src/share/vm/utilities/globalDefinitions.hpp

Thu, 11 Feb 2010 15:52:19 -0800

author
iveresov
date
Thu, 11 Feb 2010 15:52:19 -0800
changeset 1696
0414c1049f15
parent 1161
be93aad57795
child 1746
2a1472c30599
permissions
-rw-r--r--

6923991: G1: improve scalability of RSet scanning
Summary: Implemented block-based work stealing. Moved copying during the rset scanning phase to the main copying phase. Made the size of rset table depend on the region size.
Reviewed-by: apetrusenko, tonyp

duke@435 1 /*
twisti@994 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This file holds all globally used constants & types, class (forward)
duke@435 26 // declarations and a few frequently used utility functions.
duke@435 27
duke@435 28 //----------------------------------------------------------------------------------------------------
duke@435 29 // Constants
duke@435 30
duke@435 31 const int LogBytesPerShort = 1;
duke@435 32 const int LogBytesPerInt = 2;
duke@435 33 #ifdef _LP64
duke@435 34 const int LogBytesPerWord = 3;
duke@435 35 #else
duke@435 36 const int LogBytesPerWord = 2;
duke@435 37 #endif
duke@435 38 const int LogBytesPerLong = 3;
duke@435 39
duke@435 40 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 41 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 42 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 43 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 44
duke@435 45 const int LogBitsPerByte = 3;
duke@435 46 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 47 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 48 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 49 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 50
duke@435 51 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 52 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 53 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 54 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 55 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 56
duke@435 57 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 58 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 59
duke@435 60 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 61
coleenp@548 62 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 63 extern int heapOopSize; // Oop within a java object
duke@435 64 const int wordSize = sizeof(char*);
duke@435 65 const int longSize = sizeof(jlong);
duke@435 66 const int jintSize = sizeof(jint);
duke@435 67 const int size_tSize = sizeof(size_t);
duke@435 68
coleenp@548 69 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 70
coleenp@548 71 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 72 extern int LogBitsPerHeapOop;
coleenp@548 73 extern int BytesPerHeapOop;
coleenp@548 74 extern int BitsPerHeapOop;
duke@435 75
duke@435 76 const int BitsPerJavaInteger = 32;
twisti@994 77 const int BitsPerJavaLong = 64;
duke@435 78 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 79
coleenp@548 80 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 81 const int jintAsStringSize = 12;
coleenp@548 82
duke@435 83 // In fact this should be
duke@435 84 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 85 // see os::set_memory_serialize_page()
duke@435 86 #ifdef _LP64
duke@435 87 const int SerializePageShiftCount = 4;
duke@435 88 #else
duke@435 89 const int SerializePageShiftCount = 3;
duke@435 90 #endif
duke@435 91
duke@435 92 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 93 // pointer into the heap. We require that object sizes be measured in
duke@435 94 // units of heap words, so that that
duke@435 95 // HeapWord* hw;
duke@435 96 // hw += oop(hw)->foo();
duke@435 97 // works, where foo is a method (like size or scavenge) that returns the
duke@435 98 // object size.
duke@435 99 class HeapWord {
duke@435 100 friend class VMStructs;
jmasa@698 101 private:
duke@435 102 char* i;
jmasa@796 103 #ifndef PRODUCT
jmasa@698 104 public:
jmasa@698 105 char* value() { return i; }
jmasa@698 106 #endif
duke@435 107 };
duke@435 108
duke@435 109 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 110 const int HeapWordSize = sizeof(HeapWord);
duke@435 111 #ifdef _LP64
coleenp@548 112 const int LogHeapWordSize = 3;
duke@435 113 #else
coleenp@548 114 const int LogHeapWordSize = 2;
duke@435 115 #endif
coleenp@548 116 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 117 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 118
duke@435 119 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 120 // for the same application running in 64bit. See bug 4967770.
duke@435 121 // The minimum alignment to a heap word size is done. Other
duke@435 122 // parts of the memory system may required additional alignment
duke@435 123 // and are responsible for those alignments.
duke@435 124 #ifdef _LP64
duke@435 125 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 126 #else
duke@435 127 #define ScaleForWordSize(x) (x)
duke@435 128 #endif
duke@435 129
duke@435 130 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 131 // bytes.
