src/share/vm/utilities/globalDefinitions.hpp

Tue, 05 Apr 2011 14:12:31 -0700

author
trims
date
Tue, 05 Apr 2011 14:12:31 -0700
changeset 2708
1d1603768966
parent 2643
1216415d8e35
child 2729
e863062e521d
permissions
-rw-r--r--

7010070: Update all 2010 Oracle-changed OpenJDK files to have the proper copyright dates - second pass
Summary: Update the copyright to be 2010 on all changed files in OpenJDK
Reviewed-by: ohair

duke@435 1 /*
tonyp@2472 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
stefank@2314 28 #ifdef TARGET_COMPILER_gcc
stefank@2314 29 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 30 #endif
stefank@2314 31 #ifdef TARGET_COMPILER_visCPP
stefank@2314 32 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 35 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 36 #endif
stefank@2314 37
stefank@2314 38 #include "utilities/macros.hpp"
stefank@2314 39
duke@435 40 // This file holds all globally used constants & types, class (forward)
duke@435 41 // declarations and a few frequently used utility functions.
duke@435 42
duke@435 43 //----------------------------------------------------------------------------------------------------
duke@435 44 // Constants
duke@435 45
duke@435 46 const int LogBytesPerShort = 1;
duke@435 47 const int LogBytesPerInt = 2;
duke@435 48 #ifdef _LP64
duke@435 49 const int LogBytesPerWord = 3;
duke@435 50 #else
duke@435 51 const int LogBytesPerWord = 2;
duke@435 52 #endif
duke@435 53 const int LogBytesPerLong = 3;
duke@435 54
duke@435 55 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 56 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 57 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 58 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 59
duke@435 60 const int LogBitsPerByte = 3;
duke@435 61 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 62 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 63 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 64 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 65
duke@435 66 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 67 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 68 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 69 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 70 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 71
duke@435 72 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 73 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 74
duke@435 75 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 76
coleenp@548 77 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 78 extern int heapOopSize; // Oop within a java object
duke@435 79 const int wordSize = sizeof(char*);
duke@435 80 const int longSize = sizeof(jlong);
duke@435 81 const int jintSize = sizeof(jint);
duke@435 82 const int size_tSize = sizeof(size_t);
duke@435 83
coleenp@548 84 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 85
coleenp@548 86 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 87 extern int LogBitsPerHeapOop;
coleenp@548 88 extern int BytesPerHeapOop;
coleenp@548 89 extern int BitsPerHeapOop;
duke@435 90
kvn@1926 91 // Oop encoding heap max
kvn@1926 92 extern uint64_t OopEncodingHeapMax;
kvn@1926 93
duke@435 94 const int BitsPerJavaInteger = 32;
twisti@994 95 const int BitsPerJavaLong = 64;
duke@435 96 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 97
coleenp@548 98 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 99 const int jintAsStringSize = 12;
coleenp@548 100
duke@435 101 // In fact this should be
duke@435 102 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 103 // see os::set_memory_serialize_page()
duke@435 104 #ifdef _LP64
duke@435 105 const int SerializePageShiftCount = 4;
duke@435 106 #else
duke@435 107 const int SerializePageShiftCount = 3;
duke@435 108 #endif
duke@435 109
duke@435 110 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 111 // pointer into the heap. We require that object sizes be measured in
duke@435 112 // units of heap words, so that that
duke@435 113 // HeapWord* hw;
duke@435 114 // hw += oop(hw)->foo();
duke@435 115 // works, where foo is a method (like size or scavenge) that returns the
duke@435 116 // object size.
duke@435 117 class HeapWord {
duke@435 118 friend class VMStructs;
jmasa@698 119 private:
duke@435 120 char* i;
jmasa@796 121 #ifndef PRODUCT
jmasa@698 122 public:
jmasa@698 123 char* value() { return i; }
jmasa@698 124 #endif
duke@435 125 };
duke@435 126
duke@435 127 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 128 const int HeapWordSize = sizeof(HeapWord);
duke@435 129 #ifdef _LP64
coleenp@548 130 const int LogHeapWordSize = 3;
duke@435 131 #else
coleenp@548 132 const int LogHeapWordSize = 2;
duke@435 133 #endif
coleenp@548 134 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 135 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 136
duke@435 137 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 138 // for the same application running in 64bit. See bug 4967770.
duke@435 139 // The minimum alignment to a heap word size is done. Other
duke@435 140 // parts of the memory system may required additional alignment
duke@435 141 // and are responsible for those alignments.
duke@435 142 #ifdef _LP64
duke@435 143 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 144 #else
duke@435 145 #define ScaleForWordSize(x) (x)
duke@435 146 #endif
duke@435 147
duke@435 148 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 149 // bytes.
duke@435 150 inline size_t heap_word_size(size_t byte_size) {
duke@435 151 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 const size_t K = 1024;
duke@435 156 const size_t M = K*K;
duke@435 157 const size_t G = M*K;
duke@435 158 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 159
iveresov@1696 160 const size_t LOG_K = 10;
iveresov@1696 161 const size_t LOG_M = 2 * LOG_K;
iveresov@1696 162 const size_t LOG_G = 2 * LOG_M;
iveresov@1696 163
duke@435 164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 165 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 166
duke@435 167 // Constants for converting from a base unit to milli-base units. For
duke@435 168 // example from seconds to milliseconds and microseconds
duke@435 169
duke@435 170 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 171 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 172 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 173
duke@435 174 inline const char* proper_unit_for_byte_size(size_t s) {
duke@435 175 if (s >= 10*M) {
duke@435 176 return "M";
duke@435 177 } else if (s >= 10*K) {
duke@435 178 return "K";
duke@435 179 } else {
duke@435 180 return "B";
duke@435 181 }
duke@435 182 }
duke@435 183
duke@435 184 inline size_t byte_size_in_proper_unit(size_t s) {
duke@435 185 if (s >= 10*M) {
duke@435 186 return s/M;
duke@435 187 } else if (s >= 10*K) {
duke@435 188 return s/K;
duke@435 189 } else {
duke@435 190 return s;
duke@435 191 }
duke@435 192 }
duke@435 193
duke@435 194
duke@435 195 //----------------------------------------------------------------------------------------------------
duke@435 196 // VM type definitions
duke@435 197
duke@435 198 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 199 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 200
duke@435 201 typedef intptr_t intx;
duke@435 202 typedef uintptr_t uintx;
duke@435 203
duke@435 204 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 205 const intx max_intx = (uintx)min_intx - 1;
duke@435 206 const uintx max_uintx = (uintx)-1;
duke@435 207
duke@435 208 // Table of values:
duke@435 209 // sizeof intx 4 8
duke@435 210 // min_intx 0x80000000 0x8000000000000000
duke@435 211 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 212 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 213
duke@435 214 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 215
duke@435 216
duke@435 217 //----------------------------------------------------------------------------------------------------
duke@435 218 // Java type definitions
duke@435 219
duke@435 220 // All kinds of 'plain' byte addresses
duke@435 221 typedef signed char s_char;
duke@435 222 typedef unsigned char u_char;
duke@435 223 typedef u_char* address;
duke@435 224 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 225 // except for some implementations of a C++
duke@435 226 // linkage pointer to function. Should never
duke@435 227 // need one of those to be placed in this
duke@435 228 // type anyway.
duke@435 229
duke@435 230 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 231 // Where portable means keep ANSI C++ compilers quiet
duke@435 232
duke@435 233 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 234 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 235
duke@435 236 // Utility functions to "portably" make cast to/from function pointers.
duke@435 237
duke@435 238 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 239 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 240 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 241
duke@435 242 // Pointer subtraction.
duke@435 243 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 244 // the range we might need to find differences from one end of the heap
duke@435 245 // to the other.
duke@435 246 // A typical use might be:
duke@435 247 // if (pointer_delta(end(), top()) >= size) {
duke@435 248 // // enough room for an object of size
duke@435 249 // ...
duke@435 250 // and then additions like
duke@435 251 // ... top() + size ...
duke@435 252 // are safe because we know that top() is at least size below end().
duke@435 253 inline size_t pointer_delta(const void* left,
duke@435 254 const void* right,
duke@435 255 size_t element_size) {
duke@435 256 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 257 }
duke@435 258 // A version specialized for HeapWord*'s.
duke@435 259 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 260 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 261 }
duke@435 262
duke@435 263 //
duke@435 264 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 265 // directly without at best a warning. This macro accomplishes it silently
duke@435 266 // In every case that is present at this point the value be cast is a pointer
duke@435 267 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 268 // that linkage and a picky compiler would not complain. In other cases because
duke@435 269 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 270 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 271 // picky enough to catch these instances (which are few). It is possible that
duke@435 272 // using templates could fix these for all cases. This use of templates is likely
duke@435 273 // so far from the middle of the road that it is likely to be problematic in
duke@435 274 // many C++ compilers.
duke@435 275 //
duke@435 276 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 277 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 278
duke@435 279 // Unsigned byte types for os and stream.hpp
duke@435 280
duke@435 281 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 282 // the .class file format. See JVM book chapter 4.
duke@435 283
duke@435 284 typedef jubyte u1;
duke@435 285 typedef jushort u2;
duke@435 286 typedef juint u4;
duke@435 287 typedef julong u8;
duke@435 288
duke@435 289 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 290 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 291 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 292 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 293
duke@435 294 //----------------------------------------------------------------------------------------------------
duke@435 295 // JVM spec restrictions
duke@435 296
duke@435 297 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 298
duke@435 299
duke@435 300 //----------------------------------------------------------------------------------------------------
duke@435 301 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 302 //
duke@435 303 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 304
duke@435 305 #define HOTSWAP
duke@435 306
duke@435 307 //----------------------------------------------------------------------------------------------------
duke@435 308 // Object alignment, in units of HeapWords.
duke@435 309 //
duke@435 310 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 311 // reference fields can be naturally aligned.
duke@435 312
kvn@1926 313 extern int MinObjAlignment;
kvn@1926 314 extern int MinObjAlignmentInBytes;
kvn@1926 315 extern int MinObjAlignmentInBytesMask;
duke@435 316
kvn@1926 317 extern int LogMinObjAlignment;
kvn@1926 318 extern int LogMinObjAlignmentInBytes;
coleenp@548 319
duke@435 320 // Machine dependent stuff
duke@435 321
stefank@2314 322 #ifdef TARGET_ARCH_x86
stefank@2314 323 # include "globalDefinitions_x86.hpp"
stefank@2314 324 #endif
stefank@2314 325 #ifdef TARGET_ARCH_sparc
stefank@2314 326 # include "globalDefinitions_sparc.hpp"
stefank@2314 327 #endif
stefank@2314 328 #ifdef TARGET_ARCH_zero
stefank@2314 329 # include "globalDefinitions_zero.hpp"
stefank@2314 330 #endif
bobv@2508 331 #ifdef TARGET_ARCH_arm
bobv@2508 332 # include "globalDefinitions_arm.hpp"
bobv@2508 333 #endif
bobv@2508 334 #ifdef TARGET_ARCH_ppc
bobv@2508 335 # include "globalDefinitions_ppc.hpp"
bobv@2508 336 #endif
stefank@2314 337
duke@435 338
duke@435 339 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 340 // Note: this value must be a power of 2
duke@435 341
duke@435 342 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 343
duke@435 344 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 345 // for use in places like enum definitions that require compile-time constant
duke@435 346 // expressions and a function for all other places so as to get type checking.
duke@435 347
duke@435 348 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 349
duke@435 350 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 351 return align_size_up_(size, alignment);
duke@435 352 }
duke@435 353
duke@435 354 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 355
duke@435 356 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 357 return align_size_down_(size, alignment);
duke@435 358 }
duke@435 359
duke@435 360 // Align objects by rounding up their size, in HeapWord units.
duke@435 361
duke@435 362 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 363
duke@435 364 inline intptr_t align_object_size(intptr_t size) {
duke@435 365 return align_size_up(size, MinObjAlignment);
duke@435 366 }
duke@435 367
kvn@1926 368 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 369 return addr == align_object_size(addr);
kvn@1926 370 }
kvn@1926 371
duke@435 372 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 373
duke@435 374 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 375 return align_size_up(offset, HeapWordsPerLong);
duke@435 376 }
duke@435 377
jcoomes@2020 378 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 379 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 380
jcoomes@2020 381 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
jcoomes@2020 382 // expected cache line size (a power of two). The first addend avoids sharing
jcoomes@2020 383 // when the start address is not a multiple of alignment; the second maintains
jcoomes@2020 384 // alignment of starting addresses that happen to be a multiple.
jcoomes@2020 385 #define PADDING_SIZE(type, alignment) \
jcoomes@2020 386 ((alignment) + align_size_up_(sizeof(type), alignment))
jcoomes@2020 387
jcoomes@2020 388 // Templates to create a subclass padded to avoid cache line sharing. These are
jcoomes@2020 389 // effective only when applied to derived-most (leaf) classes.
jcoomes@2020 390
jcoomes@2020 391 // When no args are passed to the base ctor.
jcoomes@2020 392 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 393 class Padded: public T {
jcoomes@2020 394 private:
jcoomes@2020 395 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 396 };
jcoomes@2020 397
jcoomes@2020 398 // When either 0 or 1 args may be passed to the base ctor.
jcoomes@2020 399 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 400 class Padded01: public T {
jcoomes@2020 401 public:
jcoomes@2020 402 Padded01(): T() { }
jcoomes@2020 403 Padded01(Arg1T arg1): T(arg1) { }
jcoomes@2020 404 private:
jcoomes@2020 405 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 406 };
duke@435 407
duke@435 408 //----------------------------------------------------------------------------------------------------
duke@435 409 // Utility macros for compilers
duke@435 410 // used to silence compiler warnings
duke@435 411
duke@435 412 #define Unused_Variable(var) var
duke@435 413
duke@435 414
duke@435 415 //----------------------------------------------------------------------------------------------------
duke@435 416 // Miscellaneous
duke@435 417
duke@435 418 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 419 // All fabs() callers should call this function instead, which will implicitly
duke@435 420 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 421 // doesn't exist in early versions of Solaris 8.
duke@435 422 inline double fabsd(double value) {
duke@435 423 return fabs(value);
duke@435 424 }
duke@435 425
duke@435 426 inline jint low (jlong value) { return jint(value); }
duke@435 427 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 428
duke@435 429 // the fancy casts are a hopefully portable way
duke@435 430 // to do unsigned 32 to 64 bit type conversion
duke@435 431 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 432 *value |= (jlong)(julong)(juint)low; }
duke@435 433
duke@435 434 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 435 *value |= (jlong)high << 32; }
duke@435 436
duke@435 437 inline jlong jlong_from(jint h, jint l) {
duke@435 438 jlong result = 0; // initialization to avoid warning
duke@435 439 set_high(&result, h);
duke@435 440 set_low(&result, l);
duke@435 441 return result;
duke@435 442 }
duke@435 443
duke@435 444 union jlong_accessor {
duke@435 445 jint words[2];
duke@435 446 jlong long_value;
duke@435 447 };
duke@435 448
coleenp@548 449 void basic_types_init(); // cannot define here; uses assert
duke@435 450
duke@435 451
duke@435 452 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 453 enum BasicType {
duke@435 454 T_BOOLEAN = 4,
duke@435 455 T_CHAR = 5,
duke@435 456 T_FLOAT = 6,
duke@435 457 T_DOUBLE = 7,
duke@435 458 T_BYTE = 8,
duke@435 459 T_SHORT = 9,
duke@435 460 T_INT = 10,
duke@435 461 T_LONG = 11,
duke@435 462 T_OBJECT = 12,
duke@435 463 T_ARRAY = 13,
duke@435 464 T_VOID = 14,
duke@435 465 T_ADDRESS = 15,
coleenp@548 466 T_NARROWOOP= 16,
coleenp@548 467 T_CONFLICT = 17, // for stack value type with conflicting contents
duke@435 468 T_ILLEGAL = 99
duke@435 469 };
duke@435 470
kvn@464 471 inline bool is_java_primitive(BasicType t) {
kvn@464 472 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 473 }
kvn@464 474
jrose@1145 475 inline bool is_subword_type(BasicType t) {
jrose@1145 476 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 477 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 478 }
jrose@1145 479
jrose@1145 480 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 481 return (t == T_BYTE || t == T_SHORT);
jrose@1145 482 }
jrose@1145 483
duke@435 484 // Convert a char from a classfile signature to a BasicType
duke@435 485 inline BasicType char2type(char c) {
duke@435 486 switch( c ) {
duke@435 487 case 'B': return T_BYTE;
duke@435 488 case 'C': return T_CHAR;
duke@435 489 case 'D': return T_DOUBLE;
duke@435 490 case 'F': return T_FLOAT;
duke@435 491 case 'I': return T_INT;
duke@435 492 case 'J': return T_LONG;
duke@435 493 case 'S': return T_SHORT;
duke@435 494 case 'Z': return T_BOOLEAN;
duke@435 495 case 'V': return T_VOID;
duke@435 496 case 'L': return T_OBJECT;
duke@435 497 case '[': return T_ARRAY;
duke@435 498 }
duke@435 499 return T_ILLEGAL;
duke@435 500 }
duke@435 501
duke@435 502 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 503 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 504 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 505 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 506 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 507 extern BasicType name2type(const char* name);
duke@435 508
duke@435 509 // Auxilary math routines
duke@435 510 // least common multiple
duke@435 511 extern size_t lcm(size_t a, size_t b);
duke@435 512
duke@435 513
duke@435 514 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 515 enum BasicTypeSize {
duke@435 516 T_BOOLEAN_size = 1,
duke@435 517 T_CHAR_size = 1,
duke@435 518 T_FLOAT_size = 1,
duke@435 519 T_DOUBLE_size = 2,
duke@435 520 T_BYTE_size = 1,
duke@435 521 T_SHORT_size = 1,
duke@435 522 T_INT_size = 1,
duke@435 523 T_LONG_size = 2,
duke@435 524 T_OBJECT_size = 1,
duke@435 525 T_ARRAY_size = 1,
coleenp@548 526 T_NARROWOOP_size = 1,
duke@435 527 T_VOID_size = 0
duke@435 528 };
duke@435 529
duke@435 530
duke@435 531 // maps a BasicType to its instance field storage type:
duke@435 532 // all sub-word integral types are widened to T_INT
duke@435 533 extern BasicType type2field[T_CONFLICT+1];
duke@435 534 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 535
duke@435 536
duke@435 537 // size in bytes
duke@435 538 enum ArrayElementSize {
duke@435 539 T_BOOLEAN_aelem_bytes = 1,
duke@435 540 T_CHAR_aelem_bytes = 2,
duke@435 541 T_FLOAT_aelem_bytes = 4,
duke@435 542 T_DOUBLE_aelem_bytes = 8,
duke@435 543 T_BYTE_aelem_bytes = 1,
duke@435 544 T_SHORT_aelem_bytes = 2,
duke@435 545 T_INT_aelem_bytes = 4,
duke@435 546 T_LONG_aelem_bytes = 8,
duke@435 547 #ifdef _LP64
duke@435 548 T_OBJECT_aelem_bytes = 8,
duke@435 549 T_ARRAY_aelem_bytes = 8,
duke@435 550 #else
duke@435 551 T_OBJECT_aelem_bytes = 4,
duke@435 552 T_ARRAY_aelem_bytes = 4,
duke@435 553 #endif
coleenp@548 554 T_NARROWOOP_aelem_bytes = 4,
duke@435 555 T_VOID_aelem_bytes = 0
duke@435 556 };
duke@435 557
kvn@464 558 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 559 #ifdef ASSERT
kvn@464 560 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 561 #else
never@2118 562 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 563 #endif
duke@435 564
duke@435 565
duke@435 566 // JavaValue serves as a container for arbitrary Java values.
duke@435 567
duke@435 568 class JavaValue {
duke@435 569
duke@435 570 public:
duke@435 571 typedef union JavaCallValue {
duke@435 572 jfloat f;
duke@435 573 jdouble d;
duke@435 574 jint i;
duke@435 575 jlong l;
duke@435 576 jobject h;
duke@435 577 } JavaCallValue;
duke@435 578
duke@435 579 private:
duke@435 580 BasicType _type;
duke@435 581 JavaCallValue _value;
duke@435 582
duke@435 583 public:
duke@435 584 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 585
duke@435 586 JavaValue(jfloat value) {
duke@435 587 _type = T_FLOAT;
duke@435 588 _value.f = value;
duke@435 589 }
duke@435 590
duke@435 591 JavaValue(jdouble value) {
duke@435 592 _type = T_DOUBLE;
duke@435 593 _value.d = value;
duke@435 594 }
duke@435 595
duke@435 596 jfloat get_jfloat() const { return _value.f; }
duke@435 597 jdouble get_jdouble() const { return _value.d; }
duke@435 598 jint get_jint() const { return _value.i; }
duke@435 599 jlong get_jlong() const { return _value.l; }
duke@435 600 jobject get_jobject() const { return _value.h; }
duke@435 601 JavaCallValue* get_value_addr() { return &_value; }
duke@435 602 BasicType get_type() const { return _type; }
duke@435 603
duke@435 604 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 605 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 606 void set_jint(jint i) { _value.i = i;}
duke@435 607 void set_jlong(jlong l) { _value.l = l;}
duke@435 608 void set_jobject(jobject h) { _value.h = h;}
duke@435 609 void set_type(BasicType t) { _type = t; }
duke@435 610
duke@435 611 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 612 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 613 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 614 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 615
duke@435 616 };
duke@435 617
duke@435 618
duke@435 619 #define STACK_BIAS 0
duke@435 620 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 621 // in order to extend the reach of the stack pointer.
duke@435 622 #if defined(SPARC) && defined(_LP64)
duke@435 623 #undef STACK_BIAS
duke@435 624 #define STACK_BIAS 0x7ff
duke@435 625 #endif
duke@435 626
duke@435 627
duke@435 628 // TosState describes the top-of-stack state before and after the execution of
duke@435 629 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 630 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 631 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 632 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 633 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 634 // state when it comes to machine representation but is used separately for (oop)
duke@435 635 // type specific operations (e.g. verification code).
duke@435 636
duke@435 637 enum TosState { // describes the tos cache contents
duke@435 638 btos = 0, // byte, bool tos cached
jrose@1161 639 ctos = 1, // char tos cached
jrose@1161 640 stos = 2, // short tos cached
duke@435 641 itos = 3, // int tos cached
duke@435 642 ltos = 4, // long tos cached
duke@435 643 ftos = 5, // float tos cached
duke@435 644 dtos = 6, // double tos cached
duke@435 645 atos = 7, // object cached
duke@435 646 vtos = 8, // tos not cached
duke@435 647 number_of_states,
duke@435 648 ilgl // illegal state: should not occur
duke@435 649 };
duke@435 650
duke@435 651
duke@435 652 inline TosState as_TosState(BasicType type) {
duke@435 653 switch (type) {
duke@435 654 case T_BYTE : return btos;
jrose@1161 655 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 656 case T_CHAR : return ctos;
duke@435 657 case T_SHORT : return stos;
duke@435 658 case T_INT : return itos;
duke@435 659 case T_LONG : return ltos;
duke@435 660 case T_FLOAT : return ftos;
duke@435 661 case T_DOUBLE : return dtos;
duke@435 662 case T_VOID : return vtos;
duke@435 663 case T_ARRAY : // fall through
duke@435 664 case T_OBJECT : return atos;
duke@435 665 }
duke@435 666 return ilgl;
duke@435 667 }
duke@435 668
jrose@1161 669 inline BasicType as_BasicType(TosState state) {
jrose@1161 670 switch (state) {
jrose@1161 671 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 672 case btos : return T_BYTE;
jrose@1161 673 case ctos : return T_CHAR;
jrose@1161 674 case stos : return T_SHORT;
jrose@1161 675 case itos : return T_INT;
jrose@1161 676 case ltos : return T_LONG;
jrose@1161 677 case ftos : return T_FLOAT;
jrose@1161 678 case dtos : return T_DOUBLE;
jrose@1161 679 case atos : return T_OBJECT;
jrose@1161 680 case vtos : return T_VOID;
jrose@1161 681 }
jrose@1161 682 return T_ILLEGAL;
jrose@1161 683 }
jrose@1161 684
duke@435 685
duke@435 686 // Helper function to convert BasicType info into TosState
duke@435 687 // Note: Cannot define here as it uses global constant at the time being.
duke@435 688 TosState as_TosState(BasicType type);
duke@435 689
duke@435 690
duke@435 691 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@435 692
duke@435 693 enum ReferenceType {
duke@435 694 REF_NONE, // Regular class
duke@435 695 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@435 696 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@435 697 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@435 698 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@435 699 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@435 700 };
duke@435 701
duke@435 702
duke@435 703 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 704 // information is needed by the safepoint code.
duke@435 705 //
duke@435 706 // There are 4 essential states:
duke@435 707 //
duke@435 708 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 709 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 710 // _thread_in_vm : Executing in the vm
duke@435 711 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 712 //
duke@435 713 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 714 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 715 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 716 //
duke@435 717 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 718 //
duke@435 719 enum JavaThreadState {
duke@435 720 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 721 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 722 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 723 _thread_in_native = 4, // running in native code
duke@435 724 _thread_in_native_trans = 5, // corresponding transition state
duke@435 725 _thread_in_vm = 6, // running in VM
duke@435 726 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 727 _thread_in_Java = 8, // running in Java or in stub code
duke@435 728 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 729 _thread_blocked = 10, // blocked in vm
duke@435 730 _thread_blocked_trans = 11, // corresponding transition state
duke@435 731 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 732 };
duke@435 733
duke@435 734
duke@435 735 // Handy constants for deciding which compiler mode to use.
duke@435 736 enum MethodCompilation {
duke@435 737 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 738 InvalidOSREntryBci = -2
duke@435 739 };
duke@435 740
duke@435 741 // Enumeration to distinguish tiers of compilation
duke@435 742 enum CompLevel {
iveresov@2138 743 CompLevel_any = -1,
iveresov@2138 744 CompLevel_all = -1,
iveresov@2138 745 CompLevel_none = 0, // Interpreter
iveresov@2138 746 CompLevel_simple = 1, // C1
iveresov@2138 747 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 748 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
iveresov@2138 749 CompLevel_full_optimization = 4, // C2
duke@435 750
iveresov@2138 751 #if defined(COMPILER2)
iveresov@2138 752 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 753 #elif defined(COMPILER1)
iveresov@2138 754 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 755 #else
iveresov@2138 756 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 757 #endif
iveresov@2138 758
iveresov@2138 759 #if defined(TIERED)
iveresov@2138 760 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 761 #elif defined(COMPILER1)
iveresov@2138 762 CompLevel_initial_compile = CompLevel_simple // pure C1
iveresov@2138 763 #elif defined(COMPILER2)
iveresov@2138 764 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 765 #else
iveresov@2138 766 CompLevel_initial_compile = CompLevel_none
iveresov@2138 767 #endif
duke@435 768 };
duke@435 769
iveresov@2138 770 inline bool is_c1_compile(int comp_level) {
iveresov@2138 771 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 772 }
iveresov@2138 773
iveresov@2138 774 inline bool is_c2_compile(int comp_level) {
duke@435 775 return comp_level == CompLevel_full_optimization;
duke@435 776 }
iveresov@2138 777
duke@435 778 inline bool is_highest_tier_compile(int comp_level) {
duke@435 779 return comp_level == CompLevel_highest_tier;
duke@435 780 }
duke@435 781
duke@435 782 //----------------------------------------------------------------------------------------------------
duke@435 783 // 'Forward' declarations of frequently used classes
duke@435 784 // (in order to reduce interface dependencies & reduce
duke@435 785 // number of unnecessary compilations after changes)
duke@435 786
duke@435 787 class symbolTable;
duke@435 788 class ClassFileStream;
duke@435 789
duke@435 790 class Event;
duke@435 791
duke@435 792 class Thread;
duke@435 793 class VMThread;
duke@435 794 class JavaThread;
duke@435 795 class Threads;
duke@435 796
duke@435 797 class VM_Operation;
duke@435 798 class VMOperationQueue;
duke@435 799
duke@435 800 class CodeBlob;
duke@435 801 class nmethod;
duke@435 802 class OSRAdapter;
duke@435 803 class I2CAdapter;
duke@435 804 class C2IAdapter;
duke@435 805 class CompiledIC;
duke@435 806 class relocInfo;
duke@435 807 class ScopeDesc;
duke@435 808 class PcDesc;
duke@435 809
duke@435 810 class Recompiler;
duke@435 811 class Recompilee;
duke@435 812 class RecompilationPolicy;
duke@435 813 class RFrame;
duke@435 814 class CompiledRFrame;
duke@435 815 class InterpretedRFrame;
duke@435 816
duke@435 817 class frame;
duke@435 818
duke@435 819 class vframe;
duke@435 820 class javaVFrame;
duke@435 821 class interpretedVFrame;
duke@435 822 class compiledVFrame;
duke@435 823 class deoptimizedVFrame;
duke@435 824 class externalVFrame;
duke@435 825 class entryVFrame;
duke@435 826
duke@435 827 class RegisterMap;
duke@435 828
duke@435 829 class Mutex;
duke@435 830 class Monitor;
duke@435 831 class BasicLock;
duke@435 832 class BasicObjectLock;
duke@435 833
duke@435 834 class PeriodicTask;
duke@435 835
duke@435 836 class JavaCallWrapper;
duke@435 837
duke@435 838 class oopDesc;
duke@435 839
duke@435 840 class NativeCall;
duke@435 841
duke@435 842 class zone;
duke@435 843
duke@435 844 class StubQueue;
duke@435 845
duke@435 846 class outputStream;
duke@435 847
duke@435 848 class ResourceArea;
duke@435 849
duke@435 850 class DebugInformationRecorder;
duke@435 851 class ScopeValue;
duke@435 852 class CompressedStream;
duke@435 853 class DebugInfoReadStream;
duke@435 854 class DebugInfoWriteStream;
duke@435 855 class LocationValue;
duke@435 856 class ConstantValue;
duke@435 857 class IllegalValue;
duke@435 858
duke@435 859 class PrivilegedElement;
duke@435 860 class MonitorArray;
duke@435 861
duke@435 862 class MonitorInfo;
duke@435 863
duke@435 864 class OffsetClosure;
duke@435 865 class OopMapCache;
duke@435 866 class InterpreterOopMap;
duke@435 867 class OopMapCacheEntry;
duke@435 868 class OSThread;
duke@435 869
duke@435 870 typedef int (*OSThreadStartFunc)(void*);
duke@435 871
duke@435 872 class Space;
duke@435 873
duke@435 874 class JavaValue;
duke@435 875 class methodHandle;
duke@435 876 class JavaCallArguments;
duke@435 877
duke@435 878 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 879
duke@435 880 extern void basic_fatal(const char* msg);
duke@435 881
duke@435 882
duke@435 883 //----------------------------------------------------------------------------------------------------
duke@435 884 // Special constants for debugging
duke@435 885
duke@435 886 const jint badInt = -3; // generic "bad int" value
duke@435 887 const long badAddressVal = -2; // generic "bad address" value
duke@435 888 const long badOopVal = -1; // generic "bad oop" value
duke@435 889 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 890 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 891 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 892 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 893 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 894 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 895 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
duke@435 896 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 897 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 898
duke@435 899
duke@435 900 // (These must be implemented as #defines because C++ compilers are
duke@435 901 // not obligated to inline non-integral constants!)
duke@435 902 #define badAddress ((address)::badAddressVal)
duke@435 903 #define badOop ((oop)::badOopVal)
duke@435 904 #define badHeapWord (::badHeapWordVal)
duke@435 905 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@435 906
jcoomes@1746 907 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 908 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 909
duke@435 910 //----------------------------------------------------------------------------------------------------
duke@435 911 // Utility functions for bitfield manipulations
duke@435 912
duke@435 913 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 914 const intptr_t NoBits = 0; // no bits set in a word
duke@435 915 const jlong NoLongBits = 0; // no bits set in a long
duke@435 916 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 917
duke@435 918 // get a word with the n.th or the right-most or left-most n bits set
duke@435 919 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 920 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 921 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 922 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 923
duke@435 924 // bit-operations using a mask m
duke@435 925 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 926 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 927 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 928 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 929 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 930
duke@435 931 // bit-operations using the n.th bit
duke@435 932 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 933 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 934 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 935
duke@435 936 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 937 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 938 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 939 }
duke@435 940
duke@435 941
duke@435 942 //----------------------------------------------------------------------------------------------------
duke@435 943 // Utility functions for integers
duke@435 944
duke@435 945 // Avoid use of global min/max macros which may cause unwanted double
duke@435 946 // evaluation of arguments.
duke@435 947 #ifdef max
duke@435 948 #undef max
duke@435 949 #endif
duke@435 950
duke@435 951 #ifdef min
duke@435 952 #undef min
duke@435 953 #endif
duke@435 954
duke@435 955 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 956 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 957
duke@435 958 // It is necessary to use templates here. Having normal overloaded
duke@435 959 // functions does not work because it is necessary to provide both 32-
duke@435 960 // and 64-bit overloaded functions, which does not work, and having
duke@435 961 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 962 // will be even more error-prone than macros.
duke@435 963 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 964 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 965 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 966 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 967 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 968 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 969
duke@435 970 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 971
duke@435 972 // true if x is a power of 2, false otherwise
duke@435 973 inline bool is_power_of_2(intptr_t x) {
duke@435 974 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 975 }
duke@435 976
duke@435 977 // long version of is_power_of_2
duke@435 978 inline bool is_power_of_2_long(jlong x) {
duke@435 979 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 980 }
duke@435 981
duke@435 982 //* largest i such that 2^i <= x
duke@435 983 // A negative value of 'x' will return '31'
duke@435 984 inline int log2_intptr(intptr_t x) {
duke@435 985 int i = -1;
duke@435 986 uintptr_t p = 1;
duke@435 987 while (p != 0 && p <= (uintptr_t)x) {
duke@435 988 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 989 i++; p *= 2;
duke@435 990 }
duke@435 991 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 992 // (if p = 0 then overflow occurred and i = 31)
duke@435 993 return i;
duke@435 994 }
duke@435 995
duke@435 996 //* largest i such that 2^i <= x
duke@435 997 // A negative value of 'x' will return '63'
duke@435 998 inline int log2_long(jlong x) {
duke@435 999 int i = -1;
duke@435 1000 julong p = 1;
duke@435 1001 while (p != 0 && p <= (julong)x) {
duke@435 1002 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1003 i++; p *= 2;
duke@435 1004 }
duke@435 1005 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1006 // (if p = 0 then overflow occurred and i = 63)
duke@435 1007 return i;
duke@435 1008 }
duke@435 1009
duke@435 1010 //* the argument must be exactly a power of 2
duke@435 1011 inline int exact_log2(intptr_t x) {
duke@435 1012 #ifdef ASSERT
duke@435 1013 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1014 #endif
duke@435 1015 return log2_intptr(x);
duke@435 1016 }
duke@435 1017
twisti@1003 1018 //* the argument must be exactly a power of 2
twisti@1003 1019 inline int exact_log2_long(jlong x) {
twisti@1003 1020 #ifdef ASSERT
twisti@1003 1021 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1022 #endif
twisti@1003 1023 return log2_long(x);
twisti@1003 1024 }
twisti@1003 1025
duke@435 1026
duke@435 1027 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1028 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1029 #ifdef ASSERT
duke@435 1030 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1031 #endif
duke@435 1032 const uintx m = s - 1;
duke@435 1033 return mask_bits(x + m, ~m);
duke@435 1034 }
duke@435 1035
duke@435 1036 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1037 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1038 #ifdef ASSERT
duke@435 1039 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1040 #endif
duke@435 1041 const uintx m = s - 1;
duke@435 1042 return mask_bits(x, ~m);
duke@435 1043 }
duke@435 1044
duke@435 1045
duke@435 1046 inline bool is_odd (intx x) { return x & 1; }
duke@435 1047 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1048
duke@435 1049 // "to" should be greater than "from."
duke@435 1050 inline intx byte_size(void* from, void* to) {
duke@435 1051 return (address)to - (address)from;
duke@435 1052 }
duke@435 1053
duke@435 1054 //----------------------------------------------------------------------------------------------------
duke@435 1055 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1056
duke@435 1057 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1058 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1059
duke@435 1060 // Given sequence of four bytes, build into a 32-bit word
duke@435 1061 // following the conventions used in class files.
duke@435 1062 // On the 386, this could be realized with a simple address cast.
duke@435 1063 //
duke@435 1064
duke@435 1065 // This routine takes eight bytes:
duke@435 1066 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1067 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1068 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1069 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1070 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1071 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1072 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1073 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1074 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1075 }
duke@435 1076
duke@435 1077 // This routine takes four bytes:
duke@435 1078 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1079 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1080 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1081 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1082 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1083 }
duke@435 1084
duke@435 1085 // And this one works if the four bytes are contiguous in memory:
duke@435 1086 inline u4 build_u4_from( u1* p ) {
duke@435 1087 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1088 }
duke@435 1089
duke@435 1090 // Ditto for two-byte ints:
duke@435 1091 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1092 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1093 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1094 }
duke@435 1095
duke@435 1096 // And this one works if the two bytes are contiguous in memory:
duke@435 1097 inline u2 build_u2_from( u1* p ) {
duke@435 1098 return build_u2_from( p[0], p[1] );
duke@435 1099 }
duke@435 1100
duke@435 1101 // Ditto for floats:
duke@435 1102 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1103 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1104 return *(jfloat*)&u;
duke@435 1105 }
duke@435 1106
duke@435 1107 inline jfloat build_float_from( u1* p ) {
duke@435 1108 u4 u = build_u4_from( p );
duke@435 1109 return *(jfloat*)&u;
duke@435 1110 }
duke@435 1111
duke@435 1112
duke@435 1113 // now (64-bit) longs
duke@435 1114
duke@435 1115 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1116 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1117 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1118 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1119 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1120 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1121 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1122 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1123 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1124 }
duke@435 1125
duke@435 1126 inline jlong build_long_from( u1* p ) {
duke@435 1127 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 // Doubles, too!
duke@435 1132 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1133 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1134 return *(jdouble*)&u;
duke@435 1135 }
duke@435 1136
duke@435 1137 inline jdouble build_double_from( u1* p ) {
duke@435 1138 jlong u = build_long_from( p );
duke@435 1139 return *(jdouble*)&u;
duke@435 1140 }
duke@435 1141
duke@435 1142
duke@435 1143 // Portable routines to go the other way:
duke@435 1144
duke@435 1145 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1146 c1 = u1(x >> 8);
duke@435 1147 c2 = u1(x);
duke@435 1148 }
duke@435 1149
duke@435 1150 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1151 explode_short_to( x, p[0], p[1]);
duke@435 1152 }
duke@435 1153
duke@435 1154 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1155 c1 = u1(x >> 24);
duke@435 1156 c2 = u1(x >> 16);
duke@435 1157 c3 = u1(x >> 8);
duke@435 1158 c4 = u1(x);
duke@435 1159 }
duke@435 1160
duke@435 1161 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1162 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 // Pack and extract shorts to/from ints:
duke@435 1167
duke@435 1168 inline int extract_low_short_from_int(jint x) {
duke@435 1169 return x & 0xffff;
duke@435 1170 }
duke@435 1171
duke@435 1172 inline int extract_high_short_from_int(jint x) {
duke@435 1173 return (x >> 16) & 0xffff;
duke@435 1174 }
duke@435 1175
duke@435 1176 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1177 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1178 }
duke@435 1179
duke@435 1180 // Printf-style formatters for fixed- and variable-width types as pointers and
duke@435 1181 // integers.
duke@435 1182 //
duke@435 1183 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1184 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
duke@435 1185 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
duke@435 1186 // (in ILP32).
duke@435 1187
tonyp@2643 1188 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1189
duke@435 1190 // Format 32-bit quantities.
duke@435 1191 #define INT32_FORMAT "%d"
duke@435 1192 #define UINT32_FORMAT "%u"
duke@435 1193 #define INT32_FORMAT_W(width) "%" #width "d"
duke@435 1194 #define UINT32_FORMAT_W(width) "%" #width "u"
duke@435 1195
duke@435 1196 #define PTR32_FORMAT "0x%08x"
duke@435 1197
duke@435 1198 // Format 64-bit quantities.
duke@435 1199 #define INT64_FORMAT "%" FORMAT64_MODIFIER "d"
duke@435 1200 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
duke@435 1201 #define PTR64_FORMAT "0x%016" FORMAT64_MODIFIER "x"
duke@435 1202
duke@435 1203 #define INT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "d"
duke@435 1204 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
duke@435 1205
duke@435 1206 // Format macros that allow the field width to be specified. The width must be
duke@435 1207 // a string literal (e.g., "8") or a macro that evaluates to one.
duke@435 1208 #ifdef _LP64
xlu@948 1209 #define UINTX_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1210 #define SSIZE_FORMAT_W(width) INT64_FORMAT_W(width)
duke@435 1211 #define SIZE_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1212 #else
xlu@948 1213 #define UINTX_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1214 #define SSIZE_FORMAT_W(width) INT32_FORMAT_W(width)
duke@435 1215 #define SIZE_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1216 #endif // _LP64
duke@435 1217
duke@435 1218 // Format pointers and size_t (or size_t-like integer types) which change size
xlu@948 1219 // between 32- and 64-bit. The pointer format theoretically should be "%p",
xlu@948 1220 // however, it has different output on different platforms. On Windows, the data
xlu@948 1221 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
xlu@948 1222 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
xlu@948 1223 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
xlu@948 1224 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
xlu@948 1225 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
xlu@948 1226 // using "%x".
duke@435 1227 #ifdef _LP64
duke@435 1228 #define PTR_FORMAT PTR64_FORMAT
duke@435 1229 #define UINTX_FORMAT UINT64_FORMAT
duke@435 1230 #define INTX_FORMAT INT64_FORMAT
duke@435 1231 #define SIZE_FORMAT UINT64_FORMAT
duke@435 1232 #define SSIZE_FORMAT INT64_FORMAT
duke@435 1233 #else // !_LP64
duke@435 1234 #define PTR_FORMAT PTR32_FORMAT
duke@435 1235 #define UINTX_FORMAT UINT32_FORMAT
duke@435 1236 #define INTX_FORMAT INT32_FORMAT
duke@435 1237 #define SIZE_FORMAT UINT32_FORMAT
duke@435 1238 #define SSIZE_FORMAT INT32_FORMAT
duke@435 1239 #endif // _LP64
duke@435 1240
duke@435 1241 #define INTPTR_FORMAT PTR_FORMAT
duke@435 1242
duke@435 1243 // Enable zap-a-lot if in debug version.
duke@435 1244
duke@435 1245 # ifdef ASSERT
duke@435 1246 # ifdef COMPILER2
duke@435 1247 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1248 #endif /* COMPILER2 */
duke@435 1249 # endif /* ASSERT */
duke@435 1250
duke@435 1251 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1252
stefank@2314 1253 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial