src/share/vm/adlc/formssel.cpp

Mon, 25 Jun 2012 21:33:35 -0400

author
coleenp
date
Mon, 25 Jun 2012 21:33:35 -0400
changeset 3875
246d977b51f2
parent 3846
8b0a4867acf0
child 3882
8c92982cbbc4
permissions
-rw-r--r--

7178670: runtime/7158800/BadUtf8.java fails in SymbolTable::rehash_table
Summary: Cannot delete _buckets and HashtableEntries in shared space (CDS)
Reviewed-by: acorn, kvn, dlong, dcubed, kamg

duke@435 1 /*
trims@1907 2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
roland@3316 35 _has_call(false)
twisti@2350 36 {
duke@435 37 _ftype = Form::INS;
duke@435 38
duke@435 39 _matrule = NULL;
duke@435 40 _insencode = NULL;
twisti@2350 41 _constant = NULL;
duke@435 42 _opcode = NULL;
duke@435 43 _size = NULL;
duke@435 44 _attribs = NULL;
duke@435 45 _predicate = NULL;
duke@435 46 _exprule = NULL;
duke@435 47 _rewrule = NULL;
duke@435 48 _format = NULL;
duke@435 49 _peephole = NULL;
duke@435 50 _ins_pipe = NULL;
duke@435 51 _uniq_idx = NULL;
duke@435 52 _num_uniq = 0;
duke@435 53 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 54 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 55 _cisc_reg_mask_name = NULL;
duke@435 56 _is_cisc_alternate = false;
duke@435 57 _is_short_branch = false;
duke@435 58 _short_branch_form = NULL;
duke@435 59 _alignment = 1;
duke@435 60 }
duke@435 61
duke@435 62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 63 : _ident(id), _ideal_only(false),
duke@435 64 _localNames(instr->_localNames),
twisti@2350 65 _effects(instr->_effects),
roland@3316 66 _is_mach_constant(false),
roland@3316 67 _has_call(false)
twisti@2350 68 {
duke@435 69 _ftype = Form::INS;
duke@435 70
duke@435 71 _matrule = rule;
duke@435 72 _insencode = instr->_insencode;
twisti@2350 73 _constant = instr->_constant;
duke@435 74 _opcode = instr->_opcode;
duke@435 75 _size = instr->_size;
duke@435 76 _attribs = instr->_attribs;
duke@435 77 _predicate = instr->_predicate;
duke@435 78 _exprule = instr->_exprule;
duke@435 79 _rewrule = instr->_rewrule;
duke@435 80 _format = instr->_format;
duke@435 81 _peephole = instr->_peephole;
duke@435 82 _ins_pipe = instr->_ins_pipe;
duke@435 83 _uniq_idx = instr->_uniq_idx;
duke@435 84 _num_uniq = instr->_num_uniq;
duke@435 85 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 86 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 87 _cisc_reg_mask_name = NULL;
duke@435 88 _is_cisc_alternate = false;
duke@435 89 _is_short_branch = false;
duke@435 90 _short_branch_form = NULL;
duke@435 91 _alignment = 1;
duke@435 92 // Copy parameters
duke@435 93 const char *name;
duke@435 94 instr->_parameters.reset();
duke@435 95 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 96 _parameters.addName(name);
duke@435 97 }
duke@435 98
duke@435 99 InstructForm::~InstructForm() {
duke@435 100 }
duke@435 101
duke@435 102 InstructForm *InstructForm::is_instruction() const {
duke@435 103 return (InstructForm*)this;
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::ideal_only() const {
duke@435 107 return _ideal_only;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::sets_result() const {
duke@435 111 return (_matrule != NULL && _matrule->sets_result());
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::needs_projections() {
duke@435 115 _components.reset();
duke@435 116 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 117 if (comp->isa(Component::KILL)) {
duke@435 118 return true;
duke@435 119 }
duke@435 120 }
duke@435 121 return false;
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 bool InstructForm::has_temps() {
duke@435 126 if (_matrule) {
duke@435 127 // Examine each component to see if it is a TEMP
duke@435 128 _components.reset();
duke@435 129 // Skip the first component, if already handled as (SET dst (...))
duke@435 130 Component *comp = NULL;
duke@435 131 if (sets_result()) comp = _components.iter();
duke@435 132 while ((comp = _components.iter()) != NULL) {
duke@435 133 if (comp->isa(Component::TEMP)) {
duke@435 134 return true;
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 return false;
duke@435 140 }
duke@435 141
duke@435 142 uint InstructForm::num_defs_or_kills() {
duke@435 143 uint defs_or_kills = 0;
duke@435 144
duke@435 145 _components.reset();
duke@435 146 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 147 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 148 ++defs_or_kills;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152 return defs_or_kills;
duke@435 153 }
duke@435 154
duke@435 155 // This instruction has an expand rule?
duke@435 156 bool InstructForm::expands() const {
duke@435 157 return ( _exprule != NULL );
duke@435 158 }
duke@435 159
duke@435 160 // This instruction has a peephole rule?
duke@435 161 Peephole *InstructForm::peepholes() const {
duke@435 162 return _peephole;
duke@435 163 }
duke@435 164
duke@435 165 // This instruction has a peephole rule?
duke@435 166 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 167 if( _peephole == NULL ) {
duke@435 168 _peephole = peephole;
duke@435 169 } else {
duke@435 170 _peephole->append_peephole(peephole);
duke@435 171 }
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 // ideal opcode enumeration
duke@435 176 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 177 if( !_matrule ) return "Node"; // Something weird
duke@435 178 // Chain rules do not really have ideal Opcodes; use their source
duke@435 179 // operand ideal Opcode instead.
duke@435 180 if( is_simple_chain_rule(globalNames) ) {
duke@435 181 const char *src = _matrule->_rChild->_opType;
duke@435 182 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 183 assert( src_op, "Not operand class of chain rule" );
duke@435 184 if( !src_op->_matrule ) return "Node";
duke@435 185 return src_op->_matrule->_opType;
duke@435 186 }
duke@435 187 // Operand chain rules do not really have ideal Opcodes
duke@435 188 if( _matrule->is_chain_rule(globalNames) )
duke@435 189 return "Node";
duke@435 190 return strcmp(_matrule->_opType,"Set")
duke@435 191 ? _matrule->_opType
duke@435 192 : _matrule->_rChild->_opType;
duke@435 193 }
duke@435 194
duke@435 195 // Recursive check on all operands' match rules in my match rule
duke@435 196 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 197 if ( ! _matrule) return false;
duke@435 198
duke@435 199 int index = 0;
duke@435 200 if (_matrule->find_type("Goto", index)) return true;
duke@435 201 if (_matrule->find_type("If", index)) return true;
duke@435 202 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 203 if (_matrule->find_type("Return", index)) return true;
duke@435 204 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 205 if (_matrule->find_type("TailCall", index)) return true;
duke@435 206 if (_matrule->find_type("TailJump", index)) return true;
duke@435 207 if (_matrule->find_type("Halt", index)) return true;
duke@435 208 if (_matrule->find_type("Jump", index)) return true;
duke@435 209
duke@435 210 return is_parm(globals);
duke@435 211 }
duke@435 212
duke@435 213 // Recursive check on all operands' match rules in my match rule
duke@435 214 bool InstructForm::is_projection(FormDict &globals) {
duke@435 215 if ( ! _matrule) return false;
duke@435 216
duke@435 217 int index = 0;
duke@435 218 if (_matrule->find_type("Goto", index)) return true;
duke@435 219 if (_matrule->find_type("Return", index)) return true;
duke@435 220 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 221 if (_matrule->find_type("TailCall",index)) return true;
duke@435 222 if (_matrule->find_type("TailJump",index)) return true;
duke@435 223 if (_matrule->find_type("Halt", index)) return true;
duke@435 224
duke@435 225 return false;
duke@435 226 }
duke@435 227
duke@435 228 // Recursive check on all operands' match rules in my match rule
duke@435 229 bool InstructForm::is_parm(FormDict &globals) {
duke@435 230 if ( ! _matrule) return false;
duke@435 231
duke@435 232 int index = 0;
duke@435 233 if (_matrule->find_type("Parm",index)) return true;
duke@435 234
duke@435 235 return false;
duke@435 236 }
duke@435 237
duke@435 238
duke@435 239 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 240 int InstructForm::is_ideal_copy() const {
duke@435 241 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 242 }
duke@435 243
duke@435 244 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 245 int InstructForm::is_expensive() const {
duke@435 246 // We can prove it is cheap if it has an empty encoding.
duke@435 247 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 248 if (is_empty_encoding())
duke@435 249 return 0;
duke@435 250
duke@435 251 if (is_tls_instruction())
duke@435 252 return 1;
duke@435 253
duke@435 254 if (_matrule == NULL) return 0;
duke@435 255
duke@435 256 return _matrule->is_expensive();
duke@435 257 }
duke@435 258
duke@435 259 // Has an empty encoding if _size is a constant zero or there
duke@435 260 // are no ins_encode tokens.
duke@435 261 int InstructForm::is_empty_encoding() const {
duke@435 262 if (_insencode != NULL) {
duke@435 263 _insencode->reset();
duke@435 264 if (_insencode->encode_class_iter() == NULL) {
duke@435 265 return 1;
duke@435 266 }
duke@435 267 }
duke@435 268 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 269 return 1;
duke@435 270 }
duke@435 271 return 0;
duke@435 272 }
duke@435 273
duke@435 274 int InstructForm::is_tls_instruction() const {
duke@435 275 if (_ident != NULL &&
duke@435 276 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 277 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 278 return 1;
duke@435 279 }
duke@435 280
duke@435 281 if (_matrule != NULL && _insencode != NULL) {
duke@435 282 const char* opType = _matrule->_opType;
duke@435 283 if (strcmp(opType, "Set")==0)
duke@435 284 opType = _matrule->_rChild->_opType;
duke@435 285 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 286 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 287 (_ident == NULL ? "NULL" : _ident));
duke@435 288 return 1;
duke@435 289 }
duke@435 290 }
duke@435 291
duke@435 292 return 0;
duke@435 293 }
duke@435 294
duke@435 295
duke@435 296 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 297 bool InstructForm::is_ideal_if() const {
duke@435 298 if( _matrule == NULL ) return false;
duke@435 299
duke@435 300 return _matrule->is_ideal_if();
duke@435 301 }
duke@435 302
duke@435 303 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 304 bool InstructForm::is_ideal_fastlock() const {
duke@435 305 if( _matrule == NULL ) return false;
duke@435 306
duke@435 307 return _matrule->is_ideal_fastlock();
duke@435 308 }
duke@435 309
duke@435 310 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 311 bool InstructForm::is_ideal_membar() const {
duke@435 312 if( _matrule == NULL ) return false;
duke@435 313
duke@435 314 return _matrule->is_ideal_membar();
duke@435 315 }
duke@435 316
duke@435 317 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 318 bool InstructForm::is_ideal_loadPC() const {
duke@435 319 if( _matrule == NULL ) return false;
duke@435 320
duke@435 321 return _matrule->is_ideal_loadPC();
duke@435 322 }
duke@435 323
duke@435 324 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 325 bool InstructForm::is_ideal_box() const {
duke@435 326 if( _matrule == NULL ) return false;
duke@435 327
duke@435 328 return _matrule->is_ideal_box();
duke@435 329 }
duke@435 330
duke@435 331 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 332 bool InstructForm::is_ideal_goto() const {
duke@435 333 if( _matrule == NULL ) return false;
duke@435 334
duke@435 335 return _matrule->is_ideal_goto();
duke@435 336 }
duke@435 337
duke@435 338 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 339 bool InstructForm::is_ideal_jump() const {
duke@435 340 if( _matrule == NULL ) return false;
duke@435 341
duke@435 342 return _matrule->is_ideal_jump();
duke@435 343 }
duke@435 344
kvn@3051 345 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 346 bool InstructForm::is_ideal_branch() const {
duke@435 347 if( _matrule == NULL ) return false;
duke@435 348
kvn@3051 349 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 354 bool InstructForm::is_ideal_return() const {
duke@435 355 if( _matrule == NULL ) return false;
duke@435 356
duke@435 357 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 358 int index = 0;
duke@435 359 if (_matrule->find_type("Return",index)) return true;
duke@435 360 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 361 if (_matrule->find_type("TailCall",index)) return true;
duke@435 362 if (_matrule->find_type("TailJump",index)) return true;
duke@435 363
duke@435 364 return false;
duke@435 365 }
duke@435 366
duke@435 367 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 368 bool InstructForm::is_ideal_halt() const {
duke@435 369 int index = 0;
duke@435 370 return _matrule && _matrule->find_type("Halt",index);
duke@435 371 }
duke@435 372
duke@435 373 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 374 bool InstructForm::is_ideal_safepoint() const {
duke@435 375 int index = 0;
duke@435 376 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 380 bool InstructForm::is_ideal_nop() const {
duke@435 381 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 382 }
duke@435 383
duke@435 384 bool InstructForm::is_ideal_control() const {
duke@435 385 if ( ! _matrule) return false;
duke@435 386
kvn@3051 387 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 388 }
duke@435 389
duke@435 390 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 391 Form::CallType InstructForm::is_ideal_call() const {
duke@435 392 if( _matrule == NULL ) return Form::invalid_type;
duke@435 393
duke@435 394 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 395 int idx = 0;
duke@435 396 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 397 idx = 0;
duke@435 398 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 399 idx = 0;
duke@435 400 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 401 idx = 0;
duke@435 402 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 403 idx = 0;
duke@435 404 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 405 idx = 0;
duke@435 406 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 407 idx = 0;
duke@435 408 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 409 idx = 0;
duke@435 410
duke@435 411 return Form::invalid_type;
duke@435 412 }
duke@435 413
duke@435 414 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 415 Form::DataType InstructForm::is_ideal_load() const {
duke@435 416 if( _matrule == NULL ) return Form::none;
duke@435 417
duke@435 418 return _matrule->is_ideal_load();
duke@435 419 }
duke@435 420
never@1290 421 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 422 bool InstructForm::skip_antidep_check() const {
never@1290 423 if( _matrule == NULL ) return false;
never@1290 424
never@1290 425 return _matrule->skip_antidep_check();
never@1290 426 }
never@1290 427
duke@435 428 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 429 Form::DataType InstructForm::is_ideal_store() const {
duke@435 430 if( _matrule == NULL ) return Form::none;
duke@435 431
duke@435 432 return _matrule->is_ideal_store();
duke@435 433 }
duke@435 434
duke@435 435 // Return the input register that must match the output register
duke@435 436 // If this is not required, return 0
duke@435 437 uint InstructForm::two_address(FormDict &globals) {
duke@435 438 uint matching_input = 0;
duke@435 439 if(_components.count() == 0) return 0;
duke@435 440
duke@435 441 _components.reset();
duke@435 442 Component *comp = _components.iter();
duke@435 443 // Check if there is a DEF
duke@435 444 if( comp->isa(Component::DEF) ) {
duke@435 445 // Check that this is a register
duke@435 446 const char *def_type = comp->_type;
duke@435 447 const Form *form = globals[def_type];
duke@435 448 OperandForm *op = form->is_operand();
duke@435 449 if( op ) {
duke@435 450 if( op->constrained_reg_class() != NULL &&
duke@435 451 op->interface_type(globals) == Form::register_interface ) {
duke@435 452 // Remember the local name for equality test later
duke@435 453 const char *def_name = comp->_name;
duke@435 454 // Check if a component has the same name and is a USE
duke@435 455 do {
duke@435 456 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 457 return operand_position_format(def_name);
duke@435 458 }
duke@435 459 } while( (comp = _components.iter()) != NULL);
duke@435 460 }
duke@435 461 }
duke@435 462 }
duke@435 463
duke@435 464 return 0;
duke@435 465 }
duke@435 466
duke@435 467
duke@435 468 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 470 const char *dummy = NULL;
duke@435 471 const char *dummy2 = NULL;
duke@435 472 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 473 }
duke@435 474 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 475 const char * &opTypeParam) {
duke@435 476 const char *result = NULL;
duke@435 477
duke@435 478 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 479 }
duke@435 480
duke@435 481 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 482 const char * &opTypeParam, const char * &resultParam) {
duke@435 483 Form::DataType data_type = Form::none;
duke@435 484 if ( ! _matrule) return data_type;
duke@435 485
duke@435 486 // !!!!!
duke@435 487 // The source of the chain rule is 'position = 1'
duke@435 488 uint position = 1;
duke@435 489 const char *result = NULL;
duke@435 490 const char *name = NULL;
duke@435 491 const char *opType = NULL;
duke@435 492 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 493 if ( _matrule->is_chain_rule(globals)
duke@435 494 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 495 data_type = ideal_to_const_type(opType);
duke@435 496
duke@435 497 // if it isn't an ideal constant type, just return
duke@435 498 if ( data_type == Form::none ) return data_type;
duke@435 499
duke@435 500 // Ideal constant types also adjust the opType parameter.
duke@435 501 resultParam = result;
duke@435 502 opTypeParam = opType;
duke@435 503 return data_type;
duke@435 504 }
duke@435 505
duke@435 506 return data_type;
duke@435 507 }
duke@435 508
duke@435 509 // Check if a simple chain rule
duke@435 510 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 511 if( _matrule && _matrule->sets_result()
duke@435 512 && _matrule->_rChild->_lChild == NULL
duke@435 513 && globals[_matrule->_rChild->_opType]
duke@435 514 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 515 return true;
duke@435 516 }
duke@435 517 return false;
duke@435 518 }
duke@435 519
duke@435 520 // check for structural rematerialization
duke@435 521 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 522 bool rematerialize = false;
duke@435 523
duke@435 524 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 525 if( data_type != Form::none )
duke@435 526 rematerialize = true;
duke@435 527
duke@435 528 // Constants
duke@435 529 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 530 rematerialize = true;
duke@435 531
duke@435 532 // Pseudo-constants (values easily available to the runtime)
duke@435 533 if (is_empty_encoding() && is_tls_instruction())
duke@435 534 rematerialize = true;
duke@435 535
duke@435 536 // 1-input, 1-output, such as copies or increments.