duke@435 132 inline size_t heap_word_size(size_t byte_size) {
duke@435 133 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 const size_t K = 1024;
duke@435 138 const size_t M = K*K;
duke@435 139 const size_t G = M*K;
duke@435 140 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 141
iveresov@1696 142 const size_t LOG_K = 10;
iveresov@1696 143 const size_t LOG_M = 2 * LOG_K;
iveresov@1696 144 const size_t LOG_G = 2 * LOG_M;
iveresov@1696 145
duke@435 146 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 147 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 148
duke@435 149 // Constants for converting from a base unit to milli-base units. For
duke@435 150 // example from seconds to milliseconds and microseconds
duke@435 151
duke@435 152 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 153 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 154 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 155
duke@435 156 inline const char* proper_unit_for_byte_size(size_t s) {
duke@435 157 if (s >= 10*M) {
duke@435 158 return "M";
duke@435 159 } else if (s >= 10*K) {
duke@435 160 return "K";
duke@435 161 } else {
duke@435 162 return "B";
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 inline size_t byte_size_in_proper_unit(size_t s) {
duke@435 167 if (s >= 10*M) {
duke@435 168 return s/M;
duke@435 169 } else if (s >= 10*K) {
duke@435 170 return s/K;
duke@435 171 } else {
duke@435 172 return s;
duke@435 173 }
duke@435 174 }
duke@435 175
duke@435 176
duke@435 177 //----------------------------------------------------------------------------------------------------
duke@435 178 // VM type definitions
duke@435 179
duke@435 180 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 181 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 182
duke@435 183 typedef intptr_t intx;
duke@435 184 typedef uintptr_t uintx;
duke@435 185
duke@435 186 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 187 const intx max_intx = (uintx)min_intx - 1;
duke@435 188 const uintx max_uintx = (uintx)-1;
duke@435 189
duke@435 190 // Table of values:
duke@435 191 // sizeof intx 4 8
duke@435 192 // min_intx 0x80000000 0x8000000000000000
duke@435 193 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 194 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 195
duke@435 196 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 197
duke@435 198
duke@435 199 //----------------------------------------------------------------------------------------------------
duke@435 200 // Java type definitions
duke@435 201
duke@435 202 // All kinds of 'plain' byte addresses
duke@435 203 typedef signed char s_char;
duke@435 204 typedef unsigned char u_char;
duke@435 205 typedef u_char* address;
duke@435 206 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 207 // except for some implementations of a C++
duke@435 208 // linkage pointer to function. Should never
duke@435 209 // need one of those to be placed in this
duke@435 210 // type anyway.
duke@435 211
duke@435 212 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 213 // Where portable means keep ANSI C++ compilers quiet
duke@435 214
duke@435 215 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 216 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 217
duke@435 218 // Utility functions to "portably" make cast to/from function pointers.
duke@435 219
duke@435 220 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 221 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 222 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 223
duke@435 224 // Pointer subtraction.
duke@435 225 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 226 // the range we might need to find differences from one end of the heap
duke@435 227 // to the other.
duke@435 228 // A typical use might be:
duke@435 229 // if (pointer_delta(end(), top()) >= size) {
duke@435 230 // // enough room for an object of size
duke@435 231 // ...
duke@435 232 // and then additions like
duke@435 233 // ... top() + size ...
duke@435 234 // are safe because we know that top() is at least size below end().
duke@435 235 inline size_t pointer_delta(const void* left,
duke@435 236 const void* right,
duke@435 237 size_t element_size) {
duke@435 238 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 239 }
duke@435 240 // A version specialized for HeapWord*'s.
duke@435 241 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 242 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 243 }
duke@435 244
duke@435 245 //
duke@435 246 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 247 // directly without at best a warning. This macro accomplishes it silently
duke@435 248 // In every case that is present at this point the value be cast is a pointer
duke@435 249 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 250 // that linkage and a picky compiler would not complain. In other cases because
duke@435 251 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 252 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 253 // picky enough to catch these instances (which are few). It is possible that
duke@435 254 // using templates could fix these for all cases. This use of templates is likely
duke@435 255 // so far from the middle of the road that it is likely to be problematic in
duke@435 256 // many C++ compilers.
duke@435 257 //
duke@435 258 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 259 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 260
duke@435 261 // Unsigned byte types for os and stream.hpp
duke@435 262
duke@435 263 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 264 // the .class file format. See JVM book chapter 4.
duke@435 265
duke@435 266 typedef jubyte u1;
duke@435 267 typedef jushort u2;
duke@435 268 typedef juint u4;
duke@435 269 typedef julong u8;
duke@435 270
duke@435 271 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 272 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 273 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 274 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 275
duke@435 276 //----------------------------------------------------------------------------------------------------
duke@435 277 // JVM spec restrictions
duke@435 278
duke@435 279 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 280
duke@435 281
duke@435 282 //----------------------------------------------------------------------------------------------------
duke@435 283 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 284 //
duke@435 285 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 286
duke@435 287 #define HOTSWAP
duke@435 288
duke@435 289 //----------------------------------------------------------------------------------------------------
duke@435 290 // Object alignment, in units of HeapWords.
duke@435 291 //
duke@435 292 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 293 // reference fields can be naturally aligned.
duke@435 294
duke@435 295 const int MinObjAlignment = HeapWordsPerLong;
duke@435 296 const int MinObjAlignmentInBytes = MinObjAlignment * HeapWordSize;
duke@435 297 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
duke@435 298
coleenp@548 299 const int LogMinObjAlignment = LogHeapWordsPerLong;
coleenp@548 300 const int LogMinObjAlignmentInBytes = LogMinObjAlignment + LogHeapWordSize;
coleenp@548 301
duke@435 302 // Machine dependent stuff
duke@435 303
duke@435 304 #include "incls/_globalDefinitions_pd.hpp.incl"
duke@435 305
duke@435 306 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 307 // Note: this value must be a power of 2
duke@435 308
duke@435 309 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 310
duke@435 311 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 312 // for use in places like enum definitions that require compile-time constant
duke@435 313 // expressions and a function for all other places so as to get type checking.
duke@435 314
duke@435 315 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 316
duke@435 317 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 318 return align_size_up_(size, alignment);
duke@435 319 }
duke@435 320
duke@435 321 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 322
duke@435 323 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 324 return align_size_down_(size, alignment);
duke@435 325 }
duke@435 326
duke@435 327 // Align objects by rounding up their size, in HeapWord units.
duke@435 328
duke@435 329 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 330
duke@435 331 inline intptr_t align_object_size(intptr_t size) {
duke@435 332 return align_size_up(size, MinObjAlignment);
duke@435 333 }
duke@435 334
duke@435 335 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 336
duke@435 337 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
duke@435 338
duke@435 339 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 340 return align_size_up(offset, HeapWordsPerLong);
duke@435 341 }
duke@435 342
duke@435 343 inline bool is_object_aligned(intptr_t offset) {
duke@435 344 return offset == align_object_offset(offset);
duke@435 345 }
duke@435 346
duke@435 347
duke@435 348 //----------------------------------------------------------------------------------------------------
duke@435 349 // Utility macros for compilers
duke@435 350 // used to silence compiler warnings
duke@435 351
duke@435 352 #define Unused_Variable(var) var
duke@435 353
duke@435 354
duke@435 355 //----------------------------------------------------------------------------------------------------
duke@435 356 // Miscellaneous
duke@435 357
duke@435 358 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 359 // All fabs() callers should call this function instead, which will implicitly
duke@435 360 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 361 // doesn't exist in early versions of Solaris 8.
duke@435 362 inline double fabsd(double value) {
duke@435 363 return fabs(value);
duke@435 364 }
duke@435 365
duke@435 366 inline jint low (jlong value) { return jint(value); }
duke@435 367 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 368
duke@435 369 // the fancy casts are a hopefully portable way
duke@435 370 // to do unsigned 32 to 64 bit type conversion
duke@435 371 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 372 *value |= (jlong)(julong)(juint)low; }
duke@435 373
duke@435 374 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 375 *value |= (jlong)high << 32; }
duke@435 376
duke@435 377 inline jlong jlong_from(jint h, jint l) {
duke@435 378 jlong result = 0; // initialization to avoid warning
duke@435 379 set_high(&result, h);
duke@435 380 set_low(&result, l);
duke@435 381 return result;
duke@435 382 }
duke@435 383
duke@435 384 union jlong_accessor {
duke@435 385 jint words[2];
duke@435 386 jlong long_value;
duke@435 387 };
duke@435 388
coleenp@548 389 void basic_types_init(); // cannot define here; uses assert
duke@435 390
duke@435 391
duke@435 392 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 393 enum BasicType {
duke@435 394 T_BOOLEAN = 4,
duke@435 395 T_CHAR = 5,
duke@435 396 T_FLOAT = 6,
duke@435 397 T_DOUBLE = 7,
duke@435 398 T_BYTE = 8,
duke@435 399 T_SHORT = 9,
duke@435 400 T_INT = 10,
duke@435 401 T_LONG = 11,
duke@435 402 T_OBJECT = 12,
duke@435 403 T_ARRAY = 13,
duke@435 404 T_VOID = 14,
duke@435 405 T_ADDRESS = 15,
coleenp@548 406 T_NARROWOOP= 16,
coleenp@548 407 T_CONFLICT = 17, // for stack value type with conflicting contents
duke@435 408 T_ILLEGAL = 99
duke@435 409 };
duke@435 410
kvn@464 411 inline bool is_java_primitive(BasicType t) {
kvn@464 412 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 413 }
kvn@464 414
jrose@1145 415 inline bool is_subword_type(BasicType t) {
jrose@1145 416 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 417 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 418 }
jrose@1145 419
jrose@1145 420 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 421 return (t == T_BYTE || t == T_SHORT);
jrose@1145 422 }
jrose@1145 423
duke@435 424 // Convert a char from a classfile signature to a BasicType
duke@435 425 inline BasicType char2type(char c) {
duke@435 426 switch( c ) {
duke@435 427 case 'B': return T_BYTE;
duke@435 428 case 'C': return T_CHAR;
duke@435 429 case 'D': return T_DOUBLE;
duke@435 430 case 'F': return T_FLOAT;
duke@435 431 case 'I': return T_INT;
duke@435 432 case 'J': return T_LONG;
duke@435 433 case 'S': return T_SHORT;
duke@435 434 case 'Z': return T_BOOLEAN;
duke@435 435 case 'V': return T_VOID;
duke@435 436 case 'L': return T_OBJECT;
duke@435 437 case '[': return T_ARRAY;
duke@435 438 }
duke@435 439 return T_ILLEGAL;
duke@435 440 }
duke@435 441
duke@435 442 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 443 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 444 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 445 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 446 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 447 extern BasicType name2type(const char* name);
duke@435 448
duke@435 449 // Auxilary math routines
duke@435 450 // least common multiple
duke@435 451 extern size_t lcm(size_t a, size_t b);
duke@435 452
duke@435 453
duke@435 454 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 455 enum BasicTypeSize {
duke@435 456 T_BOOLEAN_size = 1,
duke@435 457 T_CHAR_size = 1,
duke@435 458 T_FLOAT_size = 1,
duke@435 459 T_DOUBLE_size = 2,
duke@435 460 T_BYTE_size = 1,
duke@435 461 T_SHORT_size = 1,
duke@435 462 T_INT_size = 1,
duke@435 463 T_LONG_size = 2,
duke@435 464 T_OBJECT_size = 1,
duke@435 465 T_ARRAY_size = 1,
coleenp@548 466 T_NARROWOOP_size = 1,
duke@435 467 T_VOID_size = 0
duke@435 468 };
duke@435 469
duke@435 470
duke@435 471 // maps a BasicType to its instance field storage type:
duke@435 472 // all sub-word integral types are widened to T_INT
duke@435 473 extern BasicType type2field[T_CONFLICT+1];
duke@435 474 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 475
duke@435 476
duke@435 477 // size in bytes
duke@435 478 enum ArrayElementSize {
duke@435 479 T_BOOLEAN_aelem_bytes = 1,
