src/share/vm/runtime/sharedRuntime.cpp

Wed, 17 Aug 2011 10:32:53 -0700

author
jcoomes
date
Wed, 17 Aug 2011 10:32:53 -0700
changeset 3057
24cee90e9453
parent 2978
d83ac25d0304
child 3039
0f34fdee809e
permissions
-rw-r--r--

6791672: enable 1G and larger pages on solaris
Reviewed-by: ysr, iveresov, johnc

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 // Shared stub locations
    84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    91 RicochetBlob*       SharedRuntime::_ricochet_blob;
    93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    96 #ifdef COMPILER2
    97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    98 #endif // COMPILER2
   101 //----------------------------generate_stubs-----------------------------------
   102 void SharedRuntime::generate_stubs() {
   103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
   110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
   112   generate_ricochet_blob();
   113   generate_deopt_blob();
   115 #ifdef COMPILER2
   116   generate_uncommon_trap_blob();
   117 #endif // COMPILER2
   118 }
   120 //----------------------------generate_ricochet_blob---------------------------
   121 void SharedRuntime::generate_ricochet_blob() {
   122   if (!EnableInvokeDynamic)  return;  // leave it as a null
   124 #ifndef TARGET_ARCH_NYI_6939861
   125   // allocate space for the code
   126   ResourceMark rm;
   127   // setup code generation tools
   128   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
   129   MacroAssembler* masm = new MacroAssembler(&buffer);
   131   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
   132   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
   134   // -------------
   135   // make sure all code is generated
   136   masm->flush();
   138   // failed to generate?
   139   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
   140     assert(false, "bad ricochet blob");
   141     return;
   142   }
   144   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
   145 #endif
   146 }
   149 #include <math.h>
   151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   153                       char*, int, char*, int, char*, int);
   154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   155                       char*, int, char*, int, char*, int);
   157 // Implementation of SharedRuntime
   159 #ifndef PRODUCT
   160 // For statistics
   161 int SharedRuntime::_ic_miss_ctr = 0;
   162 int SharedRuntime::_wrong_method_ctr = 0;
   163 int SharedRuntime::_resolve_static_ctr = 0;
   164 int SharedRuntime::_resolve_virtual_ctr = 0;
   165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   166 int SharedRuntime::_implicit_null_throws = 0;
   167 int SharedRuntime::_implicit_div0_throws = 0;
   168 int SharedRuntime::_throw_null_ctr = 0;
   170 int SharedRuntime::_nof_normal_calls = 0;
   171 int SharedRuntime::_nof_optimized_calls = 0;
   172 int SharedRuntime::_nof_inlined_calls = 0;
   173 int SharedRuntime::_nof_megamorphic_calls = 0;
   174 int SharedRuntime::_nof_static_calls = 0;
   175 int SharedRuntime::_nof_inlined_static_calls = 0;
   176 int SharedRuntime::_nof_interface_calls = 0;
   177 int SharedRuntime::_nof_optimized_interface_calls = 0;
   178 int SharedRuntime::_nof_inlined_interface_calls = 0;
   179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   180 int SharedRuntime::_nof_removable_exceptions = 0;
   182 int SharedRuntime::_new_instance_ctr=0;
   183 int SharedRuntime::_new_array_ctr=0;
   184 int SharedRuntime::_multi1_ctr=0;
   185 int SharedRuntime::_multi2_ctr=0;
   186 int SharedRuntime::_multi3_ctr=0;
   187 int SharedRuntime::_multi4_ctr=0;
   188 int SharedRuntime::_multi5_ctr=0;
   189 int SharedRuntime::_mon_enter_stub_ctr=0;
   190 int SharedRuntime::_mon_exit_stub_ctr=0;
   191 int SharedRuntime::_mon_enter_ctr=0;
   192 int SharedRuntime::_mon_exit_ctr=0;
   193 int SharedRuntime::_partial_subtype_ctr=0;
   194 int SharedRuntime::_jbyte_array_copy_ctr=0;
   195 int SharedRuntime::_jshort_array_copy_ctr=0;
   196 int SharedRuntime::_jint_array_copy_ctr=0;
   197 int SharedRuntime::_jlong_array_copy_ctr=0;
   198 int SharedRuntime::_oop_array_copy_ctr=0;
   199 int SharedRuntime::_checkcast_array_copy_ctr=0;
   200 int SharedRuntime::_unsafe_array_copy_ctr=0;
   201 int SharedRuntime::_generic_array_copy_ctr=0;
   202 int SharedRuntime::_slow_array_copy_ctr=0;
   203 int SharedRuntime::_find_handler_ctr=0;
   204 int SharedRuntime::_rethrow_ctr=0;
   206 int     SharedRuntime::_ICmiss_index                    = 0;
   207 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   211 void SharedRuntime::trace_ic_miss(address at) {
   212   for (int i = 0; i < _ICmiss_index; i++) {
   213     if (_ICmiss_at[i] == at) {
   214       _ICmiss_count[i]++;
   215       return;
   216     }
   217   }
   218   int index = _ICmiss_index++;
   219   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   220   _ICmiss_at[index] = at;
   221   _ICmiss_count[index] = 1;
   222 }
   224 void SharedRuntime::print_ic_miss_histogram() {
   225   if (ICMissHistogram) {
   226     tty->print_cr ("IC Miss Histogram:");
   227     int tot_misses = 0;
   228     for (int i = 0; i < _ICmiss_index; i++) {
   229       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   230       tot_misses += _ICmiss_count[i];
   231     }
   232     tty->print_cr ("Total IC misses: %7d", tot_misses);
   233   }
   234 }
   235 #endif // PRODUCT
   237 #ifndef SERIALGC
   239 // G1 write-barrier pre: executed before a pointer store.
   240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   241   if (orig == NULL) {
   242     assert(false, "should be optimized out");
   243     return;
   244   }
   245   assert(orig->is_oop(true /* ignore mark word */), "Error");
   246   // store the original value that was in the field reference
   247   thread->satb_mark_queue().enqueue(orig);
   248 JRT_END
   250 // G1 write-barrier post: executed after a pointer store.
   251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   252   thread->dirty_card_queue().enqueue(card_addr);
   253 JRT_END
   255 #endif // !SERIALGC
   258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   259   return x * y;
   260 JRT_END
   263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   264   if (x == min_jlong && y == CONST64(-1)) {
   265     return x;
   266   } else {
   267     return x / y;
   268   }
   269 JRT_END
   272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   273   if (x == min_jlong && y == CONST64(-1)) {
   274     return 0;
   275   } else {
   276     return x % y;
   277   }
   278 JRT_END
   281 const juint  float_sign_mask  = 0x7FFFFFFF;
   282 const juint  float_infinity   = 0x7F800000;
   283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   284 const julong double_infinity  = CONST64(0x7FF0000000000000);
   286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   287 #ifdef _WIN64
   288   // 64-bit Windows on amd64 returns the wrong values for
   289   // infinity operands.
   290   union { jfloat f; juint i; } xbits, ybits;
   291   xbits.f = x;
   292   ybits.f = y;
   293   // x Mod Infinity == x unless x is infinity
   294   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   295        ((ybits.i & float_sign_mask) == float_infinity) ) {
   296     return x;
   297   }
   298 #endif
   299   return ((jfloat)fmod((double)x,(double)y));
   300 JRT_END
   303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   304 #ifdef _WIN64
   305   union { jdouble d; julong l; } xbits, ybits;
   306   xbits.d = x;
   307   ybits.d = y;
   308   // x Mod Infinity == x unless x is infinity
   309   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   310        ((ybits.l & double_sign_mask) == double_infinity) ) {
   311     return x;
   312   }
   313 #endif
   314   return ((jdouble)fmod((double)x,(double)y));
   315 JRT_END
   317 #ifdef __SOFTFP__
   318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   319   return x + y;
   320 JRT_END
   322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   323   return x - y;
   324 JRT_END
   326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   327   return x * y;
   328 JRT_END
   330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   331   return x / y;
   332 JRT_END
   334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   335   return x + y;
   336 JRT_END
   338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   339   return x - y;
   340 JRT_END
   342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   343   return x * y;
   344 JRT_END
   346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   347   return x / y;
   348 JRT_END
   350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   351   return (jfloat)x;
   352 JRT_END
   354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   355   return (jdouble)x;
   356 JRT_END
   358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   359   return (jdouble)x;
   360 JRT_END
   362 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   363   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   364 JRT_END
   366 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   367   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   368 JRT_END
   370 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   371   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   372 JRT_END
   374 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   375   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   376 JRT_END
   378 // Functions to return the opposite of the aeabi functions for nan.
   379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   380   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   381 JRT_END
   383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   384   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   385 JRT_END
   387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   388   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   389 JRT_END
   391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   392   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   393 JRT_END
   395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   396   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   397 JRT_END
   399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   400   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   401 JRT_END
   403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   404   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   405 JRT_END
   407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   408   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   409 JRT_END
   411 // Intrinsics make gcc generate code for these.
   412 float  SharedRuntime::fneg(float f)   {
   413   return -f;
   414 }
   416 double SharedRuntime::dneg(double f)  {
   417   return -f;
   418 }
   420 #endif // __SOFTFP__
   422 #if defined(__SOFTFP__) || defined(E500V2)
   423 // Intrinsics make gcc generate code for these.
   424 double SharedRuntime::dabs(double f)  {
   425   return (f <= (double)0.0) ? (double)0.0 - f : f;
   426 }
   428 #endif
   430 #if defined(__SOFTFP__) || defined(PPC)
   431 double SharedRuntime::dsqrt(double f) {
   432   return sqrt(f);
   433 }
   434 #endif
   436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   437   if (g_isnan(x))
   438     return 0;
   439   if (x >= (jfloat) max_jint)
   440     return max_jint;
   441   if (x <= (jfloat) min_jint)
   442     return min_jint;
   443   return (jint) x;
   444 JRT_END
   447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   448   if (g_isnan(x))
   449     return 0;
   450   if (x >= (jfloat) max_jlong)
   451     return max_jlong;
   452   if (x <= (jfloat) min_jlong)
   453     return min_jlong;
   454   return (jlong) x;
   455 JRT_END
   458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   459   if (g_isnan(x))
   460     return 0;
   461   if (x >= (jdouble) max_jint)
   462     return max_jint;
   463   if (x <= (jdouble) min_jint)
   464     return min_jint;
   465   return (jint) x;
   466 JRT_END
   469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   470   if (g_isnan(x))
   471     return 0;
   472   if (x >= (jdouble) max_jlong)
   473     return max_jlong;
   474   if (x <= (jdouble) min_jlong)
   475     return min_jlong;
   476   return (jlong) x;
   477 JRT_END
   480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   481   return (jfloat)x;
   482 JRT_END
   485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   486   return (jfloat)x;
   487 JRT_END
   490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   491   return (jdouble)x;
   492 JRT_END
   494 // Exception handling accross interpreter/compiler boundaries
   495 //
   496 // exception_handler_for_return_address(...) returns the continuation address.
