src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Fri, 29 Jan 2010 08:33:24 -0800

author
twisti
date
Fri, 29 Jan 2010 08:33:24 -0800
changeset 1636
24128c2ffa87
parent 1635
ba263cfb7611
child 1639
18a389214829
permissions
-rw-r--r--

6921339: backout 6917766
Reviewed-by: mr

duke@435 1 /*
twisti@1636 2 * Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
duke@435 27
duke@435 28 #define __ _masm->
duke@435 29
duke@435 30
duke@435 31 //------------------------------------------------------------
duke@435 32
duke@435 33
duke@435 34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 35 if (opr->is_constant()) {
duke@435 36 LIR_Const* constant = opr->as_constant_ptr();
duke@435 37 switch (constant->type()) {
duke@435 38 case T_INT: {
duke@435 39 jint value = constant->as_jint();
duke@435 40 return Assembler::is_simm13(value);
duke@435 41 }
duke@435 42
duke@435 43 default:
duke@435 44 return false;
duke@435 45 }
duke@435 46 }
duke@435 47 return false;
duke@435 48 }
duke@435 49
duke@435 50
duke@435 51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 52 switch (op->code()) {
duke@435 53 case lir_null_check:
duke@435 54 return true;
duke@435 55
duke@435 56
duke@435 57 case lir_add:
duke@435 58 case lir_ushr:
duke@435 59 case lir_shr:
duke@435 60 case lir_shl:
duke@435 61 // integer shifts and adds are always one instruction
duke@435 62 return op->result_opr()->is_single_cpu();
duke@435 63
duke@435 64
duke@435 65 case lir_move: {
duke@435 66 LIR_Op1* op1 = op->as_Op1();
duke@435 67 LIR_Opr src = op1->in_opr();
duke@435 68 LIR_Opr dst = op1->result_opr();
duke@435 69
duke@435 70 if (src == dst) {
duke@435 71 NEEDS_CLEANUP;
duke@435 72 // this works around a problem where moves with the same src and dst
duke@435 73 // end up in the delay slot and then the assembler swallows the mov
duke@435 74 // since it has no effect and then it complains because the delay slot
duke@435 75 // is empty. returning false stops the optimizer from putting this in
duke@435 76 // the delay slot
duke@435 77 return false;
duke@435 78 }
duke@435 79
duke@435 80 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 81 // will make it much larger than a single instruction.
duke@435 82 if (VerifyOops) {
duke@435 83 return false;
duke@435 84 }
duke@435 85
duke@435 86 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 87 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 88 return false;
duke@435 89 }
duke@435 90
duke@435 91 if (dst->is_register()) {
duke@435 92 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 93 return !PatchALot;
duke@435 94 } else if (src->is_single_stack()) {
duke@435 95 return true;
duke@435 96 }
duke@435 97 }
duke@435 98
duke@435 99 if (src->is_register()) {
duke@435 100 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 101 return !PatchALot;
duke@435 102 } else if (dst->is_single_stack()) {
duke@435 103 return true;
duke@435 104 }
duke@435 105 }
duke@435 106
duke@435 107 if (dst->is_register() &&
duke@435 108 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 109 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 110 return true;
duke@435 111 }
duke@435 112
duke@435 113 return false;
duke@435 114 }
duke@435 115
duke@435 116 default:
duke@435 117 return false;
duke@435 118 }
duke@435 119 ShouldNotReachHere();
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 124 return FrameMap::O0_oop_opr;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 129 return FrameMap::I0_oop_opr;
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 134 return FrameMap::I0_opr;
duke@435 135 }
duke@435 136
duke@435 137
duke@435 138 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 139 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 140 }
duke@435 141
duke@435 142
duke@435 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 145 // If they do not match we jump to slow case.
duke@435 146 int LIR_Assembler::check_icache() {
duke@435 147 int offset = __ offset();
duke@435 148 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 149 return offset;
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 void LIR_Assembler::osr_entry() {
duke@435 154 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 155 //
duke@435 156 // 1. Create a new compiled activation.
duke@435 157 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 158 // at the osr_bci; it is not initialized.
duke@435 159 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 160
duke@435 161 // OSR entry point
duke@435 162 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 163 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 164 ValueStack* entry_state = osr_entry->end()->state();
duke@435 165 int number_of_locks = entry_state->locks_size();
duke@435 166
duke@435 167 // Create a frame for the compiled activation.
duke@435 168 __ build_frame(initial_frame_size_in_bytes());
duke@435 169
duke@435 170 // OSR buffer is
duke@435 171 //
duke@435 172 // locals[nlocals-1..0]
duke@435 173 // monitors[number_of_locks-1..0]
duke@435 174 //
duke@435 175 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 176 // so first slot in the local array is the last local from the interpreter
duke@435 177 // and last slot is local[0] (receiver) from the interpreter
duke@435 178 //
duke@435 179 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 180 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 181 // in the interpreter frame (the method lock if a sync method)
duke@435 182
duke@435 183 // Initialize monitors in the compiled activation.
duke@435 184 // I0: pointer to osr buffer
duke@435 185 //
duke@435 186 // All other registers are dead at this point and the locals will be
duke@435 187 // copied into place by code emitted in the IR.
duke@435 188
duke@435 189 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 190 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 191 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 192 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 193 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 194 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 195 // the oop.
duke@435 196 for (int i = 0; i < number_of_locks; i++) {
roland@1495 197 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 198 #ifdef ASSERT
duke@435 199 // verify the interpreter's monitor has a non-null object
duke@435 200 {
duke@435 201 Label L;
roland@1495 202 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 203 __ cmp(G0, O7);
duke@435 204 __ br(Assembler::notEqual, false, Assembler::pt, L);
duke@435 205 __ delayed()->nop();
duke@435 206 __ stop("locked object is NULL");
duke@435 207 __ bind(L);
duke@435 208 }
duke@435 209 #endif // ASSERT
duke@435 210 // Copy the lock field into the compiled activation.
roland@1495 211 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 212 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 213 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 214 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 215 }
duke@435 216 }
duke@435 217 }
duke@435 218
duke@435 219
duke@435 220 // Optimized Library calls
duke@435 221 // This is the fast version of java.lang.String.compare; it has not
duke@435 222 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 224 Register str0 = left->as_register();
duke@435 225 Register str1 = right->as_register();
duke@435 226
duke@435 227 Label Ldone;
duke@435 228
duke@435 229 Register result = dst->as_register();
duke@435 230 {
duke@435 231 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 232 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 233 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 234 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 235
duke@435 236 Register tmp0 = L0;
duke@435 237 Register tmp1 = L1;
duke@435 238 Register tmp2 = L2;
duke@435 239
duke@435 240 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 241 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 242 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 243
twisti@1162 244 __ ld_ptr(str0, value_offset, tmp0);
twisti@1162 245 __ ld(str0, offset_offset, tmp2);
duke@435 246 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
twisti@1162 247 __ ld(str0, count_offset, str0);
duke@435 248 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 249
duke@435 250 // str1 may be null
duke@435 251 add_debug_info_for_null_check_here(info);
duke@435 252
twisti@1162 253 __ ld_ptr(str1, value_offset, tmp1);
duke@435 254 __ add(tmp0, tmp2, tmp0);
duke@435 255
twisti@1162 256 __ ld(str1, offset_offset, tmp2);
duke@435 257 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
twisti@1162 258 __ ld(str1, count_offset, str1);
duke@435 259 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 260 __ subcc(str0, str1, O7);
duke@435 261 __ add(tmp1, tmp2, tmp1);
duke@435 262 }
duke@435 263
duke@435 264 {
duke@435 265 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 266 Register count0 = I0;
duke@435 267 Register count1 = I1;
duke@435 268 Register limit = L3;
duke@435 269
duke@435 270 Label Lskip;
duke@435 271 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 272 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 273 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 274 __ bind(Lskip);
duke@435 275
duke@435 276 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 277 __ cmp(limit, 0);
duke@435 278 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 279 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 280 }
duke@435 281
duke@435 282 {
duke@435 283 // Neither string is empty
duke@435 284 Label Lloop;
duke@435 285
duke@435 286 Register base0 = L0;
duke@435 287 Register base1 = L1;
duke@435 288 Register chr0 = I0;
duke@435 289 Register chr1 = I1;
duke@435 290 Register limit = L3;
duke@435 291
duke@435 292 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 293 __ add(base0, limit, base0);
duke@435 294 __ add(base1, limit, base1);
duke@435 295 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 296
duke@435 297 __ lduh(base0, limit, chr0);
duke@435 298 __ bind(Lloop);
duke@435 299 __ lduh(base1, limit, chr1);
duke@435 300 __ subcc(chr0, chr1, chr0);
duke@435 301 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 302 assert(chr0 == result, "result must be pre-placed");
duke@435 303 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 304 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 305 __ delayed()->lduh(base0, limit, chr0);
duke@435 306 }
duke@435 307
duke@435 308 // If strings are equal up to min length, return the length difference.
duke@435 309 __ mov(O7, result);
duke@435 310
duke@435 311 // Otherwise, return the difference between the first mismatched chars.
duke@435 312 __ bind(Ldone);
duke@435 313 }
duke@435 314
duke@435 315
duke@435 316 // --------------------------------------------------------------------------------------------
duke@435 317
duke@435 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 319 if (!GenerateSynchronizationCode) return;
duke@435 320
duke@435 321 Register obj_reg = obj_opr->as_register();
duke@435 322 Register lock_reg = lock_opr->as_register();
duke@435 323
duke@435 324 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 325 Register reg = mon_addr.base();
duke@435 326 int offset = mon_addr.disp();
duke@435 327 // compute pointer to BasicLock
duke@435 328 if (mon_addr.is_simm13()) {
duke@435 329 __ add(reg, offset, lock_reg);
duke@435 330 }
duke@435 331 else {
duke@435 332 __ set(offset, lock_reg);
duke@435 333 __ add(reg, lock_reg, lock_reg);
duke@435 334 }
duke@435 335 // unlock object
duke@435 336 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 337 // _slow_case_stubs->append(slow_case);
duke@435 338 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 339 _slow_case_stubs->append(slow_case);
duke@435 340 if (UseFastLocking) {
duke@435 341 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 342 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 343 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 344 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 345 } else {
duke@435 346 // always do slow unlocking
duke@435 347 // note: the slow unlocking code could be inlined here, however if we use
duke@435 348 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 349 // simpler and requires less duplicated code - additionally, the
duke@435 350 // slow unlocking code is the same in either case which simplifies
duke@435 351 // debugging
duke@435 352 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 353 __ delayed()->nop();
duke@435 354 }
duke@435 355 // done
duke@435 356 __ bind(*slow_case->continuation());
duke@435 357 }
duke@435 358
duke@435 359
twisti@1636 360 void LIR_Assembler::emit_exception_handler() {
duke@435 361 // if the last instruction is a call (typically to do a throw which
duke@435 362 // is coming at the end after block reordering) the return address
duke@435 363 // must still point into the code area in order to avoid assertion
duke@435 364 // failures when searching for the corresponding bci => add a nop
duke@435 365 // (was bug 5/14/1999 - gri)
duke@435 366 __ nop();
duke@435 367
duke@435 368 // generate code for exception handler
duke@435 369 ciMethod* method = compilation()->method();
duke@435 370
duke@435 371 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 372
duke@435 373 if (handler_base == NULL) {
duke@435 374 // not enough space left for the handler
duke@435 375 bailout("exception handler overflow");
twisti@1636 376 return;
duke@435 377 }
twisti@1636 378 #ifdef ASSERT
duke@435 379 int offset = code_offset();
twisti@1636 380 #endif // ASSERT
twisti@1636 381 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
twisti@1636 382
duke@435 383
kvn@1215 384 if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_exceptions()) {
duke@435 385 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 386 __ delayed()->nop();
duke@435 387 }
duke@435 388
duke@435 389 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
duke@435 390 __ delayed()->nop();
duke@435 391 debug_only(__ stop("should have gone to the caller");)
duke@435 392 assert(code_offset() - offset <= exception_handler_size, "overflow");
twisti@1636 393
duke@435 394 __ end_a_stub();
duke@435 395 }
duke@435 396
twisti@1636 397 void LIR_Assembler::emit_deopt_handler() {
duke@435 398 // if the last instruction is a call (typically to do a throw which
duke@435 399 // is coming at the end after block reordering) the return address
duke@435 400 // must still point into the code area in order to avoid assertion
duke@435 401 // failures when searching for the corresponding bci => add a nop
duke@435 402 // (was bug 5/14/1999 - gri)
duke@435 403 __ nop();
duke@435 404
duke@435 405 // generate code for deopt handler
duke@435 406 ciMethod* method = compilation()->method();
duke@435 407 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 408 if (handler_base == NULL) {
duke@435 409 // not enough space left for the handler
duke@435 410 bailout("deopt handler overflow");
twisti@1636 411 return;
duke@435 412 }
twisti@1636 413 #ifdef ASSERT
duke@435 414 int offset = code_offset();
twisti@1636 415 #endif // ASSERT
