src/share/vm/runtime/sharedRuntime.cpp

Fri, 10 Jun 2011 15:08:36 -0700

author
minqi
date
Fri, 10 Jun 2011 15:08:36 -0700
changeset 2964
2a241e764894
parent 2895
167b70ff3abc
child 2950
cba7b5c2d53f
permissions
-rw-r--r--

6941923: RFE: Handling large log files produced by long running Java Applications
Summary: supply optinal flags to realize gc log rotation
Reviewed-by: ysr, jwilhelm

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 #include <math.h>
    85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    87                       char*, int, char*, int, char*, int);
    88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    89                       char*, int, char*, int, char*, int);
    91 RicochetBlob*      SharedRuntime::_ricochet_blob = NULL;
    93 // Implementation of SharedRuntime
    95 #ifndef PRODUCT
    96 // For statistics
    97 int SharedRuntime::_ic_miss_ctr = 0;
    98 int SharedRuntime::_wrong_method_ctr = 0;
    99 int SharedRuntime::_resolve_static_ctr = 0;
   100 int SharedRuntime::_resolve_virtual_ctr = 0;
   101 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   102 int SharedRuntime::_implicit_null_throws = 0;
   103 int SharedRuntime::_implicit_div0_throws = 0;
   104 int SharedRuntime::_throw_null_ctr = 0;
   106 int SharedRuntime::_nof_normal_calls = 0;
   107 int SharedRuntime::_nof_optimized_calls = 0;
   108 int SharedRuntime::_nof_inlined_calls = 0;
   109 int SharedRuntime::_nof_megamorphic_calls = 0;
   110 int SharedRuntime::_nof_static_calls = 0;
   111 int SharedRuntime::_nof_inlined_static_calls = 0;
   112 int SharedRuntime::_nof_interface_calls = 0;
   113 int SharedRuntime::_nof_optimized_interface_calls = 0;
   114 int SharedRuntime::_nof_inlined_interface_calls = 0;
   115 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   116 int SharedRuntime::_nof_removable_exceptions = 0;
   118 int SharedRuntime::_new_instance_ctr=0;
   119 int SharedRuntime::_new_array_ctr=0;
   120 int SharedRuntime::_multi1_ctr=0;
   121 int SharedRuntime::_multi2_ctr=0;
   122 int SharedRuntime::_multi3_ctr=0;
   123 int SharedRuntime::_multi4_ctr=0;
   124 int SharedRuntime::_multi5_ctr=0;
   125 int SharedRuntime::_mon_enter_stub_ctr=0;
   126 int SharedRuntime::_mon_exit_stub_ctr=0;
   127 int SharedRuntime::_mon_enter_ctr=0;
   128 int SharedRuntime::_mon_exit_ctr=0;
   129 int SharedRuntime::_partial_subtype_ctr=0;
   130 int SharedRuntime::_jbyte_array_copy_ctr=0;
   131 int SharedRuntime::_jshort_array_copy_ctr=0;
   132 int SharedRuntime::_jint_array_copy_ctr=0;
   133 int SharedRuntime::_jlong_array_copy_ctr=0;
   134 int SharedRuntime::_oop_array_copy_ctr=0;
   135 int SharedRuntime::_checkcast_array_copy_ctr=0;
   136 int SharedRuntime::_unsafe_array_copy_ctr=0;
   137 int SharedRuntime::_generic_array_copy_ctr=0;
   138 int SharedRuntime::_slow_array_copy_ctr=0;
   139 int SharedRuntime::_find_handler_ctr=0;
   140 int SharedRuntime::_rethrow_ctr=0;
   142 int     SharedRuntime::_ICmiss_index                    = 0;
   143 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   144 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   146 void SharedRuntime::trace_ic_miss(address at) {
   147   for (int i = 0; i < _ICmiss_index; i++) {
   148     if (_ICmiss_at[i] == at) {
   149       _ICmiss_count[i]++;
   150       return;
   151     }
   152   }
   153   int index = _ICmiss_index++;
   154   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   155   _ICmiss_at[index] = at;
   156   _ICmiss_count[index] = 1;
   157 }
   159 void SharedRuntime::print_ic_miss_histogram() {
   160   if (ICMissHistogram) {
   161     tty->print_cr ("IC Miss Histogram:");
   162     int tot_misses = 0;
   163     for (int i = 0; i < _ICmiss_index; i++) {
   164       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   165       tot_misses += _ICmiss_count[i];
   166     }
   167     tty->print_cr ("Total IC misses: %7d", tot_misses);
   168   }
   169 }
   170 #endif // PRODUCT
   172 #ifndef SERIALGC
   174 // G1 write-barrier pre: executed before a pointer store.
   175 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   176   if (orig == NULL) {
   177     assert(false, "should be optimized out");
   178     return;
   179   }
   180   assert(orig->is_oop(true /* ignore mark word */), "Error");
   181   // store the original value that was in the field reference
   182   thread->satb_mark_queue().enqueue(orig);
   183 JRT_END
   185 // G1 write-barrier post: executed after a pointer store.
   186 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   187   thread->dirty_card_queue().enqueue(card_addr);
   188 JRT_END
   190 #endif // !SERIALGC
   193 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   194   return x * y;
   195 JRT_END
   198 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   199   if (x == min_jlong && y == CONST64(-1)) {
   200     return x;
   201   } else {
   202     return x / y;
   203   }
   204 JRT_END
   207 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   208   if (x == min_jlong && y == CONST64(-1)) {
   209     return 0;
   210   } else {
   211     return x % y;
   212   }
   213 JRT_END
   216 const juint  float_sign_mask  = 0x7FFFFFFF;
   217 const juint  float_infinity   = 0x7F800000;
   218 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   219 const julong double_infinity  = CONST64(0x7FF0000000000000);
   221 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   222 #ifdef _WIN64
   223   // 64-bit Windows on amd64 returns the wrong values for
   224   // infinity operands.
   225   union { jfloat f; juint i; } xbits, ybits;
   226   xbits.f = x;
   227   ybits.f = y;
   228   // x Mod Infinity == x unless x is infinity
   229   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   230        ((ybits.i & float_sign_mask) == float_infinity) ) {
   231     return x;
   232   }
   233 #endif
   234   return ((jfloat)fmod((double)x,(double)y));
   235 JRT_END
   238 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   239 #ifdef _WIN64
   240   union { jdouble d; julong l; } xbits, ybits;
   241   xbits.d = x;
   242   ybits.d = y;
   243   // x Mod Infinity == x unless x is infinity
   244   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   245        ((ybits.l & double_sign_mask) == double_infinity) ) {
   246     return x;
   247   }
   248 #endif
   249   return ((jdouble)fmod((double)x,(double)y));
   250 JRT_END
   252 #ifdef __SOFTFP__
   253 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   254   return x + y;
   255 JRT_END
   257 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   258   return x - y;
   259 JRT_END
   261 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   262   return x * y;
   263 JRT_END
   265 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   266   return x / y;
   267 JRT_END
   269 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   270   return x + y;
   271 JRT_END
   273 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   274   return x - y;
   275 JRT_END
   277 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   278   return x * y;
   279 JRT_END
   281 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   282   return x / y;
   283 JRT_END
   285 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   286   return (jfloat)x;
   287 JRT_END
   289 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   290   return (jdouble)x;
   291 JRT_END
   293 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   294   return (jdouble)x;
   295 JRT_END
   297 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   298   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   299 JRT_END
   301 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   302   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   303 JRT_END
   305 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   306   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   307 JRT_END
   309 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   310   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   311 JRT_END
   313 // Functions to return the opposite of the aeabi functions for nan.
   314 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   315   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   316 JRT_END
   318 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   319   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   320 JRT_END
   322 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   323   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   324 JRT_END
   326 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   327   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   328 JRT_END
   330 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   331   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   332 JRT_END
   334 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   335   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   336 JRT_END
   338 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   339   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   340 JRT_END
   342 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   343   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   344 JRT_END
   346 // Intrinsics make gcc generate code for these.
   347 float  SharedRuntime::fneg(float f)   {
   348   return -f;
   349 }
   351 double SharedRuntime::dneg(double f)  {
   352   return -f;
   353 }
   355 #endif // __SOFTFP__
   357 #if defined(__SOFTFP__) || defined(E500V2)
   358 // Intrinsics make gcc generate code for these.
   359 double SharedRuntime::dabs(double f)  {
   360   return (f <= (double)0.0) ? (double)0.0 - f : f;
   361 }
   363 #endif
   365 #if defined(__SOFTFP__) || defined(PPC)
   366 double SharedRuntime::dsqrt(double f) {
   367   return sqrt(f);
   368 }
   369 #endif
   371 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   372   if (g_isnan(x))
   373     return 0;
   374   if (x >= (jfloat) max_jint)
   375     return max_jint;
   376   if (x <= (jfloat) min_jint)
   377     return min_jint;
   378   return (jint) x;
   379 JRT_END
   382 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   383   if (g_isnan(x))
   384     return 0;
   385   if (x >= (jfloat) max_jlong)
   386     return max_jlong;
   387   if (x <= (jfloat) min_jlong)
   388     return min_jlong;
   389   return (jlong) x;
   390 JRT_END
   393 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   394   if (g_isnan(x))
   395     return 0;
   396   if (x >= (jdouble) max_jint)
   397     return max_jint;
   398   if (x <= (jdouble) min_jint)
   399     return min_jint;
   400   return (jint) x;
   401 JRT_END
   404 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   405   if (g_isnan(x))
   406     return 0;
   407   if (x >= (jdouble) max_jlong)
   408     return max_jlong;
   409   if (x <= (jdouble) min_jlong)
   410     return min_jlong;
   411   return (jlong) x;
   412 JRT_END
   415 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   416   return (jfloat)x;
   417 JRT_END
   420 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   421   return (jfloat)x;
   422 JRT_END
   425 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   426   return (jdouble)x;
   427 JRT_END
   429 // Exception handling accross interpreter/compiler boundaries
   430 //
   431 // exception_handler_for_return_address(...) returns the continuation address.
   432 // The continuation address is the entry point of the exception handler of the
   433 // previous frame depending on the return address.
   435 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   436   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   438   // Reset method handle flag.
   439   thread->set_is_method_handle_return(false);
   441   // The fastest case first
   442   CodeBlob* blob = CodeCache::find_blob(return_address);
   443   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   444   if (nm != NULL) {
   445     // Set flag if return address is a method handle call site.
   446     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   447     // native nmethods don't have exception handlers
   448     assert(!nm->is_native_method(), "no exception handler");
   449     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   450     if (nm->is_deopt_pc(return_address)) {
   451       return SharedRuntime::deopt_blob()->unpack_with_exception();
   452     } else {
   453       return nm->exception_begin();
   454     }
   455   }
   457   // Entry code
   458   if (StubRoutines::returns_to_call_stub(return_address)) {
   459     return StubRoutines::catch_exception_entry();
   460   }
   461   // Interpreted code
   462   if (Interpreter::contains(return_address)) {
   463     return Interpreter::rethrow_exception_entry();
   464   }
   465   // Ricochet frame unwind code
   466   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
   467     return SharedRuntime::ricochet_blob()->exception_addr();
   468   }
   470   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   471   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   473 #ifndef PRODUCT
   474   { ResourceMark rm;
   475     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   476     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   477     tty->print_cr("b) other problem");
   478   }
   479 #endif // PRODUCT
   481   ShouldNotReachHere();
   482   return NULL;
   483 }
   486 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   487   return raw_exception_handler_for_return_address(thread, return_address);
   488 JRT_END
   491 address SharedRuntime::get_poll_stub(address pc) {
   492   address stub;
   493   // Look up the code blob
   494   CodeBlob *cb = CodeCache::find_blob(pc);
   496   // Should be an nmethod
   497   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   499   // Look up the relocation information
   500   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   501     "safepoint polling: type must be poll" );
   503   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   504     "Only polling locations are used for safepoint");
   506   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   507   if (at_poll_return) {
   508     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   509            "polling page return stub not created yet");
   510     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   511   } else {
   512     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   513            "polling page safepoint stub not created yet");
   514     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   515   }
   516 #ifndef PRODUCT
   517   if( TraceSafepoint ) {
   518     char buf[256];
   519     jio_snprintf(buf, sizeof(buf),
   520                  "... found polling page %s exception at pc = "
   521                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   522                  at_poll_return ? "return" : "loop",
   523                  (intptr_t)pc, (intptr_t)stub);
   524     tty->print_raw_cr(buf);
   525   }
   526 #endif // PRODUCT
   527   return stub;
   528 }
   531 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   532   assert(caller.is_interpreted_frame(), "");
   533   int args_size = ArgumentSizeComputer(sig).size() + 1;
   534   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   535   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   536   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   537   return result;
   538 }
   541 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   542   if (JvmtiExport::can_post_on_exceptions()) {
   543     vframeStream vfst(thread, true);
   544     methodHandle method = methodHandle(thread, vfst.method());
   545     address bcp = method()->bcp_from(vfst.bci());
   546     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   547   }
   548   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   549 }
   551 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   552   Handle h_exception = Exceptions::new_exception(thread, name, message);
   553   throw_and_post_jvmti_exception(thread, h_exception);
   554 }
   556 // The interpreter code to call this tracing function is only
   557 // called/generated when TraceRedefineClasses has the right bits
   558 // set. Since obsolete methods are never compiled, we don't have
   559 // to modify the compilers to generate calls to this function.
   560 //
   561 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   562     JavaThread* thread, methodOopDesc* method))
   563   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   565   if (method->is_obsolete()) {
   566     // We are calling an obsolete method, but this is not necessarily
   567     // an error. Our method could have been redefined just after we
   568     // fetched the methodOop from the constant pool.
   570     // RC_TRACE macro has an embedded ResourceMark
   571     RC_TRACE_WITH_THREAD(0x00001000, thread,
   572                          ("calling obsolete method '%s'",
   573                           method->name_and_sig_as_C_string()));
   574     if (RC_TRACE_ENABLED(0x00002000)) {
   575       // this option is provided to debug calls to obsolete methods
   576       guarantee(false, "faulting at call to an obsolete method.");
   577     }
   578   }
   579   return 0;
   580 JRT_END
   582 // ret_pc points into caller; we are returning caller's exception handler
   583 // for given exception
   584 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   585                                                     bool force_unwind, bool top_frame_only) {
   586   assert(nm != NULL, "must exist");
   587   ResourceMark rm;
   589   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   590   // determine handler bci, if any
   591   EXCEPTION_MARK;
   593   int handler_bci = -1;
   594   int scope_depth = 0;
   595   if (!force_unwind) {
   596     int bci = sd->bci();
   597     do {
   598       bool skip_scope_increment = false;
   599       // exception handler lookup
   600       KlassHandle ek (THREAD, exception->klass());
   601       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   602       if (HAS_PENDING_EXCEPTION) {
   603         // We threw an exception while trying to find the exception handler.
   604         // Transfer the new exception to the exception handle which will
   605         // be set into thread local storage, and do another lookup for an
   606         // exception handler for this exception, this time starting at the
   607         // BCI of the exception handler which caused the exception to be
   608         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   609         // argument to ensure that the correct exception is thrown (4870175).
   610         exception = Handle(THREAD, PENDING_EXCEPTION);
   611         CLEAR_PENDING_EXCEPTION;
   612         if (handler_bci >= 0) {
   613           bci = handler_bci;
   614           handler_bci = -1;
   615           skip_scope_increment = true;
   616         }
   617       }
   618       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   619         sd = sd->sender();
   620         if (sd != NULL) {
   621           bci = sd->bci();
   622         }
   623         ++scope_depth;
   624       }
   625     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   626   }
   628   // found handling method => lookup exception handler
   629   int catch_pco = ret_pc - nm->code_begin();
   631   ExceptionHandlerTable table(nm);
   632   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   633   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   634     // Allow abbreviated catch tables.  The idea is to allow a method
   635     // to materialize its exceptions without committing to the exact
   636     // routing of exceptions.  In particular this is needed for adding
   637     // a synthethic handler to unlock monitors when inlining
   638     // synchonized methods since the unlock path isn't represented in
   639     // the bytecodes.
   640     t = table.entry_for(catch_pco, -1, 0);
   641   }
   643 #ifdef COMPILER1
   644   if (t == NULL && nm->is_compiled_by_c1()) {
   645     assert(nm->unwind_handler_begin() != NULL, "");
   646     return nm->unwind_handler_begin();
   647   }
   648 #endif
   650   if (t == NULL) {
   651     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   652     tty->print_cr("   Exception:");
   653     exception->print();
   654     tty->cr();
   655     tty->print_cr(" Compiled exception table :");
   656     table.print();
   657     nm->print_code();
   658     guarantee(false, "missing exception handler");
   659     return NULL;
   660   }
   662   return nm->code_begin() + t->pco();
   663 }
   665 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   666   // These errors occur only at call sites
   667   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   668 JRT_END
   670 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   671   // These errors occur only at call sites
   672   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   673 JRT_END
   675 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   676   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   677 JRT_END
   679 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   680   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   681 JRT_END
   683 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   684   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   685   // cache sites (when the callee activation is not yet set up) so we are at a call site
   686   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   687 JRT_END
   689 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   690   // We avoid using the normal exception construction in this case because
   691   // it performs an upcall to Java, and we're already out of stack space.
   692   klassOop k = SystemDictionary::StackOverflowError_klass();
   693   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   694   Handle exception (thread, exception_oop);
   695   if (StackTraceInThrowable) {
   696     java_lang_Throwable::fill_in_stack_trace(exception);
   697   }
   698   throw_and_post_jvmti_exception(thread, exception);
   699 JRT_END
   701 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   702                                                            address pc,
   703                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   704 {
   705   address target_pc = NULL;
   707   if (Interpreter::contains(pc)) {
   708 #ifdef CC_INTERP
   709     // C++ interpreter doesn't throw implicit exceptions
   710     ShouldNotReachHere();
   711 #else
   712     switch (exception_kind) {
   713       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   714       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   715       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   716       default:                      ShouldNotReachHere();
   717     }
   718 #endif // !CC_INTERP
   719   } else {
   720     switch (exception_kind) {
   721       case STACK_OVERFLOW: {
   722         // Stack overflow only occurs upon frame setup; the callee is
   723         // going to be unwound. Dispatch to a shared runtime stub
   724         // which will cause the StackOverflowError to be fabricated
   725         // and processed.
   726         // For stack overflow in deoptimization blob, cleanup thread.
   727         if (thread->deopt_mark() != NULL) {
   728           Deoptimization::cleanup_deopt_info(thread, NULL);
   729         }
   730         return StubRoutines::throw_StackOverflowError_entry();
   731       }
   733       case IMPLICIT_NULL: {
   734         if (VtableStubs::contains(pc)) {
   735           // We haven't yet entered the callee frame. Fabricate an
   736           // exception and begin dispatching it in the caller. Since
   737           // the caller was at a call site, it's safe to destroy all
   738           // caller-saved registers, as these entry points do.
   739           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   741           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   742           if (vt_stub == NULL) return NULL;
   744           if (vt_stub->is_abstract_method_error(pc)) {
   745             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   746             return StubRoutines::throw_AbstractMethodError_entry();
   747           } else {
   748             return StubRoutines::throw_NullPointerException_at_call_entry();
   749           }
   750         } else {
   751           CodeBlob* cb = CodeCache::find_blob(pc);
   753           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   754           if (cb == NULL) return NULL;
   756           // Exception happened in CodeCache. Must be either:
   757           // 1. Inline-cache check in C2I handler blob,
   758           // 2. Inline-cache check in nmethod, or
   759           // 3. Implict null exception in nmethod
   761           if (!cb->is_nmethod()) {
   762             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   763                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   764             // There is no handler here, so we will simply unwind.
   765             return StubRoutines::throw_NullPointerException_at_call_entry();
   766           }
   768           // Otherwise, it's an nmethod.  Consult its exception handlers.
   769           nmethod* nm = (nmethod*)cb;
   770           if (nm->inlinecache_check_contains(pc)) {
   771             // exception happened inside inline-cache check code
   772             // => the nmethod is not yet active (i.e., the frame
   773             // is not set up yet) => use return address pushed by
   774             // caller => don't push another return address
   775             return StubRoutines::throw_NullPointerException_at_call_entry();
   776           }
   778 #ifndef PRODUCT
   779           _implicit_null_throws++;
   780 #endif
   781           target_pc = nm->continuation_for_implicit_exception(pc);
   782           // If there's an unexpected fault, target_pc might be NULL,
   783           // in which case we want to fall through into the normal
   784           // error handling code.
   785         }
   787         break; // fall through
   788       }
   791       case IMPLICIT_DIVIDE_BY_ZERO: {
   792         nmethod* nm = CodeCache::find_nmethod(pc);
   793         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   794 #ifndef PRODUCT
   795         _implicit_div0_throws++;
   796 #endif
   797         target_pc = nm->continuation_for_implicit_exception(pc);
   798         // If there's an unexpected fault, target_pc might be NULL,
   799         // in which case we want to fall through into the normal
   800         // error handling code.
   801         break; // fall through
   802       }
   804       default: ShouldNotReachHere();
   805     }
   807     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   809     // for AbortVMOnException flag
   810     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   811     if (exception_kind == IMPLICIT_NULL) {
   812       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   813     } else {
   814       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   815     }
   816     return target_pc;
   817   }
   819   ShouldNotReachHere();
   820   return NULL;
   821 }
   824 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   825 {
   826   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   827 }
   828 JNI_END
   831 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   832   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   833 }
   836 #ifndef PRODUCT
   837 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   838   const frame f = thread->last_frame();
   839   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   840 #ifndef PRODUCT
   841   methodHandle mh(THREAD, f.interpreter_frame_method());
   842   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   843 #endif // !PRODUCT
   844   return preserve_this_value;
   845 JRT_END
   846 #endif // !PRODUCT
   849 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   850   os::yield_all(attempts);
   851 JRT_END
   854 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   855   assert(obj->is_oop(), "must be a valid oop");
   856   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   857   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   858 JRT_END
   861 jlong SharedRuntime::get_java_tid(Thread* thread) {
   862   if (thread != NULL) {
   863     if (thread->is_Java_thread()) {
   864       oop obj = ((JavaThread*)thread)->threadObj();
   865       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   866     }
   867   }
   868   return 0;
   869 }
   871 /**
   872  * This function ought to be a void function, but cannot be because
   873  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   874  * 6254741.  Once that is fixed we can remove the dummy return value.
   875  */
   876 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   877   return dtrace_object_alloc_base(Thread::current(), o);
   878 }
   880 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   881   assert(DTraceAllocProbes, "wrong call");
   882   Klass* klass = o->blueprint();
   883   int size = o->size();
   884   Symbol* name = klass->name();
   885   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   886                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   887   return 0;
   888 }
   890 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   891     JavaThread* thread, methodOopDesc* method))
   892   assert(DTraceMethodProbes, "wrong call");
   893   Symbol* kname = method->klass_name();
   894   Symbol* name = method->name();
   895   Symbol* sig = method->signature();
   896   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   897       kname->bytes(), kname->utf8_length(),
   898       name->bytes(), name->utf8_length(),
   899       sig->bytes(), sig->utf8_length());
   900   return 0;
   901 JRT_END
   903 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   904     JavaThread* thread, methodOopDesc* method))
   905   assert(DTraceMethodProbes, "wrong call");
   906   Symbol* kname = method->klass_name();
   907   Symbol* name = method->name();
   908   Symbol* sig = method->signature();
   909   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   910       kname->bytes(), kname->utf8_length(),
   911       name->bytes(), name->utf8_length(),
   912       sig->bytes(), sig->utf8_length());
   913   return 0;
   914 JRT_END
   917 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   918 // for a call current in progress, i.e., arguments has been pushed on stack
   919 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   920 // vtable updates, etc.  Caller frame must be compiled.
   921 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   922   ResourceMark rm(THREAD);
   924   // last java frame on stack (which includes native call frames)
   925   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   927   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   928 }
   931 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   932 // for a call current in progress, i.e., arguments has been pushed on stack
   933 // but callee has not been invoked yet.  Caller frame must be compiled.
   934 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   935                                               vframeStream& vfst,
   936                                               Bytecodes::Code& bc,
   937                                               CallInfo& callinfo, TRAPS) {
   938   Handle receiver;
   939   Handle nullHandle;  //create a handy null handle for exception returns
   941   assert(!vfst.at_end(), "Java frame must exist");
   943   // Find caller and bci from vframe
   944   methodHandle caller (THREAD, vfst.method());
   945   int          bci    = vfst.bci();
   947   // Find bytecode
   948   Bytecode_invoke bytecode(caller, bci);
   949   bc = bytecode.java_code();
   950   int bytecode_index = bytecode.index();
   952   // Find receiver for non-static call
   953   if (bc != Bytecodes::_invokestatic) {
   954     // This register map must be update since we need to find the receiver for
   955     // compiled frames. The receiver might be in a register.
   956     RegisterMap reg_map2(thread);
   957     frame stubFrame   = thread->last_frame();
   958     // Caller-frame is a compiled frame
   959     frame callerFrame = stubFrame.sender(&reg_map2);
   961     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
   962     if (callee.is_null()) {
   963       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   964     }
   965     // Retrieve from a compiled argument list
   966     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   968     if (receiver.is_null()) {
   969       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   970     }
   971   }
   973   // Resolve method. This is parameterized by bytecode.
   974   constantPoolHandle constants (THREAD, caller->constants());
   975   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   976   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   978 #ifdef ASSERT
   979   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   980   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
   981     assert(receiver.not_null(), "should have thrown exception");
   982     KlassHandle receiver_klass (THREAD, receiver->klass());
   983     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   984                             // klass is already loaded
   985     KlassHandle static_receiver_klass (THREAD, rk);
   986     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   987     if (receiver_klass->oop_is_instance()) {
   988       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   989         tty->print_cr("ERROR: Klass not yet initialized!!");
   990         receiver_klass.print();
   991       }
   992       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   993     }
   994   }
   995 #endif
   997   return receiver;
   998 }
  1000 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1001   ResourceMark rm(THREAD);
  1002   // We need first to check if any Java activations (compiled, interpreted)
  1003   // exist on the stack since last JavaCall.  If not, we need
  1004   // to get the target method from the JavaCall wrapper.
  1005   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1006   methodHandle callee_method;
  1007   if (vfst.at_end()) {
  1008     // No Java frames were found on stack since we did the JavaCall.
  1009     // Hence the stack can only contain an entry_frame.  We need to
  1010     // find the target method from the stub frame.
  1011     RegisterMap reg_map(thread, false);
  1012     frame fr = thread->last_frame();
  1013     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1014     fr = fr.sender(&reg_map);
  1015     assert(fr.is_entry_frame(), "must be");
  1016     // fr is now pointing to the entry frame.
  1017     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1018     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1019   } else {
  1020     Bytecodes::Code bc;
  1021     CallInfo callinfo;
  1022     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1023     callee_method = callinfo.selected_method();
  1025   assert(callee_method()->is_method(), "must be");
  1026   return callee_method;
  1029 // Resolves a call.
  1030 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1031                                            bool is_virtual,
  1032                                            bool is_optimized, TRAPS) {
  1033   methodHandle callee_method;
  1034   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1035   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1036     int retry_count = 0;
  1037     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1038            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1039       // If has a pending exception then there is no need to re-try to
  1040       // resolve this method.
  1041       // If the method has been redefined, we need to try again.
  1042       // Hack: we have no way to update the vtables of arrays, so don't
  1043       // require that java.lang.Object has been updated.
  1045       // It is very unlikely that method is redefined more than 100 times
  1046       // in the middle of resolve. If it is looping here more than 100 times
  1047       // means then there could be a bug here.
  1048       guarantee((retry_count++ < 100),
  1049                 "Could not resolve to latest version of redefined method");
  1050       // method is redefined in the middle of resolve so re-try.
  1051       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1054   return callee_method;
  1057 // Resolves a call.  The compilers generate code for calls that go here
  1058 // and are patched with the real destination of the call.
  1059 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1060                                            bool is_virtual,
  1061                                            bool is_optimized, TRAPS) {
  1063   ResourceMark rm(thread);
  1064   RegisterMap cbl_map(thread, false);
  1065   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1067   CodeBlob* caller_cb = caller_frame.cb();
  1068   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1069   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1070   // make sure caller is not getting deoptimized
  1071   // and removed before we are done with it.
  1072   // CLEANUP - with lazy deopt shouldn't need this lock
  1073   nmethodLocker caller_lock(caller_nm);
  1076   // determine call info & receiver
  1077   // note: a) receiver is NULL for static calls
  1078   //       b) an exception is thrown if receiver is NULL for non-static calls
  1079   CallInfo call_info;
  1080   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1081   Handle receiver = find_callee_info(thread, invoke_code,
  1082                                      call_info, CHECK_(methodHandle()));
  1083   methodHandle callee_method = call_info.selected_method();
  1085   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
  1086          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
  1088 #ifndef PRODUCT
  1089   // tracing/debugging/statistics
  1090   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1091                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1092                                (&_resolve_static_ctr);
  1093   Atomic::inc(addr);
  1095   if (TraceCallFixup) {
  1096     ResourceMark rm(thread);
  1097     tty->print("resolving %s%s (%s) call to",
  1098       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1099       Bytecodes::name(invoke_code));
  1100     callee_method->print_short_name(tty);
  1101     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1103 #endif
  1105   // JSR 292
  1106   // If the resolved method is a MethodHandle invoke target the call
  1107   // site must be a MethodHandle call site.
  1108   if (callee_method->is_method_handle_invoke()) {
  1109     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1112   // Compute entry points. This might require generation of C2I converter
  1113   // frames, so we cannot be holding any locks here. Furthermore, the
  1114   // computation of the entry points is independent of patching the call.  We
  1115   // always return the entry-point, but we only patch the stub if the call has
  1116   // not been deoptimized.  Return values: For a virtual call this is an
  1117   // (cached_oop, destination address) pair. For a static call/optimized
  1118   // virtual this is just a destination address.
  1120   StaticCallInfo static_call_info;
  1121   CompiledICInfo virtual_call_info;
  1123   // Make sure the callee nmethod does not get deoptimized and removed before
  1124   // we are done patching the code.
  1125   nmethod* callee_nm = callee_method->code();
  1126   nmethodLocker nl_callee(callee_nm);
  1127 #ifdef ASSERT
  1128   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1129 #endif
  1131   if (is_virtual) {
  1132     assert(receiver.not_null(), "sanity check");
  1133     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1134     KlassHandle h_klass(THREAD, receiver->klass());
  1135     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1136                      is_optimized, static_bound, virtual_call_info,
  1137                      CHECK_(methodHandle()));
  1138   } else {
  1139     // static call
  1140     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1143   // grab lock, check for deoptimization and potentially patch caller
  1145     MutexLocker ml_patch(CompiledIC_lock);
  1147     // Now that we are ready to patch if the methodOop was redefined then
  1148     // don't update call site and let the caller retry.
  1150     if (!callee_method->is_old()) {
  1151 #ifdef ASSERT
  1152       // We must not try to patch to jump to an already unloaded method.
  1153       if (dest_entry_point != 0) {
  1154         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1155                "should not unload nmethod while locked");
  1157 #endif
  1158       if (is_virtual) {
  1159         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1160         if (inline_cache->is_clean()) {
  1161           inline_cache->set_to_monomorphic(virtual_call_info);
  1163       } else {
  1164         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1165         if (ssc->is_clean()) ssc->set(static_call_info);
  1169   } // unlock CompiledIC_lock
  1171   return callee_method;
  1175 // Inline caches exist only in compiled code
  1176 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1177 #ifdef ASSERT
  1178   RegisterMap reg_map(thread, false);
  1179   frame stub_frame = thread->last_frame();
  1180   assert(stub_frame.is_runtime_frame(), "sanity check");
  1181   frame caller_frame = stub_frame.sender(&reg_map);
  1182   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1183   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
  1184 #endif /* ASSERT */
  1186   methodHandle callee_method;
  1187   JRT_BLOCK
  1188     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1189     // Return methodOop through TLS
  1190     thread->set_vm_result(callee_method());
  1191   JRT_BLOCK_END
  1192   // return compiled code entry point after potential safepoints
  1193   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1194   return callee_method->verified_code_entry();
  1195 JRT_END
  1198 // Handle call site that has been made non-entrant
  1199 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1200   // 6243940 We might end up in here if the callee is deoptimized
  1201   // as we race to call it.  We don't want to take a safepoint if
  1202   // the caller was interpreted because the caller frame will look
  1203   // interpreted to the stack walkers and arguments are now
  1204   // "compiled" so it is much better to make this transition
  1205   // invisible to the stack walking code. The i2c path will
  1206   // place the callee method in the callee_target. It is stashed
  1207   // there because if we try and find the callee by normal means a
  1208   // safepoint is possible and have trouble gc'ing the compiled args.
  1209   RegisterMap reg_map(thread, false);
  1210   frame stub_frame = thread->last_frame();
  1211   assert(stub_frame.is_runtime_frame(), "sanity check");
  1212   frame caller_frame = stub_frame.sender(&reg_map);
  1214   // MethodHandle invokes don't have a CompiledIC and should always
  1215   // simply redispatch to the callee_target.
  1216   address   sender_pc = caller_frame.pc();
  1217   CodeBlob* sender_cb = caller_frame.cb();
  1218   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1219   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1220   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1221     // If the callee_target is set, then we have come here via an i2c
  1222     // adapter.
  1223     methodOop callee = thread->callee_target();
  1224     if (callee != NULL) {
  1225       assert(callee->is_method(), "sanity");
  1226       is_mh_invoke_via_adapter = true;
  1230   if (caller_frame.is_interpreted_frame() ||
  1231       caller_frame.is_entry_frame()       ||
  1232       caller_frame.is_ricochet_frame()    ||
  1233       is_mh_invoke_via_adapter) {
  1234     methodOop callee = thread->callee_target();
  1235     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1236     thread->set_vm_result(callee);
  1237     thread->set_callee_target(NULL);
  1238     return callee->get_c2i_entry();
  1241   // Must be compiled to compiled path which is safe to stackwalk
  1242   methodHandle callee_method;
  1243   JRT_BLOCK
  1244     // Force resolving of caller (if we called from compiled frame)
  1245     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1246     thread->set_vm_result(callee_method());
  1247   JRT_BLOCK_END
  1248   // return compiled code entry point after potential safepoints
  1249   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1250   return callee_method->verified_code_entry();
  1251 JRT_END
  1254 // resolve a static call and patch code
  1255 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1256   methodHandle callee_method;
  1257   JRT_BLOCK
  1258     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1259     thread->set_vm_result(callee_method());
  1260   JRT_BLOCK_END
  1261   // return compiled code entry point after potential safepoints
  1262   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1263   return callee_method->verified_code_entry();
  1264 JRT_END
  1267 // resolve virtual call and update inline cache to monomorphic
  1268 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1269   methodHandle callee_method;
  1270   JRT_BLOCK
  1271     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1272     thread->set_vm_result(callee_method());
  1273   JRT_BLOCK_END
  1274   // return compiled code entry point after potential safepoints
  1275   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1276   return callee_method->verified_code_entry();
  1277 JRT_END
  1280 // Resolve a virtual call that can be statically bound (e.g., always
  1281 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1282 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1283   methodHandle callee_method;
  1284   JRT_BLOCK
  1285     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1286     thread->set_vm_result(callee_method());
  1287   JRT_BLOCK_END
  1288   // return compiled code entry point after potential safepoints
  1289   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1290   return callee_method->verified_code_entry();
  1291 JRT_END
  1297 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1298   ResourceMark rm(thread);
  1299   CallInfo call_info;
  1300   Bytecodes::Code bc;
  1302   // receiver is NULL for static calls. An exception is thrown for NULL
  1303   // receivers for non-static calls
  1304   Handle receiver = find_callee_info(thread, bc, call_info,
  1305                                      CHECK_(methodHandle()));
  1306   // Compiler1 can produce virtual call sites that can actually be statically bound
  1307   // If we fell thru to below we would think that the site was going megamorphic
  1308   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1309   // we'd try and do a vtable dispatch however methods that can be statically bound
  1310   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1311   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1312   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1313   // never to miss again. I don't believe C2 will produce code like this but if it
  1314   // did this would still be the correct thing to do for it too, hence no ifdef.
  1315   //
  1316   if (call_info.resolved_method()->can_be_statically_bound()) {
  1317     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1318     if (TraceCallFixup) {
  1319       RegisterMap reg_map(thread, false);
  1320       frame caller_frame = thread->last_frame().sender(&reg_map);
  1321       ResourceMark rm(thread);
  1322       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1323       callee_method->print_short_name(tty);
  1324       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1325       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1327     return callee_method;
  1330   methodHandle callee_method = call_info.selected_method();
  1332   bool should_be_mono = false;
  1334 #ifndef PRODUCT
  1335   Atomic::inc(&_ic_miss_ctr);
  1337   // Statistics & Tracing
  1338   if (TraceCallFixup) {
  1339     ResourceMark rm(thread);
  1340     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1341     callee_method->print_short_name(tty);
  1342     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1345   if (ICMissHistogram) {
  1346     MutexLocker m(VMStatistic_lock);
  1347     RegisterMap reg_map(thread, false);
  1348     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1349     // produce statistics under the lock
  1350     trace_ic_miss(f.pc());
  1352 #endif
  1354   // install an event collector so that when a vtable stub is created the
  1355   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1356   // event can't be posted when the stub is created as locks are held
  1357   // - instead the event will be deferred until the event collector goes
  1358   // out of scope.
  1359   JvmtiDynamicCodeEventCollector event_collector;
  1361   // Update inline cache to megamorphic. Skip update if caller has been
  1362   // made non-entrant or we are called from interpreted.
  1363   { MutexLocker ml_patch (CompiledIC_lock);
  1364     RegisterMap reg_map(thread, false);
  1365     frame caller_frame = thread->last_frame().sender(&reg_map);
  1366     CodeBlob* cb = caller_frame.cb();
  1367     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1368       // Not a non-entrant nmethod, so find inline_cache
  1369       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1370       bool should_be_mono = false;
  1371       if (inline_cache->is_optimized()) {
  1372         if (TraceCallFixup) {
  1373           ResourceMark rm(thread);
  1374           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1375           callee_method->print_short_name(tty);
  1376           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1378         should_be_mono = true;
  1379       } else {
  1380         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1381         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1383           if (receiver()->klass() == ic_oop->holder_klass()) {
  1384             // This isn't a real miss. We must have seen that compiled code
  1385             // is now available and we want the call site converted to a
  1386             // monomorphic compiled call site.
  1387             // We can't assert for callee_method->code() != NULL because it
  1388             // could have been deoptimized in the meantime
  1389             if (TraceCallFixup) {
  1390               ResourceMark rm(thread);
  1391               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1392               callee_method->print_short_name(tty);
  1393               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1395             should_be_mono = true;
  1400       if (should_be_mono) {
  1402         // We have a path that was monomorphic but was going interpreted
  1403         // and now we have (or had) a compiled entry. We correct the IC
  1404         // by using a new icBuffer.
  1405         CompiledICInfo info;
  1406         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1407         inline_cache->compute_monomorphic_entry(callee_method,
  1408                                                 receiver_klass,
  1409                                                 inline_cache->is_optimized(),
  1410                                                 false,
  1411                                                 info, CHECK_(methodHandle()));
  1412         inline_cache->set_to_monomorphic(info);
  1413       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1414         // Change to megamorphic
  1415         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1416       } else {
  1417         // Either clean or megamorphic
  1420   } // Release CompiledIC_lock
  1422   return callee_method;
  1425 //
  1426 // Resets a call-site in compiled code so it will get resolved again.
  1427 // This routines handles both virtual call sites, optimized virtual call
  1428 // sites, and static call sites. Typically used to change a call sites
  1429 // destination from compiled to interpreted.
  1430 //
  1431 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1432   ResourceMark rm(thread);
  1433   RegisterMap reg_map(thread, false);
  1434   frame stub_frame = thread->last_frame();
  1435   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1436   frame caller = stub_frame.sender(&reg_map);
  1438   // Do nothing if the frame isn't a live compiled frame.
  1439   // nmethod could be deoptimized by the time we get here
  1440   // so no update to the caller is needed.
  1442   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1444     address pc = caller.pc();
  1445     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1447     // Default call_addr is the location of the "basic" call.
  1448     // Determine the address of the call we a reresolving. With
  1449     // Inline Caches we will always find a recognizable call.
  1450     // With Inline Caches disabled we may or may not find a
  1451     // recognizable call. We will always find a call for static
  1452     // calls and for optimized virtual calls. For vanilla virtual
  1453     // calls it depends on the state of the UseInlineCaches switch.
  1454     //
  1455     // With Inline Caches disabled we can get here for a virtual call
  1456     // for two reasons:
  1457     //   1 - calling an abstract method. The vtable for abstract methods
  1458     //       will run us thru handle_wrong_method and we will eventually
  1459     //       end up in the interpreter to throw the ame.
  1460     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1461     //       call and between the time we fetch the entry address and
  1462     //       we jump to it the target gets deoptimized. Similar to 1
  1463     //       we will wind up in the interprter (thru a c2i with c2).
  1464     //
  1465     address call_addr = NULL;
  1467       // Get call instruction under lock because another thread may be
  1468       // busy patching it.
  1469       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1470       // Location of call instruction
  1471       if (NativeCall::is_call_before(pc)) {
  1472         NativeCall *ncall = nativeCall_before(pc);
  1473         call_addr = ncall->instruction_address();
  1477     // Check for static or virtual call
  1478     bool is_static_call = false;
  1479     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1480     // Make sure nmethod doesn't get deoptimized and removed until
  1481     // this is done with it.
  1482     // CLEANUP - with lazy deopt shouldn't need this lock
  1483     nmethodLocker nmlock(caller_nm);
  1485     if (call_addr != NULL) {
  1486       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1487       int ret = iter.next(); // Get item
  1488       if (ret) {
  1489         assert(iter.addr() == call_addr, "must find call");
  1490         if (iter.type() == relocInfo::static_call_type) {
  1491           is_static_call = true;
  1492         } else {
  1493           assert(iter.type() == relocInfo::virtual_call_type ||
  1494                  iter.type() == relocInfo::opt_virtual_call_type
  1495                 , "unexpected relocInfo. type");
  1497       } else {
  1498         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1501       // Cleaning the inline cache will force a new resolve. This is more robust
  1502       // than directly setting it to the new destination, since resolving of calls
  1503       // is always done through the same code path. (experience shows that it
  1504       // leads to very hard to track down bugs, if an inline cache gets updated
  1505       // to a wrong method). It should not be performance critical, since the
  1506       // resolve is only done once.
  1508       MutexLocker ml(CompiledIC_lock);
  1509       //
  1510       // We do not patch the call site if the nmethod has been made non-entrant
  1511       // as it is a waste of time
  1512       //
  1513       if (caller_nm->is_in_use()) {
  1514         if (is_static_call) {
  1515           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1516           ssc->set_to_clean();
  1517         } else {
  1518           // compiled, dispatched call (which used to call an interpreted method)
  1519           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1520           inline_cache->set_to_clean();
  1527   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1530 #ifndef PRODUCT
  1531   Atomic::inc(&_wrong_method_ctr);
  1533   if (TraceCallFixup) {
  1534     ResourceMark rm(thread);
  1535     tty->print("handle_wrong_method reresolving call to");
  1536     callee_method->print_short_name(tty);
  1537     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1539 #endif
  1541   return callee_method;
  1544 // ---------------------------------------------------------------------------
  1545 // We are calling the interpreter via a c2i. Normally this would mean that
  1546 // we were called by a compiled method. However we could have lost a race
  1547 // where we went int -> i2c -> c2i and so the caller could in fact be
  1548 // interpreted. If the caller is compiled we attempt to patch the caller
  1549 // so he no longer calls into the interpreter.
  1550 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1551   methodOop moop(method);
  1553   address entry_point = moop->from_compiled_entry();
  1555   // It's possible that deoptimization can occur at a call site which hasn't
  1556   // been resolved yet, in which case this function will be called from
  1557   // an nmethod that has been patched for deopt and we can ignore the
  1558   // request for a fixup.
  1559   // Also it is possible that we lost a race in that from_compiled_entry
  1560   // is now back to the i2c in that case we don't need to patch and if
  1561   // we did we'd leap into space because the callsite needs to use
  1562   // "to interpreter" stub in order to load up the methodOop. Don't
  1563   // ask me how I know this...
  1565   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1566   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1567     return;
  1570   // The check above makes sure this is a nmethod.
  1571   nmethod* nm = cb->as_nmethod_or_null();
  1572   assert(nm, "must be");
  1574   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1575   // to implement MethodHandle actions.
  1576   if (nm->is_method_handle_return(caller_pc)) {
  1577     return;
  1580   // There is a benign race here. We could be attempting to patch to a compiled
  1581   // entry point at the same time the callee is being deoptimized. If that is
  1582   // the case then entry_point may in fact point to a c2i and we'd patch the
  1583   // call site with the same old data. clear_code will set code() to NULL
  1584   // at the end of it. If we happen to see that NULL then we can skip trying
  1585   // to patch. If we hit the window where the callee has a c2i in the
  1586   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1587   // and patch the code with the same old data. Asi es la vida.
  1589   if (moop->code() == NULL) return;
  1591   if (nm->is_in_use()) {
  1593     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1594     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1595     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1596       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1597       //
  1598       // bug 6281185. We might get here after resolving a call site to a vanilla
  1599       // virtual call. Because the resolvee uses the verified entry it may then
  1600       // see compiled code and attempt to patch the site by calling us. This would
  1601       // then incorrectly convert the call site to optimized and its downhill from
  1602       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1603       // just made a call site that could be megamorphic into a monomorphic site
  1604       // for the rest of its life! Just another racing bug in the life of
  1605       // fixup_callers_callsite ...
  1606       //
  1607       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1608       iter.next();
  1609       assert(iter.has_current(), "must have a reloc at java call site");
  1610       relocInfo::relocType typ = iter.reloc()->type();
  1611       if ( typ != relocInfo::static_call_type &&
  1612            typ != relocInfo::opt_virtual_call_type &&
  1613            typ != relocInfo::static_stub_type) {
  1614         return;
  1616       address destination = call->destination();
  1617       if (destination != entry_point) {
  1618         CodeBlob* callee = CodeCache::find_blob(destination);
  1619         // callee == cb seems weird. It means calling interpreter thru stub.
  1620         if (callee == cb || callee->is_adapter_blob()) {
  1621           // static call or optimized virtual
  1622           if (TraceCallFixup) {
  1623             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1624             moop->print_short_name(tty);
  1625             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1627           call->set_destination_mt_safe(entry_point);
  1628         } else {
  1629           if (TraceCallFixup) {
  1630             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1631             moop->print_short_name(tty);
  1632             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1634           // assert is too strong could also be resolve destinations.
  1635           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1637       } else {
  1638           if (TraceCallFixup) {
  1639             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1640             moop->print_short_name(tty);
  1641             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1647 IRT_END
  1650 // same as JVM_Arraycopy, but called directly from compiled code
  1651 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1652                                                 oopDesc* dest, jint dest_pos,
  1653                                                 jint length,
  1654                                                 JavaThread* thread)) {
  1655 #ifndef PRODUCT
  1656   _slow_array_copy_ctr++;
  1657 #endif
  1658   // Check if we have null pointers
  1659   if (src == NULL || dest == NULL) {
  1660     THROW(vmSymbols::java_lang_NullPointerException());
  1662   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1663   // even though the copy_array API also performs dynamic checks to ensure
  1664   // that src and dest are truly arrays (and are conformable).
  1665   // The copy_array mechanism is awkward and could be removed, but
  1666   // the compilers don't call this function except as a last resort,
  1667   // so it probably doesn't matter.
  1668   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1669                                         (arrayOopDesc*)dest, dest_pos,
  1670                                         length, thread);
  1672 JRT_END
  1674 char* SharedRuntime::generate_class_cast_message(
  1675     JavaThread* thread, const char* objName) {
  1677   // Get target class name from the checkcast instruction
  1678   vframeStream vfst(thread, true);
  1679   assert(!vfst.at_end(), "Java frame must exist");
  1680   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1681   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1682     cc.index(), thread));
  1683   return generate_class_cast_message(objName, targetKlass->external_name());
  1686 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1687                                                         oopDesc* required,
  1688                                                         oopDesc* actual) {
  1689   if (TraceMethodHandles) {
  1690     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
  1691                   thread, required, actual);
  1693   assert(EnableInvokeDynamic, "");
  1694   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1695   char* message = NULL;
  1696   if (singleKlass != NULL) {
  1697     const char* objName = "argument or return value";
  1698     if (actual != NULL) {
  1699       // be flexible about the junk passed in:
  1700       klassOop ak = (actual->is_klass()
  1701                      ? (klassOop)actual
  1702                      : actual->klass());
  1703       objName = Klass::cast(ak)->external_name();
  1705     Klass* targetKlass = Klass::cast(required->is_klass()
  1706                                      ? (klassOop)required
  1707                                      : java_lang_Class::as_klassOop(required));
  1708     message = generate_class_cast_message(objName, targetKlass->external_name());
  1709   } else {
  1710     // %%% need to get the MethodType string, without messing around too much
  1711     const char* desc = NULL;
  1712     // Get a signature from the invoke instruction
  1713     const char* mhName = "method handle";
  1714     const char* targetType = "the required signature";
  1715     int targetArity = -1, mhArity = -1;
  1716     vframeStream vfst(thread, true);
  1717     if (!vfst.at_end()) {
  1718       Bytecode_invoke call(vfst.method(), vfst.bci());
  1719       methodHandle target;
  1721         EXCEPTION_MARK;
  1722         target = call.static_target(THREAD);
  1723         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1725       if (target.not_null()
  1726           && target->is_method_handle_invoke()
  1727           && required == target->method_handle_type()) {
  1728         targetType = target->signature()->as_C_string();
  1729         targetArity = ArgumentCount(target->signature()).size();
  1732     KlassHandle kignore; int dmf_flags = 0;
  1733     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
  1734     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
  1735                        MethodHandles::_dmf_does_dispatch |
  1736                        MethodHandles::_dmf_from_interface)) != 0)
  1737       actual_method = methodHandle();  // MH does extra binds, drops, etc.
  1738     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
  1739     if (actual_method.not_null()) {
  1740       mhName = actual_method->signature()->as_C_string();
  1741       mhArity = ArgumentCount(actual_method->signature()).size();
  1742       if (!actual_method->is_static())  mhArity += 1;
  1743     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
  1744       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
  1745       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
  1746       stringStream st;
  1747       java_lang_invoke_MethodType::print_signature(mhType, &st);
  1748       mhName = st.as_string();
  1750     if (targetArity != -1 && targetArity != mhArity) {
  1751       if (has_receiver && targetArity == mhArity-1)
  1752         desc = " cannot be called without a receiver argument as ";
  1753       else
  1754         desc = " cannot be called with a different arity as ";
  1756     message = generate_class_cast_message(mhName, targetType,
  1757                                           desc != NULL ? desc :
  1758                                           " cannot be called as ");
  1760   if (TraceMethodHandles) {
  1761     tty->print_cr("WrongMethodType => message=%s", message);
  1763   return message;
  1766 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1767                                                             oopDesc* required) {
  1768   if (required == NULL)  return NULL;
  1769   if (required->klass() == SystemDictionary::Class_klass())
  1770     return required;
  1771   if (required->is_klass())
  1772     return Klass::cast(klassOop(required))->java_mirror();
  1773   return NULL;
  1777 char* SharedRuntime::generate_class_cast_message(
  1778     const char* objName, const char* targetKlassName, const char* desc) {
  1779   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1781   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1782   if (NULL == message) {
  1783     // Shouldn't happen, but don't cause even more problems if it does
  1784     message = const_cast<char*>(objName);
  1785   } else {
  1786     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1788   return message;
  1791 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1792   (void) JavaThread::current()->reguard_stack();
  1793 JRT_END
  1796 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1797 #ifndef PRODUCT
  1798 int SharedRuntime::_monitor_enter_ctr=0;
  1799 #endif
  1800 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1801   oop obj(_obj);
  1802 #ifndef PRODUCT
  1803   _monitor_enter_ctr++;             // monitor enter slow
  1804 #endif
  1805   if (PrintBiasedLockingStatistics) {
  1806     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1808   Handle h_obj(THREAD, obj);
  1809   if (UseBiasedLocking) {
  1810     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1811     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1812   } else {
  1813     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1815   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1816 JRT_END
  1818 #ifndef PRODUCT
  1819 int SharedRuntime::_monitor_exit_ctr=0;
  1820 #endif
  1821 // Handles the uncommon cases of monitor unlocking in compiled code
  1822 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1823    oop obj(_obj);
  1824 #ifndef PRODUCT
  1825   _monitor_exit_ctr++;              // monitor exit slow
  1826 #endif
  1827   Thread* THREAD = JavaThread::current();
  1828   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1829   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1830   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1831 #undef MIGHT_HAVE_PENDING
  1832 #ifdef MIGHT_HAVE_PENDING
  1833   // Save and restore any pending_exception around the exception mark.
  1834   // While the slow_exit must not throw an exception, we could come into
  1835   // this routine with one set.
  1836   oop pending_excep = NULL;
  1837   const char* pending_file;
  1838   int pending_line;
  1839   if (HAS_PENDING_EXCEPTION) {
  1840     pending_excep = PENDING_EXCEPTION;
  1841     pending_file  = THREAD->exception_file();
  1842     pending_line  = THREAD->exception_line();
  1843     CLEAR_PENDING_EXCEPTION;
  1845 #endif /* MIGHT_HAVE_PENDING */
  1848     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1849     EXCEPTION_MARK;
  1850     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1853 #ifdef MIGHT_HAVE_PENDING
  1854   if (pending_excep != NULL) {
  1855     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1857 #endif /* MIGHT_HAVE_PENDING */
  1858 JRT_END
  1860 #ifndef PRODUCT
  1862 void SharedRuntime::print_statistics() {
  1863   ttyLocker ttyl;
  1864   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1866   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1867   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1868   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1870   SharedRuntime::print_ic_miss_histogram();
  1872   if (CountRemovableExceptions) {
  1873     if (_nof_removable_exceptions > 0) {
  1874       Unimplemented(); // this counter is not yet incremented
  1875       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1879   // Dump the JRT_ENTRY counters
  1880   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1881   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1882   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1883   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1884   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1885   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1886   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1888   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1889   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1890   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1891   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1892   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1894   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1895   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1896   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1897   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1898   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1899   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1900   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1901   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1902   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1903   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1904   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1905   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1906   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1907   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1908   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1909   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1911   AdapterHandlerLibrary::print_statistics();
  1913   if (xtty != NULL)  xtty->tail("statistics");
  1916 inline double percent(int x, int y) {
  1917   return 100.0 * x / MAX2(y, 1);
  1920 class MethodArityHistogram {
  1921  public:
  1922   enum { MAX_ARITY = 256 };
  1923  private:
  1924   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1925   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1926   static int _max_arity;                      // max. arity seen
  1927   static int _max_size;                       // max. arg size seen
  1929   static void add_method_to_histogram(nmethod* nm) {
  1930     methodOop m = nm->method();
  1931     ArgumentCount args(m->signature());
  1932     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1933     int argsize = m->size_of_parameters();
  1934     arity   = MIN2(arity, MAX_ARITY-1);
  1935     argsize = MIN2(argsize, MAX_ARITY-1);
  1936     int count = nm->method()->compiled_invocation_count();
  1937     _arity_histogram[arity]  += count;
  1938     _size_histogram[argsize] += count;
  1939     _max_arity = MAX2(_max_arity, arity);
  1940     _max_size  = MAX2(_max_size, argsize);
  1943   void print_histogram_helper(int n, int* histo, const char* name) {
  1944     const int N = MIN2(5, n);
  1945     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1946     double sum = 0;
  1947     double weighted_sum = 0;
  1948     int i;
  1949     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1950     double rest = sum;
  1951     double percent = sum / 100;
  1952     for (i = 0; i <= N; i++) {
  1953       rest -= histo[i];
  1954       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1956     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1957     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1960   void print_histogram() {
  1961     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1962     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1963     tty->print_cr("\nSame for parameter size (in words):");
  1964     print_histogram_helper(_max_size, _size_histogram, "size");
  1965     tty->cr();
  1968  public:
  1969   MethodArityHistogram() {
  1970     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1971     _max_arity = _max_size = 0;
  1972     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1973     CodeCache::nmethods_do(add_method_to_histogram);
  1974     print_histogram();
  1976 };
  1978 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1979 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1980 int MethodArityHistogram::_max_arity;
  1981 int MethodArityHistogram::_max_size;
  1983 void SharedRuntime::print_call_statistics(int comp_total) {
  1984   tty->print_cr("Calls from compiled code:");
  1985   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1986   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1987   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1988   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1989   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1990   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1991   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1992   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1993   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1994   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1995   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1996   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1997   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1998   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1999   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2000   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2001   tty->cr();
  2002   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2003   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2004   tty->print_cr("        %% in nested categories are relative to their category");
  2005   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2006   tty->cr();
  2008   MethodArityHistogram h;
  2010 #endif
  2013 // A simple wrapper class around the calling convention information
  2014 // that allows sharing of adapters for the same calling convention.
  2015 class AdapterFingerPrint : public CHeapObj {
  2016  private:
  2017   union {
  2018     int  _compact[3];
  2019     int* _fingerprint;
  2020   } _value;
  2021   int _length; // A negative length indicates the fingerprint is in the compact form,
  2022                // Otherwise _value._fingerprint is the array.
  2024   // Remap BasicTypes that are handled equivalently by the adapters.
  2025   // These are correct for the current system but someday it might be
  2026   // necessary to make this mapping platform dependent.
  2027   static BasicType adapter_encoding(BasicType in) {
  2028     assert((~0xf & in) == 0, "must fit in 4 bits");
  2029     switch(in) {
  2030       case T_BOOLEAN:
  2031       case T_BYTE:
  2032       case T_SHORT:
  2033       case T_CHAR:
  2034         // There are all promoted to T_INT in the calling convention
  2035         return T_INT;
  2037       case T_OBJECT:
  2038       case T_ARRAY:
  2039 #ifdef _LP64
  2040         return T_LONG;
  2041 #else
  2042         return T_INT;
  2043 #endif
  2045       case T_INT:
  2046       case T_LONG:
  2047       case T_FLOAT:
  2048       case T_DOUBLE:
  2049       case T_VOID:
  2050         return in;
  2052       default:
  2053         ShouldNotReachHere();
  2054         return T_CONFLICT;
  2058  public:
  2059   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2060     // The fingerprint is based on the BasicType signature encoded
  2061     // into an array of ints with four entries per int.
  2062     int* ptr;
  2063     int len = (total_args_passed + 3) >> 2;
  2064     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  2065       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2066       // Storing the signature encoded as signed chars hits about 98%
  2067       // of the time.
  2068       _length = -len;
  2069       ptr = _value._compact;
  2070     } else {
  2071       _length = len;
  2072       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  2073       ptr = _value._fingerprint;
  2076     // Now pack the BasicTypes with 4 per int
  2077     int sig_index = 0;
  2078     for (int index = 0; index < len; index++) {
  2079       int value = 0;
  2080       for (int byte = 0; byte < 4; byte++) {
  2081         if (sig_index < total_args_passed) {
  2082           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  2085       ptr[index] = value;
  2089   ~AdapterFingerPrint() {
  2090     if (_length > 0) {
  2091       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  2095   int value(int index) {
  2096     if (_length < 0) {
  2097       return _value._compact[index];
  2099     return _value._fingerprint[index];
  2101   int length() {
  2102     if (_length < 0) return -_length;
  2103     return _length;
  2106   bool is_compact() {
  2107     return _length <= 0;
  2110   unsigned int compute_hash() {
  2111     int hash = 0;
  2112     for (int i = 0; i < length(); i++) {
  2113       int v = value(i);
  2114       hash = (hash << 8) ^ v ^ (hash >> 5);
  2116     return (unsigned int)hash;
  2119   const char* as_string() {
  2120     stringStream st;
  2121     for (int i = 0; i < length(); i++) {
  2122       st.print(PTR_FORMAT, value(i));
  2124     return st.as_string();
  2127   bool equals(AdapterFingerPrint* other) {
  2128     if (other->_length != _length) {
  2129       return false;
  2131     if (_length < 0) {
  2132       return _value._compact[0] == other->_value._compact[0] &&
  2133              _value._compact[1] == other->_value._compact[1] &&
  2134              _value._compact[2] == other->_value._compact[2];
  2135     } else {
  2136       for (int i = 0; i < _length; i++) {
  2137         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2138           return false;
  2142     return true;
  2144 };
  2147 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2148 class AdapterHandlerTable : public BasicHashtable {
  2149   friend class AdapterHandlerTableIterator;
  2151  private:
  2153 #ifndef PRODUCT
  2154   static int _lookups; // number of calls to lookup
  2155   static int _buckets; // number of buckets checked
  2156   static int _equals;  // number of buckets checked with matching hash
  2157   static int _hits;    // number of successful lookups
  2158   static int _compact; // number of equals calls with compact signature
  2159 #endif
  2161   AdapterHandlerEntry* bucket(int i) {
  2162     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  2165  public:
  2166   AdapterHandlerTable()
  2167     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  2169   // Create a new entry suitable for insertion in the table
  2170   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2171     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  2172     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2173     return entry;
  2176   // Insert an entry into the table
  2177   void add(AdapterHandlerEntry* entry) {
  2178     int index = hash_to_index(entry->hash());
  2179     add_entry(index, entry);
  2182   void free_entry(AdapterHandlerEntry* entry) {
  2183     entry->deallocate();
  2184     BasicHashtable::free_entry(entry);
  2187   // Find a entry with the same fingerprint if it exists
  2188   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2189     NOT_PRODUCT(_lookups++);
  2190     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2191     unsigned int hash = fp.compute_hash();
  2192     int index = hash_to_index(hash);
  2193     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2194       NOT_PRODUCT(_buckets++);
  2195       if (e->hash() == hash) {
  2196         NOT_PRODUCT(_equals++);
  2197         if (fp.equals(e->fingerprint())) {
  2198 #ifndef PRODUCT
  2199           if (fp.is_compact()) _compact++;
  2200           _hits++;
  2201 #endif
  2202           return e;
  2206     return NULL;
  2209 #ifndef PRODUCT
  2210   void print_statistics() {
  2211     ResourceMark rm;
  2212     int longest = 0;
  2213     int empty = 0;
  2214     int total = 0;
  2215     int nonempty = 0;
  2216     for (int index = 0; index < table_size(); index++) {
  2217       int count = 0;
  2218       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2219         count++;
  2221       if (count != 0) nonempty++;
  2222       if (count == 0) empty++;
  2223       if (count > longest) longest = count;
  2224       total += count;
  2226     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2227                   empty, longest, total, total / (double)nonempty);
  2228     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2229                   _lookups, _buckets, _equals, _hits, _compact);
  2231 #endif
  2232 };
  2235 #ifndef PRODUCT
  2237 int AdapterHandlerTable::_lookups;
  2238 int AdapterHandlerTable::_buckets;
  2239 int AdapterHandlerTable::_equals;
  2240 int AdapterHandlerTable::_hits;
  2241 int AdapterHandlerTable::_compact;
  2243 #endif
  2245 class AdapterHandlerTableIterator : public StackObj {
  2246  private:
  2247   AdapterHandlerTable* _table;
  2248   int _index;
  2249   AdapterHandlerEntry* _current;
  2251   void scan() {
  2252     while (_index < _table->table_size()) {
  2253       AdapterHandlerEntry* a = _table->bucket(_index);
  2254       _index++;
  2255       if (a != NULL) {
  2256         _current = a;
  2257         return;
  2262  public:
  2263   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2264     scan();
  2266   bool has_next() {
  2267     return _current != NULL;
  2269   AdapterHandlerEntry* next() {
  2270     if (_current != NULL) {
  2271       AdapterHandlerEntry* result = _current;
  2272       _current = _current->next();
  2273       if (_current == NULL) scan();
  2274       return result;
  2275     } else {
  2276       return NULL;
  2279 };
  2282 // ---------------------------------------------------------------------------
  2283 // Implementation of AdapterHandlerLibrary
  2284 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2285 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2286 const int AdapterHandlerLibrary_size = 16*K;
  2287 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2289 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2290   // Should be called only when AdapterHandlerLibrary_lock is active.
  2291   if (_buffer == NULL) // Initialize lazily
  2292       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2293   return _buffer;
  2296 void AdapterHandlerLibrary::initialize() {
  2297   if (_adapters != NULL) return;
  2298   _adapters = new AdapterHandlerTable();
  2300   // Create a special handler for abstract methods.  Abstract methods
  2301   // are never compiled so an i2c entry is somewhat meaningless, but
  2302   // fill it in with something appropriate just in case.  Pass handle
  2303   // wrong method for the c2i transitions.
  2304   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2305   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2306                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2307                                                               wrong_method, wrong_method);
  2310 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2311                                                       address i2c_entry,
  2312                                                       address c2i_entry,
  2313                                                       address c2i_unverified_entry) {
  2314   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2317 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2318   // Use customized signature handler.  Need to lock around updates to
  2319   // the AdapterHandlerTable (it is not safe for concurrent readers
  2320   // and a single writer: this could be fixed if it becomes a
  2321   // problem).
  2323   // Get the address of the ic_miss handlers before we grab the
  2324   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2325   // was caused by the initialization of the stubs happening
  2326   // while we held the lock and then notifying jvmti while
  2327   // holding it. This just forces the initialization to be a little
  2328   // earlier.
  2329   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2330   assert(ic_miss != NULL, "must have handler");
  2332   ResourceMark rm;
  2334   NOT_PRODUCT(int insts_size);
  2335   AdapterBlob* B = NULL;
  2336   AdapterHandlerEntry* entry = NULL;
  2337   AdapterFingerPrint* fingerprint = NULL;
  2339     MutexLocker mu(AdapterHandlerLibrary_lock);
  2340     // make sure data structure is initialized
  2341     initialize();
  2343     if (method->is_abstract()) {
  2344       return _abstract_method_handler;
  2347     // Fill in the signature array, for the calling-convention call.
  2348     int total_args_passed = method->size_of_parameters(); // All args on stack
  2350     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2351     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2352     int i = 0;
  2353     if (!method->is_static())  // Pass in receiver first
  2354       sig_bt[i++] = T_OBJECT;
  2355     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2356       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2357       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2358         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2360     assert(i == total_args_passed, "");
  2362     // Lookup method signature's fingerprint
  2363     entry = _adapters->lookup(total_args_passed, sig_bt);
  2365 #ifdef ASSERT
  2366     AdapterHandlerEntry* shared_entry = NULL;
  2367     if (VerifyAdapterSharing && entry != NULL) {
  2368       shared_entry = entry;
  2369       entry = NULL;
  2371 #endif
  2373     if (entry != NULL) {
  2374       return entry;
  2377     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2378     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2380     // Make a C heap allocated version of the fingerprint to store in the adapter
  2381     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2383     // Create I2C & C2I handlers
  2385     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2386     if (buf != NULL) {
  2387       CodeBuffer buffer(buf);
  2388       short buffer_locs[20];
  2389       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2390                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2391       MacroAssembler _masm(&buffer);
  2393       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2394                                                      total_args_passed,
  2395                                                      comp_args_on_stack,
  2396                                                      sig_bt,
  2397                                                      regs,
  2398                                                      fingerprint);
  2400 #ifdef ASSERT
  2401       if (VerifyAdapterSharing) {
  2402         if (shared_entry != NULL) {
  2403           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2404                  "code must match");
  2405           // Release the one just created and return the original
  2406           _adapters->free_entry(entry);
  2407           return shared_entry;
  2408         } else  {
  2409           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2412 #endif
  2414       B = AdapterBlob::create(&buffer);
  2415       NOT_PRODUCT(insts_size = buffer.insts_size());
  2417     if (B == NULL) {
  2418       // CodeCache is full, disable compilation
  2419       // Ought to log this but compile log is only per compile thread
  2420       // and we're some non descript Java thread.
  2421       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2422       CompileBroker::handle_full_code_cache();
  2423       return NULL; // Out of CodeCache space
  2425     entry->relocate(B->content_begin());
  2426 #ifndef PRODUCT
  2427     // debugging suppport
  2428     if (PrintAdapterHandlers) {
  2429       tty->cr();
  2430       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2431                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2432                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
  2433       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2434       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
  2436 #endif
  2438     _adapters->add(entry);
  2440   // Outside of the lock
  2441   if (B != NULL) {
  2442     char blob_id[256];
  2443     jio_snprintf(blob_id,
  2444                  sizeof(blob_id),
  2445                  "%s(%s)@" PTR_FORMAT,
  2446                  B->name(),
  2447                  fingerprint->as_string(),
  2448                  B->content_begin());
  2449     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2451     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2452       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2455   return entry;
  2458 void AdapterHandlerEntry::relocate(address new_base) {
  2459     ptrdiff_t delta = new_base - _i2c_entry;
  2460     _i2c_entry += delta;
  2461     _c2i_entry += delta;
  2462     _c2i_unverified_entry += delta;
  2466 void AdapterHandlerEntry::deallocate() {
  2467   delete _fingerprint;
  2468 #ifdef ASSERT
  2469   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2470   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2471 #endif
  2475 #ifdef ASSERT
  2476 // Capture the code before relocation so that it can be compared
  2477 // against other versions.  If the code is captured after relocation
  2478 // then relative instructions won't be equivalent.
  2479 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2480   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2481   _code_length = length;
  2482   memcpy(_saved_code, buffer, length);
  2483   _total_args_passed = total_args_passed;
  2484   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2485   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2489 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2490   if (length != _code_length) {
  2491     return false;
  2493   for (int i = 0; i < length; i++) {
  2494     if (buffer[i] != _saved_code[i]) {
  2495       return false;
  2498   return true;
  2500 #endif
  2503 // Create a native wrapper for this native method.  The wrapper converts the
  2504 // java compiled calling convention to the native convention, handlizes
  2505 // arguments, and transitions to native.  On return from the native we transition
  2506 // back to java blocking if a safepoint is in progress.
  2507 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2508   ResourceMark rm;
  2509   nmethod* nm = NULL;
  2511   assert(method->has_native_function(), "must have something valid to call!");
  2514     // perform the work while holding the lock, but perform any printing outside the lock
  2515     MutexLocker mu(AdapterHandlerLibrary_lock);
  2516     // See if somebody beat us to it
  2517     nm = method->code();
  2518     if (nm) {
  2519       return nm;
  2522     ResourceMark rm;
  2524     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2525     if (buf != NULL) {
  2526       CodeBuffer buffer(buf);
  2527       double locs_buf[20];
  2528       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2529       MacroAssembler _masm(&buffer);
  2531       // Fill in the signature array, for the calling-convention call.
  2532       int total_args_passed = method->size_of_parameters();
  2534       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2535       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2536       int i=0;
  2537       if( !method->is_static() )  // Pass in receiver first
  2538         sig_bt[i++] = T_OBJECT;
  2539       SignatureStream ss(method->signature());
  2540       for( ; !ss.at_return_type(); ss.next()) {
  2541         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2542         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2543           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2545       assert( i==total_args_passed, "" );
  2546       BasicType ret_type = ss.type();
  2548       // Now get the compiled-Java layout as input arguments
  2549       int comp_args_on_stack;
  2550       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2552       // Generate the compiled-to-native wrapper code
  2553       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2554                                                   method,
  2555                                                   compile_id,
  2556                                                   total_args_passed,
  2557                                                   comp_args_on_stack,
  2558                                                   sig_bt,regs,
  2559                                                   ret_type);
  2563   // Must unlock before calling set_code
  2565   // Install the generated code.
  2566   if (nm != NULL) {
  2567     if (PrintCompilation) {
  2568       ttyLocker ttyl;
  2569       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2571     method->set_code(method, nm);
  2572     nm->post_compiled_method_load_event();
  2573   } else {
  2574     // CodeCache is full, disable compilation
  2575     CompileBroker::handle_full_code_cache();
  2577   return nm;
  2580 #ifdef HAVE_DTRACE_H
  2581 // Create a dtrace nmethod for this method.  The wrapper converts the
  2582 // java compiled calling convention to the native convention, makes a dummy call
  2583 // (actually nops for the size of the call instruction, which become a trap if
  2584 // probe is enabled). The returns to the caller. Since this all looks like a
  2585 // leaf no thread transition is needed.
  2587 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2588   ResourceMark rm;
  2589   nmethod* nm = NULL;
  2591   if (PrintCompilation) {
  2592     ttyLocker ttyl;
  2593     tty->print("---   n%s  ");
  2594     method->print_short_name(tty);
  2595     if (method->is_static()) {
  2596       tty->print(" (static)");
  2598     tty->cr();
  2602     // perform the work while holding the lock, but perform any printing
  2603     // outside the lock
  2604     MutexLocker mu(AdapterHandlerLibrary_lock);
  2605     // See if somebody beat us to it
  2606     nm = method->code();
  2607     if (nm) {
  2608       return nm;
  2611     ResourceMark rm;
  2613     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2614     if (buf != NULL) {
  2615       CodeBuffer buffer(buf);
  2616       // Need a few relocation entries
  2617       double locs_buf[20];
  2618       buffer.insts()->initialize_shared_locs(
  2619         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2620       MacroAssembler _masm(&buffer);
  2622       // Generate the compiled-to-native wrapper code
  2623       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2626   return nm;
  2629 // the dtrace method needs to convert java lang string to utf8 string.
  2630 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2631   typeArrayOop jlsValue  = java_lang_String::value(src);
  2632   int          jlsOffset = java_lang_String::offset(src);
  2633   int          jlsLen    = java_lang_String::length(src);
  2634   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2635                                            jlsValue->char_at_addr(jlsOffset);
  2636   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2637   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2639 #endif // ndef HAVE_DTRACE_H
  2641 // -------------------------------------------------------------------------
  2642 // Java-Java calling convention
  2643 // (what you use when Java calls Java)
  2645 //------------------------------name_for_receiver----------------------------------
  2646 // For a given signature, return the VMReg for parameter 0.
  2647 VMReg SharedRuntime::name_for_receiver() {
  2648   VMRegPair regs;
  2649   BasicType sig_bt = T_OBJECT;
  2650   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2651   // Return argument 0 register.  In the LP64 build pointers
  2652   // take 2 registers, but the VM wants only the 'main' name.
  2653   return regs.first();
  2656 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2657   // This method is returning a data structure allocating as a
  2658   // ResourceObject, so do not put any ResourceMarks in here.
  2659   char *s = sig->as_C_string();
  2660   int len = (int)strlen(s);
  2661   *s++; len--;                  // Skip opening paren
  2662   char *t = s+len;
  2663   while( *(--t) != ')' ) ;      // Find close paren
  2665   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2666   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2667   int cnt = 0;
  2668   if (has_receiver) {
  2669     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2672   while( s < t ) {
  2673     switch( *s++ ) {            // Switch on signature character
  2674     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2675     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2676     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2677     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2678     case 'I': sig_bt[cnt++] = T_INT;     break;
  2679     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2680     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2681     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2682     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2683     case 'L':                   // Oop
  2684       while( *s++ != ';'  ) ;   // Skip signature
  2685       sig_bt[cnt++] = T_OBJECT;
  2686       break;
  2687     case '[': {                 // Array
  2688       do {                      // Skip optional size
  2689         while( *s >= '0' && *s <= '9' ) s++;
  2690       } while( *s++ == '[' );   // Nested arrays?
  2691       // Skip element type
  2692       if( s[-1] == 'L' )
  2693         while( *s++ != ';'  ) ; // Skip signature
  2694       sig_bt[cnt++] = T_ARRAY;
  2695       break;
  2697     default : ShouldNotReachHere();
  2700   assert( cnt < 256, "grow table size" );
  2702   int comp_args_on_stack;
  2703   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2705   // the calling convention doesn't count out_preserve_stack_slots so
  2706   // we must add that in to get "true" stack offsets.
  2708   if (comp_args_on_stack) {
  2709     for (int i = 0; i < cnt; i++) {
  2710       VMReg reg1 = regs[i].first();
  2711       if( reg1->is_stack()) {
  2712         // Yuck
  2713         reg1 = reg1->bias(out_preserve_stack_slots());
  2715       VMReg reg2 = regs[i].second();
  2716       if( reg2->is_stack()) {
  2717         // Yuck
  2718         reg2 = reg2->bias(out_preserve_stack_slots());
  2720       regs[i].set_pair(reg2, reg1);
  2724   // results
  2725   *arg_size = cnt;
  2726   return regs;
  2729 // OSR Migration Code
  2730 //
  2731 // This code is used convert interpreter frames into compiled frames.  It is
  2732 // called from very start of a compiled OSR nmethod.  A temp array is
  2733 // allocated to hold the interesting bits of the interpreter frame.  All
  2734 // active locks are inflated to allow them to move.  The displaced headers and
  2735 // active interpeter locals are copied into the temp buffer.  Then we return
  2736 // back to the compiled code.  The compiled code then pops the current
  2737 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2738 // copies the interpreter locals and displaced headers where it wants.
  2739 // Finally it calls back to free the temp buffer.
  2740 //
  2741 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2743 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2745 #ifdef IA64
  2746   ShouldNotReachHere(); // NYI
  2747 #endif /* IA64 */
  2749   //
  2750   // This code is dependent on the memory layout of the interpreter local
  2751   // array and the monitors. On all of our platforms the layout is identical
  2752   // so this code is shared. If some platform lays the their arrays out
  2753   // differently then this code could move to platform specific code or
  2754   // the code here could be modified to copy items one at a time using
  2755   // frame accessor methods and be platform independent.
  2757   frame fr = thread->last_frame();
  2758   assert( fr.is_interpreted_frame(), "" );
  2759   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2761   // Figure out how many monitors are active.
  2762   int active_monitor_count = 0;
  2763   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2764        kptr < fr.interpreter_frame_monitor_begin();
  2765        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2766     if( kptr->obj() != NULL ) active_monitor_count++;
  2769   // QQQ we could place number of active monitors in the array so that compiled code
  2770   // could double check it.
  2772   methodOop moop = fr.interpreter_frame_method();
  2773   int max_locals = moop->max_locals();
  2774   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2775   int buf_size_words = max_locals + active_monitor_count*2;
  2776   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2778   // Copy the locals.  Order is preserved so that loading of longs works.
  2779   // Since there's no GC I can copy the oops blindly.
  2780   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2781   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2782                        (HeapWord*)&buf[0],
  2783                        max_locals);
  2785   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2786   int i = max_locals;
  2787   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2788        kptr2 < fr.interpreter_frame_monitor_begin();
  2789        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2790     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2791       BasicLock *lock = kptr2->lock();
  2792       // Inflate so the displaced header becomes position-independent
  2793       if (lock->displaced_header()->is_unlocked())
  2794         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2795       // Now the displaced header is free to move
  2796       buf[i++] = (intptr_t)lock->displaced_header();
  2797       buf[i++] = (intptr_t)kptr2->obj();
  2800   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2802   return buf;
  2803 JRT_END
  2805 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2806   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2807 JRT_END
  2809 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2810   AdapterHandlerTableIterator iter(_adapters);
  2811   while (iter.has_next()) {
  2812     AdapterHandlerEntry* a = iter.next();
  2813     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2815   return false;
  2818 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2819   AdapterHandlerTableIterator iter(_adapters);
  2820   while (iter.has_next()) {
  2821     AdapterHandlerEntry* a = iter.next();
  2822     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2823       st->print("Adapter for signature: ");
  2824       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2825                    a->fingerprint()->as_string(),
  2826                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2828       return;
  2831   assert(false, "Should have found handler");
  2834 #ifndef PRODUCT
  2836 void AdapterHandlerLibrary::print_statistics() {
  2837   _adapters->print_statistics();
  2840 #endif /* PRODUCT */

mercurial