src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 1079
c517646eef23
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

duke@435 1 /*
jrose@1100 2 * Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
duke@435 27
duke@435 28 #define __ _masm->
duke@435 29
duke@435 30
duke@435 31 //------------------------------------------------------------
duke@435 32
duke@435 33
duke@435 34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 35 if (opr->is_constant()) {
duke@435 36 LIR_Const* constant = opr->as_constant_ptr();
duke@435 37 switch (constant->type()) {
duke@435 38 case T_INT: {
duke@435 39 jint value = constant->as_jint();
duke@435 40 return Assembler::is_simm13(value);
duke@435 41 }
duke@435 42
duke@435 43 default:
duke@435 44 return false;
duke@435 45 }
duke@435 46 }
duke@435 47 return false;
duke@435 48 }
duke@435 49
duke@435 50
duke@435 51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 52 switch (op->code()) {
duke@435 53 case lir_null_check:
duke@435 54 return true;
duke@435 55
duke@435 56
duke@435 57 case lir_add:
duke@435 58 case lir_ushr:
duke@435 59 case lir_shr:
duke@435 60 case lir_shl:
duke@435 61 // integer shifts and adds are always one instruction
duke@435 62 return op->result_opr()->is_single_cpu();
duke@435 63
duke@435 64
duke@435 65 case lir_move: {
duke@435 66 LIR_Op1* op1 = op->as_Op1();
duke@435 67 LIR_Opr src = op1->in_opr();
duke@435 68 LIR_Opr dst = op1->result_opr();
duke@435 69
duke@435 70 if (src == dst) {
duke@435 71 NEEDS_CLEANUP;
duke@435 72 // this works around a problem where moves with the same src and dst
duke@435 73 // end up in the delay slot and then the assembler swallows the mov
duke@435 74 // since it has no effect and then it complains because the delay slot
duke@435 75 // is empty. returning false stops the optimizer from putting this in
duke@435 76 // the delay slot
duke@435 77 return false;
duke@435 78 }
duke@435 79
duke@435 80 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 81 // will make it much larger than a single instruction.
duke@435 82 if (VerifyOops) {
duke@435 83 return false;
duke@435 84 }
duke@435 85
duke@435 86 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 87 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 88 return false;
duke@435 89 }
duke@435 90
duke@435 91 if (dst->is_register()) {
duke@435 92 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 93 return !PatchALot;
duke@435 94 } else if (src->is_single_stack()) {
duke@435 95 return true;
duke@435 96 }
duke@435 97 }
duke@435 98
duke@435 99 if (src->is_register()) {
duke@435 100 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 101 return !PatchALot;
duke@435 102 } else if (dst->is_single_stack()) {
duke@435 103 return true;
duke@435 104 }
duke@435 105 }
duke@435 106
duke@435 107 if (dst->is_register() &&
duke@435 108 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 109 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 110 return true;
duke@435 111 }
duke@435 112
duke@435 113 return false;
duke@435 114 }
duke@435 115
duke@435 116 default:
duke@435 117 return false;
duke@435 118 }
duke@435 119 ShouldNotReachHere();
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 124 return FrameMap::O0_oop_opr;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 129 return FrameMap::I0_oop_opr;
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 134 return FrameMap::I0_opr;
duke@435 135 }
duke@435 136
duke@435 137
duke@435 138 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 139 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 140 }
duke@435 141
duke@435 142
duke@435 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 145 // If they do not match we jump to slow case.
duke@435 146 int LIR_Assembler::check_icache() {
duke@435 147 int offset = __ offset();
duke@435 148 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 149 return offset;
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 void LIR_Assembler::osr_entry() {
duke@435 154 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 155 //
duke@435 156 // 1. Create a new compiled activation.
duke@435 157 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 158 // at the osr_bci; it is not initialized.
duke@435 159 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 160
duke@435 161 // OSR entry point
duke@435 162 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 163 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 164 ValueStack* entry_state = osr_entry->end()->state();
duke@435 165 int number_of_locks = entry_state->locks_size();
duke@435 166
duke@435 167 // Create a frame for the compiled activation.
duke@435 168 __ build_frame(initial_frame_size_in_bytes());
duke@435 169
duke@435 170 // OSR buffer is
duke@435 171 //
duke@435 172 // locals[nlocals-1..0]
duke@435 173 // monitors[number_of_locks-1..0]
duke@435 174 //
duke@435 175 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 176 // so first slot in the local array is the last local from the interpreter
duke@435 177 // and last slot is local[0] (receiver) from the interpreter
duke@435 178 //
duke@435 179 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 180 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 181 // in the interpreter frame (the method lock if a sync method)
duke@435 182
duke@435 183 // Initialize monitors in the compiled activation.
duke@435 184 // I0: pointer to osr buffer
duke@435 185 //
duke@435 186 // All other registers are dead at this point and the locals will be
duke@435 187 // copied into place by code emitted in the IR.
duke@435 188
duke@435 189 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 190 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 191 int monitor_offset = BytesPerWord * method()->max_locals() +
duke@435 192 (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
duke@435 193 for (int i = 0; i < number_of_locks; i++) {
duke@435 194 int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
duke@435 195 #ifdef ASSERT
duke@435 196 // verify the interpreter's monitor has a non-null object
duke@435 197 {
duke@435 198 Label L;
duke@435 199 __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
duke@435 200 __ cmp(G0, O7);
duke@435 201 __ br(Assembler::notEqual, false, Assembler::pt, L);
duke@435 202 __ delayed()->nop();
duke@435 203 __ stop("locked object is NULL");
duke@435 204 __ bind(L);
duke@435 205 }
duke@435 206 #endif // ASSERT
duke@435 207 // Copy the lock field into the compiled activation.
duke@435 208 __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::lock_offset_in_bytes()), O7);
duke@435 209 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
duke@435 210 __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
duke@435 211 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 212 }
duke@435 213 }
duke@435 214 }
duke@435 215
duke@435 216
duke@435 217 // Optimized Library calls
duke@435 218 // This is the fast version of java.lang.String.compare; it has not
duke@435 219 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 220 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 221 Register str0 = left->as_register();
duke@435 222 Register str1 = right->as_register();
duke@435 223
duke@435 224 Label Ldone;
duke@435 225
duke@435 226 Register result = dst->as_register();
duke@435 227 {
duke@435 228 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 229 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 230 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 231 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 232
duke@435 233 Register tmp0 = L0;
duke@435 234 Register tmp1 = L1;
duke@435 235 Register tmp2 = L2;
duke@435 236
duke@435 237 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 238 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 239 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 240
duke@435 241 __ ld_ptr(Address(str0, 0, value_offset), tmp0);
duke@435 242 __ ld(Address(str0, 0, offset_offset), tmp2);
duke@435 243 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
duke@435 244 __ ld(Address(str0, 0, count_offset), str0);
duke@435 245 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 246
duke@435 247 // str1 may be null
duke@435 248 add_debug_info_for_null_check_here(info);
duke@435 249
duke@435 250 __ ld_ptr(Address(str1, 0, value_offset), tmp1);
duke@435 251 __ add(tmp0, tmp2, tmp0);
duke@435 252
duke@435 253 __ ld(Address(str1, 0, offset_offset), tmp2);
duke@435 254 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
duke@435 255 __ ld(Address(str1, 0, count_offset), str1);
duke@435 256 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 257 __ subcc(str0, str1, O7);
duke@435 258 __ add(tmp1, tmp2, tmp1);
duke@435 259 }
duke@435 260
duke@435 261 {
duke@435 262 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 263 Register count0 = I0;
duke@435 264 Register count1 = I1;
duke@435 265 Register limit = L3;
duke@435 266
duke@435 267 Label Lskip;
duke@435 268 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 269 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 270 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 271 __ bind(Lskip);
duke@435 272
duke@435 273 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 274 __ cmp(limit, 0);
duke@435 275 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 276 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 277 }
duke@435 278
duke@435 279 {
duke@435 280 // Neither string is empty
duke@435 281 Label Lloop;
duke@435 282
duke@435 283 Register base0 = L0;
duke@435 284 Register base1 = L1;
duke@435 285 Register chr0 = I0;
duke@435 286 Register chr1 = I1;
duke@435 287 Register limit = L3;
duke@435 288
duke@435 289 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 290 __ add(base0, limit, base0);
duke@435 291 __ add(base1, limit, base1);
duke@435 292 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 293
duke@435 294 __ lduh(base0, limit, chr0);
duke@435 295 __ bind(Lloop);
duke@435 296 __ lduh(base1, limit, chr1);
duke@435 297 __ subcc(chr0, chr1, chr0);
duke@435 298 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 299 assert(chr0 == result, "result must be pre-placed");
duke@435 300 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 301 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 302 __ delayed()->lduh(base0, limit, chr0);
duke@435 303 }
duke@435 304
duke@435 305 // If strings are equal up to min length, return the length difference.
duke@435 306 __ mov(O7, result);
duke@435 307
duke@435 308 // Otherwise, return the difference between the first mismatched chars.
duke@435 309 __ bind(Ldone);
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 // --------------------------------------------------------------------------------------------
duke@435 314
duke@435 315 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 316 if (!GenerateSynchronizationCode) return;
duke@435 317
duke@435 318 Register obj_reg = obj_opr->as_register();
duke@435 319 Register lock_reg = lock_opr->as_register();
duke@435 320
duke@435 321 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 322 Register reg = mon_addr.base();
duke@435 323 int offset = mon_addr.disp();
duke@435 324 // compute pointer to BasicLock
duke@435 325 if (mon_addr.is_simm13()) {
duke@435 326 __ add(reg, offset, lock_reg);
duke@435 327 }
duke@435 328 else {
duke@435 329 __ set(offset, lock_reg);
duke@435 330 __ add(reg, lock_reg, lock_reg);
duke@435 331 }
duke@435 332 // unlock object
duke@435 333 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 334 // _slow_case_stubs->append(slow_case);
duke@435 335 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 336 _slow_case_stubs->append(slow_case);
duke@435 337 if (UseFastLocking) {
duke@435 338 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 339 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 340 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 341 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 342 } else {
duke@435 343 // always do slow unlocking
duke@435 344 // note: the slow unlocking code could be inlined here, however if we use
duke@435 345 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 346 // simpler and requires less duplicated code - additionally, the
duke@435 347 // slow unlocking code is the same in either case which simplifies
duke@435 348 // debugging
duke@435 349 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 350 __ delayed()->nop();
duke@435 351 }
duke@435 352 // done
duke@435 353 __ bind(*slow_case->continuation());
duke@435 354 }
duke@435 355
duke@435 356
duke@435 357 void LIR_Assembler::emit_exception_handler() {
duke@435 358 // if the last instruction is a call (typically to do a throw which
duke@435 359 // is coming at the end after block reordering) the return address
duke@435 360 // must still point into the code area in order to avoid assertion
duke@435 361 // failures when searching for the corresponding bci => add a nop
duke@435 362 // (was bug 5/14/1999 - gri)
duke@435 363 __ nop();
duke@435 364
duke@435 365 // generate code for exception handler
duke@435 366 ciMethod* method = compilation()->method();
duke@435 367
duke@435 368 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 369
duke@435 370 if (handler_base == NULL) {
duke@435 371 // not enough space left for the handler
duke@435 372 bailout("exception handler overflow");
duke@435 373 return;
duke@435 374 }
duke@435 375 #ifdef ASSERT
duke@435 376 int offset = code_offset();
duke@435 377 #endif // ASSERT
duke@435 378 compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
duke@435 379
duke@435 380
duke@435 381 if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
duke@435 382 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 383 __ delayed()->nop();
duke@435 384 }
duke@435 385
duke@435 386 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
duke@435 387 __ delayed()->nop();
duke@435 388 debug_only(__ stop("should have gone to the caller");)
duke@435 389 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 390
duke@435 391 __ end_a_stub();
duke@435 392 }
duke@435 393
duke@435 394 void LIR_Assembler::emit_deopt_handler() {
duke@435 395 // if the last instruction is a call (typically to do a throw which
duke@435 396 // is coming at the end after block reordering) the return address
duke@435 397 // must still point into the code area in order to avoid assertion
duke@435 398 // failures when searching for the corresponding bci => add a nop
duke@435 399 // (was bug 5/14/1999 - gri)
duke@435 400 __ nop();
duke@435 401
duke@435 402 // generate code for deopt handler
duke@435 403 ciMethod* method = compilation()->method();
duke@435 404 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 405 if (handler_base == NULL) {
duke@435 406 // not enough space left for the handler
duke@435 407 bailout("deopt handler overflow");
duke@435 408 return;
duke@435 409 }
duke@435 410 #ifdef ASSERT
duke@435 411 int offset = code_offset();
duke@435 412 #endif // ASSERT
duke@435 413 compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
duke@435 414
duke@435 415 Address deopt_blob(G3_scratch, SharedRuntime::deopt_blob()->unpack());
duke@435 416
duke@435 417 __ JUMP(deopt_blob, 0); // sethi;jmp
duke@435 418 __ delayed()->nop();
duke@435 419
duke@435 420 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 421
duke@435 422 debug_only(__ stop("should have gone to the caller");)
duke@435 423
duke@435 424 __ end_a_stub();
duke@435 425 }
duke@435 426
duke@435 427
duke@435 428 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 429 if (o == NULL) {
duke@435 430 __ set(NULL_WORD, reg);
duke@435 431 } else {
duke@435 432 int oop_index = __ oop_recorder()->find_index(o);
duke@435 433 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 434 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 435 }
duke@435 436 }
duke@435 437
duke@435 438
duke@435 439 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 440 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 441 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 442 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 443
duke@435 444 Address addr = Address(reg, address(NULL), oop_Relocation::spec(oop_index));
duke@435 445 assert(addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 446 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 447 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 448 // therefore generate the sethi/add as a placeholders
duke@435 449 __ sethi(addr, true);
duke@435 450 __ add(addr, reg, 0);
duke@435 451
duke@435 452 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 453 }
duke@435 454
duke@435 455
duke@435 456 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 457 Register Rdividend = op->in_opr1()->as_register();
duke@435 458 Register Rdivisor = noreg;
duke@435 459 Register Rscratch = op->in_opr3()->as_register();
duke@435 460 Register Rresult = op->result_opr()->as_register();
duke@435 461 int divisor = -1;
duke@435 462
duke@435 463 if (op->in_opr2()->is_register()) {
duke@435 464 Rdivisor = op->in_opr2()->as_register();
duke@435 465 } else {
duke@435 466 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 467 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 468 }
duke@435 469
duke@435 470 assert(Rdividend != Rscratch, "");
duke@435 471 assert(Rdivisor != Rscratch, "");
duke@435 472 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 473
duke@435 474 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 475 // convert division by a power of two into some shifts and logical operations
duke@435 476 if (op->code() == lir_idiv) {
duke@435 477 if (divisor == 2) {
duke@435 478 __ srl(Rdividend, 31, Rscratch);
duke@435 479 } else {
duke@435 480 __ sra(Rdividend, 31, Rscratch);
duke@435 481 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 482 }
duke@435 483 __ add(Rdividend, Rscratch, Rscratch);
duke@435 484 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 485 return;
duke@435 486 } else {
duke@435 487 if (divisor == 2) {
duke@435 488 __ srl(Rdividend, 31, Rscratch);
duke@435 489 } else {
duke@435 490 __ sra(Rdividend, 31, Rscratch);
duke@435 491 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 492 }
duke@435 493 __ add(Rdividend, Rscratch, Rscratch);
duke@435 494 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 495 __ sub(Rdividend, Rscratch, Rresult);
duke@435 496 return;
duke@435 497 }
duke@435 498 }
duke@435 499
duke@435 500 __ sra(Rdividend, 31, Rscratch);
duke@435 501 __ wry(Rscratch);
duke@435 502 if (!VM_Version::v9_instructions_work()) {
duke@435 503 // v9 doesn't require these nops
duke@435 504 __ nop();
duke@435 505 __ nop();
duke@435 506 __ nop();
duke@435 507 __ nop();
duke@435 508 }
duke@435 509
duke@435 510 add_debug_info_for_div0_here(op->info());
duke@435 511
duke@435 512 if (Rdivisor != noreg) {
duke@435 513 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 514 } else {
duke@435 515 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 516 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 517 }
duke@435 518
duke@435 519 Label skip;
duke@435 520 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 521 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 522 __ bind(skip);
duke@435 523
duke@435 524 if (op->code() == lir_irem) {
duke@435 525 if (Rdivisor != noreg) {
duke@435 526 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 527 } else {
duke@435 528 __ smul(Rscratch, divisor, Rscratch);
duke@435 529 }
duke@435 530 __ sub(Rdividend, Rscratch, Rresult);
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534
duke@435 535 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 536 #ifdef ASSERT
duke@435 537 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 538 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 539 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 540 #endif
duke@435 541 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 542
duke@435 543 if (op->cond() == lir_cond_always) {
duke@435 544 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 545 } else if (op->code() == lir_cond_float_branch) {
duke@435 546 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 547 bool is_unordered = (op->ublock() == op->block());
duke@435 548 Assembler::Condition acond;
duke@435 549 switch (op->cond()) {
duke@435 550 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 551 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 552 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 553 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 554 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 555 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 556 default : ShouldNotReachHere();
duke@435 557 };
duke@435 558
duke@435 559 if (!VM_Version::v9_instructions_work()) {
duke@435 560 __ nop();
duke@435 561 }
duke@435 562 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 563 } else {
duke@435 564 assert (op->code() == lir_branch, "just checking");
duke@435 565
duke@435 566 Assembler::Condition acond;
duke@435 567 switch (op->cond()) {
duke@435 568 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 569 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 570 case lir_cond_less: acond = Assembler::less; break;
duke@435 571 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 572 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 573 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 574 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 575 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 576 default: ShouldNotReachHere();
duke@435 577 };
duke@435 578
duke@435 579 // sparc has different condition codes for testing 32-bit
duke@435 580 // vs. 64-bit values. We could always test xcc is we could
duke@435 581 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 582 // true and since sign extension isn't free, it would impose a
duke@435 583 // slight cost.