twisti@1636 416 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
twisti@1636 417
twisti@1162 418 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1636 419
twisti@1162 420 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 421 __ delayed()->nop();
twisti@1636 422
duke@435 423 assert(code_offset() - offset <= deopt_handler_size, "overflow");
twisti@1636 424
duke@435 425 debug_only(__ stop("should have gone to the caller");)
twisti@1636 426
duke@435 427 __ end_a_stub();
duke@435 428 }
duke@435 429
duke@435 430
duke@435 431 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 432 if (o == NULL) {
duke@435 433 __ set(NULL_WORD, reg);
duke@435 434 } else {
duke@435 435 int oop_index = __ oop_recorder()->find_index(o);
duke@435 436 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 437 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 438 }
duke@435 439 }
duke@435 440
duke@435 441
duke@435 442 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 443 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 444 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 445 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 446
twisti@1162 447 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 448 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 449 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 450 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 451 // therefore generate the sethi/add as a placeholders
twisti@1162 452 __ patchable_set(addrlit, reg);
duke@435 453
duke@435 454 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 455 }
duke@435 456
duke@435 457
duke@435 458 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 459 Register Rdividend = op->in_opr1()->as_register();
duke@435 460 Register Rdivisor = noreg;
duke@435 461 Register Rscratch = op->in_opr3()->as_register();
duke@435 462 Register Rresult = op->result_opr()->as_register();
duke@435 463 int divisor = -1;
duke@435 464
duke@435 465 if (op->in_opr2()->is_register()) {
duke@435 466 Rdivisor = op->in_opr2()->as_register();
duke@435 467 } else {
duke@435 468 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 469 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 470 }
duke@435 471
duke@435 472 assert(Rdividend != Rscratch, "");
duke@435 473 assert(Rdivisor != Rscratch, "");
duke@435 474 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 475
duke@435 476 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 477 // convert division by a power of two into some shifts and logical operations
duke@435 478 if (op->code() == lir_idiv) {
duke@435 479 if (divisor == 2) {
duke@435 480 __ srl(Rdividend, 31, Rscratch);
duke@435 481 } else {
duke@435 482 __ sra(Rdividend, 31, Rscratch);
duke@435 483 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 484 }
duke@435 485 __ add(Rdividend, Rscratch, Rscratch);
duke@435 486 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 487 return;
duke@435 488 } else {
duke@435 489 if (divisor == 2) {
duke@435 490 __ srl(Rdividend, 31, Rscratch);
duke@435 491 } else {
duke@435 492 __ sra(Rdividend, 31, Rscratch);
duke@435 493 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 494 }
duke@435 495 __ add(Rdividend, Rscratch, Rscratch);
duke@435 496 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 497 __ sub(Rdividend, Rscratch, Rresult);
duke@435 498 return;
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502 __ sra(Rdividend, 31, Rscratch);
duke@435 503 __ wry(Rscratch);
duke@435 504 if (!VM_Version::v9_instructions_work()) {
duke@435 505 // v9 doesn't require these nops
duke@435 506 __ nop();
duke@435 507 __ nop();
duke@435 508 __ nop();
duke@435 509 __ nop();
duke@435 510 }
duke@435 511
duke@435 512 add_debug_info_for_div0_here(op->info());
duke@435 513
duke@435 514 if (Rdivisor != noreg) {
duke@435 515 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 516 } else {
duke@435 517 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 518 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 519 }
duke@435 520
duke@435 521 Label skip;
duke@435 522 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 523 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 524 __ bind(skip);
duke@435 525
duke@435 526 if (op->code() == lir_irem) {
duke@435 527 if (Rdivisor != noreg) {
duke@435 528 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 529 } else {
duke@435 530 __ smul(Rscratch, divisor, Rscratch);
duke@435 531 }
duke@435 532 __ sub(Rdividend, Rscratch, Rresult);
duke@435 533 }
duke@435 534 }
duke@435 535
duke@435 536
duke@435 537 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 538 #ifdef ASSERT
duke@435 539 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 540 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 541 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 542 #endif
duke@435 543 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 544
duke@435 545 if (op->cond() == lir_cond_always) {
duke@435 546 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 547 } else if (op->code() == lir_cond_float_branch) {
duke@435 548 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 549 bool is_unordered = (op->ublock() == op->block());
duke@435 550 Assembler::Condition acond;
duke@435 551 switch (op->cond()) {
duke@435 552 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 553 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 554 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 555 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 556 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 557 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 558 default : ShouldNotReachHere();
duke@435 559 };
duke@435 560
duke@435 561 if (!VM_Version::v9_instructions_work()) {
duke@435 562 __ nop();
duke@435 563 }
duke@435 564 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 565 } else {
duke@435 566 assert (op->code() == lir_branch, "just checking");
duke@435 567
duke@435 568 Assembler::Condition acond;
duke@435 569 switch (op->cond()) {
duke@435 570 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 571 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 572 case lir_cond_less: acond = Assembler::less; break;
duke@435 573 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 574 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 575 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 576 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 577 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 578 default: ShouldNotReachHere();
duke@435 579 };
duke@435 580
duke@435 581 // sparc has different condition codes for testing 32-bit
duke@435 582 // vs. 64-bit values. We could always test xcc is we could
duke@435 583 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 584 // true and since sign extension isn't free, it would impose a
duke@435 585 // slight cost.
duke@435 586 #ifdef _LP64
duke@435 587 if (op->type() == T_INT) {
duke@435 588 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 589 } else
duke@435 590 #endif
duke@435 591 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 592 }
duke@435 593 // The peephole pass fills the delay slot
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 598 Bytecodes::Code code = op->bytecode();
duke@435 599 LIR_Opr dst = op->result_opr();
duke@435 600
duke@435 601 switch(code) {
duke@435 602 case Bytecodes::_i2l: {
duke@435 603 Register rlo = dst->as_register_lo();
duke@435 604 Register rhi = dst->as_register_hi();
duke@435 605 Register rval = op->in_opr()->as_register();
duke@435 606 #ifdef _LP64
duke@435 607 __ sra(rval, 0, rlo);
duke@435 608 #else
duke@435 609 __ mov(rval, rlo);
duke@435 610 __ sra(rval, BitsPerInt-1, rhi);
duke@435 611 #endif
duke@435 612 break;
duke@435 613 }
duke@435 614 case Bytecodes::_i2d:
duke@435 615 case Bytecodes::_i2f: {
duke@435 616 bool is_double = (code == Bytecodes::_i2d);
duke@435 617 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 618 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 619 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 620 if (rsrc != rdst) {
duke@435 621 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 622 }
duke@435 623 __ fitof(w, rdst, rdst);
duke@435 624 break;
duke@435 625 }
duke@435 626 case Bytecodes::_f2i:{
duke@435 627 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 628 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 629 Label L;
duke@435 630 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 631 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 632 if (!VM_Version::v9_instructions_work()) {
duke@435 633 __ nop();
duke@435 634 }
duke@435 635 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 636 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 637 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 638 // move integer result from float register to int register
duke@435 639 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 640 __ bind (L);
duke@435 641 break;
duke@435 642 }
duke@435 643 case Bytecodes::_l2i: {
duke@435 644 Register rlo = op->in_opr()->as_register_lo();
duke@435 645 Register rhi = op->in_opr()->as_register_hi();
duke@435 646 Register rdst = dst->as_register();
duke@435 647 #ifdef _LP64
duke@435 648 __ sra(rlo, 0, rdst);
duke@435 649 #else
duke@435 650 __ mov(rlo, rdst);
duke@435 651 #endif
duke@435 652 break;
duke@435 653 }
duke@435 654 case Bytecodes::_d2f:
duke@435 655 case Bytecodes::_f2d: {
duke@435 656 bool is_double = (code == Bytecodes::_f2d);
duke@435 657 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 658 LIR_Opr val = op->in_opr();
duke@435 659 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 660 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 661 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 662 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 663 __ ftof(vw, dw, rval, rdst);
duke@435 664 break;
duke@435 665 }
duke@435 666 case Bytecodes::_i2s:
duke@435 667 case Bytecodes::_i2b: {
duke@435 668 Register rval = op->in_opr()->as_register();
duke@435 669 Register rdst = dst->as_register();
duke@435 670 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 671 __ sll (rval, shift, rdst);
duke@435 672 __ sra (rdst, shift, rdst);
duke@435 673 break;
duke@435 674 }
duke@435 675 case Bytecodes::_i2c: {
duke@435 676 Register rval = op->in_opr()->as_register();
duke@435 677 Register rdst = dst->as_register();
duke@435 678 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 679 __ sll (rval, shift, rdst);
duke@435 680 __ srl (rdst, shift, rdst);
duke@435 681 break;
duke@435 682 }
duke@435 683
duke@435 684 default: ShouldNotReachHere();
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 void LIR_Assembler::align_call(LIR_Code) {
duke@435 690 // do nothing since all instructions are word aligned on sparc
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 695 __ call(entry, rtype);
duke@435 696 // the peephole pass fills the delay slot
duke@435 697 }
duke@435 698
duke@435 699
duke@435 700 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 701 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 702 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 703 __ relocate(rspec);
duke@435 704 __ call(entry, relocInfo::none);
duke@435 705 // the peephole pass fills the delay slot
duke@435 706 }
duke@435 707
duke@435 708
duke@435 709 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 710 add_debug_info_for_null_check_here(info);
twisti@1162 711 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
duke@435 712 if (__ is_simm13(vtable_offset) ) {
duke@435 713 __ ld_ptr(G3_scratch, vtable_offset, G5_method);
duke@435 714 } else {
duke@435 715 // This will generate 2 instructions
duke@435 716 __ set(vtable_offset, G5_method);
duke@435 717 // ld_ptr, set_hi, set
duke@435 718 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 719 }
twisti@1162 720 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 721 __ callr(G3_scratch, G0);
duke@435 722 // the peephole pass fills the delay slot
duke@435 723 }
duke@435 724
duke@435 725
duke@435 726 // load with 32-bit displacement
duke@435 727 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 728 int load_offset = code_offset();
duke@435 729 if (Assembler::is_simm13(disp)) {
duke@435 730 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 731 switch(ld_type) {
duke@435 732 case T_BOOLEAN: // fall through
duke@435 733 case T_BYTE : __ ldsb(s, disp, d); break;
duke@435 734 case T_CHAR : __ lduh(s, disp, d); break;
duke@435 735 case T_SHORT : __ ldsh(s, disp, d); break;
duke@435 736 case T_INT : __ ld(s, disp, d); break;
duke@435 737 case T_ADDRESS:// fall through
duke@435 738 case T_ARRAY : // fall through
duke@435 739 case T_OBJECT: __ ld_ptr(s, disp, d); break;
duke@435 740 default : ShouldNotReachHere();
duke@435 741 }
duke@435 742 } else {
twisti@1162 743 __ set(disp, O7);
duke@435 744 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 745 load_offset = code_offset();
duke@435 746 switch(ld_type) {
duke@435 747 case T_BOOLEAN: // fall through
duke@435 748 case T_BYTE : __ ldsb(s, O7, d); break;
duke@435 749 case T_CHAR : __ lduh(s, O7, d); break;
duke@435 750 case T_SHORT : __ ldsh(s, O7, d); break;
duke@435 751 case T_INT : __ ld(s, O7, d); break;
duke@435 752 case T_ADDRESS:// fall through
duke@435 753 case T_ARRAY : // fall through
duke@435 754 case T_OBJECT: __ ld_ptr(s, O7, d); break;
duke@435 755 default : ShouldNotReachHere();
duke@435 756 }
duke@435 757 }
duke@435 758 if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
duke@435 759 return load_offset;
duke@435 760 }
duke@435 761
duke@435 762
duke@435 763 // store with 32-bit displacement
duke@435 764 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 765 if (Assembler::is_simm13(offset)) {
duke@435 766 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 767 switch (type) {
duke@435 768 case T_BOOLEAN: // fall through
duke@435 769 case T_BYTE : __ stb(value, base, offset); break;
duke@435 770 case T_CHAR : __ sth(value, base, offset); break;
duke@435 771 case T_SHORT : __ sth(value, base, offset); break;
duke@435 772 case T_INT : __ stw(value, base, offset); break;
duke@435 773 case T_ADDRESS:// fall through
duke@435 774 case T_ARRAY : // fall through
duke@435 775 case T_OBJECT: __ st_ptr(value, base, offset); break;
duke@435 776 default : ShouldNotReachHere();
duke@435 777 }
duke@435 778 } else {
twisti@1162 779 __ set(offset, O7);
duke@435 780 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 781 switch (type) {
duke@435 782 case T_BOOLEAN: // fall through
duke@435 783 case T_BYTE : __ stb(value, base, O7); break;
duke@435 784 case T_CHAR : __ sth(value, base, O7); break;
duke@435 785 case T_SHORT : __ sth(value, base, O7); break;
duke@435 786 case T_INT : __ stw(value, base, O7); break;
duke@435 787 case T_ADDRESS:// fall through
duke@435 788 case T_ARRAY : //fall through
duke@435 789 case T_OBJECT: __ st_ptr(value, base, O7); break;
duke@435 790 default : ShouldNotReachHere();
duke@435 791 }
duke@435 792 }
duke@435 793 // Note: Do the store before verification as the code might be patched!
duke@435 794 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
duke@435 795 }
duke@435 796
duke@435 797
duke@435 798 // load float with 32-bit displacement
duke@435 799 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 800 FloatRegisterImpl::Width w;
duke@435 801 switch(ld_type) {
duke@435 802 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 803 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 804 default : ShouldNotReachHere();
duke@435 805 }
duke@435 806
duke@435 807 if (Assembler::is_simm13(disp)) {
duke@435 808 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 809 if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
duke@435 810 __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
duke@435 811 __ ldf(FloatRegisterImpl::S, s, disp , d);
duke@435 812 } else {
duke@435 813 __ ldf(w, s, disp, d);
duke@435 814 }
duke@435 815 } else {
twisti@1162 816 __ set(disp, O7);
duke@435 817 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 818 __ ldf(w, s, O7, d);
duke@435 819 }
duke@435 820 }
duke@435 821
duke@435 822
duke@435 823 // store float with 32-bit displacement
duke@435 824 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 825 FloatRegisterImpl::Width w;
duke@435 826 switch(type) {
duke@435 827 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 828 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 829 default : ShouldNotReachHere();
duke@435 830 }
duke@435 831
duke@435 832 if (Assembler::is_simm13(offset)) {
duke@435 833 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 834 if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
duke@435 835 __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
duke@435 836 __ stf(FloatRegisterImpl::S, value , base, offset);
duke@435 837 } else {
duke@435 838 __ stf(w, value, base, offset);
duke@435 839 }
duke@435 840 } else {
twisti@1162 841 __ set(offset, O7);
duke@435 842 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 843 __ stf(w, value, O7, base);
duke@435 844 }
duke@435 845 }
duke@435 846
duke@435 847
duke@435 848 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
duke@435 849 int store_offset;
duke@435 850 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 851 assert(!unaligned, "can't handle this");
duke@435 852 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 853 __ set(offset, O7);
duke@435 854 store_offset = store(from_reg, base, O7, type);
duke@435 855 } else {
duke@435 856 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 857 store_offset = code_offset();
duke@435 858 switch (type) {
duke@435 859 case T_BOOLEAN: // fall through
duke@435 860 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 861 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 862 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 863 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 864 case T_LONG :
duke@435 865 #ifdef _LP64
duke@435 866 if (unaligned || PatchALot) {
duke@435 867 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 868 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 869 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 870 } else {
duke@435 871 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 872 }
duke@435 873 #else
duke@435 874 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 875 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 876 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 877 #endif
duke@435 878 break;
duke@435 879 case T_ADDRESS:// fall through
duke@435 880 case T_ARRAY : // fall through
duke@435 881 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
duke@435 882 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 883 case T_DOUBLE:
duke@435 884 {
duke@435 885 FloatRegister reg = from_reg->as_double_reg();
duke@435 886 // split unaligned stores
duke@435 887 if (unaligned || PatchALot) {
duke@435 888 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 889 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 890 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 891 } else {
duke@435 892 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 893 }
duke@435 894 break;
duke@435 895 }
duke@435 896 default : ShouldNotReachHere();
duke@435 897 }
duke@435 898 }
duke@435 899 return store_offset;
duke@435 900 }
duke@435 901
duke@435 902
duke@435 903 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
duke@435 904 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 905 int store_offset = code_offset();
duke@435 906 switch (type) {
duke@435 907 case T_BOOLEAN: // fall through
duke@435 908 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 909 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 910 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 911 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 912 case T_LONG :
duke@435 913 #ifdef _LP64
duke@435 914 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 915 #else
duke@435 916 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 917 __ std(from_reg->as_register_hi(), base, disp);
duke@435 918 #endif
duke@435 919 break;
duke@435 920 case T_ADDRESS:// fall through
duke@435 921 case T_ARRAY : // fall through
duke@435 922 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
duke@435 923 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 924 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 925 default : ShouldNotReachHere();
duke@435 926 }
duke@435 927 return store_offset;
duke@435 928 }
duke@435 929
duke@435 930
duke@435 931 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
duke@435 932 int load_offset;
duke@435 933 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 934 assert(base != O7, "destroying register");
duke@435 935 assert(!unaligned, "can't handle this");
duke@435 936 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 937 __ set(offset, O7);
duke@435 938 load_offset = load(base, O7, to_reg, type);
duke@435 939 } else {
duke@435 940 load_offset = code_offset();
duke@435 941 switch(type) {
duke@435 942 case T_BOOLEAN: // fall through
duke@435 943 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 944 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 945 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 946 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 947 case T_LONG :
duke@435 948 if (!unaligned) {
duke@435 949 #ifdef _LP64
duke@435 950 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 951 #else
duke@435 952 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 953 "must be sequential");
duke@435 954 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 955 #endif
duke@435 956 } else {
duke@435 957 #ifdef _LP64
duke@435 958 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 959 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 960 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 961 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 962 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 963 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 964 #else
duke@435 965 if (base == to_reg->as_register_lo()) {
duke@435 966 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 967 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 968 } else {
duke@435 969 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 970 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 971 }
duke@435 972 #endif
duke@435 973 }
duke@435 974 break;
duke@435 975 case T_ADDRESS:// fall through
duke@435 976 case T_ARRAY : // fall through
duke@435 977 case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 978 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 979 case T_DOUBLE:
duke@435 980 {
duke@435 981 FloatRegister reg = to_reg->as_double_reg();
duke@435 982 // split unaligned loads
duke@435 983 if (unaligned || PatchALot) {
roland@1495 984 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 985 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 986 } else {
duke@435 987 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 988 }
duke@435 989 break;
duke@435 990 }
duke@435 991 default : ShouldNotReachHere();
duke@435 992 }
duke@435 993 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 994 }
duke@435 995 return load_offset;
duke@435 996 }
duke@435 997
duke@435 998
duke@435 999 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
duke@435 1000 int load_offset = code_offset();
duke@435 1001 switch(type) {
duke@435 1002 case T_BOOLEAN: // fall through
duke@435 1003 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
duke@435 1004 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
duke@435 1005 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
duke@435 1006 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
duke@435 1007 case T_ADDRESS:// fall through
duke@435 1008 case T_ARRAY : // fall through
duke@435 1009 case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1010 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1011 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1012 case T_LONG :
duke@435 1013 #ifdef _LP64
duke@435 1014 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1015 #else
duke@435 1016 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1017 "must be sequential");
duke@435 1018 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1019 #endif
duke@435 1020 break;
duke@435 1021 default : ShouldNotReachHere();
duke@435 1022 }
duke@435 1023 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1024 return load_offset;
duke@435 1025 }
duke@435 1026
duke@435 1027
duke@435 1028 // load/store with an Address
duke@435 1029 void LIR_Assembler::load(const Address& a, Register d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1030 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1031 }
duke@435 1032
duke@435 1033
duke@435 1034 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1035 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1036 }
duke@435 1037
duke@435 1038
duke@435 1039 // loadf/storef with an Address
duke@435 1040 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1041 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1042 }
duke@435 1043
duke@435 1044
duke@435 1045 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1046 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1047 }
duke@435 1048
duke@435 1049
duke@435 1050 // load/store with an Address
duke@435 1051 void LIR_Assembler::load(LIR_Address* a, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1052 load(as_Address(a), d, ld_type, info);
duke@435 1053 }
duke@435 1054
duke@435 1055
duke@435 1056 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1057 store(value, as_Address(dest), type, info);
duke@435 1058 }
duke@435 1059
duke@435 1060
duke@435 1061 // loadf/storef with an Address
duke@435 1062 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1063 load(as_Address(a), d, ld_type, info);
duke@435 1064 }
duke@435 1065
duke@435 1066
duke@435 1067 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1068 store(value, as_Address(dest), type, info);
duke@435 1069 }
duke@435 1070
duke@435 1071
duke@435 1072 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1073 LIR_Const* c = src->as_constant_ptr();
duke@435 1074 switch (c->type()) {
duke@435 1075 case T_INT:
duke@435 1076 case T_FLOAT: {
duke@435 1077 Register src_reg = O7;
duke@435 1078 int value = c->as_jint_bits();
duke@435 1079 if (value == 0) {
duke@435 1080 src_reg = G0;
duke@435 1081 } else {
duke@435 1082 __ set(value, O7);
duke@435 1083 }
duke@435 1084 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1085 __ stw(src_reg, addr.base(), addr.disp());
duke@435 1086 break;
duke@435 1087 }
duke@435 1088 case T_OBJECT: {
duke@435 1089 Register src_reg = O7;
duke@435 1090 jobject2reg(c->as_jobject(), src_reg);
duke@435 1091 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1092 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1093 break;
duke@435 1094 }
duke@435 1095 case T_LONG:
duke@435 1096 case T_DOUBLE: {
duke@435 1097 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1098
duke@435 1099 Register tmp = O7;
duke@435 1100 int value_lo = c->as_jint_lo_bits();
duke@435 1101 if (value_lo == 0) {
duke@435 1102 tmp = G0;
duke@435 1103 } else {
duke@435 1104 __ set(value_lo, O7);
duke@435 1105 }
duke@435 1106 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1107 int value_hi = c->as_jint_hi_bits();
duke@435 1108 if (value_hi == 0) {
duke@435 1109 tmp = G0;
duke@435 1110 } else {
duke@435 1111 __ set(value_hi, O7);
duke@435 1112 }
duke@435 1113 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1114 break;
duke@435 1115 }
duke@435 1116 default:
duke@435 1117 Unimplemented();
duke@435 1118 }
duke@435 1119 }
duke@435 1120
duke@435 1121
duke@435 1122 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 1123 LIR_Const* c = src->as_constant_ptr();
duke@435 1124 LIR_Address* addr = dest->as_address_ptr();
duke@435 1125 Register base = addr->base()->as_pointer_register();
duke@435 1126
duke@435 1127 if (info != NULL) {
duke@435 1128 add_debug_info_for_null_check_here(info);
duke@435 1129 }
duke@435 1130 switch (c->type()) {
duke@435 1131 case T_INT:
duke@435 1132 case T_FLOAT: {
duke@435 1133 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1134 int value = c->as_jint_bits();
duke@435 1135 if (value == 0) {
duke@435 1136 tmp = FrameMap::G0_opr;
duke@435 1137 } else if (Assembler::is_simm13(value)) {
duke@435 1138 __ set(value, O7);
duke@435 1139 }
duke@435 1140 if (addr->index()->is_valid()) {
duke@435 1141 assert(addr->disp() == 0, "must be zero");
duke@435 1142 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1143 } else {
duke@435 1144 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1145 store(tmp, base, addr->disp(), type);
duke@435 1146 }
duke@435 1147 break;
duke@435 1148 }
duke@435 1149 case T_LONG:
duke@435 1150 case T_DOUBLE: {
duke@435 1151 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1152 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1153 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1154
duke@435 1155 Register tmp = O7;
duke@435 1156 int value_lo = c->as_jint_lo_bits();
duke@435 1157 if (value_lo == 0) {
duke@435 1158 tmp = G0;
duke@435 1159 } else {
duke@435 1160 __ set(value_lo, O7);
duke@435 1161 }
duke@435 1162 store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
duke@435 1163 int value_hi = c->as_jint_hi_bits();
duke@435 1164 if (value_hi == 0) {
duke@435 1165 tmp = G0;
duke@435 1166 } else {
duke@435 1167 __ set(value_hi, O7);
duke@435 1168 }
duke@435 1169 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
duke@435 1170 break;
duke@435 1171 }
duke@435 1172 case T_OBJECT: {
duke@435 1173 jobject obj = c->as_jobject();
duke@435 1174 LIR_Opr tmp;
duke@435 1175 if (obj == NULL) {
duke@435 1176 tmp = FrameMap::G0_opr;
duke@435 1177 } else {
duke@435 1178 tmp = FrameMap::O7_opr;
duke@435 1179 jobject2reg(c->as_jobject(), O7);
duke@435 1180 }
duke@435 1181 // handle either reg+reg or reg+disp address
duke@435 1182 if (addr->index()->is_valid()) {
duke@435 1183 assert(addr->disp() == 0, "must be zero");
duke@435 1184 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1185 } else {
duke@435 1186 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1187 store(tmp, base, addr->disp(), type);
duke@435 1188 }
duke@435 1189
duke@435 1190 break;
duke@435 1191 }
duke@435 1192 default:
duke@435 1193 Unimplemented();
duke@435 1194 }
duke@435 1195 }
duke@435 1196
duke@435 1197
duke@435 1198 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1199 LIR_Const* c = src->as_constant_ptr();
duke@435 1200 LIR_Opr to_reg = dest;
duke@435 1201
duke@435 1202 switch (c->type()) {
duke@435 1203 case T_INT:
duke@435 1204 {
duke@435 1205 jint con = c->as_jint();
duke@435 1206 if (to_reg->is_single_cpu()) {
duke@435 1207 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1208 __ set(con, to_reg->as_register());
duke@435 1209 } else {
duke@435 1210 ShouldNotReachHere();
duke@435 1211 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1212
duke@435 1213 __ set(con, O7);
twisti@1162 1214 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1215 __ st(O7, temp_slot);
duke@435 1216 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1217 }
duke@435 1218 }
duke@435 1219 break;
duke@435 1220
duke@435 1221 case T_LONG:
duke@435 1222 {
duke@435 1223 jlong con = c->as_jlong();
duke@435 1224
duke@435 1225 if (to_reg->is_double_cpu()) {
duke@435 1226 #ifdef _LP64
duke@435 1227 __ set(con, to_reg->as_register_lo());
duke@435 1228 #else
duke@435 1229 __ set(low(con), to_reg->as_register_lo());
duke@435 1230 __ set(high(con), to_reg->as_register_hi());
duke@435 1231 #endif
duke@435 1232 #ifdef _LP64
duke@435 1233 } else if (to_reg->is_single_cpu()) {
duke@435 1234 __ set(con, to_reg->as_register());
duke@435 1235 #endif
duke@435 1236 } else {
duke@435 1237 ShouldNotReachHere();
duke@435 1238 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1239 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1240 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1241 __ set(low(con), O7);
duke@435 1242 __ st(O7, temp_slot_lo);
duke@435 1243 __ set(high(con), O7);
duke@435 1244 __ st(O7, temp_slot_hi);
duke@435 1245 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1246 }
duke@435 1247 }
duke@435 1248 break;
duke@435 1249
duke@435 1250 case T_OBJECT:
duke@435 1251 {
duke@435 1252 if (patch_code == lir_patch_none) {
duke@435 1253 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1254 } else {
duke@435 1255 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1256 }
duke@435 1257 }
duke@435 1258 break;
duke@435 1259
duke@435 1260 case T_FLOAT:
duke@435 1261 {
duke@435 1262 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1263 if (const_addr == NULL) {
duke@435 1264 bailout("const section overflow");
duke@435 1265 break;
duke@435 1266 }
duke@435 1267 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1268 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1269 if (to_reg->is_single_fpu()) {
twisti@1162 1270 __ patchable_sethi(const_addrlit, O7);
duke@435 1271 __ relocate(rspec);
twisti@1162 1272 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1273
duke@435 1274 } else {
duke@435 1275 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1276
