src/share/vm/opto/block.hpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 3138
f6f3bb0ee072
child 3316
f03a3c8bd5e5
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

duke@435 1 /*
never@3138 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
stefank@2314 26 #define SHARE_VM_OPTO_BLOCK_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/phase.hpp"
stefank@2314 31
duke@435 32 // Optimization - Graph Style
duke@435 33
duke@435 34 class Block;
duke@435 35 class CFGLoop;
duke@435 36 class MachCallNode;
duke@435 37 class Matcher;
duke@435 38 class RootNode;
duke@435 39 class VectorSet;
duke@435 40 struct Tarjan;
duke@435 41
duke@435 42 //------------------------------Block_Array------------------------------------
duke@435 43 // Map dense integer indices to Blocks. Uses classic doubling-array trick.
duke@435 44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
duke@435 45 // Note that the constructor just zeros things, and since I use Arena
duke@435 46 // allocation I do not need a destructor to reclaim storage.
duke@435 47 class Block_Array : public ResourceObj {
never@3138 48 friend class VMStructs;
duke@435 49 uint _size; // allocated size, as opposed to formal limit
duke@435 50 debug_only(uint _limit;) // limit to formal domain
duke@435 51 protected:
duke@435 52 Block **_blocks;
duke@435 53 void grow( uint i ); // Grow array node to fit
duke@435 54
duke@435 55 public:
duke@435 56 Arena *_arena; // Arena to allocate in
duke@435 57
duke@435 58 Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
duke@435 59 debug_only(_limit=0);
duke@435 60 _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
duke@435 61 for( int i = 0; i < OptoBlockListSize; i++ ) {
duke@435 62 _blocks[i] = NULL;
duke@435 63 }
duke@435 64 }
duke@435 65 Block *lookup( uint i ) const // Lookup, or NULL for not mapped
duke@435 66 { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
duke@435 67 Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
duke@435 68 { assert( i < Max(), "oob" ); return _blocks[i]; }
duke@435 69 // Extend the mapping: index i maps to Block *n.
duke@435 70 void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
duke@435 71 uint Max() const { debug_only(return _limit); return _size; }
duke@435 72 };
duke@435 73
duke@435 74
duke@435 75 class Block_List : public Block_Array {
never@3138 76 friend class VMStructs;
duke@435 77 public:
duke@435 78 uint _cnt;
duke@435 79 Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
duke@435 80 void push( Block *b ) { map(_cnt++,b); }
duke@435 81 Block *pop() { return _blocks[--_cnt]; }
duke@435 82 Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
duke@435 83 void remove( uint i );
duke@435 84 void insert( uint i, Block *n );
duke@435 85 uint size() const { return _cnt; }
duke@435 86 void reset() { _cnt = 0; }
rasbold@853 87 void print();
duke@435 88 };
duke@435 89
duke@435 90
duke@435 91 class CFGElement : public ResourceObj {
never@3138 92 friend class VMStructs;
duke@435 93 public:
duke@435 94 float _freq; // Execution frequency (estimate)
duke@435 95
duke@435 96 CFGElement() : _freq(0.0f) {}
duke@435 97 virtual bool is_block() { return false; }
duke@435 98 virtual bool is_loop() { return false; }
duke@435 99 Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
duke@435 100 CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
duke@435 101 };
duke@435 102
duke@435 103 //------------------------------Block------------------------------------------
duke@435 104 // This class defines a Basic Block.
duke@435 105 // Basic blocks are used during the output routines, and are not used during
duke@435 106 // any optimization pass. They are created late in the game.
duke@435 107 class Block : public CFGElement {
never@3138 108 friend class VMStructs;
duke@435 109 public:
duke@435 110 // Nodes in this block, in order
duke@435 111 Node_List _nodes;
duke@435 112
duke@435 113 // Basic blocks have a Node which defines Control for all Nodes pinned in
duke@435 114 // this block. This Node is a RegionNode. Exception-causing Nodes
duke@435 115 // (division, subroutines) and Phi functions are always pinned. Later,
duke@435 116 // every Node will get pinned to some block.
duke@435 117 Node *head() const { return _nodes[0]; }
duke@435 118
duke@435 119 // CAUTION: num_preds() is ONE based, so that predecessor numbers match
duke@435 120 // input edges to Regions and Phis.
duke@435 121 uint num_preds() const { return head()->req(); }
duke@435 122 Node *pred(uint i) const { return head()->in(i); }
duke@435 123
duke@435 124 // Array of successor blocks, same size as projs array
duke@435 125 Block_Array _succs;
duke@435 126
duke@435 127 // Basic blocks have some number of Nodes which split control to all
duke@435 128 // following blocks. These Nodes are always Projections. The field in
duke@435 129 // the Projection and the block-ending Node determine which Block follows.
duke@435 130 uint _num_succs;
duke@435 131
duke@435 132 // Basic blocks also carry all sorts of good old fashioned DFS information
duke@435 133 // used to find loops, loop nesting depth, dominators, etc.
duke@435 134 uint _pre_order; // Pre-order DFS number
duke@435 135
duke@435 136 // Dominator tree
duke@435 137 uint _dom_depth; // Depth in dominator tree for fast LCA
duke@435 138 Block* _idom; // Immediate dominator block
duke@435 139
duke@435 140 CFGLoop *_loop; // Loop to which this block belongs
duke@435 141 uint _rpo; // Number in reverse post order walk
duke@435 142
duke@435 143 virtual bool is_block() { return true; }
rasbold@853 144 float succ_prob(uint i); // return probability of i'th successor
rasbold@853 145 int num_fall_throughs(); // How many fall-through candidate this block has
rasbold@853 146 void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
rasbold@853 147 bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
rasbold@853 148 Block* lone_fall_through(); // Return lone fall-through Block or null
duke@435 149
duke@435 150 Block* dom_lca(Block* that); // Compute LCA in dominator tree.
duke@435 151 #ifdef ASSERT
duke@435 152 bool dominates(Block* that) {
duke@435 153 int dom_diff = this->_dom_depth - that->_dom_depth;
duke@435 154 if (dom_diff > 0) return false;
duke@435 155 for (; dom_diff < 0; dom_diff++) that = that->_idom;
duke@435 156 return this == that;
duke@435 157 }
duke@435 158 #endif
duke@435 159
duke@435 160 // Report the alignment required by this block. Must be a power of 2.
duke@435 161 // The previous block will insert nops to get this alignment.
duke@435 162 uint code_alignment();
rasbold@853 163 uint compute_loop_alignment();
duke@435 164
duke@435 165 // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
duke@435 166 // It is currently also used to scale such frequencies relative to
duke@435 167 // FreqCountInvocations relative to the old value of 1500.
duke@435 168 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
duke@435 169
duke@435 170 // Register Pressure (estimate) for Splitting heuristic
duke@435 171 uint _reg_pressure;
duke@435 172 uint _ihrp_index;
duke@435 173 uint _freg_pressure;
duke@435 174 uint _fhrp_index;
duke@435 175
duke@435 176 // Mark and visited bits for an LCA calculation in insert_anti_dependences.
duke@435 177 // Since they hold unique node indexes, they do not need reinitialization.
duke@435 178 node_idx_t _raise_LCA_mark;
duke@435 179 void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
duke@435 180 node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
duke@435 181 node_idx_t _raise_LCA_visited;
duke@435 182 void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
duke@435 183 node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
duke@435 184
duke@435 185 // Estimated size in bytes of first instructions in a loop.
duke@435 186 uint _first_inst_size;
duke@435 187 uint first_inst_size() const { return _first_inst_size; }
duke@435 188 void set_first_inst_size(uint s) { _first_inst_size = s; }
duke@435 189
duke@435 190 // Compute the size of first instructions in this block.
duke@435 191 uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
duke@435 192
duke@435 193 // Compute alignment padding if the block needs it.
duke@435 194 // Align a loop if loop's padding is less or equal to padding limit
duke@435 195 // or the size of first instructions in the loop > padding.
duke@435 196 uint alignment_padding(int current_offset) {
duke@435 197 int block_alignment = code_alignment();
duke@435 198 int max_pad = block_alignment-relocInfo::addr_unit();
duke@435 199 if( max_pad > 0 ) {
duke@435 200 assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
duke@435 201 int current_alignment = current_offset & max_pad;
duke@435 202 if( current_alignment != 0 ) {
duke@435 203 uint padding = (block_alignment-current_alignment) & max_pad;
rasbold@853 204 if( has_loop_alignment() &&
rasbold@853 205 padding > (uint)MaxLoopPad &&
rasbold@853 206 first_inst_size() <= padding ) {
rasbold@853 207 return 0;
duke@435 208 }
rasbold@853 209 return padding;
duke@435 210 }
duke@435 211 }
duke@435 212 return 0;
duke@435 213 }
duke@435 214
duke@435 215 // Connector blocks. Connector blocks are basic blocks devoid of
duke@435 216 // instructions, but may have relevant non-instruction Nodes, such as
duke@435 217 // Phis or MergeMems. Such blocks are discovered and marked during the
duke@435 218 // RemoveEmpty phase, and elided during Output.
duke@435 219 bool _connector;
duke@435 220 void set_connector() { _connector = true; }
duke@435 221 bool is_connector() const { return _connector; };
duke@435 222
rasbold@853 223 // Loop_alignment will be set for blocks which are at the top of loops.
rasbold@853 224 // The block layout pass may rotate loops such that the loop head may not
rasbold@853 225 // be the sequentially first block of the loop encountered in the linear
rasbold@853 226 // list of blocks. If the layout pass is not run, loop alignment is set
rasbold@853 227 // for each block which is the head of a loop.
rasbold@853 228 uint _loop_alignment;
rasbold@853 229 void set_loop_alignment(Block *loop_top) {
rasbold@853 230 uint new_alignment = loop_top->compute_loop_alignment();
rasbold@853 231 if (new_alignment > _loop_alignment) {
rasbold@853 232 _loop_alignment = new_alignment;
rasbold@853 233 }
rasbold@853 234 }
rasbold@853 235 uint loop_alignment() const { return _loop_alignment; }
rasbold@853 236 bool has_loop_alignment() const { return loop_alignment() > 0; }
rasbold@853 237
duke@435 238 // Create a new Block with given head Node.
duke@435 239 // Creates the (empty) predecessor arrays.
duke@435 240 Block( Arena *a, Node *headnode )
duke@435 241 : CFGElement(),
duke@435 242 _nodes(a),
duke@435 243 _succs(a),
duke@435 244 _num_succs(0),
duke@435 245 _pre_order(0),
duke@435 246 _idom(0),
duke@435 247 _loop(NULL),
duke@435 248 _reg_pressure(0),
duke@435 249 _ihrp_index(1),
duke@435 250 _freg_pressure(0),
duke@435 251 _fhrp_index(1),
duke@435 252 _raise_LCA_mark(0),
duke@435 253 _raise_LCA_visited(0),
duke@435 254 _first_inst_size(999999),
rasbold@853 255 _connector(false),
rasbold@853 256 _loop_alignment(0) {
duke@435 257 _nodes.push(headnode);
duke@435 258 }
duke@435 259
duke@435 260 // Index of 'end' Node
duke@435 261 uint end_idx() const {
duke@435 262 // %%%%% add a proj after every goto
duke@435 263 // so (last->is_block_proj() != last) always, then simplify this code
duke@435 264 // This will not give correct end_idx for block 0 when it only contains root.
duke@435 265 int last_idx = _nodes.size() - 1;
duke@435 266 Node *last = _nodes[last_idx];
duke@435 267 assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
duke@435 268 return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
duke@435 269 }
duke@435 270
duke@435 271 // Basic blocks have a Node which ends them. This Node determines which
duke@435 272 // basic block follows this one in the program flow. This Node is either an
duke@435 273 // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
duke@435 274 Node *end() const { return _nodes[end_idx()]; }
duke@435 275
duke@435 276 // Add an instruction to an existing block. It must go after the head
duke@435 277 // instruction and before the end instruction.
duke@435 278 void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
duke@435 279 // Find node in block
duke@435 280 uint find_node( const Node *n ) const;
duke@435 281 // Find and remove n from block list
duke@435 282 void find_remove( const Node *n );
duke@435 283
duke@435 284 // Schedule a call next in the block
duke@435 285 uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
duke@435 286
duke@435 287 // Perform basic-block local scheduling
duke@435 288 Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
duke@435 289 void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
duke@435 290 void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
duke@435 291 bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
duke@435 292 // Cleanup if any code lands between a Call and his Catch
duke@435 293 void call_catch_cleanup(Block_Array &bbs);
duke@435 294 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 295 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 296 // I can generate a memory op if there is not one nearby.
duke@435 297 void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
duke@435 298
duke@435 299 // Return the empty status of a block
duke@435 300 enum { not_empty, empty_with_goto, completely_empty };
duke@435 301 int is_Empty() const;
duke@435 302
duke@435 303 // Forward through connectors
duke@435 304 Block* non_connector() {
duke@435 305 Block* s = this;
duke@435 306 while (s->is_connector()) {
duke@435 307 s = s->_succs[0];
duke@435 308 }
duke@435 309 return s;
duke@435 310 }
duke@435 311
rasbold@853 312 // Return true if b is a successor of this block
rasbold@853 313 bool has_successor(Block* b) const {
rasbold@853 314 for (uint i = 0; i < _num_succs; i++ ) {
rasbold@853 315 if (non_connector_successor(i) == b) {
rasbold@853 316 return true;
rasbold@853 317 }
rasbold@853 318 }
rasbold@853 319 return false;
rasbold@853 320 }
rasbold@853 321
duke@435 322 // Successor block, after forwarding through connectors
duke@435 323 Block* non_connector_successor(int i) const {
duke@435 324 return _succs[i]->non_connector();
duke@435 325 }
duke@435 326
duke@435 327 // Examine block's code shape to predict if it is not commonly executed.
duke@435 328 bool has_uncommon_code() const;
duke@435 329
duke@435 330 // Use frequency calculations and code shape to predict if the block
duke@435 331 // is uncommon.
duke@435 332 bool is_uncommon( Block_Array &bbs ) const;
duke@435 333
duke@435 334 #ifndef PRODUCT
duke@435 335 // Debugging print of basic block
kvn@3049 336 void dump_bidx(const Block* orig, outputStream* st = tty) const;
kvn@3049 337 void dump_pred(const Block_Array *bbs, Block* orig, outputStream* st = tty) const;
kvn@3049 338 void dump_head( const Block_Array *bbs, outputStream* st = tty ) const;
kvn@3049 339 void dump() const;
duke@435 340 void dump( const Block_Array *bbs ) const;
duke@435 341 #endif
duke@435 342 };
duke@435 343
duke@435 344
duke@435 345 //------------------------------PhaseCFG---------------------------------------
duke@435 346 // Build an array of Basic Block pointers, one per Node.
duke@435 347 class PhaseCFG : public Phase {
never@3138 348 friend class VMStructs;
duke@435 349 private:
duke@435 350 // Build a proper looking cfg. Return count of basic blocks
duke@435 351 uint build_cfg();
duke@435 352
duke@435 353 // Perform DFS search.
duke@435 354 // Setup 'vertex' as DFS to vertex mapping.
duke@435 355 // Setup 'semi' as vertex to DFS mapping.
duke@435 356 // Set 'parent' to DFS parent.
duke@435 357 uint DFS( Tarjan *tarjan );
duke@435 358
duke@435 359 // Helper function to insert a node into a block
duke@435 360 void schedule_node_into_block( Node *n, Block *b );
duke@435 361
kvn@1039 362 void replace_block_proj_ctrl( Node *n );
kvn@1036 363
duke@435 364 // Set the basic block for pinned Nodes
duke@435 365 void schedule_pinned_nodes( VectorSet &visited );
duke@435 366
duke@435 367 // I'll need a few machine-specific GotoNodes. Clone from this one.