duke@435 584 #ifdef _LP64
duke@435 585 if (op->type() == T_INT) {
duke@435 586 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 587 } else
duke@435 588 #endif
duke@435 589 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 590 }
duke@435 591 // The peephole pass fills the delay slot
duke@435 592 }
duke@435 593
duke@435 594
duke@435 595 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 596 Bytecodes::Code code = op->bytecode();
duke@435 597 LIR_Opr dst = op->result_opr();
duke@435 598
duke@435 599 switch(code) {
duke@435 600 case Bytecodes::_i2l: {
duke@435 601 Register rlo = dst->as_register_lo();
duke@435 602 Register rhi = dst->as_register_hi();
duke@435 603 Register rval = op->in_opr()->as_register();
duke@435 604 #ifdef _LP64
duke@435 605 __ sra(rval, 0, rlo);
duke@435 606 #else
duke@435 607 __ mov(rval, rlo);
duke@435 608 __ sra(rval, BitsPerInt-1, rhi);
duke@435 609 #endif
duke@435 610 break;
duke@435 611 }
duke@435 612 case Bytecodes::_i2d:
duke@435 613 case Bytecodes::_i2f: {
duke@435 614 bool is_double = (code == Bytecodes::_i2d);
duke@435 615 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 616 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 617 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 618 if (rsrc != rdst) {
duke@435 619 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 620 }
duke@435 621 __ fitof(w, rdst, rdst);
duke@435 622 break;
duke@435 623 }
duke@435 624 case Bytecodes::_f2i:{
duke@435 625 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 626 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 627 Label L;
duke@435 628 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 629 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 630 if (!VM_Version::v9_instructions_work()) {
duke@435 631 __ nop();
duke@435 632 }
duke@435 633 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 634 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 635 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 636 // move integer result from float register to int register
duke@435 637 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 638 __ bind (L);
duke@435 639 break;
duke@435 640 }
duke@435 641 case Bytecodes::_l2i: {
duke@435 642 Register rlo = op->in_opr()->as_register_lo();
duke@435 643 Register rhi = op->in_opr()->as_register_hi();
duke@435 644 Register rdst = dst->as_register();
duke@435 645 #ifdef _LP64
duke@435 646 __ sra(rlo, 0, rdst);
duke@435 647 #else
duke@435 648 __ mov(rlo, rdst);
duke@435 649 #endif
duke@435 650 break;
duke@435 651 }
duke@435 652 case Bytecodes::_d2f:
duke@435 653 case Bytecodes::_f2d: {
duke@435 654 bool is_double = (code == Bytecodes::_f2d);
duke@435 655 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 656 LIR_Opr val = op->in_opr();
duke@435 657 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 658 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 659 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 660 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 661 __ ftof(vw, dw, rval, rdst);
duke@435 662 break;
duke@435 663 }
duke@435 664 case Bytecodes::_i2s:
duke@435 665 case Bytecodes::_i2b: {
duke@435 666 Register rval = op->in_opr()->as_register();
duke@435 667 Register rdst = dst->as_register();
duke@435 668 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 669 __ sll (rval, shift, rdst);
duke@435 670 __ sra (rdst, shift, rdst);
duke@435 671 break;
duke@435 672 }
duke@435 673 case Bytecodes::_i2c: {
duke@435 674 Register rval = op->in_opr()->as_register();
duke@435 675 Register rdst = dst->as_register();
duke@435 676 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 677 __ sll (rval, shift, rdst);
duke@435 678 __ srl (rdst, shift, rdst);
duke@435 679 break;
duke@435 680 }
duke@435 681
duke@435 682 default: ShouldNotReachHere();
duke@435 683 }
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 void LIR_Assembler::align_call(LIR_Code) {
duke@435 688 // do nothing since all instructions are word aligned on sparc
duke@435 689 }
duke@435 690
duke@435 691
duke@435 692 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
duke@435 693 __ call(entry, rtype);
duke@435 694 // the peephole pass fills the delay slot
duke@435 695 }
duke@435 696
duke@435 697
duke@435 698 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
duke@435 699 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 700 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 701 __ relocate(rspec);
duke@435 702 __ call(entry, relocInfo::none);
duke@435 703 // the peephole pass fills the delay slot
duke@435 704 }
duke@435 705
duke@435 706
duke@435 707 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
duke@435 708 add_debug_info_for_null_check_here(info);
duke@435 709 __ ld_ptr(Address(O0, 0, oopDesc::klass_offset_in_bytes()), G3_scratch);
duke@435 710 if (__ is_simm13(vtable_offset) ) {
duke@435 711 __ ld_ptr(G3_scratch, vtable_offset, G5_method);
duke@435 712 } else {
duke@435 713 // This will generate 2 instructions
duke@435 714 __ set(vtable_offset, G5_method);
duke@435 715 // ld_ptr, set_hi, set
duke@435 716 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 717 }
duke@435 718 __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
duke@435 719 __ callr(G3_scratch, G0);
duke@435 720 // the peephole pass fills the delay slot
duke@435 721 }
duke@435 722
duke@435 723
duke@435 724 // load with 32-bit displacement
duke@435 725 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 726 int load_offset = code_offset();
duke@435 727 if (Assembler::is_simm13(disp)) {
duke@435 728 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 729 switch(ld_type) {
duke@435 730 case T_BOOLEAN: // fall through
duke@435 731 case T_BYTE : __ ldsb(s, disp, d); break;
duke@435 732 case T_CHAR : __ lduh(s, disp, d); break;
duke@435 733 case T_SHORT : __ ldsh(s, disp, d); break;
duke@435 734 case T_INT : __ ld(s, disp, d); break;
duke@435 735 case T_ADDRESS:// fall through
duke@435 736 case T_ARRAY : // fall through
duke@435 737 case T_OBJECT: __ ld_ptr(s, disp, d); break;
duke@435 738 default : ShouldNotReachHere();
duke@435 739 }
duke@435 740 } else {
duke@435 741 __ sethi(disp & ~0x3ff, O7, true);
duke@435 742 __ add(O7, disp & 0x3ff, O7);
duke@435 743 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 744 load_offset = code_offset();
duke@435 745 switch(ld_type) {
duke@435 746 case T_BOOLEAN: // fall through
duke@435 747 case T_BYTE : __ ldsb(s, O7, d); break;
duke@435 748 case T_CHAR : __ lduh(s, O7, d); break;
duke@435 749 case T_SHORT : __ ldsh(s, O7, d); break;
duke@435 750 case T_INT : __ ld(s, O7, d); break;
duke@435 751 case T_ADDRESS:// fall through
duke@435 752 case T_ARRAY : // fall through
duke@435 753 case T_OBJECT: __ ld_ptr(s, O7, d); break;
duke@435 754 default : ShouldNotReachHere();
duke@435 755 }
duke@435 756 }
duke@435 757 if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
duke@435 758 return load_offset;
duke@435 759 }
duke@435 760
duke@435 761
duke@435 762 // store with 32-bit displacement
duke@435 763 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 764 if (Assembler::is_simm13(offset)) {
duke@435 765 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 766 switch (type) {
duke@435 767 case T_BOOLEAN: // fall through
duke@435 768 case T_BYTE : __ stb(value, base, offset); break;
duke@435 769 case T_CHAR : __ sth(value, base, offset); break;
duke@435 770 case T_SHORT : __ sth(value, base, offset); break;
duke@435 771 case T_INT : __ stw(value, base, offset); break;
duke@435 772 case T_ADDRESS:// fall through
duke@435 773 case T_ARRAY : // fall through
duke@435 774 case T_OBJECT: __ st_ptr(value, base, offset); break;
duke@435 775 default : ShouldNotReachHere();
duke@435 776 }
duke@435 777 } else {
duke@435 778 __ sethi(offset & ~0x3ff, O7, true);
duke@435 779 __ add(O7, offset & 0x3ff, O7);
duke@435 780 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 781 switch (type) {
duke@435 782 case T_BOOLEAN: // fall through
duke@435 783 case T_BYTE : __ stb(value, base, O7); break;
duke@435 784 case T_CHAR : __ sth(value, base, O7); break;
duke@435 785 case T_SHORT : __ sth(value, base, O7); break;
duke@435 786 case T_INT : __ stw(value, base, O7); break;
duke@435 787 case T_ADDRESS:// fall through
duke@435 788 case T_ARRAY : //fall through
duke@435 789 case T_OBJECT: __ st_ptr(value, base, O7); break;
duke@435 790 default : ShouldNotReachHere();
duke@435 791 }
duke@435 792 }
duke@435 793 // Note: Do the store before verification as the code might be patched!
duke@435 794 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
duke@435 795 }
duke@435 796
duke@435 797
duke@435 798 // load float with 32-bit displacement
duke@435 799 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 800 FloatRegisterImpl::Width w;
duke@435 801 switch(ld_type) {
duke@435 802 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 803 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 804 default : ShouldNotReachHere();
duke@435 805 }
duke@435 806
duke@435 807 if (Assembler::is_simm13(disp)) {
duke@435 808 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 809 if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
duke@435 810 __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
duke@435 811 __ ldf(FloatRegisterImpl::S, s, disp , d);
duke@435 812 } else {
duke@435 813 __ ldf(w, s, disp, d);
duke@435 814 }
duke@435 815 } else {
duke@435 816 __ sethi(disp & ~0x3ff, O7, true);
duke@435 817 __ add(O7, disp & 0x3ff, O7);
duke@435 818 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 819 __ ldf(w, s, O7, d);
duke@435 820 }
duke@435 821 }
duke@435 822
duke@435 823
duke@435 824 // store float with 32-bit displacement
duke@435 825 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 826 FloatRegisterImpl::Width w;
duke@435 827 switch(type) {
duke@435 828 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 829 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 830 default : ShouldNotReachHere();
duke@435 831 }
duke@435 832
duke@435 833 if (Assembler::is_simm13(offset)) {
duke@435 834 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 835 if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
duke@435 836 __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
duke@435 837 __ stf(FloatRegisterImpl::S, value , base, offset);
duke@435 838 } else {
duke@435 839 __ stf(w, value, base, offset);
duke@435 840 }
duke@435 841 } else {
duke@435 842 __ sethi(offset & ~0x3ff, O7, true);
duke@435 843 __ add(O7, offset & 0x3ff, O7);
duke@435 844 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 845 __ stf(w, value, O7, base);
duke@435 846 }
duke@435 847 }
duke@435 848
duke@435 849
duke@435 850 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
duke@435 851 int store_offset;
duke@435 852 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 853 assert(!unaligned, "can't handle this");
duke@435 854 // for offsets larger than a simm13 we setup the offset in O7
duke@435 855 __ sethi(offset & ~0x3ff, O7, true);
duke@435 856 __ add(O7, offset & 0x3ff, O7);
duke@435 857 store_offset = store(from_reg, base, O7, type);
duke@435 858 } else {
duke@435 859 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 860 store_offset = code_offset();
duke@435 861 switch (type) {
duke@435 862 case T_BOOLEAN: // fall through
duke@435 863 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 864 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 865 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 866 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 867 case T_LONG :
duke@435 868 #ifdef _LP64
duke@435 869 if (unaligned || PatchALot) {
duke@435 870 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 871 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 872 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 873 } else {
duke@435 874 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 875 }
duke@435 876 #else
duke@435 877 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 878 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 879 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 880 #endif
duke@435 881 break;
duke@435 882 case T_ADDRESS:// fall through
duke@435 883 case T_ARRAY : // fall through
duke@435 884 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
duke@435 885 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 886 case T_DOUBLE:
duke@435 887 {
duke@435 888 FloatRegister reg = from_reg->as_double_reg();
duke@435 889 // split unaligned stores
duke@435 890 if (unaligned || PatchALot) {
duke@435 891 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 892 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 893 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 894 } else {
duke@435 895 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 896 }
duke@435 897 break;
duke@435 898 }
duke@435 899 default : ShouldNotReachHere();
duke@435 900 }
duke@435 901 }
duke@435 902 return store_offset;
duke@435 903 }
duke@435 904
duke@435 905
duke@435 906 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
duke@435 907 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 908 int store_offset = code_offset();
duke@435 909 switch (type) {
duke@435 910 case T_BOOLEAN: // fall through
duke@435 911 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 912 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 913 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 914 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 915 case T_LONG :
duke@435 916 #ifdef _LP64
duke@435 917 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 918 #else
duke@435 919 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 920 __ std(from_reg->as_register_hi(), base, disp);
duke@435 921 #endif
duke@435 922 break;
duke@435 923 case T_ADDRESS:// fall through
duke@435 924 case T_ARRAY : // fall through
duke@435 925 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
duke@435 926 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 927 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 928 default : ShouldNotReachHere();
duke@435 929 }
duke@435 930 return store_offset;
duke@435 931 }
duke@435 932
duke@435 933
duke@435 934 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
duke@435 935 int load_offset;
duke@435 936 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 937 assert(base != O7, "destroying register");
duke@435 938 assert(!unaligned, "can't handle this");
duke@435 939 // for offsets larger than a simm13 we setup the offset in O7
duke@435 940 __ sethi(offset & ~0x3ff, O7, true);
duke@435 941 __ add(O7, offset & 0x3ff, O7);
duke@435 942 load_offset = load(base, O7, to_reg, type);
duke@435 943 } else {
duke@435 944 load_offset = code_offset();
duke@435 945 switch(type) {
duke@435 946 case T_BOOLEAN: // fall through
duke@435 947 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 948 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 949 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 950 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 951 case T_LONG :
duke@435 952 if (!unaligned) {
duke@435 953 #ifdef _LP64
duke@435 954 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 955 #else
duke@435 956 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 957 "must be sequential");
duke@435 958 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 959 #endif
duke@435 960 } else {
duke@435 961 #ifdef _LP64
duke@435 962 assert(base != to_reg->as_register_lo(), "can't handle this");
duke@435 963 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 964 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
duke@435 965 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 966 #else
duke@435 967 if (base == to_reg->as_register_lo()) {
duke@435 968 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 969 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 970 } else {
duke@435 971 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 972 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 973 }
duke@435 974 #endif
duke@435 975 }
duke@435 976 break;
duke@435 977 case T_ADDRESS:// fall through
duke@435 978 case T_ARRAY : // fall through
duke@435 979 case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 980 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 981 case T_DOUBLE:
duke@435 982 {
duke@435 983 FloatRegister reg = to_reg->as_double_reg();
duke@435 984 // split unaligned loads
duke@435 985 if (unaligned || PatchALot) {
duke@435 986 __ ldf(FloatRegisterImpl::S, base, offset + BytesPerWord, reg->successor());
duke@435 987 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 988 } else {
duke@435 989 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 990 }
duke@435 991 break;
duke@435 992 }
duke@435 993 default : ShouldNotReachHere();
duke@435 994 }
duke@435 995 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 996 }
duke@435 997 return load_offset;
duke@435 998 }
duke@435 999
duke@435 1000
duke@435 1001 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
duke@435 1002 int load_offset = code_offset();
duke@435 1003 switch(type) {
duke@435 1004 case T_BOOLEAN: // fall through
duke@435 1005 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
duke@435 1006 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
duke@435 1007 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
duke@435 1008 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
duke@435 1009 case T_ADDRESS:// fall through
duke@435 1010 case T_ARRAY : // fall through
duke@435 1011 case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1012 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1013 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1014 case T_LONG :
duke@435 1015 #ifdef _LP64
duke@435 1016 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1017 #else
duke@435 1018 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1019 "must be sequential");
duke@435 1020 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1021 #endif
duke@435 1022 break;
duke@435 1023 default : ShouldNotReachHere();
duke@435 1024 }
duke@435 1025 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1026 return load_offset;
duke@435 1027 }
duke@435 1028
duke@435 1029
duke@435 1030 // load/store with an Address
duke@435 1031 void LIR_Assembler::load(const Address& a, Register d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1032 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1033 }
duke@435 1034
duke@435 1035
duke@435 1036 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1037 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1038 }
duke@435 1039
duke@435 1040
duke@435 1041 // loadf/storef with an Address
duke@435 1042 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1043 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1044 }
duke@435 1045
duke@435 1046
duke@435 1047 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1048 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 // load/store with an Address
duke@435 1053 void LIR_Assembler::load(LIR_Address* a, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1054 load(as_Address(a), d, ld_type, info);
duke@435 1055 }
duke@435 1056
duke@435 1057
duke@435 1058 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1059 store(value, as_Address(dest), type, info);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 // loadf/storef with an Address
duke@435 1064 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1065 load(as_Address(a), d, ld_type, info);
duke@435 1066 }
duke@435 1067
duke@435 1068
duke@435 1069 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1070 store(value, as_Address(dest), type, info);
duke@435 1071 }
duke@435 1072
duke@435 1073
duke@435 1074 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1075 LIR_Const* c = src->as_constant_ptr();
duke@435 1076 switch (c->type()) {
duke@435 1077 case T_INT:
duke@435 1078 case T_FLOAT: {
duke@435 1079 Register src_reg = O7;
duke@435 1080 int value = c->as_jint_bits();
duke@435 1081 if (value == 0) {
duke@435 1082 src_reg = G0;
duke@435 1083 } else {
duke@435 1084 __ set(value, O7);
duke@435 1085 }
duke@435 1086 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1087 __ stw(src_reg, addr.base(), addr.disp());
duke@435 1088 break;
duke@435 1089 }
duke@435 1090 case T_OBJECT: {
duke@435 1091 Register src_reg = O7;
duke@435 1092 jobject2reg(c->as_jobject(), src_reg);
duke@435 1093 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1094 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1095 break;
duke@435 1096 }
duke@435 1097 case T_LONG:
duke@435 1098 case T_DOUBLE: {
duke@435 1099 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1100
duke@435 1101 Register tmp = O7;
duke@435 1102 int value_lo = c->as_jint_lo_bits();
duke@435 1103 if (value_lo == 0) {
duke@435 1104 tmp = G0;
duke@435 1105 } else {
duke@435 1106 __ set(value_lo, O7);
duke@435 1107 }
duke@435 1108 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1109 int value_hi = c->as_jint_hi_bits();
duke@435 1110 if (value_hi == 0) {
duke@435 1111 tmp = G0;
duke@435 1112 } else {
duke@435 1113 __ set(value_hi, O7);
duke@435 1114 }
duke@435 1115 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1116 break;
duke@435 1117 }
duke@435 1118 default:
duke@435 1119 Unimplemented();
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123
duke@435 1124 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 1125 LIR_Const* c = src->as_constant_ptr();
duke@435 1126 LIR_Address* addr = dest->as_address_ptr();
duke@435 1127 Register base = addr->base()->as_pointer_register();
duke@435 1128
duke@435 1129 if (info != NULL) {
duke@435 1130 add_debug_info_for_null_check_here(info);
duke@435 1131 }
duke@435 1132 switch (c->type()) {
duke@435 1133 case T_INT:
duke@435 1134 case T_FLOAT: {
duke@435 1135 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1136 int value = c->as_jint_bits();
duke@435 1137 if (value == 0) {
duke@435 1138 tmp = FrameMap::G0_opr;
duke@435 1139 } else if (Assembler::is_simm13(value)) {
duke@435 1140 __ set(value, O7);
duke@435 1141 }
duke@435 1142 if (addr->index()->is_valid()) {
duke@435 1143 assert(addr->disp() == 0, "must be zero");
duke@435 1144 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1145 } else {
duke@435 1146 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1147 store(tmp, base, addr->disp(), type);
duke@435 1148 }
duke@435 1149 break;
duke@435 1150 }
duke@435 1151 case T_LONG:
duke@435 1152 case T_DOUBLE: {
duke@435 1153 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1154 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1155 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1156
duke@435 1157 Register tmp = O7;
duke@435 1158 int value_lo = c->as_jint_lo_bits();
duke@435 1159 if (value_lo == 0) {
duke@435 1160 tmp = G0;
duke@435 1161 } else {
duke@435 1162 __ set(value_lo, O7);
duke@435 1163 }
duke@435 1164 store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
duke@435 1165 int value_hi = c->as_jint_hi_bits();
duke@435 1166 if (value_hi == 0) {
duke@435 1167 tmp = G0;
duke@435 1168 } else {
duke@435 1169 __ set(value_hi, O7);
duke@435 1170 }
duke@435 1171 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
duke@435 1172 break;
duke@435 1173 }
duke@435 1174 case T_OBJECT: {
duke@435 1175 jobject obj = c->as_jobject();
duke@435 1176 LIR_Opr tmp;
duke@435 1177 if (obj == NULL) {
duke@435 1178 tmp = FrameMap::G0_opr;
duke@435 1179 } else {
duke@435 1180 tmp = FrameMap::O7_opr;
duke@435 1181 jobject2reg(c->as_jobject(), O7);
duke@435 1182 }
duke@435 1183 // handle either reg+reg or reg+disp address
duke@435 1184 if (addr->index()->is_valid()) {
duke@435 1185 assert(addr->disp() == 0, "must be zero");
duke@435 1186 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1187 } else {
duke@435 1188 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1189 store(tmp, base, addr->disp(), type);
duke@435 1190 }
duke@435 1191
duke@435 1192 break;
duke@435 1193 }
duke@435 1194 default:
duke@435 1195 Unimplemented();
duke@435 1196 }
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1201 LIR_Const* c = src->as_constant_ptr();
duke@435 1202 LIR_Opr to_reg = dest;
duke@435 1203
duke@435 1204 switch (c->type()) {
duke@435 1205 case T_INT:
duke@435 1206 {
duke@435 1207 jint con = c->as_jint();
duke@435 1208 if (to_reg->is_single_cpu()) {
duke@435 1209 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1210 __ set(con, to_reg->as_register());
duke@435 1211 } else {
duke@435 1212 ShouldNotReachHere();
duke@435 1213 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1214
duke@435 1215 __ set(con, O7);
duke@435 1216 Address temp_slot(SP, 0, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1217 __ st(O7, temp_slot);
duke@435 1218 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1219 }
duke@435 1220 }
duke@435 1221 break;
duke@435 1222
duke@435 1223 case T_LONG:
duke@435 1224 {
duke@435 1225 jlong con = c->as_jlong();
duke@435 1226
duke@435 1227 if (to_reg->is_double_cpu()) {
duke@435 1228 #ifdef _LP64
duke@435 1229 __ set(con, to_reg->as_register_lo());
duke@435 1230 #else
duke@435 1231 __ set(low(con), to_reg->as_register_lo());
duke@435 1232 __ set(high(con), to_reg->as_register_hi());
duke@435 1233 #endif
duke@435 1234 #ifdef _LP64
duke@435 1235 } else if (to_reg->is_single_cpu()) {
duke@435 1236 __ set(con, to_reg->as_register());
duke@435 1237 #endif
duke@435 1238 } else {
duke@435 1239 ShouldNotReachHere();
duke@435 1240 assert(to_reg->is_double_fpu(), "wrong register kind");
duke@435 1241 Address temp_slot_lo(SP, 0, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
duke@435 1242 Address temp_slot_hi(SP, 0, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1243 __ set(low(con), O7);
duke@435 1244 __ st(O7, temp_slot_lo);
duke@435 1245 __ set(high(con), O7);
duke@435 1246 __ st(O7, temp_slot_hi);
duke@435 1247 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1248 }
duke@435 1249 }
duke@435 1250 break;
duke@435 1251
duke@435 1252 case T_OBJECT:
duke@435 1253 {
duke@435 1254 if (patch_code == lir_patch_none) {
duke@435 1255 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1256 } else {
duke@435 1257 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1258 }
duke@435 1259 }
duke@435 1260 break;
duke@435 1261
duke@435 1262 case T_FLOAT:
duke@435 1263 {
duke@435 1264 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1265 if (const_addr == NULL) {
duke@435 1266 bailout("const section overflow");
duke@435 1267 break;
duke@435 1268 }
duke@435 1269 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1270 if (to_reg->is_single_fpu()) {
duke@435 1271 __ sethi( (intx)const_addr & ~0x3ff, O7, true, rspec);
duke@435 1272 __ relocate(rspec);
duke@435 1273
duke@435 1274 int offset = (intx)const_addr & 0x3ff;
duke@435 1275 __ ldf (FloatRegisterImpl::S, O7, offset, to_reg->as_float_reg());
duke@435 1276
duke@435 1277 } else {
duke@435 1278 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1279
duke@435 1280 __ set((intx)const_addr, O7, rspec);
duke@435 1281 load(O7, 0, to_reg->as_register(), T_INT);
duke@435 1282 }
duke@435 1283 }
duke@435 1284 break;
duke@435 1285
duke@435 1286 case T_DOUBLE:
duke@435 1287 {
duke@435 1288 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1289 if (const_addr == NULL) {
duke@435 1290 bailout("const section overflow");
duke@435 1291 break;
duke@435 1292 }
duke@435 1293 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1294
duke@435 1295 if (to_reg->is_double_fpu()) {
duke@435 1296 __ sethi( (intx)const_addr & ~0x3ff, O7, true, rspec);
duke@435 1297 int offset = (intx)const_addr & 0x3ff;
duke@435 1298 __ relocate(rspec);
duke@435 1299 __ ldf (FloatRegisterImpl::D, O7, offset, to_reg->as_double_reg());
duke@435 1300 } else {
duke@435 1301 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1302 #ifdef _LP64
duke@435 1303 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1304 #else
duke@435 1305 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1306 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1307 #endif
duke@435 1308 }
duke@435 1309
duke@435 1310 }
duke@435 1311 break;
duke@435 1312
duke@435 1313 default:
duke@435 1314 ShouldNotReachHere();
duke@435 1315 }
duke@435 1316 }
duke@435 1317
duke@435 1318 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1319 Register reg = addr->base()->as_register();
duke@435 1320 return Address(reg, 0, addr->disp());
duke@435 1321 }
duke@435 1322
duke@435 1323
duke@435 1324 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1325 switch (type) {
duke@435 1326 case T_INT:
duke@435 1327 case T_FLOAT: {
duke@435 1328 Register tmp = O7;
duke@435 1329 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1330 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1331 __ lduw(from.base(), from.disp(), tmp);
duke@435 1332 __ stw(tmp, to.base(), to.disp());
duke@435 1333 break;
duke@435 1334 }
duke@435 1335 case T_OBJECT: {
duke@435 1336 Register tmp = O7;
duke@435 1337 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1338 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1339 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1340 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1341 break;
duke@435 1342 }
duke@435 1343 case T_LONG:
duke@435 1344 case T_DOUBLE: {
duke@435 1345 Register tmp = O7;
duke@435 1346 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1347 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1348 __ lduw(from.base(), from.disp(), tmp);
duke@435 1349 __ stw(tmp, to.base(), to.disp());
duke@435 1350 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1351 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1352 break;
duke@435 1353 }
duke@435 1354
duke@435 1355 default:
duke@435 1356 ShouldNotReachHere();
duke@435 1357 }
duke@435 1358 }
duke@435 1359
duke@435 1360
duke@435 1361 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1362 Address base = as_Address(addr);
duke@435 1363 return Address(base.base(), 0, base.disp() + hi_word_offset_in_bytes);
duke@435 1364 }
duke@435 1365
duke@435 1366
duke@435 1367 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1368 Address base = as_Address(addr);
duke@435 1369 return Address(base.base(), 0, base.disp() + lo_word_offset_in_bytes);
duke@435 1370 }
duke@435 1371
duke@435 1372
duke@435 1373 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
duke@435 1374 LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
duke@435 1375
duke@435 1376 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1377 LIR_Opr to_reg = dest;
duke@435 1378
duke@435 1379 Register src = addr->base()->as_pointer_register();
duke@435 1380 Register disp_reg = noreg;
duke@435 1381 int disp_value = addr->disp();
duke@435 1382 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1383
duke@435 1384 if (addr->base()->type() == T_OBJECT) {
duke@435 1385 __ verify_oop(src);
duke@435 1386 }
duke@435 1387
duke@435 1388 PatchingStub* patch = NULL;
duke@435 1389 if (needs_patching) {
duke@435 1390 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1391 assert(!to_reg->is_double_cpu() ||
duke@435 1392 patch_code == lir_patch_none ||
duke@435 1393 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1394 }
duke@435 1395
duke@435 1396 if (addr->index()->is_illegal()) {
duke@435 1397 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1398 if (needs_patching) {
duke@435 1399 __ sethi(0, O7, true);
duke@435 1400 __ add(O7, 0, O7);
duke@435 1401 } else {
duke@435 1402 __ set(disp_value, O7);
duke@435 1403 }
duke@435 1404 disp_reg = O7;
duke@435 1405 }
duke@435 1406 } else if (unaligned || PatchALot) {
duke@435 1407 __ add(src, addr->index()->as_register(), O7);
duke@435 1408 src = O7;
duke@435 1409 } else {
duke@435 1410 disp_reg = addr->index()->as_pointer_register();
duke@435 1411 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1412 }
duke@435 1413
duke@435 1414 // remember the offset of the load. The patching_epilog must be done
duke@435 1415 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1416 // entered in increasing order.
duke@435 1417 int offset = code_offset();
duke@435 1418
duke@435 1419 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1420 if (disp_reg == noreg) {
duke@435 1421 offset = load(src, disp_value, to_reg, type, unaligned);
duke@435 1422 } else {
duke@435 1423 assert(!unaligned, "can't handle this");
duke@435 1424 offset = load(src, disp_reg, to_reg, type);
duke@435 1425 }
duke@435 1426
duke@435 1427 if (patch != NULL) {
duke@435 1428 patching_epilog(patch, patch_code, src, info);
duke@435 1429 }
duke@435 1430
duke@435 1431 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1432 }
duke@435 1433
duke@435 1434
duke@435 1435 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1436 LIR_Address* addr = src->as_address_ptr();
duke@435 1437 Address from_addr = as_Address(addr);
duke@435 1438
duke@435 1439 if (VM_Version::has_v9()) {
duke@435 1440 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1441 }
duke@435 1442 }
duke@435 1443
duke@435 1444
duke@435 1445 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1446 LIR_Address* addr = src->as_address_ptr();
duke@435 1447 Address from_addr = as_Address(addr);
duke@435 1448
duke@435 1449 if (VM_Version::has_v9()) {
duke@435 1450 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1451 }
duke@435 1452 }
duke@435 1453
duke@435 1454
duke@435 1455 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1456 Address addr;
duke@435 1457 if (src->is_single_word()) {
duke@435 1458 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1459 } else if (src->is_double_word()) {
duke@435 1460 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1461 }
duke@435 1462
duke@435 1463 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1464 load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
duke@435 1465 }
duke@435 1466
duke@435 1467
duke@435 1468 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1469 Address addr;
duke@435 1470 if (dest->is_single_word()) {
duke@435 1471 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1472 } else if (dest->is_double_word()) {
duke@435 1473 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1474 }
duke@435 1475 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1476 store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
duke@435 1477 }
duke@435 1478
duke@435 1479
duke@435 1480 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1481 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1482 if (from_reg->is_double_fpu()) {
duke@435 1483 // double to double moves
duke@435 1484 assert(to_reg->is_double_fpu(), "should match");
duke@435 1485 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1486 } else {
duke@435 1487 // float to float moves
duke@435 1488 assert(to_reg->is_single_fpu(), "should match");
duke@435 1489 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1490 }
duke@435 1491 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1492 if (from_reg->is_double_cpu()) {
duke@435 1493 #ifdef _LP64
duke@435 1494 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1495 #else
duke@435 1496 assert(to_reg->is_double_cpu() &&
duke@435 1497 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1498 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1499 "should both be long and not overlap");
duke@435 1500 // long to long moves
duke@435 1501 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1502 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1503 #endif
duke@435 1504 #ifdef _LP64
duke@435 1505 } else if (to_reg->is_double_cpu()) {
duke@435 1506 // int to int moves
duke@435 1507 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1508 #endif
duke@435 1509 } else {
duke@435 1510 // int to int moves
duke@435 1511 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1512 }
duke@435 1513 } else {
duke@435 1514 ShouldNotReachHere();
duke@435 1515 }
duke@435 1516 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1517 __ verify_oop(to_reg->as_register());
duke@435 1518 }
duke@435 1519 }
duke@435 1520
duke@435 1521
duke@435 1522 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1523 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
duke@435 1524 bool unaligned) {
duke@435 1525 LIR_Address* addr = dest->as_address_ptr();
duke@435 1526
duke@435 1527 Register src = addr->base()->as_pointer_register();
duke@435 1528 Register disp_reg = noreg;
duke@435 1529 int disp_value = addr->disp();
duke@435 1530 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1531
duke@435 1532 if (addr->base()->is_oop_register()) {
duke@435 1533 __ verify_oop(src);
duke@435 1534 }
duke@435 1535
duke@435 1536 PatchingStub* patch = NULL;
duke@435 1537 if (needs_patching) {
duke@435 1538 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1539 assert(!from_reg->is_double_cpu() ||
duke@435 1540 patch_code == lir_patch_none ||
duke@435 1541 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1542 }
duke@435 1543
duke@435 1544 if (addr->index()->is_illegal()) {
duke@435 1545 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1546 if (needs_patching) {
duke@435 1547 __ sethi(0, O7, true);
duke@435 1548 __ add(O7, 0, O7);
duke@435 1549 } else {
duke@435 1550 __ set(disp_value, O7);
duke@435 1551 }
duke@435 1552 disp_reg = O7;
duke@435 1553 }
duke@435 1554 } else if (unaligned || PatchALot) {
duke@435 1555 __ add(src, addr->index()->as_register(), O7);
duke@435 1556 src = O7;
duke@435 1557 } else {
duke@435 1558 disp_reg = addr->index()->as_pointer_register();
duke@435 1559 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1560 }
duke@435 1561
duke@435 1562 // remember the offset of the store. The patching_epilog must be done
duke@435 1563 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1564 // entered in increasing order.
duke@435 1565 int offset;
duke@435 1566
duke@435 1567 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1568 if (disp_reg == noreg) {
duke@435 1569 offset = store(from_reg, src, disp_value, type, unaligned);
duke@435 1570 } else {
duke@435 1571 assert(!unaligned, "can't handle this");
duke@435 1572 offset = store(from_reg, src, disp_reg, type);
duke@435 1573 }
duke@435 1574
duke@435 1575 if (patch != NULL) {
duke@435 1576 patching_epilog(patch, patch_code, src, info);
duke@435 1577 }
duke@435 1578
duke@435 1579 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1580 }
duke@435 1581
duke@435 1582
duke@435 1583 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1584 // the poll may need a register so just pick one that isn't the return register
duke@435 1585 #ifdef TIERED
duke@435 1586 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1587 // Must move the result to G1
duke@435 1588 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1589 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1590 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1591 __ or3 (I1, G1, G1); // OR 64 bits into G1
duke@435 1592 }
duke@435 1593 #endif // TIERED
duke@435 1594 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1595 __ relocate(relocInfo::poll_return_type);
duke@435 1596 __ ld_ptr(L0, 0, G0);
duke@435 1597 __ ret();
duke@435 1598 __ delayed()->restore();
duke@435 1599 }
duke@435 1600
duke@435 1601
duke@435 1602 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1603 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1604 if (info != NULL) {
duke@435 1605 add_debug_info_for_branch(info);
duke@435 1606 } else {
duke@435 1607 __ relocate(relocInfo::poll_type);
duke@435 1608 }
duke@435 1609
duke@435 1610 int offset = __ offset();
duke@435 1611 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1612
duke@435 1613 return offset;
duke@435 1614 }
duke@435 1615
duke@435 1616
duke@435 1617 void LIR_Assembler::emit_static_call_stub() {
duke@435 1618 address call_pc = __ pc();
duke@435 1619 address stub = __ start_a_stub(call_stub_size);
duke@435 1620 if (stub == NULL) {
duke@435 1621 bailout("static call stub overflow");
duke@435 1622 return;
duke@435 1623 }
duke@435 1624
duke@435 1625 int start = __ offset();
duke@435 1626 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1627
duke@435 1628 __ set_oop(NULL, G5);
duke@435 1629 // must be set to -1 at code generation time
duke@435 1630 Address a(G3, (address)-1);
duke@435 1631 __ jump_to(a, 0);
duke@435 1632 __ delayed()->nop();
duke@435 1633
duke@435 1634 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1635 __ end_a_stub();
duke@435 1636 }
duke@435 1637
duke@435 1638
duke@435 1639 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1640 if (opr1->is_single_fpu()) {
duke@435 1641 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1642 } else if (opr1->is_double_fpu()) {
duke@435 1643 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1644 } else if (opr1->is_single_cpu()) {
duke@435 1645 if (opr2->is_constant()) {
duke@435 1646 switch (opr2->as_constant_ptr()->type()) {
duke@435 1647 case T_INT:
duke@435 1648 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1649 if (Assembler::is_simm13(con)) {
duke@435 1650 __ cmp(opr1->as_register(), con);
duke@435 1651 } else {
duke@435 1652 __ set(con, O7);
duke@435 1653 __ cmp(opr1->as_register(), O7);
duke@435 1654 }
duke@435 1655 }
duke@435 1656 break;
duke@435 1657
duke@435 1658 case T_OBJECT:
duke@435 1659 // there are only equal/notequal comparisions on objects
duke@435 1660 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1661 if (con == NULL) {
duke@435 1662 __ cmp(opr1->as_register(), 0);
duke@435 1663 } else {
duke@435 1664 jobject2reg(con, O7);
duke@435 1665 __ cmp(opr1->as_register(), O7);
duke@435 1666 }
duke@435 1667 }
duke@435 1668 break;
duke@435 1669
duke@435 1670 default:
duke@435 1671 ShouldNotReachHere();
duke@435 1672 break;
duke@435 1673 }
duke@435 1674 } else {
duke@435 1675 if (opr2->is_address()) {
duke@435 1676 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1677 BasicType type = addr->type();
duke@435 1678 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1679 else __ ld(as_Address(addr), O7);
duke@435 1680 __ cmp(opr1->as_register(), O7);
duke@435 1681 } else {
duke@435 1682 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1683 }
duke@435 1684 }
duke@435 1685 } else if (opr1->is_double_cpu()) {
duke@435 1686 Register xlo = opr1->as_register_lo();
duke@435 1687 Register xhi = opr1->as_register_hi();
duke@435 1688 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1689 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1690 #ifdef _LP64
duke@435 1691 __ orcc(xhi, G0, G0);
duke@435 1692 #else
duke@435 1693 __ orcc(xhi, xlo, G0);
duke@435 1694 #endif
duke@435 1695 } else if (opr2->is_register()) {
duke@435 1696 Register ylo = opr2->as_register_lo();
duke@435 1697 Register yhi = opr2->as_register_hi();
duke@435 1698 #ifdef _LP64
duke@435 1699 __ cmp(xlo, ylo);
duke@435 1700 #else
duke@435 1701 __ subcc(xlo, ylo, xlo);
duke@435 1702 __ subccc(xhi, yhi, xhi);
duke@435 1703 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1704 __ orcc(xhi, xlo, G0);
duke@435 1705 }
duke@435 1706 #endif
duke@435 1707 } else {
duke@435 1708 ShouldNotReachHere();
duke@435 1709 }
duke@435 1710 } else if (opr1->is_address()) {
duke@435 1711 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1712 BasicType type = addr->type();
duke@435 1713 assert (opr2->is_constant(), "Checking");
duke@435 1714 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1715 else __ ld(as_Address(addr), O7);
duke@435 1716 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1717 } else {
duke@435 1718 ShouldNotReachHere();
duke@435 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722
duke@435 1723 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1724 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1725 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1726 if (left->is_single_fpu()) {
duke@435 1727 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1728 } else if (left->is_double_fpu()) {
duke@435 1729 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1730 } else {
duke@435 1731 ShouldNotReachHere();
duke@435 1732 }
duke@435 1733 } else if (code == lir_cmp_l2i) {
duke@435 1734 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1735 right->as_register_hi(), right->as_register_lo(),
duke@435 1736 dst->as_register());
duke@435 1737 } else {
duke@435 1738 ShouldNotReachHere();
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742
duke@435 1743 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1744
duke@435 1745 Assembler::Condition acond;
duke@435 1746 switch (condition) {
duke@435 1747 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1748 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1749 case lir_cond_less: acond = Assembler::less; break;
duke@435 1750 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1751 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1752 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1753 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1754 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1755 default: ShouldNotReachHere();
duke@435 1756 };
duke@435 1757
duke@435 1758 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1759 Register dest = result->as_register();
duke@435 1760 // load up first part of constant before branch
duke@435 1761 // and do the rest in the delay slot.
duke@435 1762 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1763 __ sethi(opr1->as_jint(), dest);
duke@435 1764 }
duke@435 1765 } else if (opr1->is_constant()) {
duke@435 1766 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1767 } else if (opr1->is_register()) {
duke@435 1768 reg2reg(opr1, result);
duke@435 1769 } else if (opr1->is_stack()) {
duke@435 1770 stack2reg(opr1, result, result->type());
duke@435 1771 } else {
duke@435 1772 ShouldNotReachHere();
duke@435 1773 }
duke@435 1774 Label skip;
duke@435 1775 __ br(acond, false, Assembler::pt, skip);
duke@435 1776 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1777 Register dest = result->as_register();
duke@435 1778 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1779 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1780 } else {
duke@435 1781 // the sethi has been done above, so just put in the low 10 bits
duke@435 1782 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1783 }
duke@435 1784 } else {
duke@435 1785 // can't do anything useful in the delay slot
duke@435 1786 __ delayed()->nop();
duke@435 1787 }
duke@435 1788 if (opr2->is_constant()) {
duke@435 1789 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1790 } else if (opr2->is_register()) {
duke@435 1791 reg2reg(opr2, result);
duke@435 1792 } else if (opr2->is_stack()) {
duke@435 1793 stack2reg(opr2, result, result->type());
duke@435 1794 } else {
duke@435 1795 ShouldNotReachHere();
duke@435 1796 }
duke@435 1797 __ bind(skip);
duke@435 1798 }
duke@435 1799
duke@435 1800
duke@435 1801 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1802 assert(info == NULL, "unused on this code path");
duke@435 1803 assert(left->is_register(), "wrong items state");
duke@435 1804 assert(dest->is_register(), "wrong items state");
duke@435 1805
duke@435 1806 if (right->is_register()) {
duke@435 1807 if (dest->is_float_kind()) {
duke@435 1808
duke@435 1809 FloatRegister lreg, rreg, res;
duke@435 1810 FloatRegisterImpl::Width w;
duke@435 1811 if (right->is_single_fpu()) {
duke@435 1812 w = FloatRegisterImpl::S;
duke@435 1813 lreg = left->as_float_reg();
duke@435 1814 rreg = right->as_float_reg();
duke@435 1815 res = dest->as_float_reg();
duke@435 1816 } else {
duke@435 1817 w = FloatRegisterImpl::D;
duke@435 1818 lreg = left->as_double_reg();
duke@435 1819 rreg = right->as_double_reg();
duke@435 1820 res = dest->as_double_reg();
duke@435 1821 }
duke@435 1822
duke@435 1823 switch (code) {
duke@435 1824 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1825 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1826 case lir_mul: // fall through
duke@435 1827 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1828 case lir_div: // fall through
duke@435 1829 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1830 default: ShouldNotReachHere();
duke@435 1831 }
duke@435 1832
duke@435 1833 } else if (dest->is_double_cpu()) {
duke@435 1834 #ifdef _LP64
duke@435 1835 Register dst_lo = dest->as_register_lo();
duke@435 1836 Register op1_lo = left->as_pointer_register();
duke@435 1837 Register op2_lo = right->as_pointer_register();
duke@435 1838
duke@435 1839 switch (code) {
duke@435 1840 case lir_add:
duke@435 1841 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1842 break;
duke@435 1843
duke@435 1844 case lir_sub:
duke@435 1845 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1846 break;
duke@435 1847
duke@435 1848 default: ShouldNotReachHere();
duke@435 1849 }
duke@435 1850 #else
duke@435 1851 Register op1_lo = left->as_register_lo();
duke@435 1852 Register op1_hi = left->as_register_hi();
duke@435 1853 Register op2_lo = right->as_register_lo();
duke@435 1854 Register op2_hi = right->as_register_hi();
duke@435 1855 Register dst_lo = dest->as_register_lo();
duke@435 1856 Register dst_hi = dest->as_register_hi();
duke@435 1857
duke@435 1858 switch (code) {
duke@435 1859 case lir_add:
duke@435 1860 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1861 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1862 break;
duke@435 1863
duke@435 1864 case lir_sub:
duke@435 1865 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1866 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1867 break;
duke@435 1868
duke@435 1869 default: ShouldNotReachHere();
duke@435 1870 }
duke@435 1871 #endif
duke@435 1872 } else {
duke@435 1873 assert (right->is_single_cpu(), "Just Checking");
duke@435 1874
duke@435 1875 Register lreg = left->as_register();
duke@435 1876 Register res = dest->as_register();
duke@435 1877 Register rreg = right->as_register();
duke@435 1878 switch (code) {
duke@435 1879 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1880 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1881 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1882 default: ShouldNotReachHere();
duke@435 1883 }
duke@435 1884 }
duke@435 1885 } else {
duke@435 1886 assert (right->is_constant(), "must be constant");
duke@435 1887
duke@435 1888 if (dest->is_single_cpu()) {
duke@435 1889 Register lreg = left->as_register();
duke@435 1890 Register res = dest->as_register();
duke@435 1891 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1892
duke@435 1893 switch (code) {
duke@435 1894 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1895 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1896 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1897 default: ShouldNotReachHere();
duke@435 1898 }
duke@435 1899 } else {
duke@435 1900 Register lreg = left->as_pointer_register();
duke@435 1901 Register res = dest->as_register_lo();
duke@435 1902 long con = right->as_constant_ptr()->as_jlong();
duke@435 1903 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1904
duke@435 1905 switch (code) {
duke@435 1906 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1907 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1908 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1909 default: ShouldNotReachHere();
duke@435 1910 }
duke@435 1911 }
duke@435 1912 }
duke@435 1913 }
duke@435 1914
duke@435 1915
duke@435 1916 void LIR_Assembler::fpop() {
duke@435 1917 // do nothing
duke@435 1918 }
duke@435 1919
duke@435 1920
duke@435 1921 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1922 switch (code) {
duke@435 1923 case lir_sin:
duke@435 1924 case lir_tan:
duke@435 1925 case lir_cos: {
duke@435 1926 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1927 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1928 break;
duke@435 1929 }
duke@435 1930 case lir_sqrt: {
duke@435 1931 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1932 FloatRegister src_reg = value->as_double_reg();
duke@435 1933 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1934 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1935 break;
duke@435 1936 }
duke@435 1937 case lir_abs: {
duke@435 1938 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1939 FloatRegister src_reg = value->as_double_reg();
duke@435 1940 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1941 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1942 break;
duke@435 1943 }
duke@435 1944 default: {
duke@435 1945 ShouldNotReachHere();
duke@435 1946 break;
duke@435 1947 }
duke@435 1948 }
duke@435 1949 }
duke@435 1950
duke@435 1951
duke@435 1952 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1953 if (right->is_constant()) {
duke@435 1954 if (dest->is_single_cpu()) {
duke@435 1955 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1956 switch (code) {
duke@435 1957 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1958 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1959 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1960 default: ShouldNotReachHere();
duke@435 1961 }
duke@435 1962 } else {
duke@435 1963 long c = right->as_constant_ptr()->as_jlong();
duke@435 1964 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1965 int simm13 = (int)c;
duke@435 1966 switch (code) {
duke@435 1967 case lir_logic_and:
duke@435 1968 #ifndef _LP64
duke@435 1969 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1970 #endif
duke@435 1971 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1972 break;
duke@435 1973
duke@435 1974 case lir_logic_or:
duke@435 1975 #ifndef _LP64
duke@435 1976 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1977 #endif
duke@435 1978 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1979 break;
duke@435 1980
duke@435 1981 case lir_logic_xor:
duke@435 1982 #ifndef _LP64
duke@435 1983 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1984 #endif
duke@435 1985 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1986 break;
duke@435 1987
duke@435 1988 default: ShouldNotReachHere();
duke@435 1989 }
duke@435 1990 }
duke@435 1991 } else {
duke@435 1992 assert(right->is_register(), "right should be in register");
duke@435 1993
duke@435 1994 if (dest->is_single_cpu()) {
duke@435 1995 switch (code) {
duke@435 1996 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1997 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1998 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1999 default: ShouldNotReachHere();
duke@435 2000 }
duke@435 2001 } else {
duke@435 2002 #ifdef _LP64
duke@435 2003 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2004 left->as_register_lo();
duke@435 2005 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2006 right->as_register_lo();
duke@435 2007
duke@435 2008 switch (code) {
duke@435 2009 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2010 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2011 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2012 default: ShouldNotReachHere();
duke@435 2013 }
duke@435 2014 #else
duke@435 2015 switch (code) {
duke@435 2016 case lir_logic_and:
duke@435 2017 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2018 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2019 break;
duke@435 2020
duke@435 2021 case lir_logic_or:
duke@435 2022 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2023 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2024 break;
duke@435 2025
duke@435 2026 case lir_logic_xor:
duke@435 2027 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2028 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2029 break;
duke@435 2030
duke@435 2031 default: ShouldNotReachHere();
duke@435 2032 }
duke@435 2033 #endif
duke@435 2034 }
duke@435 2035 }
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2040 int elem_size = type2aelembytes(t);
duke@435 2041 switch (elem_size) {
duke@435 2042 case 1 : return 0;
duke@435 2043 case 2 : return 1;
duke@435 2044 case 4 : return 2;
duke@435 2045 case 8 : return 3;
duke@435 2046 }
duke@435 2047 ShouldNotReachHere();
duke@435 2048 return -1;
duke@435 2049 }
duke@435 2050
duke@435 2051
duke@435 2052 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
duke@435 2053 assert(exceptionOop->as_register() == Oexception, "should match");
duke@435 2054 assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2055
duke@435 2056 info->add_register_oop(exceptionOop);
duke@435 2057
duke@435 2058 if (unwind) {
duke@435 2059 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
duke@435 2060 __ delayed()->nop();
duke@435 2061 } else {
duke@435 2062 // reuse the debug info from the safepoint poll for the throw op itself
duke@435 2063 address pc_for_athrow = __ pc();
duke@435 2064 int pc_for_athrow_offset = __ offset();
duke@435 2065 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
duke@435 2066 __ set((intptr_t)pc_for_athrow, Oissuing_pc, rspec);
duke@435 2067 add_call_info(pc_for_athrow_offset, info); // for exception handler
duke@435 2068
duke@435 2069 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 2070 __ delayed()->nop();
duke@435 2071 }
duke@435 2072 }
duke@435 2073
duke@435 2074
duke@435 2075 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2076 Register src = op->src()->as_register();
duke@435 2077 Register dst = op->dst()->as_register();
duke@435 2078 Register src_pos = op->src_pos()->as_register();
duke@435 2079 Register dst_pos = op->dst_pos()->as_register();
duke@435 2080 Register length = op->length()->as_register();
duke@435 2081 Register tmp = op->tmp()->as_register();
duke@435 2082 Register tmp2 = O7;
duke@435 2083
duke@435 2084 int flags = op->flags();
duke@435 2085 ciArrayKlass* default_type = op->expected_type();
duke@435 2086 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2087 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2088
duke@435 2089 // set up the arraycopy stub information
duke@435 2090 ArrayCopyStub* stub = op->stub();
duke@435 2091
duke@435 2092 // always do stub if no type information is available. it's ok if
duke@435 2093 // the known type isn't loaded since the code sanity checks
duke@435 2094 // in debug mode and the type isn't required when we know the exact type
duke@435 2095 // also check that the type is an array type.
ysr@777 2096 // We also, for now, always call the stub if the barrier set requires a
ysr@777 2097 // write_ref_pre barrier (which the stub does, but none of the optimized
ysr@777 2098 // cases currently does).
ysr@777 2099 if (op->expected_type() == NULL ||
ysr@777 2100 Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
duke@435 2101 __ mov(src, O0);
duke@435 2102 __ mov(src_pos, O1);
duke@435 2103 __ mov(dst, O2);
duke@435 2104 __ mov(dst_pos, O3);
duke@435 2105 __ mov(length, O4);
duke@435 2106 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
duke@435 2107
duke@435 2108 __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
duke@435 2109 __ delayed()->nop();
duke@435 2110 __ bind(*stub->continuation());
duke@435 2111 return;
duke@435 2112 }
duke@435 2113
duke@435 2114 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2115
duke@435 2116 // make sure src and dst are non-null and load array length
duke@435 2117 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2118 __ tst(src);
duke@435 2119 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2120 __ delayed()->nop();
duke@435 2121 }
duke@435 2122
duke@435 2123 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2124 __ tst(dst);
duke@435 2125 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2126 __ delayed()->nop();
duke@435 2127 }
duke@435 2128
duke@435 2129 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2130 // test src_pos register
duke@435 2131 __ tst(src_pos);
duke@435 2132 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2133 __ delayed()->nop();
duke@435 2134 }
duke@435 2135
duke@435 2136 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2137 // test dst_pos register
duke@435 2138 __ tst(dst_pos);
duke@435 2139 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2140 __ delayed()->nop();
duke@435 2141 }
duke@435 2142
duke@435 2143 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2144 // make sure length isn't negative
duke@435 2145 __ tst(length);
duke@435 2146 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2147 __ delayed()->nop();
duke@435 2148 }
duke@435 2149
duke@435 2150 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2151 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2152 __ add(length, src_pos, tmp);
duke@435 2153 __ cmp(tmp2, tmp);
duke@435 2154 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2155 __ delayed()->nop();
duke@435 2156 }
duke@435 2157
duke@435 2158 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2159 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2160 __ add(length, dst_pos, tmp);
duke@435 2161 __ cmp(tmp2, tmp);
duke@435 2162 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2163 __ delayed()->nop();
duke@435 2164 }
duke@435 2165
duke@435 2166 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 2167 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
duke@435 2168 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2169 __ cmp(tmp, tmp2);
duke@435 2170 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2171 __ delayed()->nop();
duke@435 2172 }
duke@435 2173
duke@435 2174 #ifdef ASSERT
duke@435 2175 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2176 // Sanity check the known type with the incoming class. For the
duke@435 2177 // primitive case the types must match exactly with src.klass and
duke@435 2178 // dst.klass each exactly matching the default type. For the
duke@435 2179 // object array case, if no type check is needed then either the
duke@435 2180 // dst type is exactly the expected type and the src type is a
duke@435 2181 // subtype which we can't check or src is the same array as dst
duke@435 2182 // but not necessarily exactly of type default_type.
duke@435 2183 Label known_ok, halt;
duke@435 2184 jobject2reg(op->expected_type()->encoding(), tmp);
duke@435 2185 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2186 if (basic_type != T_OBJECT) {
duke@435 2187 __ cmp(tmp, tmp2);
duke@435 2188 __ br(Assembler::notEqual, false, Assembler::pn, halt);
duke@435 2189 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2190 __ cmp(tmp, tmp2);
duke@435 2191 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2192 __ delayed()->nop();
duke@435 2193 } else {
duke@435 2194 __ cmp(tmp, tmp2);
duke@435 2195 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2196 __ delayed()->cmp(src, dst);
duke@435 2197 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2198 __ delayed()->nop();
duke@435 2199 }
duke@435 2200 __ bind(halt);
duke@435 2201 __ stop("incorrect type information in arraycopy");
duke@435 2202 __ bind(known_ok);
duke@435 2203 }
duke@435 2204 #endif
duke@435 2205
duke@435 2206 int shift = shift_amount(basic_type);
duke@435 2207
duke@435 2208 Register src_ptr = O0;
duke@435 2209 Register dst_ptr = O1;
duke@435 2210 Register len = O2;
duke@435 2211
duke@435 2212 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2213 if (shift == 0) {
duke@435 2214 __ add(src_ptr, src_pos, src_ptr);
duke@435 2215 } else {
duke@435 2216 __ sll(src_pos, shift, tmp);
duke@435 2217 __ add(src_ptr, tmp, src_ptr);
duke@435 2218 }
duke@435 2219
duke@435 2220 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2221 if (shift == 0) {
duke@435 2222 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2223 } else {
duke@435 2224 __ sll(dst_pos, shift, tmp);
duke@435 2225 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2226 }
duke@435 2227
duke@435 2228 if (basic_type != T_OBJECT) {
duke@435 2229 if (shift == 0) {
duke@435 2230 __ mov(length, len);
duke@435 2231 } else {
duke@435 2232 __ sll(length, shift, len);
duke@435 2233 }
duke@435 2234 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
duke@435 2235 } else {
duke@435 2236 // oop_arraycopy takes a length in number of elements, so don't scale it.
duke@435 2237 __ mov(length, len);
duke@435 2238 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
duke@435 2239 }
duke@435 2240
duke@435 2241 __ bind(*stub->continuation());
duke@435 2242 }
duke@435 2243
duke@435 2244
duke@435 2245 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2246 if (dest->is_single_cpu()) {
duke@435 2247 #ifdef _LP64
duke@435 2248 if (left->type() == T_OBJECT) {
duke@435 2249 switch (code) {
duke@435 2250 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2251 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2252 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2253 default: ShouldNotReachHere();
duke@435 2254 }
duke@435 2255 } else
duke@435 2256 #endif
duke@435 2257 switch (code) {
duke@435 2258 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2259 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2260 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2261 default: ShouldNotReachHere();
duke@435 2262 }
duke@435 2263 } else {
duke@435 2264 #ifdef _LP64
duke@435 2265 switch (code) {
duke@435 2266 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2267 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2268 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2269 default: ShouldNotReachHere();
duke@435 2270 }
duke@435 2271 #else
duke@435 2272 switch (code) {
duke@435 2273 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2274 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2275 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2276 default: ShouldNotReachHere();
duke@435 2277 }
duke@435 2278 #endif
duke@435 2279 }
duke@435 2280 }
duke@435 2281
duke@435 2282
duke@435 2283 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2284 #ifdef _LP64
duke@435 2285 if (left->type() == T_OBJECT) {
duke@435 2286 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2287 Register l = left->as_register();
duke@435 2288 Register d = dest->as_register_lo();
duke@435 2289 switch (code) {
duke@435 2290 case lir_shl: __ sllx (l, count, d); break;
duke@435 2291 case lir_shr: __ srax (l, count, d); break;
duke@435 2292 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2293 default: ShouldNotReachHere();
duke@435 2294 }
duke@435 2295 return;
duke@435 2296 }
duke@435 2297 #endif
duke@435 2298
duke@435 2299 if (dest->is_single_cpu()) {
duke@435 2300 count = count & 0x1F; // Java spec
duke@435 2301 switch (code) {
duke@435 2302 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2303 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2304 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2305 default: ShouldNotReachHere();
duke@435 2306 }
duke@435 2307 } else if (dest->is_double_cpu()) {
duke@435 2308 count = count & 63; // Java spec
duke@435 2309 switch (code) {
duke@435 2310 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2311 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2312 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2313 default: ShouldNotReachHere();
duke@435 2314 }
duke@435 2315 } else {
duke@435 2316 ShouldNotReachHere();
duke@435 2317 }
duke@435 2318 }
duke@435 2319
duke@435 2320
duke@435 2321 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2322 assert(op->tmp1()->as_register() == G1 &&
duke@435 2323 op->tmp2()->as_register() == G3 &&
duke@435 2324 op->tmp3()->as_register() == G4 &&
duke@435 2325 op->obj()->as_register() == O0 &&
duke@435 2326 op->klass()->as_register() == G5, "must be");
duke@435 2327 if (op->init_check()) {
duke@435 2328 __ ld(op->klass()->as_register(),
duke@435 2329 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
duke@435 2330 op->tmp1()->as_register());
duke@435 2331 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2332 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2333 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2334 __ delayed()->nop();
duke@435 2335 }
duke@435 2336 __ allocate_object(op->obj()->as_register(),
duke@435 2337 op->tmp1()->as_register(),
duke@435 2338 op->tmp2()->as_register(),
duke@435 2339 op->tmp3()->as_register(),
duke@435 2340 op->header_size(),
duke@435 2341 op->object_size(),
duke@435 2342 op->klass()->as_register(),
duke@435 2343 *op->stub()->entry());
duke@435 2344 __ bind(*op->stub()->continuation());
duke@435 2345 __ verify_oop(op->obj()->as_register());
duke@435 2346 }
duke@435 2347
duke@435 2348
duke@435 2349 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2350 assert(op->tmp1()->as_register() == G1 &&
duke@435 2351 op->tmp2()->as_register() == G3 &&
duke@435 2352 op->tmp3()->as_register() == G4 &&
duke@435 2353 op->tmp4()->as_register() == O1 &&
duke@435 2354 op->klass()->as_register() == G5, "must be");
duke@435 2355 if (UseSlowPath ||
duke@435 2356 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2357 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 2358 __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
duke@435 2359 __ delayed()->nop();
duke@435 2360 } else {
duke@435 2361 __ allocate_array(op->obj()->as_register(),
duke@435 2362 op->len()->as_register(),
duke@435 2363 op->tmp1()->as_register(),
duke@435 2364 op->tmp2()->as_register(),
duke@435 2365 op->tmp3()->as_register(),
duke@435 2366 arrayOopDesc::header_size(op->type()),
kvn@464 2367 type2aelembytes(op->type()),
duke@435 2368 op->klass()->as_register(),
duke@435 2369 *op->stub()->entry());
duke@435 2370 }
duke@435 2371 __ bind(*op->stub()->continuation());
duke@435 2372 }
duke@435 2373
duke@435 2374
duke@435 2375 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2376 LIR_Code code = op->code();
duke@435 2377 if (code == lir_store_check) {
duke@435 2378 Register value = op->object()->as_register();
duke@435 2379 Register array = op->array()->as_register();
duke@435 2380 Register k_RInfo = op->tmp1()->as_register();
duke@435 2381 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2382 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2383
duke@435 2384 __ verify_oop(value);
duke@435 2385
duke@435 2386 CodeStub* stub = op->stub();
duke@435 2387 Label done;
duke@435 2388 __ cmp(value, 0);
duke@435 2389 __ br(Assembler::equal, false, Assembler::pn, done);
duke@435 2390 __ delayed()->nop();
duke@435 2391 load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
duke@435 2392 load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2393
duke@435 2394 // get instance klass
duke@435 2395 load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
jrose@1079 2396 // perform the fast part of the checking logic
jrose@1079 2397 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
jrose@1079 2398
jrose@1079 2399 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2400 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2401 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2402 __ delayed()->nop();
duke@435 2403 __ cmp(G3, 0);
duke@435 2404 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2405 __ delayed()->nop();
duke@435 2406 __ bind(done);
duke@435 2407 } else if (op->code() == lir_checkcast) {
duke@435 2408 // we always need a stub for the failure case.