duke@435 480 T_CHAR_aelem_bytes = 2,
duke@435 481 T_FLOAT_aelem_bytes = 4,
duke@435 482 T_DOUBLE_aelem_bytes = 8,
duke@435 483 T_BYTE_aelem_bytes = 1,
duke@435 484 T_SHORT_aelem_bytes = 2,
duke@435 485 T_INT_aelem_bytes = 4,
duke@435 486 T_LONG_aelem_bytes = 8,
duke@435 487 #ifdef _LP64
duke@435 488 T_OBJECT_aelem_bytes = 8,
duke@435 489 T_ARRAY_aelem_bytes = 8,
duke@435 490 #else
duke@435 491 T_OBJECT_aelem_bytes = 4,
duke@435 492 T_ARRAY_aelem_bytes = 4,
duke@435 493 #endif
coleenp@548 494 T_NARROWOOP_aelem_bytes = 4,
duke@435 495 T_VOID_aelem_bytes = 0
duke@435 496 };
duke@435 497
kvn@464 498 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 499 #ifdef ASSERT
kvn@464 500 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 501 #else
kvn@464 502 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
kvn@464 503 #endif
duke@435 504
duke@435 505
duke@435 506 // JavaValue serves as a container for arbitrary Java values.
duke@435 507
duke@435 508 class JavaValue {
duke@435 509
duke@435 510 public:
duke@435 511 typedef union JavaCallValue {
duke@435 512 jfloat f;
duke@435 513 jdouble d;
duke@435 514 jint i;
duke@435 515 jlong l;
duke@435 516 jobject h;
duke@435 517 } JavaCallValue;
duke@435 518
duke@435 519 private:
duke@435 520 BasicType _type;
duke@435 521 JavaCallValue _value;
duke@435 522
duke@435 523 public:
duke@435 524 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 525
duke@435 526 JavaValue(jfloat value) {
duke@435 527 _type = T_FLOAT;
duke@435 528 _value.f = value;
duke@435 529 }
duke@435 530
duke@435 531 JavaValue(jdouble value) {
duke@435 532 _type = T_DOUBLE;
duke@435 533 _value.d = value;
duke@435 534 }
duke@435 535
duke@435 536 jfloat get_jfloat() const { return _value.f; }
duke@435 537 jdouble get_jdouble() const { return _value.d; }
duke@435 538 jint get_jint() const { return _value.i; }
duke@435 539 jlong get_jlong() const { return _value.l; }
duke@435 540 jobject get_jobject() const { return _value.h; }
duke@435 541 JavaCallValue* get_value_addr() { return &_value; }
duke@435 542 BasicType get_type() const { return _type; }
duke@435 543
duke@435 544 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 545 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 546 void set_jint(jint i) { _value.i = i;}
duke@435 547 void set_jlong(jlong l) { _value.l = l;}
duke@435 548 void set_jobject(jobject h) { _value.h = h;}
duke@435 549 void set_type(BasicType t) { _type = t; }
duke@435 550
duke@435 551 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 552 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 553 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 554 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 555
duke@435 556 };
duke@435 557
duke@435 558
duke@435 559 #define STACK_BIAS 0
duke@435 560 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 561 // in order to extend the reach of the stack pointer.
duke@435 562 #if defined(SPARC) && defined(_LP64)
duke@435 563 #undef STACK_BIAS
duke@435 564 #define STACK_BIAS 0x7ff
duke@435 565 #endif
duke@435 566
duke@435 567
duke@435 568 // TosState describes the top-of-stack state before and after the execution of
duke@435 569 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 570 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 571 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 572 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 573 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 574 // state when it comes to machine representation but is used separately for (oop)
duke@435 575 // type specific operations (e.g. verification code).
duke@435 576
duke@435 577 enum TosState { // describes the tos cache contents
duke@435 578 btos = 0, // byte, bool tos cached
jrose@1161 579 ctos = 1, // char tos cached
jrose@1161 580 stos = 2, // short tos cached
duke@435 581 itos = 3, // int tos cached
duke@435 582 ltos = 4, // long tos cached
duke@435 583 ftos = 5, // float tos cached
duke@435 584 dtos = 6, // double tos cached
duke@435 585 atos = 7, // object cached
duke@435 586 vtos = 8, // tos not cached
duke@435 587 number_of_states,
duke@435 588 ilgl // illegal state: should not occur
duke@435 589 };
duke@435 590
duke@435 591
duke@435 592 inline TosState as_TosState(BasicType type) {
duke@435 593 switch (type) {
duke@435 594 case T_BYTE : return btos;
jrose@1161 595 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 596 case T_CHAR : return ctos;
duke@435 597 case T_SHORT : return stos;
duke@435 598 case T_INT : return itos;
duke@435 599 case T_LONG : return ltos;
duke@435 600 case T_FLOAT : return ftos;
duke@435 601 case T_DOUBLE : return dtos;
duke@435 602 case T_VOID : return vtos;
duke@435 603 case T_ARRAY : // fall through
duke@435 604 case T_OBJECT : return atos;
duke@435 605 }
duke@435 606 return ilgl;
duke@435 607 }
duke@435 608
jrose@1161 609 inline BasicType as_BasicType(TosState state) {
jrose@1161 610 switch (state) {
jrose@1161 611 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 612 case btos : return T_BYTE;
jrose@1161 613 case ctos : return T_CHAR;
jrose@1161 614 case stos : return T_SHORT;
jrose@1161 615 case itos : return T_INT;
jrose@1161 616 case ltos : return T_LONG;
jrose@1161 617 case ftos : return T_FLOAT;
jrose@1161 618 case dtos : return T_DOUBLE;
jrose@1161 619 case atos : return T_OBJECT;
jrose@1161 620 case vtos : return T_VOID;
jrose@1161 621 }
jrose@1161 622 return T_ILLEGAL;
jrose@1161 623 }
jrose@1161 624
duke@435 625
duke@435 626 // Helper function to convert BasicType info into TosState
duke@435 627 // Note: Cannot define here as it uses global constant at the time being.
duke@435 628 TosState as_TosState(BasicType type);
duke@435 629
duke@435 630
duke@435 631 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@435 632
duke@435 633 enum ReferenceType {
duke@435 634 REF_NONE, // Regular class
duke@435 635 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@435 636 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@435 637 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@435 638 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@435 639 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@435 640 };
duke@435 641
duke@435 642
duke@435 643 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 644 // information is needed by the safepoint code.
duke@435 645 //
duke@435 646 // There are 4 essential states:
duke@435 647 //
duke@435 648 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 649 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 650 // _thread_in_vm : Executing in the vm
duke@435 651 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 652 //
duke@435 653 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 654 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 655 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 656 //
duke@435 657 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 658 //
duke@435 659 enum JavaThreadState {
duke@435 660 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 661 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 662 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 663 _thread_in_native = 4, // running in native code
duke@435 664 _thread_in_native_trans = 5, // corresponding transition state
duke@435 665 _thread_in_vm = 6, // running in VM
duke@435 666 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 667 _thread_in_Java = 8, // running in Java or in stub code
duke@435 668 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 669 _thread_blocked = 10, // blocked in vm
duke@435 670 _thread_blocked_trans = 11, // corresponding transition state
duke@435 671 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 672 };
duke@435 673
duke@435 674
duke@435 675 // Handy constants for deciding which compiler mode to use.
duke@435 676 enum MethodCompilation {
duke@435 677 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 678 InvalidOSREntryBci = -2
duke@435 679 };
duke@435 680
duke@435 681 // Enumeration to distinguish tiers of compilation
duke@435 682 enum CompLevel {
duke@435 683 CompLevel_none = 0,
duke@435 684 CompLevel_fast_compile = 1,
duke@435 685 CompLevel_full_optimization = 2,
duke@435 686
duke@435 687 CompLevel_highest_tier = CompLevel_full_optimization,
duke@435 688 #ifdef TIERED
duke@435 689 CompLevel_initial_compile = CompLevel_fast_compile
duke@435 690 #else
duke@435 691 CompLevel_initial_compile = CompLevel_full_optimization
duke@435 692 #endif // TIERED
duke@435 693 };
duke@435 694
duke@435 695 inline bool is_tier1_compile(int comp_level) {
duke@435 696 return comp_level == CompLevel_fast_compile;
duke@435 697 }
duke@435 698 inline bool is_tier2_compile(int comp_level) {
duke@435 699 return comp_level == CompLevel_full_optimization;
duke@435 700 }
duke@435 701 inline bool is_highest_tier_compile(int comp_level) {
duke@435 702 return comp_level == CompLevel_highest_tier;
duke@435 703 }
duke@435 704
duke@435 705 //----------------------------------------------------------------------------------------------------
duke@435 706 // 'Forward' declarations of frequently used classes
duke@435 707 // (in order to reduce interface dependencies & reduce
duke@435 708 // number of unnecessary compilations after changes)
duke@435 709
duke@435 710 class symbolTable;
duke@435 711 class ClassFileStream;
duke@435 712
duke@435 713 class Event;
duke@435 714
duke@435 715 class Thread;
duke@435 716 class VMThread;
duke@435 717 class JavaThread;
duke@435 718 class Threads;
duke@435 719
duke@435 720 class VM_Operation;
duke@435 721 class VMOperationQueue;
duke@435 722
duke@435 723 class CodeBlob;
duke@435 724 class nmethod;
duke@435 725 class OSRAdapter;
duke@435 726 class I2CAdapter;
duke@435 727 class C2IAdapter;
duke@435 728 class CompiledIC;
duke@435 729 class relocInfo;
duke@435 730 class ScopeDesc;
duke@435 731 class PcDesc;
duke@435 732
duke@435 733 class Recompiler;
duke@435 734 class Recompilee;
duke@435 735 class RecompilationPolicy;
duke@435 736 class RFrame;
duke@435 737 class CompiledRFrame;
duke@435 738 class InterpretedRFrame;
duke@435 739
duke@435 740 class frame;
duke@435 741
duke@435 742 class vframe;
duke@435 743 class javaVFrame;
duke@435 744 class interpretedVFrame;
duke@435 745 class compiledVFrame;
duke@435 746 class deoptimizedVFrame;
duke@435 747 class externalVFrame;
duke@435 748 class entryVFrame;
duke@435 749
duke@435 750 class RegisterMap;
duke@435 751
duke@435 752 class Mutex;
duke@435 753 class Monitor;
duke@435 754 class BasicLock;
duke@435 755 class BasicObjectLock;
duke@435 756
duke@435 757 class PeriodicTask;
duke@435 758
duke@435 759 class JavaCallWrapper;
duke@435 760
duke@435 761 class oopDesc;
duke@435 762
duke@435 763 class NativeCall;
duke@435 764
duke@435 765 class zone;
duke@435 766
duke@435 767 class StubQueue;
duke@435 768
duke@435 769 class outputStream;
duke@435 770
duke@435 771 class ResourceArea;
duke@435 772
duke@435 773 class DebugInformationRecorder;
duke@435 774 class ScopeValue;
duke@435 775 class CompressedStream;
duke@435 776 class DebugInfoReadStream;
duke@435 777 class DebugInfoWriteStream;
duke@435 778 class LocationValue;
duke@435 779 class ConstantValue;
duke@435 780 class IllegalValue;
duke@435 781
duke@435 782 class PrivilegedElement;
duke@435 783 class MonitorArray;
duke@435 784
duke@435 785 class MonitorInfo;
duke@435 786
duke@435 787 class OffsetClosure;
duke@435 788 class OopMapCache;
duke@435 789 class InterpreterOopMap;
duke@435 790 class OopMapCacheEntry;
duke@435 791 class OSThread;
duke@435 792
duke@435 793 typedef int (*OSThreadStartFunc)(void*);
duke@435 794
duke@435 795 class Space;
duke@435 796
duke@435 797 class JavaValue;
duke@435 798 class methodHandle;
duke@435 799 class JavaCallArguments;
duke@435 800
duke@435 801 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 802
duke@435 803 extern void basic_fatal(const char* msg);
duke@435 804
duke@435 805
duke@435 806 //----------------------------------------------------------------------------------------------------
duke@435 807 // Special constants for debugging
duke@435 808
duke@435 809 const jint badInt = -3; // generic "bad int" value
duke@435 810 const long badAddressVal = -2; // generic "bad address" value
duke@435 811 const long badOopVal = -1; // generic "bad oop" value
duke@435 812 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 813 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 814 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 815 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 816 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 817 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 818 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
duke@435 819 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 820 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 821
duke@435 822
duke@435 823 // (These must be implemented as #defines because C++ compilers are
duke@435 824 // not obligated to inline non-integral constants!)
duke@435 825 #define badAddress ((address)::badAddressVal)
duke@435 826 #define badOop ((oop)::badOopVal)
duke@435 827 #define badHeapWord (::badHeapWordVal)
duke@435 828 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@435 829
duke@435 830
duke@435 831 //----------------------------------------------------------------------------------------------------
duke@435 832 // Utility functions for bitfield manipulations
duke@435 833
duke@435 834 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 835 const intptr_t NoBits = 0; // no bits set in a word
duke@435 836 const jlong NoLongBits = 0; // no bits set in a long
duke@435 837 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 838
duke@435 839 // get a word with the n.th or the right-most or left-most n bits set
duke@435 840 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 841 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 842 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 843 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 844
duke@435 845 // bit-operations using a mask m
duke@435 846 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 847 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 848 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 849 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 850 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 851
duke@435 852 // bit-operations using the n.th bit
duke@435 853 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 854 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 855 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 856
duke@435 857 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 858 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 859 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 860 }
duke@435 861
duke@435 862
duke@435 863 //----------------------------------------------------------------------------------------------------
duke@435 864 // Utility functions for integers
duke@435 865
duke@435 866 // Avoid use of global min/max macros which may cause unwanted double
duke@435 867 // evaluation of arguments.
duke@435 868 #ifdef max
duke@435 869 #undef max
duke@435 870 #endif
duke@435 871
duke@435 872 #ifdef min
duke@435 873 #undef min
duke@435 874 #endif
duke@435 875
duke@435 876 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 877 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 878
duke@435 879 // It is necessary to use templates here. Having normal overloaded
duke@435 880 // functions does not work because it is necessary to provide both 32-
duke@435 881 // and 64-bit overloaded functions, which does not work, and having
duke@435 882 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 883 // will be even more error-prone than macros.