twisti@1162 1277 __ set(const_addrlit, O7);
duke@435 1278 load(O7, 0, to_reg->as_register(), T_INT);
duke@435 1279 }
duke@435 1280 }
duke@435 1281 break;
duke@435 1282
duke@435 1283 case T_DOUBLE:
duke@435 1284 {
duke@435 1285 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1286 if (const_addr == NULL) {
duke@435 1287 bailout("const section overflow");
duke@435 1288 break;
duke@435 1289 }
duke@435 1290 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1291
duke@435 1292 if (to_reg->is_double_fpu()) {
twisti@1162 1293 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1294 __ patchable_sethi(const_addrlit, O7);
duke@435 1295 __ relocate(rspec);
twisti@1162 1296 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1297 } else {
duke@435 1298 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1299 #ifdef _LP64
duke@435 1300 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1301 #else
duke@435 1302 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1303 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1304 #endif
duke@435 1305 }
duke@435 1306
duke@435 1307 }
duke@435 1308 break;
duke@435 1309
duke@435 1310 default:
duke@435 1311 ShouldNotReachHere();
duke@435 1312 }
duke@435 1313 }
duke@435 1314
duke@435 1315 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1316 Register reg = addr->base()->as_register();
twisti@1162 1317 return Address(reg, addr->disp());
duke@435 1318 }
duke@435 1319
duke@435 1320
duke@435 1321 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1322 switch (type) {
duke@435 1323 case T_INT:
duke@435 1324 case T_FLOAT: {
duke@435 1325 Register tmp = O7;
duke@435 1326 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1327 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1328 __ lduw(from.base(), from.disp(), tmp);
duke@435 1329 __ stw(tmp, to.base(), to.disp());
duke@435 1330 break;
duke@435 1331 }
duke@435 1332 case T_OBJECT: {
duke@435 1333 Register tmp = O7;
duke@435 1334 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1335 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1336 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1337 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1338 break;
duke@435 1339 }
duke@435 1340 case T_LONG:
duke@435 1341 case T_DOUBLE: {
duke@435 1342 Register tmp = O7;
duke@435 1343 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1344 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1345 __ lduw(from.base(), from.disp(), tmp);
duke@435 1346 __ stw(tmp, to.base(), to.disp());
duke@435 1347 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1348 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1349 break;
duke@435 1350 }
duke@435 1351
duke@435 1352 default:
duke@435 1353 ShouldNotReachHere();
duke@435 1354 }
duke@435 1355 }
duke@435 1356
duke@435 1357
duke@435 1358 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1359 Address base = as_Address(addr);
twisti@1162 1360 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1361 }
duke@435 1362
duke@435 1363
duke@435 1364 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1365 Address base = as_Address(addr);
twisti@1162 1366 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1367 }
duke@435 1368
duke@435 1369
duke@435 1370 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
duke@435 1371 LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
duke@435 1372
duke@435 1373 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1374 LIR_Opr to_reg = dest;
duke@435 1375
duke@435 1376 Register src = addr->base()->as_pointer_register();
duke@435 1377 Register disp_reg = noreg;
duke@435 1378 int disp_value = addr->disp();
duke@435 1379 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1380
duke@435 1381 if (addr->base()->type() == T_OBJECT) {
duke@435 1382 __ verify_oop(src);
duke@435 1383 }
duke@435 1384
duke@435 1385 PatchingStub* patch = NULL;
duke@435 1386 if (needs_patching) {
duke@435 1387 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1388 assert(!to_reg->is_double_cpu() ||
duke@435 1389 patch_code == lir_patch_none ||
duke@435 1390 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1391 }
duke@435 1392
duke@435 1393 if (addr->index()->is_illegal()) {
duke@435 1394 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1395 if (needs_patching) {
twisti@1162 1396 __ patchable_set(0, O7);
duke@435 1397 } else {
duke@435 1398 __ set(disp_value, O7);
duke@435 1399 }
duke@435 1400 disp_reg = O7;
duke@435 1401 }
duke@435 1402 } else if (unaligned || PatchALot) {
duke@435 1403 __ add(src, addr->index()->as_register(), O7);
duke@435 1404 src = O7;
duke@435 1405 } else {
duke@435 1406 disp_reg = addr->index()->as_pointer_register();
duke@435 1407 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1408 }
duke@435 1409
duke@435 1410 // remember the offset of the load. The patching_epilog must be done
duke@435 1411 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1412 // entered in increasing order.
duke@435 1413 int offset = code_offset();
duke@435 1414
duke@435 1415 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1416 if (disp_reg == noreg) {
duke@435 1417 offset = load(src, disp_value, to_reg, type, unaligned);
duke@435 1418 } else {
duke@435 1419 assert(!unaligned, "can't handle this");
duke@435 1420 offset = load(src, disp_reg, to_reg, type);
duke@435 1421 }
duke@435 1422
duke@435 1423 if (patch != NULL) {
duke@435 1424 patching_epilog(patch, patch_code, src, info);
duke@435 1425 }
duke@435 1426
duke@435 1427 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1428 }
duke@435 1429
duke@435 1430
duke@435 1431 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1432 LIR_Address* addr = src->as_address_ptr();
duke@435 1433 Address from_addr = as_Address(addr);
duke@435 1434
duke@435 1435 if (VM_Version::has_v9()) {
duke@435 1436 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1437 }
duke@435 1438 }
duke@435 1439
duke@435 1440
duke@435 1441 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1442 LIR_Address* addr = src->as_address_ptr();
duke@435 1443 Address from_addr = as_Address(addr);
duke@435 1444
duke@435 1445 if (VM_Version::has_v9()) {
duke@435 1446 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1447 }
duke@435 1448 }
duke@435 1449
duke@435 1450
duke@435 1451 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1452 Address addr;
duke@435 1453 if (src->is_single_word()) {
duke@435 1454 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1455 } else if (src->is_double_word()) {
duke@435 1456 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1457 }
duke@435 1458
duke@435 1459 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1460 load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
duke@435 1461 }
duke@435 1462
duke@435 1463
duke@435 1464 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1465 Address addr;
duke@435 1466 if (dest->is_single_word()) {
duke@435 1467 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1468 } else if (dest->is_double_word()) {
duke@435 1469 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1470 }
duke@435 1471 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1472 store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
duke@435 1473 }
duke@435 1474
duke@435 1475
duke@435 1476 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1477 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1478 if (from_reg->is_double_fpu()) {
duke@435 1479 // double to double moves
duke@435 1480 assert(to_reg->is_double_fpu(), "should match");
duke@435 1481 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1482 } else {
duke@435 1483 // float to float moves
duke@435 1484 assert(to_reg->is_single_fpu(), "should match");
duke@435 1485 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1486 }
duke@435 1487 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1488 if (from_reg->is_double_cpu()) {
duke@435 1489 #ifdef _LP64
duke@435 1490 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1491 #else
duke@435 1492 assert(to_reg->is_double_cpu() &&
duke@435 1493 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1494 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1495 "should both be long and not overlap");
duke@435 1496 // long to long moves
duke@435 1497 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1498 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1499 #endif
duke@435 1500 #ifdef _LP64
duke@435 1501 } else if (to_reg->is_double_cpu()) {
duke@435 1502 // int to int moves
duke@435 1503 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1504 #endif
duke@435 1505 } else {
duke@435 1506 // int to int moves
duke@435 1507 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1508 }
duke@435 1509 } else {
duke@435 1510 ShouldNotReachHere();
duke@435 1511 }
duke@435 1512 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1513 __ verify_oop(to_reg->as_register());
duke@435 1514 }
duke@435 1515 }
duke@435 1516
duke@435 1517
duke@435 1518 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1519 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
duke@435 1520 bool unaligned) {
duke@435 1521 LIR_Address* addr = dest->as_address_ptr();
duke@435 1522
duke@435 1523 Register src = addr->base()->as_pointer_register();
duke@435 1524 Register disp_reg = noreg;
duke@435 1525 int disp_value = addr->disp();
duke@435 1526 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1527
duke@435 1528 if (addr->base()->is_oop_register()) {
duke@435 1529 __ verify_oop(src);
duke@435 1530 }
duke@435 1531
duke@435 1532 PatchingStub* patch = NULL;
duke@435 1533 if (needs_patching) {
duke@435 1534 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1535 assert(!from_reg->is_double_cpu() ||
duke@435 1536 patch_code == lir_patch_none ||
duke@435 1537 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1538 }
duke@435 1539
duke@435 1540 if (addr->index()->is_illegal()) {
duke@435 1541 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1542 if (needs_patching) {
twisti@1162 1543 __ patchable_set(0, O7);
duke@435 1544 } else {
duke@435 1545 __ set(disp_value, O7);
duke@435 1546 }
duke@435 1547 disp_reg = O7;
duke@435 1548 }
duke@435 1549 } else if (unaligned || PatchALot) {
duke@435 1550 __ add(src, addr->index()->as_register(), O7);
duke@435 1551 src = O7;
duke@435 1552 } else {
duke@435 1553 disp_reg = addr->index()->as_pointer_register();
duke@435 1554 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1555 }
duke@435 1556
duke@435 1557 // remember the offset of the store. The patching_epilog must be done
duke@435 1558 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1559 // entered in increasing order.
duke@435 1560 int offset;
duke@435 1561
duke@435 1562 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1563 if (disp_reg == noreg) {
duke@435 1564 offset = store(from_reg, src, disp_value, type, unaligned);
duke@435 1565 } else {
duke@435 1566 assert(!unaligned, "can't handle this");
duke@435 1567 offset = store(from_reg, src, disp_reg, type);
duke@435 1568 }
duke@435 1569
duke@435 1570 if (patch != NULL) {
duke@435 1571 patching_epilog(patch, patch_code, src, info);
duke@435 1572 }
duke@435 1573
duke@435 1574 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1575 }
duke@435 1576
duke@435 1577
duke@435 1578 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1579 // the poll may need a register so just pick one that isn't the return register
duke@435 1580 #ifdef TIERED
duke@435 1581 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1582 // Must move the result to G1
duke@435 1583 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1584 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1585 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1586 __ or3 (I1, G1, G1); // OR 64 bits into G1
duke@435 1587 }
duke@435 1588 #endif // TIERED
duke@435 1589 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1590 __ relocate(relocInfo::poll_return_type);
duke@435 1591 __ ld_ptr(L0, 0, G0);
duke@435 1592 __ ret();
duke@435 1593 __ delayed()->restore();
duke@435 1594 }
duke@435 1595
duke@435 1596
duke@435 1597 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1598 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1599 if (info != NULL) {
duke@435 1600 add_debug_info_for_branch(info);
duke@435 1601 } else {
duke@435 1602 __ relocate(relocInfo::poll_type);
duke@435 1603 }
duke@435 1604
duke@435 1605 int offset = __ offset();
duke@435 1606 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1607
duke@435 1608 return offset;
duke@435 1609 }
duke@435 1610
duke@435 1611
duke@435 1612 void LIR_Assembler::emit_static_call_stub() {
duke@435 1613 address call_pc = __ pc();
duke@435 1614 address stub = __ start_a_stub(call_stub_size);
duke@435 1615 if (stub == NULL) {
duke@435 1616 bailout("static call stub overflow");
duke@435 1617 return;
duke@435 1618 }
duke@435 1619
duke@435 1620 int start = __ offset();
duke@435 1621 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1622
duke@435 1623 __ set_oop(NULL, G5);
duke@435 1624 // must be set to -1 at code generation time
twisti@1162 1625 AddressLiteral addrlit(-1);
twisti@1162 1626 __ jump_to(addrlit, G3);
duke@435 1627 __ delayed()->nop();
duke@435 1628
duke@435 1629 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1630 __ end_a_stub();
duke@435 1631 }
duke@435 1632
duke@435 1633
duke@435 1634 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1635 if (opr1->is_single_fpu()) {
duke@435 1636 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1637 } else if (opr1->is_double_fpu()) {
duke@435 1638 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1639 } else if (opr1->is_single_cpu()) {
duke@435 1640 if (opr2->is_constant()) {
duke@435 1641 switch (opr2->as_constant_ptr()->type()) {
duke@435 1642 case T_INT:
duke@435 1643 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1644 if (Assembler::is_simm13(con)) {
duke@435 1645 __ cmp(opr1->as_register(), con);
duke@435 1646 } else {
duke@435 1647 __ set(con, O7);
duke@435 1648 __ cmp(opr1->as_register(), O7);
duke@435 1649 }
duke@435 1650 }
duke@435 1651 break;
duke@435 1652
duke@435 1653 case T_OBJECT:
duke@435 1654 // there are only equal/notequal comparisions on objects
duke@435 1655 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1656 if (con == NULL) {
duke@435 1657 __ cmp(opr1->as_register(), 0);
duke@435 1658 } else {
duke@435 1659 jobject2reg(con, O7);
duke@435 1660 __ cmp(opr1->as_register(), O7);
duke@435 1661 }
duke@435 1662 }
duke@435 1663 break;
duke@435 1664
duke@435 1665 default:
duke@435 1666 ShouldNotReachHere();
duke@435 1667 break;
duke@435 1668 }
duke@435 1669 } else {
duke@435 1670 if (opr2->is_address()) {
duke@435 1671 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1672 BasicType type = addr->type();
duke@435 1673 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1674 else __ ld(as_Address(addr), O7);
duke@435 1675 __ cmp(opr1->as_register(), O7);
duke@435 1676 } else {
duke@435 1677 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1678 }
duke@435 1679 }
duke@435 1680 } else if (opr1->is_double_cpu()) {
duke@435 1681 Register xlo = opr1->as_register_lo();
duke@435 1682 Register xhi = opr1->as_register_hi();
duke@435 1683 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1684 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1685 #ifdef _LP64
duke@435 1686 __ orcc(xhi, G0, G0);
duke@435 1687 #else
duke@435 1688 __ orcc(xhi, xlo, G0);
duke@435 1689 #endif
duke@435 1690 } else if (opr2->is_register()) {
duke@435 1691 Register ylo = opr2->as_register_lo();
duke@435 1692 Register yhi = opr2->as_register_hi();
duke@435 1693 #ifdef _LP64
duke@435 1694 __ cmp(xlo, ylo);
duke@435 1695 #else
duke@435 1696 __ subcc(xlo, ylo, xlo);
duke@435 1697 __ subccc(xhi, yhi, xhi);
duke@435 1698 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1699 __ orcc(xhi, xlo, G0);
duke@435 1700 }
duke@435 1701 #endif
duke@435 1702 } else {
duke@435 1703 ShouldNotReachHere();
duke@435 1704 }
duke@435 1705 } else if (opr1->is_address()) {
duke@435 1706 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1707 BasicType type = addr->type();
duke@435 1708 assert (opr2->is_constant(), "Checking");
duke@435 1709 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1710 else __ ld(as_Address(addr), O7);
duke@435 1711 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1712 } else {
duke@435 1713 ShouldNotReachHere();
duke@435 1714 }
duke@435 1715 }
duke@435 1716
duke@435 1717
duke@435 1718 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1719 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1720 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1721 if (left->is_single_fpu()) {
duke@435 1722 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1723 } else if (left->is_double_fpu()) {
duke@435 1724 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1725 } else {
duke@435 1726 ShouldNotReachHere();
duke@435 1727 }
duke@435 1728 } else if (code == lir_cmp_l2i) {
duke@435 1729 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1730 right->as_register_hi(), right->as_register_lo(),
duke@435 1731 dst->as_register());
duke@435 1732 } else {
duke@435 1733 ShouldNotReachHere();
duke@435 1734 }
duke@435 1735 }
duke@435 1736
duke@435 1737
duke@435 1738 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1739
duke@435 1740 Assembler::Condition acond;
duke@435 1741 switch (condition) {
duke@435 1742 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1743 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1744 case lir_cond_less: acond = Assembler::less; break;
duke@435 1745 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1746 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1747 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1748 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1749 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1750 default: ShouldNotReachHere();
duke@435 1751 };
duke@435 1752
duke@435 1753 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1754 Register dest = result->as_register();
duke@435 1755 // load up first part of constant before branch
duke@435 1756 // and do the rest in the delay slot.
duke@435 1757 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1758 __ sethi(opr1->as_jint(), dest);
duke@435 1759 }
duke@435 1760 } else if (opr1->is_constant()) {
duke@435 1761 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1762 } else if (opr1->is_register()) {
duke@435 1763 reg2reg(opr1, result);
duke@435 1764 } else if (opr1->is_stack()) {
duke@435 1765 stack2reg(opr1, result, result->type());
duke@435 1766 } else {
duke@435 1767 ShouldNotReachHere();
duke@435 1768 }
duke@435 1769 Label skip;
duke@435 1770 __ br(acond, false, Assembler::pt, skip);
duke@435 1771 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1772 Register dest = result->as_register();
duke@435 1773 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1774 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1775 } else {
duke@435 1776 // the sethi has been done above, so just put in the low 10 bits
duke@435 1777 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1778 }
duke@435 1779 } else {
duke@435 1780 // can't do anything useful in the delay slot
duke@435 1781 __ delayed()->nop();
duke@435 1782 }
duke@435 1783 if (opr2->is_constant()) {
duke@435 1784 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1785 } else if (opr2->is_register()) {
duke@435 1786 reg2reg(opr2, result);
duke@435 1787 } else if (opr2->is_stack()) {
duke@435 1788 stack2reg(opr2, result, result->type());
duke@435 1789 } else {
duke@435 1790 ShouldNotReachHere();
duke@435 1791 }
duke@435 1792 __ bind(skip);
duke@435 1793 }
duke@435 1794
duke@435 1795
duke@435 1796 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1797 assert(info == NULL, "unused on this code path");
duke@435 1798 assert(left->is_register(), "wrong items state");
duke@435 1799 assert(dest->is_register(), "wrong items state");
duke@435 1800
duke@435 1801 if (right->is_register()) {
duke@435 1802 if (dest->is_float_kind()) {
duke@435 1803
duke@435 1804 FloatRegister lreg, rreg, res;
duke@435 1805 FloatRegisterImpl::Width w;
duke@435 1806 if (right->is_single_fpu()) {
duke@435 1807 w = FloatRegisterImpl::S;
duke@435 1808 lreg = left->as_float_reg();
duke@435 1809 rreg = right->as_float_reg();
duke@435 1810 res = dest->as_float_reg();
duke@435 1811 } else {
duke@435 1812 w = FloatRegisterImpl::D;
duke@435 1813 lreg = left->as_double_reg();
duke@435 1814 rreg = right->as_double_reg();
duke@435 1815 res = dest->as_double_reg();
duke@435 1816 }
duke@435 1817
duke@435 1818 switch (code) {
duke@435 1819 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1820 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1821 case lir_mul: // fall through
duke@435 1822 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1823 case lir_div: // fall through
duke@435 1824 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1825 default: ShouldNotReachHere();
duke@435 1826 }
duke@435 1827
duke@435 1828 } else if (dest->is_double_cpu()) {
duke@435 1829 #ifdef _LP64
duke@435 1830 Register dst_lo = dest->as_register_lo();
duke@435 1831 Register op1_lo = left->as_pointer_register();
duke@435 1832 Register op2_lo = right->as_pointer_register();
duke@435 1833
duke@435 1834 switch (code) {
duke@435 1835 case lir_add:
duke@435 1836 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1837 break;
duke@435 1838
duke@435 1839 case lir_sub:
duke@435 1840 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1841 break;
duke@435 1842
duke@435 1843 default: ShouldNotReachHere();
duke@435 1844 }
duke@435 1845 #else
duke@435 1846 Register op1_lo = left->as_register_lo();
duke@435 1847 Register op1_hi = left->as_register_hi();
duke@435 1848 Register op2_lo = right->as_register_lo();
duke@435 1849 Register op2_hi = right->as_register_hi();
duke@435 1850 Register dst_lo = dest->as_register_lo();
duke@435 1851 Register dst_hi = dest->as_register_hi();
duke@435 1852
duke@435 1853 switch (code) {
duke@435 1854 case lir_add:
duke@435 1855 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1856 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1857 break;
duke@435 1858
duke@435 1859 case lir_sub:
duke@435 1860 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1861 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1862 break;
duke@435 1863
duke@435 1864 default: ShouldNotReachHere();
duke@435 1865 }
duke@435 1866 #endif
duke@435 1867 } else {
duke@435 1868 assert (right->is_single_cpu(), "Just Checking");
duke@435 1869
duke@435 1870 Register lreg = left->as_register();
duke@435 1871 Register res = dest->as_register();
duke@435 1872 Register rreg = right->as_register();
duke@435 1873 switch (code) {
duke@435 1874 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1875 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1876 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1877 default: ShouldNotReachHere();
duke@435 1878 }
duke@435 1879 }
duke@435 1880 } else {
duke@435 1881 assert (right->is_constant(), "must be constant");
duke@435 1882
duke@435 1883 if (dest->is_single_cpu()) {
duke@435 1884 Register lreg = left->as_register();
duke@435 1885 Register res = dest->as_register();
duke@435 1886 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1887
duke@435 1888 switch (code) {
duke@435 1889 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1890 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1891 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1892 default: ShouldNotReachHere();
duke@435 1893 }
duke@435 1894 } else {
duke@435 1895 Register lreg = left->as_pointer_register();
duke@435 1896 Register res = dest->as_register_lo();
duke@435 1897 long con = right->as_constant_ptr()->as_jlong();
duke@435 1898 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1899
duke@435 1900 switch (code) {
duke@435 1901 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1902 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1903 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1904 default: ShouldNotReachHere();
duke@435 1905 }
duke@435 1906 }
duke@435 1907 }
duke@435 1908 }
duke@435 1909
duke@435 1910
duke@435 1911 void LIR_Assembler::fpop() {
duke@435 1912 // do nothing
duke@435 1913 }
duke@435 1914
duke@435 1915
duke@435 1916 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1917 switch (code) {
duke@435 1918 case lir_sin:
duke@435 1919 case lir_tan:
duke@435 1920 case lir_cos: {
duke@435 1921 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1922 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1923 break;
duke@435 1924 }
duke@435 1925 case lir_sqrt: {
duke@435 1926 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1927 FloatRegister src_reg = value->as_double_reg();
duke@435 1928 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1929 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1930 break;
duke@435 1931 }
duke@435 1932 case lir_abs: {
duke@435 1933 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1934 FloatRegister src_reg = value->as_double_reg();
duke@435 1935 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1936 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1937 break;
duke@435 1938 }
duke@435 1939 default: {
duke@435 1940 ShouldNotReachHere();
duke@435 1941 break;
duke@435 1942 }
duke@435 1943 }
duke@435 1944 }
duke@435 1945
duke@435 1946
duke@435 1947 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1948 if (right->is_constant()) {
duke@435 1949 if (dest->is_single_cpu()) {
duke@435 1950 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1951 switch (code) {
duke@435 1952 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1953 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1954 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1955 default: ShouldNotReachHere();
duke@435 1956 }
duke@435 1957 } else {
duke@435 1958 long c = right->as_constant_ptr()->as_jlong();
duke@435 1959 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1960 int simm13 = (int)c;
duke@435 1961 switch (code) {
duke@435 1962 case lir_logic_and:
duke@435 1963 #ifndef _LP64
duke@435 1964 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1965 #endif
duke@435 1966 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1967 break;
duke@435 1968
duke@435 1969 case lir_logic_or:
duke@435 1970 #ifndef _LP64
duke@435 1971 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1972 #endif
duke@435 1973 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1974 break;
duke@435 1975
duke@435 1976 case lir_logic_xor:
duke@435 1977 #ifndef _LP64
duke@435 1978 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1979 #endif
duke@435 1980 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1981 break;
duke@435 1982
duke@435 1983 default: ShouldNotReachHere();
duke@435 1984 }
duke@435 1985 }
duke@435 1986 } else {
duke@435 1987 assert(right->is_register(), "right should be in register");
duke@435 1988
duke@435 1989 if (dest->is_single_cpu()) {
duke@435 1990 switch (code) {
duke@435 1991 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1992 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1993 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1994 default: ShouldNotReachHere();
duke@435 1995 }
duke@435 1996 } else {
duke@435 1997 #ifdef _LP64
duke@435 1998 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 1999 left->as_register_lo();
duke@435 2000 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2001 right->as_register_lo();
duke@435 2002
duke@435 2003 switch (code) {
duke@435 2004 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2005 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2006 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2007 default: ShouldNotReachHere();
duke@435 2008 }
duke@435 2009 #else
duke@435 2010 switch (code) {
duke@435 2011 case lir_logic_and:
duke@435 2012 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2013 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2014 break;
duke@435 2015
duke@435 2016 case lir_logic_or:
duke@435 2017 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2018 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2019 break;
duke@435 2020
duke@435 2021 case lir_logic_xor:
duke@435 2022 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2023 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2024 break;
duke@435 2025
duke@435 2026 default: ShouldNotReachHere();
duke@435 2027 }
duke@435 2028 #endif
duke@435 2029 }
duke@435 2030 }
duke@435 2031 }
duke@435 2032
duke@435 2033
duke@435 2034 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2035 int elem_size = type2aelembytes(t);
duke@435 2036 switch (elem_size) {
duke@435 2037 case 1 : return 0;
duke@435 2038 case 2 : return 1;
duke@435 2039 case 4 : return 2;
duke@435 2040 case 8 : return 3;
duke@435 2041 }
duke@435 2042 ShouldNotReachHere();
duke@435 2043 return -1;
duke@435 2044 }
duke@435 2045
duke@435 2046
duke@435 2047 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2048 assert(exceptionOop->as_register() == Oexception, "should match");
duke@435 2049 assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2050
duke@435 2051 info->add_register_oop(exceptionOop);
duke@435 2052
duke@435 2053 if (unwind) {
duke@435 2054 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
duke@435 2055 __ delayed()->nop();
duke@435 2056 } else {
duke@435 2057 // reuse the debug info from the safepoint poll for the throw op itself
duke@435 2058 address pc_for_athrow = __ pc();
duke@435 2059 int pc_for_athrow_offset = __ offset();
duke@435 2060 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
twisti@1162 2061 __ set(pc_for_athrow, Oissuing_pc, rspec);
duke@435 2062 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2063
duke@435 2064 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 2065 __ delayed()->nop();
duke@435 2066 }
duke@435 2067 }
duke@435 2068
duke@435 2069
duke@435 2070 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2071 Register src = op->src()->as_register();
duke@435 2072 Register dst = op->dst()->as_register();
duke@435 2073 Register src_pos = op->src_pos()->as_register();
duke@435 2074 Register dst_pos = op->dst_pos()->as_register();
duke@435 2075 Register length = op->length()->as_register();
duke@435 2076 Register tmp = op->tmp()->as_register();
duke@435 2077 Register tmp2 = O7;
duke@435 2078
duke@435 2079 int flags = op->flags();
duke@435 2080 ciArrayKlass* default_type = op->expected_type();
duke@435 2081 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2082 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2083
duke@435 2084 // set up the arraycopy stub information
duke@435 2085 ArrayCopyStub* stub = op->stub();
duke@435 2086
duke@435 2087 // always do stub if no type information is available. it's ok if
duke@435 2088 // the known type isn't loaded since the code sanity checks
duke@435 2089 // in debug mode and the type isn't required when we know the exact type
duke@435 2090 // also check that the type is an array type.
ysr@777 2091 // We also, for now, always call the stub if the barrier set requires a
ysr@777 2092 // write_ref_pre barrier (which the stub does, but none of the optimized
ysr@777 2093 // cases currently does).
ysr@777 2094 if (op->expected_type() == NULL ||
ysr@777 2095 Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
duke@435 2096 __ mov(src, O0);
duke@435 2097 __ mov(src_pos, O1);
duke@435 2098 __ mov(dst, O2);
duke@435 2099 __ mov(dst_pos, O3);
duke@435 2100 __ mov(length, O4);
duke@435 2101 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
duke@435 2102
duke@435 2103 __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
duke@435 2104 __ delayed()->nop();
duke@435 2105 __ bind(*stub->continuation());
duke@435 2106 return;
duke@435 2107 }
duke@435 2108
duke@435 2109 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2110
duke@435 2111 // make sure src and dst are non-null and load array length
duke@435 2112 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2113 __ tst(src);
duke@435 2114 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2115 __ delayed()->nop();
duke@435 2116 }
duke@435 2117
duke@435 2118 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2119 __ tst(dst);
duke@435 2120 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2121 __ delayed()->nop();
duke@435 2122 }
duke@435 2123
duke@435 2124 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2125 // test src_pos register
duke@435 2126 __ tst(src_pos);
duke@435 2127 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2128 __ delayed()->nop();
duke@435 2129 }
duke@435 2130
duke@435 2131 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2132 // test dst_pos register
duke@435 2133 __ tst(dst_pos);
duke@435 2134 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2135 __ delayed()->nop();
duke@435 2136 }
duke@435 2137
duke@435 2138 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2139 // make sure length isn't negative
duke@435 2140 __ tst(length);
duke@435 2141 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2142 __ delayed()->nop();
duke@435 2143 }
duke@435 2144
duke@435 2145 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2146 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2147 __ add(length, src_pos, tmp);
duke@435 2148 __ cmp(tmp2, tmp);
duke@435 2149 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2150 __ delayed()->nop();
duke@435 2151 }
duke@435 2152
duke@435 2153 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2154 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2155 __ add(length, dst_pos, tmp);
duke@435 2156 __ cmp(tmp2, tmp);
duke@435 2157 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2158 __ delayed()->nop();
duke@435 2159 }
duke@435 2160
duke@435 2161 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 2162 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
duke@435 2163 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2164 __ cmp(tmp, tmp2);
duke@435 2165 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2166 __ delayed()->nop();
duke@435 2167 }
duke@435 2168
duke@435 2169 #ifdef ASSERT
duke@435 2170 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2171 // Sanity check the known type with the incoming class. For the
duke@435 2172 // primitive case the types must match exactly with src.klass and
duke@435 2173 // dst.klass each exactly matching the default type. For the
duke@435 2174 // object array case, if no type check is needed then either the
duke@435 2175 // dst type is exactly the expected type and the src type is a
duke@435 2176 // subtype which we can't check or src is the same array as dst
duke@435 2177 // but not necessarily exactly of type default_type.
duke@435 2178 Label known_ok, halt;
jrose@1424 2179 jobject2reg(op->expected_type()->constant_encoding(), tmp);
duke@435 2180 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2181 if (basic_type != T_OBJECT) {
duke@435 2182 __ cmp(tmp, tmp2);
duke@435 2183 __ br(Assembler::notEqual, false, Assembler::pn, halt);
duke@435 2184 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2185 __ cmp(tmp, tmp2);
duke@435 2186 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2187 __ delayed()->nop();
duke@435 2188 } else {
duke@435 2189 __ cmp(tmp, tmp2);
duke@435 2190 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2191 __ delayed()->cmp(src, dst);
duke@435 2192 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2193 __ delayed()->nop();
duke@435 2194 }
duke@435 2195 __ bind(halt);
duke@435 2196 __ stop("incorrect type information in arraycopy");
duke@435 2197 __ bind(known_ok);
duke@435 2198 }
duke@435 2199 #endif
duke@435 2200
duke@435 2201 int shift = shift_amount(basic_type);
duke@435 2202
duke@435 2203 Register src_ptr = O0;
duke@435 2204 Register dst_ptr = O1;
duke@435 2205 Register len = O2;
duke@435 2206
duke@435 2207 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@1495 2208 LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
duke@435 2209 if (shift == 0) {
duke@435 2210 __ add(src_ptr, src_pos, src_ptr);
duke@435 2211 } else {
duke@435 2212 __ sll(src_pos, shift, tmp);
duke@435 2213 __ add(src_ptr, tmp, src_ptr);
duke@435 2214 }
duke@435 2215
duke@435 2216 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@1495 2217 LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
duke@435 2218 if (shift == 0) {
duke@435 2219 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2220 } else {
duke@435 2221 __ sll(dst_pos, shift, tmp);
duke@435 2222 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2223 }
duke@435 2224
duke@435 2225 if (basic_type != T_OBJECT) {
duke@435 2226 if (shift == 0) {
duke@435 2227 __ mov(length, len);
duke@435 2228 } else {
duke@435 2229 __ sll(length, shift, len);
duke@435 2230 }
duke@435 2231 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
duke@435 2232 } else {
duke@435 2233 // oop_arraycopy takes a length in number of elements, so don't scale it.
duke@435 2234 __ mov(length, len);
duke@435 2235 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
duke@435 2236 }
duke@435 2237
duke@435 2238 __ bind(*stub->continuation());
duke@435 2239 }
duke@435 2240
duke@435 2241
duke@435 2242 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2243 if (dest->is_single_cpu()) {
duke@435 2244 #ifdef _LP64
duke@435 2245 if (left->type() == T_OBJECT) {
duke@435 2246 switch (code) {
duke@435 2247 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2248 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2249 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2250 default: ShouldNotReachHere();
duke@435 2251 }
duke@435 2252 } else
duke@435 2253 #endif
duke@435 2254 switch (code) {
duke@435 2255 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2256 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2257 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2258 default: ShouldNotReachHere();
duke@435 2259 }
duke@435 2260 } else {
duke@435 2261 #ifdef _LP64
duke@435 2262 switch (code) {
duke@435 2263 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2264 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2265 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2266 default: ShouldNotReachHere();
duke@435 2267 }
duke@435 2268 #else
duke@435 2269 switch (code) {
duke@435 2270 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2271 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2272 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2273 default: ShouldNotReachHere();
duke@435 2274 }
duke@435 2275 #endif
duke@435 2276 }
duke@435 2277 }
duke@435 2278
duke@435 2279
duke@435 2280 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2281 #ifdef _LP64
duke@435 2282 if (left->type() == T_OBJECT) {
duke@435 2283 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2284 Register l = left->as_register();
duke@435 2285 Register d = dest->as_register_lo();
duke@435 2286 switch (code) {
duke@435 2287 case lir_shl: __ sllx (l, count, d); break;
duke@435 2288 case lir_shr: __ srax (l, count, d); break;
duke@435 2289 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2290 default: ShouldNotReachHere();
duke@435 2291 }
duke@435 2292 return;
duke@435 2293 }
duke@435 2294 #endif
duke@435 2295
duke@435 2296 if (dest->is_single_cpu()) {
duke@435 2297 count = count & 0x1F; // Java spec
duke@435 2298 switch (code) {
duke@435 2299 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2300 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2301 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2302 default: ShouldNotReachHere();
duke@435 2303 }
duke@435 2304 } else if (dest->is_double_cpu()) {
duke@435 2305 count = count & 63; // Java spec
duke@435 2306 switch (code) {
duke@435 2307 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2308 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2309 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2310 default: ShouldNotReachHere();
duke@435 2311 }
duke@435 2312 } else {
duke@435 2313 ShouldNotReachHere();
duke@435 2314 }
duke@435 2315 }
duke@435 2316
duke@435 2317
duke@435 2318 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2319 assert(op->tmp1()->as_register() == G1 &&
duke@435 2320 op->tmp2()->as_register() == G3 &&
duke@435 2321 op->tmp3()->as_register() == G4 &&
duke@435 2322 op->obj()->as_register() == O0 &&
duke@435 2323 op->klass()->as_register() == G5, "must be");
duke@435 2324 if (op->init_check()) {
duke@435 2325 __ ld(op->klass()->as_register(),
duke@435 2326 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
duke@435 2327 op->tmp1()->as_register());
duke@435 2328 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2329 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2330 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2331 __ delayed()->nop();
duke@435 2332 }
duke@435 2333 __ allocate_object(op->obj()->as_register(),
duke@435 2334 op->tmp1()->as_register(),
duke@435 2335 op->tmp2()->as_register(),
duke@435 2336 op->tmp3()->as_register(),
duke@435 2337 op->header_size(),
duke@435 2338 op->object_size(),
duke@435 2339 op->klass()->as_register(),
duke@435 2340 *op->stub()->entry());
duke@435 2341 __ bind(*op->stub()->continuation());
duke@435 2342 __ verify_oop(op->obj()->as_register());
duke@435 2343 }
duke@435 2344
duke@435 2345
duke@435 2346 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2347 assert(op->tmp1()->as_register() == G1 &&
duke@435 2348 op->tmp2()->as_register() == G3 &&
duke@435 2349 op->tmp3()->as_register() == G4 &&
duke@435 2350 op->tmp4()->as_register() == O1 &&
duke@435 2351 op->klass()->as_register() == G5, "must be");
duke@435 2352 if (UseSlowPath ||
duke@435 2353 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2354 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 2355 __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
duke@435 2356 __ delayed()->nop();
duke@435 2357 } else {
duke@435 2358 __ allocate_array(op->obj()->as_register(),
duke@435 2359 op->len()->as_register(),
duke@435 2360 op->tmp1()->as_register(),
duke@435 2361 op->tmp2()->as_register(),
duke@435 2362 op->tmp3()->as_register(),
duke@435 2363 arrayOopDesc::header_size(op->type()),
kvn@464 2364 type2aelembytes(op->type()),
duke@435 2365 op->klass()->as_register(),
duke@435 2366 *op->stub()->entry());
duke@435 2367 }
duke@435 2368 __ bind(*op->stub()->continuation());
duke@435 2369 }
duke@435 2370
duke@435 2371
duke@435 2372 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2373 LIR_Code code = op->code();
duke@435 2374 if (code == lir_store_check) {
duke@435 2375 Register value = op->object()->as_register();
duke@435 2376 Register array = op->array()->as_register();
duke@435 2377 Register k_RInfo = op->tmp1()->as_register();
duke@435 2378 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2379 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2380
duke@435 2381 __ verify_oop(value);
duke@435 2382
duke@435 2383 CodeStub* stub = op->stub();
duke@435 2384 Label done;
duke@435 2385 __ cmp(value, 0);
duke@435 2386 __ br(Assembler::equal, false, Assembler::pn, done);
duke@435 2387 __ delayed()->nop();
duke@435 2388 load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
duke@435 2389 load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2390
duke@435 2391 // get instance klass
duke@435 2392 load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
jrose@1079 2393 // perform the fast part of the checking logic
jrose@1079 2394 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
jrose@1079 2395
jrose@1079 2396 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2397 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2398 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2399 __ delayed()->nop();
duke@435 2400 __ cmp(G3, 0);
duke@435 2401 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2402 __ delayed()->nop();
duke@435 2403 __ bind(done);
duke@435 2404 } else if (op->code() == lir_checkcast) {
duke@435 2405 // we always need a stub for the failure case.