   497 // The continuation address is the entry point of the exception handler of the
   498 // previous frame depending on the return address.
   500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   501   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   503   // Reset method handle flag.
   504   thread->set_is_method_handle_return(false);
   506   // The fastest case first
   507   CodeBlob* blob = CodeCache::find_blob(return_address);
   508   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   509   if (nm != NULL) {
   510     // Set flag if return address is a method handle call site.
   511     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   512     // native nmethods don't have exception handlers
   513     assert(!nm->is_native_method(), "no exception handler");
   514     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   515     if (nm->is_deopt_pc(return_address)) {
   516       return SharedRuntime::deopt_blob()->unpack_with_exception();
   517     } else {
   518       return nm->exception_begin();
   519     }
   520   }
   522   // Entry code
   523   if (StubRoutines::returns_to_call_stub(return_address)) {
   524     return StubRoutines::catch_exception_entry();
   525   }
   526   // Interpreted code
   527   if (Interpreter::contains(return_address)) {
   528     return Interpreter::rethrow_exception_entry();
   529   }
   530   // Ricochet frame unwind code
   531   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
   532     return SharedRuntime::ricochet_blob()->exception_addr();
   533   }
   535   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   536   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   538 #ifndef PRODUCT
   539   { ResourceMark rm;
   540     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   541     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   542     tty->print_cr("b) other problem");
   543   }
   544 #endif // PRODUCT
   546   ShouldNotReachHere();
   547   return NULL;
   548 }
   551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   552   return raw_exception_handler_for_return_address(thread, return_address);
   553 JRT_END
   556 address SharedRuntime::get_poll_stub(address pc) {
   557   address stub;
   558   // Look up the code blob
   559   CodeBlob *cb = CodeCache::find_blob(pc);
   561   // Should be an nmethod
   562   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   564   // Look up the relocation information
   565   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   566     "safepoint polling: type must be poll" );
   568   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   569     "Only polling locations are used for safepoint");
   571   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   572   if (at_poll_return) {
   573     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   574            "polling page return stub not created yet");
   575     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   576   } else {
   577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   578            "polling page safepoint stub not created yet");
   579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   580   }
   581 #ifndef PRODUCT
   582   if( TraceSafepoint ) {
   583     char buf[256];
   584     jio_snprintf(buf, sizeof(buf),
   585                  "... found polling page %s exception at pc = "
   586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   587                  at_poll_return ? "return" : "loop",
   588                  (intptr_t)pc, (intptr_t)stub);
   589     tty->print_raw_cr(buf);
   590   }
   591 #endif // PRODUCT
   592   return stub;
   593 }
   596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   597   assert(caller.is_interpreted_frame(), "");
   598   int args_size = ArgumentSizeComputer(sig).size() + 1;
   599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   600   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   602   return result;
   603 }
   606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   607   if (JvmtiExport::can_post_on_exceptions()) {
   608     vframeStream vfst(thread, true);
   609     methodHandle method = methodHandle(thread, vfst.method());
   610     address bcp = method()->bcp_from(vfst.bci());
   611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   612   }
   613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   614 }
   616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   617   Handle h_exception = Exceptions::new_exception(thread, name, message);
   618   throw_and_post_jvmti_exception(thread, h_exception);
   619 }
   621 // The interpreter code to call this tracing function is only
   622 // called/generated when TraceRedefineClasses has the right bits
   623 // set. Since obsolete methods are never compiled, we don't have
   624 // to modify the compilers to generate calls to this function.
   625 //
   626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   627     JavaThread* thread, methodOopDesc* method))
   628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   630   if (method->is_obsolete()) {
   631     // We are calling an obsolete method, but this is not necessarily
   632     // an error. Our method could have been redefined just after we
   633     // fetched the methodOop from the constant pool.
   635     // RC_TRACE macro has an embedded ResourceMark
   636     RC_TRACE_WITH_THREAD(0x00001000, thread,
   637                          ("calling obsolete method '%s'",
   638                           method->name_and_sig_as_C_string()));
   639     if (RC_TRACE_ENABLED(0x00002000)) {
   640       // this option is provided to debug calls to obsolete methods
   641       guarantee(false, "faulting at call to an obsolete method.");
   642     }
   643   }
   644   return 0;
   645 JRT_END
   647 // ret_pc points into caller; we are returning caller's exception handler
   648 // for given exception
   649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   650                                                     bool force_unwind, bool top_frame_only) {
   651   assert(nm != NULL, "must exist");
   652   ResourceMark rm;
   654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   655   // determine handler bci, if any
   656   EXCEPTION_MARK;
   658   int handler_bci = -1;
   659   int scope_depth = 0;
   660   if (!force_unwind) {
   661     int bci = sd->bci();
   662     do {
   663       bool skip_scope_increment = false;
   664       // exception handler lookup
   665       KlassHandle ek (THREAD, exception->klass());
   666       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   667       if (HAS_PENDING_EXCEPTION) {
   668         // We threw an exception while trying to find the exception handler.
   669         // Transfer the new exception to the exception handle which will
   670         // be set into thread local storage, and do another lookup for an
   671         // exception handler for this exception, this time starting at the
   672         // BCI of the exception handler which caused the exception to be
   673         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   674         // argument to ensure that the correct exception is thrown (4870175).
   675         exception = Handle(THREAD, PENDING_EXCEPTION);
   676         CLEAR_PENDING_EXCEPTION;
   677         if (handler_bci >= 0) {
   678           bci = handler_bci;
   679           handler_bci = -1;
   680           skip_scope_increment = true;
   681         }
   682       }
   683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   684         sd = sd->sender();
   685         if (sd != NULL) {
   686           bci = sd->bci();
   687         }
   688         ++scope_depth;
   689       }
   690     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   691   }
   693   // found handling method => lookup exception handler
   694   int catch_pco = ret_pc - nm->code_begin();
   696   ExceptionHandlerTable table(nm);
   697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   699     // Allow abbreviated catch tables.  The idea is to allow a method
   700     // to materialize its exceptions without committing to the exact
   701     // routing of exceptions.  In particular this is needed for adding
   702     // a synthethic handler to unlock monitors when inlining
   703     // synchonized methods since the unlock path isn't represented in
   704     // the bytecodes.
   705     t = table.entry_for(catch_pco, -1, 0);
   706   }
   708 #ifdef COMPILER1
   709   if (t == NULL && nm->is_compiled_by_c1()) {
   710     assert(nm->unwind_handler_begin() != NULL, "");
   711     return nm->unwind_handler_begin();
   712   }
   713 #endif
   715   if (t == NULL) {
   716     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   717     tty->print_cr("   Exception:");
   718     exception->print();
   719     tty->cr();
   720     tty->print_cr(" Compiled exception table :");
   721     table.print();
   722     nm->print_code();
   723     guarantee(false, "missing exception handler");
   724     return NULL;
   725   }
   727   return nm->code_begin() + t->pco();
   728 }
   730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   731   // These errors occur only at call sites
   732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   733 JRT_END
   735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   736   // These errors occur only at call sites
   737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   738 JRT_END
   740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   741   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   742 JRT_END
   744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   746 JRT_END
   748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   749   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   750   // cache sites (when the callee activation is not yet set up) so we are at a call site
   751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   752 JRT_END
   754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   755   // We avoid using the normal exception construction in this case because
   756   // it performs an upcall to Java, and we're already out of stack space.
   757   klassOop k = SystemDictionary::StackOverflowError_klass();
   758   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   759   Handle exception (thread, exception_oop);
   760   if (StackTraceInThrowable) {
   761     java_lang_Throwable::fill_in_stack_trace(exception);
   762   }
   763   throw_and_post_jvmti_exception(thread, exception);
   764 JRT_END
   766 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
   767   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
   768   ResourceMark rm;
   769   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
   770   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
   771 JRT_END
   773 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   774                                                            address pc,
   775                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   776 {
   777   address target_pc = NULL;
   779   if (Interpreter::contains(pc)) {
   780 #ifdef CC_INTERP
   781     // C++ interpreter doesn't throw implicit exceptions
   782     ShouldNotReachHere();
   783 #else
   784     switch (exception_kind) {
   785       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   786       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   787       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   788       default:                      ShouldNotReachHere();
   789     }
   790 #endif // !CC_INTERP
   791   } else {
   792     switch (exception_kind) {
   793       case STACK_OVERFLOW: {
   794         // Stack overflow only occurs upon frame setup; the callee is
   795         // going to be unwound. Dispatch to a shared runtime stub
   796         // which will cause the StackOverflowError to be fabricated
   797         // and processed.
   798         // For stack overflow in deoptimization blob, cleanup thread.
   799         if (thread->deopt_mark() != NULL) {
   800           Deoptimization::cleanup_deopt_info(thread, NULL);
   801         }
   802         return StubRoutines::throw_StackOverflowError_entry();
   803       }
   805       case IMPLICIT_NULL: {
   806         if (VtableStubs::contains(pc)) {
   807           // We haven't yet entered the callee frame. Fabricate an
   808           // exception and begin dispatching it in the caller. Since
   809           // the caller was at a call site, it's safe to destroy all
   810           // caller-saved registers, as these entry points do.
   811           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   813           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   814           if (vt_stub == NULL) return NULL;
   816           if (vt_stub->is_abstract_method_error(pc)) {
   817             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   818             return StubRoutines::throw_AbstractMethodError_entry();
   819           } else {
   820             return StubRoutines::throw_NullPointerException_at_call_entry();
   821           }
   822         } else {
   823           CodeBlob* cb = CodeCache::find_blob(pc);
   825           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   826           if (cb == NULL) return NULL;
   828           // Exception happened in CodeCache. Must be either:
   829           // 1. Inline-cache check in C2I handler blob,
   830           // 2. Inline-cache check in nmethod, or
   831           // 3. Implict null exception in nmethod
   833           if (!cb->is_nmethod()) {
   834             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   835                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   836             // There is no handler here, so we will simply unwind.
   837             return StubRoutines::throw_NullPointerException_at_call_entry();
   838           }
   840           // Otherwise, it's an nmethod.  Consult its exception handlers.
   841           nmethod* nm = (nmethod*)cb;
   842           if (nm->inlinecache_check_contains(pc)) {
   843             // exception happened inside inline-cache check code
   844             // => the nmethod is not yet active (i.e., the frame
   845             // is not set up yet) => use return address pushed by
   846             // caller => don't push another return address
   847             return StubRoutines::throw_NullPointerException_at_call_entry();
   848           }
   850 #ifndef PRODUCT
   851           _implicit_null_throws++;
   852 #endif
   853           target_pc = nm->continuation_for_implicit_exception(pc);
   854           // If there's an unexpected fault, target_pc might be NULL,
   855           // in which case we want to fall through into the normal
   856           // error handling code.
   857         }
   859         break; // fall through
   860       }
   863       case IMPLICIT_DIVIDE_BY_ZERO: {
   864         nmethod* nm = CodeCache::find_nmethod(pc);
   865         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   866 #ifndef PRODUCT
   867         _implicit_div0_throws++;
   868 #endif
   869         target_pc = nm->continuation_for_implicit_exception(pc);
   870         // If there's an unexpected fault, target_pc might be NULL,
   871         // in which case we want to fall through into the normal
   872         // error handling code.
   873         break; // fall through
   874       }
   876       default: ShouldNotReachHere();
   877     }
   879     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   881     // for AbortVMOnException flag
   882     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   883     if (exception_kind == IMPLICIT_NULL) {
   884       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   885     } else {
   886       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   887     }
   888     return target_pc;
   889   }
   891   ShouldNotReachHere();
   892   return NULL;
   893 }
   896 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   897 {
   898   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   899 }
   900 JNI_END
   903 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   904   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   905 }
   908 #ifndef PRODUCT
   909 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   910   const frame f = thread->last_frame();
   911   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   912 #ifndef PRODUCT
   913   methodHandle mh(THREAD, f.interpreter_frame_method());
   914   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   915 #endif // !PRODUCT
   916   return preserve_this_value;
   917 JRT_END
   918 #endif // !PRODUCT
   921 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   922   os::yield_all(attempts);
   923 JRT_END
   926 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   927   assert(obj->is_oop(), "must be a valid oop");
   928   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   929   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   930 JRT_END
   933 jlong SharedRuntime::get_java_tid(Thread* thread) {
   934   if (thread != NULL) {
   935     if (thread->is_Java_thread()) {
   936       oop obj = ((JavaThread*)thread)->threadObj();
   937       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   938     }
   939   }
   940   return 0;
   941 }
   943 /**
   944  * This function ought to be a void function, but cannot be because
   945  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   946  * 6254741.  Once that is fixed we can remove the dummy return value.
   947  */
   948 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   949   return dtrace_object_alloc_base(Thread::current(), o);
   950 }
   952 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   953   assert(DTraceAllocProbes, "wrong call");
   954   Klass* klass = o->blueprint();
   955   int size = o->size();
   956   Symbol* name = klass->name();
   957   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   958                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   959   return 0;
   960 }
   962 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   963     JavaThread* thread, methodOopDesc* method))
   964   assert(DTraceMethodProbes, "wrong call");
   965   Symbol* kname = method->klass_name();
   966   Symbol* name = method->name();
   967   Symbol* sig = method->signature();
   968   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   969       kname->bytes(), kname->utf8_length(),
   970       name->bytes(), name->utf8_length(),
   971       sig->bytes(), sig->utf8_length());
   972   return 0;
   973 JRT_END
   975 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   976     JavaThread* thread, methodOopDesc* method))
   977   assert(DTraceMethodProbes, "wrong call");
   978   Symbol* kname = method->klass_name();
   979   Symbol* name = method->name();
   980   Symbol* sig = method->signature();
   981   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   982       kname->bytes(), kname->utf8_length(),
   983       name->bytes(), name->utf8_length(),
   984       sig->bytes(), sig->utf8_length());
   985   return 0;
   986 JRT_END
   989 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   990 // for a call current in progress, i.e., arguments has been pushed on stack
   991 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   992 // vtable updates, etc.  Caller frame must be compiled.
   993 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   994   ResourceMark rm(THREAD);
   996   // last java frame on stack (which includes native call frames)
   997   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   999   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1003 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1004 // for a call current in progress, i.e., arguments has been pushed on stack
  1005 // but callee has not been invoked yet.  Caller frame must be compiled.
  1006 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1007                                               vframeStream& vfst,
  1008                                               Bytecodes::Code& bc,
  1009                                               CallInfo& callinfo, TRAPS) {
  1010   Handle receiver;
  1011   Handle nullHandle;  //create a handy null handle for exception returns
  1013   assert(!vfst.at_end(), "Java frame must exist");
  1015   // Find caller and bci from vframe
  1016   methodHandle caller (THREAD, vfst.method());
  1017   int          bci    = vfst.bci();
  1019   // Find bytecode
  1020   Bytecode_invoke bytecode(caller, bci);
  1021   bc = bytecode.java_code();
  1022   int bytecode_index = bytecode.index();
  1024   // Find receiver for non-static call
  1025   if (bc != Bytecodes::_invokestatic) {
  1026     // This register map must be update since we need to find the receiver for
  1027     // compiled frames. The receiver might be in a register.
  1028     RegisterMap reg_map2(thread);
  1029     frame stubFrame   = thread->last_frame();
  1030     // Caller-frame is a compiled frame
  1031     frame callerFrame = stubFrame.sender(&reg_map2);
  1033     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1034     if (callee.is_null()) {
  1035       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1037     // Retrieve from a compiled argument list
  1038     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1040     if (receiver.is_null()) {
  1041       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1045   // Resolve method. This is parameterized by bytecode.
  1046   constantPoolHandle constants (THREAD, caller->constants());
  1047   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1048   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1050 #ifdef ASSERT
  1051   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1052   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
  1053     assert(receiver.not_null(), "should have thrown exception");
  1054     KlassHandle receiver_klass (THREAD, receiver->klass());
  1055     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1056                             // klass is already loaded
  1057     KlassHandle static_receiver_klass (THREAD, rk);
  1058     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
  1059     if (receiver_klass->oop_is_instance()) {
  1060       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1061         tty->print_cr("ERROR: Klass not yet initialized!!");
  1062         receiver_klass.print();
  1064       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1067 #endif
  1069   return receiver;
  1072 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1073   ResourceMark rm(THREAD);
  1074   // We need first to check if any Java activations (compiled, interpreted)
  1075   // exist on the stack since last JavaCall.  If not, we need
  1076   // to get the target method from the JavaCall wrapper.
  1077   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1078   methodHandle callee_method;
  1079   if (vfst.at_end()) {
  1080     // No Java frames were found on stack since we did the JavaCall.
  1081     // Hence the stack can only contain an entry_frame.  We need to
  1082     // find the target method from the stub frame.
  1083     RegisterMap reg_map(thread, false);
  1084     frame fr = thread->last_frame();
  1085     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1086     fr = fr.sender(&reg_map);
  1087     assert(fr.is_entry_frame(), "must be");
  1088     // fr is now pointing to the entry frame.
  1089     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1090     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1091   } else {
  1092     Bytecodes::Code bc;
  1093     CallInfo callinfo;
  1094     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1095     callee_method = callinfo.selected_method();
  1097   assert(callee_method()->is_method(), "must be");
  1098   return callee_method;
  1101 // Resolves a call.
  1102 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1103                                            bool is_virtual,
  1104                                            bool is_optimized, TRAPS) {
  1105   methodHandle callee_method;
  1106   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1107   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1108     int retry_count = 0;
  1109     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1110            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1111       // If has a pending exception then there is no need to re-try to
  1112       // resolve this method.
  1113       // If the method has been redefined, we need to try again.
  1114       // Hack: we have no way to update the vtables of arrays, so don't
  1115       // require that java.lang.Object has been updated.
  1117       // It is very unlikely that method is redefined more than 100 times
  1118       // in the middle of resolve. If it is looping here more than 100 times
  1119       // means then there could be a bug here.
  1120       guarantee((retry_count++ < 100),
  1121                 "Could not resolve to latest version of redefined method");
  1122       // method is redefined in the middle of resolve so re-try.
  1123       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1126   return callee_method;
  1129 // Resolves a call.  The compilers generate code for calls that go here
  1130 // and are patched with the real destination of the call.
  1131 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1132                                            bool is_virtual,
  1133                                            bool is_optimized, TRAPS) {
  1135   ResourceMark rm(thread);
  1136   RegisterMap cbl_map(thread, false);
  1137   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1139   CodeBlob* caller_cb = caller_frame.cb();
  1140   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1141   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1142   // make sure caller is not getting deoptimized
  1143   // and removed before we are done with it.
  1144   // CLEANUP - with lazy deopt shouldn't need this lock
  1145   nmethodLocker caller_lock(caller_nm);
  1148   // determine call info & receiver
  1149   // note: a) receiver is NULL for static calls
  1150   //       b) an exception is thrown if receiver is NULL for non-static calls
  1151   CallInfo call_info;
  1152   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1153   Handle receiver = find_callee_info(thread, invoke_code,
  1154                                      call_info, CHECK_(methodHandle()));
  1155   methodHandle callee_method = call_info.selected_method();
  1157   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
  1158          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
  1160 #ifndef PRODUCT
  1161   // tracing/debugging/statistics
  1162   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1163                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1164                                (&_resolve_static_ctr);
  1165   Atomic::inc(addr);
  1167   if (TraceCallFixup) {
  1168     ResourceMark rm(thread);
  1169     tty->print("resolving %s%s (%s) call to",
  1170       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1171       Bytecodes::name(invoke_code));
  1172     callee_method->print_short_name(tty);
  1173     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1175 #endif
  1177   // JSR 292
  1178   // If the resolved method is a MethodHandle invoke target the call
  1179   // site must be a MethodHandle call site.
  1180   if (callee_method->is_method_handle_invoke()) {
  1181     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1184   // Compute entry points. This might require generation of C2I converter
  1185   // frames, so we cannot be holding any locks here. Furthermore, the
  1186   // computation of the entry points is independent of patching the call.  We
  1187   // always return the entry-point, but we only patch the stub if the call has
  1188   // not been deoptimized.  Return values: For a virtual call this is an
  1189   // (cached_oop, destination address) pair. For a static call/optimized
  1190   // virtual this is just a destination address.
  1192   StaticCallInfo static_call_info;
  1193   CompiledICInfo virtual_call_info;
  1195   // Make sure the callee nmethod does not get deoptimized and removed before
  1196   // we are done patching the code.
  1197   nmethod* callee_nm = callee_method->code();
  1198   nmethodLocker nl_callee(callee_nm);
  1199 #ifdef ASSERT
  1200   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1201 #endif
  1203   if (is_virtual) {
  1204     assert(receiver.not_null(), "sanity check");
  1205     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1206     KlassHandle h_klass(THREAD, receiver->klass());
  1207     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1208                      is_optimized, static_bound, virtual_call_info,
  1209                      CHECK_(methodHandle()));
  1210   } else {
  1211     // static call
  1212     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1215   // grab lock, check for deoptimization and potentially patch caller
  1217     MutexLocker ml_patch(CompiledIC_lock);
  1219     // Now that we are ready to patch if the methodOop was redefined then
  1220     // don't update call site and let the caller retry.
  1222     if (!callee_method->is_old()) {
  1223 #ifdef ASSERT
  1224       // We must not try to patch to jump to an already unloaded method.
  1225       if (dest_entry_point != 0) {
  1226         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1227                "should not unload nmethod while locked");
  1229 #endif
  1230       if (is_virtual) {
  1231         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1232         if (inline_cache->is_clean()) {
  1233           inline_cache->set_to_monomorphic(virtual_call_info);
  1235       } else {
  1236         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1237         if (ssc->is_clean()) ssc->set(static_call_info);
  1241   } // unlock CompiledIC_lock
  1243   return callee_method;
  1247 // Inline caches exist only in compiled code
  1248 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1249 #ifdef ASSERT
  1250   RegisterMap reg_map(thread, false);
  1251   frame stub_frame = thread->last_frame();
  1252   assert(stub_frame.is_runtime_frame(), "sanity check");
  1253   frame caller_frame = stub_frame.sender(&reg_map);
  1254   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1255   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
  1256 #endif /* ASSERT */
  1258   methodHandle callee_method;
  1259   JRT_BLOCK
  1260     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1261     // Return methodOop through TLS
  1262     thread->set_vm_result(callee_method());
  1263   JRT_BLOCK_END
  1264   // return compiled code entry point after potential safepoints
  1265   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1266   return callee_method->verified_code_entry();
  1267 JRT_END
  1270 // Handle call site that has been made non-entrant
  1271 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1272   // 6243940 We might end up in here if the callee is deoptimized
  1273   // as we race to call it.  We don't want to take a safepoint if
  1274   // the caller was interpreted because the caller frame will look
  1275   // interpreted to the stack walkers and arguments are now
  1276   // "compiled" so it is much better to make this transition
  1277   // invisible to the stack walking code. The i2c path will
  1278   // place the callee method in the callee_target. It is stashed
  1279   // there because if we try and find the callee by normal means a
  1280   // safepoint is possible and have trouble gc'ing the compiled args.
  1281   RegisterMap reg_map(thread, false);
  1282   frame stub_frame = thread->last_frame();
  1283   assert(stub_frame.is_runtime_frame(), "sanity check");
  1284   frame caller_frame = stub_frame.sender(&reg_map);
  1286   // MethodHandle invokes don't have a CompiledIC and should always
  1287   // simply redispatch to the callee_target.
  1288   address   sender_pc = caller_frame.pc();
  1289   CodeBlob* sender_cb = caller_frame.cb();
  1290   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1291   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  1292   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
  1293     // If the callee_target is set, then we have come here via an i2c
  1294     // adapter.
  1295     methodOop callee = thread->callee_target();
  1296     if (callee != NULL) {
  1297       assert(callee->is_method(), "sanity");
  1298       is_mh_invoke_via_adapter = true;
  1302   if (caller_frame.is_interpreted_frame() ||
  1303       caller_frame.is_entry_frame()       ||
  1304       caller_frame.is_ricochet_frame()    ||
  1305       is_mh_invoke_via_adapter) {
  1306     methodOop callee = thread->callee_target();
  1307     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1308     thread->set_vm_result(callee);
  1309     thread->set_callee_target(NULL);
  1310     return callee->get_c2i_entry();
  1313   // Must be compiled to compiled path which is safe to stackwalk
  1314   methodHandle callee_method;
  1315   JRT_BLOCK
  1316     // Force resolving of caller (if we called from compiled frame)
  1317     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1318     thread->set_vm_result(callee_method());
  1319   JRT_BLOCK_END
  1320   // return compiled code entry point after potential safepoints
  1321   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1322   return callee_method->verified_code_entry();
  1323 JRT_END
  1326 // resolve a static call and patch code
  1327 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1328   methodHandle callee_method;
  1329   JRT_BLOCK
  1330     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1331     thread->set_vm_result(callee_method());
  1332   JRT_BLOCK_END
  1333   // return compiled code entry point after potential safepoints
  1334   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1335   return callee_method->verified_code_entry();
  1336 JRT_END
  1339 // resolve virtual call and update inline cache to monomorphic
  1340 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1341   methodHandle callee_method;
  1342   JRT_BLOCK
  1343     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1344     thread->set_vm_result(callee_method());
  1345   JRT_BLOCK_END
  1346   // return compiled code entry point after potential safepoints
  1347   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1348   return callee_method->verified_code_entry();
  1349 JRT_END
  1352 // Resolve a virtual call that can be statically bound (e.g., always
  1353 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1354 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1355   methodHandle callee_method;
  1356   JRT_BLOCK
  1357     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1358     thread->set_vm_result(callee_method());
  1359   JRT_BLOCK_END
  1360   // return compiled code entry point after potential safepoints
  1361   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1362   return callee_method->verified_code_entry();
  1363 JRT_END
  1369 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1370   ResourceMark rm(thread);
  1371   CallInfo call_info;
  1372   Bytecodes::Code bc;
  1374   // receiver is NULL for static calls. An exception is thrown for NULL
  1375   // receivers for non-static calls
  1376   Handle receiver = find_callee_info(thread, bc, call_info,
  1377                                      CHECK_(methodHandle()));
  1378   // Compiler1 can produce virtual call sites that can actually be statically bound
  1379   // If we fell thru to below we would think that the site was going megamorphic
  1380   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1381   // we'd try and do a vtable dispatch however methods that can be statically bound
  1382   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1383   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1384   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1385   // never to miss again. I don't believe C2 will produce code like this but if it
  1386   // did this would still be the correct thing to do for it too, hence no ifdef.
  1387   //
  1388   if (call_info.resolved_method()->can_be_statically_bound()) {
  1389     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1390     if (TraceCallFixup) {
  1391       RegisterMap reg_map(thread, false);
  1392       frame caller_frame = thread->last_frame().sender(&reg_map);
  1393       ResourceMark rm(thread);
  1394       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1395       callee_method->print_short_name(tty);
  1396       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1397       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1399     return callee_method;
  1402   methodHandle callee_method = call_info.selected_method();
  1404   bool should_be_mono = false;
  1406 #ifndef PRODUCT
  1407   Atomic::inc(&_ic_miss_ctr);
  1409   // Statistics & Tracing
  1410   if (TraceCallFixup) {
  1411     ResourceMark rm(thread);
  1412     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1413     callee_method->print_short_name(tty);
  1414     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1417   if (ICMissHistogram) {
  1418     MutexLocker m(VMStatistic_lock);
  1419     RegisterMap reg_map(thread, false);
  1420     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1421     // produce statistics under the lock
  1422     trace_ic_miss(f.pc());
  1424 #endif
  1426   // install an event collector so that when a vtable stub is created the
  1427   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1428   // event can't be posted when the stub is created as locks are held
  1429   // - instead the event will be deferred until the event collector goes
  1430   // out of scope.
  1431   JvmtiDynamicCodeEventCollector event_collector;
  1433   // Update inline cache to megamorphic. Skip update if caller has been
  1434   // made non-entrant or we are called from interpreted.
  1435   { MutexLocker ml_patch (CompiledIC_lock);
  1436     RegisterMap reg_map(thread, false);
  1437     frame caller_frame = thread->last_frame().sender(&reg_map);
  1438     CodeBlob* cb = caller_frame.cb();
  1439     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1440       // Not a non-entrant nmethod, so find inline_cache
  1441       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1442       bool should_be_mono = false;
  1443       if (inline_cache->is_optimized()) {
  1444         if (TraceCallFixup) {
  1445           ResourceMark rm(thread);
  1446           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1447           callee_method->print_short_name(tty);
  1448           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1450         should_be_mono = true;
  1451       } else {
  1452         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1453         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1455           if (receiver()->klass() == ic_oop->holder_klass()) {
  1456             // This isn't a real miss. We must have seen that compiled code
  1457             // is now available and we want the call site converted to a
  1458             // monomorphic compiled call site.
  1459             // We can't assert for callee_method->code() != NULL because it
  1460             // could have been deoptimized in the meantime
  1461             if (TraceCallFixup) {
  1462               ResourceMark rm(thread);
  1463               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1464               callee_method->print_short_name(tty);
  1465               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1467             should_be_mono = true;
  1472       if (should_be_mono) {
  1474         // We have a path that was monomorphic but was going interpreted
  1475         // and now we have (or had) a compiled entry. We correct the IC
  1476         // by using a new icBuffer.
  1477         CompiledICInfo info;
  1478         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1479         inline_cache->compute_monomorphic_entry(callee_method,
  1480                                                 receiver_klass,
  1481                                                 inline_cache->is_optimized(),
  1482                                                 false,
  1483                                                 info, CHECK_(methodHandle()));
  1484         inline_cache->set_to_monomorphic(info);
  1485       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1486         // Change to megamorphic
  1487         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1488       } else {
  1489         // Either clean or megamorphic
  1492   } // Release CompiledIC_lock
  1494   return callee_method;
  1497 //
  1498 // Resets a call-site in compiled code so it will get resolved again.
  1499 // This routines handles both virtual call sites, optimized virtual call
  1500 // sites, and static call sites. Typically used to change a call sites
  1501 // destination from compiled to interpreted.
  1502 //
  1503 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1504   ResourceMark rm(thread);
  1505   RegisterMap reg_map(thread, false);
  1506   frame stub_frame = thread->last_frame();
  1507   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1508   frame caller = stub_frame.sender(&reg_map);
  1510   // Do nothing if the frame isn't a live compiled frame.
  1511   // nmethod could be deoptimized by the time we get here
  1512   // so no update to the caller is needed.
  1514   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1516     address pc = caller.pc();
  1517     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1519     // Default call_addr is the location of the "basic" call.
  1520     // Determine the address of the call we a reresolving. With
  1521     // Inline Caches we will always find a recognizable call.
  1522     // With Inline Caches disabled we may or may not find a
  1523     // recognizable call. We will always find a call for static
  1524     // calls and for optimized virtual calls. For vanilla virtual
  1525     // calls it depends on the state of the UseInlineCaches switch.
  1526     //
  1527     // With Inline Caches disabled we can get here for a virtual call
  1528     // for two reasons:
  1529     //   1 - calling an abstract method. The vtable for abstract methods
  1530     //       will run us thru handle_wrong_method and we will eventually
  1531     //       end up in the interpreter to throw the ame.
  1532     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1533     //       call and between the time we fetch the entry address and
  1534     //       we jump to it the target gets deoptimized. Similar to 1
  1535     //       we will wind up in the interprter (thru a c2i with c2).
  1536     //
  1537     address call_addr = NULL;
  1539       // Get call instruction under lock because another thread may be
  1540       // busy patching it.
  1541       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1542       // Location of call instruction
  1543       if (NativeCall::is_call_before(pc)) {
  1544         NativeCall *ncall = nativeCall_before(pc);
  1545         call_addr = ncall->instruction_address();
  1549     // Check for static or virtual call
  1550     bool is_static_call = false;
  1551     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1552     // Make sure nmethod doesn't get deoptimized and removed until
  1553     // this is done with it.
  1554     // CLEANUP - with lazy deopt shouldn't need this lock
  1555     nmethodLocker nmlock(caller_nm);
  1557     if (call_addr != NULL) {
  1558       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1559       int ret = iter.next(); // Get item
  1560       if (ret) {
  1561         assert(iter.addr() == call_addr, "must find call");
  1562         if (iter.type() == relocInfo::static_call_type) {
  1563           is_static_call = true;
  1564         } else {
  1565           assert(iter.type() == relocInfo::virtual_call_type ||
  1566                  iter.type() == relocInfo::opt_virtual_call_type
  1567                 , "unexpected relocInfo. type");
  1569       } else {
  1570         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1573       // Cleaning the inline cache will force a new resolve. This is more robust
  1574       // than directly setting it to the new destination, since resolving of calls
  1575       // is always done through the same code path. (experience shows that it
  1576       // leads to very hard to track down bugs, if an inline cache gets updated
  1577       // to a wrong method). It should not be performance critical, since the
  1578       // resolve is only done once.
  1580       MutexLocker ml(CompiledIC_lock);
  1581       //
  1582       // We do not patch the call site if the nmethod has been made non-entrant
  1583       // as it is a waste of time
  1584       //
  1585       if (caller_nm->is_in_use()) {
  1586         if (is_static_call) {
  1587           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1588           ssc->set_to_clean();
  1589         } else {
  1590           // compiled, dispatched call (which used to call an interpreted method)
  1591           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1592           inline_cache->set_to_clean();
  1599   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1602 #ifndef PRODUCT
  1603   Atomic::inc(&_wrong_method_ctr);
  1605   if (TraceCallFixup) {
  1606     ResourceMark rm(thread);
  1607     tty->print("handle_wrong_method reresolving call to");
  1608     callee_method->print_short_name(tty);
  1609     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1611 #endif
  1613   return callee_method;
  1616 // ---------------------------------------------------------------------------
  1617 // We are calling the interpreter via a c2i. Normally this would mean that
  1618 // we were called by a compiled method. However we could have lost a race
  1619 // where we went int -> i2c -> c2i and so the caller could in fact be
  1620 // interpreted. If the caller is compiled we attempt to patch the caller
  1621 // so he no longer calls into the interpreter.
  1622 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1623   methodOop moop(method);
  1625   address entry_point = moop->from_compiled_entry();
  1627   // It's possible that deoptimization can occur at a call site which hasn't
  1628   // been resolved yet, in which case this function will be called from
  1629   // an nmethod that has been patched for deopt and we can ignore the
  1630   // request for a fixup.
  1631   // Also it is possible that we lost a race in that from_compiled_entry
  1632   // is now back to the i2c in that case we don't need to patch and if
  1633   // we did we'd leap into space because the callsite needs to use
  1634   // "to interpreter" stub in order to load up the methodOop. Don't
  1635   // ask me how I know this...
  1637   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1638   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1639     return;
  1642   // The check above makes sure this is a nmethod.
  1643   nmethod* nm = cb->as_nmethod_or_null();
  1644   assert(nm, "must be");
  1646   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
  1647   // to implement MethodHandle actions.
  1648   if (nm->is_method_handle_return(caller_pc)) {
  1649     return;
  1652   // There is a benign race here. We could be attempting to patch to a compiled
  1653   // entry point at the same time the callee is being deoptimized. If that is
  1654   // the case then entry_point may in fact point to a c2i and we'd patch the
  1655   // call site with the same old data. clear_code will set code() to NULL
  1656   // at the end of it. If we happen to see that NULL then we can skip trying
  1657   // to patch. If we hit the window where the callee has a c2i in the
  1658   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1659   // and patch the code with the same old data. Asi es la vida.
  1661   if (moop->code() == NULL) return;
  1663   if (nm->is_in_use()) {
  1665     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1666     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1667     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1668       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1669       //
  1670       // bug 6281185. We might get here after resolving a call site to a vanilla
  1671       // virtual call. Because the resolvee uses the verified entry it may then
  1672       // see compiled code and attempt to patch the site by calling us. This would
  1673       // then incorrectly convert the call site to optimized and its downhill from
  1674       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1675       // just made a call site that could be megamorphic into a monomorphic site
  1676       // for the rest of its life! Just another racing bug in the life of
  1677       // fixup_callers_callsite ...
  1678       //
  1679       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1680       iter.next();
  1681       assert(iter.has_current(), "must have a reloc at java call site");
  1682       relocInfo::relocType typ = iter.reloc()->type();
  1683       if ( typ != relocInfo::static_call_type &&
  1684            typ != relocInfo::opt_virtual_call_type &&
  1685            typ != relocInfo::static_stub_type) {
  1686         return;
  1688       address destination = call->destination();
  1689       if (destination != entry_point) {
  1690         CodeBlob* callee = CodeCache::find_blob(destination);
  1691         // callee == cb seems weird. It means calling interpreter thru stub.
  1692         if (callee == cb || callee->is_adapter_blob()) {
  1693           // static call or optimized virtual
  1694           if (TraceCallFixup) {
  1695             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1696             moop->print_short_name(tty);
  1697             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1699           call->set_destination_mt_safe(entry_point);
  1700         } else {
  1701           if (TraceCallFixup) {
  1702             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1703             moop->print_short_name(tty);
  1704             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1706           // assert is too strong could also be resolve destinations.
  1707           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1709       } else {
  1710           if (TraceCallFixup) {
  1711             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1712             moop->print_short_name(tty);
  1713             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1719 IRT_END
  1722 // same as JVM_Arraycopy, but called directly from compiled code
  1723 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1724                                                 oopDesc* dest, jint dest_pos,
  1725                                                 jint length,
  1726                                                 JavaThread* thread)) {
  1727 #ifndef PRODUCT
  1728   _slow_array_copy_ctr++;
  1729 #endif
  1730   // Check if we have null pointers
  1731   if (src == NULL || dest == NULL) {
  1732     THROW(vmSymbols::java_lang_NullPointerException());
  1734   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1735   // even though the copy_array API also performs dynamic checks to ensure
  1736   // that src and dest are truly arrays (and are conformable).
  1737   // The copy_array mechanism is awkward and could be removed, but
  1738   // the compilers don't call this function except as a last resort,
  1739   // so it probably doesn't matter.
  1740   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1741                                         (arrayOopDesc*)dest, dest_pos,
  1742                                         length, thread);
  1744 JRT_END
  1746 char* SharedRuntime::generate_class_cast_message(
  1747     JavaThread* thread, const char* objName) {
  1749   // Get target class name from the checkcast instruction
  1750   vframeStream vfst(thread, true);
  1751   assert(!vfst.at_end(), "Java frame must exist");
  1752   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1753   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1754     cc.index(), thread));
  1755   return generate_class_cast_message(objName, targetKlass->external_name());
  1758 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
  1759                                                         oopDesc* required,
  1760                                                         oopDesc* actual) {
  1761   if (TraceMethodHandles) {
  1762     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
  1763                   thread, required, actual);
  1765   assert(EnableInvokeDynamic, "");
  1766   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  1767   char* message = NULL;
  1768   if (singleKlass != NULL) {
  1769     const char* objName = "argument or return value";
  1770     if (actual != NULL) {
  1771       // be flexible about the junk passed in:
  1772       klassOop ak = (actual->is_klass()
  1773                      ? (klassOop)actual
  1774                      : actual->klass());
  1775       objName = Klass::cast(ak)->external_name();
  1777     Klass* targetKlass = Klass::cast(required->is_klass()
  1778                                      ? (klassOop)required
  1779                                      : java_lang_Class::as_klassOop(required));
  1780     message = generate_class_cast_message(objName, targetKlass->external_name());
  1781   } else {
  1782     // %%% need to get the MethodType string, without messing around too much
  1783     const char* desc = NULL;
  1784     // Get a signature from the invoke instruction
  1785     const char* mhName = "method handle";
  1786     const char* targetType = "the required signature";
  1787     int targetArity = -1, mhArity = -1;
  1788     vframeStream vfst(thread, true);
  1789     if (!vfst.at_end()) {
  1790       Bytecode_invoke call(vfst.method(), vfst.bci());
  1791       methodHandle target;
  1793         EXCEPTION_MARK;
  1794         target = call.static_target(THREAD);
  1795         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
  1797       if (target.not_null()
  1798           && target->is_method_handle_invoke()
  1799           && required == target->method_handle_type()) {
  1800         targetType = target->signature()->as_C_string();
  1801         targetArity = ArgumentCount(target->signature()).size();
  1804     KlassHandle kignore; int dmf_flags = 0;
  1805     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
  1806     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
  1807                        MethodHandles::_dmf_does_dispatch |
  1808                        MethodHandles::_dmf_from_interface)) != 0)
  1809       actual_method = methodHandle();  // MH does extra binds, drops, etc.