duke@435 368 MachNode *_goto;
duke@435 369
duke@435 370 Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
duke@435 371 void verify_anti_dependences(Block* LCA, Node* load) {
duke@435 372 assert(LCA == _bbs[load->_idx], "should already be scheduled");
duke@435 373 insert_anti_dependences(LCA, load, true);
duke@435 374 }
duke@435 375
duke@435 376 public:
duke@435 377 PhaseCFG( Arena *a, RootNode *r, Matcher &m );
duke@435 378
duke@435 379 uint _num_blocks; // Count of basic blocks
duke@435 380 Block_List _blocks; // List of basic blocks
duke@435 381 RootNode *_root; // Root of whole program
duke@435 382 Block_Array _bbs; // Map Nodes to owning Basic Block
duke@435 383 Block *_broot; // Basic block of root
duke@435 384 uint _rpo_ctr;
duke@435 385 CFGLoop* _root_loop;
kvn@1108 386 float _outer_loop_freq; // Outmost loop frequency
duke@435 387
duke@435 388 // Per node latency estimation, valid only during GCM
kvn@2040 389 GrowableArray<uint> *_node_latency;
duke@435 390
duke@435 391 #ifndef PRODUCT
duke@435 392 bool _trace_opto_pipelining; // tracing flag
duke@435 393 #endif
duke@435 394
kvn@1268 395 #ifdef ASSERT
kvn@1268 396 Unique_Node_List _raw_oops;
kvn@1268 397 #endif
kvn@1268 398
duke@435 399 // Build dominators
duke@435 400 void Dominators();
duke@435 401
duke@435 402 // Estimate block frequencies based on IfNode probabilities
duke@435 403 void Estimate_Block_Frequency();
duke@435 404
duke@435 405 // Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
duke@435 406 // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
duke@435 407 void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
duke@435 408
duke@435 409 // Compute the (backwards) latency of a node from the uses
duke@435 410 void latency_from_uses(Node *n);
duke@435 411
duke@435 412 // Compute the (backwards) latency of a node from a single use
duke@435 413 int latency_from_use(Node *n, const Node *def, Node *use);
duke@435 414
duke@435 415 // Compute the (backwards) latency of a node from the uses of this instruction
duke@435 416 void partial_latency_of_defs(Node *n);
duke@435 417
duke@435 418 // Schedule Nodes early in their basic blocks.
duke@435 419 bool schedule_early(VectorSet &visited, Node_List &roots);
duke@435 420
duke@435 421 // For each node, find the latest block it can be scheduled into
duke@435 422 // and then select the cheapest block between the latest and earliest
duke@435 423 // block to place the node.
duke@435 424 void schedule_late(VectorSet &visited, Node_List &stack);
duke@435 425
duke@435 426 // Pick a block between early and late that is a cheaper alternative
duke@435 427 // to late. Helper for schedule_late.
duke@435 428 Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
duke@435 429
duke@435 430 // Compute the instruction global latency with a backwards walk
duke@435 431 void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
duke@435 432
rasbold@853 433 // Set loop alignment
rasbold@853 434 void set_loop_alignment();
rasbold@853 435
duke@435 436 // Remove empty basic blocks
rasbold@853 437 void remove_empty();
rasbold@853 438 void fixup_flow();
rasbold@853 439 bool move_to_next(Block* bx, uint b_index);
rasbold@853 440 void move_to_end(Block* bx, uint b_index);
rasbold@853 441 void insert_goto_at(uint block_no, uint succ_no);
duke@435 442
duke@435 443 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 444 // true target. NeverBranch are treated as a conditional branch that always
duke@435 445 // goes the same direction for most of the optimizer and are used to give a
duke@435 446 // fake exit path to infinite loops. At this late stage they need to turn
duke@435 447 // into Goto's so that when you enter the infinite loop you indeed hang.
duke@435 448 void convert_NeverBranch_to_Goto(Block *b);
duke@435 449
duke@435 450 CFGLoop* create_loop_tree();
duke@435 451
duke@435 452 // Insert a node into a block, and update the _bbs
duke@435 453 void insert( Block *b, uint idx, Node *n ) {
duke@435 454 b->_nodes.insert( idx, n );
duke@435 455 _bbs.map( n->_idx, b );
duke@435 456 }
duke@435 457
duke@435 458 #ifndef PRODUCT
duke@435 459 bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
duke@435 460
duke@435 461 // Debugging print of CFG
duke@435 462 void dump( ) const; // CFG only
duke@435 463 void _dump_cfg( const Node *end, VectorSet &visited ) const;
duke@435 464 void verify() const;
duke@435 465 void dump_headers();
duke@435 466 #else
duke@435 467 bool trace_opto_pipelining() const { return false; }
duke@435 468 #endif
duke@435 469 };
duke@435 470
duke@435 471
rasbold@853 472 //------------------------------UnionFind--------------------------------------
duke@435 473 // Map Block indices to a block-index for a cfg-cover.
duke@435 474 // Array lookup in the optimized case.
duke@435 475 class UnionFind : public ResourceObj {
duke@435 476 uint _cnt, _max;
duke@435 477 uint* _indices;
duke@435 478 ReallocMark _nesting; // assertion check for reallocations
duke@435 479 public:
duke@435 480 UnionFind( uint max );
duke@435 481 void reset( uint max ); // Reset to identity map for [0..max]
duke@435 482
duke@435 483 uint lookup( uint nidx ) const {
duke@435 484 return _indices[nidx];
duke@435 485 }
duke@435 486 uint operator[] (uint nidx) const { return lookup(nidx); }
duke@435 487
duke@435 488 void map( uint from_idx, uint to_idx ) {
duke@435 489 assert( from_idx < _cnt, "oob" );
duke@435 490 _indices[from_idx] = to_idx;
duke@435 491 }
duke@435 492 void extend( uint from_idx, uint to_idx );
duke@435 493
duke@435 494 uint Size() const { return _cnt; }
duke@435 495
duke@435 496 uint Find( uint idx ) {
duke@435 497 assert( idx < 65536, "Must fit into uint");
duke@435 498 uint uf_idx = lookup(idx);
duke@435 499 return (uf_idx == idx) ? uf_idx : Find_compress(idx);
duke@435 500 }
duke@435 501 uint Find_compress( uint idx );
duke@435 502 uint Find_const( uint idx ) const;
duke@435 503 void Union( uint idx1, uint idx2 );
duke@435 504
duke@435 505 };
duke@435 506
duke@435 507 //----------------------------BlockProbPair---------------------------
duke@435 508 // Ordered pair of Node*.
duke@435 509 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
duke@435 510 protected:
duke@435 511 Block* _target; // block target
duke@435 512 float _prob; // probability of edge to block
duke@435 513 public:
duke@435 514 BlockProbPair() : _target(NULL), _prob(0.0) {}
duke@435 515 BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
duke@435 516
duke@435 517 Block* get_target() const { return _target; }
duke@435 518 float get_prob() const { return _prob; }
duke@435 519 };
duke@435 520
duke@435 521 //------------------------------CFGLoop-------------------------------------------
duke@435 522 class CFGLoop : public CFGElement {
never@3138 523 friend class VMStructs;
duke@435 524 int _id;
duke@435 525 int _depth;
duke@435 526 CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
duke@435 527 CFGLoop *_sibling; // null terminated list
duke@435 528 CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
duke@435 529 GrowableArray<CFGElement*> _members; // list of members of loop
duke@435 530 GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
duke@435 531 float _exit_prob; // probability any loop exit is taken on a single loop iteration
duke@435 532 void update_succ_freq(Block* b, float freq);
duke@435 533
duke@435 534 public:
duke@435 535 CFGLoop(int id) :
duke@435 536 CFGElement(),
duke@435 537 _id(id),
duke@435 538 _depth(0),
duke@435 539 _parent(NULL),
duke@435 540 _sibling(NULL),
duke@435 541 _child(NULL),
duke@435 542 _exit_prob(1.0f) {}
duke@435 543 CFGLoop* parent() { return _parent; }
duke@435 544 void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
duke@435 545 void add_member(CFGElement *s) { _members.push(s); }
duke@435 546 void add_nested_loop(CFGLoop* cl);
duke@435 547 Block* head() {
duke@435 548 assert(_members.at(0)->is_block(), "head must be a block");
duke@435 549 Block* hd = _members.at(0)->as_Block();
duke@435 550 assert(hd->_loop == this, "just checking");
duke@435 551 assert(hd->head()->is_Loop(), "must begin with loop head node");
duke@435 552 return hd;
duke@435 553 }
duke@435 554 Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
duke@435 555 void compute_loop_depth(int depth);
duke@435 556 void compute_freq(); // compute frequency with loop assuming head freq 1.0f
duke@435 557 void scale_freq(); // scale frequency by loop trip count (including outer loops)
kvn@1108 558 float outer_loop_freq() const; // frequency of outer loop
duke@435 559 bool in_loop_nest(Block* b);
duke@435 560 float trip_count() const { return 1.0f / _exit_prob; }
duke@435 561 virtual bool is_loop() { return true; }
duke@435 562 int id() { return _id; }
duke@435 563
duke@435 564 #ifndef PRODUCT
duke@435 565 void dump( ) const;
duke@435 566 void dump_tree() const;
duke@435 567 #endif
duke@435 568 };
rasbold@853 569
rasbold@853 570
rasbold@853 571 //----------------------------------CFGEdge------------------------------------
rasbold@853 572 // A edge between two basic blocks that will be embodied by a branch or a
rasbold@853 573 // fall-through.
rasbold@853 574 class CFGEdge : public ResourceObj {
never@3138 575 friend class VMStructs;
rasbold@853 576 private:
rasbold@853 577 Block * _from; // Source basic block
rasbold@853 578 Block * _to; // Destination basic block
rasbold@853 579 float _freq; // Execution frequency (estimate)
rasbold@853 580 int _state;
rasbold@853 581 bool _infrequent;
rasbold@853 582 int _from_pct;
rasbold@853 583 int _to_pct;
rasbold@853 584
rasbold@853 585 // Private accessors
rasbold@853 586 int from_pct() const { return _from_pct; }
rasbold@853 587 int to_pct() const { return _to_pct; }
rasbold@853 588 int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
rasbold@853 589 int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; }
rasbold@853 590
rasbold@853 591 public:
rasbold@853 592 enum {
rasbold@853 593 open, // initial edge state; unprocessed
rasbold@853 594 connected, // edge used to connect two traces together
rasbold@853 595 interior // edge is interior to trace (could be backedge)
rasbold@853 596 };
rasbold@853 597
rasbold@853 598 CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
rasbold@853 599 _from(from), _to(to), _freq(freq),
rasbold@853 600 _from_pct(from_pct), _to_pct(to_pct), _state(open) {
rasbold@853 601 _infrequent = from_infrequent() || to_infrequent();
rasbold@853 602 }
rasbold@853 603
rasbold@853 604 float freq() const { return _freq; }
rasbold@853 605 Block* from() const { return _from; }
rasbold@853 606 Block* to () const { return _to; }
rasbold@853 607 int infrequent() const { return _infrequent; }
rasbold@853 608 int state() const { return _state; }
rasbold@853 609
rasbold@853 610 void set_state(int state) { _state = state; }
rasbold@853 611
rasbold@853 612 #ifndef PRODUCT
rasbold@853 613 void dump( ) const;
rasbold@853 614 #endif
rasbold@853 615 };
rasbold@853 616
rasbold@853 617
rasbold@853 618 //-----------------------------------Trace-------------------------------------
rasbold@853 619 // An ordered list of basic blocks.
rasbold@853 620 class Trace : public ResourceObj {
rasbold@853 621 private:
rasbold@853 622 uint _id; // Unique Trace id (derived from initial block)
rasbold@853 623 Block ** _next_list; // Array mapping index to next block
rasbold@853 624 Block ** _prev_list; // Array mapping index to previous block
rasbold@853 625 Block * _first; // First block in the trace
rasbold@853 626 Block * _last; // Last block in the trace
rasbold@853 627
rasbold@853 628 // Return the block that follows "b" in the trace.
rasbold@853 629 Block * next(Block *b) const { return _next_list[b->_pre_order]; }
rasbold@853 630 void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
rasbold@853 631
twisti@1040 632 // Return the block that precedes "b" in the trace.
rasbold@853 633 Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
rasbold@853 634 void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
rasbold@853 635
rasbold@853 636 // We've discovered a loop in this trace. Reset last to be "b", and first as
rasbold@853 637 // the block following "b
rasbold@853 638 void break_loop_after(Block *b) {
rasbold@853 639 _last = b;
rasbold@853 640 _first = next(b);
rasbold@853 641 set_prev(_first, NULL);
rasbold@853 642 set_next(_last, NULL);
rasbold@853 643 }
rasbold@853 644
rasbold@853 645 public:
rasbold@853 646
rasbold@853 647 Trace(Block *b, Block **next_list, Block **prev_list) :
rasbold@853 648 _first(b),
rasbold@853 649 _last(b),
rasbold@853 650 _next_list(next_list),
rasbold@853 651 _prev_list(prev_list),
rasbold@853 652 _id(b->_pre_order) {
rasbold@853 653 set_next(b, NULL);
rasbold@853 654 set_prev(b, NULL);
rasbold@853 655 };
rasbold@853 656
rasbold@853 657 // Return the id number
rasbold@853 658 uint id() const { return _id; }
rasbold@853 659 void set_id(uint id) { _id = id; }
rasbold@853 660
rasbold@853 661 // Return the first block in the trace
rasbold@853 662 Block * first_block() const { return _first; }
rasbold@853 663
rasbold@853 664 // Return the last block in the trace
rasbold@853 665 Block * last_block() const { return _last; }
rasbold@853 666
rasbold@853 667 // Insert a trace in the middle of this one after b
rasbold@853 668 void insert_after(Block *b, Trace *tr) {
rasbold@853 669 set_next(tr->last_block(), next(b));
rasbold@853 670 if (next(b) != NULL) {
rasbold@853 671 set_prev(next(b), tr->last_block());
rasbold@853 672 }
rasbold@853 673
rasbold@853 674 set_next(b, tr->first_block());
rasbold@853 675 set_prev(tr->first_block(), b);
rasbold@853 676
rasbold@853 677 if (b == _last) {
rasbold@853 678 _last = tr->last_block();
rasbold@853 679 }
rasbold@853 680 }
rasbold@853 681
rasbold@853 682 void insert_before(Block *b, Trace *tr) {
rasbold@853 683 Block *p = prev(b);
rasbold@853 684 assert(p != NULL, "use append instead");
rasbold@853 685 insert_after(p, tr);
rasbold@853 686 }
rasbold@853 687
rasbold@853 688 // Append another trace to this one.
rasbold@853 689 void append(Trace *tr) {
rasbold@853 690 insert_after(_last, tr);
rasbold@853 691 }
rasbold@853 692
rasbold@853 693 // Append a block at the end of this trace
rasbold@853 694 void append(Block *b) {
rasbold@853 695 set_next(_last, b);
rasbold@853 696 set_prev(b, _last);
rasbold@853 697 _last = b;
rasbold@853 698 }
rasbold@853 699
rasbold@853 700 // Adjust the the blocks in this trace
rasbold@853 701 void fixup_blocks(PhaseCFG &cfg);
rasbold@853 702 bool backedge(CFGEdge *e);
rasbold@853 703
rasbold@853 704 #ifndef PRODUCT
rasbold@853 705 void dump( ) const;
rasbold@853 706 #endif
rasbold@853 707 };
rasbold@853 708
rasbold@853 709 //------------------------------PhaseBlockLayout-------------------------------
rasbold@853 710 // Rearrange blocks into some canonical order, based on edges and their frequencies
rasbold@853 711 class PhaseBlockLayout : public Phase {
never@3138 712 friend class VMStructs;
rasbold@853 713 PhaseCFG &_cfg; // Control flow graph
rasbold@853 714
rasbold@853 715 GrowableArray<CFGEdge *> *edges;
rasbold@853 716 Trace **traces;
rasbold@853 717 Block **next;
rasbold@853 718 Block **prev;
rasbold@853 719 UnionFind *uf;
rasbold@853 720
rasbold@853 721 // Given a block, find its encompassing Trace
rasbold@853 722 Trace * trace(Block *b) {
rasbold@853 723 return traces[uf->Find_compress(b->_pre_order)];
rasbold@853 724 }
rasbold@853 725 public:
rasbold@853 726 PhaseBlockLayout(PhaseCFG &cfg);
rasbold@853 727
rasbold@853 728 void find_edges();
rasbold@853 729 void grow_traces();
rasbold@853 730 void merge_traces(bool loose_connections);
rasbold@853 731 void reorder_traces(int count);
rasbold@853 732 void union_traces(Trace* from, Trace* to);
rasbold@853 733 };
stefank@2314 734
stefank@2314 735 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial