src/share/vm/runtime/sharedRuntime.cpp

Wed, 17 Aug 2011 10:32:53 -0700

author
jcoomes
date
Wed, 17 Aug 2011 10:32:53 -0700
changeset 3057
24cee90e9453
parent 2978
d83ac25d0304
child 3039
0f34fdee809e
permissions
-rw-r--r--

6791672: enable 1G and larger pages on solaris
Reviewed-by: ysr, iveresov, johnc

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
never@2950 83 // Shared stub locations
never@2950 84 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 85 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 89
never@2950 90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
never@2950 91 RicochetBlob* SharedRuntime::_ricochet_blob;
never@2950 92
never@2950 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 95
never@2950 96 #ifdef COMPILER2
never@2950 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 98 #endif // COMPILER2
never@2950 99
never@2950 100
never@2950 101 //----------------------------generate_stubs-----------------------------------
never@2950 102 void SharedRuntime::generate_stubs() {
never@2950 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 108
never@2950 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
never@2950 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
never@2950 111
never@2950 112 generate_ricochet_blob();
never@2950 113 generate_deopt_blob();
never@2950 114
never@2950 115 #ifdef COMPILER2
never@2950 116 generate_uncommon_trap_blob();
never@2950 117 #endif // COMPILER2
never@2950 118 }
never@2950 119
never@2950 120 //----------------------------generate_ricochet_blob---------------------------
never@2950 121 void SharedRuntime::generate_ricochet_blob() {
never@2950 122 if (!EnableInvokeDynamic) return; // leave it as a null
never@2950 123
never@2950 124 #ifndef TARGET_ARCH_NYI_6939861
never@2950 125 // allocate space for the code
never@2950 126 ResourceMark rm;
never@2950 127 // setup code generation tools
never@2950 128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512
never@2950 129 MacroAssembler* masm = new MacroAssembler(&buffer);
never@2950 130
never@2950 131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
never@2950 132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
never@2950 133
never@2950 134 // -------------
never@2950 135 // make sure all code is generated
never@2950 136 masm->flush();
never@2950 137
never@2950 138 // failed to generate?
never@2950 139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
never@2950 140 assert(false, "bad ricochet blob");
never@2950 141 return;
never@2950 142 }
never@2950 143
never@2950 144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
never@2950 145 #endif
never@2950 146 }
never@2950 147
never@2950 148
duke@435 149 #include <math.h>
duke@435 150
duke@435 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 153 char*, int, char*, int, char*, int);
duke@435 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 155 char*, int, char*, int, char*, int);
duke@435 156
duke@435 157 // Implementation of SharedRuntime
duke@435 158
duke@435 159 #ifndef PRODUCT
duke@435 160 // For statistics
duke@435 161 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 162 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 163 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 164 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 166 int SharedRuntime::_implicit_null_throws = 0;
duke@435 167 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 168 int SharedRuntime::_throw_null_ctr = 0;
duke@435 169
duke@435 170 int SharedRuntime::_nof_normal_calls = 0;
duke@435 171 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 172 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 173 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 174 int SharedRuntime::_nof_static_calls = 0;
duke@435 175 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 176 int SharedRuntime::_nof_interface_calls = 0;
duke@435 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 180 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 181
duke@435 182 int SharedRuntime::_new_instance_ctr=0;
duke@435 183 int SharedRuntime::_new_array_ctr=0;
duke@435 184 int SharedRuntime::_multi1_ctr=0;
duke@435 185 int SharedRuntime::_multi2_ctr=0;
duke@435 186 int SharedRuntime::_multi3_ctr=0;
duke@435 187 int SharedRuntime::_multi4_ctr=0;
duke@435 188 int SharedRuntime::_multi5_ctr=0;
duke@435 189 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 190 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 191 int SharedRuntime::_mon_enter_ctr=0;
duke@435 192 int SharedRuntime::_mon_exit_ctr=0;
duke@435 193 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 195 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 196 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 197 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 198 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 201 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 202 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 203 int SharedRuntime::_find_handler_ctr=0;
duke@435 204 int SharedRuntime::_rethrow_ctr=0;
duke@435 205
duke@435 206 int SharedRuntime::_ICmiss_index = 0;
duke@435 207 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 209
never@2950 210
duke@435 211 void SharedRuntime::trace_ic_miss(address at) {
duke@435 212 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 213 if (_ICmiss_at[i] == at) {
duke@435 214 _ICmiss_count[i]++;
duke@435 215 return;
duke@435 216 }
duke@435 217 }
duke@435 218 int index = _ICmiss_index++;
duke@435 219 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 220 _ICmiss_at[index] = at;
duke@435 221 _ICmiss_count[index] = 1;
duke@435 222 }
duke@435 223
duke@435 224 void SharedRuntime::print_ic_miss_histogram() {
duke@435 225 if (ICMissHistogram) {
duke@435 226 tty->print_cr ("IC Miss Histogram:");
duke@435 227 int tot_misses = 0;
duke@435 228 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 229 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 230 tot_misses += _ICmiss_count[i];
duke@435 231 }
duke@435 232 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 233 }
duke@435 234 }
duke@435 235 #endif // PRODUCT
duke@435 236
ysr@777 237 #ifndef SERIALGC
ysr@777 238
ysr@777 239 // G1 write-barrier pre: executed before a pointer store.
ysr@777 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 241 if (orig == NULL) {
ysr@777 242 assert(false, "should be optimized out");
ysr@777 243 return;
ysr@777 244 }
ysr@1280 245 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 246 // store the original value that was in the field reference
ysr@777 247 thread->satb_mark_queue().enqueue(orig);
ysr@777 248 JRT_END
ysr@777 249
ysr@777 250 // G1 write-barrier post: executed after a pointer store.
ysr@777 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 252 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 253 JRT_END
ysr@777 254
ysr@777 255 #endif // !SERIALGC
ysr@777 256
duke@435 257
duke@435 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 259 return x * y;
duke@435 260 JRT_END
duke@435 261
duke@435 262
duke@435 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 264 if (x == min_jlong && y == CONST64(-1)) {
duke@435 265 return x;
duke@435 266 } else {
duke@435 267 return x / y;
duke@435 268 }
duke@435 269 JRT_END
duke@435 270
duke@435 271
duke@435 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 273 if (x == min_jlong && y == CONST64(-1)) {
duke@435 274 return 0;
duke@435 275 } else {
duke@435 276 return x % y;
duke@435 277 }
duke@435 278 JRT_END
duke@435 279
duke@435 280
duke@435 281 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 282 const juint float_infinity = 0x7F800000;
duke@435 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 284 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 285
duke@435 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 287 #ifdef _WIN64
duke@435 288 // 64-bit Windows on amd64 returns the wrong values for
duke@435 289 // infinity operands.
duke@435 290 union { jfloat f; juint i; } xbits, ybits;
duke@435 291 xbits.f = x;
duke@435 292 ybits.f = y;
duke@435 293 // x Mod Infinity == x unless x is infinity
duke@435 294 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 295 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 296 return x;
duke@435 297 }
duke@435 298 #endif
duke@435 299 return ((jfloat)fmod((double)x,(double)y));
duke@435 300 JRT_END
duke@435 301
duke@435 302
duke@435 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 304 #ifdef _WIN64
duke@435 305 union { jdouble d; julong l; } xbits, ybits;
duke@435 306 xbits.d = x;
duke@435 307 ybits.d = y;
duke@435 308 // x Mod Infinity == x unless x is infinity
duke@435 309 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 310 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 311 return x;
duke@435 312 }
duke@435 313 #endif
duke@435 314 return ((jdouble)fmod((double)x,(double)y));
duke@435 315 JRT_END
duke@435 316
bobv@2036 317 #ifdef __SOFTFP__
bobv@2036 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 319 return x + y;
bobv@2036 320 JRT_END
bobv@2036 321
bobv@2036 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 323 return x - y;
bobv@2036 324 JRT_END
bobv@2036 325
bobv@2036 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 327 return x * y;
bobv@2036 328 JRT_END
bobv@2036 329
bobv@2036 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 331 return x / y;
bobv@2036 332 JRT_END
bobv@2036 333
bobv@2036 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 335 return x + y;
bobv@2036 336 JRT_END
bobv@2036 337
bobv@2036 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 339 return x - y;
bobv@2036 340 JRT_END
bobv@2036 341
bobv@2036 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 343 return x * y;
bobv@2036 344 JRT_END
bobv@2036 345
bobv@2036 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 347 return x / y;
bobv@2036 348 JRT_END
bobv@2036 349
bobv@2036 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 351 return (jfloat)x;
bobv@2036 352 JRT_END
bobv@2036 353
bobv@2036 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 355 return (jdouble)x;
bobv@2036 356 JRT_END
bobv@2036 357
bobv@2036 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 359 return (jdouble)x;
bobv@2036 360 JRT_END
bobv@2036 361
bobv@2036 362 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 363 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 364 JRT_END
bobv@2036 365
bobv@2036 366 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 367 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 368 JRT_END
bobv@2036 369
bobv@2036 370 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 371 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 372 JRT_END
bobv@2036 373
bobv@2036 374 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 375 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 376 JRT_END
bobv@2036 377
bobv@2036 378 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 380 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 381 JRT_END
bobv@2036 382
bobv@2036 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 384 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 385 JRT_END
bobv@2036 386
bobv@2036 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 388 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 389 JRT_END
bobv@2036 390
bobv@2036 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 392 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 393 JRT_END
bobv@2036 394
bobv@2036 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 396 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 397 JRT_END
bobv@2036 398
bobv@2036 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 400 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 401 JRT_END
bobv@2036 402
bobv@2036 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 404 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 405 JRT_END
bobv@2036 406
bobv@2036 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 408 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 409 JRT_END
bobv@2036 410
bobv@2036 411 // Intrinsics make gcc generate code for these.
bobv@2036 412 float SharedRuntime::fneg(float f) {
bobv@2036 413 return -f;
bobv@2036 414 }
bobv@2036 415
bobv@2036 416 double SharedRuntime::dneg(double f) {
bobv@2036 417 return -f;
bobv@2036 418 }
bobv@2036 419
bobv@2036 420 #endif // __SOFTFP__
bobv@2036 421
bobv@2036 422 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 423 // Intrinsics make gcc generate code for these.
bobv@2036 424 double SharedRuntime::dabs(double f) {
bobv@2036 425 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 426 }
bobv@2036 427
bobv@2223 428 #endif
bobv@2223 429
bobv@2223 430 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 431 double SharedRuntime::dsqrt(double f) {
bobv@2036 432 return sqrt(f);
bobv@2036 433 }
bobv@2036 434 #endif
duke@435 435
duke@435 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 437 if (g_isnan(x))
kvn@943 438 return 0;
kvn@943 439 if (x >= (jfloat) max_jint)
kvn@943 440 return max_jint;
kvn@943 441 if (x <= (jfloat) min_jint)
kvn@943 442 return min_jint;
kvn@943 443 return (jint) x;
duke@435 444 JRT_END
duke@435 445
duke@435 446
duke@435 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 448 if (g_isnan(x))
kvn@943 449 return 0;
kvn@943 450 if (x >= (jfloat) max_jlong)
kvn@943 451 return max_jlong;
kvn@943 452 if (x <= (jfloat) min_jlong)
kvn@943 453 return min_jlong;
kvn@943 454 return (jlong) x;
duke@435 455 JRT_END
duke@435 456
duke@435 457
duke@435 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 459 if (g_isnan(x))
kvn@943 460 return 0;
kvn@943 461 if (x >= (jdouble) max_jint)
kvn@943 462 return max_jint;
kvn@943 463 if (x <= (jdouble) min_jint)
kvn@943 464 return min_jint;
kvn@943 465 return (jint) x;
duke@435 466 JRT_END
duke@435 467
duke@435 468
duke@435 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 470 if (g_isnan(x))
kvn@943 471 return 0;
kvn@943 472 if (x >= (jdouble) max_jlong)
kvn@943 473 return max_jlong;
kvn@943 474 if (x <= (jdouble) min_jlong)
kvn@943 475 return min_jlong;
kvn@943 476 return (jlong) x;
duke@435 477 JRT_END
duke@435 478
duke@435 479
duke@435 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 481 return (jfloat)x;
duke@435 482 JRT_END
duke@435 483
duke@435 484
duke@435 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 486 return (jfloat)x;
duke@435 487 JRT_END
duke@435 488
duke@435 489
duke@435 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 491 return (jdouble)x;
duke@435 492 JRT_END
duke@435 493
duke@435 494 // Exception handling accross interpreter/compiler boundaries
duke@435 495 //
duke@435 496 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 497 // The continuation address is the entry point of the exception handler of the
duke@435 498 // previous frame depending on the return address.
duke@435 499
twisti@1730 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 501 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 502
twisti@2603 503 // Reset method handle flag.
twisti@1803 504 thread->set_is_method_handle_return(false);
twisti@1803 505
twisti@2603 506 // The fastest case first
duke@435 507 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 508 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 509 if (nm != NULL) {
twisti@2603 510 // Set flag if return address is a method handle call site.
twisti@2603 511 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 512 // native nmethods don't have exception handlers
twisti@2603 513 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 514 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 515 if (nm->is_deopt_pc(return_address)) {
duke@435 516 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 517 } else {
twisti@2603 518 return nm->exception_begin();
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 // Entry code
duke@435 523 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 524 return StubRoutines::catch_exception_entry();
duke@435 525 }
duke@435 526 // Interpreted code
duke@435 527 if (Interpreter::contains(return_address)) {
duke@435 528 return Interpreter::rethrow_exception_entry();
duke@435 529 }
never@2895 530 // Ricochet frame unwind code
never@2895 531 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
never@2895 532 return SharedRuntime::ricochet_blob()->exception_addr();
never@2895 533 }
duke@435 534
twisti@2603 535 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 536 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 537
duke@435 538 #ifndef PRODUCT
duke@435 539 { ResourceMark rm;
duke@435 540 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 542 tty->print_cr("b) other problem");
duke@435 543 }
duke@435 544 #endif // PRODUCT
twisti@2603 545
duke@435 546 ShouldNotReachHere();
duke@435 547 return NULL;
duke@435 548 }
duke@435 549
duke@435 550
twisti@1730 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 552 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 553 JRT_END
duke@435 554
twisti@1730 555
duke@435 556 address SharedRuntime::get_poll_stub(address pc) {
duke@435 557 address stub;
duke@435 558 // Look up the code blob
duke@435 559 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 560
duke@435 561 // Should be an nmethod
duke@435 562 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 563
duke@435 564 // Look up the relocation information
duke@435 565 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 566 "safepoint polling: type must be poll" );
duke@435 567
duke@435 568 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 569 "Only polling locations are used for safepoint");
duke@435 570
duke@435 571 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 572 if (at_poll_return) {
duke@435 573 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 574 "polling page return stub not created yet");
twisti@2103 575 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 576 } else {
duke@435 577 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 578 "polling page safepoint stub not created yet");
twisti@2103 579 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 580 }
duke@435 581 #ifndef PRODUCT
duke@435 582 if( TraceSafepoint ) {
duke@435 583 char buf[256];
duke@435 584 jio_snprintf(buf, sizeof(buf),
duke@435 585 "... found polling page %s exception at pc = "
duke@435 586 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 587 at_poll_return ? "return" : "loop",
duke@435 588 (intptr_t)pc, (intptr_t)stub);
duke@435 589 tty->print_raw_cr(buf);
duke@435 590 }
duke@435 591 #endif // PRODUCT
duke@435 592 return stub;
duke@435 593 }
duke@435 594
duke@435 595
coleenp@2497 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 597 assert(caller.is_interpreted_frame(), "");
duke@435 598 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 599 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 600 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 601 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 602 return result;
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 607 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 608 vframeStream vfst(thread, true);
duke@435 609 methodHandle method = methodHandle(thread, vfst.method());
duke@435 610 address bcp = method()->bcp_from(vfst.bci());
duke@435 611 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 612 }
duke@435 613 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 614 }
duke@435 615
coleenp@2497 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 617 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 618 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 619 }
duke@435 620
dcubed@1045 621 // The interpreter code to call this tracing function is only
dcubed@1045 622 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 623 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 624 // to modify the compilers to generate calls to this function.
dcubed@1045 625 //
dcubed@1045 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 627 JavaThread* thread, methodOopDesc* method))
dcubed@1045 628 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 629
dcubed@1045 630 if (method->is_obsolete()) {
dcubed@1045 631 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 632 // an error. Our method could have been redefined just after we
dcubed@1045 633 // fetched the methodOop from the constant pool.
dcubed@1045 634
dcubed@1045 635 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 636 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 637 ("calling obsolete method '%s'",
dcubed@1045 638 method->name_and_sig_as_C_string()));
dcubed@1045 639 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 640 // this option is provided to debug calls to obsolete methods
dcubed@1045 641 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 642 }
dcubed@1045 643 }
dcubed@1045 644 return 0;
dcubed@1045 645 JRT_END
dcubed@1045 646
duke@435 647 // ret_pc points into caller; we are returning caller's exception handler
duke@435 648 // for given exception
duke@435 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 650 bool force_unwind, bool top_frame_only) {
duke@435 651 assert(nm != NULL, "must exist");
duke@435 652 ResourceMark rm;
duke@435 653
duke@435 654 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 655 // determine handler bci, if any
duke@435 656 EXCEPTION_MARK;
duke@435 657
duke@435 658 int handler_bci = -1;
duke@435 659 int scope_depth = 0;
duke@435 660 if (!force_unwind) {
duke@435 661 int bci = sd->bci();
duke@435 662 do {
duke@435 663 bool skip_scope_increment = false;
duke@435 664 // exception handler lookup
duke@435 665 KlassHandle ek (THREAD, exception->klass());
duke@435 666 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 667 if (HAS_PENDING_EXCEPTION) {
duke@435 668 // We threw an exception while trying to find the exception handler.
duke@435 669 // Transfer the new exception to the exception handle which will
duke@435 670 // be set into thread local storage, and do another lookup for an
duke@435 671 // exception handler for this exception, this time starting at the
duke@435 672 // BCI of the exception handler which caused the exception to be
duke@435 673 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 674 // argument to ensure that the correct exception is thrown (4870175).
duke@435 675 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 676 CLEAR_PENDING_EXCEPTION;
duke@435 677 if (handler_bci >= 0) {
duke@435 678 bci = handler_bci;
duke@435 679 handler_bci = -1;
duke@435 680 skip_scope_increment = true;
duke@435 681 }
duke@435 682 }
duke@435 683 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 684 sd = sd->sender();
duke@435 685 if (sd != NULL) {
duke@435 686 bci = sd->bci();
duke@435 687 }
duke@435 688 ++scope_depth;
duke@435 689 }
duke@435 690 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 691 }
duke@435 692
duke@435 693 // found handling method => lookup exception handler
twisti@2103 694 int catch_pco = ret_pc - nm->code_begin();
duke@435 695
duke@435 696 ExceptionHandlerTable table(nm);
duke@435 697 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 698 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 699 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 700 // to materialize its exceptions without committing to the exact
duke@435 701 // routing of exceptions. In particular this is needed for adding
duke@435 702 // a synthethic handler to unlock monitors when inlining
duke@435 703 // synchonized methods since the unlock path isn't represented in
duke@435 704 // the bytecodes.
duke@435 705 t = table.entry_for(catch_pco, -1, 0);
duke@435 706 }
duke@435 707
never@1813 708 #ifdef COMPILER1
never@1813 709 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 710 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 711 return nm->unwind_handler_begin();
never@1813 712 }
never@1813 713 #endif
never@1813 714
duke@435 715 if (t == NULL) {
duke@435 716 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 717 tty->print_cr(" Exception:");
duke@435 718 exception->print();
duke@435 719 tty->cr();
duke@435 720 tty->print_cr(" Compiled exception table :");
duke@435 721 table.print();
duke@435 722 nm->print_code();
duke@435 723 guarantee(false, "missing exception handler");
duke@435 724 return NULL;
duke@435 725 }
duke@435 726
twisti@2103 727 return nm->code_begin() + t->pco();
duke@435 728 }
duke@435 729
duke@435 730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 731 // These errors occur only at call sites
duke@435 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 733 JRT_END
duke@435 734
dcubed@451 735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 736 // These errors occur only at call sites
dcubed@451 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 738 JRT_END
dcubed@451 739
duke@435 740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 741 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 742 JRT_END
duke@435 743
duke@435 744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 745 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 746 JRT_END
duke@435 747
duke@435 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 749 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 750 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 751 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 752 JRT_END
duke@435 753
duke@435 754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 755 // We avoid using the normal exception construction in this case because
duke@435 756 // it performs an upcall to Java, and we're already out of stack space.
duke@435 757 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 758 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 759 Handle exception (thread, exception_oop);
duke@435 760 if (StackTraceInThrowable) {
duke@435 761 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 762 }
duke@435 763 throw_and_post_jvmti_exception(thread, exception);
duke@435 764 JRT_END
duke@435 765
never@2978 766 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
never@2978 767 assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
never@2978 768 ResourceMark rm;
never@2978 769 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
never@2978 770 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
never@2978 771 JRT_END
never@2978 772
duke@435 773 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 774 address pc,
duke@435 775 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 776 {
duke@435 777 address target_pc = NULL;
duke@435 778
duke@435 779 if (Interpreter::contains(pc)) {
duke@435 780 #ifdef CC_INTERP
duke@435 781 // C++ interpreter doesn't throw implicit exceptions
duke@435 782 ShouldNotReachHere();
duke@435 783 #else
duke@435 784 switch (exception_kind) {
duke@435 785 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 786 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 787 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 788 default: ShouldNotReachHere();
duke@435 789 }
duke@435 790 #endif // !CC_INTERP
duke@435 791 } else {
duke@435 792 switch (exception_kind) {
duke@435 793 case STACK_OVERFLOW: {
duke@435 794 // Stack overflow only occurs upon frame setup; the callee is
duke@435 795 // going to be unwound. Dispatch to a shared runtime stub
duke@435 796 // which will cause the StackOverflowError to be fabricated
duke@435 797 // and processed.
duke@435 798 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 799 if (thread->deopt_mark() != NULL) {
duke@435 800 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 801 }
duke@435 802 return StubRoutines::throw_StackOverflowError_entry();
duke@435 803 }
duke@435 804
duke@435 805 case IMPLICIT_NULL: {
duke@435 806 if (VtableStubs::contains(pc)) {
duke@435 807 // We haven't yet entered the callee frame. Fabricate an
duke@435 808 // exception and begin dispatching it in the caller. Since
duke@435 809 // the caller was at a call site, it's safe to destroy all
duke@435 810 // caller-saved registers, as these entry points do.
duke@435 811 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 812
poonam@900 813 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 814 if (vt_stub == NULL) return NULL;
poonam@900 815
duke@435 816 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 817 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 818 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 819 } else {
duke@435 820 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 821 }
duke@435 822 } else {
duke@435 823 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 824
poonam@900 825 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 826 if (cb == NULL) return NULL;
duke@435 827
duke@435 828 // Exception happened in CodeCache. Must be either:
duke@435 829 // 1. Inline-cache check in C2I handler blob,
duke@435 830 // 2. Inline-cache check in nmethod, or
duke@435 831 // 3. Implict null exception in nmethod
duke@435 832
duke@435 833 if (!cb->is_nmethod()) {
twisti@1734 834 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 835 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 836 // There is no handler here, so we will simply unwind.
duke@435 837 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 838 }
duke@435 839
duke@435 840 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 841 nmethod* nm = (nmethod*)cb;
duke@435 842 if (nm->inlinecache_check_contains(pc)) {
duke@435 843 // exception happened inside inline-cache check code
duke@435 844 // => the nmethod is not yet active (i.e., the frame
duke@435 845 // is not set up yet) => use return address pushed by
duke@435 846 // caller => don't push another return address
duke@435 847 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 848 }
duke@435 849
duke@435 850 #ifndef PRODUCT
duke@435 851 _implicit_null_throws++;
duke@435 852 #endif
duke@435 853 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 854 // If there's an unexpected fault, target_pc might be NULL,
never@1685 855 // in which case we want to fall through into the normal
never@1685 856 // error handling code.
duke@435 857 }
duke@435 858
duke@435 859 break; // fall through
duke@435 860 }
duke@435 861
duke@435 862
duke@435 863 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 864 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 865 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 866 #ifndef PRODUCT
duke@435 867 _implicit_div0_throws++;
duke@435 868 #endif
duke@435 869 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 870 // If there's an unexpected fault, target_pc might be NULL,
never@1685 871 // in which case we want to fall through into the normal
never@1685 872 // error handling code.
duke@435 873 break; // fall through
duke@435 874 }
duke@435 875
duke@435 876 default: ShouldNotReachHere();
duke@435 877 }
duke@435 878
duke@435 879 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 880
duke@435 881 // for AbortVMOnException flag
duke@435 882 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 883 if (exception_kind == IMPLICIT_NULL) {
duke@435 884 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 885 } else {
duke@435 886 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 887 }
duke@435 888 return target_pc;
duke@435 889 }
duke@435 890
duke@435 891 ShouldNotReachHere();
duke@435 892 return NULL;
duke@435 893 }
duke@435 894
duke@435 895
duke@435 896 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 897 {
duke@435 898 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 899 }
duke@435 900 JNI_END
duke@435 901
duke@435 902
duke@435 903 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 904 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 905 }
duke@435 906
duke@435 907
duke@435 908 #ifndef PRODUCT
duke@435 909 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 910 const frame f = thread->last_frame();
duke@435 911 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 912 #ifndef PRODUCT
duke@435 913 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 914 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 915 #endif // !PRODUCT
duke@435 916 return preserve_this_value;
duke@435 917 JRT_END
duke@435 918 #endif // !PRODUCT
duke@435 919
duke@435 920
duke@435 921 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 922 os::yield_all(attempts);
duke@435 923 JRT_END
duke@435 924
duke@435 925
duke@435 926 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 927 assert(obj->is_oop(), "must be a valid oop");
duke@435 928 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 929 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 930 JRT_END
duke@435 931
duke@435 932
duke@435 933 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 934 if (thread != NULL) {
duke@435 935 if (thread->is_Java_thread()) {
duke@435 936 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 937 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 938 }
duke@435 939 }
duke@435 940 return 0;
duke@435 941 }
duke@435 942
duke@435 943 /**
duke@435 944 * This function ought to be a void function, but cannot be because
duke@435 945 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 946 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 947 */
duke@435 948 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 949 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 950 }
duke@435 951
duke@435 952 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 953 assert(DTraceAllocProbes, "wrong call");
duke@435 954 Klass* klass = o->blueprint();
duke@435 955 int size = o->size();
coleenp@2497 956 Symbol* name = klass->name();
duke@435 957 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 958 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 959 return 0;
duke@435 960 }
duke@435 961
duke@435 962 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 963 JavaThread* thread, methodOopDesc* method))
duke@435 964 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 965 Symbol* kname = method->klass_name();
coleenp@2497 966 Symbol* name = method->name();
coleenp@2497 967 Symbol* sig = method->signature();
duke@435 968 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 969 kname->bytes(), kname->utf8_length(),
duke@435 970 name->bytes(), name->utf8_length(),
duke@435 971 sig->bytes(), sig->utf8_length());
duke@435 972 return 0;
duke@435 973 JRT_END
duke@435 974
duke@435 975 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 976 JavaThread* thread, methodOopDesc* method))
duke@435 977 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 978 Symbol* kname = method->klass_name();
coleenp@2497 979 Symbol* name = method->name();
coleenp@2497 980 Symbol* sig = method->signature();
duke@435 981 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 982 kname->bytes(), kname->utf8_length(),
duke@435 983 name->bytes(), name->utf8_length(),
duke@435 984 sig->bytes(), sig->utf8_length());
duke@435 985 return 0;
duke@435 986 JRT_END
duke@435 987
duke@435 988
duke@435 989 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 990 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 991 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 992 // vtable updates, etc. Caller frame must be compiled.
duke@435 993 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 994 ResourceMark rm(THREAD);
duke@435 995
duke@435 996 // last java frame on stack (which includes native call frames)
duke@435 997 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 998
duke@435 999 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1000 }
duke@435 1001
duke@435 1002
duke@435 1003 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1004 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1005 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1006 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1007 vframeStream& vfst,
duke@435 1008 Bytecodes::Code& bc,
duke@435 1009 CallInfo& callinfo, TRAPS) {
duke@435 1010 Handle receiver;
duke@435 1011 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1012
duke@435 1013 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1014
duke@435 1015 // Find caller and bci from vframe
duke@435 1016 methodHandle caller (THREAD, vfst.method());
duke@435 1017 int bci = vfst.bci();
duke@435 1018
duke@435 1019 // Find bytecode
never@2462 1020 Bytecode_invoke bytecode(caller, bci);
never@2462 1021 bc = bytecode.java_code();
never@2462 1022 int bytecode_index = bytecode.index();
duke@435 1023
duke@435 1024 // Find receiver for non-static call
duke@435 1025 if (bc != Bytecodes::_invokestatic) {
duke@435 1026 // This register map must be update since we need to find the receiver for
duke@435 1027 // compiled frames. The receiver might be in a register.
duke@435 1028 RegisterMap reg_map2(thread);
duke@435 1029 frame stubFrame = thread->last_frame();
duke@435 1030 // Caller-frame is a compiled frame
duke@435 1031 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1032
never@2462 1033 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1034 if (callee.is_null()) {
duke@435 1035 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1036 }
duke@435 1037 // Retrieve from a compiled argument list
duke@435 1038 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1039
duke@435 1040 if (receiver.is_null()) {
duke@435 1041 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 // Resolve method. This is parameterized by bytecode.
duke@435 1046 constantPoolHandle constants (THREAD, caller->constants());
duke@435 1047 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1048 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1049
duke@435 1050 #ifdef ASSERT
duke@435 1051 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1052 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1053 assert(receiver.not_null(), "should have thrown exception");
duke@435 1054 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 1055 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1056 // klass is already loaded
duke@435 1057 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 1058 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 1059 if (receiver_klass->oop_is_instance()) {
duke@435 1060 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1061 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 1062 receiver_klass.print();
duke@435 1063 }
duke@435 1064 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1065 }
duke@435 1066 }
duke@435 1067 #endif
duke@435 1068
duke@435 1069 return receiver;
duke@435 1070 }
duke@435 1071
duke@435 1072 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1073 ResourceMark rm(THREAD);
duke@435 1074 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1075 // exist on the stack since last JavaCall. If not, we need
duke@435 1076 // to get the target method from the JavaCall wrapper.
duke@435 1077 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1078 methodHandle callee_method;
duke@435 1079 if (vfst.at_end()) {
duke@435 1080 // No Java frames were found on stack since we did the JavaCall.
duke@435 1081 // Hence the stack can only contain an entry_frame. We need to
duke@435 1082 // find the target method from the stub frame.
duke@435 1083 RegisterMap reg_map(thread, false);
duke@435 1084 frame fr = thread->last_frame();
duke@435 1085 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1086 fr = fr.sender(&reg_map);
duke@435 1087 assert(fr.is_entry_frame(), "must be");
duke@435 1088 // fr is now pointing to the entry frame.
duke@435 1089 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1090 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1091 } else {
duke@435 1092 Bytecodes::Code bc;
duke@435 1093 CallInfo callinfo;
duke@435 1094 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1095 callee_method = callinfo.selected_method();
duke@435 1096 }
duke@435 1097 assert(callee_method()->is_method(), "must be");
duke@435 1098 return callee_method;
duke@435 1099 }
duke@435 1100
duke@435 1101 // Resolves a call.
duke@435 1102 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1103 bool is_virtual,
duke@435 1104 bool is_optimized, TRAPS) {
duke@435 1105 methodHandle callee_method;
duke@435 1106 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1107 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1108 int retry_count = 0;
duke@435 1109 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1110 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1111 // If has a pending exception then there is no need to re-try to
duke@435 1112 // resolve this method.
duke@435 1113 // If the method has been redefined, we need to try again.
duke@435 1114 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1115 // require that java.lang.Object has been updated.
duke@435 1116
duke@435 1117 // It is very unlikely that method is redefined more than 100 times
duke@435 1118 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1119 // means then there could be a bug here.
duke@435 1120 guarantee((retry_count++ < 100),
duke@435 1121 "Could not resolve to latest version of redefined method");
duke@435 1122 // method is redefined in the middle of resolve so re-try.
duke@435 1123 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1124 }
duke@435 1125 }
duke@435 1126 return callee_method;
duke@435 1127 }
duke@435 1128
duke@435 1129 // Resolves a call. The compilers generate code for calls that go here
duke@435 1130 // and are patched with the real destination of the call.
duke@435 1131 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1132 bool is_virtual,
duke@435 1133 bool is_optimized, TRAPS) {
duke@435 1134
duke@435 1135 ResourceMark rm(thread);
duke@435 1136 RegisterMap cbl_map(thread, false);
duke@435 1137 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1138
twisti@1730 1139 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1140 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1141 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1142 // make sure caller is not getting deoptimized
duke@435 1143 // and removed before we are done with it.
duke@435 1144 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1145 nmethodLocker caller_lock(caller_nm);
duke@435 1146
duke@435 1147
duke@435 1148 // determine call info & receiver
duke@435 1149 // note: a) receiver is NULL for static calls
duke@435 1150 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1151 CallInfo call_info;
duke@435 1152 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1153 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1154 call_info, CHECK_(methodHandle()));
duke@435 1155 methodHandle callee_method = call_info.selected_method();
duke@435 1156
duke@435 1157 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1158 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1159
duke@435 1160 #ifndef PRODUCT
duke@435 1161 // tracing/debugging/statistics
duke@435 1162 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1163 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1164 (&_resolve_static_ctr);
duke@435 1165 Atomic::inc(addr);
duke@435 1166
duke@435 1167 if (TraceCallFixup) {
duke@435 1168 ResourceMark rm(thread);
duke@435 1169 tty->print("resolving %s%s (%s) call to",
duke@435 1170 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1171 Bytecodes::name(invoke_code));
duke@435 1172 callee_method->print_short_name(tty);
duke@435 1173 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1174 }
duke@435 1175 #endif
duke@435 1176
twisti@1730 1177 // JSR 292
twisti@1730 1178 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1179 // site must be a MethodHandle call site.
twisti@1730 1180 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1181 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1182 }
twisti@1730 1183
duke@435 1184 // Compute entry points. This might require generation of C2I converter
duke@435 1185 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1186 // computation of the entry points is independent of patching the call. We
duke@435 1187 // always return the entry-point, but we only patch the stub if the call has
duke@435 1188 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1189 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1190 // virtual this is just a destination address.
duke@435 1191
duke@435 1192 StaticCallInfo static_call_info;
duke@435 1193 CompiledICInfo virtual_call_info;
duke@435 1194
duke@435 1195 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1196 // we are done patching the code.
twisti@1730 1197 nmethod* callee_nm = callee_method->code();
twisti@1730 1198 nmethodLocker nl_callee(callee_nm);
duke@435 1199 #ifdef ASSERT
twisti@1730 1200 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1201 #endif
duke@435 1202
duke@435 1203 if (is_virtual) {
duke@435 1204 assert(receiver.not_null(), "sanity check");
duke@435 1205 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1206 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1207 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1208 is_optimized, static_bound, virtual_call_info,
duke@435 1209 CHECK_(methodHandle()));
duke@435 1210 } else {
duke@435 1211 // static call
duke@435 1212 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1213 }
duke@435 1214
duke@435 1215 // grab lock, check for deoptimization and potentially patch caller
duke@435 1216 {
duke@435 1217 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1218
duke@435 1219 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1220 // don't update call site and let the caller retry.
duke@435 1221
duke@435 1222 if (!callee_method->is_old()) {
duke@435 1223 #ifdef ASSERT
duke@435 1224 // We must not try to patch to jump to an already unloaded method.
duke@435 1225 if (dest_entry_point != 0) {
duke@435 1226 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1227 "should not unload nmethod while locked");
duke@435 1228 }
duke@435 1229 #endif
duke@435 1230 if (is_virtual) {
duke@435 1231 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1232 if (inline_cache->is_clean()) {
duke@435 1233 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1234 }
duke@435 1235 } else {
duke@435 1236 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1237 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1238 }
duke@435 1239 }
duke@435 1240
duke@435 1241 } // unlock CompiledIC_lock
duke@435 1242
duke@435 1243 return callee_method;
duke@435 1244 }
duke@435 1245
duke@435 1246
duke@435 1247 // Inline caches exist only in compiled code
duke@435 1248 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1249 #ifdef ASSERT
duke@435 1250 RegisterMap reg_map(thread, false);
duke@435 1251 frame stub_frame = thread->last_frame();
duke@435 1252 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1253 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1254 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
never@2895 1255 assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
duke@435 1256 #endif /* ASSERT */
duke@435 1257
duke@435 1258 methodHandle callee_method;
duke@435 1259 JRT_BLOCK
duke@435 1260 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1261 // Return methodOop through TLS
duke@435 1262 thread->set_vm_result(callee_method());
duke@435 1263 JRT_BLOCK_END
duke@435 1264 // return compiled code entry point after potential safepoints
duke@435 1265 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1266 return callee_method->verified_code_entry();
duke@435 1267 JRT_END
duke@435 1268
duke@435 1269
duke@435 1270 // Handle call site that has been made non-entrant
duke@435 1271 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1272 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1273 // as we race to call it. We don't want to take a safepoint if
duke@435 1274 // the caller was interpreted because the caller frame will look
duke@435 1275 // interpreted to the stack walkers and arguments are now
duke@435 1276 // "compiled" so it is much better to make this transition
duke@435 1277 // invisible to the stack walking code. The i2c path will
duke@435 1278 // place the callee method in the callee_target. It is stashed
duke@435 1279 // there because if we try and find the callee by normal means a
duke@435 1280 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1281 RegisterMap reg_map(thread, false);
duke@435 1282 frame stub_frame = thread->last_frame();
duke@435 1283 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1284 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1285
twisti@1570 1286 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1287 // simply redispatch to the callee_target.
twisti@1570 1288 address sender_pc = caller_frame.pc();
twisti@1570 1289 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1290 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1291 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1292 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1293 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1294 // adapter.
twisti@1639 1295 methodOop callee = thread->callee_target();
twisti@1639 1296 if (callee != NULL) {
twisti@1639 1297 assert(callee->is_method(), "sanity");
twisti@1639 1298 is_mh_invoke_via_adapter = true;
twisti@1639 1299 }
twisti@1639 1300 }
twisti@1570 1301
twisti@1570 1302 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1303 caller_frame.is_entry_frame() ||
never@2895 1304 caller_frame.is_ricochet_frame() ||
twisti@1639 1305 is_mh_invoke_via_adapter) {
duke@435 1306 methodOop callee = thread->callee_target();
duke@435 1307 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1308 thread->set_vm_result(callee);
duke@435 1309 thread->set_callee_target(NULL);
duke@435 1310 return callee->get_c2i_entry();
duke@435 1311 }
duke@435 1312
duke@435 1313 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1314 methodHandle callee_method;
duke@435 1315 JRT_BLOCK
duke@435 1316 // Force resolving of caller (if we called from compiled frame)
duke@435 1317 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1318 thread->set_vm_result(callee_method());
duke@435 1319 JRT_BLOCK_END
duke@435 1320 // return compiled code entry point after potential safepoints
duke@435 1321 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1322 return callee_method->verified_code_entry();
duke@435 1323 JRT_END
duke@435 1324
duke@435 1325
duke@435 1326 // resolve a static call and patch code
duke@435 1327 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1328 methodHandle callee_method;
duke@435 1329 JRT_BLOCK
duke@435 1330 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1331 thread->set_vm_result(callee_method());
duke@435 1332 JRT_BLOCK_END
duke@435 1333 // return compiled code entry point after potential safepoints
duke@435 1334 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1335 return callee_method->verified_code_entry();
duke@435 1336 JRT_END
duke@435 1337
duke@435 1338
duke@435 1339 // resolve virtual call and update inline cache to monomorphic
duke@435 1340 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1341 methodHandle callee_method;
duke@435 1342 JRT_BLOCK
duke@435 1343 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1344 thread->set_vm_result(callee_method());
duke@435 1345 JRT_BLOCK_END
duke@435 1346 // return compiled code entry point after potential safepoints
duke@435 1347 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1348 return callee_method->verified_code_entry();
duke@435 1349 JRT_END
duke@435 1350
duke@435 1351
duke@435 1352 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1353 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1354 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1355 methodHandle callee_method;
duke@435 1356 JRT_BLOCK
duke@435 1357 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1358 thread->set_vm_result(callee_method());
duke@435 1359 JRT_BLOCK_END
duke@435 1360 // return compiled code entry point after potential safepoints
duke@435 1361 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1362 return callee_method->verified_code_entry();
duke@435 1363 JRT_END
duke@435 1364
duke@435 1365
duke@435 1366
duke@435 1367
duke@435 1368
duke@435 1369 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1370 ResourceMark rm(thread);
duke@435 1371 CallInfo call_info;
duke@435 1372 Bytecodes::Code bc;
duke@435 1373
duke@435 1374 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1375 // receivers for non-static calls
duke@435 1376 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1377 CHECK_(methodHandle()));
duke@435 1378 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1379 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1380 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1381 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1382 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1383 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1384 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1385 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1386 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1387 //
duke@435 1388 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1389 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1390 if (TraceCallFixup) {
duke@435 1391 RegisterMap reg_map(thread, false);
duke@435 1392 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1393 ResourceMark rm(thread);
duke@435 1394 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1395 callee_method->print_short_name(tty);
duke@435 1396 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1397 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1398 }
duke@435 1399 return callee_method;
duke@435 1400 }
duke@435 1401
duke@435 1402 methodHandle callee_method = call_info.selected_method();
duke@435 1403
duke@435 1404 bool should_be_mono = false;
duke@435 1405
duke@435 1406 #ifndef PRODUCT
duke@435 1407 Atomic::inc(&_ic_miss_ctr);
duke@435 1408
duke@435 1409 // Statistics & Tracing
duke@435 1410 if (TraceCallFixup) {
duke@435 1411 ResourceMark rm(thread);
duke@435 1412 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1413 callee_method->print_short_name(tty);
duke@435 1414 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1415 }
duke@435 1416
duke@435 1417 if (ICMissHistogram) {
duke@435 1418 MutexLocker m(VMStatistic_lock);
duke@435 1419 RegisterMap reg_map(thread, false);
duke@435 1420 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1421 // produce statistics under the lock
duke@435 1422 trace_ic_miss(f.pc());
duke@435 1423 }
duke@435 1424 #endif
duke@435 1425
duke@435 1426 // install an event collector so that when a vtable stub is created the
duke@435 1427 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1428 // event can't be posted when the stub is created as locks are held
duke@435 1429 // - instead the event will be deferred until the event collector goes
duke@435 1430 // out of scope.
duke@435 1431 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1432
duke@435 1433 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1434 // made non-entrant or we are called from interpreted.
duke@435 1435 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1436 RegisterMap reg_map(thread, false);
duke@435 1437 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1438 CodeBlob* cb = caller_frame.cb();
duke@435 1439 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1440 // Not a non-entrant nmethod, so find inline_cache
duke@435 1441 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1442 bool should_be_mono = false;
duke@435 1443 if (inline_cache->is_optimized()) {
duke@435 1444 if (TraceCallFixup) {
duke@435 1445 ResourceMark rm(thread);
duke@435 1446 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1447 callee_method->print_short_name(tty);
duke@435 1448 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1449 }
duke@435 1450 should_be_mono = true;
duke@435 1451 } else {
duke@435 1452 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1453 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1454
duke@435 1455 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1456 // This isn't a real miss. We must have seen that compiled code
duke@435 1457 // is now available and we want the call site converted to a
duke@435 1458 // monomorphic compiled call site.
duke@435 1459 // We can't assert for callee_method->code() != NULL because it
duke@435 1460 // could have been deoptimized in the meantime
duke@435 1461 if (TraceCallFixup) {
duke@435 1462 ResourceMark rm(thread);
duke@435 1463 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1464 callee_method->print_short_name(tty);
duke@435 1465 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1466 }
duke@435 1467 should_be_mono = true;
duke@435 1468 }
duke@435 1469 }
duke@435 1470 }
duke@435 1471
duke@435 1472 if (should_be_mono) {
duke@435 1473
duke@435 1474 // We have a path that was monomorphic but was going interpreted
duke@435 1475 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1476 // by using a new icBuffer.
duke@435 1477 CompiledICInfo info;
duke@435 1478 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1479 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1480 receiver_klass,
duke@435 1481 inline_cache->is_optimized(),
duke@435 1482 false,
duke@435 1483 info, CHECK_(methodHandle()));
duke@435 1484 inline_cache->set_to_monomorphic(info);
duke@435 1485 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1486 // Change to megamorphic
duke@435 1487 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1488 } else {
duke@435 1489 // Either clean or megamorphic
duke@435 1490 }
duke@435 1491 }
duke@435 1492 } // Release CompiledIC_lock
duke@435 1493
duke@435 1494 return callee_method;
duke@435 1495 }
duke@435 1496
duke@435 1497 //
duke@435 1498 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1499 // This routines handles both virtual call sites, optimized virtual call
duke@435 1500 // sites, and static call sites. Typically used to change a call sites
duke@435 1501 // destination from compiled to interpreted.
duke@435 1502 //
duke@435 1503 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1504 ResourceMark rm(thread);
duke@435 1505 RegisterMap reg_map(thread, false);
duke@435 1506 frame stub_frame = thread->last_frame();
duke@435 1507 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1508 frame caller = stub_frame.sender(&reg_map);
duke@435 1509
duke@435 1510 // Do nothing if the frame isn't a live compiled frame.
duke@435 1511 // nmethod could be deoptimized by the time we get here
duke@435 1512 // so no update to the caller is needed.
duke@435 1513
duke@435 1514 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1515
duke@435 1516 address pc = caller.pc();
duke@435 1517 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1518
duke@435 1519 // Default call_addr is the location of the "basic" call.
duke@435 1520 // Determine the address of the call we a reresolving. With
duke@435 1521 // Inline Caches we will always find a recognizable call.
duke@435 1522 // With Inline Caches disabled we may or may not find a
duke@435 1523 // recognizable call. We will always find a call for static
duke@435 1524 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1525 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1526 //
duke@435 1527 // With Inline Caches disabled we can get here for a virtual call
duke@435 1528 // for two reasons:
duke@435 1529 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1530 // will run us thru handle_wrong_method and we will eventually
duke@435 1531 // end up in the interpreter to throw the ame.
duke@435 1532 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1533 // call and between the time we fetch the entry address and
duke@435 1534 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1535 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1536 //
duke@435 1537 address call_addr = NULL;
duke@435 1538 {
duke@435 1539 // Get call instruction under lock because another thread may be
duke@435 1540 // busy patching it.
duke@435 1541 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1542 // Location of call instruction
duke@435 1543 if (NativeCall::is_call_before(pc)) {
duke@435 1544 NativeCall *ncall = nativeCall_before(pc);
duke@435 1545 call_addr = ncall->instruction_address();
duke@435 1546 }
duke@435 1547 }
duke@435 1548
duke@435 1549 // Check for static or virtual call
duke@435 1550 bool is_static_call = false;
duke@435 1551 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1552 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1553 // this is done with it.
duke@435 1554 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1555 nmethodLocker nmlock(caller_nm);
duke@435 1556
duke@435 1557 if (call_addr != NULL) {
duke@435 1558 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1559 int ret = iter.next(); // Get item
duke@435 1560 if (ret) {
duke@435 1561 assert(iter.addr() == call_addr, "must find call");
duke@435 1562 if (iter.type() == relocInfo::static_call_type) {
duke@435 1563 is_static_call = true;
duke@435 1564 } else {
duke@435 1565 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1566 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1567 , "unexpected relocInfo. type");
duke@435 1568 }
duke@435 1569 } else {
duke@435 1570 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1571 }
duke@435 1572
duke@435 1573 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1574 // than directly setting it to the new destination, since resolving of calls
duke@435 1575 // is always done through the same code path. (experience shows that it
duke@435 1576 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1577 // to a wrong method). It should not be performance critical, since the
duke@435 1578 // resolve is only done once.
duke@435 1579
duke@435 1580 MutexLocker ml(CompiledIC_lock);
duke@435 1581 //
duke@435 1582 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1583 // as it is a waste of time
duke@435 1584 //
duke@435 1585 if (caller_nm->is_in_use()) {
duke@435 1586 if (is_static_call) {
duke@435 1587 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1588 ssc->set_to_clean();
duke@435 1589 } else {
duke@435 1590 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1591 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1592 inline_cache->set_to_clean();
duke@435 1593 }
duke@435 1594 }
duke@435 1595 }
duke@435 1596
duke@435 1597 }
duke@435 1598
duke@435 1599 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1600
duke@435 1601
duke@435 1602 #ifndef PRODUCT
duke@435 1603 Atomic::inc(&_wrong_method_ctr);
duke@435 1604
duke@435 1605 if (TraceCallFixup) {
duke@435 1606 ResourceMark rm(thread);
duke@435 1607 tty->print("handle_wrong_method reresolving call to");
duke@435 1608 callee_method->print_short_name(tty);
duke@435 1609 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1610 }
duke@435 1611 #endif
duke@435 1612
duke@435 1613 return callee_method;
duke@435 1614 }
duke@435 1615
duke@435 1616 // ---------------------------------------------------------------------------
duke@435 1617 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1618 // we were called by a compiled method. However we could have lost a race
duke@435 1619 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1620 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1621 // so he no longer calls into the interpreter.
duke@435 1622 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1623 methodOop moop(method);
duke@435 1624
duke@435 1625 address entry_point = moop->from_compiled_entry();
duke@435 1626
duke@435 1627 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1628 // been resolved yet, in which case this function will be called from
duke@435 1629 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1630 // request for a fixup.
duke@435 1631 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1632 // is now back to the i2c in that case we don't need to patch and if
duke@435 1633 // we did we'd leap into space because the callsite needs to use
duke@435 1634 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1635 // ask me how I know this...
duke@435 1636
duke@435 1637 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1638 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1639 return;
twisti@1640 1640 }
twisti@1640 1641
twisti@1640 1642 // The check above makes sure this is a nmethod.
twisti@1640 1643 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1644 assert(nm, "must be");
twisti@1640 1645
twisti@1640 1646 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1647 // to implement MethodHandle actions.
twisti@1640 1648 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1649 return;
duke@435 1650 }
duke@435 1651
duke@435 1652 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1653 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1654 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1655 // call site with the same old data. clear_code will set code() to NULL
duke@435 1656 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1657 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1658 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1659 // and patch the code with the same old data. Asi es la vida.
duke@435 1660
duke@435 1661 if (moop->code() == NULL) return;
duke@435 1662
twisti@1640 1663 if (nm->is_in_use()) {
duke@435 1664
duke@435 1665 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1666 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1667 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1668 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1669 //
duke@435 1670 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1671 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1672 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1673 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1674 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1675 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1676 // for the rest of its life! Just another racing bug in the life of
duke@435 1677 // fixup_callers_callsite ...
duke@435 1678 //
twisti@1918 1679 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1680 iter.next();
duke@435 1681 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1682 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1683 if ( typ != relocInfo::static_call_type &&
duke@435 1684 typ != relocInfo::opt_virtual_call_type &&
duke@435 1685 typ != relocInfo::static_stub_type) {
duke@435 1686 return;
duke@435 1687 }
duke@435 1688 address destination = call->destination();
duke@435 1689 if (destination != entry_point) {
duke@435 1690 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1691 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1692 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1693 // static call or optimized virtual
duke@435 1694 if (TraceCallFixup) {
twisti@1639 1695 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1696 moop->print_short_name(tty);
duke@435 1697 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1698 }
duke@435 1699 call->set_destination_mt_safe(entry_point);
duke@435 1700 } else {
duke@435 1701 if (TraceCallFixup) {
duke@435 1702 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1703 moop->print_short_name(tty);
duke@435 1704 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1705 }
duke@435 1706 // assert is too strong could also be resolve destinations.
duke@435 1707 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1708 }
duke@435 1709 } else {
duke@435 1710 if (TraceCallFixup) {
twisti@1639 1711 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1712 moop->print_short_name(tty);
duke@435 1713 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1714 }
duke@435 1715 }
duke@435 1716 }
duke@435 1717 }
duke@435 1718
duke@435 1719 IRT_END
duke@435 1720
duke@435 1721
duke@435 1722 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1723 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1724 oopDesc* dest, jint dest_pos,
duke@435 1725 jint length,
duke@435 1726 JavaThread* thread)) {
duke@435 1727 #ifndef PRODUCT
duke@435 1728 _slow_array_copy_ctr++;
duke@435 1729 #endif
duke@435 1730 // Check if we have null pointers
duke@435 1731 if (src == NULL || dest == NULL) {
duke@435 1732 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1733 }
duke@435 1734 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1735 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1736 // that src and dest are truly arrays (and are conformable).
duke@435 1737 // The copy_array mechanism is awkward and could be removed, but
duke@435 1738 // the compilers don't call this function except as a last resort,
duke@435 1739 // so it probably doesn't matter.
duke@435 1740 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1741 (arrayOopDesc*)dest, dest_pos,
duke@435 1742 length, thread);
duke@435 1743 }
duke@435 1744 JRT_END
duke@435 1745
duke@435 1746 char* SharedRuntime::generate_class_cast_message(
duke@435 1747 JavaThread* thread, const char* objName) {
duke@435 1748
duke@435 1749 // Get target class name from the checkcast instruction
duke@435 1750 vframeStream vfst(thread, true);
duke@435 1751 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1752 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
duke@435 1753 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
never@2462 1754 cc.index(), thread));
duke@435 1755 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1756 }
duke@435 1757
jrose@1145 1758 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1759 oopDesc* required,
jrose@1145 1760 oopDesc* actual) {
jrose@2148 1761 if (TraceMethodHandles) {
jrose@2148 1762 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1763 thread, required, actual);
jrose@2148 1764 }
twisti@2698 1765 assert(EnableInvokeDynamic, "");
jrose@1145 1766 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1767 char* message = NULL;
jrose@1145 1768 if (singleKlass != NULL) {
jrose@1145 1769 const char* objName = "argument or return value";
jrose@1145 1770 if (actual != NULL) {
jrose@1145 1771 // be flexible about the junk passed in:
jrose@1145 1772 klassOop ak = (actual->is_klass()
jrose@1145 1773 ? (klassOop)actual
jrose@1145 1774 : actual->klass());
jrose@1145 1775 objName = Klass::cast(ak)->external_name();
jrose@1145 1776 }
jrose@1145 1777 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1778 ? (klassOop)required
jrose@1145 1779 : java_lang_Class::as_klassOop(required));
jrose@2148 1780 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1781 } else {
jrose@1145 1782 // %%% need to get the MethodType string, without messing around too much
jrose@2743 1783 const char* desc = NULL;
jrose@1145 1784 // Get a signature from the invoke instruction
jrose@1145 1785 const char* mhName = "method handle";
jrose@1145 1786 const char* targetType = "the required signature";
jrose@2743 1787 int targetArity = -1, mhArity = -1;
jrose@1145 1788 vframeStream vfst(thread, true);
jrose@1145 1789 if (!vfst.at_end()) {
never@2462 1790 Bytecode_invoke call(vfst.method(), vfst.bci());
jrose@1145 1791 methodHandle target;
jrose@1145 1792 {
jrose@1145 1793 EXCEPTION_MARK;
never@2462 1794 target = call.static_target(THREAD);
jrose@1145 1795 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1796 }
jrose@1145 1797 if (target.not_null()
jrose@1145 1798 && target->is_method_handle_invoke()
jrose@1145 1799 && required == target->method_handle_type()) {
jrose@1145 1800 targetType = target->signature()->as_C_string();
jrose@2743 1801 targetArity = ArgumentCount(target->signature()).size();
jrose@1145 1802 }
jrose@1145 1803 }
twisti@2806 1804 KlassHandle kignore; int dmf_flags = 0;
twisti@2806 1805 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
jrose@2743 1806 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
jrose@2743 1807 MethodHandles::_dmf_does_dispatch |
jrose@2743 1808 MethodHandles::_dmf_from_interface)) != 0)
twisti@2806 1809 actual_method = methodHandle(); // MH does extra binds, drops, etc.
jrose@2743 1810 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
twisti@2806 1811 if (actual_method.not_null()) {
jrose@2743 1812 mhName = actual_method->signature()->as_C_string();
jrose@2743 1813 mhArity = ArgumentCount(actual_method->signature()).size();
jrose@2743 1814 if (!actual_method->is_static()) mhArity += 1;
jrose@2743 1815 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
jrose@2743 1816 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
jrose@2743 1817 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
jrose@2743 1818 stringStream st;
jrose@2743 1819 java_lang_invoke_MethodType::print_signature(mhType, &st);
jrose@2743 1820 mhName = st.as_string();
jrose@2743 1821 }
jrose@2743 1822 if (targetArity != -1 && targetArity != mhArity) {
jrose@2743 1823 if (has_receiver && targetArity == mhArity-1)
jrose@2743 1824 desc = " cannot be called without a receiver argument as ";
jrose@1145 1825 else
jrose@2743 1826 desc = " cannot be called with a different arity as ";
jrose@1145 1827 }
jrose@2148 1828 message = generate_class_cast_message(mhName, targetType,
jrose@2743 1829 desc != NULL ? desc :
jrose@2148 1830 " cannot be called as ");
jrose@1145 1831 }
jrose@2148 1832 if (TraceMethodHandles) {
jrose@2148 1833 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1834 }
jrose@2148 1835 return message;
jrose@1145 1836 }
jrose@1145 1837
jrose@1145 1838 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1839 oopDesc* required) {
jrose@1145 1840 if (required == NULL) return NULL;
never@1577 1841 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1842 return required;
jrose@1145 1843 if (required->is_klass())
jrose@1145 1844 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1845 return NULL;
jrose@1145 1846 }
jrose@1145 1847
jrose@1145 1848
duke@435 1849 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1850 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1851 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1852
kamg@488 1853 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1854 if (NULL == message) {
kamg@488 1855 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1856 message = const_cast<char*>(objName);
duke@435 1857 } else {
duke@435 1858 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1859 }
duke@435 1860 return message;
duke@435 1861 }
duke@435 1862
duke@435 1863 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1864 (void) JavaThread::current()->reguard_stack();
duke@435 1865 JRT_END
duke@435 1866
duke@435 1867
duke@435 1868 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1869 #ifndef PRODUCT
duke@435 1870 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1871 #endif
duke@435 1872 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1873 oop obj(_obj);
duke@435 1874 #ifndef PRODUCT
duke@435 1875 _monitor_enter_ctr++; // monitor enter slow
duke@435 1876 #endif
duke@435 1877 if (PrintBiasedLockingStatistics) {
duke@435 1878 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1879 }
duke@435 1880 Handle h_obj(THREAD, obj);
duke@435 1881 if (UseBiasedLocking) {
duke@435 1882 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1883 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1884 } else {
duke@435 1885 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1886 }
duke@435 1887 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1888 JRT_END
duke@435 1889
duke@435 1890 #ifndef PRODUCT
duke@435 1891 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1892 #endif
duke@435 1893 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1894 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1895 oop obj(_obj);
duke@435 1896 #ifndef PRODUCT
duke@435 1897 _monitor_exit_ctr++; // monitor exit slow
duke@435 1898 #endif
duke@435 1899 Thread* THREAD = JavaThread::current();
duke@435 1900 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1901 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1902 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1903 #undef MIGHT_HAVE_PENDING
duke@435 1904 #ifdef MIGHT_HAVE_PENDING
duke@435 1905 // Save and restore any pending_exception around the exception mark.
duke@435 1906 // While the slow_exit must not throw an exception, we could come into
duke@435 1907 // this routine with one set.
duke@435 1908 oop pending_excep = NULL;
duke@435 1909 const char* pending_file;
duke@435 1910 int pending_line;
duke@435 1911 if (HAS_PENDING_EXCEPTION) {
duke@435 1912 pending_excep = PENDING_EXCEPTION;
duke@435 1913 pending_file = THREAD->exception_file();
duke@435 1914 pending_line = THREAD->exception_line();
duke@435 1915 CLEAR_PENDING_EXCEPTION;
duke@435 1916 }
duke@435 1917 #endif /* MIGHT_HAVE_PENDING */
duke@435 1918
duke@435 1919 {
duke@435 1920 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1921 EXCEPTION_MARK;
duke@435 1922 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1923 }
duke@435 1924
duke@435 1925 #ifdef MIGHT_HAVE_PENDING
duke@435 1926 if (pending_excep != NULL) {
duke@435 1927 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1928 }
duke@435 1929 #endif /* MIGHT_HAVE_PENDING */
duke@435 1930 JRT_END
duke@435 1931
duke@435 1932 #ifndef PRODUCT
duke@435 1933
duke@435 1934 void SharedRuntime::print_statistics() {
duke@435 1935 ttyLocker ttyl;
duke@435 1936 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1937
duke@435 1938 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1939 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1940 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1941
duke@435 1942 SharedRuntime::print_ic_miss_histogram();
duke@435 1943
duke@435 1944 if (CountRemovableExceptions) {
duke@435 1945 if (_nof_removable_exceptions > 0) {
duke@435 1946 Unimplemented(); // this counter is not yet incremented
duke@435 1947 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1948 }
duke@435 1949 }
duke@435 1950
duke@435 1951 // Dump the JRT_ENTRY counters
duke@435 1952 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1953 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1954 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1955 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1956 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1957 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1958 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1959
duke@435 1960 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1961 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1962 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1963 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1964 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1965
duke@435 1966 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1967 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1968 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1969 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1970 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1971 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1972 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1973 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1974 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1975 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1976 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1977 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1978 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1979 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1980 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1981 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1982
never@1622 1983 AdapterHandlerLibrary::print_statistics();
never@1622 1984
duke@435 1985 if (xtty != NULL) xtty->tail("statistics");
duke@435 1986 }
duke@435 1987
duke@435 1988 inline double percent(int x, int y) {
duke@435 1989 return 100.0 * x / MAX2(y, 1);
duke@435 1990 }
duke@435 1991
duke@435 1992 class MethodArityHistogram {
duke@435 1993 public:
duke@435 1994 enum { MAX_ARITY = 256 };
duke@435 1995 private:
duke@435 1996 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1997 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1998 static int _max_arity; // max. arity seen
duke@435 1999 static int _max_size; // max. arg size seen
duke@435 2000
duke@435 2001 static void add_method_to_histogram(nmethod* nm) {
duke@435 2002 methodOop m = nm->method();
duke@435 2003 ArgumentCount args(m->signature());
duke@435 2004 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 2005 int argsize = m->size_of_parameters();
duke@435 2006 arity = MIN2(arity, MAX_ARITY-1);
duke@435 2007 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 2008 int count = nm->method()->compiled_invocation_count();
duke@435 2009 _arity_histogram[arity] += count;
duke@435 2010 _size_histogram[argsize] += count;
duke@435 2011 _max_arity = MAX2(_max_arity, arity);
duke@435 2012 _max_size = MAX2(_max_size, argsize);
duke@435 2013 }
duke@435 2014
duke@435 2015 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 2016 const int N = MIN2(5, n);
duke@435 2017 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2018 double sum = 0;
duke@435 2019 double weighted_sum = 0;
duke@435 2020 int i;
duke@435 2021 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 2022 double rest = sum;
duke@435 2023 double percent = sum / 100;
duke@435 2024 for (i = 0; i <= N; i++) {
duke@435 2025 rest -= histo[i];
duke@435 2026 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 2027 }
duke@435 2028 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 2029 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 2030 }
duke@435 2031
duke@435 2032 void print_histogram() {
duke@435 2033 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2034 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 2035 tty->print_cr("\nSame for parameter size (in words):");
duke@435 2036 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 2037 tty->cr();
duke@435 2038 }
duke@435 2039
duke@435 2040 public:
duke@435 2041 MethodArityHistogram() {
duke@435 2042 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 2043 _max_arity = _max_size = 0;
duke@435 2044 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 2045 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 2046 print_histogram();
duke@435 2047 }
duke@435 2048 };
duke@435 2049
duke@435 2050 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2051 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2052 int MethodArityHistogram::_max_arity;
duke@435 2053 int MethodArityHistogram::_max_size;
duke@435 2054
duke@435 2055 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2056 tty->print_cr("Calls from compiled code:");
duke@435 2057 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2058 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2059 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2060 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2061 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2062 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2063 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2064 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2065 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2066 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2067 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2068 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2069 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2070 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2071 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2072 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2073 tty->cr();
duke@435 2074 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2075 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2076 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2077 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2078 tty->cr();
duke@435 2079
duke@435 2080 MethodArityHistogram h;
duke@435 2081 }
duke@435 2082 #endif
duke@435 2083
duke@435 2084
never@1622 2085 // A simple wrapper class around the calling convention information
never@1622 2086 // that allows sharing of adapters for the same calling convention.
never@1622 2087 class AdapterFingerPrint : public CHeapObj {
never@1622 2088 private:
never@1622 2089 union {
never@1642 2090 int _compact[3];
never@1642 2091 int* _fingerprint;
never@1622 2092 } _value;
never@1642 2093 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2094 // Otherwise _value._fingerprint is the array.
never@1622 2095
never@1642 2096 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2097 // These are correct for the current system but someday it might be
never@1642 2098 // necessary to make this mapping platform dependent.
never@1642 2099 static BasicType adapter_encoding(BasicType in) {
never@1642 2100 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2101 switch(in) {
never@1642 2102 case T_BOOLEAN:
never@1642 2103 case T_BYTE:
never@1642 2104 case T_SHORT:
never@1642 2105 case T_CHAR:
never@1642 2106 // There are all promoted to T_INT in the calling convention
never@1642 2107 return T_INT;
never@1642 2108
never@1642 2109 case T_OBJECT:
never@1642 2110 case T_ARRAY:
never@1642 2111 #ifdef _LP64
twisti@1861 2112 return T_LONG;
never@1642 2113 #else
twisti@1861 2114 return T_INT;
never@1642 2115 #endif
never@1642 2116
never@1642 2117 case T_INT:
never@1642 2118 case T_LONG:
never@1642 2119 case T_FLOAT:
never@1642 2120 case T_DOUBLE:
never@1642 2121 case T_VOID:
never@1642 2122 return in;
never@1642 2123
never@1642 2124 default:
never@1642 2125 ShouldNotReachHere();
never@1642 2126 return T_CONFLICT;
never@1622 2127 }
never@1622 2128 }
never@1622 2129
never@1642 2130 public:
never@1642 2131 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2132 // The fingerprint is based on the BasicType signature encoded
never@1642 2133 // into an array of ints with four entries per int.
never@1642 2134 int* ptr;
never@1642 2135 int len = (total_args_passed + 3) >> 2;
never@1642 2136 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2137 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2138 // Storing the signature encoded as signed chars hits about 98%
never@1642 2139 // of the time.
never@1642 2140 _length = -len;
never@1642 2141 ptr = _value._compact;
never@1642 2142 } else {
never@1642 2143 _length = len;
never@1642 2144 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2145 ptr = _value._fingerprint;
never@1642 2146 }
never@1642 2147
never@1642 2148 // Now pack the BasicTypes with 4 per int
never@1642 2149 int sig_index = 0;
never@1642 2150 for (int index = 0; index < len; index++) {
never@1642 2151 int value = 0;
never@1642 2152 for (int byte = 0; byte < 4; byte++) {
never@1642 2153 if (sig_index < total_args_passed) {
never@1642 2154 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2155 }
never@1642 2156 }
never@1642 2157 ptr[index] = value;
never@1642 2158 }
never@1622 2159 }
never@1622 2160
never@1622 2161 ~AdapterFingerPrint() {
never@1622 2162 if (_length > 0) {
never@1622 2163 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2164 }
never@1622 2165 }
never@1622 2166
never@1642 2167 int value(int index) {
never@1622 2168 if (_length < 0) {
never@1622 2169 return _value._compact[index];
never@1622 2170 }
never@1622 2171 return _value._fingerprint[index];
never@1622 2172 }
never@1622 2173 int length() {
never@1622 2174 if (_length < 0) return -_length;
never@1622 2175 return _length;
never@1622 2176 }
never@1622 2177
never@1622 2178 bool is_compact() {
never@1622 2179 return _length <= 0;
never@1622 2180 }
never@1622 2181
never@1622 2182 unsigned int compute_hash() {
never@1642 2183 int hash = 0;
never@1622 2184 for (int i = 0; i < length(); i++) {
never@1642 2185 int v = value(i);
never@1622 2186 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2187 }
never@1622 2188 return (unsigned int)hash;
never@1622 2189 }
never@1622 2190
never@1622 2191 const char* as_string() {
never@1622 2192 stringStream st;
never@1622 2193 for (int i = 0; i < length(); i++) {
never@1622 2194 st.print(PTR_FORMAT, value(i));
never@1622 2195 }
never@1622 2196 return st.as_string();
never@1622 2197 }
never@1622 2198
never@1622 2199 bool equals(AdapterFingerPrint* other) {
never@1622 2200 if (other->_length != _length) {
never@1622 2201 return false;
never@1622 2202 }
never@1622 2203 if (_length < 0) {
never@1642 2204 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2205 _value._compact[1] == other->_value._compact[1] &&
never@1642 2206 _value._compact[2] == other->_value._compact[2];
never@1622 2207 } else {
never@1622 2208 for (int i = 0; i < _length; i++) {
never@1622 2209 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2210 return false;
never@1622 2211 }
never@1622 2212 }
never@1622 2213 }
never@1622 2214 return true;
never@1622 2215 }
never@1622 2216 };
never@1622 2217
never@1622 2218
never@1622 2219 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2220 class AdapterHandlerTable : public BasicHashtable {
never@1622 2221 friend class AdapterHandlerTableIterator;
never@1622 2222
never@1622 2223 private:
never@1622 2224
kvn@1698 2225 #ifndef PRODUCT
never@1622 2226 static int _lookups; // number of calls to lookup
never@1622 2227 static int _buckets; // number of buckets checked
never@1622 2228 static int _equals; // number of buckets checked with matching hash
never@1622 2229 static int _hits; // number of successful lookups
never@1622 2230 static int _compact; // number of equals calls with compact signature
never@1622 2231 #endif
never@1622 2232
never@1622 2233 AdapterHandlerEntry* bucket(int i) {
never@1622 2234 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2235 }
never@1622 2236
never@1622 2237 public:
never@1622 2238 AdapterHandlerTable()
never@1622 2239 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2240
never@1622 2241 // Create a new entry suitable for insertion in the table
never@1622 2242 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2243 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2244 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2245 return entry;
never@1622 2246 }
never@1622 2247
never@1622 2248 // Insert an entry into the table
never@1622 2249 void add(AdapterHandlerEntry* entry) {
never@1622 2250 int index = hash_to_index(entry->hash());
never@1622 2251 add_entry(index, entry);
never@1622 2252 }
never@1622 2253
never@1642 2254 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2255 entry->deallocate();
never@1642 2256 BasicHashtable::free_entry(entry);
never@1642 2257 }
never@1642 2258
never@1622 2259 // Find a entry with the same fingerprint if it exists
never@1642 2260 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2261 NOT_PRODUCT(_lookups++);
never@1642 2262 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2263 unsigned int hash = fp.compute_hash();
never@1622 2264 int index = hash_to_index(hash);
never@1622 2265 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2266 NOT_PRODUCT(_buckets++);
never@1622 2267 if (e->hash() == hash) {
kvn@1698 2268 NOT_PRODUCT(_equals++);
never@1622 2269 if (fp.equals(e->fingerprint())) {
kvn@1698 2270 #ifndef PRODUCT
never@1622 2271 if (fp.is_compact()) _compact++;
never@1622 2272 _hits++;
never@1622 2273 #endif
never@1622 2274 return e;
never@1622 2275 }
never@1622 2276 }
never@1622 2277 }
never@1622 2278 return NULL;
never@1622 2279 }
never@1622 2280
kvn@1698 2281 #ifndef PRODUCT
never@1622 2282 void print_statistics() {
never@1622 2283 ResourceMark rm;
never@1622 2284 int longest = 0;
never@1622 2285 int empty = 0;
never@1622 2286 int total = 0;
never@1622 2287 int nonempty = 0;
never@1622 2288 for (int index = 0; index < table_size(); index++) {
never@1622 2289 int count = 0;
never@1622 2290 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2291 count++;
never@1622 2292 }
never@1622 2293 if (count != 0) nonempty++;
never@1622 2294 if (count == 0) empty++;
never@1622 2295 if (count > longest) longest = count;
never@1622 2296 total += count;
never@1622 2297 }
never@1622 2298 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2299 empty, longest, total, total / (double)nonempty);
never@1622 2300 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2301 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2302 }
never@1622 2303 #endif
never@1622 2304 };
never@1622 2305
never@1622 2306
kvn@1698 2307 #ifndef PRODUCT
never@1622 2308
never@1622 2309 int AdapterHandlerTable::_lookups;
never@1622 2310 int AdapterHandlerTable::_buckets;
never@1622 2311 int AdapterHandlerTable::_equals;
never@1622 2312 int AdapterHandlerTable::_hits;
never@1622 2313 int AdapterHandlerTable::_compact;
never@1622 2314
bobv@2036 2315 #endif
bobv@2036 2316
never@1622 2317 class AdapterHandlerTableIterator : public StackObj {
never@1622 2318 private:
never@1622 2319 AdapterHandlerTable* _table;
never@1622 2320 int _index;
never@1622 2321 AdapterHandlerEntry* _current;
never@1622 2322
never@1622 2323 void scan() {
never@1622 2324 while (_index < _table->table_size()) {
never@1622 2325 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2326 _index++;
never@1622 2327 if (a != NULL) {
never@1622 2328 _current = a;
never@1622 2329 return;
never@1622 2330 }
never@1622 2331 }
never@1622 2332 }
never@1622 2333
never@1622 2334 public:
never@1622 2335 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2336 scan();
never@1622 2337 }
never@1622 2338 bool has_next() {
never@1622 2339 return _current != NULL;
never@1622 2340 }
never@1622 2341 AdapterHandlerEntry* next() {
never@1622 2342 if (_current != NULL) {
never@1622 2343 AdapterHandlerEntry* result = _current;
never@1622 2344 _current = _current->next();
never@1622 2345 if (_current == NULL) scan();
never@1622 2346 return result;
never@1622 2347 } else {
never@1622 2348 return NULL;
never@1622 2349 }
never@1622 2350 }
never@1622 2351 };
never@1622 2352
never@1622 2353
duke@435 2354 // ---------------------------------------------------------------------------
duke@435 2355 // Implementation of AdapterHandlerLibrary
never@1622 2356 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2357 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2358 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2359 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2360
kvn@1177 2361 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2362 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2363 if (_buffer == NULL) // Initialize lazily
kvn@1177 2364 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2365 return _buffer;
kvn@1177 2366 }
duke@435 2367
duke@435 2368 void AdapterHandlerLibrary::initialize() {
never@1622 2369 if (_adapters != NULL) return;
never@1622 2370 _adapters = new AdapterHandlerTable();
duke@435 2371
duke@435 2372 // Create a special handler for abstract methods. Abstract methods
duke@435 2373 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2374 // fill it in with something appropriate just in case. Pass handle
duke@435 2375 // wrong method for the c2i transitions.
duke@435 2376 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2377 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2378 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2379 wrong_method, wrong_method);
duke@435 2380 }
duke@435 2381
never@1622 2382 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2383 address i2c_entry,
never@1622 2384 address c2i_entry,
never@1622 2385 address c2i_unverified_entry) {
never@1622 2386 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2387 }
never@1622 2388
never@1622 2389 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2390 // Use customized signature handler. Need to lock around updates to
never@1622 2391 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2392 // and a single writer: this could be fixed if it becomes a
never@1622 2393 // problem).
duke@435 2394
duke@435 2395 // Get the address of the ic_miss handlers before we grab the
duke@435 2396 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2397 // was caused by the initialization of the stubs happening
duke@435 2398 // while we held the lock and then notifying jvmti while
duke@435 2399 // holding it. This just forces the initialization to be a little
duke@435 2400 // earlier.
duke@435 2401 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2402 assert(ic_miss != NULL, "must have handler");
duke@435 2403
never@1622 2404 ResourceMark rm;
never@1622 2405
twisti@2103 2406 NOT_PRODUCT(int insts_size);
twisti@1734 2407 AdapterBlob* B = NULL;
kvn@1177 2408 AdapterHandlerEntry* entry = NULL;
never@1622 2409 AdapterFingerPrint* fingerprint = NULL;
duke@435 2410 {
duke@435 2411 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2412 // make sure data structure is initialized
duke@435 2413 initialize();
duke@435 2414
duke@435 2415 if (method->is_abstract()) {
never@1622 2416 return _abstract_method_handler;
duke@435 2417 }
duke@435 2418
never@1622 2419 // Fill in the signature array, for the calling-convention call.
never@1622 2420 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2421
never@1622 2422 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2423 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2424 int i = 0;
never@1622 2425 if (!method->is_static()) // Pass in receiver first
never@1622 2426 sig_bt[i++] = T_OBJECT;
never@1622 2427 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2428 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2429 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2430 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2431 }
never@1622 2432 assert(i == total_args_passed, "");
never@1622 2433
never@1642 2434 // Lookup method signature's fingerprint
never@1642 2435 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2436
never@1642 2437 #ifdef ASSERT
never@1642 2438 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2439 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2440 shared_entry = entry;
never@1642 2441 entry = NULL;
never@1642 2442 }
never@1642 2443 #endif
never@1642 2444
never@1622 2445 if (entry != NULL) {
never@1622 2446 return entry;
duke@435 2447 }
duke@435 2448
never@1642 2449 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2450 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2451
never@1622 2452 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2453 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2454
duke@435 2455 // Create I2C & C2I handlers
duke@435 2456
twisti@1734 2457 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2458 if (buf != NULL) {
twisti@2103 2459 CodeBuffer buffer(buf);
kvn@1177 2460 short buffer_locs[20];
kvn@1177 2461 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2462 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2463 MacroAssembler _masm(&buffer);
duke@435 2464
kvn@1177 2465 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2466 total_args_passed,
kvn@1177 2467 comp_args_on_stack,
kvn@1177 2468 sig_bt,
never@1622 2469 regs,
never@1622 2470 fingerprint);
kvn@1177 2471
never@1642 2472 #ifdef ASSERT
never@1642 2473 if (VerifyAdapterSharing) {
never@1642 2474 if (shared_entry != NULL) {
twisti@2103 2475 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2476 "code must match");
never@1642 2477 // Release the one just created and return the original
never@1642 2478 _adapters->free_entry(entry);
never@1642 2479 return shared_entry;
never@1642 2480 } else {
twisti@2103 2481 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2482 }
never@1642 2483 }
never@1642 2484 #endif
never@1642 2485
twisti@1734 2486 B = AdapterBlob::create(&buffer);
twisti@2103 2487 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2488 }
kvn@463 2489 if (B == NULL) {
kvn@463 2490 // CodeCache is full, disable compilation
kvn@463 2491 // Ought to log this but compile log is only per compile thread
kvn@463 2492 // and we're some non descript Java thread.
kvn@1637 2493 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2494 CompileBroker::handle_full_code_cache();
never@1622 2495 return NULL; // Out of CodeCache space
kvn@463 2496 }
twisti@2103 2497 entry->relocate(B->content_begin());
duke@435 2498 #ifndef PRODUCT
duke@435 2499 // debugging suppport
duke@435 2500 if (PrintAdapterHandlers) {
duke@435 2501 tty->cr();
never@1622 2502 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2503 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2504 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2505 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2506 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2507 }
duke@435 2508 #endif
duke@435 2509
never@1622 2510 _adapters->add(entry);
duke@435 2511 }
duke@435 2512 // Outside of the lock
duke@435 2513 if (B != NULL) {
duke@435 2514 char blob_id[256];
duke@435 2515 jio_snprintf(blob_id,
duke@435 2516 sizeof(blob_id),
never@1622 2517 "%s(%s)@" PTR_FORMAT,
twisti@1734 2518 B->name(),
never@1622 2519 fingerprint->as_string(),
twisti@2103 2520 B->content_begin());
twisti@2103 2521 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2522
duke@435 2523 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2524 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2525 }
duke@435 2526 }
never@1622 2527 return entry;
duke@435 2528 }
duke@435 2529
duke@435 2530 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2531 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2532 _i2c_entry += delta;
duke@435 2533 _c2i_entry += delta;
duke@435 2534 _c2i_unverified_entry += delta;
duke@435 2535 }
duke@435 2536
never@1642 2537
never@1642 2538 void AdapterHandlerEntry::deallocate() {
never@1642 2539 delete _fingerprint;
never@1642 2540 #ifdef ASSERT
never@1642 2541 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2542 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2543 #endif
never@1642 2544 }
never@1642 2545
never@1642 2546
never@1642 2547 #ifdef ASSERT
never@1642 2548 // Capture the code before relocation so that it can be compared
never@1642 2549 // against other versions. If the code is captured after relocation
never@1642 2550 // then relative instructions won't be equivalent.
never@1642 2551 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2552 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2553 _code_length = length;
never@1642 2554 memcpy(_saved_code, buffer, length);
never@1642 2555 _total_args_passed = total_args_passed;
never@1642 2556 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2557 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2558 }
never@1642 2559
never@1642 2560
never@1642 2561 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2562 if (length != _code_length) {
never@1642 2563 return false;
never@1642 2564 }
never@1642 2565 for (int i = 0; i < length; i++) {
never@1642 2566 if (buffer[i] != _saved_code[i]) {
never@1642 2567 return false;
never@1642 2568 }
never@1642 2569 }
never@1642 2570 return true;
never@1642 2571 }
never@1642 2572 #endif
never@1642 2573
never@1642 2574
duke@435 2575 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2576 // java compiled calling convention to the native convention, handlizes
duke@435 2577 // arguments, and transitions to native. On return from the native we transition
duke@435 2578 // back to java blocking if a safepoint is in progress.
twisti@2687 2579 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2580 ResourceMark rm;
duke@435 2581 nmethod* nm = NULL;
duke@435 2582
duke@435 2583 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2584
duke@435 2585 {
duke@435 2586 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2587 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2588 // See if somebody beat us to it
duke@435 2589 nm = method->code();
duke@435 2590 if (nm) {
duke@435 2591 return nm;
duke@435 2592 }
duke@435 2593
kvn@1177 2594 ResourceMark rm;
duke@435 2595
kvn@1177 2596 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2597 if (buf != NULL) {
twisti@2103 2598 CodeBuffer buffer(buf);
kvn@1177 2599 double locs_buf[20];
kvn@1177 2600 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2601 MacroAssembler _masm(&buffer);
duke@435 2602
kvn@1177 2603 // Fill in the signature array, for the calling-convention call.
kvn@1177 2604 int total_args_passed = method->size_of_parameters();
kvn@1177 2605
kvn@1177 2606 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2607 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2608 int i=0;
kvn@1177 2609 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2610 sig_bt[i++] = T_OBJECT;
kvn@1177 2611 SignatureStream ss(method->signature());
kvn@1177 2612 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2613 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2614 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2615 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2616 }
kvn@1177 2617 assert( i==total_args_passed, "" );
kvn@1177 2618 BasicType ret_type = ss.type();
kvn@1177 2619
kvn@1177 2620 // Now get the compiled-Java layout as input arguments
kvn@1177 2621 int comp_args_on_stack;
kvn@1177 2622 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2623
kvn@1177 2624 // Generate the compiled-to-native wrapper code
kvn@1177 2625 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2626 method,
twisti@2687 2627 compile_id,
kvn@1177 2628 total_args_passed,
kvn@1177 2629 comp_args_on_stack,
kvn@1177 2630 sig_bt,regs,
kvn@1177 2631 ret_type);
duke@435 2632 }
duke@435 2633 }
duke@435 2634
duke@435 2635 // Must unlock before calling set_code
never@2083 2636
duke@435 2637 // Install the generated code.
duke@435 2638 if (nm != NULL) {
twisti@2687 2639 if (PrintCompilation) {
twisti@2687 2640 ttyLocker ttyl;
twisti@2687 2641 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2642 }
duke@435 2643 method->set_code(method, nm);
duke@435 2644 nm->post_compiled_method_load_event();
duke@435 2645 } else {
duke@435 2646 // CodeCache is full, disable compilation
kvn@1637 2647 CompileBroker::handle_full_code_cache();
duke@435 2648 }
duke@435 2649 return nm;
duke@435 2650 }
duke@435 2651
kamg@551 2652 #ifdef HAVE_DTRACE_H
kamg@551 2653 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2654 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2655 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2656 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2657 // leaf no thread transition is needed.
kamg@551 2658
kamg@551 2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2660 ResourceMark rm;
kamg@551 2661 nmethod* nm = NULL;
kamg@551 2662
kamg@551 2663 if (PrintCompilation) {
kamg@551 2664 ttyLocker ttyl;
kamg@551 2665 tty->print("--- n%s ");
kamg@551 2666 method->print_short_name(tty);
kamg@551 2667 if (method->is_static()) {
kamg@551 2668 tty->print(" (static)");
kamg@551 2669 }
kamg@551 2670 tty->cr();
kamg@551 2671 }
kamg@551 2672
kamg@551 2673 {
kamg@551 2674 // perform the work while holding the lock, but perform any printing
kamg@551 2675 // outside the lock
kamg@551 2676 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2677 // See if somebody beat us to it
kamg@551 2678 nm = method->code();
kamg@551 2679 if (nm) {
kamg@551 2680 return nm;
kamg@551 2681 }
kamg@551 2682
kvn@1177 2683 ResourceMark rm;
kvn@1177 2684
kvn@1177 2685 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2686 if (buf != NULL) {
twisti@2103 2687 CodeBuffer buffer(buf);
kvn@1177 2688 // Need a few relocation entries
kvn@1177 2689 double locs_buf[20];
kvn@1177 2690 buffer.insts()->initialize_shared_locs(
kamg@551 2691 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2692 MacroAssembler _masm(&buffer);
kamg@551 2693
kvn@1177 2694 // Generate the compiled-to-native wrapper code
kvn@1177 2695 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2696 }
kamg@551 2697 }
kamg@551 2698 return nm;
kamg@551 2699 }
kamg@551 2700
kamg@551 2701 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2702 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2703 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2704 int jlsOffset = java_lang_String::offset(src);
kamg@551 2705 int jlsLen = java_lang_String::length(src);
kamg@551 2706 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2707 jlsValue->char_at_addr(jlsOffset);
bobv@2508 2708 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2709 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2710 }
kamg@551 2711 #endif // ndef HAVE_DTRACE_H
kamg@551 2712
duke@435 2713 // -------------------------------------------------------------------------
duke@435 2714 // Java-Java calling convention
duke@435 2715 // (what you use when Java calls Java)
duke@435 2716
duke@435 2717 //------------------------------name_for_receiver----------------------------------
duke@435 2718 // For a given signature, return the VMReg for parameter 0.
duke@435 2719 VMReg SharedRuntime::name_for_receiver() {
duke@435 2720 VMRegPair regs;
duke@435 2721 BasicType sig_bt = T_OBJECT;
duke@435 2722 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2723 // Return argument 0 register. In the LP64 build pointers
duke@435 2724 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2725 return regs.first();
duke@435 2726 }
duke@435 2727
coleenp@2497 2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2729 // This method is returning a data structure allocating as a
duke@435 2730 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2731 char *s = sig->as_C_string();
duke@435 2732 int len = (int)strlen(s);
duke@435 2733 *s++; len--; // Skip opening paren
duke@435 2734 char *t = s+len;
duke@435 2735 while( *(--t) != ')' ) ; // Find close paren
duke@435 2736
duke@435 2737 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2738 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2739 int cnt = 0;
twisti@1573 2740 if (has_receiver) {
duke@435 2741 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2742 }
duke@435 2743
duke@435 2744 while( s < t ) {
duke@435 2745 switch( *s++ ) { // Switch on signature character
duke@435 2746 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2747 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2748 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2749 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2750 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2751 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2752 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2753 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2754 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2755 case 'L': // Oop
duke@435 2756 while( *s++ != ';' ) ; // Skip signature
duke@435 2757 sig_bt[cnt++] = T_OBJECT;
duke@435 2758 break;
duke@435 2759 case '[': { // Array
duke@435 2760 do { // Skip optional size
duke@435 2761 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2762 } while( *s++ == '[' ); // Nested arrays?
duke@435 2763 // Skip element type
duke@435 2764 if( s[-1] == 'L' )
duke@435 2765 while( *s++ != ';' ) ; // Skip signature
duke@435 2766 sig_bt[cnt++] = T_ARRAY;
duke@435 2767 break;
duke@435 2768 }
duke@435 2769 default : ShouldNotReachHere();
duke@435 2770 }
duke@435 2771 }
duke@435 2772 assert( cnt < 256, "grow table size" );
duke@435 2773
duke@435 2774 int comp_args_on_stack;
duke@435 2775 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2776
duke@435 2777 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2778 // we must add that in to get "true" stack offsets.
duke@435 2779
duke@435 2780 if (comp_args_on_stack) {
duke@435 2781 for (int i = 0; i < cnt; i++) {
duke@435 2782 VMReg reg1 = regs[i].first();
duke@435 2783 if( reg1->is_stack()) {
duke@435 2784 // Yuck
duke@435 2785 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2786 }
duke@435 2787 VMReg reg2 = regs[i].second();
duke@435 2788 if( reg2->is_stack()) {
duke@435 2789 // Yuck
duke@435 2790 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2791 }
duke@435 2792 regs[i].set_pair(reg2, reg1);
duke@435 2793 }
duke@435 2794 }
duke@435 2795
duke@435 2796 // results
duke@435 2797 *arg_size = cnt;
duke@435 2798 return regs;
duke@435 2799 }
duke@435 2800
duke@435 2801 // OSR Migration Code
duke@435 2802 //
duke@435 2803 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2804 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2805 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2806 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2807 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2808 // back to the compiled code. The compiled code then pops the current
duke@435 2809 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2810 // copies the interpreter locals and displaced headers where it wants.
duke@435 2811 // Finally it calls back to free the temp buffer.
duke@435 2812 //
duke@435 2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2814
duke@435 2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2816
duke@435 2817 #ifdef IA64
duke@435 2818 ShouldNotReachHere(); // NYI
duke@435 2819 #endif /* IA64 */
duke@435 2820
duke@435 2821 //
duke@435 2822 // This code is dependent on the memory layout of the interpreter local
duke@435 2823 // array and the monitors. On all of our platforms the layout is identical
duke@435 2824 // so this code is shared. If some platform lays the their arrays out
duke@435 2825 // differently then this code could move to platform specific code or
duke@435 2826 // the code here could be modified to copy items one at a time using
duke@435 2827 // frame accessor methods and be platform independent.
duke@435 2828
duke@435 2829 frame fr = thread->last_frame();
duke@435 2830 assert( fr.is_interpreted_frame(), "" );
duke@435 2831 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2832
duke@435 2833 // Figure out how many monitors are active.
duke@435 2834 int active_monitor_count = 0;
duke@435 2835 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2836 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2837 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2838 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2839 }
duke@435 2840
duke@435 2841 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2842 // could double check it.
duke@435 2843
duke@435 2844 methodOop moop = fr.interpreter_frame_method();
duke@435 2845 int max_locals = moop->max_locals();
duke@435 2846 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2847 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2848 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2849
duke@435 2850 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2851 // Since there's no GC I can copy the oops blindly.
duke@435 2852 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2853 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2854 (HeapWord*)&buf[0],
duke@435 2855 max_locals);
duke@435 2856
duke@435 2857 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2858 int i = max_locals;
duke@435 2859 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2860 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2861 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2862 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2863 BasicLock *lock = kptr2->lock();
duke@435 2864 // Inflate so the displaced header becomes position-independent
duke@435 2865 if (lock->displaced_header()->is_unlocked())
duke@435 2866 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2867 // Now the displaced header is free to move
duke@435 2868 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2869 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2870 }
duke@435 2871 }
duke@435 2872 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2873
duke@435 2874 return buf;
duke@435 2875 JRT_END
duke@435 2876
duke@435 2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2878 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2879 JRT_END
duke@435 2880
duke@435 2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2882 AdapterHandlerTableIterator iter(_adapters);
never@1622 2883 while (iter.has_next()) {
never@1622 2884 AdapterHandlerEntry* a = iter.next();
never@1622 2885 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2886 }
duke@435 2887 return false;
duke@435 2888 }
duke@435 2889
bobv@2036 2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2891 AdapterHandlerTableIterator iter(_adapters);
never@1622 2892 while (iter.has_next()) {
never@1622 2893 AdapterHandlerEntry* a = iter.next();
never@1622 2894 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2895 st->print("Adapter for signature: ");
bobv@2036 2896 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2897 a->fingerprint()->as_string(),
bobv@2036 2898 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2899
duke@435 2900 return;
duke@435 2901 }
duke@435 2902 }
duke@435 2903 assert(false, "Should have found handler");
duke@435 2904 }
never@1622 2905
bobv@2036 2906 #ifndef PRODUCT
bobv@2036 2907
never@1622 2908 void AdapterHandlerLibrary::print_statistics() {
never@1622 2909 _adapters->print_statistics();
never@1622 2910 }
never@1622 2911
duke@435 2912 #endif /* PRODUCT */

mercurial