  1810     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
  1811     if (actual_method.not_null()) {
  1812       mhName = actual_method->signature()->as_C_string();
  1813       mhArity = ArgumentCount(actual_method->signature()).size();
  1814       if (!actual_method->is_static())  mhArity += 1;
  1815     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
  1816       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
  1817       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
  1818       stringStream st;
  1819       java_lang_invoke_MethodType::print_signature(mhType, &st);
  1820       mhName = st.as_string();
  1822     if (targetArity != -1 && targetArity != mhArity) {
  1823       if (has_receiver && targetArity == mhArity-1)
  1824         desc = " cannot be called without a receiver argument as ";
  1825       else
  1826         desc = " cannot be called with a different arity as ";
  1828     message = generate_class_cast_message(mhName, targetType,
  1829                                           desc != NULL ? desc :
  1830                                           " cannot be called as ");
  1832   if (TraceMethodHandles) {
  1833     tty->print_cr("WrongMethodType => message=%s", message);
  1835   return message;
  1838 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
  1839                                                             oopDesc* required) {
  1840   if (required == NULL)  return NULL;
  1841   if (required->klass() == SystemDictionary::Class_klass())
  1842     return required;
  1843   if (required->is_klass())
  1844     return Klass::cast(klassOop(required))->java_mirror();
  1845   return NULL;
  1849 char* SharedRuntime::generate_class_cast_message(
  1850     const char* objName, const char* targetKlassName, const char* desc) {
  1851   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1853   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1854   if (NULL == message) {
  1855     // Shouldn't happen, but don't cause even more problems if it does
  1856     message = const_cast<char*>(objName);
  1857   } else {
  1858     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1860   return message;
  1863 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1864   (void) JavaThread::current()->reguard_stack();
  1865 JRT_END
  1868 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1869 #ifndef PRODUCT
  1870 int SharedRuntime::_monitor_enter_ctr=0;
  1871 #endif
  1872 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1873   oop obj(_obj);
  1874 #ifndef PRODUCT
  1875   _monitor_enter_ctr++;             // monitor enter slow
  1876 #endif
  1877   if (PrintBiasedLockingStatistics) {
  1878     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1880   Handle h_obj(THREAD, obj);
  1881   if (UseBiasedLocking) {
  1882     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1883     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1884   } else {
  1885     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1887   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1888 JRT_END
  1890 #ifndef PRODUCT
  1891 int SharedRuntime::_monitor_exit_ctr=0;
  1892 #endif
  1893 // Handles the uncommon cases of monitor unlocking in compiled code
  1894 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1895    oop obj(_obj);
  1896 #ifndef PRODUCT
  1897   _monitor_exit_ctr++;              // monitor exit slow
  1898 #endif
  1899   Thread* THREAD = JavaThread::current();
  1900   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1901   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1902   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1903 #undef MIGHT_HAVE_PENDING
  1904 #ifdef MIGHT_HAVE_PENDING
  1905   // Save and restore any pending_exception around the exception mark.
  1906   // While the slow_exit must not throw an exception, we could come into
  1907   // this routine with one set.
  1908   oop pending_excep = NULL;
  1909   const char* pending_file;
  1910   int pending_line;
  1911   if (HAS_PENDING_EXCEPTION) {
  1912     pending_excep = PENDING_EXCEPTION;
  1913     pending_file  = THREAD->exception_file();
  1914     pending_line  = THREAD->exception_line();
  1915     CLEAR_PENDING_EXCEPTION;
  1917 #endif /* MIGHT_HAVE_PENDING */
  1920     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1921     EXCEPTION_MARK;
  1922     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1925 #ifdef MIGHT_HAVE_PENDING
  1926   if (pending_excep != NULL) {
  1927     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1929 #endif /* MIGHT_HAVE_PENDING */
  1930 JRT_END
  1932 #ifndef PRODUCT
  1934 void SharedRuntime::print_statistics() {
  1935   ttyLocker ttyl;
  1936   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1938   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1939   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1940   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1942   SharedRuntime::print_ic_miss_histogram();
  1944   if (CountRemovableExceptions) {
  1945     if (_nof_removable_exceptions > 0) {
  1946       Unimplemented(); // this counter is not yet incremented
  1947       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1951   // Dump the JRT_ENTRY counters
  1952   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1953   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1954   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1955   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1956   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1957   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1958   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1960   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1961   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1962   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1963   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1964   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1966   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1967   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1968   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1969   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1970   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1971   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1972   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1973   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1974   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1975   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1976   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1977   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1978   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1979   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1980   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1981   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1983   AdapterHandlerLibrary::print_statistics();
  1985   if (xtty != NULL)  xtty->tail("statistics");
  1988 inline double percent(int x, int y) {
  1989   return 100.0 * x / MAX2(y, 1);
  1992 class MethodArityHistogram {
  1993  public:
  1994   enum { MAX_ARITY = 256 };
  1995  private:
  1996   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1997   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1998   static int _max_arity;                      // max. arity seen
  1999   static int _max_size;                       // max. arg size seen
  2001   static void add_method_to_histogram(nmethod* nm) {
  2002     methodOop m = nm->method();
  2003     ArgumentCount args(m->signature());
  2004     int arity   = args.size() + (m->is_static() ? 0 : 1);
  2005     int argsize = m->size_of_parameters();
  2006     arity   = MIN2(arity, MAX_ARITY-1);
  2007     argsize = MIN2(argsize, MAX_ARITY-1);
  2008     int count = nm->method()->compiled_invocation_count();
  2009     _arity_histogram[arity]  += count;
  2010     _size_histogram[argsize] += count;
  2011     _max_arity = MAX2(_max_arity, arity);
  2012     _max_size  = MAX2(_max_size, argsize);
  2015   void print_histogram_helper(int n, int* histo, const char* name) {
  2016     const int N = MIN2(5, n);
  2017     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2018     double sum = 0;
  2019     double weighted_sum = 0;
  2020     int i;
  2021     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  2022     double rest = sum;
  2023     double percent = sum / 100;
  2024     for (i = 0; i <= N; i++) {
  2025       rest -= histo[i];
  2026       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  2028     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  2029     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  2032   void print_histogram() {
  2033     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  2034     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  2035     tty->print_cr("\nSame for parameter size (in words):");
  2036     print_histogram_helper(_max_size, _size_histogram, "size");
  2037     tty->cr();
  2040  public:
  2041   MethodArityHistogram() {
  2042     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  2043     _max_arity = _max_size = 0;
  2044     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  2045     CodeCache::nmethods_do(add_method_to_histogram);
  2046     print_histogram();
  2048 };
  2050 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2051 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2052 int MethodArityHistogram::_max_arity;
  2053 int MethodArityHistogram::_max_size;
  2055 void SharedRuntime::print_call_statistics(int comp_total) {
  2056   tty->print_cr("Calls from compiled code:");
  2057   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2058   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2059   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2060   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2061   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2062   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2063   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2064   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2065   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2066   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2067   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2068   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2069   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2070   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2071   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2072   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2073   tty->cr();
  2074   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2075   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2076   tty->print_cr("        %% in nested categories are relative to their category");
  2077   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2078   tty->cr();
  2080   MethodArityHistogram h;
  2082 #endif
  2085 // A simple wrapper class around the calling convention information
  2086 // that allows sharing of adapters for the same calling convention.
  2087 class AdapterFingerPrint : public CHeapObj {
  2088  private:
  2089   union {
  2090     int  _compact[3];
  2091     int* _fingerprint;
  2092   } _value;
  2093   int _length; // A negative length indicates the fingerprint is in the compact form,
  2094                // Otherwise _value._fingerprint is the array.
  2096   // Remap BasicTypes that are handled equivalently by the adapters.
  2097   // These are correct for the current system but someday it might be
  2098   // necessary to make this mapping platform dependent.
  2099   static BasicType adapter_encoding(BasicType in) {
  2100     assert((~0xf & in) == 0, "must fit in 4 bits");
  2101     switch(in) {
  2102       case T_BOOLEAN:
  2103       case T_BYTE:
  2104       case T_SHORT:
  2105       case T_CHAR:
  2106         // There are all promoted to T_INT in the calling convention
  2107         return T_INT;
  2109       case T_OBJECT:
  2110       case T_ARRAY:
  2111 #ifdef _LP64
  2112         return T_LONG;
  2113 #else
  2114         return T_INT;
  2115 #endif
  2117       case T_INT:
  2118       case T_LONG:
  2119       case T_FLOAT:
  2120       case T_DOUBLE:
  2121       case T_VOID:
  2122         return in;
  2124       default:
  2125         ShouldNotReachHere();
  2126         return T_CONFLICT;
  2130  public:
  2131   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2132     // The fingerprint is based on the BasicType signature encoded
  2133     // into an array of ints with four entries per int.
  2134     int* ptr;
  2135     int len = (total_args_passed + 3) >> 2;
  2136     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
  2137       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2138       // Storing the signature encoded as signed chars hits about 98%
  2139       // of the time.
  2140       _length = -len;
  2141       ptr = _value._compact;
  2142     } else {
  2143       _length = len;
  2144       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
  2145       ptr = _value._fingerprint;
  2148     // Now pack the BasicTypes with 4 per int
  2149     int sig_index = 0;
  2150     for (int index = 0; index < len; index++) {
  2151       int value = 0;
  2152       for (int byte = 0; byte < 4; byte++) {
  2153         if (sig_index < total_args_passed) {
  2154           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
  2157       ptr[index] = value;
  2161   ~AdapterFingerPrint() {
  2162     if (_length > 0) {
  2163       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
  2167   int value(int index) {
  2168     if (_length < 0) {
  2169       return _value._compact[index];
  2171     return _value._fingerprint[index];
  2173   int length() {
  2174     if (_length < 0) return -_length;
  2175     return _length;
  2178   bool is_compact() {
  2179     return _length <= 0;
  2182   unsigned int compute_hash() {
  2183     int hash = 0;
  2184     for (int i = 0; i < length(); i++) {
  2185       int v = value(i);
  2186       hash = (hash << 8) ^ v ^ (hash >> 5);
  2188     return (unsigned int)hash;
  2191   const char* as_string() {
  2192     stringStream st;
  2193     for (int i = 0; i < length(); i++) {
  2194       st.print(PTR_FORMAT, value(i));
  2196     return st.as_string();
  2199   bool equals(AdapterFingerPrint* other) {
  2200     if (other->_length != _length) {
  2201       return false;
  2203     if (_length < 0) {
  2204       return _value._compact[0] == other->_value._compact[0] &&
  2205              _value._compact[1] == other->_value._compact[1] &&
  2206              _value._compact[2] == other->_value._compact[2];
  2207     } else {
  2208       for (int i = 0; i < _length; i++) {
  2209         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2210           return false;
  2214     return true;
  2216 };
  2219 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2220 class AdapterHandlerTable : public BasicHashtable {
  2221   friend class AdapterHandlerTableIterator;
  2223  private:
  2225 #ifndef PRODUCT
  2226   static int _lookups; // number of calls to lookup
  2227   static int _buckets; // number of buckets checked
  2228   static int _equals;  // number of buckets checked with matching hash
  2229   static int _hits;    // number of successful lookups
  2230   static int _compact; // number of equals calls with compact signature
  2231 #endif
  2233   AdapterHandlerEntry* bucket(int i) {
  2234     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  2237  public:
  2238   AdapterHandlerTable()
  2239     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
  2241   // Create a new entry suitable for insertion in the table
  2242   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2243     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
  2244     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2245     return entry;
  2248   // Insert an entry into the table
  2249   void add(AdapterHandlerEntry* entry) {
  2250     int index = hash_to_index(entry->hash());
  2251     add_entry(index, entry);
  2254   void free_entry(AdapterHandlerEntry* entry) {
  2255     entry->deallocate();
  2256     BasicHashtable::free_entry(entry);
  2259   // Find a entry with the same fingerprint if it exists
  2260   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2261     NOT_PRODUCT(_lookups++);
  2262     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2263     unsigned int hash = fp.compute_hash();
  2264     int index = hash_to_index(hash);
  2265     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2266       NOT_PRODUCT(_buckets++);
  2267       if (e->hash() == hash) {
  2268         NOT_PRODUCT(_equals++);
  2269         if (fp.equals(e->fingerprint())) {
  2270 #ifndef PRODUCT
  2271           if (fp.is_compact()) _compact++;
  2272           _hits++;
  2273 #endif
  2274           return e;
  2278     return NULL;
  2281 #ifndef PRODUCT
  2282   void print_statistics() {
  2283     ResourceMark rm;
  2284     int longest = 0;
  2285     int empty = 0;
  2286     int total = 0;
  2287     int nonempty = 0;
  2288     for (int index = 0; index < table_size(); index++) {
  2289       int count = 0;
  2290       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2291         count++;
  2293       if (count != 0) nonempty++;
  2294       if (count == 0) empty++;
  2295       if (count > longest) longest = count;
  2296       total += count;
  2298     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2299                   empty, longest, total, total / (double)nonempty);
  2300     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2301                   _lookups, _buckets, _equals, _hits, _compact);
  2303 #endif
  2304 };
  2307 #ifndef PRODUCT
  2309 int AdapterHandlerTable::_lookups;
  2310 int AdapterHandlerTable::_buckets;
  2311 int AdapterHandlerTable::_equals;
  2312 int AdapterHandlerTable::_hits;
  2313 int AdapterHandlerTable::_compact;
  2315 #endif
  2317 class AdapterHandlerTableIterator : public StackObj {
  2318  private:
  2319   AdapterHandlerTable* _table;
  2320   int _index;
  2321   AdapterHandlerEntry* _current;
  2323   void scan() {
  2324     while (_index < _table->table_size()) {
  2325       AdapterHandlerEntry* a = _table->bucket(_index);
  2326       _index++;
  2327       if (a != NULL) {
  2328         _current = a;
  2329         return;
  2334  public:
  2335   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2336     scan();
  2338   bool has_next() {
  2339     return _current != NULL;
  2341   AdapterHandlerEntry* next() {
  2342     if (_current != NULL) {
  2343       AdapterHandlerEntry* result = _current;
  2344       _current = _current->next();
  2345       if (_current == NULL) scan();
  2346       return result;
  2347     } else {
  2348       return NULL;
  2351 };
  2354 // ---------------------------------------------------------------------------
  2355 // Implementation of AdapterHandlerLibrary
  2356 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2357 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2358 const int AdapterHandlerLibrary_size = 16*K;
  2359 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2361 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2362   // Should be called only when AdapterHandlerLibrary_lock is active.
  2363   if (_buffer == NULL) // Initialize lazily
  2364       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2365   return _buffer;
  2368 void AdapterHandlerLibrary::initialize() {
  2369   if (_adapters != NULL) return;
  2370   _adapters = new AdapterHandlerTable();
  2372   // Create a special handler for abstract methods.  Abstract methods
  2373   // are never compiled so an i2c entry is somewhat meaningless, but
  2374   // fill it in with something appropriate just in case.  Pass handle
  2375   // wrong method for the c2i transitions.
  2376   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2377   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2378                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2379                                                               wrong_method, wrong_method);
  2382 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2383                                                       address i2c_entry,
  2384                                                       address c2i_entry,
  2385                                                       address c2i_unverified_entry) {
  2386   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2389 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2390   // Use customized signature handler.  Need to lock around updates to
  2391   // the AdapterHandlerTable (it is not safe for concurrent readers
  2392   // and a single writer: this could be fixed if it becomes a
  2393   // problem).
  2395   // Get the address of the ic_miss handlers before we grab the
  2396   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2397   // was caused by the initialization of the stubs happening
  2398   // while we held the lock and then notifying jvmti while
  2399   // holding it. This just forces the initialization to be a little
  2400   // earlier.
  2401   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2402   assert(ic_miss != NULL, "must have handler");
  2404   ResourceMark rm;
  2406   NOT_PRODUCT(int insts_size);
  2407   AdapterBlob* B = NULL;
  2408   AdapterHandlerEntry* entry = NULL;
  2409   AdapterFingerPrint* fingerprint = NULL;
  2411     MutexLocker mu(AdapterHandlerLibrary_lock);
  2412     // make sure data structure is initialized
  2413     initialize();
  2415     if (method->is_abstract()) {
  2416       return _abstract_method_handler;
  2419     // Fill in the signature array, for the calling-convention call.
  2420     int total_args_passed = method->size_of_parameters(); // All args on stack
  2422     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2423     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2424     int i = 0;
  2425     if (!method->is_static())  // Pass in receiver first
  2426       sig_bt[i++] = T_OBJECT;
  2427     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2428       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2429       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2430         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2432     assert(i == total_args_passed, "");
  2434     // Lookup method signature's fingerprint
  2435     entry = _adapters->lookup(total_args_passed, sig_bt);
  2437 #ifdef ASSERT
  2438     AdapterHandlerEntry* shared_entry = NULL;
  2439     if (VerifyAdapterSharing && entry != NULL) {
  2440       shared_entry = entry;
  2441       entry = NULL;
  2443 #endif
  2445     if (entry != NULL) {
  2446       return entry;
  2449     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2450     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2452     // Make a C heap allocated version of the fingerprint to store in the adapter
  2453     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2455     // Create I2C & C2I handlers
  2457     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2458     if (buf != NULL) {
  2459       CodeBuffer buffer(buf);
  2460       short buffer_locs[20];
  2461       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2462                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2463       MacroAssembler _masm(&buffer);
  2465       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2466                                                      total_args_passed,
  2467                                                      comp_args_on_stack,
  2468                                                      sig_bt,
  2469                                                      regs,
  2470                                                      fingerprint);
  2472 #ifdef ASSERT
  2473       if (VerifyAdapterSharing) {
  2474         if (shared_entry != NULL) {
  2475           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2476                  "code must match");
  2477           // Release the one just created and return the original
  2478           _adapters->free_entry(entry);
  2479           return shared_entry;
  2480         } else  {
  2481           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2484 #endif
  2486       B = AdapterBlob::create(&buffer);
  2487       NOT_PRODUCT(insts_size = buffer.insts_size());
  2489     if (B == NULL) {
  2490       // CodeCache is full, disable compilation
  2491       // Ought to log this but compile log is only per compile thread
  2492       // and we're some non descript Java thread.
  2493       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2494       CompileBroker::handle_full_code_cache();
  2495       return NULL; // Out of CodeCache space
  2497     entry->relocate(B->content_begin());
  2498 #ifndef PRODUCT
  2499     // debugging suppport
  2500     if (PrintAdapterHandlers) {
  2501       tty->cr();
  2502       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
  2503                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2504                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
  2505       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2506       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
  2508 #endif
  2510     _adapters->add(entry);
  2512   // Outside of the lock
  2513   if (B != NULL) {
  2514     char blob_id[256];
  2515     jio_snprintf(blob_id,
  2516                  sizeof(blob_id),
  2517                  "%s(%s)@" PTR_FORMAT,
  2518                  B->name(),
  2519                  fingerprint->as_string(),
  2520                  B->content_begin());
  2521     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2523     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2524       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2527   return entry;
  2530 void AdapterHandlerEntry::relocate(address new_base) {
  2531     ptrdiff_t delta = new_base - _i2c_entry;
  2532     _i2c_entry += delta;
  2533     _c2i_entry += delta;
  2534     _c2i_unverified_entry += delta;
  2538 void AdapterHandlerEntry::deallocate() {
  2539   delete _fingerprint;
  2540 #ifdef ASSERT
  2541   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
  2542   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
  2543 #endif
  2547 #ifdef ASSERT
  2548 // Capture the code before relocation so that it can be compared
  2549 // against other versions.  If the code is captured after relocation
  2550 // then relative instructions won't be equivalent.
  2551 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2552   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
  2553   _code_length = length;
  2554   memcpy(_saved_code, buffer, length);
  2555   _total_args_passed = total_args_passed;
  2556   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
  2557   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2561 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2562   if (length != _code_length) {
  2563     return false;
  2565   for (int i = 0; i < length; i++) {
  2566     if (buffer[i] != _saved_code[i]) {
  2567       return false;
  2570   return true;
  2572 #endif
  2575 // Create a native wrapper for this native method.  The wrapper converts the
  2576 // java compiled calling convention to the native convention, handlizes
  2577 // arguments, and transitions to native.  On return from the native we transition
  2578 // back to java blocking if a safepoint is in progress.
  2579 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2580   ResourceMark rm;
  2581   nmethod* nm = NULL;
  2583   assert(method->has_native_function(), "must have something valid to call!");
  2586     // perform the work while holding the lock, but perform any printing outside the lock
  2587     MutexLocker mu(AdapterHandlerLibrary_lock);
  2588     // See if somebody beat us to it
  2589     nm = method->code();
  2590     if (nm) {
  2591       return nm;
  2594     ResourceMark rm;
  2596     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2597     if (buf != NULL) {
  2598       CodeBuffer buffer(buf);
  2599       double locs_buf[20];
  2600       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2601       MacroAssembler _masm(&buffer);
  2603       // Fill in the signature array, for the calling-convention call.
  2604       int total_args_passed = method->size_of_parameters();
  2606       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2607       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2608       int i=0;
  2609       if( !method->is_static() )  // Pass in receiver first
  2610         sig_bt[i++] = T_OBJECT;
  2611       SignatureStream ss(method->signature());
  2612       for( ; !ss.at_return_type(); ss.next()) {
  2613         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2614         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2615           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2617       assert( i==total_args_passed, "" );
  2618       BasicType ret_type = ss.type();
  2620       // Now get the compiled-Java layout as input arguments
  2621       int comp_args_on_stack;
  2622       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2624       // Generate the compiled-to-native wrapper code
  2625       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2626                                                   method,
  2627                                                   compile_id,
  2628                                                   total_args_passed,
  2629                                                   comp_args_on_stack,
  2630                                                   sig_bt,regs,
  2631                                                   ret_type);
  2635   // Must unlock before calling set_code
  2637   // Install the generated code.
  2638   if (nm != NULL) {
  2639     if (PrintCompilation) {
  2640       ttyLocker ttyl;
  2641       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2643     method->set_code(method, nm);
  2644     nm->post_compiled_method_load_event();
  2645   } else {
  2646     // CodeCache is full, disable compilation
  2647     CompileBroker::handle_full_code_cache();
  2649   return nm;
  2652 #ifdef HAVE_DTRACE_H
  2653 // Create a dtrace nmethod for this method.  The wrapper converts the
  2654 // java compiled calling convention to the native convention, makes a dummy call
  2655 // (actually nops for the size of the call instruction, which become a trap if
  2656 // probe is enabled). The returns to the caller. Since this all looks like a
  2657 // leaf no thread transition is needed.
  2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2660   ResourceMark rm;
  2661   nmethod* nm = NULL;
  2663   if (PrintCompilation) {
  2664     ttyLocker ttyl;
  2665     tty->print("---   n%s  ");
  2666     method->print_short_name(tty);
  2667     if (method->is_static()) {
  2668       tty->print(" (static)");
  2670     tty->cr();
  2674     // perform the work while holding the lock, but perform any printing
  2675     // outside the lock
  2676     MutexLocker mu(AdapterHandlerLibrary_lock);
  2677     // See if somebody beat us to it
  2678     nm = method->code();
  2679     if (nm) {
  2680       return nm;
  2683     ResourceMark rm;
  2685     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2686     if (buf != NULL) {
  2687       CodeBuffer buffer(buf);
  2688       // Need a few relocation entries
  2689       double locs_buf[20];
  2690       buffer.insts()->initialize_shared_locs(
  2691         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2692       MacroAssembler _masm(&buffer);
  2694       // Generate the compiled-to-native wrapper code
  2695       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2698   return nm;
  2701 // the dtrace method needs to convert java lang string to utf8 string.
  2702 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2703   typeArrayOop jlsValue  = java_lang_String::value(src);
  2704   int          jlsOffset = java_lang_String::offset(src);
  2705   int          jlsLen    = java_lang_String::length(src);
  2706   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2707                                            jlsValue->char_at_addr(jlsOffset);
  2708   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2709   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2711 #endif // ndef HAVE_DTRACE_H
  2713 // -------------------------------------------------------------------------
  2714 // Java-Java calling convention
  2715 // (what you use when Java calls Java)
  2717 //------------------------------name_for_receiver----------------------------------
  2718 // For a given signature, return the VMReg for parameter 0.
  2719 VMReg SharedRuntime::name_for_receiver() {
  2720   VMRegPair regs;
  2721   BasicType sig_bt = T_OBJECT;
  2722   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2723   // Return argument 0 register.  In the LP64 build pointers
  2724   // take 2 registers, but the VM wants only the 'main' name.
  2725   return regs.first();
  2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2729   // This method is returning a data structure allocating as a
  2730   // ResourceObject, so do not put any ResourceMarks in here.
  2731   char *s = sig->as_C_string();
  2732   int len = (int)strlen(s);
  2733   *s++; len--;                  // Skip opening paren
  2734   char *t = s+len;
  2735   while( *(--t) != ')' ) ;      // Find close paren
  2737   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2738   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2739   int cnt = 0;
  2740   if (has_receiver) {
  2741     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2744   while( s < t ) {
  2745     switch( *s++ ) {            // Switch on signature character
  2746     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2747     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2748     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2749     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2750     case 'I': sig_bt[cnt++] = T_INT;     break;
  2751     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2752     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2753     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2754     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2755     case 'L':                   // Oop
  2756       while( *s++ != ';'  ) ;   // Skip signature
  2757       sig_bt[cnt++] = T_OBJECT;
  2758       break;
  2759     case '[': {                 // Array
  2760       do {                      // Skip optional size
  2761         while( *s >= '0' && *s <= '9' ) s++;
  2762       } while( *s++ == '[' );   // Nested arrays?
  2763       // Skip element type
  2764       if( s[-1] == 'L' )
  2765         while( *s++ != ';'  ) ; // Skip signature
  2766       sig_bt[cnt++] = T_ARRAY;
  2767       break;
  2769     default : ShouldNotReachHere();
  2772   assert( cnt < 256, "grow table size" );
  2774   int comp_args_on_stack;
  2775   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2777   // the calling convention doesn't count out_preserve_stack_slots so
  2778   // we must add that in to get "true" stack offsets.
  2780   if (comp_args_on_stack) {
  2781     for (int i = 0; i < cnt; i++) {
  2782       VMReg reg1 = regs[i].first();
  2783       if( reg1->is_stack()) {
  2784         // Yuck
  2785         reg1 = reg1->bias(out_preserve_stack_slots());
  2787       VMReg reg2 = regs[i].second();
  2788       if( reg2->is_stack()) {
  2789         // Yuck
  2790         reg2 = reg2->bias(out_preserve_stack_slots());
  2792       regs[i].set_pair(reg2, reg1);
  2796   // results
  2797   *arg_size = cnt;
  2798   return regs;
  2801 // OSR Migration Code
  2802 //
  2803 // This code is used convert interpreter frames into compiled frames.  It is
  2804 // called from very start of a compiled OSR nmethod.  A temp array is
  2805 // allocated to hold the interesting bits of the interpreter frame.  All
  2806 // active locks are inflated to allow them to move.  The displaced headers and
  2807 // active interpeter locals are copied into the temp buffer.  Then we return
  2808 // back to the compiled code.  The compiled code then pops the current
  2809 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2810 // copies the interpreter locals and displaced headers where it wants.
  2811 // Finally it calls back to free the temp buffer.
  2812 //
  2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2817 #ifdef IA64
  2818   ShouldNotReachHere(); // NYI
  2819 #endif /* IA64 */
  2821   //
  2822   // This code is dependent on the memory layout of the interpreter local
  2823   // array and the monitors. On all of our platforms the layout is identical
  2824   // so this code is shared. If some platform lays the their arrays out
  2825   // differently then this code could move to platform specific code or
  2826   // the code here could be modified to copy items one at a time using
  2827   // frame accessor methods and be platform independent.
  2829   frame fr = thread->last_frame();
  2830   assert( fr.is_interpreted_frame(), "" );
  2831   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2833   // Figure out how many monitors are active.
  2834   int active_monitor_count = 0;
  2835   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2836        kptr < fr.interpreter_frame_monitor_begin();
  2837        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2838     if( kptr->obj() != NULL ) active_monitor_count++;
  2841   // QQQ we could place number of active monitors in the array so that compiled code
  2842   // could double check it.
  2844   methodOop moop = fr.interpreter_frame_method();
  2845   int max_locals = moop->max_locals();
  2846   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2847   int buf_size_words = max_locals + active_monitor_count*2;
  2848   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2850   // Copy the locals.  Order is preserved so that loading of longs works.
  2851   // Since there's no GC I can copy the oops blindly.
  2852   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2853   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2854                        (HeapWord*)&buf[0],
  2855                        max_locals);
  2857   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2858   int i = max_locals;
  2859   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2860        kptr2 < fr.interpreter_frame_monitor_begin();
  2861        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2862     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2863       BasicLock *lock = kptr2->lock();
  2864       // Inflate so the displaced header becomes position-independent
  2865       if (lock->displaced_header()->is_unlocked())
  2866         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2867       // Now the displaced header is free to move
  2868       buf[i++] = (intptr_t)lock->displaced_header();
  2869       buf[i++] = (intptr_t)kptr2->obj();
  2872   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2874   return buf;
  2875 JRT_END
  2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2878   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2879 JRT_END
  2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2882   AdapterHandlerTableIterator iter(_adapters);
  2883   while (iter.has_next()) {
  2884     AdapterHandlerEntry* a = iter.next();
  2885     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2887   return false;
  2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2891   AdapterHandlerTableIterator iter(_adapters);
  2892   while (iter.has_next()) {
  2893     AdapterHandlerEntry* a = iter.next();
  2894     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2895       st->print("Adapter for signature: ");
  2896       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2897                    a->fingerprint()->as_string(),
  2898                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2900       return;
  2903   assert(false, "Should have found handler");
  2906 #ifndef PRODUCT
  2908 void AdapterHandlerLibrary::print_statistics() {
  2909   _adapters->print_statistics();
  2912 #endif /* PRODUCT */

mercurial