != NULL) {
never@1642 2200 assert(shared_entry->compare_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt),
never@1642 2201 "code must match");
never@1642 2202 // Release the one just created and return the original
never@1642 2203 _adapters->free_entry(entry);
never@1642 2204 return shared_entry;
never@1642 2205 } else {
never@1642 2206 entry->save_code(buf->instructions_begin(), buffer.code_size(), total_args_passed, sig_bt);
never@1642 2207 }
never@1642 2208 }
never@1642 2209 #endif
never@1642 2210
kvn@1177 2211 B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
kvn@1177 2212 NOT_PRODUCT(code_size = buffer.code_size());
duke@435 2213 }
kvn@463 2214 if (B == NULL) {
kvn@463 2215 // CodeCache is full, disable compilation
kvn@463 2216 // Ought to log this but compile log is only per compile thread
kvn@463 2217 // and we're some non descript Java thread.
kvn@1637 2218 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2219 CompileBroker::handle_full_code_cache();
never@1622 2220 return NULL; // Out of CodeCache space
kvn@463 2221 }
duke@435 2222 entry->relocate(B->instructions_begin());
duke@435 2223 #ifndef PRODUCT
duke@435 2224 // debugging suppport
duke@435 2225 if (PrintAdapterHandlers) {
duke@435 2226 tty->cr();
never@1622 2227 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2228 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
never@1622 2229 method->signature()->as_C_string(), fingerprint->as_string(), code_size );
duke@435 2230 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
kvn@1177 2231 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
duke@435 2232 }
duke@435 2233 #endif
duke@435 2234
never@1622 2235 _adapters->add(entry);
duke@435 2236 }
duke@435 2237 // Outside of the lock
duke@435 2238 if (B != NULL) {
duke@435 2239 char blob_id[256];
duke@435 2240 jio_snprintf(blob_id,
duke@435 2241 sizeof(blob_id),
never@1622 2242 "%s(%s)@" PTR_FORMAT,
duke@435 2243 AdapterHandlerEntry::name,
never@1622 2244 fingerprint->as_string(),
duke@435 2245 B->instructions_begin());
duke@435 2246 VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 2247 Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
duke@435 2248
duke@435 2249 if (JvmtiExport::should_post_dynamic_code_generated()) {
duke@435 2250 JvmtiExport::post_dynamic_code_generated(blob_id,
duke@435 2251 B->instructions_begin(),
duke@435 2252 B->instructions_end());
duke@435 2253 }
duke@435 2254 }
never@1622 2255 return entry;
duke@435 2256 }
duke@435 2257
duke@435 2258 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2259 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2260 _i2c_entry += delta;
duke@435 2261 _c2i_entry += delta;
duke@435 2262 _c2i_unverified_entry += delta;
duke@435 2263 }
duke@435 2264
never@1642 2265
never@1642 2266 void AdapterHandlerEntry::deallocate() {
never@1642 2267 delete _fingerprint;
never@1642 2268 #ifdef ASSERT
never@1642 2269 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2270 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2271 #endif
never@1642 2272 }
never@1642 2273
never@1642 2274
never@1642 2275 #ifdef ASSERT
never@1642 2276 // Capture the code before relocation so that it can be compared
never@1642 2277 // against other versions. If the code is captured after relocation
never@1642 2278 // then relative instructions won't be equivalent.
never@1642 2279 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2280 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2281 _code_length = length;
never@1642 2282 memcpy(_saved_code, buffer, length);
never@1642 2283 _total_args_passed = total_args_passed;
never@1642 2284 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2285 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2286 }
never@1642 2287
never@1642 2288
never@1642 2289 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2290 if (length != _code_length) {
never@1642 2291 return false;
never@1642 2292 }
never@1642 2293 for (int i = 0; i < length; i++) {
never@1642 2294 if (buffer[i] != _saved_code[i]) {
never@1642 2295 return false;
never@1642 2296 }
never@1642 2297 }
never@1642 2298 return true;
never@1642 2299 }
never@1642 2300 #endif
never@1642 2301
never@1642 2302
duke@435 2303 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2304 // java compiled calling convention to the native convention, handlizes
duke@435 2305 // arguments, and transitions to native. On return from the native we transition
duke@435 2306 // back to java blocking if a safepoint is in progress.
duke@435 2307 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 2308 ResourceMark rm;
duke@435 2309 nmethod* nm = NULL;
duke@435 2310
duke@435 2311 if (PrintCompilation) {
duke@435 2312 ttyLocker ttyl;
duke@435 2313 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@435 2314 method->print_short_name(tty);
duke@435 2315 if (method->is_static()) {
duke@435 2316 tty->print(" (static)");
duke@435 2317 }
duke@435 2318 tty->cr();
duke@435 2319 }
duke@435 2320
duke@435 2321 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2322
duke@435 2323 {
duke@435 2324 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2325 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2326 // See if somebody beat us to it
duke@435 2327 nm = method->code();
duke@435 2328 if (nm) {
duke@435 2329 return nm;
duke@435 2330 }
duke@435 2331
kvn@1177 2332 ResourceMark rm;
duke@435 2333
kvn@1177 2334 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2335 if (buf != NULL) {
kvn@1177 2336 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@1177 2337 double locs_buf[20];
kvn@1177 2338 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2339 MacroAssembler _masm(&buffer);
duke@435 2340
kvn@1177 2341 // Fill in the signature array, for the calling-convention call.
kvn@1177 2342 int total_args_passed = method->size_of_parameters();
kvn@1177 2343
kvn@1177 2344 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2345 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2346 int i=0;
kvn@1177 2347 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2348 sig_bt[i++] = T_OBJECT;
kvn@1177 2349 SignatureStream ss(method->signature());
kvn@1177 2350 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2351 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2352 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2353 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2354 }
kvn@1177 2355 assert( i==total_args_passed, "" );
kvn@1177 2356 BasicType ret_type = ss.type();
kvn@1177 2357
kvn@1177 2358 // Now get the compiled-Java layout as input arguments
kvn@1177 2359 int comp_args_on_stack;
kvn@1177 2360 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2361
kvn@1177 2362 // Generate the compiled-to-native wrapper code
kvn@1177 2363 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2364 method,
kvn@1177 2365 total_args_passed,
kvn@1177 2366 comp_args_on_stack,
kvn@1177 2367 sig_bt,regs,
kvn@1177 2368 ret_type);
duke@435 2369 }
duke@435 2370 }
duke@435 2371
duke@435 2372 // Must unlock before calling set_code
duke@435 2373 // Install the generated code.
duke@435 2374 if (nm != NULL) {
duke@435 2375 method->set_code(method, nm);
duke@435 2376 nm->post_compiled_method_load_event();
duke@435 2377 } else {
duke@435 2378 // CodeCache is full, disable compilation
duke@435 2379 // Ought to log this but compile log is only per compile thread
duke@435 2380 // and we're some non descript Java thread.
kvn@1637 2381 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2382 CompileBroker::handle_full_code_cache();
duke@435 2383 }
duke@435 2384 return nm;
duke@435 2385 }
duke@435 2386
kamg@551 2387 #ifdef HAVE_DTRACE_H
kamg@551 2388 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2389 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2390 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2391 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2392 // leaf no thread transition is needed.
kamg@551 2393
kamg@551 2394 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2395 ResourceMark rm;
kamg@551 2396 nmethod* nm = NULL;
kamg@551 2397
kamg@551 2398 if (PrintCompilation) {
kamg@551 2399 ttyLocker ttyl;
kamg@551 2400 tty->print("--- n%s ");
kamg@551 2401 method->print_short_name(tty);
kamg@551 2402 if (method->is_static()) {
kamg@551 2403 tty->print(" (static)");
kamg@551 2404 }
kamg@551 2405 tty->cr();
kamg@551 2406 }
kamg@551 2407
kamg@551 2408 {
kamg@551 2409 // perform the work while holding the lock, but perform any printing
kamg@551 2410 // outside the lock
kamg@551 2411 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2412 // See if somebody beat us to it
kamg@551 2413 nm = method->code();
kamg@551 2414 if (nm) {
kamg@551 2415 return nm;
kamg@551 2416 }
kamg@551 2417
kvn@1177 2418 ResourceMark rm;
kvn@1177 2419
kvn@1177 2420 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2421 if (buf != NULL) {
kvn@1177 2422 CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
kvn@1177 2423 // Need a few relocation entries
kvn@1177 2424 double locs_buf[20];
kvn@1177 2425 buffer.insts()->initialize_shared_locs(
kamg@551 2426 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2427 MacroAssembler _masm(&buffer);
kamg@551 2428
kvn@1177 2429 // Generate the compiled-to-native wrapper code
kvn@1177 2430 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2431 }
kamg@551 2432 }
kamg@551 2433 return nm;
kamg@551 2434 }
kamg@551 2435
kamg@551 2436 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2437 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2438 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2439 int jlsOffset = java_lang_String::offset(src);
kamg@551 2440 int jlsLen = java_lang_String::length(src);
kamg@551 2441 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2442 jlsValue->char_at_addr(jlsOffset);
kamg@551 2443 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2444 }
kamg@551 2445 #endif // ndef HAVE_DTRACE_H
kamg@551 2446
duke@435 2447 // -------------------------------------------------------------------------
duke@435 2448 // Java-Java calling convention
duke@435 2449 // (what you use when Java calls Java)
duke@435 2450
duke@435 2451 //------------------------------name_for_receiver----------------------------------
duke@435 2452 // For a given signature, return the VMReg for parameter 0.
duke@435 2453 VMReg SharedRuntime::name_for_receiver() {
duke@435 2454 VMRegPair regs;
duke@435 2455 BasicType sig_bt = T_OBJECT;
duke@435 2456 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2457 // Return argument 0 register. In the LP64 build pointers
duke@435 2458 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2459 return regs.first();
duke@435 2460 }
duke@435 2461
twisti@1573 2462 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
duke@435 2463 // This method is returning a data structure allocating as a
duke@435 2464 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2465 char *s = sig->as_C_string();
duke@435 2466 int len = (int)strlen(s);
duke@435 2467 *s++; len--; // Skip opening paren
duke@435 2468 char *t = s+len;
duke@435 2469 while( *(--t) != ')' ) ; // Find close paren
duke@435 2470
duke@435 2471 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2472 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2473 int cnt = 0;
twisti@1573 2474 if (has_receiver) {
duke@435 2475 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2476 }
duke@435 2477
duke@435 2478 while( s < t ) {
duke@435 2479 switch( *s++ ) { // Switch on signature character
duke@435 2480 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2481 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2482 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2483 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2484 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2485 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2486 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2487 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2488 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2489 case 'L': // Oop
duke@435 2490 while( *s++ != ';' ) ; // Skip signature
duke@435 2491 sig_bt[cnt++] = T_OBJECT;
duke@435 2492 break;
duke@435 2493 case '[': { // Array
duke@435 2494 do { // Skip optional size
duke@435 2495 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2496 } while( *s++ == '[' ); // Nested arrays?
duke@435 2497 // Skip element type
duke@435 2498 if( s[-1] == 'L' )
duke@435 2499 while( *s++ != ';' ) ; // Skip signature
duke@435 2500 sig_bt[cnt++] = T_ARRAY;
duke@435 2501 break;
duke@435 2502 }
duke@435 2503 default : ShouldNotReachHere();
duke@435 2504 }
duke@435 2505 }
duke@435 2506 assert( cnt < 256, "grow table size" );
duke@435 2507
duke@435 2508 int comp_args_on_stack;
duke@435 2509 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2510
duke@435 2511 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2512 // we must add that in to get "true" stack offsets.
duke@435 2513
duke@435 2514 if (comp_args_on_stack) {
duke@435 2515 for (int i = 0; i < cnt; i++) {
duke@435 2516 VMReg reg1 = regs[i].first();
duke@435 2517 if( reg1->is_stack()) {
duke@435 2518 // Yuck
duke@435 2519 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2520 }
duke@435 2521 VMReg reg2 = regs[i].second();
duke@435 2522 if( reg2->is_stack()) {
duke@435 2523 // Yuck
duke@435 2524 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2525 }
duke@435 2526 regs[i].set_pair(reg2, reg1);
duke@435 2527 }
duke@435 2528 }
duke@435 2529
duke@435 2530 // results
duke@435 2531 *arg_size = cnt;
duke@435 2532 return regs;
duke@435 2533 }
duke@435 2534
duke@435 2535 // OSR Migration Code
duke@435 2536 //
duke@435 2537 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2538 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2539 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2540 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2541 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2542 // back to the compiled code. The compiled code then pops the current
duke@435 2543 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2544 // copies the interpreter locals and displaced headers where it wants.
duke@435 2545 // Finally it calls back to free the temp buffer.
duke@435 2546 //
duke@435 2547 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2548
duke@435 2549 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2550
duke@435 2551 #ifdef IA64
duke@435 2552 ShouldNotReachHere(); // NYI
duke@435 2553 #endif /* IA64 */
duke@435 2554
duke@435 2555 //
duke@435 2556 // This code is dependent on the memory layout of the interpreter local
duke@435 2557 // array and the monitors. On all of our platforms the layout is identical
duke@435 2558 // so this code is shared. If some platform lays the their arrays out
duke@435 2559 // differently then this code could move to platform specific code or
duke@435 2560 // the code here could be modified to copy items one at a time using
duke@435 2561 // frame accessor methods and be platform independent.
duke@435 2562
duke@435 2563 frame fr = thread->last_frame();
duke@435 2564 assert( fr.is_interpreted_frame(), "" );
duke@435 2565 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2566
duke@435 2567 // Figure out how many monitors are active.
duke@435 2568 int active_monitor_count = 0;
duke@435 2569 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2570 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2571 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2572 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2573 }
duke@435 2574
duke@435 2575 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2576 // could double check it.
duke@435 2577
duke@435 2578 methodOop moop = fr.interpreter_frame_method();
duke@435 2579 int max_locals = moop->max_locals();
duke@435 2580 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2581 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2582 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2583
duke@435 2584 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2585 // Since there's no GC I can copy the oops blindly.
duke@435 2586 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
duke@435 2587 if (TaggedStackInterpreter) {
duke@435 2588 for (int i = 0; i < max_locals; i++) {
duke@435 2589 // copy only each local separately to the buffer avoiding the tag
duke@435 2590 buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
duke@435 2591 }
duke@435 2592 } else {
duke@435 2593 Copy::disjoint_words(
duke@435 2594 (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2595 (HeapWord*)&buf[0],
duke@435 2596 max_locals);
duke@435 2597 }
duke@435 2598
duke@435 2599 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2600 int i = max_locals;
duke@435 2601 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2602 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2603 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2604 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2605 BasicLock *lock = kptr2->lock();
duke@435 2606 // Inflate so the displaced header becomes position-independent
duke@435 2607 if (lock->displaced_header()->is_unlocked())
duke@435 2608 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2609 // Now the displaced header is free to move
duke@435 2610 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2611 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2612 }
duke@435 2613 }
duke@435 2614 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2615
duke@435 2616 return buf;
duke@435 2617 JRT_END
duke@435 2618
duke@435 2619 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2620 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2621 JRT_END
duke@435 2622
duke@435 2623 #ifndef PRODUCT
duke@435 2624 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2625 AdapterHandlerTableIterator iter(_adapters);
never@1622 2626 while (iter.has_next()) {
never@1622 2627 AdapterHandlerEntry* a = iter.next();
never@1622 2628 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2629 }
duke@435 2630 return false;
duke@435 2631 }
duke@435 2632
duke@435 2633 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
never@1622 2634 AdapterHandlerTableIterator iter(_adapters);
never@1622 2635 while (iter.has_next()) {
never@1622 2636 AdapterHandlerEntry* a = iter.next();
never@1622 2637 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
duke@435 2638 tty->print("Adapter for signature: ");
never@1622 2639 tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
never@1622 2640 a->fingerprint()->as_string(),
duke@435 2641 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
duke@435 2642 return;
duke@435 2643 }
duke@435 2644 }
duke@435 2645 assert(false, "Should have found handler");
duke@435 2646 }
never@1622 2647
never@1622 2648 void AdapterHandlerLibrary::print_statistics() {
never@1622 2649 _adapters->print_statistics();
never@1622 2650 }
never@1622 2651
duke@435 2652 #endif /* PRODUCT */

mercurial