duke@435 2406 CodeStub* stub = op->stub();
duke@435 2407 Register obj = op->object()->as_register();
duke@435 2408 Register k_RInfo = op->tmp1()->as_register();
duke@435 2409 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2410 Register dst = op->result_opr()->as_register();
duke@435 2411 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2412 ciKlass* k = op->klass();
duke@435 2413
duke@435 2414 if (obj == k_RInfo) {
duke@435 2415 k_RInfo = klass_RInfo;
duke@435 2416 klass_RInfo = obj;
duke@435 2417 }
duke@435 2418 if (op->profiled_method() != NULL) {
duke@435 2419 ciMethod* method = op->profiled_method();
duke@435 2420 int bci = op->profiled_bci();
duke@435 2421
duke@435 2422 // We need two temporaries to perform this operation on SPARC,
duke@435 2423 // so to keep things simple we perform a redundant test here
duke@435 2424 Label profile_done;
duke@435 2425 __ cmp(obj, 0);
duke@435 2426 __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
duke@435 2427 __ delayed()->nop();
duke@435 2428 // Object is null; update methodDataOop
duke@435 2429 ciMethodData* md = method->method_data();
duke@435 2430 if (md == NULL) {
duke@435 2431 bailout("out of memory building methodDataOop");
duke@435 2432 return;
duke@435 2433 }
duke@435 2434 ciProfileData* data = md->bci_to_data(bci);
duke@435 2435 assert(data != NULL, "need data for checkcast");
duke@435 2436 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 2437 Register mdo = k_RInfo;
duke@435 2438 Register data_val = Rtmp1;
jrose@1424 2439 jobject2reg(md->constant_encoding(), mdo);
duke@435 2440
duke@435 2441 int mdo_offset_bias = 0;
duke@435 2442 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
duke@435 2443 // The offset is large so bias the mdo by the base of the slot so
duke@435 2444 // that the ld can use simm13s to reference the slots of the data
duke@435 2445 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
duke@435 2446 __ set(mdo_offset_bias, data_val);
duke@435 2447 __ add(mdo, data_val, mdo);
duke@435 2448 }
duke@435 2449
duke@435 2450
twisti@1162 2451 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
duke@435 2452 __ ldub(flags_addr, data_val);
duke@435 2453 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
duke@435 2454 __ stb(data_val, flags_addr);
duke@435 2455 __ bind(profile_done);
duke@435 2456 }
duke@435 2457
duke@435 2458 Label done;
duke@435 2459 // patching may screw with our temporaries on sparc,
duke@435 2460 // so let's do it before loading the class
duke@435 2461 if (k->is_loaded()) {
jrose@1424 2462 jobject2reg(k->constant_encoding(), k_RInfo);
duke@435 2463 } else {
duke@435 2464 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 2465 }
duke@435 2466 assert(obj != k_RInfo, "must be different");
duke@435 2467 __ cmp(obj, 0);
duke@435 2468 __ br(Assembler::equal, false, Assembler::pn, done);
duke@435 2469 __ delayed()->nop();
duke@435 2470
duke@435 2471 // get object class
duke@435 2472 // not a safepoint as obj null check happens earlier
duke@435 2473 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2474 if (op->fast_check()) {
duke@435 2475 assert_different_registers(klass_RInfo, k_RInfo);
duke@435 2476 __ cmp(k_RInfo, klass_RInfo);
duke@435 2477 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2478 __ delayed()->nop();
duke@435 2479 __ bind(done);
duke@435 2480 } else {
jrose@1079 2481 bool need_slow_path = true;
duke@435 2482 if (k->is_loaded()) {
jrose@1079 2483 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
jrose@1079 2484 need_slow_path = false;
jrose@1079 2485 // perform the fast part of the checking logic
jrose@1079 2486 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
jrose@1079 2487 (need_slow_path ? &done : NULL),
jrose@1079 2488 stub->entry(), NULL,
jrose@1100 2489 RegisterOrConstant(k->super_check_offset()));
duke@435 2490 } else {
jrose@1079 2491 // perform the fast part of the checking logic
jrose@1079 2492 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
jrose@1079 2493 &done, stub->entry(), NULL);
jrose@1079 2494 }
jrose@1079 2495 if (need_slow_path) {
jrose@1079 2496 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2497 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2498 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2499 __ delayed()->nop();
duke@435 2500 __ cmp(G3, 0);
duke@435 2501 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2502 __ delayed()->nop();
duke@435 2503 }
jrose@1079 2504 __ bind(done);
duke@435 2505 }
duke@435 2506 __ mov(obj, dst);
duke@435 2507 } else if (code == lir_instanceof) {
duke@435 2508 Register obj = op->object()->as_register();
duke@435 2509 Register k_RInfo = op->tmp1()->as_register();
duke@435 2510 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2511 Register dst = op->result_opr()->as_register();
duke@435 2512 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2513 ciKlass* k = op->klass();
duke@435 2514
duke@435 2515 Label done;
duke@435 2516 if (obj == k_RInfo) {
duke@435 2517 k_RInfo = klass_RInfo;
duke@435 2518 klass_RInfo = obj;
duke@435 2519 }
duke@435 2520 // patching may screw with our temporaries on sparc,
duke@435 2521 // so let's do it before loading the class
duke@435 2522 if (k->is_loaded()) {
jrose@1424 2523 jobject2reg(k->constant_encoding(), k_RInfo);
duke@435 2524 } else {
duke@435 2525 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 2526 }
duke@435 2527 assert(obj != k_RInfo, "must be different");
duke@435 2528 __ cmp(obj, 0);
duke@435 2529 __ br(Assembler::equal, true, Assembler::pn, done);
duke@435 2530 __ delayed()->set(0, dst);
duke@435 2531
duke@435 2532 // get object class
duke@435 2533 // not a safepoint as obj null check happens earlier
duke@435 2534 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2535 if (op->fast_check()) {
duke@435 2536 __ cmp(k_RInfo, klass_RInfo);
duke@435 2537 __ br(Assembler::equal, true, Assembler::pt, done);
duke@435 2538 __ delayed()->set(1, dst);
duke@435 2539 __ set(0, dst);
duke@435 2540 __ bind(done);
duke@435 2541 } else {
jrose@1079 2542 bool need_slow_path = true;
duke@435 2543 if (k->is_loaded()) {
jrose@1079 2544 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
jrose@1079 2545 need_slow_path = false;
jrose@1079 2546 // perform the fast part of the checking logic
jrose@1079 2547 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
jrose@1079 2548 (need_slow_path ? &done : NULL),
jrose@1079 2549 (need_slow_path ? &done : NULL), NULL,
jrose@1100 2550 RegisterOrConstant(k->super_check_offset()),
jrose@1079 2551 dst);
duke@435 2552 } else {
duke@435 2553 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
jrose@1079 2554 // perform the fast part of the checking logic
jrose@1079 2555 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
jrose@1079 2556 &done, &done, NULL,
jrose@1100 2557 RegisterOrConstant(-1),
jrose@1079 2558 dst);
jrose@1079 2559 }
jrose@1079 2560 if (need_slow_path) {
jrose@1079 2561 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2562 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2563 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2564 __ delayed()->nop();
duke@435 2565 __ mov(G3, dst);
duke@435 2566 }
jrose@1079 2567 __ bind(done);
duke@435 2568 }
duke@435 2569 } else {
duke@435 2570 ShouldNotReachHere();
duke@435 2571 }
duke@435 2572
duke@435 2573 }
duke@435 2574
duke@435 2575
duke@435 2576 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2577 if (op->code() == lir_cas_long) {
duke@435 2578 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2579 Register addr = op->addr()->as_pointer_register();
duke@435 2580 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2581 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2582 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2583 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2584 Register t1 = op->tmp1()->as_register();
duke@435 2585 Register t2 = op->tmp2()->as_register();
duke@435 2586 #ifdef _LP64
duke@435 2587 __ mov(cmp_value_lo, t1);
duke@435 2588 __ mov(new_value_lo, t2);
duke@435 2589 #else
duke@435 2590 // move high and low halves of long values into single registers
duke@435 2591 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2592 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2593 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2594 __ sllx(new_value_hi, 32, t2);
duke@435 2595 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2596 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2597 #endif
duke@435 2598 // perform the compare and swap operation
duke@435 2599 __ casx(addr, t1, t2);
duke@435 2600 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2601 // overwritten with the original value in "addr" and will be equal to t1.
duke@435 2602 __ cmp(t1, t2);
duke@435 2603
duke@435 2604 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2605 Register addr = op->addr()->as_pointer_register();
duke@435 2606 Register cmp_value = op->cmp_value()->as_register();
duke@435 2607 Register new_value = op->new_value()->as_register();
duke@435 2608 Register t1 = op->tmp1()->as_register();
duke@435 2609 Register t2 = op->tmp2()->as_register();
duke@435 2610 __ mov(cmp_value, t1);
duke@435 2611 __ mov(new_value, t2);
duke@435 2612 #ifdef _LP64
duke@435 2613 if (op->code() == lir_cas_obj) {
duke@435 2614 __ casx(addr, t1, t2);
duke@435 2615 } else
duke@435 2616 #endif
duke@435 2617 {
duke@435 2618 __ cas(addr, t1, t2);
duke@435 2619 }
duke@435 2620 __ cmp(t1, t2);
duke@435 2621 } else {
duke@435 2622 Unimplemented();
duke@435 2623 }
duke@435 2624 }
duke@435 2625
duke@435 2626 void LIR_Assembler::set_24bit_FPU() {
duke@435 2627 Unimplemented();
duke@435 2628 }
duke@435 2629
duke@435 2630
duke@435 2631 void LIR_Assembler::reset_FPU() {
duke@435 2632 Unimplemented();
duke@435 2633 }
duke@435 2634
duke@435 2635
duke@435 2636 void LIR_Assembler::breakpoint() {
duke@435 2637 __ breakpoint_trap();
duke@435 2638 }
duke@435 2639
duke@435 2640
duke@435 2641 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2642 Unimplemented();
duke@435 2643 }
duke@435 2644
duke@435 2645
duke@435 2646 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2647 Unimplemented();
duke@435 2648 }
duke@435 2649
duke@435 2650
duke@435 2651 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2652 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2653 Register dst = dst_opr->as_register();
duke@435 2654 Register reg = mon_addr.base();
duke@435 2655 int offset = mon_addr.disp();
duke@435 2656 // compute pointer to BasicLock
duke@435 2657 if (mon_addr.is_simm13()) {
duke@435 2658 __ add(reg, offset, dst);
duke@435 2659 } else {
duke@435 2660 __ set(offset, dst);
duke@435 2661 __ add(dst, reg, dst);
duke@435 2662 }
duke@435 2663 }
duke@435 2664
duke@435 2665
duke@435 2666 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2667 Register obj = op->obj_opr()->as_register();
duke@435 2668 Register hdr = op->hdr_opr()->as_register();
duke@435 2669 Register lock = op->lock_opr()->as_register();
duke@435 2670
duke@435 2671 // obj may not be an oop
duke@435 2672 if (op->code() == lir_lock) {
duke@435 2673 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2674 if (UseFastLocking) {
duke@435 2675 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2676 // add debug info for NullPointerException only if one is possible
duke@435 2677 if (op->info() != NULL) {
duke@435 2678 add_debug_info_for_null_check_here(op->info());
duke@435 2679 }
duke@435 2680 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2681 } else {
duke@435 2682 // always do slow locking
duke@435 2683 // note: the slow locking code could be inlined here, however if we use
duke@435 2684 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2685 // simpler and requires less duplicated code - additionally, the
duke@435 2686 // slow locking code is the same in either case which simplifies
duke@435 2687 // debugging
duke@435 2688 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2689 __ delayed()->nop();
duke@435 2690 }
duke@435 2691 } else {
duke@435 2692 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2693 if (UseFastLocking) {
duke@435 2694 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2695 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2696 } else {
duke@435 2697 // always do slow unlocking
duke@435 2698 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2699 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2700 // simpler and requires less duplicated code - additionally, the
duke@435 2701 // slow unlocking code is the same in either case which simplifies
duke@435 2702 // debugging
duke@435 2703 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2704 __ delayed()->nop();
duke@435 2705 }
duke@435 2706 }
duke@435 2707 __ bind(*op->stub()->continuation());
duke@435 2708 }
duke@435 2709
duke@435 2710
duke@435 2711 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2712 ciMethod* method = op->profiled_method();
duke@435 2713 int bci = op->profiled_bci();
duke@435 2714
duke@435 2715 // Update counter for all call types
duke@435 2716 ciMethodData* md = method->method_data();
duke@435 2717 if (md == NULL) {
duke@435 2718 bailout("out of memory building methodDataOop");
duke@435 2719 return;
duke@435 2720 }
duke@435 2721 ciProfileData* data = md->bci_to_data(bci);
duke@435 2722 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2723 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 2724 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2725 Register mdo = op->mdo()->as_register();
duke@435 2726 Register tmp1 = op->tmp1()->as_register();
jrose@1424 2727 jobject2reg(md->constant_encoding(), mdo);
duke@435 2728 int mdo_offset_bias = 0;
duke@435 2729 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2730 data->size_in_bytes())) {
duke@435 2731 // The offset is large so bias the mdo by the base of the slot so
duke@435 2732 // that the ld can use simm13s to reference the slots of the data
duke@435 2733 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2734 __ set(mdo_offset_bias, O7);
duke@435 2735 __ add(mdo, O7, mdo);
duke@435 2736 }
duke@435 2737
twisti@1162 2738 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2739 __ lduw(counter_addr, tmp1);
duke@435 2740 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2741 __ stw(tmp1, counter_addr);
duke@435 2742 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2743 // Perform additional virtual call profiling for invokevirtual and
duke@435 2744 // invokeinterface bytecodes
duke@435 2745 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 2746 Tier1ProfileVirtualCalls) {
duke@435 2747 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2748 Register recv = op->recv()->as_register();
duke@435 2749 assert_different_registers(mdo, tmp1, recv);
duke@435 2750 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2751 ciKlass* known_klass = op->known_holder();
duke@435 2752 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2753 // We know the type that will be seen at this call site; we can
duke@435 2754 // statically update the methodDataOop rather than needing to do
duke@435 2755 // dynamic tests on the receiver type
duke@435 2756
duke@435 2757 // NOTE: we should probably put a lock around this search to
duke@435 2758 // avoid collisions by concurrent compilations
duke@435 2759 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2760 uint i;
duke@435 2761 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2762 ciKlass* receiver = vc_data->receiver(i);
duke@435 2763 if (known_klass->equals(receiver)) {
twisti@1162 2764 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 2765 VirtualCallData::receiver_count_offset(i)) -
duke@435 2766 mdo_offset_bias);
duke@435 2767 __ lduw(data_addr, tmp1);
duke@435 2768 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2769 __ stw(tmp1, data_addr);
duke@435 2770 return;
duke@435 2771 }
duke@435 2772 }
duke@435 2773
duke@435 2774 // Receiver type not found in profile data; select an empty slot
duke@435 2775
duke@435 2776 // Note that this is less efficient than it should be because it
duke@435 2777 // always does a write to the receiver part of the
duke@435 2778 // VirtualCallData rather than just the first time
duke@435 2779 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2780 ciKlass* receiver = vc_data->receiver(i);
duke@435 2781 if (receiver == NULL) {
twisti@1162 2782 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2783 mdo_offset_bias);
jrose@1424 2784 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 2785 __ st_ptr(tmp1, recv_addr);
twisti@1162 2786 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2787 mdo_offset_bias);
duke@435 2788 __ lduw(data_addr, tmp1);
duke@435 2789 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2790 __ stw(tmp1, data_addr);
duke@435 2791 return;
duke@435 2792 }
duke@435 2793 }
duke@435 2794 } else {
twisti@1162 2795 load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
duke@435 2796 Label update_done;
duke@435 2797 uint i;
duke@435 2798 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2799 Label next_test;
duke@435 2800 // See if the receiver is receiver[n].
twisti@1162 2801 Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2802 mdo_offset_bias);
duke@435 2803 __ ld_ptr(receiver_addr, tmp1);
duke@435 2804 __ verify_oop(tmp1);
duke@435 2805 __ cmp(recv, tmp1);
duke@435 2806 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
duke@435 2807 __ delayed()->nop();
twisti@1162 2808 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2809 mdo_offset_bias);
duke@435 2810 __ lduw(data_addr, tmp1);
duke@435 2811 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2812 __ stw(tmp1, data_addr);
duke@435 2813 __ br(Assembler::always, false, Assembler::pt, update_done);
duke@435 2814 __ delayed()->nop();
duke@435 2815 __ bind(next_test);
duke@435 2816 }
duke@435 2817
duke@435 2818 // Didn't find receiver; find next empty slot and fill it in
duke@435 2819 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2820 Label next_test;
twisti@1162 2821 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2822 mdo_offset_bias);
duke@435 2823 load(recv_addr, tmp1, T_OBJECT);
duke@435 2824 __ tst(tmp1);
duke@435 2825 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
duke@435 2826 __ delayed()->nop();
duke@435 2827 __ st_ptr(recv, recv_addr);
duke@435 2828 __ set(DataLayout::counter_increment, tmp1);
twisti@1162 2829 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
twisti@1162 2830 mdo_offset_bias);
duke@435 2831 if (i < (VirtualCallData::row_limit() - 1)) {
duke@435 2832 __ br(Assembler::always, false, Assembler::pt, update_done);
duke@435 2833 __ delayed()->nop();
duke@435 2834 }
duke@435 2835 __ bind(next_test);
duke@435 2836 }
duke@435 2837
duke@435 2838 __ bind(update_done);
duke@435 2839 }
duke@435 2840 }
duke@435 2841 }
duke@435 2842
duke@435 2843
duke@435 2844 void LIR_Assembler::align_backward_branch_target() {
duke@435 2845 __ align(16);
duke@435 2846 }
duke@435 2847
duke@435 2848
duke@435 2849 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 2850 // make sure we are expecting a delay
duke@435 2851 // this has the side effect of clearing the delay state
duke@435 2852 // so we can use _masm instead of _masm->delayed() to do the
duke@435 2853 // code generation.
duke@435 2854 __ delayed();
duke@435 2855
duke@435 2856 // make sure we only emit one instruction
duke@435 2857 int offset = code_offset();
duke@435 2858 op->delay_op()->emit_code(this);
duke@435 2859 #ifdef ASSERT
duke@435 2860 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 2861 op->delay_op()->print();
duke@435 2862 }
duke@435 2863 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 2864 "only one instruction can go in a delay slot");
duke@435 2865 #endif
duke@435 2866
duke@435 2867 // we may also be emitting the call info for the instruction
duke@435 2868 // which we are the delay slot of.
duke@435 2869 CodeEmitInfo * call_info = op->call_info();
duke@435 2870 if (call_info) {
duke@435 2871 add_call_info(code_offset(), call_info);
duke@435 2872 }
duke@435 2873
duke@435 2874 if (VerifyStackAtCalls) {
duke@435 2875 _masm->sub(FP, SP, O7);
duke@435 2876 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 2877 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 2878 }
duke@435 2879 }
duke@435 2880
duke@435 2881
duke@435 2882 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 2883 assert(left->is_register(), "can only handle registers");
duke@435 2884
duke@435 2885 if (left->is_single_cpu()) {
duke@435 2886 __ neg(left->as_register(), dest->as_register());
duke@435 2887 } else if (left->is_single_fpu()) {
duke@435 2888 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 2889 } else if (left->is_double_fpu()) {
duke@435 2890 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 2891 } else {
duke@435 2892 assert (left->is_double_cpu(), "Must be a long");
duke@435 2893 Register Rlow = left->as_register_lo();
duke@435 2894 Register Rhi = left->as_register_hi();
duke@435 2895 #ifdef _LP64
duke@435 2896 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 2897 #else
duke@435 2898 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 2899 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 2900 #endif
duke@435 2901 }
duke@435 2902 }
duke@435 2903
duke@435 2904
duke@435 2905 void LIR_Assembler::fxch(int i) {
duke@435 2906 Unimplemented();
duke@435 2907 }
duke@435 2908
duke@435 2909 void LIR_Assembler::fld(int i) {
duke@435 2910 Unimplemented();
duke@435 2911 }
duke@435 2912
duke@435 2913 void LIR_Assembler::ffree(int i) {
duke@435 2914 Unimplemented();
duke@435 2915 }
duke@435 2916
duke@435 2917 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 2918 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 2919
duke@435 2920 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 2921 if (tmp->is_valid()) {
duke@435 2922 __ save_thread(tmp->as_register());
duke@435 2923 }
duke@435 2924 __ call(dest, relocInfo::runtime_call_type);
duke@435 2925 __ delayed()->nop();
duke@435 2926 if (info != NULL) {
duke@435 2927 add_call_info_here(info);
duke@435 2928 }
duke@435 2929 if (tmp->is_valid()) {
duke@435 2930 __ restore_thread(tmp->as_register());
duke@435 2931 }
duke@435 2932
duke@435 2933 #ifdef ASSERT
duke@435 2934 __ verify_thread();
duke@435 2935 #endif // ASSERT
duke@435 2936 }
duke@435 2937
duke@435 2938
duke@435 2939 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 2940 #ifdef _LP64
duke@435 2941 ShouldNotReachHere();
duke@435 2942 #endif
duke@435 2943
duke@435 2944 NEEDS_CLEANUP;
duke@435 2945 if (type == T_LONG) {
duke@435 2946 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 2947
duke@435 2948 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 2949 Register idx = noreg; // contains either constant offset or index
duke@435 2950
duke@435 2951 int disp = mem_addr->disp();
duke@435 2952 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 2953 if (!Assembler::is_simm13(disp)) {
duke@435 2954 idx = O7;
duke@435 2955 __ set(disp, idx);
duke@435 2956 }
duke@435 2957 } else {
duke@435 2958 assert(disp == 0, "not both indexed and disp");
duke@435 2959 idx = mem_addr->index()->as_register();
duke@435 2960 }
duke@435 2961
duke@435 2962 int null_check_offset = -1;
duke@435 2963
duke@435 2964 Register base = mem_addr->base()->as_register();
duke@435 2965 if (src->is_register() && dest->is_address()) {
duke@435 2966 // G4 is high half, G5 is low half
duke@435 2967 if (VM_Version::v9_instructions_work()) {
duke@435 2968 // clear the top bits of G5, and scale up G4
duke@435 2969 __ srl (src->as_register_lo(), 0, G5);
duke@435 2970 __ sllx(src->as_register_hi(), 32, G4);
duke@435 2971 // combine the two halves into the 64 bits of G4
duke@435 2972 __ or3(G4, G5, G4);
duke@435 2973 null_check_offset = __ offset();
duke@435 2974 if (idx == noreg) {
duke@435 2975 __ stx(G4, base, disp);
duke@435 2976 } else {
duke@435 2977 __ stx(G4, base, idx);
duke@435 2978 }
duke@435 2979 } else {
duke@435 2980 __ mov (src->as_register_hi(), G4);
duke@435 2981 __ mov (src->as_register_lo(), G5);
duke@435 2982 null_check_offset = __ offset();
duke@435 2983 if (idx == noreg) {
duke@435 2984 __ std(G4, base, disp);
duke@435 2985 } else {
duke@435 2986 __ std(G4, base, idx);
duke@435 2987 }
duke@435 2988 }
duke@435 2989 } else if (src->is_address() && dest->is_register()) {
duke@435 2990 null_check_offset = __ offset();
duke@435 2991 if (VM_Version::v9_instructions_work()) {
duke@435 2992 if (idx == noreg) {
duke@435 2993 __ ldx(base, disp, G5);
duke@435 2994 } else {
duke@435 2995 __ ldx(base, idx, G5);
duke@435 2996 }
duke@435 2997 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 2998 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 2999 } else {
duke@435 3000 if (idx == noreg) {
duke@435 3001 __ ldd(base, disp, G4);
duke@435 3002 } else {
duke@435 3003 __ ldd(base, idx, G4);
duke@435 3004 }
duke@435 3005 // G4 is high half, G5 is low half
duke@435 3006 __ mov (G4, dest->as_register_hi());
duke@435 3007 __ mov (G5, dest->as_register_lo());
duke@435 3008 }
duke@435 3009 } else {
duke@435 3010 Unimplemented();
duke@435 3011 }
duke@435 3012 if (info != NULL) {
duke@435 3013 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3014 }
duke@435 3015
duke@435 3016 } else {
duke@435 3017 // use normal move for all other volatiles since they don't need
duke@435 3018 // special handling to remain atomic.
duke@435 3019 move_op(src, dest, type, lir_patch_none, info, false, false);
duke@435 3020 }
duke@435 3021 }
duke@435 3022
duke@435 3023 void LIR_Assembler::membar() {
duke@435 3024 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3025 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3026 }
duke@435 3027
duke@435 3028 void LIR_Assembler::membar_acquire() {
duke@435 3029 // no-op on TSO
duke@435 3030 }
duke@435 3031
duke@435 3032 void LIR_Assembler::membar_release() {
duke@435 3033 // no-op on TSO
duke@435 3034 }
duke@435 3035
duke@435 3036 // Macro to Pack two sequential registers containing 32 bit values
duke@435 3037 // into a single 64 bit register.
duke@435 3038 // rs and rs->successor() are packed into rd
duke@435 3039 // rd and rs may be the same register.
duke@435 3040 // Note: rs and rs->successor() are destroyed.
duke@435 3041 void LIR_Assembler::pack64( Register rs, Register rd ) {
duke@435 3042 __ sllx(rs, 32, rs);
duke@435 3043 __ srl(rs->successor(), 0, rs->successor());
duke@435 3044 __ or3(rs, rs->successor(), rd);
duke@435 3045 }
duke@435 3046
duke@435 3047 // Macro to unpack a 64 bit value in a register into
duke@435 3048 // two sequential registers.
duke@435 3049 // rd is unpacked into rd and rd->successor()
duke@435 3050 void LIR_Assembler::unpack64( Register rd ) {
duke@435 3051 __ mov(rd, rd->successor());
duke@435 3052 __ srax(rd, 32, rd);
duke@435 3053 __ sra(rd->successor(), 0, rd->successor());
duke@435 3054 }
duke@435 3055
duke@435 3056
duke@435 3057 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3058 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3059 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
duke@435 3060 __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
duke@435 3061 }
duke@435 3062
duke@435 3063
duke@435 3064 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3065 assert(result_reg->is_register(), "check");
duke@435 3066 __ mov(G2_thread, result_reg->as_register());
duke@435 3067 }
duke@435 3068
duke@435 3069
duke@435 3070 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3071 LIR_OpList* inst = lir->instructions_list();
duke@435 3072 for (int i = 0; i < inst->length(); i++) {
duke@435 3073 LIR_Op* op = inst->at(i);
duke@435 3074 switch (op->code()) {
duke@435 3075 case lir_cond_float_branch:
duke@435 3076 case lir_branch: {
duke@435 3077 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3078 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3079 LIR_Op* delay_op = NULL;
duke@435 3080 // we'd like to be able to pull following instructions into
duke@435 3081 // this slot but we don't know enough to do it safely yet so
duke@435 3082 // only optimize block to block control flow.
duke@435 3083 if (LIRFillDelaySlots && branch->block()) {
duke@435 3084 LIR_Op* prev = inst->at(i - 1);
duke@435 3085 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3086 // swap previous instruction into delay slot
duke@435 3087 inst->at_put(i - 1, op);
duke@435 3088 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3089 #ifndef PRODUCT
duke@435 3090 if (LIRTracePeephole) {
duke@435 3091 tty->print_cr("delayed");
duke@435 3092 inst->at(i - 1)->print();
duke@435 3093 inst->at(i)->print();
duke@435 3094 }
duke@435 3095 #endif
duke@435 3096 continue;
duke@435 3097 }
duke@435 3098 }
duke@435 3099
duke@435 3100 if (!delay_op) {
duke@435 3101 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3102 }
duke@435 3103 inst->insert_before(i + 1, delay_op);
duke@435 3104 break;
duke@435 3105 }
duke@435 3106 case lir_static_call:
duke@435 3107 case lir_virtual_call:
duke@435 3108 case lir_icvirtual_call:
duke@435 3109 case lir_optvirtual_call: {
duke@435 3110 LIR_Op* delay_op = NULL;
duke@435 3111 LIR_Op* prev = inst->at(i - 1);
duke@435 3112 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3113 (op->code() != lir_virtual_call ||
duke@435 3114 !prev->result_opr()->is_single_cpu() ||
duke@435 3115 prev->result_opr()->as_register() != O0) &&
duke@435 3116 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3117 // Only moves without info can be put into the delay slot.
duke@435 3118 // Also don't allow the setup of the receiver in the delay
duke@435 3119 // slot for vtable calls.
duke@435 3120 inst->at_put(i - 1, op);
duke@435 3121 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3122 #ifndef PRODUCT
duke@435 3123 if (LIRTracePeephole) {
duke@435 3124 tty->print_cr("delayed");
duke@435 3125 inst->at(i - 1)->print();
duke@435 3126 inst->at(i)->print();
duke@435 3127 }
duke@435 3128 #endif
duke@435 3129 continue;
duke@435 3130 }
duke@435 3131
duke@435 3132 if (!delay_op) {
duke@435 3133 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
duke@435 3134 inst->insert_before(i + 1, delay_op);
duke@435 3135 }
duke@435 3136 break;
duke@435 3137 }
duke@435 3138 }
duke@435 3139 }
duke@435 3140 }
duke@435 3141
duke@435 3142
duke@435 3143
duke@435 3144
duke@435 3145 #undef __

mercurial