duke@435 537 if( _components.count() == 2 &&
duke@435 538 _components[0]->is(Component::DEF) &&
duke@435 539 _components[1]->isa(Component::USE) )
duke@435 540 rematerialize = true;
duke@435 541
duke@435 542 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 543 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 544 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 545 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 546 rematerialize = false;
duke@435 547 }
duke@435 548
duke@435 549 // Always rematerialize the flags. They are more expensive to save &
duke@435 550 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 551 if( _components.count() >= 1 ) {
duke@435 552 Component *c = _components[0];
duke@435 553 const Form *form = globals[c->_type];
duke@435 554 OperandForm *opform = form->is_operand();
duke@435 555 if( opform ) {
duke@435 556 // Avoid the special stack_slots register classes
duke@435 557 const char *rc_name = opform->constrained_reg_class();
duke@435 558 if( rc_name ) {
duke@435 559 if( strcmp(rc_name,"stack_slots") ) {
duke@435 560 // Check for ideal_type of RegFlags
duke@435 561 const char *type = opform->ideal_type( globals, registers );
duke@435 562 if( !strcmp(type,"RegFlags") )
duke@435 563 rematerialize = true;
duke@435 564 } else
duke@435 565 rematerialize = false; // Do not rematerialize things target stk
duke@435 566 }
duke@435 567 }
duke@435 568 }
duke@435 569
duke@435 570 return rematerialize;
duke@435 571 }
duke@435 572
duke@435 573 // loads from memory, so must check for anti-dependence
duke@435 574 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 575 if ( skip_antidep_check() ) return false;
never@1290 576
duke@435 577 // Machine independent loads must be checked for anti-dependences
duke@435 578 if( is_ideal_load() != Form::none ) return true;
duke@435 579
duke@435 580 // !!!!! !!!!! !!!!!
duke@435 581 // TEMPORARY
duke@435 582 // if( is_simple_chain_rule(globals) ) return false;
duke@435 583
cfang@1116 584 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 585 // but writes none
duke@435 586 if( _matrule && _matrule->_rChild &&
cfang@1116 587 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 588 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 589 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 590 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 591 return true;
duke@435 592
duke@435 593 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 594 bool USE_of_memory = false;
duke@435 595 bool DEF_of_memory = false;
duke@435 596 Component *comp = NULL;
duke@435 597 ComponentList &components = (ComponentList &)_components;
duke@435 598
duke@435 599 components.reset();
duke@435 600 while( (comp = components.iter()) != NULL ) {
duke@435 601 const Form *form = globals[comp->_type];
duke@435 602 if( !form ) continue;
duke@435 603 OpClassForm *op = form->is_opclass();
duke@435 604 if( !op ) continue;
duke@435 605 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 606 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 607 if( comp->isa(Component::DEF) ) {
duke@435 608 OperandForm *oper = form->is_operand();
duke@435 609 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 610 // Stack slots are unaliased memory handled by allocator
duke@435 611 oper = oper; // debug stopping point !!!!!
duke@435 612 } else {
duke@435 613 DEF_of_memory = true;
duke@435 614 }
duke@435 615 }
duke@435 616 }
duke@435 617 }
duke@435 618 return (USE_of_memory && !DEF_of_memory);
duke@435 619 }
duke@435 620
duke@435 621
duke@435 622 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 623 if( _matrule == NULL ) return false;
duke@435 624 if( !_matrule->_opType ) return false;
duke@435 625
duke@435 626 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 627 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 628 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 629 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 630 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
duke@435 631
duke@435 632 return false;
duke@435 633 }
duke@435 634
duke@435 635 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 636 // Machine independent loads must be checked for anti-dependences
duke@435 637 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 638 int USE_of_memory = 0;
duke@435 639 int DEF_of_memory = 0;
duke@435 640 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 641 Component *unique = NULL;
duke@435 642 Component *comp = NULL;
duke@435 643 ComponentList &components = (ComponentList &)_components;
duke@435 644
duke@435 645 components.reset();
duke@435 646 while( (comp = components.iter()) != NULL ) {
duke@435 647 const Form *form = globals[comp->_type];
duke@435 648 if( !form ) continue;
duke@435 649 OpClassForm *op = form->is_opclass();
duke@435 650 if( !op ) continue;
duke@435 651 if( op->stack_slots_only(globals) ) continue;
duke@435 652 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 653 if( comp->isa(Component::DEF) ) {
duke@435 654 last_memory_DEF = comp->_name;
duke@435 655 DEF_of_memory++;
duke@435 656 unique = comp;
duke@435 657 } else if( comp->isa(Component::USE) ) {
duke@435 658 if( last_memory_DEF != NULL ) {
duke@435 659 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 660 last_memory_DEF = NULL;
duke@435 661 }
duke@435 662 USE_of_memory++;
duke@435 663 if (DEF_of_memory == 0) // defs take precedence
duke@435 664 unique = comp;
duke@435 665 } else {
duke@435 666 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 667 }
duke@435 668 }
duke@435 669 }
duke@435 670 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 671 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 672 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 673 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 674 if( is_simple_chain_rule(globals) ) {
duke@435 675 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 676 //((InstructForm*)this)->dump();
duke@435 677 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 678 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 679 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 680 return NO_MEMORY_OPERAND;
duke@435 681 }
duke@435 682
duke@435 683 if( DEF_of_memory == 1 ) {
duke@435 684 assert(unique != NULL, "");
duke@435 685 if( USE_of_memory == 0 ) {
duke@435 686 // unique def, no uses
duke@435 687 } else {
duke@435 688 // // unique def, some uses
duke@435 689 // // must return bottom unless all uses match def
duke@435 690 // unique = NULL;
duke@435 691 }
duke@435 692 } else if( DEF_of_memory > 0 ) {
duke@435 693 // multiple defs, don't care about uses
duke@435 694 unique = NULL;
duke@435 695 } else if( USE_of_memory == 1) {
duke@435 696 // unique use, no defs
duke@435 697 assert(unique != NULL, "");
duke@435 698 } else if( USE_of_memory > 0 ) {
duke@435 699 // multiple uses, no defs
duke@435 700 unique = NULL;
duke@435 701 } else {
duke@435 702 assert(false, "bad case analysis");
duke@435 703 }
duke@435 704 // process the unique DEF or USE, if there is one
duke@435 705 if( unique == NULL ) {
duke@435 706 return MANY_MEMORY_OPERANDS;
duke@435 707 } else {
duke@435 708 int pos = components.operand_position(unique->_name);
duke@435 709 if( unique->isa(Component::DEF) ) {
duke@435 710 pos += 1; // get corresponding USE from DEF
duke@435 711 }
duke@435 712 assert(pos >= 1, "I was just looking at it!");
duke@435 713 return pos;
duke@435 714 }
duke@435 715 }
duke@435 716
duke@435 717 // missed the memory op??
duke@435 718 if( true ) { // %%% should not be necessary
duke@435 719 if( is_ideal_store() != Form::none ) {
duke@435 720 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 721 ((InstructForm*)this)->dump();
duke@435 722 // pretend it has multiple defs and uses
duke@435 723 return MANY_MEMORY_OPERANDS;
duke@435 724 }
duke@435 725 if( is_ideal_load() != Form::none ) {
duke@435 726 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 727 ((InstructForm*)this)->dump();
duke@435 728 // pretend it has multiple uses and no defs
duke@435 729 return MANY_MEMORY_OPERANDS;
duke@435 730 }
duke@435 731 }
duke@435 732
duke@435 733 return NO_MEMORY_OPERAND;
duke@435 734 }
duke@435 735
duke@435 736
duke@435 737 // This instruction captures the machine-independent bottom_type
duke@435 738 // Expected use is for pointer vs oop determination for LoadP
never@1896 739 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 740 if( _matrule && _matrule->_rChild &&
duke@435 741 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
duke@435 742 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
coleenp@548 743 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
coleenp@548 744 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
coleenp@548 745 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
kvn@651 746 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
duke@435 747 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
duke@435 748 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
duke@435 749 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 750 else if ( is_ideal_store() != Form::none ) return true;
duke@435 751
never@1896 752 if (needs_base_oop_edge(globals)) return true;
never@1896 753
duke@435 754 return false;
duke@435 755 }
duke@435 756
duke@435 757
duke@435 758 // Access instr_cost attribute or return NULL.
duke@435 759 const char* InstructForm::cost() {
duke@435 760 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 761 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 762 return cur->_val;
duke@435 763 }
duke@435 764 }
duke@435 765 return NULL;
duke@435 766 }
duke@435 767
duke@435 768 // Return count of top-level operands.
duke@435 769 uint InstructForm::num_opnds() {
duke@435 770 int num_opnds = _components.num_operands();
duke@435 771
duke@435 772 // Need special handling for matching some ideal nodes
duke@435 773 // i.e. Matching a return node
duke@435 774 /*
duke@435 775 if( _matrule ) {
duke@435 776 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 777 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 778 return 3;
duke@435 779 }
duke@435 780 */
duke@435 781 return num_opnds;
duke@435 782 }
duke@435 783
duke@435 784 // Return count of unmatched operands.
duke@435 785 uint InstructForm::num_post_match_opnds() {
duke@435 786 uint num_post_match_opnds = _components.count();
duke@435 787 uint num_match_opnds = _components.match_count();
duke@435 788 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 789
duke@435 790 return num_post_match_opnds;
duke@435 791 }
duke@435 792
duke@435 793 // Return the number of leaves below this complex operand
duke@435 794 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 795 if ( ! _matrule) return 0;
duke@435 796
duke@435 797 // This is a recursive invocation on all operands in the matchrule
duke@435 798 return _matrule->num_consts(globals);
duke@435 799 }
duke@435 800
duke@435 801 // Constants in match rule with specified type
duke@435 802 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 803 if ( ! _matrule) return 0;
duke@435 804
duke@435 805 // This is a recursive invocation on all operands in the matchrule
duke@435 806 return _matrule->num_consts(globals, type);
duke@435 807 }
duke@435 808
duke@435 809
duke@435 810 // Return the register class associated with 'leaf'.
duke@435 811 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 812 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 813
duke@435 814 return NULL;
duke@435 815 }
duke@435 816
duke@435 817
duke@435 818
duke@435 819 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 820 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 821 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 822
duke@435 823 // Need special handling for matching some ideal nodes
duke@435 824 // i.e. Matching a return node
duke@435 825 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 826 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 827 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 828 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 829 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 830 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 831 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 832
duke@435 833 if( _matrule->_rChild &&
kvn@1421 834 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 835 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 836 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 837 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
kvn@1421 838 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@1421 839 // take 1 control and 1 memory edges.
kvn@1421 840 return 2;
duke@435 841 }
duke@435 842
duke@435 843 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 844 // The AD file writer is shielded from knowledge of these edges.
duke@435 845 int base = 1; // Skip control
duke@435 846 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 847
duke@435 848 // Also skip the base-oop value for uses of derived oops.
duke@435 849 // The AD file writer is shielded from knowledge of these edges.
duke@435 850 base += needs_base_oop_edge(globals);
duke@435 851
duke@435 852 return base;
duke@435 853 }
duke@435 854
duke@435 855 // Implementation does not modify state of internal structures
duke@435 856 void InstructForm::build_components() {
duke@435 857 // Add top-level operands to the components
duke@435 858 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 859
duke@435 860 // Add parameters that "do not appear in match rule".
duke@435 861 bool has_temp = false;
duke@435 862 const char *name;
duke@435 863 const char *kill_name = NULL;
duke@435 864 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 865 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 866
twisti@1038 867 Effect* e = NULL;
twisti@1038 868 {
twisti@1038 869 const Form* form = _effects[name];
twisti@1038 870 e = form ? form->is_effect() : NULL;
twisti@1038 871 }
twisti@1038 872
duke@435 873 if (e != NULL) {
duke@435 874 has_temp |= e->is(Component::TEMP);
duke@435 875
duke@435 876 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 877 // uses so their operand numbering must directly follow the real
duke@435 878 // inputs from the match rule. Fixing the numbering seems
duke@435 879 // complex so simply enforce the restriction during parse.
duke@435 880 if (kill_name != NULL &&
duke@435 881 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 882 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 883 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 884 _ident, kill->_ident, kill_name);
never@1037 885 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 886 kill_name = name;
duke@435 887 }
duke@435 888 }
duke@435 889
duke@435 890 const Component *component = _components.search(name);
duke@435 891 if ( component == NULL ) {
duke@435 892 if (e) {
duke@435 893 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 894 component = _components.search(name);
duke@435 895 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 896 const Form *form = globalAD->globalNames()[component->_type];
duke@435 897 assert( form, "component type must be a defined form");
duke@435 898 OperandForm *op = form->is_operand();
duke@435 899 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 900 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 901 _ident, opForm->_ident, name);
duke@435 902 }
duke@435 903 }
duke@435 904 } else {
duke@435 905 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 906 // if (_matrule != NULL && !expands()) {
duke@435 907 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 908 // _ident, opForm->_ident, name);
duke@435 909 // }
duke@435 910 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 911 }
duke@435 912 }
duke@435 913 else if (e) {
duke@435 914 // Component was found in the list
duke@435 915 // Check if there is a new effect that requires an extra component.
duke@435 916 // This happens when adding 'USE' to a component that is not yet one.
duke@435 917 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 918 if (component->isa(Component::USE) && _matrule) {
duke@435 919 const Form *form = globalAD->globalNames()[component->_type];
duke@435 920 assert( form, "component type must be a defined form");
duke@435 921 OperandForm *op = form->is_operand();
duke@435 922 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 923 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 924 _ident, opForm->_ident, name);
duke@435 925 }
duke@435 926 }
duke@435 927 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 928 } else {
duke@435 929 Component *comp = (Component*)component;
duke@435 930 comp->promote_use_def_info(e->_use_def);
duke@435 931 }
duke@435 932 // Component positions are zero based.
duke@435 933 int pos = _components.operand_position(name);
duke@435 934 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 935 "Component::DEF can only occur in the first position");
duke@435 936 }
duke@435 937 }
duke@435 938
duke@435 939 // Resolving the interactions between expand rules and TEMPs would
duke@435 940 // be complex so simply disallow it.
duke@435 941 if (_matrule == NULL && has_temp) {
duke@435 942 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 943 }
duke@435 944
duke@435 945 return;
duke@435 946 }
duke@435 947
duke@435 948 // Return zero-based position in component list; -1 if not in list.
duke@435 949 int InstructForm::operand_position(const char *name, int usedef) {
duke@435 950 return unique_opnds_idx(_components.operand_position(name, usedef));
duke@435 951 }
duke@435 952
duke@435 953 int InstructForm::operand_position_format(const char *name) {
duke@435 954 return unique_opnds_idx(_components.operand_position_format(name));
duke@435 955 }
duke@435 956
duke@435 957 // Return zero-based position in component list; -1 if not in list.
duke@435 958 int InstructForm::label_position() {
duke@435 959 return unique_opnds_idx(_components.label_position());
duke@435 960 }
duke@435 961
duke@435 962 int InstructForm::method_position() {
duke@435 963 return unique_opnds_idx(_components.method_position());
duke@435 964 }
duke@435 965
duke@435 966 // Return number of relocation entries needed for this instruction.
duke@435 967 uint InstructForm::reloc(FormDict &globals) {
duke@435 968 uint reloc_entries = 0;
duke@435 969 // Check for "Call" nodes
duke@435 970 if ( is_ideal_call() ) ++reloc_entries;
duke@435 971 if ( is_ideal_return() ) ++reloc_entries;
duke@435 972 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 973
duke@435 974
duke@435 975 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 976 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 977 if ( _matrule != NULL ) {
duke@435 978 uint position = 0;
duke@435 979 const char *result = NULL;
duke@435 980 const char *name = NULL;
duke@435 981 const char *opType = NULL;
duke@435 982 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 983 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 984 #ifdef SPARC
duke@435 985 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 986 #else
duke@435 987 ++reloc_entries;
duke@435 988 #endif
duke@435 989 }
duke@435 990 ++position;
duke@435 991 }
duke@435 992 }
duke@435 993
duke@435 994 // Above is only a conservative estimate
duke@435 995 // because it did not check contents of operand classes.
duke@435 996 // !!!!! !!!!!
duke@435 997 // Add 1 to reloc info for each operand class in the component list.
duke@435 998 Component *comp;
duke@435 999 _components.reset();
duke@435 1000 while ( (comp = _components.iter()) != NULL ) {
duke@435 1001 const Form *form = globals[comp->_type];
duke@435 1002 assert( form, "Did not find component's type in global names");
duke@435 1003 const OpClassForm *opc = form->is_opclass();
duke@435 1004 const OperandForm *oper = form->is_operand();
duke@435 1005 if ( opc && (oper == NULL) ) {
duke@435 1006 ++reloc_entries;
duke@435 1007 } else if ( oper ) {
duke@435 1008 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1009 Form::DataType type = oper->is_base_constant(globals);
duke@435 1010 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1011 ++reloc_entries;
duke@435 1012 }
duke@435 1013 }
duke@435 1014 }
duke@435 1015
duke@435 1016 // Float and Double constants may come from the CodeBuffer table
duke@435 1017 // and require relocatable addresses for access
duke@435 1018 // !!!!!
duke@435 1019 // Check for any component being an immediate float or double.
duke@435 1020 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1021 if( data_type==idealD || data_type==idealF ) {
duke@435 1022 #ifdef SPARC
duke@435 1023 // sparc required more relocation entries for floating constants
duke@435 1024 // (expires 9/98)
duke@435 1025 reloc_entries += 6;
duke@435 1026 #else
duke@435 1027 reloc_entries++;
duke@435 1028 #endif
duke@435 1029 }
duke@435 1030
duke@435 1031 return reloc_entries;
duke@435 1032 }
duke@435 1033
duke@435 1034 // Utility function defined in archDesc.cpp
duke@435 1035 extern bool is_def(int usedef);
duke@435 1036
duke@435 1037 // Return the result of reducing an instruction
duke@435 1038 const char *InstructForm::reduce_result() {
duke@435 1039 const char* result = "Universe"; // default
duke@435 1040 _components.reset();
duke@435 1041 Component *comp = _components.iter();
duke@435 1042 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1043 result = comp->_type;
duke@435 1044 // Override this if the rule is a store operation:
duke@435 1045 if (_matrule && _matrule->_rChild &&
duke@435 1046 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1047 result = "Universe";
duke@435 1048 }
duke@435 1049 return result;
duke@435 1050 }
duke@435 1051
duke@435 1052 // Return the name of the operand on the right hand side of the binary match
duke@435 1053 // Return NULL if there is no right hand side
duke@435 1054 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1055 if( _matrule == NULL ) return NULL;
duke@435 1056 return _matrule->reduce_right(globals);
duke@435 1057 }
duke@435 1058
duke@435 1059 // Similar for left
duke@435 1060 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1061 if( _matrule == NULL ) return NULL;
duke@435 1062 return _matrule->reduce_left(globals);
duke@435 1063 }
duke@435 1064
duke@435 1065
duke@435 1066 // Base class for this instruction, MachNode except for calls
never@1896 1067 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1068 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1069 return "MachCallStaticJavaNode";
duke@435 1070 }
duke@435 1071 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1072 return "MachCallDynamicJavaNode";
duke@435 1073 }
duke@435 1074 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1075 return "MachCallRuntimeNode";
duke@435 1076 }
duke@435 1077 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1078 return "MachCallLeafNode";
duke@435 1079 }
duke@435 1080 else if (is_ideal_return()) {
duke@435 1081 return "MachReturnNode";
duke@435 1082 }
duke@435 1083 else if (is_ideal_halt()) {
duke@435 1084 return "MachHaltNode";
duke@435 1085 }
duke@435 1086 else if (is_ideal_safepoint()) {
duke@435 1087 return "MachSafePointNode";
duke@435 1088 }
duke@435 1089 else if (is_ideal_if()) {
duke@435 1090 return "MachIfNode";
duke@435 1091 }
kvn@3040 1092 else if (is_ideal_goto()) {
kvn@3040 1093 return "MachGotoNode";
kvn@3040 1094 }
duke@435 1095 else if (is_ideal_fastlock()) {
duke@435 1096 return "MachFastLockNode";
duke@435 1097 }
duke@435 1098 else if (is_ideal_nop()) {
duke@435 1099 return "MachNopNode";
duke@435 1100 }
twisti@2350 1101 else if (is_mach_constant()) {
twisti@2350 1102 return "MachConstantNode";
twisti@2350 1103 }
never@1896 1104 else if (captures_bottom_type(globals)) {
duke@435 1105 return "MachTypeNode";
duke@435 1106 } else {
duke@435 1107 return "MachNode";
duke@435 1108 }
duke@435 1109 assert( false, "ShouldNotReachHere()");
duke@435 1110 return NULL;
duke@435 1111 }
duke@435 1112
duke@435 1113 // Compare the instruction predicates for textual equality
duke@435 1114 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1115 const Predicate *pred1 = instr1->_predicate;
duke@435 1116 const Predicate *pred2 = instr2->_predicate;
duke@435 1117 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1118 // no predicates means they are identical
duke@435 1119 return true;
duke@435 1120 }
duke@435 1121 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1122 // compare the predicates
jrose@910 1123 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1124 return true;
duke@435 1125 }
duke@435 1126 }
duke@435 1127
duke@435 1128 return false;
duke@435 1129 }
duke@435 1130
duke@435 1131 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1132 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1133 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1134 // Do not replace if a cisc-version has been found.
duke@435 1135 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1136
duke@435 1137 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1138 char *result = NULL;
duke@435 1139 char *result2 = NULL;
duke@435 1140 const char *op_name = NULL;
duke@435 1141 const char *reg_type = NULL;
duke@435 1142 FormDict &globals = AD.globalNames();
twisti@1038 1143 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1144 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1145 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1146 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1147 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1148 // Do not support cisc-spilling for destination operands and
duke@435 1149 // make sure they have the same number of operands.
duke@435 1150 _cisc_spill_alternate = instr;
duke@435 1151 instr->set_cisc_alternate(true);
duke@435 1152 if( AD._cisc_spill_debug ) {
duke@435 1153 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1154 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1155 }
duke@435 1156 // Record that a stack-version of the reg_mask is needed
duke@435 1157 // !!!!!
duke@435 1158 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1159 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1160 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1161 AD.set_stack_or_reg(reg_class_name);
duke@435 1162 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1163 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1164 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1165 } else {
duke@435 1166 cisc_spill_operand = Not_cisc_spillable;
duke@435 1167 }
duke@435 1168 } else {
duke@435 1169 cisc_spill_operand = Not_cisc_spillable;
duke@435 1170 }
duke@435 1171
duke@435 1172 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1173 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1174 }
duke@435 1175
duke@435 1176 // Check to see if this instruction can be replaced with the short branch
duke@435 1177 // instruction `short-branch'
duke@435 1178 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1179 if (_matrule != NULL &&
duke@435 1180 this != short_branch && // Don't match myself
duke@435 1181 !is_short_branch() && // Don't match another short branch variant
duke@435 1182 reduce_result() != NULL &&
duke@435 1183 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1184 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1185 // The instructions are equivalent.
kvn@3049 1186
kvn@3049 1187 // Now verify that both instructions have the same parameters and
kvn@3049 1188 // the same effects. Both branch forms should have the same inputs
kvn@3049 1189 // and resulting projections to correctly replace a long branch node
kvn@3049 1190 // with corresponding short branch node during code generation.
kvn@3049 1191
kvn@3049 1192 bool different = false;
kvn@3049 1193 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1194 different = true;
kvn@3049 1195 } else if (_components.count() > 0) {
kvn@3049 1196 short_branch->_components.reset();
kvn@3049 1197 _components.reset();
kvn@3049 1198 Component *comp;
kvn@3049 1199 while ((comp = _components.iter()) != NULL) {
kvn@3049 1200 Component *short_comp = short_branch->_components.iter();
kvn@3049 1201 if (short_comp == NULL ||
kvn@3049 1202 short_comp->_type != comp->_type ||
kvn@3049 1203 short_comp->_usedef != comp->_usedef) {
kvn@3049 1204 different = true;
kvn@3049 1205 break;
kvn@3049 1206 }
kvn@3049 1207 }
kvn@3049 1208 if (short_branch->_components.iter() != NULL)
kvn@3049 1209 different = true;
kvn@3049 1210 }
kvn@3049 1211 if (different) {
kvn@3049 1212 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1213 }
duke@435 1214 if (AD._short_branch_debug) {
duke@435 1215 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1216 }
duke@435 1217 _short_branch_form = short_branch;
duke@435 1218 return true;
duke@435 1219 }
duke@435 1220 return false;
duke@435 1221 }
duke@435 1222
duke@435 1223
duke@435 1224 // --------------------------- FILE *output_routines
duke@435 1225 //
duke@435 1226 // Generate the format call for the replacement variable
duke@435 1227 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1228 // Handle special constant table variables.
twisti@2350 1229 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1230 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1231 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1232 return;
twisti@2350 1233 }
twisti@2350 1234 if (strcmp(rep_var, "constantoffset") == 0) {
twisti@2350 1235 fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
twisti@2350 1236 return;
twisti@2350 1237 }
twisti@2350 1238 if (strcmp(rep_var, "constantaddress") == 0) {
twisti@2350 1239 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
twisti@2350 1240 return;
twisti@2350 1241 }
twisti@2350 1242
duke@435 1243 // Find replacement variable's type
duke@435 1244 const Form *form = _localNames[rep_var];
duke@435 1245 if (form == NULL) {
duke@435 1246 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
duke@435 1247 assert(false, "ShouldNotReachHere()");
duke@435 1248 }
duke@435 1249 OpClassForm *opc = form->is_opclass();
duke@435 1250 assert( opc, "replacement variable was not found in local names");
duke@435 1251 // Lookup the index position of the replacement variable
duke@435 1252 int idx = operand_position_format(rep_var);
duke@435 1253 if ( idx == -1 ) {
duke@435 1254 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
duke@435 1255 assert( false, "ShouldNotReachHere()");
duke@435 1256 }
duke@435 1257
duke@435 1258 if (is_noninput_operand(idx)) {
duke@435 1259 // This component isn't in the input array. Print out the static
duke@435 1260 // name of the register.
duke@435 1261 OperandForm* oper = form->is_operand();
duke@435 1262 if (oper != NULL && oper->is_bound_register()) {
duke@435 1263 const RegDef* first = oper->get_RegClass()->find_first_elem();
duke@435 1264 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
duke@435 1265 } else {
duke@435 1266 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1267 }
duke@435 1268 } else {
duke@435 1269 // Output the format call for this operand
duke@435 1270 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1271 if (idx == 0)
duke@435 1272 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1273 else
duke@435 1274 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1275 }
duke@435 1276 }
duke@435 1277
duke@435 1278 // Seach through operands to determine parameters unique positions.
duke@435 1279 void InstructForm::set_unique_opnds() {
duke@435 1280 uint* uniq_idx = NULL;
never@1034 1281 int nopnds = num_opnds();
duke@435 1282 uint num_uniq = nopnds;
never@1034 1283 int i;
never@1034 1284 _uniq_idx_length = 0;
duke@435 1285 if ( nopnds > 0 ) {
never@1034 1286 // Allocate index array. Worst case we're mapping from each
never@1034 1287 // component back to an index and any DEF always goes at 0 so the
never@1034 1288 // length of the array has to be the number of components + 1.
never@1034 1289 _uniq_idx_length = _components.count() + 1;
never@1034 1290 uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
never@1034 1291 for( i = 0; i < _uniq_idx_length; i++ ) {
duke@435 1292 uniq_idx[i] = i;
duke@435 1293 }
duke@435 1294 }
duke@435 1295 // Do it only if there is a match rule and no expand rule. With an
duke@435 1296 // expand rule it is done by creating new mach node in Expand()
duke@435 1297 // method.
duke@435 1298 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
duke@435 1299 const char *name;
duke@435 1300 uint count;
duke@435 1301 bool has_dupl_use = false;
duke@435 1302
duke@435 1303 _parameters.reset();
duke@435 1304 while( (name = _parameters.iter()) != NULL ) {
duke@435 1305 count = 0;
never@1034 1306 int position = 0;
never@1034 1307 int uniq_position = 0;
duke@435 1308 _components.reset();
duke@435 1309 Component *comp = NULL;
duke@435 1310 if( sets_result() ) {
duke@435 1311 comp = _components.iter();
duke@435 1312 position++;
duke@435 1313 }
duke@435 1314 // The next code is copied from the method operand_position().
duke@435 1315 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1316 // When the first component is not a DEF,
duke@435 1317 // leave space for the result operand!
duke@435 1318 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 1319 ++position;
duke@435 1320 }
duke@435 1321 if( strcmp(name, comp->_name)==0 ) {
duke@435 1322 if( ++count > 1 ) {
never@1034 1323 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1324 uniq_idx[position] = uniq_position;
duke@435 1325 has_dupl_use = true;
duke@435 1326 } else {
duke@435 1327 uniq_position = position;
duke@435 1328 }
duke@435 1329 }
duke@435 1330 if( comp->isa(Component::DEF)
duke@435 1331 && comp->isa(Component::USE) ) {
duke@435 1332 ++position;
duke@435 1333 if( position != 1 )
duke@435 1334 --position; // only use two slots for the 1st USE_DEF
duke@435 1335 }
duke@435 1336 }
duke@435 1337 }
duke@435 1338 if( has_dupl_use ) {
duke@435 1339 for( i = 1; i < nopnds; i++ )
duke@435 1340 if( i != uniq_idx[i] )
duke@435 1341 break;
duke@435 1342 int j = i;
duke@435 1343 for( ; i < nopnds; i++ )
duke@435 1344 if( i == uniq_idx[i] )
duke@435 1345 uniq_idx[i] = j++;
duke@435 1346 num_uniq = j;
duke@435 1347 }
duke@435 1348 }
duke@435 1349 _uniq_idx = uniq_idx;
duke@435 1350 _num_uniq = num_uniq;
duke@435 1351 }
duke@435 1352
twisti@1040 1353 // Generate index values needed for determining the operand position
duke@435 1354 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1355 uint idx = 0; // position of operand in match rule
duke@435 1356 int cur_num_opnds = num_opnds();
duke@435 1357
duke@435 1358 // Compute the index into vector of operand pointers:
duke@435 1359 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1360 // idx1 starts at oper_input_base()
duke@435 1361 if ( cur_num_opnds >= 1 ) {
duke@435 1362 fprintf(fp," // Start at oper_input_base() and count operands\n");
duke@435 1363 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
duke@435 1364 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
duke@435 1365
duke@435 1366 // Generate starting points for other unique operands if they exist
duke@435 1367 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1368 if( *receiver == 0 ) {
duke@435 1369 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
duke@435 1370 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1371 } else {
duke@435 1372 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
duke@435 1373 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1374 }
duke@435 1375 }
duke@435 1376 }
duke@435 1377 if( *receiver != 0 ) {
duke@435 1378 // This value is used by generate_peepreplace when copying a node.
duke@435 1379 // Don't emit it in other cases since it can hide bugs with the
duke@435 1380 // use invalid idx's.
duke@435 1381 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1382 }
duke@435 1383
duke@435 1384 }
duke@435 1385
duke@435 1386 // ---------------------------
duke@435 1387 bool InstructForm::verify() {
duke@435 1388 // !!!!! !!!!!
duke@435 1389 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1390 return true;
duke@435 1391 }
duke@435 1392
duke@435 1393 void InstructForm::dump() {
duke@435 1394 output(stderr);
duke@435 1395 }
duke@435 1396
duke@435 1397 void InstructForm::output(FILE *fp) {
duke@435 1398 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1399 if (_matrule) _matrule->output(fp);
duke@435 1400 if (_insencode) _insencode->output(fp);
twisti@2350 1401 if (_constant) _constant->output(fp);
duke@435 1402 if (_opcode) _opcode->output(fp);
duke@435 1403 if (_attribs) _attribs->output(fp);
duke@435 1404 if (_predicate) _predicate->output(fp);
duke@435 1405 if (_effects.Size()) {
duke@435 1406 fprintf(fp,"Effects\n");
duke@435 1407 _effects.dump();
duke@435 1408 }
duke@435 1409 if (_exprule) _exprule->output(fp);
duke@435 1410 if (_rewrule) _rewrule->output(fp);
duke@435 1411 if (_format) _format->output(fp);
duke@435 1412 if (_peephole) _peephole->output(fp);
duke@435 1413 }
duke@435 1414
duke@435 1415 void MachNodeForm::dump() {
duke@435 1416 output(stderr);
duke@435 1417 }
duke@435 1418
duke@435 1419 void MachNodeForm::output(FILE *fp) {
duke@435 1420 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1421 }
duke@435 1422
duke@435 1423 //------------------------------build_predicate--------------------------------
duke@435 1424 // Build instruction predicates. If the user uses the same operand name
duke@435 1425 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1426 // the DFA during the labeling process.
duke@435 1427 Predicate *InstructForm::build_predicate() {
duke@435 1428 char buf[1024], *s=buf;
duke@435 1429 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1430
duke@435 1431 MatchNode *mnode =
duke@435 1432 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1433 mnode->count_instr_names(names);
duke@435 1434
duke@435 1435 uint first = 1;
duke@435 1436 // Start with the predicate supplied in the .ad file.
duke@435 1437 if( _predicate ) {
duke@435 1438 if( first ) first=0;
duke@435 1439 strcpy(s,"("); s += strlen(s);
duke@435 1440 strcpy(s,_predicate->_pred);
duke@435 1441 s += strlen(s);
duke@435 1442 strcpy(s,")"); s += strlen(s);
duke@435 1443 }
duke@435 1444 for( DictI i(&names); i.test(); ++i ) {
duke@435 1445 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1446 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1447 assert( cnt == 2, "Unimplemented" );
duke@435 1448 // Handle many pairs
duke@435 1449 if( first ) first=0;
duke@435 1450 else { // All tests must pass, so use '&&'
duke@435 1451 strcpy(s," && ");
duke@435 1452 s += strlen(s);
duke@435 1453 }
duke@435 1454 // Add predicate to working buffer
duke@435 1455 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1456 s += strlen(s);
duke@435 1457 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1458 s += strlen(s);
duke@435 1459 strcpy(s," == "); s += strlen(s);
duke@435 1460 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1461 s += strlen(s);
duke@435 1462 strcpy(s,")"); s += strlen(s);
duke@435 1463 }
duke@435 1464 }
duke@435 1465 if( s == buf ) s = NULL;
duke@435 1466 else {
duke@435 1467 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1468 s = strdup(buf);
duke@435 1469 }
duke@435 1470 return new Predicate(s);
duke@435 1471 }
duke@435 1472
duke@435 1473 //------------------------------EncodeForm-------------------------------------
duke@435 1474 // Constructor
duke@435 1475 EncodeForm::EncodeForm()
duke@435 1476 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1477 }
duke@435 1478 EncodeForm::~EncodeForm() {
duke@435 1479 }
duke@435 1480
duke@435 1481 // record a new register class
duke@435 1482 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1483 EncClass *encClass = new EncClass(className);
duke@435 1484 _eclasses.addName(className);
duke@435 1485 _encClass.Insert(className,encClass);
duke@435 1486 return encClass;
duke@435 1487 }
duke@435 1488
duke@435 1489 // Lookup the function body for an encoding class
duke@435 1490 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1491 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1492
duke@435 1493 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1494 return encClass;
duke@435 1495 }
duke@435 1496
duke@435 1497 // Lookup the function body for an encoding class
duke@435 1498 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1499 if( className == NULL ) return NULL;
duke@435 1500
duke@435 1501 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1502 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1503 encClass->_code.reset();
duke@435 1504 const char *code = (const char*)encClass->_code.iter();
duke@435 1505 assert( code != NULL, "Found an empty encode class body.");
duke@435 1506
duke@435 1507 return code;
duke@435 1508 }
duke@435 1509
duke@435 1510 // Lookup the function body for an encoding class
duke@435 1511 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1512 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1513
duke@435 1514 return className;
duke@435 1515 }
duke@435 1516
duke@435 1517 void EncodeForm::dump() { // Debug printer
duke@435 1518 output(stderr);
duke@435 1519 }
duke@435 1520
duke@435 1521 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1522 const char *name;
duke@435 1523 fprintf(fp,"\n");
duke@435 1524 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1525 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1526 ((EncClass*)_encClass[name])->output(fp);
duke@435 1527 }
duke@435 1528 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1529 }
duke@435 1530 //------------------------------EncClass---------------------------------------
duke@435 1531 EncClass::EncClass(const char *name)
duke@435 1532 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1533 }
duke@435 1534 EncClass::~EncClass() {
duke@435 1535 }
duke@435 1536
duke@435 1537 // Add a parameter <type,name> pair
duke@435 1538 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1539 _parameter_type.addName( parameter_type );
duke@435 1540 _parameter_name.addName( parameter_name );
duke@435 1541 }
duke@435 1542
duke@435 1543 // Verify operand types in parameter list
duke@435 1544 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1545 // !!!!!
duke@435 1546 return false;
duke@435 1547 }
duke@435 1548
duke@435 1549 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1550 void EncClass::add_code(const char *code) {
duke@435 1551 _code.addName(code);
duke@435 1552 }
duke@435 1553
duke@435 1554 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1555 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1556 _code.addName(NameList::_signal);
duke@435 1557 _rep_vars.addName(replacement_var);
duke@435 1558 }
duke@435 1559
duke@435 1560 // Lookup the function body for an encoding class
duke@435 1561 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1562 uint position = 0;
duke@435 1563 const char *name = NULL;
duke@435 1564
duke@435 1565 _parameter_name.reset();
duke@435 1566 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1567 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1568 ++position;
duke@435 1569 }
duke@435 1570
duke@435 1571 return -1;
duke@435 1572 }
duke@435 1573
duke@435 1574 // Check after parsing
duke@435 1575 bool EncClass::verify() {
duke@435 1576 // 1!!!!
duke@435 1577 // Check that each replacement variable, '$name' in architecture description
duke@435 1578 // is actually a local variable for this encode class, or a reserved name
duke@435 1579 // "primary, secondary, tertiary"
duke@435 1580 return true;
duke@435 1581 }
duke@435 1582
duke@435 1583 void EncClass::dump() {
duke@435 1584 output(stderr);
duke@435 1585 }
duke@435 1586
duke@435 1587 // Write info to output files
duke@435 1588 void EncClass::output(FILE *fp) {
duke@435 1589 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1590
duke@435 1591 // Output the parameter list
duke@435 1592 _parameter_type.reset();
duke@435 1593 _parameter_name.reset();
duke@435 1594 const char *type = _parameter_type.iter();
duke@435 1595 const char *name = _parameter_name.iter();
duke@435 1596 fprintf(fp, " ( ");
duke@435 1597 for ( ; (type != NULL) && (name != NULL);
duke@435 1598 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1599 fprintf(fp, " %s %s,", type, name);
duke@435 1600 }
duke@435 1601 fprintf(fp, " ) ");
duke@435 1602
duke@435 1603 // Output the code block
duke@435 1604 _code.reset();
duke@435 1605 _rep_vars.reset();
duke@435 1606 const char *code;
duke@435 1607 while ( (code = _code.iter()) != NULL ) {
duke@435 1608 if ( _code.is_signal(code) ) {
duke@435 1609 // A replacement variable
duke@435 1610 const char *rep_var = _rep_vars.iter();
duke@435 1611 fprintf(fp,"($%s)", rep_var);
duke@435 1612 } else {
duke@435 1613 // A section of code
duke@435 1614 fprintf(fp,"%s", code);
duke@435 1615 }
duke@435 1616 }
duke@435 1617
duke@435 1618 }
duke@435 1619
duke@435 1620 //------------------------------Opcode-----------------------------------------
duke@435 1621 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1622 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1623 }
duke@435 1624
duke@435 1625 Opcode::~Opcode() {
duke@435 1626 }
duke@435 1627
duke@435 1628 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1629 if( strcmp(param,"primary") == 0 ) {
duke@435 1630 return Opcode::PRIMARY;
duke@435 1631 }
duke@435 1632 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1633 return Opcode::SECONDARY;
duke@435 1634 }
duke@435 1635 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1636 return Opcode::TERTIARY;
duke@435 1637 }
duke@435 1638 return Opcode::NOT_AN_OPCODE;
duke@435 1639 }
duke@435 1640
never@850 1641 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1642 // Default values previously provided by MachNode::primary()...
never@850 1643 const char *description = NULL;
never@850 1644 const char *value = NULL;
duke@435 1645 // Check if user provided any opcode definitions
duke@435 1646 if( this != NULL ) {
duke@435 1647 // Update 'value' if user provided a definition in the instruction
duke@435 1648 switch (desired_opcode) {
duke@435 1649 case PRIMARY:
duke@435 1650 description = "primary()";
duke@435 1651 if( _primary != NULL) { value = _primary; }
duke@435 1652 break;
duke@435 1653 case SECONDARY:
duke@435 1654 description = "secondary()";
duke@435 1655 if( _secondary != NULL ) { value = _secondary; }
duke@435 1656 break;
duke@435 1657 case TERTIARY:
duke@435 1658 description = "tertiary()";
duke@435 1659 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1660 break;
duke@435 1661 default:
duke@435 1662 assert( false, "ShouldNotReachHere();");
duke@435 1663 break;
duke@435 1664 }
duke@435 1665 }
never@850 1666 if (value != NULL) {
never@850 1667 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1668 }
never@850 1669 return value != NULL;
duke@435 1670 }
duke@435 1671
duke@435 1672 void Opcode::dump() {
duke@435 1673 output(stderr);
duke@435 1674 }
duke@435 1675
duke@435 1676 // Write info to output files
duke@435 1677 void Opcode::output(FILE *fp) {
duke@435 1678 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1679 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1680 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1681 }
duke@435 1682
duke@435 1683 //------------------------------InsEncode--------------------------------------
duke@435 1684 InsEncode::InsEncode() {
duke@435 1685 }
duke@435 1686 InsEncode::~InsEncode() {
duke@435 1687 }
duke@435 1688
duke@435 1689 // Add "encode class name" and its parameters
duke@435 1690 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1691 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1692
duke@435 1693 // add_parameter(NameList::_signal);
duke@435 1694 NameAndList *encode = new NameAndList(encoding);
duke@435 1695 _encoding.addName((char*)encode);
duke@435 1696
duke@435 1697 return encode;
duke@435 1698 }
duke@435 1699
duke@435 1700 // Access the list of encodings
duke@435 1701 void InsEncode::reset() {
duke@435 1702 _encoding.reset();
duke@435 1703 // _parameter.reset();
duke@435 1704 }
duke@435 1705 const char* InsEncode::encode_class_iter() {
duke@435 1706 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1707 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1708 }
duke@435 1709 // Obtain parameter name from zero based index
duke@435 1710 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1711 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1712 assert( params != NULL, "Internal Error");
duke@435 1713 const char *param = (*params)[param_no];
duke@435 1714
duke@435 1715 // Remove '$' if parser placed it there.
duke@435 1716 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1717 }
duke@435 1718
duke@435 1719 void InsEncode::dump() {
duke@435 1720 output(stderr);
duke@435 1721 }
duke@435 1722
duke@435 1723 // Write info to output files
duke@435 1724 void InsEncode::output(FILE *fp) {
duke@435 1725 NameAndList *encoding = NULL;
duke@435 1726 const char *parameter = NULL;
duke@435 1727
duke@435 1728 fprintf(fp,"InsEncode: ");
duke@435 1729 _encoding.reset();
duke@435 1730
duke@435 1731 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1732 // Output the encoding being used
duke@435 1733 fprintf(fp,"%s(", encoding->name() );
duke@435 1734
duke@435 1735 // Output its parameter list, if any
duke@435 1736 bool first_param = true;
duke@435 1737 encoding->reset();
duke@435 1738 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1739 // Output the ',' between parameters
duke@435 1740 if ( ! first_param ) fprintf(fp,", ");
duke@435 1741 first_param = false;
duke@435 1742 // Output the parameter
duke@435 1743 fprintf(fp,"%s", parameter);
duke@435 1744 } // done with parameters
duke@435 1745 fprintf(fp,") ");
duke@435 1746 } // done with encodings
duke@435 1747
duke@435 1748 fprintf(fp,"\n");
duke@435 1749 }
duke@435 1750
duke@435 1751 //------------------------------Effect-----------------------------------------
duke@435 1752 static int effect_lookup(const char *name) {
duke@435 1753 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1754 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1755 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1756 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1757 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1758 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1759 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1760 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1761 assert( false,"Invalid effect name specified\n");
duke@435 1762 return Component::INVALID;
duke@435 1763 }
duke@435 1764
duke@435 1765 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1766 _ftype = Form::EFF;
duke@435 1767 }
duke@435 1768 Effect::~Effect() {
duke@435 1769 }
duke@435 1770
duke@435 1771 // Dynamic type check
duke@435 1772 Effect *Effect::is_effect() const {
duke@435 1773 return (Effect*)this;
duke@435 1774 }
duke@435 1775
duke@435 1776
duke@435 1777 // True if this component is equal to the parameter.
duke@435 1778 bool Effect::is(int use_def_kill_enum) const {
duke@435 1779 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1780 }
duke@435 1781 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1782 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1783 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1784 }
duke@435 1785
duke@435 1786 void Effect::dump() {
duke@435 1787 output(stderr);
duke@435 1788 }
duke@435 1789
duke@435 1790 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1791 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1792 }
duke@435 1793
duke@435 1794 //------------------------------ExpandRule-------------------------------------
duke@435 1795 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1796 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1797 _ftype = Form::EXP;
duke@435 1798 }
duke@435 1799
duke@435 1800 ExpandRule::~ExpandRule() { // Destructor
duke@435 1801 }
duke@435 1802
duke@435 1803 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1804 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1805 }
duke@435 1806
duke@435 1807 void ExpandRule::reset_instructions() {
duke@435 1808 _expand_instrs.reset();
duke@435 1809 }
duke@435 1810
duke@435 1811 NameAndList* ExpandRule::iter_instructions() {
duke@435 1812 return (NameAndList*)_expand_instrs.iter();
duke@435 1813 }
duke@435 1814
duke@435 1815
duke@435 1816 void ExpandRule::dump() {
duke@435 1817 output(stderr);
duke@435 1818 }
duke@435 1819
duke@435 1820 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1821 NameAndList *expand_instr = NULL;
duke@435 1822 const char *opid = NULL;
duke@435 1823
duke@435 1824 fprintf(fp,"\nExpand Rule:\n");
duke@435 1825
duke@435 1826 // Iterate over the instructions 'node' expands into
duke@435 1827 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1828 fprintf(fp,"%s(", expand_instr->name());
duke@435 1829
duke@435 1830 // iterate over the operand list
duke@435 1831 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1832 fprintf(fp,"%s ", opid);
duke@435 1833 }
duke@435 1834 fprintf(fp,");\n");
duke@435 1835 }
duke@435 1836 }
duke@435 1837
duke@435 1838 //------------------------------RewriteRule------------------------------------
duke@435 1839 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1840 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1841 RewriteRule::~RewriteRule() { // Destructor
duke@435 1842 }
duke@435 1843
duke@435 1844 void RewriteRule::dump() {
duke@435 1845 output(stderr);
duke@435 1846 }
duke@435 1847
duke@435 1848 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1849 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1850 (_tempParams?_tempParams:""),
duke@435 1851 (_tempBlock?_tempBlock:""));
duke@435 1852 }
duke@435 1853
duke@435 1854
duke@435 1855 //==============================MachNodes======================================
duke@435 1856 //------------------------------MachNodeForm-----------------------------------
duke@435 1857 MachNodeForm::MachNodeForm(char *id)
duke@435 1858 : _ident(id) {
duke@435 1859 }
duke@435 1860
duke@435 1861 MachNodeForm::~MachNodeForm() {
duke@435 1862 }
duke@435 1863
duke@435 1864 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1865 return (MachNodeForm*)this;
duke@435 1866 }
duke@435 1867
duke@435 1868 //==============================Operand Classes================================
duke@435 1869 //------------------------------OpClassForm------------------------------------
duke@435 1870 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1871 _ftype = Form::OPCLASS;
duke@435 1872 }
duke@435 1873
duke@435 1874 OpClassForm::~OpClassForm() {
duke@435 1875 }
duke@435 1876
duke@435 1877 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1878
duke@435 1879 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1880 return (OpClassForm*)this;
duke@435 1881 }
duke@435 1882
duke@435 1883 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1884 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1885
duke@435 1886 // Check that my operands have the same interface type
duke@435 1887 Form::InterfaceType interface;
duke@435 1888 bool first = true;
duke@435 1889 NameList &op_list = (NameList &)_oplst;
duke@435 1890 op_list.reset();
duke@435 1891 const char *op_name;
duke@435 1892 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1893 const Form *form = globals[op_name];
duke@435 1894 OperandForm *operand = form->is_operand();
duke@435 1895 assert( operand, "Entry in operand class that is not an operand");
duke@435 1896 if( first ) {
duke@435 1897 first = false;
duke@435 1898 interface = operand->interface_type(globals);
duke@435 1899 } else {
duke@435 1900 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1901 }
duke@435 1902 }
duke@435 1903 return interface;
duke@435 1904 }
duke@435 1905
duke@435 1906 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1907 if( _oplst.count() == 0 ) return false; // how?
duke@435 1908
duke@435 1909 NameList &op_list = (NameList &)_oplst;
duke@435 1910 op_list.reset();
duke@435 1911 const char *op_name;
duke@435 1912 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1913 const Form *form = globals[op_name];
duke@435 1914 OperandForm *operand = form->is_operand();
duke@435 1915 assert( operand, "Entry in operand class that is not an operand");
duke@435 1916 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1917 }
duke@435 1918 return true;
duke@435 1919 }
duke@435 1920
duke@435 1921
duke@435 1922 void OpClassForm::dump() {
duke@435 1923 output(stderr);
duke@435 1924 }
duke@435 1925
duke@435 1926 void OpClassForm::output(FILE *fp) {
duke@435 1927 const char *name;
duke@435 1928 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1929 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1930 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1931 fprintf(fp,"%s, ",name);
duke@435 1932 }
duke@435 1933 fprintf(fp,"\n");
duke@435 1934 }
duke@435 1935
duke@435 1936
duke@435 1937 //==============================Operands=======================================
duke@435 1938 //------------------------------OperandForm------------------------------------
duke@435 1939 OperandForm::OperandForm(const char* id)
duke@435 1940 : OpClassForm(id), _ideal_only(false),
duke@435 1941 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1942 _ftype = Form::OPER;
duke@435 1943
duke@435 1944 _matrule = NULL;
duke@435 1945 _interface = NULL;
duke@435 1946 _attribs = NULL;
duke@435 1947 _predicate = NULL;
duke@435 1948 _constraint= NULL;
duke@435 1949 _construct = NULL;
duke@435 1950 _format = NULL;
duke@435 1951 }
duke@435 1952 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 1953 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 1954 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1955 _ftype = Form::OPER;
duke@435 1956
duke@435 1957 _matrule = NULL;
duke@435 1958 _interface = NULL;
duke@435 1959 _attribs = NULL;
duke@435 1960 _predicate = NULL;
duke@435 1961 _constraint= NULL;
duke@435 1962 _construct = NULL;
duke@435 1963 _format = NULL;
duke@435 1964 }
duke@435 1965 OperandForm::~OperandForm() {
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 OperandForm *OperandForm::is_operand() const {
duke@435 1970 return (OperandForm*)this;
duke@435 1971 }
duke@435 1972
duke@435 1973 bool OperandForm::ideal_only() const {
duke@435 1974 return _ideal_only;
duke@435 1975 }
duke@435 1976
duke@435 1977 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 1978 if( _interface == NULL ) return Form::no_interface;
duke@435 1979
duke@435 1980 return _interface->interface_type(globals);
duke@435 1981 }
duke@435 1982
duke@435 1983
duke@435 1984 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 1985 if( _constraint == NULL ) return false;
duke@435 1986 return _constraint->stack_slots_only();
duke@435 1987 }
duke@435 1988
duke@435 1989
duke@435 1990 // Access op_cost attribute or return NULL.
duke@435 1991 const char* OperandForm::cost() {
duke@435 1992 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 1993 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 1994 return cur->_val;
duke@435 1995 }
duke@435 1996 }
duke@435 1997 return NULL;
duke@435 1998 }
duke@435 1999
duke@435 2000 // Return the number of leaves below this complex operand
duke@435 2001 uint OperandForm::num_leaves() const {
duke@435 2002 if ( ! _matrule) return 0;
duke@435 2003
duke@435 2004 int num_leaves = _matrule->_numleaves;
duke@435 2005 return num_leaves;
duke@435 2006 }
duke@435 2007
duke@435 2008 // Return the number of constants contained within this complex operand
duke@435 2009 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2010 if ( ! _matrule) return 0;
duke@435 2011
duke@435 2012 // This is a recursive invocation on all operands in the matchrule
duke@435 2013 return _matrule->num_consts(globals);
duke@435 2014 }
duke@435 2015
duke@435 2016 // Return the number of constants in match rule with specified type
duke@435 2017 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2018 if ( ! _matrule) return 0;
duke@435 2019
duke@435 2020 // This is a recursive invocation on all operands in the matchrule
duke@435 2021 return _matrule->num_consts(globals, type);
duke@435 2022 }
duke@435 2023
duke@435 2024 // Return the number of pointer constants contained within this complex operand
duke@435 2025 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2026 if ( ! _matrule) return 0;
duke@435 2027
duke@435 2028 // This is a recursive invocation on all operands in the matchrule
duke@435 2029 return _matrule->num_const_ptrs(globals);
duke@435 2030 }
duke@435 2031
duke@435 2032 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2033 uint edges = 0;
duke@435 2034 uint leaves = num_leaves();
duke@435 2035 uint consts = num_consts(globals);
duke@435 2036
duke@435 2037 // If we are matching a constant directly, there are no leaves.
duke@435 2038 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2039
duke@435 2040 // !!!!!
duke@435 2041 // Special case operands that do not have a corresponding ideal node.
duke@435 2042 if( (edges == 0) && (consts == 0) ) {
duke@435 2043 if( constrained_reg_class() != NULL ) {
duke@435 2044 edges = 1;
duke@435 2045 } else {
duke@435 2046 if( _matrule
duke@435 2047 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2048 const Form *form = globals[_matrule->_opType];
duke@435 2049 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2050 if( oper ) {
duke@435 2051 return oper->num_edges(globals);
duke@435 2052 }
duke@435 2053 }
duke@435 2054 }
duke@435 2055 }
duke@435 2056
duke@435 2057 return edges;
duke@435 2058 }
duke@435 2059
duke@435 2060
duke@435 2061 // Check if this operand is usable for cisc-spilling
duke@435 2062 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2063 const char *ideal = ideal_type(globals);
duke@435 2064 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2065 return is_cisc_reg;
duke@435 2066 }
duke@435 2067
duke@435 2068 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2069 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2070 return (my_interface == memory_interface);
duke@435 2071 }
duke@435 2072
duke@435 2073
duke@435 2074 // node matches ideal 'Bool'
duke@435 2075 bool OperandForm::is_ideal_bool() const {
duke@435 2076 if( _matrule == NULL ) return false;
duke@435 2077
duke@435 2078 return _matrule->is_ideal_bool();
duke@435 2079 }
duke@435 2080
duke@435 2081 // Require user's name for an sRegX to be stackSlotX
duke@435 2082 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2083 DataType data_type = none;
duke@435 2084 if( _ident != NULL ) {
duke@435 2085 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2086 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2087 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2088 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2089 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2090 }
duke@435 2091 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2092
duke@435 2093 return data_type;
duke@435 2094 }
duke@435 2095
duke@435 2096
duke@435 2097 // Return ideal type, if there is a single ideal type for this operand
duke@435 2098 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2099 const char *type = NULL;
duke@435 2100 if (ideal_only()) type = _ident;
duke@435 2101 else if( _matrule == NULL ) {
duke@435 2102 // Check for condition code register
duke@435 2103 const char *rc_name = constrained_reg_class();
duke@435 2104 // !!!!!
duke@435 2105 if (rc_name == NULL) return NULL;
duke@435 2106 // !!!!! !!!!!
duke@435 2107 // Check constraints on result's register class
duke@435 2108 if( registers ) {
duke@435 2109 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2110 assert( reg_class != NULL, "Register class is not defined");
duke@435 2111
duke@435 2112 // Check for ideal type of entries in register class, all are the same type
duke@435 2113 reg_class->reset();
duke@435 2114 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2115 assert( reg_def != NULL, "No entries in register class");
duke@435 2116 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2117 // Return substring that names the register's ideal type
duke@435 2118 type = reg_def->_idealtype + 3;
duke@435 2119 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2120 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2121 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2122 }
duke@435 2123 }
duke@435 2124 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2125 // This operand matches a single type, at the top level.
duke@435 2126 // Check for ideal type
duke@435 2127 type = _matrule->_opType;
duke@435 2128 if( strcmp(type,"Bool") == 0 )
duke@435 2129 return "Bool";
duke@435 2130 // transitive lookup
duke@435 2131 const Form *frm = globals[type];
duke@435 2132 OperandForm *op = frm->is_operand();
duke@435 2133 type = op->ideal_type(globals, registers);
duke@435 2134 }
duke@435 2135 return type;
duke@435 2136 }
duke@435 2137
duke@435 2138
duke@435 2139 // If there is a single ideal type for this interface field, return it.
duke@435 2140 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2141 const char *field) const {
duke@435 2142 const char *ideal_type = NULL;
duke@435 2143 const char *value = NULL;
duke@435 2144
duke@435 2145 // Check if "field" is valid for this operand's interface
duke@435 2146 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2147
duke@435 2148 // !!!!! !!!!! !!!!!
duke@435 2149 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2150
duke@435 2151 // Else, lookup type of field's replacement variable
duke@435 2152
duke@435 2153 return ideal_type;
duke@435 2154 }
duke@435 2155
duke@435 2156
duke@435 2157 RegClass* OperandForm::get_RegClass() const {
duke@435 2158 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2159 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2160 }
duke@435 2161
duke@435 2162
duke@435 2163 bool OperandForm::is_bound_register() const {
duke@435 2164 RegClass *reg_class = get_RegClass();
duke@435 2165 if (reg_class == NULL) return false;
duke@435 2166
duke@435 2167 const char * name = ideal_type(globalAD->globalNames());
duke@435 2168 if (name == NULL) return false;
duke@435 2169
duke@435 2170 int size = 0;
duke@435 2171 if (strcmp(name,"RegFlags")==0) size = 1;
duke@435 2172 if (strcmp(name,"RegI")==0) size = 1;
duke@435 2173 if (strcmp(name,"RegF")==0) size = 1;
duke@435 2174 if (strcmp(name,"RegD")==0) size = 2;
duke@435 2175 if (strcmp(name,"RegL")==0) size = 2;
coleenp@548 2176 if (strcmp(name,"RegN")==0) size = 1;
duke@435 2177 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
duke@435 2178 if (size == 0) return false;
duke@435 2179 return size == reg_class->size();
duke@435 2180 }
duke@435 2181
duke@435 2182
duke@435 2183 // Check if this is a valid field for this operand,
duke@435 2184 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2185 bool OperandForm::is_interface_field(const char *field,
duke@435 2186 const char * &value) const {
duke@435 2187 return false;
duke@435 2188 }
duke@435 2189
duke@435 2190
duke@435 2191 // Return register class name if a constraint specifies the register class.
duke@435 2192 const char *OperandForm::constrained_reg_class() const {
duke@435 2193 const char *reg_class = NULL;
duke@435 2194 if ( _constraint ) {
duke@435 2195 // !!!!!
duke@435 2196 Constraint *constraint = _constraint;
duke@435 2197 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2198 reg_class = _constraint->_arg;
duke@435 2199 }
duke@435 2200 }
duke@435 2201
duke@435 2202 return reg_class;
duke@435 2203 }
duke@435 2204
duke@435 2205
duke@435 2206 // Return the register class associated with 'leaf'.
duke@435 2207 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2208 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2209
duke@435 2210 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2211 reg_class = constrained_reg_class();
duke@435 2212 return reg_class;
duke@435 2213 }
duke@435 2214 const char *result = NULL;
duke@435 2215 const char *name = NULL;
duke@435 2216 const char *type = NULL;
duke@435 2217 // iterate through all base operands
duke@435 2218 // until we reach the register that corresponds to "leaf"
duke@435 2219 // This function is not looking for an ideal type. It needs the first
duke@435 2220 // level user type associated with the leaf.
duke@435 2221 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2222 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2223 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2224 if( oper ) {
duke@435 2225 reg_class = oper->constrained_reg_class();
duke@435 2226 if( reg_class ) {
duke@435 2227 reg_class = reg_class;
duke@435 2228 } else {
duke@435 2229 // ShouldNotReachHere();
duke@435 2230 }
duke@435 2231 } else {
duke@435 2232 // ShouldNotReachHere();
duke@435 2233 }
duke@435 2234
duke@435 2235 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2236 if( reg_class == NULL) ++leaf;
duke@435 2237 // Exit the loop with the value of reg_class when at the correct index
duke@435 2238 if( idx == leaf ) break;
duke@435 2239 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2240 }
duke@435 2241 return reg_class;
duke@435 2242 }
duke@435 2243
duke@435 2244
duke@435 2245 // Recursive call to construct list of top-level operands.
duke@435 2246 // Implementation does not modify state of internal structures
duke@435 2247 void OperandForm::build_components() {
duke@435 2248 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2249
duke@435 2250 // Add parameters that "do not appear in match rule".
duke@435 2251 const char *name;
duke@435 2252 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2253 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2254
duke@435 2255 if ( _components.operand_position(name) == -1 ) {
duke@435 2256 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2257 }
duke@435 2258 }
duke@435 2259
duke@435 2260 return;
duke@435 2261 }
duke@435 2262
duke@435 2263 int OperandForm::operand_position(const char *name, int usedef) {
duke@435 2264 return _components.operand_position(name, usedef);
duke@435 2265 }
duke@435 2266
duke@435 2267
duke@435 2268 // Return zero-based position in component list, only counting constants;
duke@435 2269 // Return -1 if not in list.
duke@435 2270 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2271 // Iterate through components and count constants preceding 'constant'
twisti@1038 2272 int position = 0;
duke@435 2273 Component *comp;
duke@435 2274 _components.reset();
duke@435 2275 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2276 // Special case for operands that take a single user-defined operand
duke@435 2277 // Skip the initial definition in the component list.
duke@435 2278 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2279
duke@435 2280 const char *type = comp->_type;
duke@435 2281 // Lookup operand form for replacement variable's type
duke@435 2282 const Form *form = globals[type];
duke@435 2283 assert( form != NULL, "Component's type not found");
duke@435 2284 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2285 if( oper ) {
duke@435 2286 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2287 ++position;
duke@435 2288 }
duke@435 2289 }
duke@435 2290 }
duke@435 2291
duke@435 2292 // Check for being passed a component that was not in the list
duke@435 2293 if( comp != last ) position = -1;
duke@435 2294
duke@435 2295 return position;
duke@435 2296 }
duke@435 2297 // Provide position of constant by "name"
duke@435 2298 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2299 const Component *comp = _components.search(name);
duke@435 2300 int idx = constant_position( globals, comp );
duke@435 2301
duke@435 2302 return idx;
duke@435 2303 }
duke@435 2304
duke@435 2305
duke@435 2306 // Return zero-based position in component list, only counting constants;
duke@435 2307 // Return -1 if not in list.
duke@435 2308 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2309 // Iterate through components and count registers preceding 'last'
duke@435 2310 uint position = 0;
duke@435 2311 Component *comp;
duke@435 2312 _components.reset();
duke@435 2313 while( (comp = _components.iter()) != NULL
duke@435 2314 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2315 // Special case for operands that take a single user-defined operand
duke@435 2316 // Skip the initial definition in the component list.
duke@435 2317 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2318
duke@435 2319 const char *type = comp->_type;
duke@435 2320 // Lookup operand form for component's type
duke@435 2321 const Form *form = globals[type];
duke@435 2322 assert( form != NULL, "Component's type not found");
duke@435 2323 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2324 if( oper ) {
duke@435 2325 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2326 ++position;
duke@435 2327 }
duke@435 2328 }
duke@435 2329 }
duke@435 2330
duke@435 2331 return position;
duke@435 2332 }
duke@435 2333
duke@435 2334
duke@435 2335 const char *OperandForm::reduce_result() const {
duke@435 2336 return _ident;
duke@435 2337 }
duke@435 2338 // Return the name of the operand on the right hand side of the binary match
duke@435 2339 // Return NULL if there is no right hand side
duke@435 2340 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2341 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2342 }
duke@435 2343
duke@435 2344 // Similar for left
duke@435 2345 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2346 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2347 }
duke@435 2348
duke@435 2349
duke@435 2350 // --------------------------- FILE *output_routines
duke@435 2351 //
duke@435 2352 // Output code for disp_is_oop, if true.
duke@435 2353 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2354 // Check it is a memory interface with a non-user-constant disp field
duke@435 2355 if ( this->_interface == NULL ) return;
duke@435 2356 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2357 if ( mem_interface == NULL ) return;
duke@435 2358 const char *disp = mem_interface->_disp;
duke@435 2359 if ( *disp != '$' ) return;
duke@435 2360
duke@435 2361 // Lookup replacement variable in operand's component list
duke@435 2362 const char *rep_var = disp + 1;
duke@435 2363 const Component *comp = this->_components.search(rep_var);
duke@435 2364 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2365 // Lookup operand form for replacement variable's type
duke@435 2366 const char *type = comp->_type;
duke@435 2367 Form *form = (Form*)globals[type];
duke@435 2368 assert( form != NULL, "Replacement variable's type not found");
duke@435 2369 OperandForm *op = form->is_operand();
duke@435 2370 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2371 // Check if this is a ConP, which may require relocation
duke@435 2372 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2373 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2374 uint idx = op->constant_position( globals, rep_var);
twisti@1038 2375 fprintf(fp," virtual bool disp_is_oop() const {");
duke@435 2376 fprintf(fp, " return _c%d->isa_oop_ptr();", idx);
duke@435 2377 fprintf(fp, " }\n");
duke@435 2378 }
duke@435 2379 }
duke@435 2380
duke@435 2381 // Generate code for internal and external format methods
duke@435 2382 //
duke@435 2383 // internal access to reg# node->_idx
duke@435 2384 // access to subsumed constant _c0, _c1,
duke@435 2385 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2386 Form::DataType dtype;
duke@435 2387 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2388 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2389 // !!!!! !!!!!
duke@435 2390 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2391 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2392 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2393 fprintf(fp," }\n");
duke@435 2394 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2395 format_constant( fp, index, dtype );
duke@435 2396 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2397 // Special format for Stack Slot Register
duke@435 2398 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2399 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2400 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2401 fprintf(fp," }\n");
duke@435 2402 } else {
duke@435 2403 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2404 fflush(fp);
duke@435 2405 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2406 dump();
duke@435 2407 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2408 }
duke@435 2409 }
duke@435 2410
duke@435 2411 // Similar to "int_format" but for cases where data is external to operand
duke@435 2412 // external access to reg# node->in(idx)->_idx,
duke@435 2413 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2414 Form::DataType dtype;
duke@435 2415 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2416 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2417 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2418 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2419 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2420 fprintf(fp, "),reg_str);\n");
duke@435 2421 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2422 fprintf(fp," }\n");
duke@435 2423 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2424 format_constant( fp, index, dtype );
duke@435 2425 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2426 // Special format for Stack Slot Register
duke@435 2427 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2428 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2429 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2430 fprintf(fp, "),reg_str);\n");
duke@435 2431 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2432 fprintf(fp," }\n");
duke@435 2433 } else {
duke@435 2434 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2435 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2436 }
duke@435 2437 }
duke@435 2438
duke@435 2439 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2440 switch(const_type) {
coleenp@548 2441 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
coleenp@548 2442 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2443 case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2444 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
coleenp@548 2445 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
coleenp@548 2446 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2447 default:
duke@435 2448 assert( false, "ShouldNotReachHere()");
duke@435 2449 }
duke@435 2450 }
duke@435 2451
duke@435 2452 // Return the operand form corresponding to the given index, else NULL.
duke@435 2453 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2454 uint index) {
duke@435 2455 // !!!!!
duke@435 2456 // Check behavior on complex operands
duke@435 2457 uint n_consts = num_consts(globals);
duke@435 2458 if( n_consts > 0 ) {
duke@435 2459 uint i = 0;
duke@435 2460 const char *type;
duke@435 2461 Component *comp;
duke@435 2462 _components.reset();
duke@435 2463 if ((comp = _components.iter()) == NULL) {
duke@435 2464 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2465 // Current operand is THE operand
duke@435 2466 if ( index == 0 ) {
duke@435 2467 return this;
duke@435 2468 }
duke@435 2469 } // end if NULL
duke@435 2470 else {
duke@435 2471 // Skip the first component, it can not be a DEF of a constant
duke@435 2472 do {
duke@435 2473 type = comp->base_type(globals);
duke@435 2474 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2475 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2476 // When at correct component, get corresponding Operand
duke@435 2477 if ( index == 0 ) {
duke@435 2478 return globals[comp->_type]->is_operand();
duke@435 2479 }
duke@435 2480 // Decrement number of constants to go
duke@435 2481 --index;
duke@435 2482 }
duke@435 2483 } while((comp = _components.iter()) != NULL);
duke@435 2484 }
duke@435 2485 }
duke@435 2486
duke@435 2487 // Did not find a constant for this index.
duke@435 2488 return NULL;
duke@435 2489 }
duke@435 2490
duke@435 2491 // If this operand has a single ideal type, return its type
duke@435 2492 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2493 const char *type_name = ideal_type(globals);
duke@435 2494 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2495 : Form::none;
duke@435 2496 return type;
duke@435 2497 }
duke@435 2498
duke@435 2499 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2500 if ( _matrule == NULL ) return Form::none;
duke@435 2501
duke@435 2502 return _matrule->is_base_constant(globals);
duke@435 2503 }
duke@435 2504
duke@435 2505 // "true" if this operand is a simple type that is swallowed
duke@435 2506 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2507 Form::DataType type = simple_type(globals);
duke@435 2508 if( type != Form::none ) {
duke@435 2509 return true;
duke@435 2510 }
duke@435 2511
duke@435 2512 return false;
duke@435 2513 }
duke@435 2514
duke@435 2515 // Output code to access the value of the index'th constant
duke@435 2516 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2517 uint const_index) {
duke@435 2518 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2519 assert( oper, "Index exceeds number of constants in operand");
duke@435 2520 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2521
duke@435 2522 switch(dtype) {
duke@435 2523 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2524 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2525 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2526 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2527 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2528 default:
duke@435 2529 assert( false, "ShouldNotReachHere()");
duke@435 2530 }
duke@435 2531 }
duke@435 2532
duke@435 2533
duke@435 2534 void OperandForm::dump() {
duke@435 2535 output(stderr);
duke@435 2536 }
duke@435 2537
duke@435 2538 void OperandForm::output(FILE *fp) {
duke@435 2539 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2540 if (_matrule) _matrule->dump();
duke@435 2541 if (_interface) _interface->dump();
duke@435 2542 if (_attribs) _attribs->dump();
duke@435 2543 if (_predicate) _predicate->dump();
duke@435 2544 if (_constraint) _constraint->dump();
duke@435 2545 if (_construct) _construct->dump();
duke@435 2546 if (_format) _format->dump();
duke@435 2547 }
duke@435 2548
duke@435 2549 //------------------------------Constraint-------------------------------------
duke@435 2550 Constraint::Constraint(const char *func, const char *arg)
duke@435 2551 : _func(func), _arg(arg) {
duke@435 2552 }
duke@435 2553 Constraint::~Constraint() { /* not owner of char* */
duke@435 2554 }
duke@435 2555
duke@435 2556 bool Constraint::stack_slots_only() const {
duke@435 2557 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2558 && strcmp(_arg, "stack_slots") == 0;
duke@435 2559 }
duke@435 2560
duke@435 2561 void Constraint::dump() {
duke@435 2562 output(stderr);
duke@435 2563 }
duke@435 2564
duke@435 2565 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2566 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2567 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2568 }
duke@435 2569
duke@435 2570 //------------------------------Predicate--------------------------------------
duke@435 2571 Predicate::Predicate(char *pr)
duke@435 2572 : _pred(pr) {
duke@435 2573 }
duke@435 2574 Predicate::~Predicate() {
duke@435 2575 }
duke@435 2576
duke@435 2577 void Predicate::dump() {
duke@435 2578 output(stderr);
duke@435 2579 }
duke@435 2580
duke@435 2581 void Predicate::output(FILE *fp) {
duke@435 2582 fprintf(fp,"Predicate"); // Write to output files
duke@435 2583 }
duke@435 2584 //------------------------------Interface--------------------------------------
duke@435 2585 Interface::Interface(const char *name) : _name(name) {
duke@435 2586 }
duke@435 2587 Interface::~Interface() {
duke@435 2588 }
duke@435 2589
duke@435 2590 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2591 Interface *thsi = (Interface*)this;
duke@435 2592 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2593 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2594 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2595 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2596
duke@435 2597 return Form::no_interface;
duke@435 2598 }
duke@435 2599
duke@435 2600 RegInterface *Interface::is_RegInterface() {
duke@435 2601 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2602 return NULL;
duke@435 2603 return (RegInterface*)this;
duke@435 2604 }
duke@435 2605 MemInterface *Interface::is_MemInterface() {
duke@435 2606 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2607 return (MemInterface*)this;
duke@435 2608 }
duke@435 2609 ConstInterface *Interface::is_ConstInterface() {
duke@435 2610 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2611 return (ConstInterface*)this;
duke@435 2612 }
duke@435 2613 CondInterface *Interface::is_CondInterface() {
duke@435 2614 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2615 return (CondInterface*)this;
duke@435 2616 }
duke@435 2617
duke@435 2618
duke@435 2619 void Interface::dump() {
duke@435 2620 output(stderr);
duke@435 2621 }
duke@435 2622
duke@435 2623 // Write info to output files
duke@435 2624 void Interface::output(FILE *fp) {
duke@435 2625 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2626 }
duke@435 2627
duke@435 2628 //------------------------------RegInterface-----------------------------------
duke@435 2629 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2630 }
duke@435 2631 RegInterface::~RegInterface() {
duke@435 2632 }
duke@435 2633
duke@435 2634 void RegInterface::dump() {
duke@435 2635 output(stderr);
duke@435 2636 }
duke@435 2637
duke@435 2638 // Write info to output files
duke@435 2639 void RegInterface::output(FILE *fp) {
duke@435 2640 Interface::output(fp);
duke@435 2641 }
duke@435 2642
duke@435 2643 //------------------------------ConstInterface---------------------------------
duke@435 2644 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2645 }
duke@435 2646 ConstInterface::~ConstInterface() {
duke@435 2647 }
duke@435 2648
duke@435 2649 void ConstInterface::dump() {
duke@435 2650 output(stderr);
duke@435 2651 }
duke@435 2652
duke@435 2653 // Write info to output files
duke@435 2654 void ConstInterface::output(FILE *fp) {
duke@435 2655 Interface::output(fp);
duke@435 2656 }
duke@435 2657
duke@435 2658 //------------------------------MemInterface-----------------------------------
duke@435 2659 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2660 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2661 }
duke@435 2662 MemInterface::~MemInterface() {
duke@435 2663 // not owner of any character arrays
duke@435 2664 }
duke@435 2665
duke@435 2666 void MemInterface::dump() {
duke@435 2667 output(stderr);
duke@435 2668 }
duke@435 2669
duke@435 2670 // Write info to output files
duke@435 2671 void MemInterface::output(FILE *fp) {
duke@435 2672 Interface::output(fp);
duke@435 2673 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2674 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2675 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2676 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2677 // fprintf(fp,"\n");
duke@435 2678 }
duke@435 2679
duke@435 2680 //------------------------------CondInterface----------------------------------
never@850 2681 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2682 const char* not_equal, const char* not_equal_format,
never@850 2683 const char* less, const char* less_format,
never@850 2684 const char* greater_equal, const char* greater_equal_format,
never@850 2685 const char* less_equal, const char* less_equal_format,
never@850 2686 const char* greater, const char* greater_format)
duke@435 2687 : Interface("COND_INTER"),
never@850 2688 _equal(equal), _equal_format(equal_format),
never@850 2689 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2690 _less(less), _less_format(less_format),
never@850 2691 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2692 _less_equal(less_equal), _less_equal_format(less_equal_format),
never@850 2693 _greater(greater), _greater_format(greater_format) {
duke@435 2694 }
duke@435 2695 CondInterface::~CondInterface() {
duke@435 2696 // not owner of any character arrays
duke@435 2697 }
duke@435 2698
duke@435 2699 void CondInterface::dump() {
duke@435 2700 output(stderr);
duke@435 2701 }
duke@435 2702
duke@435 2703 // Write info to output files
duke@435 2704 void CondInterface::output(FILE *fp) {
duke@435 2705 Interface::output(fp);
duke@435 2706 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2707 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2708 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2709 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2710 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2711 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2712 // fprintf(fp,"\n");
duke@435 2713 }
duke@435 2714
duke@435 2715 //------------------------------ConstructRule----------------------------------
duke@435 2716 ConstructRule::ConstructRule(char *cnstr)
duke@435 2717 : _construct(cnstr) {
duke@435 2718 }
duke@435 2719 ConstructRule::~ConstructRule() {
duke@435 2720 }
duke@435 2721
duke@435 2722 void ConstructRule::dump() {
duke@435 2723 output(stderr);
duke@435 2724 }
duke@435 2725
duke@435 2726 void ConstructRule::output(FILE *fp) {
duke@435 2727 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2728 }
duke@435 2729
duke@435 2730
duke@435 2731 //==============================Shared Forms===================================
duke@435 2732 //------------------------------AttributeForm----------------------------------
duke@435 2733 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2734 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2735 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2736 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2737
duke@435 2738 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2739 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2740 if (type==OP_ATTR) {
duke@435 2741 id = ++_opId;
duke@435 2742 }
duke@435 2743 else if (type==INS_ATTR) {
duke@435 2744 id = ++_insId;
duke@435 2745 }
duke@435 2746 else assert( false,"");
duke@435 2747 }
duke@435 2748 AttributeForm::~AttributeForm() {
duke@435 2749 }
duke@435 2750
duke@435 2751 // Dynamic type check
duke@435 2752 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2753 return (AttributeForm*)this;
duke@435 2754 }
duke@435 2755
duke@435 2756
duke@435 2757 // inlined // int AttributeForm::type() { return id;}
duke@435 2758
duke@435 2759 void AttributeForm::dump() {
duke@435 2760 output(stderr);
duke@435 2761 }
duke@435 2762
duke@435 2763 void AttributeForm::output(FILE *fp) {
duke@435 2764 if( _attrname && _attrdef ) {
duke@435 2765 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2766 _attrname, _attrdef);
duke@435 2767 }
duke@435 2768 else {
duke@435 2769 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2770 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2771 }
duke@435 2772 }
duke@435 2773
duke@435 2774 //------------------------------Component--------------------------------------
duke@435 2775 Component::Component(const char *name, const char *type, int usedef)
duke@435 2776 : _name(name), _type(type), _usedef(usedef) {
duke@435 2777 _ftype = Form::COMP;
duke@435 2778 }
duke@435 2779 Component::~Component() {
duke@435 2780 }
duke@435 2781
duke@435 2782 // True if this component is equal to the parameter.
duke@435 2783 bool Component::is(int use_def_kill_enum) const {
duke@435 2784 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2785 }
duke@435 2786 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2787 bool Component::isa(int use_def_kill_enum) const {
duke@435 2788 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2789 }
duke@435 2790
duke@435 2791 // Extend this component with additional use/def/kill behavior
duke@435 2792 int Component::promote_use_def_info(int new_use_def) {
duke@435 2793 _usedef |= new_use_def;
duke@435 2794
duke@435 2795 return _usedef;
duke@435 2796 }
duke@435 2797
duke@435 2798 // Check the base type of this component, if it has one
duke@435 2799 const char *Component::base_type(FormDict &globals) {
duke@435 2800 const Form *frm = globals[_type];
duke@435 2801 if (frm == NULL) return NULL;
duke@435 2802 OperandForm *op = frm->is_operand();
duke@435 2803 if (op == NULL) return NULL;
duke@435 2804 if (op->ideal_only()) return op->_ident;
duke@435 2805 return (char *)op->ideal_type(globals);
duke@435 2806 }
duke@435 2807
duke@435 2808 void Component::dump() {
duke@435 2809 output(stderr);
duke@435 2810 }
duke@435 2811
duke@435 2812 void Component::output(FILE *fp) {
duke@435 2813 fprintf(fp,"Component:"); // Write to output files
duke@435 2814 fprintf(fp, " name = %s", _name);
duke@435 2815 fprintf(fp, ", type = %s", _type);
duke@435 2816 const char * usedef = "Undefined Use/Def info";
duke@435 2817 switch (_usedef) {
duke@435 2818 case USE: usedef = "USE"; break;
duke@435 2819 case USE_DEF: usedef = "USE_DEF"; break;
duke@435 2820 case USE_KILL: usedef = "USE_KILL"; break;
duke@435 2821 case KILL: usedef = "KILL"; break;
duke@435 2822 case TEMP: usedef = "TEMP"; break;
duke@435 2823 case DEF: usedef = "DEF"; break;
duke@435 2824 default: assert(false, "unknown effect");
duke@435 2825 }
duke@435 2826 fprintf(fp, ", use/def = %s\n", usedef);
duke@435 2827 }
duke@435 2828
duke@435 2829
duke@435 2830 //------------------------------ComponentList---------------------------------
duke@435 2831 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2832 }
duke@435 2833 ComponentList::~ComponentList() {
duke@435 2834 // // This list may not own its elements if copied via assignment
duke@435 2835 // Component *component;
duke@435 2836 // for (reset(); (component = iter()) != NULL;) {
duke@435 2837 // delete component;
duke@435 2838 // }
duke@435 2839 }
duke@435 2840
duke@435 2841 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2842 NameList::addName((char *)component);
duke@435 2843 if(mflag) _matchcnt++;
duke@435 2844 }
duke@435 2845 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2846 bool mflag) {
duke@435 2847 Component * component = new Component(name, opType, usedef);
duke@435 2848 insert(component, mflag);
duke@435 2849 }
duke@435 2850 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2851 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2852 Component *ComponentList::match_iter() {
duke@435 2853 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2854 return NULL;
duke@435 2855 }
duke@435 2856 Component *ComponentList::post_match_iter() {
duke@435 2857 Component *comp = iter();
duke@435 2858 // At end of list?
duke@435 2859 if ( comp == NULL ) {
duke@435 2860 return comp;
duke@435 2861 }
duke@435 2862 // In post-match components?
duke@435 2863 if (_iter > match_count()-1) {
duke@435 2864 return comp;
duke@435 2865 }
duke@435 2866
duke@435 2867 return post_match_iter();
duke@435 2868 }
duke@435 2869
duke@435 2870 void ComponentList::reset() { NameList::reset(); }
duke@435 2871 int ComponentList::count() { return NameList::count(); }
duke@435 2872
duke@435 2873 Component *ComponentList::operator[](int position) {
duke@435 2874 // Shortcut complete iteration if there are not enough entries
duke@435 2875 if (position >= count()) return NULL;
duke@435 2876
duke@435 2877 int index = 0;
duke@435 2878 Component *component = NULL;
duke@435 2879 for (reset(); (component = iter()) != NULL;) {
duke@435 2880 if (index == position) {
duke@435 2881 return component;
duke@435 2882 }
duke@435 2883 ++index;
duke@435 2884 }
duke@435 2885
duke@435 2886 return NULL;
duke@435 2887 }
duke@435 2888
duke@435 2889 const Component *ComponentList::search(const char *name) {
duke@435 2890 PreserveIter pi(this);
duke@435 2891 reset();
duke@435 2892 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2893 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2894 }
duke@435 2895
duke@435 2896 return NULL;
duke@435 2897 }
duke@435 2898
duke@435 2899 // Return number of USEs + number of DEFs
duke@435 2900 // When there are no components, or the first component is a USE,
duke@435 2901 // then we add '1' to hold a space for the 'result' operand.
duke@435 2902 int ComponentList::num_operands() {
duke@435 2903 PreserveIter pi(this);
duke@435 2904 uint count = 1; // result operand
duke@435 2905 uint position = 0;
duke@435 2906
duke@435 2907 Component *component = NULL;
duke@435 2908 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2909 if( component->isa(Component::USE) ||
duke@435 2910 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2911 ++count;
duke@435 2912 }
duke@435 2913 }
duke@435 2914
duke@435 2915 return count;
duke@435 2916 }
duke@435 2917
duke@435 2918 // Return zero-based position in list; -1 if not in list.
duke@435 2919 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
duke@435 2920 int ComponentList::operand_position(const char *name, int usedef) {
duke@435 2921 PreserveIter pi(this);
duke@435 2922 int position = 0;
duke@435 2923 int num_opnds = num_operands();
duke@435 2924 Component *component;
duke@435 2925 Component* preceding_non_use = NULL;
duke@435 2926 Component* first_def = NULL;
duke@435 2927 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2928 // When the first component is not a DEF,
duke@435 2929 // leave space for the result operand!
duke@435 2930 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2931 ++position;
duke@435 2932 ++num_opnds;
duke@435 2933 }
duke@435 2934 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 2935 // When the first entry in the component list is a DEF and a USE
duke@435 2936 // Treat them as being separate, a DEF first, then a USE
duke@435 2937 if( position==0
duke@435 2938 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 2939 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 2940 return position+1;
duke@435 2941 } else {
duke@435 2942 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2943 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
duke@435 2944 }
duke@435 2945 if( position >= num_opnds ) {
duke@435 2946 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
duke@435 2947 }
duke@435 2948 assert(position < num_opnds, "advertised index in bounds");
duke@435 2949 return position;
duke@435 2950 }
duke@435 2951 }
duke@435 2952 if( component->isa(Component::DEF)
duke@435 2953 && component->isa(Component::USE) ) {
duke@435 2954 ++position;
duke@435 2955 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2956 }
duke@435 2957 if( component->isa(Component::DEF) && !first_def ) {
duke@435 2958 first_def = component;
duke@435 2959 }
duke@435 2960 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 2961 preceding_non_use = component;
duke@435 2962 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2963 preceding_non_use = NULL;
duke@435 2964 }
duke@435 2965 }
duke@435 2966 return Not_in_list;
duke@435 2967 }
duke@435 2968
duke@435 2969 // Find position for this name, regardless of use/def information
duke@435 2970 int ComponentList::operand_position(const char *name) {
duke@435 2971 PreserveIter pi(this);
duke@435 2972 int position = 0;
duke@435 2973 Component *component;
duke@435 2974 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2975 // When the first component is not a DEF,
duke@435 2976 // leave space for the result operand!
duke@435 2977 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2978 ++position;
duke@435 2979 }
duke@435 2980 if (strcmp(name, component->_name)==0) {
duke@435 2981 return position;
duke@435 2982 }
duke@435 2983 if( component->isa(Component::DEF)
duke@435 2984 && component->isa(Component::USE) ) {
duke@435 2985 ++position;
duke@435 2986 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2987 }
duke@435 2988 }
duke@435 2989 return Not_in_list;
duke@435 2990 }
duke@435 2991
duke@435 2992 int ComponentList::operand_position_format(const char *name) {
duke@435 2993 PreserveIter pi(this);
duke@435 2994 int first_position = operand_position(name);
duke@435 2995 int use_position = operand_position(name, Component::USE);
duke@435 2996
duke@435 2997 return ((first_position < use_position) ? use_position : first_position);
duke@435 2998 }
duke@435 2999
duke@435 3000 int ComponentList::label_position() {
duke@435 3001 PreserveIter pi(this);
duke@435 3002 int position = 0;
duke@435 3003 reset();
duke@435 3004 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3005 // When the first component is not a DEF,
duke@435 3006 // leave space for the result operand!
duke@435 3007 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3008 ++position;
duke@435 3009 }
duke@435 3010 if (strcmp(comp->_type, "label")==0) {
duke@435 3011 return position;
duke@435 3012 }
duke@435 3013 if( comp->isa(Component::DEF)
duke@435 3014 && comp->isa(Component::USE) ) {
duke@435 3015 ++position;
duke@435 3016 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3017 }
duke@435 3018 }
duke@435 3019
duke@435 3020 return -1;
duke@435 3021 }
duke@435 3022
duke@435 3023 int ComponentList::method_position() {
duke@435 3024 PreserveIter pi(this);
duke@435 3025 int position = 0;
duke@435 3026 reset();
duke@435 3027 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3028 // When the first component is not a DEF,
duke@435 3029 // leave space for the result operand!
duke@435 3030 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3031 ++position;
duke@435 3032 }
duke@435 3033 if (strcmp(comp->_type, "method")==0) {
duke@435 3034 return position;
duke@435 3035 }
duke@435 3036 if( comp->isa(Component::DEF)
duke@435 3037 && comp->isa(Component::USE) ) {
duke@435 3038 ++position;
duke@435 3039 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3040 }
duke@435 3041 }
duke@435 3042
duke@435 3043 return -1;
duke@435 3044 }
duke@435 3045
duke@435 3046 void ComponentList::dump() { output(stderr); }
duke@435 3047
duke@435 3048 void ComponentList::output(FILE *fp) {
duke@435 3049 PreserveIter pi(this);
duke@435 3050 fprintf(fp, "\n");
duke@435 3051 Component *component;
duke@435 3052 for (reset(); (component = iter()) != NULL;) {
duke@435 3053 component->output(fp);
duke@435 3054 }
duke@435 3055 fprintf(fp, "\n");
duke@435 3056 }
duke@435 3057
duke@435 3058 //------------------------------MatchNode--------------------------------------
duke@435 3059 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3060 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3061 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3062 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3063 _commutative_id(0) {
duke@435 3064 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3065 + (rChild ? rChild->_numleaves : 0);
duke@435 3066 }
duke@435 3067
duke@435 3068 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3069 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3070 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3071 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3072 _commutative_id(mnode._commutative_id) {
duke@435 3073 }
duke@435 3074
duke@435 3075 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3076 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3077 _opType(mnode._opType),
duke@435 3078 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3079 _commutative_id(mnode._commutative_id) {
duke@435 3080 if (mnode._lChild) {
duke@435 3081 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3082 } else {
duke@435 3083 _lChild = NULL;
duke@435 3084 }
duke@435 3085 if (mnode._rChild) {
duke@435 3086 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3087 } else {
duke@435 3088 _rChild = NULL;
duke@435 3089 }
duke@435 3090 }
duke@435 3091
duke@435 3092 MatchNode::~MatchNode() {
duke@435 3093 // // This node may not own its children if copied via assignment
duke@435 3094 // if( _lChild ) delete _lChild;
duke@435 3095 // if( _rChild ) delete _rChild;
duke@435 3096 }
duke@435 3097
duke@435 3098 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3099 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3100 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3101
duke@435 3102 if (strcmp(type,_opType)==0) {
duke@435 3103 return true;
duke@435 3104 } else {
duke@435 3105 ++position;
duke@435 3106 }
duke@435 3107 return false;
duke@435 3108 }
duke@435 3109
duke@435 3110 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3111 // Implementation does not modify state of internal structures.
twisti@1038 3112 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3113 bool def_flag) const {
twisti@1038 3114 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3115 FormDict &globals = _AD.globalNames();
duke@435 3116
duke@435 3117 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3118 // Base case
duke@435 3119 if (_lChild==NULL && _rChild==NULL) {
duke@435 3120 // If _opType is not an operation, do not build a component for it #####
duke@435 3121 const Form *f = globals[_opType];
duke@435 3122 if( f != NULL ) {
duke@435 3123 // Add non-ideals that are operands, operand-classes,
duke@435 3124 if( ! f->ideal_only()
duke@435 3125 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3126 components.insert(_name, _opType, usedef, true);
duke@435 3127 }
duke@435 3128 }
duke@435 3129 return;
duke@435 3130 }
duke@435 3131 // Promote results of "Set" to DEF
twisti@1038 3132 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3133 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3134 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3135 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3136 }
duke@435 3137
duke@435 3138 // Find the n'th base-operand in the match node,
duke@435 3139 // recursively investigates match rules of user-defined operands.
duke@435 3140 //
duke@435 3141 // Implementation does not modify state of internal structures since they
duke@435 3142 // can be shared.
duke@435 3143 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3144 const char * &result, const char * &name,
duke@435 3145 const char * &opType) const {
duke@435 3146 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3147 // Base case
duke@435 3148 if (_lChild==NULL && _rChild==NULL) {
duke@435 3149 // Check for special case: "Universe", "label"
duke@435 3150 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3151 if (position == 0) {
duke@435 3152 result = _result;
duke@435 3153 name = _name;
duke@435 3154 opType = _opType;
duke@435 3155 return 1;
duke@435 3156 } else {
duke@435 3157 -- position;
duke@435 3158 return 0;
duke@435 3159 }
duke@435 3160 }
duke@435 3161
duke@435 3162 const Form *form = globals[_opType];
duke@435 3163 MatchNode *matchNode = NULL;
duke@435 3164 // Check for user-defined type
duke@435 3165 if (form) {
duke@435 3166 // User operand or instruction?
duke@435 3167 OperandForm *opForm = form->is_operand();
duke@435 3168 InstructForm *inForm = form->is_instruction();
duke@435 3169 if ( opForm ) {
duke@435 3170 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3171 } else if ( inForm ) {
duke@435 3172 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3173 }
duke@435 3174 }
duke@435 3175 // if this is user-defined, recurse on match rule
duke@435 3176 // User-defined operand and instruction forms have a match-rule.
duke@435 3177 if (matchNode) {
duke@435 3178 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3179 } else {
duke@435 3180 // Either not a form, or a system-defined form (no match rule).
duke@435 3181 if (position==0) {
duke@435 3182 result = _result;
duke@435 3183 name = _name;
duke@435 3184 opType = _opType;
duke@435 3185 return 1;
duke@435 3186 } else {
duke@435 3187 --position;
duke@435 3188 return 0;
duke@435 3189 }
duke@435 3190 }
duke@435 3191
duke@435 3192 } else {
duke@435 3193 // Examine the left child and right child as well
duke@435 3194 if (_lChild) {
duke@435 3195 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3196 return 1;
duke@435 3197 }
duke@435 3198
duke@435 3199 if (_rChild) {
duke@435 3200 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3201 return 1;
duke@435 3202 }
duke@435 3203 }
duke@435 3204
duke@435 3205 return 0;
duke@435 3206 }
duke@435 3207
duke@435 3208 // Recursive call on all operands' match rules in my match rule.
duke@435 3209 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3210 uint index = 0;
duke@435 3211 uint num_consts = 0;
duke@435 3212 const char *result;
duke@435 3213 const char *name;
duke@435 3214 const char *opType;
duke@435 3215
duke@435 3216 for (uint position = index;
duke@435 3217 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3218 ++index;
duke@435 3219 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3220 }
duke@435 3221
duke@435 3222 return num_consts;
duke@435 3223 }
duke@435 3224
duke@435 3225 // Recursive call on all operands' match rules in my match rule.
duke@435 3226 // Constants in match rule subtree with specified type
duke@435 3227 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3228 uint index = 0;
duke@435 3229 uint num_consts = 0;
duke@435 3230 const char *result;
duke@435 3231 const char *name;
duke@435 3232 const char *opType;
duke@435 3233
duke@435 3234 for (uint position = index;
duke@435 3235 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3236 ++index;
duke@435 3237 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3238 }
duke@435 3239
duke@435 3240 return num_consts;
duke@435 3241 }
duke@435 3242
duke@435 3243 // Recursive call on all operands' match rules in my match rule.
duke@435 3244 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3245 return num_consts( globals, Form::idealP );
duke@435 3246 }
duke@435 3247
duke@435 3248 bool MatchNode::sets_result() const {
duke@435 3249 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3250 }
duke@435 3251
duke@435 3252 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3253 // If there is no right reduction, return NULL.
duke@435 3254 const char *rightStr = NULL;
duke@435 3255
duke@435 3256 // If we are a "Set", start from the right child.
duke@435 3257 const MatchNode *const mnode = sets_result() ?
duke@435 3258 (const MatchNode *const)this->_rChild :
duke@435 3259 (const MatchNode *const)this;
duke@435 3260
duke@435 3261 // If our right child exists, it is the right reduction
duke@435 3262 if ( mnode->_rChild ) {
duke@435 3263 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3264 : mnode->_rChild->_opType;
duke@435 3265 }
duke@435 3266 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3267 return rightStr;
duke@435 3268 }
duke@435 3269
duke@435 3270 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3271 // If there is no left reduction, return NULL.
duke@435 3272 const char *leftStr = NULL;
duke@435 3273
duke@435 3274 // If we are a "Set", start from the right child.
duke@435 3275 const MatchNode *const mnode = sets_result() ?
duke@435 3276 (const MatchNode *const)this->_rChild :
duke@435 3277 (const MatchNode *const)this;
duke@435 3278
duke@435 3279 // If our left child exists, it is the left reduction
duke@435 3280 if ( mnode->_lChild ) {
duke@435 3281 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3282 : mnode->_lChild->_opType;
duke@435 3283 } else {
duke@435 3284 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3285 if ( sets_result() ) {
duke@435 3286 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3287 if( oper ) {
duke@435 3288 leftStr = mnode->_opType;
duke@435 3289 }
duke@435 3290 }
duke@435 3291 }
duke@435 3292 return leftStr;
duke@435 3293 }
duke@435 3294
duke@435 3295 //------------------------------count_instr_names------------------------------
duke@435 3296 // Count occurrences of operands names in the leaves of the instruction
duke@435 3297 // match rule.
duke@435 3298 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3299 if( !this ) return;
duke@435 3300 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3301 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3302 if( !_lChild && !_rChild ) {
duke@435 3303 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3304 cnt++; // One more name found
duke@435 3305 names.Insert(_name,(void*)cnt);
duke@435 3306 }
duke@435 3307 }
duke@435 3308
duke@435 3309 //------------------------------build_instr_pred-------------------------------
duke@435 3310 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3311 // can skip some leading instances of 'name'.
duke@435 3312 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3313 if( _lChild ) {
duke@435 3314 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3315 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3316 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3317 }
duke@435 3318 if( _rChild ) {
duke@435 3319 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3320 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3321 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3322 }
duke@435 3323 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3324 // Wrong name? Give up...
duke@435 3325 if( strcmp(name,_name) ) return cnt;
duke@435 3326 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3327 return cnt-1;
duke@435 3328 }
duke@435 3329 return cnt;
duke@435 3330 }
duke@435 3331
duke@435 3332
duke@435 3333 //------------------------------build_internalop-------------------------------
duke@435 3334 // Build string representation of subtree
duke@435 3335 void MatchNode::build_internalop( ) {
duke@435 3336 char *iop, *subtree;
duke@435 3337 const char *lstr, *rstr;
duke@435 3338 // Build string representation of subtree
duke@435 3339 // Operation lchildType rchildType
duke@435 3340 int len = (int)strlen(_opType) + 4;
duke@435 3341 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3342 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3343 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3344 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3345 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3346 subtree = (char *)malloc(len);
duke@435 3347 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3348 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3349 iop = (char *)_AD._internalOps[subtree];
duke@435 3350 // Else create a unique name, and add it to the hash table
duke@435 3351 if (iop == NULL) {
duke@435 3352 iop = subtree;
duke@435 3353 _AD._internalOps.Insert(subtree, iop);
duke@435 3354 _AD._internalOpNames.addName(iop);
duke@435 3355 _AD._internalMatch.Insert(iop, this);
duke@435 3356 }
duke@435 3357 // Add the internal operand name to the MatchNode
duke@435 3358 _internalop = iop;
duke@435 3359 _result = iop;
duke@435 3360 }
duke@435 3361
duke@435 3362
duke@435 3363 void MatchNode::dump() {
duke@435 3364 output(stderr);
duke@435 3365 }
duke@435 3366
duke@435 3367 void MatchNode::output(FILE *fp) {
duke@435 3368 if (_lChild==0 && _rChild==0) {
duke@435 3369 fprintf(fp," %s",_name); // operand
duke@435 3370 }
duke@435 3371 else {
duke@435 3372 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3373 if(_lChild) _lChild->output(fp); // left operand
duke@435 3374 if(_rChild) _rChild->output(fp); // right operand
duke@435 3375 fprintf(fp,")"); // ")"
duke@435 3376 }
duke@435 3377 }
duke@435 3378
duke@435 3379 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3380 static const char *needs_ideal_memory_list[] = {
coleenp@548 3381 "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
duke@435 3382 "StoreB","StoreC","Store" ,"StoreFP",
twisti@1059 3383 "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
twisti@1059 3384 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
duke@435 3385 "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
duke@435 3386 "Store8B","Store4B","Store8C","Store4C","Store2C",
duke@435 3387 "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
duke@435 3388 "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
kvn@599 3389 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3390 "LoadPLocked",
kvn@855 3391 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3392 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3393 "StoreCM",
duke@435 3394 "ClearArray"
duke@435 3395 };
duke@435 3396 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3397 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3398 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3399 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3400 return 1;
duke@435 3401 if( _lChild ) {
duke@435 3402 const char *opType = _lChild->_opType;
duke@435 3403 for( int i=0; i<cnt; i++ )
duke@435 3404 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3405 return 1;
duke@435 3406 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3407 return 1;
duke@435 3408 }
duke@435 3409 if( _rChild ) {
duke@435 3410 const char *opType = _rChild->_opType;
duke@435 3411 for( int i=0; i<cnt; i++ )
duke@435 3412 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3413 return 1;
duke@435 3414 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3415 return 1;
duke@435 3416 }
duke@435 3417
duke@435 3418 return 0;
duke@435 3419 }
duke@435 3420
duke@435 3421 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3422 // post-matching.
duke@435 3423 int MatchNode::needs_base_oop_edge() const {
duke@435 3424 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3425 if( strcmp(_opType,"Set") ) return 0;
duke@435 3426 return !strcmp(_rChild->_opType,"AddP");
duke@435 3427 }
duke@435 3428
duke@435 3429 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3430 if( is_simple_chain_rule(globals) ) {
duke@435 3431 const char *src = _matrule->_rChild->_opType;
duke@435 3432 OperandForm *src_op = globals[src]->is_operand();
duke@435 3433 assert( src_op, "Not operand class of chain rule" );
duke@435 3434 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3435 } // Else check instruction
duke@435 3436
duke@435 3437 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3438 }
duke@435 3439
duke@435 3440
duke@435 3441 //-------------------------cisc spilling methods-------------------------------
duke@435 3442 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3443 //-------------------------cisc_spill_merge------------------------------------
duke@435 3444 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3445 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3446
duke@435 3447 // Combine results of left and right checks
duke@435 3448 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3449 // neither side is spillable, nor prevents cisc spilling
duke@435 3450 cisc_spillable = Maybe_cisc_spillable;
duke@435 3451 }
duke@435 3452 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3453 // right side is spillable
duke@435 3454 cisc_spillable = right_spillable;
duke@435 3455 }
duke@435 3456 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3457 // left side is spillable
duke@435 3458 cisc_spillable = left_spillable;
duke@435 3459 }
duke@435 3460 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3461 // left or right prevents cisc spilling this instruction
duke@435 3462 cisc_spillable = Not_cisc_spillable;
duke@435 3463 }
duke@435 3464 else {
duke@435 3465 // Only allow one to spill
duke@435 3466 cisc_spillable = Not_cisc_spillable;
duke@435 3467 }
duke@435 3468
duke@435 3469 return cisc_spillable;
duke@435 3470 }
duke@435 3471
duke@435 3472 //-------------------------root_ops_match--------------------------------------
duke@435 3473 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3474 // Base Case: check that the current operands/operations match
duke@435 3475 assert( op1, "Must have op's name");
duke@435 3476 assert( op2, "Must have op's name");
duke@435 3477 const Form *form1 = globals[op1];
duke@435 3478 const Form *form2 = globals[op2];
duke@435 3479
duke@435 3480 return (form1 == form2);
duke@435 3481 }
duke@435 3482
twisti@1038 3483 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3484 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3485 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3486 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3487 int left_spillable = Maybe_cisc_spillable;
duke@435 3488 int right_spillable = Maybe_cisc_spillable;
duke@435 3489
duke@435 3490 // Check that each has same number of operands at this level
duke@435 3491 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3492 return Not_cisc_spillable;
duke@435 3493
duke@435 3494 // Base Case: check that the current operands/operations match
duke@435 3495 // or are CISC spillable
duke@435 3496 assert( _opType, "Must have _opType");
duke@435 3497 assert( mRule2->_opType, "Must have _opType");
duke@435 3498 const Form *form = globals[_opType];
duke@435 3499 const Form *form2 = globals[mRule2->_opType];
duke@435 3500 if( form == form2 ) {
duke@435 3501 cisc_spillable = Maybe_cisc_spillable;
duke@435 3502 } else {
duke@435 3503 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3504 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3505 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3506 DataType data_type = Form::none;
twisti@1059 3507 if (form->is_operand()) {
twisti@1059 3508 // Make sure the loadX matches the type of the reg
twisti@1059 3509 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3510 }
duke@435 3511 // Detect reg vs (loadX memory)
duke@435 3512 if( form->is_cisc_reg(globals)
duke@435 3513 && form2_inst
twisti@1059 3514 && data_type != Form::none
twisti@1059 3515 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3516 && (name_left != NULL) // NOT (load)
duke@435 3517 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3518 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3519 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3520 cisc_spillable = Is_cisc_spillable;
duke@435 3521 operand = _name;
duke@435 3522 reg_type = _result;
duke@435 3523 return Is_cisc_spillable;
duke@435 3524 } else {
duke@435 3525 cisc_spillable = Not_cisc_spillable;
duke@435 3526 }
duke@435 3527 }
duke@435 3528 // Detect reg vs memory
duke@435 3529 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3530 cisc_spillable = Is_cisc_spillable;
duke@435 3531 operand = _name;
duke@435 3532 reg_type = _result;
duke@435 3533 return Is_cisc_spillable;
duke@435 3534 } else {
duke@435 3535 cisc_spillable = Not_cisc_spillable;
duke@435 3536 }
duke@435 3537 }
duke@435 3538
duke@435 3539 // If cisc is still possible, check rest of tree
duke@435 3540 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3541 // Check that each has same number of operands at this level
duke@435 3542 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3543
duke@435 3544 // Check left operands
duke@435 3545 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3546 left_spillable = Maybe_cisc_spillable;
duke@435 3547 } else {
duke@435 3548 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3549 }
duke@435 3550
duke@435 3551 // Check right operands
duke@435 3552 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3553 right_spillable = Maybe_cisc_spillable;
duke@435 3554 } else {
duke@435 3555 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3556 }
duke@435 3557
duke@435 3558 // Combine results of left and right checks
duke@435 3559 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3560 }
duke@435 3561
duke@435 3562 return cisc_spillable;
duke@435 3563 }
duke@435 3564
twisti@1038 3565 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3566 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3567 // This method handles the root of Match tree,
duke@435 3568 // general recursive checks done in MatchNode
twisti@1038 3569 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3570 MatchRule* mRule2, const char* &operand,
twisti@1038 3571 const char* &reg_type) {
duke@435 3572 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3573 int left_spillable = Maybe_cisc_spillable;
duke@435 3574 int right_spillable = Maybe_cisc_spillable;
duke@435 3575
duke@435 3576 // Check that each sets a result
duke@435 3577 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3578 // Check that each has same number of operands at this level
duke@435 3579 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3580
duke@435 3581 // Check left operands: at root, must be target of 'Set'
duke@435 3582 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3583 left_spillable = Not_cisc_spillable;
duke@435 3584 } else {
duke@435 3585 // Do not support cisc-spilling instruction's target location
duke@435 3586 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3587 left_spillable = Maybe_cisc_spillable;
duke@435 3588 } else {
duke@435 3589 left_spillable = Not_cisc_spillable;
duke@435 3590 }
duke@435 3591 }
duke@435 3592
duke@435 3593 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3594 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3595 right_spillable = Maybe_cisc_spillable;
duke@435 3596 } else {
duke@435 3597 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3598 }
duke@435 3599
duke@435 3600 // Combine results of left and right checks
duke@435 3601 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3602
duke@435 3603 return cisc_spillable;
duke@435 3604 }
duke@435 3605
duke@435 3606 //----------------------------- equivalent ------------------------------------
duke@435 3607 // Recursively check to see if two match rules are equivalent.
duke@435 3608 // This rule handles the root.
twisti@1038 3609 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3610 // Check that each sets a result
duke@435 3611 if (sets_result() != mRule2->sets_result()) {
duke@435 3612 return false;
duke@435 3613 }
duke@435 3614
duke@435 3615 // Check that the current operands/operations match
duke@435 3616 assert( _opType, "Must have _opType");
duke@435 3617 assert( mRule2->_opType, "Must have _opType");
duke@435 3618 const Form *form = globals[_opType];
duke@435 3619 const Form *form2 = globals[mRule2->_opType];
duke@435 3620 if( form != form2 ) {
duke@435 3621 return false;
duke@435 3622 }
duke@435 3623
duke@435 3624 if (_lChild ) {
duke@435 3625 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3626 return false;
duke@435 3627 } else if (mRule2->_lChild) {
duke@435 3628 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3629 }
duke@435 3630
duke@435 3631 if (_rChild ) {
duke@435 3632 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3633 return false;
duke@435 3634 } else if (mRule2->_rChild) {
duke@435 3635 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3636 }
duke@435 3637
duke@435 3638 // We've made it through the gauntlet.
duke@435 3639 return true;
duke@435 3640 }
duke@435 3641
duke@435 3642 //----------------------------- equivalent ------------------------------------
duke@435 3643 // Recursively check to see if two match rules are equivalent.
duke@435 3644 // This rule handles the operands.
duke@435 3645 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3646 if( !mNode2 )
duke@435 3647 return false;
duke@435 3648
duke@435 3649 // Check that the current operands/operations match
duke@435 3650 assert( _opType, "Must have _opType");
duke@435 3651 assert( mNode2->_opType, "Must have _opType");
duke@435 3652 const Form *form = globals[_opType];
duke@435 3653 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3654 if( form != form2 ) {
kvn@3037 3655 return false;
kvn@3037 3656 }
kvn@3037 3657
kvn@3037 3658 // Check that their children also match
kvn@3037 3659 if (_lChild ) {
kvn@3037 3660 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3661 return false;
kvn@3037 3662 } else if (mNode2->_lChild) {
kvn@3037 3663 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3664 }
kvn@3037 3665
kvn@3037 3666 if (_rChild ) {
kvn@3037 3667 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3668 return false;
kvn@3037 3669 } else if (mNode2->_rChild) {
kvn@3037 3670 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3671 }
kvn@3037 3672
kvn@3037 3673 // We've made it through the gauntlet.
kvn@3037 3674 return true;
duke@435 3675 }
duke@435 3676
duke@435 3677 //-------------------------- has_commutative_op -------------------------------
duke@435 3678 // Recursively check for commutative operations with subtree operands
duke@435 3679 // which could be swapped.
duke@435 3680 void MatchNode::count_commutative_op(int& count) {
duke@435 3681 static const char *commut_op_list[] = {
duke@435 3682 "AddI","AddL","AddF","AddD",
duke@435 3683 "AndI","AndL",
duke@435 3684 "MaxI","MinI",
duke@435 3685 "MulI","MulL","MulF","MulD",
duke@435 3686 "OrI" ,"OrL" ,
duke@435 3687 "XorI","XorL"
duke@435 3688 };
duke@435 3689 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3690
duke@435 3691 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3692 // Don't swap if right operand is an immediate constant.
duke@435 3693 bool is_const = false;
duke@435 3694 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3695 FormDict &globals = _AD.globalNames();
duke@435 3696 const Form *form = globals[_rChild->_opType];
duke@435 3697 if ( form ) {
duke@435 3698 OperandForm *oper = form->is_operand();
duke@435 3699 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3700 is_const = true;
duke@435 3701 }
duke@435 3702 }
duke@435 3703 if( !is_const ) {
duke@435 3704 for( int i=0; i<cnt; i++ ) {
duke@435 3705 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3706 count++;
duke@435 3707 _commutative_id = count; // id should be > 0
duke@435 3708 break;
duke@435 3709 }
duke@435 3710 }
duke@435 3711 }
duke@435 3712 }
duke@435 3713 if( _lChild )
duke@435 3714 _lChild->count_commutative_op(count);
duke@435 3715 if( _rChild )
duke@435 3716 _rChild->count_commutative_op(count);
duke@435 3717 }
duke@435 3718
duke@435 3719 //-------------------------- swap_commutative_op ------------------------------
duke@435 3720 // Recursively swap specified commutative operation with subtree operands.
duke@435 3721 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3722 if( _commutative_id == id ) { // id should be > 0
duke@435 3723 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3724 "not swappable operation");
duke@435 3725 MatchNode* tmp = _lChild;
duke@435 3726 _lChild = _rChild;
duke@435 3727 _rChild = tmp;
duke@435 3728 // Don't exit here since we need to build internalop.
duke@435 3729 }
duke@435 3730
duke@435 3731 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3732 if( _lChild )
duke@435 3733 _lChild->swap_commutative_op(is_set, id);
duke@435 3734 if( _rChild )
duke@435 3735 _rChild->swap_commutative_op(is_set, id);
duke@435 3736
duke@435 3737 // If not the root, reduce this subtree to an internal operand
duke@435 3738 if( !atroot && (_lChild || _rChild) ) {
duke@435 3739 build_internalop();
duke@435 3740 }
duke@435 3741 }
duke@435 3742
duke@435 3743 //-------------------------- swap_commutative_op ------------------------------
duke@435 3744 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3745 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3746 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3747 // Clone
duke@435 3748 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3749 // Swap operands of commutative operation
duke@435 3750 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3751 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3752 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3753 clone->_result = buf;
duke@435 3754
duke@435 3755 clone->_next = this->_next;
duke@435 3756 this-> _next = clone;
duke@435 3757 if( (--count) > 0 ) {
twisti@1038 3758 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3759 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3760 }
duke@435 3761 }
duke@435 3762
duke@435 3763 //------------------------------MatchRule--------------------------------------
duke@435 3764 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3765 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3766 _next = NULL;
duke@435 3767 }
duke@435 3768
duke@435 3769 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3770 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3771 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3772 _next = NULL;
duke@435 3773 }
duke@435 3774
duke@435 3775 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3776 int numleaves)
duke@435 3777 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3778 _numchilds(0) {
duke@435 3779 _next = NULL;
duke@435 3780 mroot->_lChild = NULL;
duke@435 3781 mroot->_rChild = NULL;
duke@435 3782 delete mroot;
duke@435 3783 _numleaves = numleaves;
duke@435 3784 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3785 }
duke@435 3786 MatchRule::~MatchRule() {
duke@435 3787 }
duke@435 3788
duke@435 3789 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3790 // Implementation does not modify state of internal structures.
twisti@1038 3791 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3792 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3793
duke@435 3794 MatchNode::append_components(locals, components,
duke@435 3795 false /* not necessarily a def */);
duke@435 3796 }
duke@435 3797
duke@435 3798 // Recursive call on all operands' match rules in my match rule.
duke@435 3799 // Implementation does not modify state of internal structures since they
duke@435 3800 // can be shared.
duke@435 3801 // The MatchNode that is called first treats its
duke@435 3802 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3803 const char *&result, const char * &name,
duke@435 3804 const char * &opType)const{
duke@435 3805 uint position = position0;
duke@435 3806
duke@435 3807 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3808 }
duke@435 3809
duke@435 3810
duke@435 3811 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3812 uint position = 1;
duke@435 3813 const char *result = NULL;
duke@435 3814 const char *name = NULL;
duke@435 3815 const char *opType = NULL;
duke@435 3816 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3817 position = 0;
duke@435 3818 if( base_operand(position, globals, result, name, opType) &&
duke@435 3819 (strcmp(opType,"RegI")==0 ||
duke@435 3820 strcmp(opType,"RegP")==0 ||
coleenp@548 3821 strcmp(opType,"RegN")==0 ||
duke@435 3822 strcmp(opType,"RegL")==0 ||
duke@435 3823 strcmp(opType,"RegF")==0 ||
duke@435 3824 strcmp(opType,"RegD")==0 ||
duke@435 3825 strcmp(opType,"Reg" )==0) ) {
duke@435 3826 return 1;
duke@435 3827 }
duke@435 3828 }
duke@435 3829 return 0;
duke@435 3830 }
duke@435 3831
duke@435 3832 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3833 uint position = 1;
duke@435 3834 const char *result = NULL;
duke@435 3835 const char *name = NULL;
duke@435 3836 const char *opType = NULL;
duke@435 3837 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3838 position = 0;
duke@435 3839 if (base_operand(position, globals, result, name, opType)) {
duke@435 3840 return ideal_to_const_type(opType);
duke@435 3841 }
duke@435 3842 }
duke@435 3843 return Form::none;
duke@435 3844 }
duke@435 3845
duke@435 3846 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3847
duke@435 3848 // Check for chain rule, and do not generate a match list for it
duke@435 3849 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3850 const Form *form = globals[_opType];
duke@435 3851 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3852 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3853 return true;
duke@435 3854 }
duke@435 3855 }
duke@435 3856 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3857 if (_rChild) {
duke@435 3858 const char *rch = _rChild->_opType;
duke@435 3859 const Form *form = globals[rch];
duke@435 3860 if ((!strcmp(_opType,"Set") &&
duke@435 3861 ((form) && form->is_operand()))) {
duke@435 3862 return true;
duke@435 3863 }
duke@435 3864 }
duke@435 3865 return false;
duke@435 3866 }
duke@435 3867
duke@435 3868 int MatchRule::is_ideal_copy() const {
duke@435 3869 if( _rChild ) {
duke@435 3870 const char *opType = _rChild->_opType;
ysr@777 3871 #if 1
ysr@777 3872 if( strcmp(opType,"CastIP")==0 )
ysr@777 3873 return 1;
ysr@777 3874 #else
duke@435 3875 if( strcmp(opType,"CastII")==0 )
duke@435 3876 return 1;
duke@435 3877 // Do not treat *CastPP this way, because it
duke@435 3878 // may transfer a raw pointer to an oop.
duke@435 3879 // If the register allocator were to coalesce this
duke@435 3880 // into a single LRG, the GC maps would be incorrect.
duke@435 3881 //if( strcmp(opType,"CastPP")==0 )
duke@435 3882 // return 1;
duke@435 3883 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3884 // return 1;
duke@435 3885 //
duke@435 3886 // Do not treat CastX2P or CastP2X this way, because
duke@435 3887 // raw pointers and int types are treated differently
duke@435 3888 // when saving local & stack info for safepoints in
duke@435 3889 // Output().
duke@435 3890 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3891 // return 1;
duke@435 3892 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3893 // return 1;
ysr@777 3894 #endif
duke@435 3895 }
duke@435 3896 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3897 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3898 return 1;
duke@435 3899 return 0;
duke@435 3900 }
duke@435 3901
duke@435 3902
duke@435 3903 int MatchRule::is_expensive() const {
duke@435 3904 if( _rChild ) {
duke@435 3905 const char *opType = _rChild->_opType;
duke@435 3906 if( strcmp(opType,"AtanD")==0 ||
duke@435 3907 strcmp(opType,"CosD")==0 ||
duke@435 3908 strcmp(opType,"DivD")==0 ||
duke@435 3909 strcmp(opType,"DivF")==0 ||
duke@435 3910 strcmp(opType,"DivI")==0 ||
duke@435 3911 strcmp(opType,"ExpD")==0 ||
duke@435 3912 strcmp(opType,"LogD")==0 ||
duke@435 3913 strcmp(opType,"Log10D")==0 ||
duke@435 3914 strcmp(opType,"ModD")==0 ||
duke@435 3915 strcmp(opType,"ModF")==0 ||
duke@435 3916 strcmp(opType,"ModI")==0 ||
duke@435 3917 strcmp(opType,"PowD")==0 ||
duke@435 3918 strcmp(opType,"SinD")==0 ||
duke@435 3919 strcmp(opType,"SqrtD")==0 ||
duke@435 3920 strcmp(opType,"TanD")==0 ||
duke@435 3921 strcmp(opType,"ConvD2F")==0 ||
duke@435 3922 strcmp(opType,"ConvD2I")==0 ||
duke@435 3923 strcmp(opType,"ConvD2L")==0 ||
duke@435 3924 strcmp(opType,"ConvF2D")==0 ||
duke@435 3925 strcmp(opType,"ConvF2I")==0 ||
duke@435 3926 strcmp(opType,"ConvF2L")==0 ||
duke@435 3927 strcmp(opType,"ConvI2D")==0 ||
duke@435 3928 strcmp(opType,"ConvI2F")==0 ||
duke@435 3929 strcmp(opType,"ConvI2L")==0 ||
duke@435 3930 strcmp(opType,"ConvL2D")==0 ||
duke@435 3931 strcmp(opType,"ConvL2F")==0 ||
duke@435 3932 strcmp(opType,"ConvL2I")==0 ||
kvn@682 3933 strcmp(opType,"DecodeN")==0 ||
kvn@682 3934 strcmp(opType,"EncodeP")==0 ||
duke@435 3935 strcmp(opType,"RoundDouble")==0 ||
duke@435 3936 strcmp(opType,"RoundFloat")==0 ||
duke@435 3937 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 3938 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 3939 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 3940 strcmp(opType,"ReverseBytesS")==0 ||
duke@435 3941 strcmp(opType,"Replicate16B")==0 ||
duke@435 3942 strcmp(opType,"Replicate8B")==0 ||
duke@435 3943 strcmp(opType,"Replicate4B")==0 ||
duke@435 3944 strcmp(opType,"Replicate8C")==0 ||
duke@435 3945 strcmp(opType,"Replicate4C")==0 ||
duke@435 3946 strcmp(opType,"Replicate8S")==0 ||
duke@435 3947 strcmp(opType,"Replicate4S")==0 ||
duke@435 3948 strcmp(opType,"Replicate4I")==0 ||
duke@435 3949 strcmp(opType,"Replicate2I")==0 ||
duke@435 3950 strcmp(opType,"Replicate2L")==0 ||
duke@435 3951 strcmp(opType,"Replicate4F")==0 ||
duke@435 3952 strcmp(opType,"Replicate2F")==0 ||
duke@435 3953 strcmp(opType,"Replicate2D")==0 ||
duke@435 3954 0 /* 0 to line up columns nicely */ )
duke@435 3955 return 1;
duke@435 3956 }
duke@435 3957 return 0;
duke@435 3958 }
duke@435 3959
duke@435 3960 bool MatchRule::is_ideal_if() const {
duke@435 3961 if( !_opType ) return false;
duke@435 3962 return
duke@435 3963 !strcmp(_opType,"If" ) ||
duke@435 3964 !strcmp(_opType,"CountedLoopEnd");
duke@435 3965 }
duke@435 3966
duke@435 3967 bool MatchRule::is_ideal_fastlock() const {
duke@435 3968 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3969 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 3970 }
duke@435 3971 return false;
duke@435 3972 }
duke@435 3973
duke@435 3974 bool MatchRule::is_ideal_membar() const {
duke@435 3975 if( !_opType ) return false;
duke@435 3976 return
duke@435 3977 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 3978 !strcmp(_opType,"MemBarRelease" ) ||
roland@3047 3979 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 3980 !strcmp(_opType,"MemBarReleaseLock") ||
duke@435 3981 !strcmp(_opType,"MemBarVolatile" ) ||
roland@3392 3982 !strcmp(_opType,"MemBarCPUOrder" ) ||
roland@3392 3983 !strcmp(_opType,"MemBarStoreStore" );
duke@435 3984 }
duke@435 3985
duke@435 3986 bool MatchRule::is_ideal_loadPC() const {
duke@435 3987 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3988 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 3989 }
duke@435 3990 return false;
duke@435 3991 }
duke@435 3992
duke@435 3993 bool MatchRule::is_ideal_box() const {
duke@435 3994 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3995 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 3996 }
duke@435 3997 return false;
duke@435 3998 }
duke@435 3999
duke@435 4000 bool MatchRule::is_ideal_goto() const {
duke@435 4001 bool ideal_goto = false;
duke@435 4002
duke@435 4003 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4004 ideal_goto = true;
duke@435 4005 }
duke@435 4006 return ideal_goto;
duke@435 4007 }
duke@435 4008
duke@435 4009 bool MatchRule::is_ideal_jump() const {
duke@435 4010 if( _opType ) {
duke@435 4011 if( !strcmp(_opType,"Jump") )
duke@435 4012 return true;
duke@435 4013 }
duke@435 4014 return false;
duke@435 4015 }
duke@435 4016
duke@435 4017 bool MatchRule::is_ideal_bool() const {
duke@435 4018 if( _opType ) {
duke@435 4019 if( !strcmp(_opType,"Bool") )
duke@435 4020 return true;
duke@435 4021 }
duke@435 4022 return false;
duke@435 4023 }
duke@435 4024
duke@435 4025
duke@435 4026 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4027 Form::DataType ideal_load = Form::none;
duke@435 4028
duke@435 4029 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4030 const char *opType = _rChild->_opType;
duke@435 4031 ideal_load = is_load_from_memory(opType);
duke@435 4032 }
duke@435 4033
duke@435 4034 return ideal_load;
duke@435 4035 }
duke@435 4036
duke@435 4037
never@1290 4038 bool MatchRule::skip_antidep_check() const {
never@1290 4039 // Some loads operate on what is effectively immutable memory so we
never@1290 4040 // should skip the anti dep computations. For some of these nodes
never@1290 4041 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4042 // for certain kinds of LoadKlass it does not since they are
never@1290 4043 // actually reading memory which could be rewritten by the runtime,
never@1290 4044 // though never by generated code. This disables it uniformly for
never@1290 4045 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4046 // LoadRange.
never@1290 4047 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4048 const char *opType = _rChild->_opType;
never@1290 4049 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4050 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4051 strcmp("LoadRange", opType) == 0) {
never@1290 4052 return true;
never@1290 4053 }
never@1290 4054 }
never@1290 4055
never@1290 4056 return false;
never@1290 4057 }
never@1290 4058
never@1290 4059
duke@435 4060 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4061 Form::DataType ideal_store = Form::none;
duke@435 4062
duke@435 4063 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4064 const char *opType = _rChild->_opType;
duke@435 4065 ideal_store = is_store_to_memory(opType);
duke@435 4066 }
duke@435 4067
duke@435 4068 return ideal_store;
duke@435 4069 }
duke@435 4070
duke@435 4071
duke@435 4072 void MatchRule::dump() {
duke@435 4073 output(stderr);
duke@435 4074 }
duke@435 4075
duke@435 4076 void MatchRule::output(FILE *fp) {
duke@435 4077 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4078 if (_lChild) _lChild->output(fp);
duke@435 4079 if (_rChild) _rChild->output(fp);
duke@435 4080 fprintf(fp," )\n");
duke@435 4081 fprintf(fp," nesting depth = %d\n", _depth);
duke@435 4082 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4083 fprintf(fp,"\n");
duke@435 4084 }
duke@435 4085
duke@435 4086 //------------------------------Attribute--------------------------------------
duke@435 4087 Attribute::Attribute(char *id, char* val, int type)
duke@435 4088 : _ident(id), _val(val), _atype(type) {
duke@435 4089 }
duke@435 4090 Attribute::~Attribute() {
duke@435 4091 }
duke@435 4092
duke@435 4093 int Attribute::int_val(ArchDesc &ad) {
duke@435 4094 // Make sure it is an integer constant:
duke@435 4095 int result = 0;
duke@435 4096 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4097 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4098 _ident, _val ? _val : "");
duke@435 4099 }
duke@435 4100 return result;
duke@435 4101 }
duke@435 4102
duke@435 4103 void Attribute::dump() {
duke@435 4104 output(stderr);
duke@435 4105 } // Debug printer
duke@435 4106
duke@435 4107 // Write to output files
duke@435 4108 void Attribute::output(FILE *fp) {
duke@435 4109 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4110 }
duke@435 4111
duke@435 4112 //------------------------------FormatRule----------------------------------
duke@435 4113 FormatRule::FormatRule(char *temp)
duke@435 4114 : _temp(temp) {
duke@435 4115 }
duke@435 4116 FormatRule::~FormatRule() {
duke@435 4117 }
duke@435 4118
duke@435 4119 void FormatRule::dump() {
duke@435 4120 output(stderr);
duke@435 4121 }
duke@435 4122
duke@435 4123 // Write to output files
duke@435 4124 void FormatRule::output(FILE *fp) {
duke@435 4125 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4126 fprintf(fp,"\n");
duke@435 4127 }

mercurial