duke@435 2409 CodeStub* stub = op->stub();
duke@435 2410 Register obj = op->object()->as_register();
duke@435 2411 Register k_RInfo = op->tmp1()->as_register();
duke@435 2412 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2413 Register dst = op->result_opr()->as_register();
duke@435 2414 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2415 ciKlass* k = op->klass();
duke@435 2416
duke@435 2417 if (obj == k_RInfo) {
duke@435 2418 k_RInfo = klass_RInfo;
duke@435 2419 klass_RInfo = obj;
duke@435 2420 }
duke@435 2421 if (op->profiled_method() != NULL) {
duke@435 2422 ciMethod* method = op->profiled_method();
duke@435 2423 int bci = op->profiled_bci();
duke@435 2424
duke@435 2425 // We need two temporaries to perform this operation on SPARC,
duke@435 2426 // so to keep things simple we perform a redundant test here
duke@435 2427 Label profile_done;
duke@435 2428 __ cmp(obj, 0);
duke@435 2429 __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
duke@435 2430 __ delayed()->nop();
duke@435 2431 // Object is null; update methodDataOop
duke@435 2432 ciMethodData* md = method->method_data();
duke@435 2433 if (md == NULL) {
duke@435 2434 bailout("out of memory building methodDataOop");
duke@435 2435 return;
duke@435 2436 }
duke@435 2437 ciProfileData* data = md->bci_to_data(bci);
duke@435 2438 assert(data != NULL, "need data for checkcast");
duke@435 2439 assert(data->is_BitData(), "need BitData for checkcast");
duke@435 2440 Register mdo = k_RInfo;
duke@435 2441 Register data_val = Rtmp1;
duke@435 2442 jobject2reg(md->encoding(), mdo);
duke@435 2443
duke@435 2444 int mdo_offset_bias = 0;
duke@435 2445 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
duke@435 2446 // The offset is large so bias the mdo by the base of the slot so
duke@435 2447 // that the ld can use simm13s to reference the slots of the data
duke@435 2448 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
duke@435 2449 __ set(mdo_offset_bias, data_val);
duke@435 2450 __ add(mdo, data_val, mdo);
duke@435 2451 }
duke@435 2452
duke@435 2453
duke@435 2454 Address flags_addr(mdo, 0, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
duke@435 2455 __ ldub(flags_addr, data_val);
duke@435 2456 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
duke@435 2457 __ stb(data_val, flags_addr);
duke@435 2458 __ bind(profile_done);
duke@435 2459 }
duke@435 2460
duke@435 2461 Label done;
duke@435 2462 // patching may screw with our temporaries on sparc,
duke@435 2463 // so let's do it before loading the class
duke@435 2464 if (k->is_loaded()) {
duke@435 2465 jobject2reg(k->encoding(), k_RInfo);
duke@435 2466 } else {
duke@435 2467 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 2468 }
duke@435 2469 assert(obj != k_RInfo, "must be different");
duke@435 2470 __ cmp(obj, 0);
duke@435 2471 __ br(Assembler::equal, false, Assembler::pn, done);
duke@435 2472 __ delayed()->nop();
duke@435 2473
duke@435 2474 // get object class
duke@435 2475 // not a safepoint as obj null check happens earlier
duke@435 2476 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2477 if (op->fast_check()) {
duke@435 2478 assert_different_registers(klass_RInfo, k_RInfo);
duke@435 2479 __ cmp(k_RInfo, klass_RInfo);
duke@435 2480 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2481 __ delayed()->nop();
duke@435 2482 __ bind(done);
duke@435 2483 } else {
jrose@1079 2484 bool need_slow_path = true;
duke@435 2485 if (k->is_loaded()) {
jrose@1079 2486 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
jrose@1079 2487 need_slow_path = false;
jrose@1079 2488 // perform the fast part of the checking logic
jrose@1079 2489 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
jrose@1079 2490 (need_slow_path ? &done : NULL),
jrose@1079 2491 stub->entry(), NULL,
jrose@1100 2492 RegisterOrConstant(k->super_check_offset()));
duke@435 2493 } else {
jrose@1079 2494 // perform the fast part of the checking logic
jrose@1079 2495 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
jrose@1079 2496 &done, stub->entry(), NULL);
jrose@1079 2497 }
jrose@1079 2498 if (need_slow_path) {
jrose@1079 2499 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2500 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2501 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2502 __ delayed()->nop();
duke@435 2503 __ cmp(G3, 0);
duke@435 2504 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2505 __ delayed()->nop();
duke@435 2506 }
jrose@1079 2507 __ bind(done);
duke@435 2508 }
duke@435 2509 __ mov(obj, dst);
duke@435 2510 } else if (code == lir_instanceof) {
duke@435 2511 Register obj = op->object()->as_register();
duke@435 2512 Register k_RInfo = op->tmp1()->as_register();
duke@435 2513 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2514 Register dst = op->result_opr()->as_register();
duke@435 2515 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2516 ciKlass* k = op->klass();
duke@435 2517
duke@435 2518 Label done;
duke@435 2519 if (obj == k_RInfo) {
duke@435 2520 k_RInfo = klass_RInfo;
duke@435 2521 klass_RInfo = obj;
duke@435 2522 }
duke@435 2523 // patching may screw with our temporaries on sparc,
duke@435 2524 // so let's do it before loading the class
duke@435 2525 if (k->is_loaded()) {
duke@435 2526 jobject2reg(k->encoding(), k_RInfo);
duke@435 2527 } else {
duke@435 2528 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
duke@435 2529 }
duke@435 2530 assert(obj != k_RInfo, "must be different");
duke@435 2531 __ cmp(obj, 0);
duke@435 2532 __ br(Assembler::equal, true, Assembler::pn, done);
duke@435 2533 __ delayed()->set(0, dst);
duke@435 2534
duke@435 2535 // get object class
duke@435 2536 // not a safepoint as obj null check happens earlier
duke@435 2537 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2538 if (op->fast_check()) {
duke@435 2539 __ cmp(k_RInfo, klass_RInfo);
duke@435 2540 __ br(Assembler::equal, true, Assembler::pt, done);
duke@435 2541 __ delayed()->set(1, dst);
duke@435 2542 __ set(0, dst);
duke@435 2543 __ bind(done);
duke@435 2544 } else {
jrose@1079 2545 bool need_slow_path = true;
duke@435 2546 if (k->is_loaded()) {
jrose@1079 2547 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
jrose@1079 2548 need_slow_path = false;
jrose@1079 2549 // perform the fast part of the checking logic
jrose@1079 2550 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
jrose@1079 2551 (need_slow_path ? &done : NULL),
jrose@1079 2552 (need_slow_path ? &done : NULL), NULL,
jrose@1100 2553 RegisterOrConstant(k->super_check_offset()),
jrose@1079 2554 dst);
duke@435 2555 } else {
duke@435 2556 assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
jrose@1079 2557 // perform the fast part of the checking logic
jrose@1079 2558 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
jrose@1079 2559 &done, &done, NULL,
jrose@1100 2560 RegisterOrConstant(-1),
jrose@1079 2561 dst);
jrose@1079 2562 }
jrose@1079 2563 if (need_slow_path) {
jrose@1079 2564 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2565 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2566 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2567 __ delayed()->nop();
duke@435 2568 __ mov(G3, dst);
duke@435 2569 }
jrose@1079 2570 __ bind(done);
duke@435 2571 }
duke@435 2572 } else {
duke@435 2573 ShouldNotReachHere();
duke@435 2574 }
duke@435 2575
duke@435 2576 }
duke@435 2577
duke@435 2578
duke@435 2579 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2580 if (op->code() == lir_cas_long) {
duke@435 2581 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2582 Register addr = op->addr()->as_pointer_register();
duke@435 2583 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2584 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2585 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2586 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2587 Register t1 = op->tmp1()->as_register();
duke@435 2588 Register t2 = op->tmp2()->as_register();
duke@435 2589 #ifdef _LP64
duke@435 2590 __ mov(cmp_value_lo, t1);
duke@435 2591 __ mov(new_value_lo, t2);
duke@435 2592 #else
duke@435 2593 // move high and low halves of long values into single registers
duke@435 2594 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2595 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2596 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2597 __ sllx(new_value_hi, 32, t2);
duke@435 2598 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2599 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2600 #endif
duke@435 2601 // perform the compare and swap operation
duke@435 2602 __ casx(addr, t1, t2);
duke@435 2603 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2604 // overwritten with the original value in "addr" and will be equal to t1.
duke@435 2605 __ cmp(t1, t2);
duke@435 2606
duke@435 2607 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2608 Register addr = op->addr()->as_pointer_register();
duke@435 2609 Register cmp_value = op->cmp_value()->as_register();
duke@435 2610 Register new_value = op->new_value()->as_register();
duke@435 2611 Register t1 = op->tmp1()->as_register();
duke@435 2612 Register t2 = op->tmp2()->as_register();
duke@435 2613 __ mov(cmp_value, t1);
duke@435 2614 __ mov(new_value, t2);
duke@435 2615 #ifdef _LP64
duke@435 2616 if (op->code() == lir_cas_obj) {
duke@435 2617 __ casx(addr, t1, t2);
duke@435 2618 } else
duke@435 2619 #endif
duke@435 2620 {
duke@435 2621 __ cas(addr, t1, t2);
duke@435 2622 }
duke@435 2623 __ cmp(t1, t2);
duke@435 2624 } else {
duke@435 2625 Unimplemented();
duke@435 2626 }
duke@435 2627 }
duke@435 2628
duke@435 2629 void LIR_Assembler::set_24bit_FPU() {
duke@435 2630 Unimplemented();
duke@435 2631 }
duke@435 2632
duke@435 2633
duke@435 2634 void LIR_Assembler::reset_FPU() {
duke@435 2635 Unimplemented();
duke@435 2636 }
duke@435 2637
duke@435 2638
duke@435 2639 void LIR_Assembler::breakpoint() {
duke@435 2640 __ breakpoint_trap();
duke@435 2641 }
duke@435 2642
duke@435 2643
duke@435 2644 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2645 Unimplemented();
duke@435 2646 }
duke@435 2647
duke@435 2648
duke@435 2649 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2650 Unimplemented();
duke@435 2651 }
duke@435 2652
duke@435 2653
duke@435 2654 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2655 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2656 Register dst = dst_opr->as_register();
duke@435 2657 Register reg = mon_addr.base();
duke@435 2658 int offset = mon_addr.disp();
duke@435 2659 // compute pointer to BasicLock
duke@435 2660 if (mon_addr.is_simm13()) {
duke@435 2661 __ add(reg, offset, dst);
duke@435 2662 } else {
duke@435 2663 __ set(offset, dst);
duke@435 2664 __ add(dst, reg, dst);
duke@435 2665 }
duke@435 2666 }
duke@435 2667
duke@435 2668
duke@435 2669 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2670 Register obj = op->obj_opr()->as_register();
duke@435 2671 Register hdr = op->hdr_opr()->as_register();
duke@435 2672 Register lock = op->lock_opr()->as_register();
duke@435 2673
duke@435 2674 // obj may not be an oop
duke@435 2675 if (op->code() == lir_lock) {
duke@435 2676 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2677 if (UseFastLocking) {
duke@435 2678 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2679 // add debug info for NullPointerException only if one is possible
duke@435 2680 if (op->info() != NULL) {
duke@435 2681 add_debug_info_for_null_check_here(op->info());
duke@435 2682 }
duke@435 2683 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2684 } else {
duke@435 2685 // always do slow locking
duke@435 2686 // note: the slow locking code could be inlined here, however if we use
duke@435 2687 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2688 // simpler and requires less duplicated code - additionally, the
duke@435 2689 // slow locking code is the same in either case which simplifies
duke@435 2690 // debugging
duke@435 2691 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2692 __ delayed()->nop();
duke@435 2693 }
duke@435 2694 } else {
duke@435 2695 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2696 if (UseFastLocking) {
duke@435 2697 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2698 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2699 } else {
duke@435 2700 // always do slow unlocking
duke@435 2701 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2702 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2703 // simpler and requires less duplicated code - additionally, the
duke@435 2704 // slow unlocking code is the same in either case which simplifies
duke@435 2705 // debugging
duke@435 2706 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2707 __ delayed()->nop();
duke@435 2708 }
duke@435 2709 }
duke@435 2710 __ bind(*op->stub()->continuation());
duke@435 2711 }
duke@435 2712
duke@435 2713
duke@435 2714 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2715 ciMethod* method = op->profiled_method();
duke@435 2716 int bci = op->profiled_bci();
duke@435 2717
duke@435 2718 // Update counter for all call types
duke@435 2719 ciMethodData* md = method->method_data();
duke@435 2720 if (md == NULL) {
duke@435 2721 bailout("out of memory building methodDataOop");
duke@435 2722 return;
duke@435 2723 }
duke@435 2724 ciProfileData* data = md->bci_to_data(bci);
duke@435 2725 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2726 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 2727 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2728 Register mdo = op->mdo()->as_register();
duke@435 2729 Register tmp1 = op->tmp1()->as_register();
duke@435 2730 jobject2reg(md->encoding(), mdo);
duke@435 2731 int mdo_offset_bias = 0;
duke@435 2732 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2733 data->size_in_bytes())) {
duke@435 2734 // The offset is large so bias the mdo by the base of the slot so
duke@435 2735 // that the ld can use simm13s to reference the slots of the data
duke@435 2736 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2737 __ set(mdo_offset_bias, O7);
duke@435 2738 __ add(mdo, O7, mdo);
duke@435 2739 }
duke@435 2740
duke@435 2741 Address counter_addr(mdo, 0, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2742 __ lduw(counter_addr, tmp1);
duke@435 2743 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2744 __ stw(tmp1, counter_addr);
duke@435 2745 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2746 // Perform additional virtual call profiling for invokevirtual and
duke@435 2747 // invokeinterface bytecodes
duke@435 2748 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
duke@435 2749 Tier1ProfileVirtualCalls) {
duke@435 2750 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2751 Register recv = op->recv()->as_register();
duke@435 2752 assert_different_registers(mdo, tmp1, recv);
duke@435 2753 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2754 ciKlass* known_klass = op->known_holder();
duke@435 2755 if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2756 // We know the type that will be seen at this call site; we can
duke@435 2757 // statically update the methodDataOop rather than needing to do
duke@435 2758 // dynamic tests on the receiver type
duke@435 2759
duke@435 2760 // NOTE: we should probably put a lock around this search to
duke@435 2761 // avoid collisions by concurrent compilations
duke@435 2762 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2763 uint i;
duke@435 2764 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2765 ciKlass* receiver = vc_data->receiver(i);
duke@435 2766 if (known_klass->equals(receiver)) {
duke@435 2767 Address data_addr(mdo, 0, md->byte_offset_of_slot(data,
duke@435 2768 VirtualCallData::receiver_count_offset(i)) -
duke@435 2769 mdo_offset_bias);
duke@435 2770 __ lduw(data_addr, tmp1);
duke@435 2771 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2772 __ stw(tmp1, data_addr);
duke@435 2773 return;
duke@435 2774 }
duke@435 2775 }
duke@435 2776
duke@435 2777 // Receiver type not found in profile data; select an empty slot
duke@435 2778
duke@435 2779 // Note that this is less efficient than it should be because it
duke@435 2780 // always does a write to the receiver part of the
duke@435 2781 // VirtualCallData rather than just the first time
duke@435 2782 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2783 ciKlass* receiver = vc_data->receiver(i);
duke@435 2784 if (receiver == NULL) {
duke@435 2785 Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2786 mdo_offset_bias);
duke@435 2787 jobject2reg(known_klass->encoding(), tmp1);
duke@435 2788 __ st_ptr(tmp1, recv_addr);
duke@435 2789 Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2790 mdo_offset_bias);
duke@435 2791 __ lduw(data_addr, tmp1);
duke@435 2792 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2793 __ stw(tmp1, data_addr);
duke@435 2794 return;
duke@435 2795 }
duke@435 2796 }
duke@435 2797 } else {
duke@435 2798 load(Address(recv, 0, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
duke@435 2799 Label update_done;
duke@435 2800 uint i;
duke@435 2801 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2802 Label next_test;
duke@435 2803 // See if the receiver is receiver[n].
duke@435 2804 Address receiver_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2805 mdo_offset_bias);
duke@435 2806 __ ld_ptr(receiver_addr, tmp1);
duke@435 2807 __ verify_oop(tmp1);
duke@435 2808 __ cmp(recv, tmp1);
duke@435 2809 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
duke@435 2810 __ delayed()->nop();
duke@435 2811 Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2812 mdo_offset_bias);
duke@435 2813 __ lduw(data_addr, tmp1);
duke@435 2814 __ add(tmp1, DataLayout::counter_increment, tmp1);
duke@435 2815 __ stw(tmp1, data_addr);
duke@435 2816 __ br(Assembler::always, false, Assembler::pt, update_done);
duke@435 2817 __ delayed()->nop();
duke@435 2818 __ bind(next_test);
duke@435 2819 }
duke@435 2820
duke@435 2821 // Didn't find receiver; find next empty slot and fill it in
duke@435 2822 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2823 Label next_test;
duke@435 2824 Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2825 mdo_offset_bias);
duke@435 2826 load(recv_addr, tmp1, T_OBJECT);
duke@435 2827 __ tst(tmp1);
duke@435 2828 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
duke@435 2829 __ delayed()->nop();
duke@435 2830 __ st_ptr(recv, recv_addr);
duke@435 2831 __ set(DataLayout::counter_increment, tmp1);
duke@435 2832 __ st_ptr(tmp1, Address(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2833 mdo_offset_bias));
duke@435 2834 if (i < (VirtualCallData::row_limit() - 1)) {
duke@435 2835 __ br(Assembler::always, false, Assembler::pt, update_done);
duke@435 2836 __ delayed()->nop();
duke@435 2837 }
duke@435 2838 __ bind(next_test);
duke@435 2839 }
duke@435 2840
duke@435 2841 __ bind(update_done);
duke@435 2842 }
duke@435 2843 }
duke@435 2844 }
duke@435 2845
duke@435 2846
duke@435 2847 void LIR_Assembler::align_backward_branch_target() {
duke@435 2848 __ align(16);
duke@435 2849 }
duke@435 2850
duke@435 2851
duke@435 2852 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 2853 // make sure we are expecting a delay
duke@435 2854 // this has the side effect of clearing the delay state
duke@435 2855 // so we can use _masm instead of _masm->delayed() to do the
duke@435 2856 // code generation.
duke@435 2857 __ delayed();
duke@435 2858
duke@435 2859 // make sure we only emit one instruction
duke@435 2860 int offset = code_offset();
duke@435 2861 op->delay_op()->emit_code(this);
duke@435 2862 #ifdef ASSERT
duke@435 2863 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 2864 op->delay_op()->print();
duke@435 2865 }
duke@435 2866 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 2867 "only one instruction can go in a delay slot");
duke@435 2868 #endif
duke@435 2869
duke@435 2870 // we may also be emitting the call info for the instruction
duke@435 2871 // which we are the delay slot of.
duke@435 2872 CodeEmitInfo * call_info = op->call_info();
duke@435 2873 if (call_info) {
duke@435 2874 add_call_info(code_offset(), call_info);
duke@435 2875 }
duke@435 2876
duke@435 2877 if (VerifyStackAtCalls) {
duke@435 2878 _masm->sub(FP, SP, O7);
duke@435 2879 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 2880 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 2881 }
duke@435 2882 }
duke@435 2883
duke@435 2884
duke@435 2885 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 2886 assert(left->is_register(), "can only handle registers");
duke@435 2887
duke@435 2888 if (left->is_single_cpu()) {
duke@435 2889 __ neg(left->as_register(), dest->as_register());
duke@435 2890 } else if (left->is_single_fpu()) {
duke@435 2891 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 2892 } else if (left->is_double_fpu()) {
duke@435 2893 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 2894 } else {
duke@435 2895 assert (left->is_double_cpu(), "Must be a long");
duke@435 2896 Register Rlow = left->as_register_lo();
duke@435 2897 Register Rhi = left->as_register_hi();
duke@435 2898 #ifdef _LP64
duke@435 2899 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 2900 #else
duke@435 2901 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 2902 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 2903 #endif
duke@435 2904 }
duke@435 2905 }
duke@435 2906
duke@435 2907
duke@435 2908 void LIR_Assembler::fxch(int i) {
duke@435 2909 Unimplemented();
duke@435 2910 }
duke@435 2911
duke@435 2912 void LIR_Assembler::fld(int i) {
duke@435 2913 Unimplemented();
duke@435 2914 }
duke@435 2915
duke@435 2916 void LIR_Assembler::ffree(int i) {
duke@435 2917 Unimplemented();
duke@435 2918 }
duke@435 2919
duke@435 2920 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 2921 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 2922
duke@435 2923 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 2924 if (tmp->is_valid()) {
duke@435 2925 __ save_thread(tmp->as_register());
duke@435 2926 }
duke@435 2927 __ call(dest, relocInfo::runtime_call_type);
duke@435 2928 __ delayed()->nop();
duke@435 2929 if (info != NULL) {
duke@435 2930 add_call_info_here(info);
duke@435 2931 }
duke@435 2932 if (tmp->is_valid()) {
duke@435 2933 __ restore_thread(tmp->as_register());
duke@435 2934 }
duke@435 2935
duke@435 2936 #ifdef ASSERT
duke@435 2937 __ verify_thread();
duke@435 2938 #endif // ASSERT
duke@435 2939 }
duke@435 2940
duke@435 2941
duke@435 2942 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 2943 #ifdef _LP64
duke@435 2944 ShouldNotReachHere();
duke@435 2945 #endif
duke@435 2946
duke@435 2947 NEEDS_CLEANUP;
duke@435 2948 if (type == T_LONG) {
duke@435 2949 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 2950
duke@435 2951 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 2952 Register idx = noreg; // contains either constant offset or index
duke@435 2953
duke@435 2954 int disp = mem_addr->disp();
duke@435 2955 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 2956 if (!Assembler::is_simm13(disp)) {
duke@435 2957 idx = O7;
duke@435 2958 __ set(disp, idx);
duke@435 2959 }
duke@435 2960 } else {
duke@435 2961 assert(disp == 0, "not both indexed and disp");
duke@435 2962 idx = mem_addr->index()->as_register();
duke@435 2963 }
duke@435 2964
duke@435 2965 int null_check_offset = -1;
duke@435 2966
duke@435 2967 Register base = mem_addr->base()->as_register();
duke@435 2968 if (src->is_register() && dest->is_address()) {
duke@435 2969 // G4 is high half, G5 is low half
duke@435 2970 if (VM_Version::v9_instructions_work()) {
duke@435 2971 // clear the top bits of G5, and scale up G4
duke@435 2972 __ srl (src->as_register_lo(), 0, G5);
duke@435 2973 __ sllx(src->as_register_hi(), 32, G4);
duke@435 2974 // combine the two halves into the 64 bits of G4
duke@435 2975 __ or3(G4, G5, G4);
duke@435 2976 null_check_offset = __ offset();
duke@435 2977 if (idx == noreg) {
duke@435 2978 __ stx(G4, base, disp);
duke@435 2979 } else {
duke@435 2980 __ stx(G4, base, idx);
duke@435 2981 }
duke@435 2982 } else {
duke@435 2983 __ mov (src->as_register_hi(), G4);
duke@435 2984 __ mov (src->as_register_lo(), G5);
duke@435 2985 null_check_offset = __ offset();
duke@435 2986 if (idx == noreg) {
duke@435 2987 __ std(G4, base, disp);
duke@435 2988 } else {
duke@435 2989 __ std(G4, base, idx);
duke@435 2990 }
duke@435 2991 }
duke@435 2992 } else if (src->is_address() && dest->is_register()) {
duke@435 2993 null_check_offset = __ offset();
duke@435 2994 if (VM_Version::v9_instructions_work()) {
duke@435 2995 if (idx == noreg) {
duke@435 2996 __ ldx(base, disp, G5);
duke@435 2997 } else {
duke@435 2998 __ ldx(base, idx, G5);
duke@435 2999 }
duke@435 3000 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3001 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3002 } else {
duke@435 3003 if (idx == noreg) {
duke@435 3004 __ ldd(base, disp, G4);
duke@435 3005 } else {
duke@435 3006 __ ldd(base, idx, G4);
duke@435 3007 }
duke@435 3008 // G4 is high half, G5 is low half
duke@435 3009 __ mov (G4, dest->as_register_hi());
duke@435 3010 __ mov (G5, dest->as_register_lo());
duke@435 3011 }
duke@435 3012 } else {
duke@435 3013 Unimplemented();
duke@435 3014 }
duke@435 3015 if (info != NULL) {
duke@435 3016 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3017 }
duke@435 3018
duke@435 3019 } else {
duke@435 3020 // use normal move for all other volatiles since they don't need
duke@435 3021 // special handling to remain atomic.
duke@435 3022 move_op(src, dest, type, lir_patch_none, info, false, false);
duke@435 3023 }
duke@435 3024 }
duke@435 3025
duke@435 3026 void LIR_Assembler::membar() {
duke@435 3027 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3028 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3029 }
duke@435 3030
duke@435 3031 void LIR_Assembler::membar_acquire() {
duke@435 3032 // no-op on TSO
duke@435 3033 }
duke@435 3034
duke@435 3035 void LIR_Assembler::membar_release() {
duke@435 3036 // no-op on TSO
duke@435 3037 }
duke@435 3038
duke@435 3039 // Macro to Pack two sequential registers containing 32 bit values
duke@435 3040 // into a single 64 bit register.
duke@435 3041 // rs and rs->successor() are packed into rd
duke@435 3042 // rd and rs may be the same register.
duke@435 3043 // Note: rs and rs->successor() are destroyed.
duke@435 3044 void LIR_Assembler::pack64( Register rs, Register rd ) {
duke@435 3045 __ sllx(rs, 32, rs);
duke@435 3046 __ srl(rs->successor(), 0, rs->successor());
duke@435 3047 __ or3(rs, rs->successor(), rd);
duke@435 3048 }
duke@435 3049
duke@435 3050 // Macro to unpack a 64 bit value in a register into
duke@435 3051 // two sequential registers.
duke@435 3052 // rd is unpacked into rd and rd->successor()
duke@435 3053 void LIR_Assembler::unpack64( Register rd ) {
duke@435 3054 __ mov(rd, rd->successor());
duke@435 3055 __ srax(rd, 32, rd);
duke@435 3056 __ sra(rd->successor(), 0, rd->successor());
duke@435 3057 }
duke@435 3058
duke@435 3059
duke@435 3060 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3061 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3062 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
duke@435 3063 __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
duke@435 3064 }
duke@435 3065
duke@435 3066
duke@435 3067 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3068 assert(result_reg->is_register(), "check");
duke@435 3069 __ mov(G2_thread, result_reg->as_register());
duke@435 3070 }
duke@435 3071
duke@435 3072
duke@435 3073 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3074 LIR_OpList* inst = lir->instructions_list();
duke@435 3075 for (int i = 0; i < inst->length(); i++) {
duke@435 3076 LIR_Op* op = inst->at(i);
duke@435 3077 switch (op->code()) {
duke@435 3078 case lir_cond_float_branch:
duke@435 3079 case lir_branch: {
duke@435 3080 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3081 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3082 LIR_Op* delay_op = NULL;
duke@435 3083 // we'd like to be able to pull following instructions into
duke@435 3084 // this slot but we don't know enough to do it safely yet so
duke@435 3085 // only optimize block to block control flow.
duke@435 3086 if (LIRFillDelaySlots && branch->block()) {
duke@435 3087 LIR_Op* prev = inst->at(i - 1);
duke@435 3088 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3089 // swap previous instruction into delay slot
duke@435 3090 inst->at_put(i - 1, op);
duke@435 3091 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3092 #ifndef PRODUCT
duke@435 3093 if (LIRTracePeephole) {
duke@435 3094 tty->print_cr("delayed");
duke@435 3095 inst->at(i - 1)->print();
duke@435 3096 inst->at(i)->print();
duke@435 3097 }
duke@435 3098 #endif
duke@435 3099 continue;
duke@435 3100 }
duke@435 3101 }
duke@435 3102
duke@435 3103 if (!delay_op) {
duke@435 3104 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3105 }
duke@435 3106 inst->insert_before(i + 1, delay_op);
duke@435 3107 break;
duke@435 3108 }
duke@435 3109 case lir_static_call:
duke@435 3110 case lir_virtual_call:
duke@435 3111 case lir_icvirtual_call:
duke@435 3112 case lir_optvirtual_call: {
duke@435 3113 LIR_Op* delay_op = NULL;
duke@435 3114 LIR_Op* prev = inst->at(i - 1);
duke@435 3115 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3116 (op->code() != lir_virtual_call ||
duke@435 3117 !prev->result_opr()->is_single_cpu() ||
duke@435 3118 prev->result_opr()->as_register() != O0) &&
duke@435 3119 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3120 // Only moves without info can be put into the delay slot.
duke@435 3121 // Also don't allow the setup of the receiver in the delay
duke@435 3122 // slot for vtable calls.
duke@435 3123 inst->at_put(i - 1, op);
duke@435 3124 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3125 #ifndef PRODUCT
duke@435 3126 if (LIRTracePeephole) {
duke@435 3127 tty->print_cr("delayed");
duke@435 3128 inst->at(i - 1)->print();
duke@435 3129 inst->at(i)->print();
duke@435 3130 }
duke@435 3131 #endif
duke@435 3132 continue;
duke@435 3133 }
duke@435 3134
duke@435 3135 if (!delay_op) {
duke@435 3136 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
duke@435 3137 inst->insert_before(i + 1, delay_op);
duke@435 3138 }
duke@435 3139 break;
duke@435 3140 }
duke@435 3141 }
duke@435 3142 }
duke@435 3143 }
duke@435 3144
duke@435 3145
duke@435 3146
duke@435 3147
duke@435 3148 #undef __

mercurial