duke@435 884 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 885 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 886 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 887 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 888 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 889 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 890
duke@435 891 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 892
duke@435 893 // true if x is a power of 2, false otherwise
duke@435 894 inline bool is_power_of_2(intptr_t x) {
duke@435 895 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 896 }
duke@435 897
duke@435 898 // long version of is_power_of_2
duke@435 899 inline bool is_power_of_2_long(jlong x) {
duke@435 900 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 901 }
duke@435 902
duke@435 903 //* largest i such that 2^i <= x
duke@435 904 // A negative value of 'x' will return '31'
duke@435 905 inline int log2_intptr(intptr_t x) {
duke@435 906 int i = -1;
duke@435 907 uintptr_t p = 1;
duke@435 908 while (p != 0 && p <= (uintptr_t)x) {
duke@435 909 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 910 i++; p *= 2;
duke@435 911 }
duke@435 912 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 913 // (if p = 0 then overflow occurred and i = 31)
duke@435 914 return i;
duke@435 915 }
duke@435 916
duke@435 917 //* largest i such that 2^i <= x
duke@435 918 // A negative value of 'x' will return '63'
duke@435 919 inline int log2_long(jlong x) {
duke@435 920 int i = -1;
duke@435 921 julong p = 1;
duke@435 922 while (p != 0 && p <= (julong)x) {
duke@435 923 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 924 i++; p *= 2;
duke@435 925 }
duke@435 926 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 927 // (if p = 0 then overflow occurred and i = 63)
duke@435 928 return i;
duke@435 929 }
duke@435 930
duke@435 931 //* the argument must be exactly a power of 2
duke@435 932 inline int exact_log2(intptr_t x) {
duke@435 933 #ifdef ASSERT
duke@435 934 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 935 #endif
duke@435 936 return log2_intptr(x);
duke@435 937 }
duke@435 938
twisti@1003 939 //* the argument must be exactly a power of 2
twisti@1003 940 inline int exact_log2_long(jlong x) {
twisti@1003 941 #ifdef ASSERT
twisti@1003 942 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 943 #endif
twisti@1003 944 return log2_long(x);
twisti@1003 945 }
twisti@1003 946
duke@435 947
duke@435 948 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 949 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 950 #ifdef ASSERT
duke@435 951 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 952 #endif
duke@435 953 const uintx m = s - 1;
duke@435 954 return mask_bits(x + m, ~m);
duke@435 955 }
duke@435 956
duke@435 957 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 958 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 959 #ifdef ASSERT
duke@435 960 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 961 #endif
duke@435 962 const uintx m = s - 1;
duke@435 963 return mask_bits(x, ~m);
duke@435 964 }
duke@435 965
duke@435 966
duke@435 967 inline bool is_odd (intx x) { return x & 1; }
duke@435 968 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 969
duke@435 970 // "to" should be greater than "from."
duke@435 971 inline intx byte_size(void* from, void* to) {
duke@435 972 return (address)to - (address)from;
duke@435 973 }
duke@435 974
duke@435 975 //----------------------------------------------------------------------------------------------------
duke@435 976 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 977
duke@435 978 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 979 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 980
duke@435 981 // Given sequence of four bytes, build into a 32-bit word
duke@435 982 // following the conventions used in class files.
duke@435 983 // On the 386, this could be realized with a simple address cast.
duke@435 984 //
duke@435 985
duke@435 986 // This routine takes eight bytes:
duke@435 987 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 988 return ( u8(c1) << 56 ) & ( u8(0xff) << 56 )
duke@435 989 | ( u8(c2) << 48 ) & ( u8(0xff) << 48 )
duke@435 990 | ( u8(c3) << 40 ) & ( u8(0xff) << 40 )
duke@435 991 | ( u8(c4) << 32 ) & ( u8(0xff) << 32 )
duke@435 992 | ( u8(c5) << 24 ) & ( u8(0xff) << 24 )
duke@435 993 | ( u8(c6) << 16 ) & ( u8(0xff) << 16 )
duke@435 994 | ( u8(c7) << 8 ) & ( u8(0xff) << 8 )
duke@435 995 | ( u8(c8) << 0 ) & ( u8(0xff) << 0 );
duke@435 996 }
duke@435 997
duke@435 998 // This routine takes four bytes:
duke@435 999 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1000 return ( u4(c1) << 24 ) & 0xff000000
duke@435 1001 | ( u4(c2) << 16 ) & 0x00ff0000
duke@435 1002 | ( u4(c3) << 8 ) & 0x0000ff00
duke@435 1003 | ( u4(c4) << 0 ) & 0x000000ff;
duke@435 1004 }
duke@435 1005
duke@435 1006 // And this one works if the four bytes are contiguous in memory:
duke@435 1007 inline u4 build_u4_from( u1* p ) {
duke@435 1008 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1009 }
duke@435 1010
duke@435 1011 // Ditto for two-byte ints:
duke@435 1012 inline u2 build_u2_from( u1 c1, u1 c2 ) {
duke@435 1013 return u2(( u2(c1) << 8 ) & 0xff00
duke@435 1014 | ( u2(c2) << 0 ) & 0x00ff);
duke@435 1015 }
duke@435 1016
duke@435 1017 // And this one works if the two bytes are contiguous in memory:
duke@435 1018 inline u2 build_u2_from( u1* p ) {
duke@435 1019 return build_u2_from( p[0], p[1] );
duke@435 1020 }
duke@435 1021
duke@435 1022 // Ditto for floats:
duke@435 1023 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1024 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1025 return *(jfloat*)&u;
duke@435 1026 }
duke@435 1027
duke@435 1028 inline jfloat build_float_from( u1* p ) {
duke@435 1029 u4 u = build_u4_from( p );
duke@435 1030 return *(jfloat*)&u;
duke@435 1031 }
duke@435 1032
duke@435 1033
duke@435 1034 // now (64-bit) longs
duke@435 1035
duke@435 1036 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1037 return ( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )
duke@435 1038 | ( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )
duke@435 1039 | ( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )
duke@435 1040 | ( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )
duke@435 1041 | ( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )
duke@435 1042 | ( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )
duke@435 1043 | ( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )
duke@435 1044 | ( jlong(c8) << 0 ) & ( jlong(0xff) << 0 );
duke@435 1045 }
duke@435 1046
duke@435 1047 inline jlong build_long_from( u1* p ) {
duke@435 1048 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 // Doubles, too!
duke@435 1053 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1054 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1055 return *(jdouble*)&u;
duke@435 1056 }
duke@435 1057
duke@435 1058 inline jdouble build_double_from( u1* p ) {
duke@435 1059 jlong u = build_long_from( p );
duke@435 1060 return *(jdouble*)&u;
duke@435 1061 }
duke@435 1062
duke@435 1063
duke@435 1064 // Portable routines to go the other way:
duke@435 1065
duke@435 1066 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1067 c1 = u1(x >> 8);
duke@435 1068 c2 = u1(x);
duke@435 1069 }
duke@435 1070
duke@435 1071 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1072 explode_short_to( x, p[0], p[1]);
duke@435 1073 }
duke@435 1074
duke@435 1075 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1076 c1 = u1(x >> 24);
duke@435 1077 c2 = u1(x >> 16);
duke@435 1078 c3 = u1(x >> 8);
duke@435 1079 c4 = u1(x);
duke@435 1080 }
duke@435 1081
duke@435 1082 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1083 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1084 }
duke@435 1085
duke@435 1086
duke@435 1087 // Pack and extract shorts to/from ints:
duke@435 1088
duke@435 1089 inline int extract_low_short_from_int(jint x) {
duke@435 1090 return x & 0xffff;
duke@435 1091 }
duke@435 1092
duke@435 1093 inline int extract_high_short_from_int(jint x) {
duke@435 1094 return (x >> 16) & 0xffff;
duke@435 1095 }
duke@435 1096
duke@435 1097 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1098 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1099 }
duke@435 1100
duke@435 1101 // Printf-style formatters for fixed- and variable-width types as pointers and
duke@435 1102 // integers.
duke@435 1103 //
duke@435 1104 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1105 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
duke@435 1106 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
duke@435 1107 // (in ILP32).
duke@435 1108
duke@435 1109 // Format 32-bit quantities.
duke@435 1110 #define INT32_FORMAT "%d"
duke@435 1111 #define UINT32_FORMAT "%u"
duke@435 1112 #define INT32_FORMAT_W(width) "%" #width "d"
duke@435 1113 #define UINT32_FORMAT_W(width) "%" #width "u"
duke@435 1114
duke@435 1115 #define PTR32_FORMAT "0x%08x"
duke@435 1116
duke@435 1117 // Format 64-bit quantities.
duke@435 1118 #define INT64_FORMAT "%" FORMAT64_MODIFIER "d"
duke@435 1119 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
duke@435 1120 #define PTR64_FORMAT "0x%016" FORMAT64_MODIFIER "x"
duke@435 1121
duke@435 1122 #define INT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "d"
duke@435 1123 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
duke@435 1124
duke@435 1125 // Format macros that allow the field width to be specified. The width must be
duke@435 1126 // a string literal (e.g., "8") or a macro that evaluates to one.
duke@435 1127 #ifdef _LP64
xlu@948 1128 #define UINTX_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1129 #define SSIZE_FORMAT_W(width) INT64_FORMAT_W(width)
duke@435 1130 #define SIZE_FORMAT_W(width) UINT64_FORMAT_W(width)
duke@435 1131 #else
xlu@948 1132 #define UINTX_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1133 #define SSIZE_FORMAT_W(width) INT32_FORMAT_W(width)
duke@435 1134 #define SIZE_FORMAT_W(width) UINT32_FORMAT_W(width)
duke@435 1135 #endif // _LP64
duke@435 1136
duke@435 1137 // Format pointers and size_t (or size_t-like integer types) which change size
xlu@948 1138 // between 32- and 64-bit. The pointer format theoretically should be "%p",
xlu@948 1139 // however, it has different output on different platforms. On Windows, the data
xlu@948 1140 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
xlu@948 1141 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
xlu@948 1142 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
xlu@948 1143 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
xlu@948 1144 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
xlu@948 1145 // using "%x".
duke@435 1146 #ifdef _LP64
duke@435 1147 #define PTR_FORMAT PTR64_FORMAT
duke@435 1148 #define UINTX_FORMAT UINT64_FORMAT
duke@435 1149 #define INTX_FORMAT INT64_FORMAT
duke@435 1150 #define SIZE_FORMAT UINT64_FORMAT
duke@435 1151 #define SSIZE_FORMAT INT64_FORMAT
duke@435 1152 #else // !_LP64
duke@435 1153 #define PTR_FORMAT PTR32_FORMAT
duke@435 1154 #define UINTX_FORMAT UINT32_FORMAT
duke@435 1155 #define INTX_FORMAT INT32_FORMAT
duke@435 1156 #define SIZE_FORMAT UINT32_FORMAT
duke@435 1157 #define SSIZE_FORMAT INT32_FORMAT
duke@435 1158 #endif // _LP64
duke@435 1159
duke@435 1160 #define INTPTR_FORMAT PTR_FORMAT
duke@435 1161
duke@435 1162 // Enable zap-a-lot if in debug version.
duke@435 1163
duke@435 1164 # ifdef ASSERT
duke@435 1165 # ifdef COMPILER2
duke@435 1166 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1167 #endif /* COMPILER2 */
duke@435 1168 # endif /* ASSERT */
duke@435 1169
duke@435 1170 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial