src/share/vm/opto/block.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1039
ec59443af135
child 1108
fbc12e71c476
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@905 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Optimization - Graph Style
duke@435 26
duke@435 27 class Block;
duke@435 28 class CFGLoop;
duke@435 29 class MachCallNode;
duke@435 30 class Matcher;
duke@435 31 class RootNode;
duke@435 32 class VectorSet;
duke@435 33 struct Tarjan;
duke@435 34
duke@435 35 //------------------------------Block_Array------------------------------------
duke@435 36 // Map dense integer indices to Blocks. Uses classic doubling-array trick.
duke@435 37 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
duke@435 38 // Note that the constructor just zeros things, and since I use Arena
duke@435 39 // allocation I do not need a destructor to reclaim storage.
duke@435 40 class Block_Array : public ResourceObj {
duke@435 41 uint _size; // allocated size, as opposed to formal limit
duke@435 42 debug_only(uint _limit;) // limit to formal domain
duke@435 43 protected:
duke@435 44 Block **_blocks;
duke@435 45 void grow( uint i ); // Grow array node to fit
duke@435 46
duke@435 47 public:
duke@435 48 Arena *_arena; // Arena to allocate in
duke@435 49
duke@435 50 Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
duke@435 51 debug_only(_limit=0);
duke@435 52 _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
duke@435 53 for( int i = 0; i < OptoBlockListSize; i++ ) {
duke@435 54 _blocks[i] = NULL;
duke@435 55 }
duke@435 56 }
duke@435 57 Block *lookup( uint i ) const // Lookup, or NULL for not mapped
duke@435 58 { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
duke@435 59 Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
duke@435 60 { assert( i < Max(), "oob" ); return _blocks[i]; }
duke@435 61 // Extend the mapping: index i maps to Block *n.
duke@435 62 void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
duke@435 63 uint Max() const { debug_only(return _limit); return _size; }
duke@435 64 };
duke@435 65
duke@435 66
duke@435 67 class Block_List : public Block_Array {
duke@435 68 public:
duke@435 69 uint _cnt;
duke@435 70 Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
duke@435 71 void push( Block *b ) { map(_cnt++,b); }
duke@435 72 Block *pop() { return _blocks[--_cnt]; }
duke@435 73 Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
duke@435 74 void remove( uint i );
duke@435 75 void insert( uint i, Block *n );
duke@435 76 uint size() const { return _cnt; }
duke@435 77 void reset() { _cnt = 0; }
rasbold@853 78 void print();
duke@435 79 };
duke@435 80
duke@435 81
duke@435 82 class CFGElement : public ResourceObj {
duke@435 83 public:
duke@435 84 float _freq; // Execution frequency (estimate)
duke@435 85
duke@435 86 CFGElement() : _freq(0.0f) {}
duke@435 87 virtual bool is_block() { return false; }
duke@435 88 virtual bool is_loop() { return false; }
duke@435 89 Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
duke@435 90 CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
duke@435 91 };
duke@435 92
duke@435 93 //------------------------------Block------------------------------------------
duke@435 94 // This class defines a Basic Block.
duke@435 95 // Basic blocks are used during the output routines, and are not used during
duke@435 96 // any optimization pass. They are created late in the game.
duke@435 97 class Block : public CFGElement {
duke@435 98 public:
duke@435 99 // Nodes in this block, in order
duke@435 100 Node_List _nodes;
duke@435 101
duke@435 102 // Basic blocks have a Node which defines Control for all Nodes pinned in
duke@435 103 // this block. This Node is a RegionNode. Exception-causing Nodes
duke@435 104 // (division, subroutines) and Phi functions are always pinned. Later,
duke@435 105 // every Node will get pinned to some block.
duke@435 106 Node *head() const { return _nodes[0]; }
duke@435 107
duke@435 108 // CAUTION: num_preds() is ONE based, so that predecessor numbers match
duke@435 109 // input edges to Regions and Phis.
duke@435 110 uint num_preds() const { return head()->req(); }
duke@435 111 Node *pred(uint i) const { return head()->in(i); }
duke@435 112
duke@435 113 // Array of successor blocks, same size as projs array
duke@435 114 Block_Array _succs;
duke@435 115
duke@435 116 // Basic blocks have some number of Nodes which split control to all
duke@435 117 // following blocks. These Nodes are always Projections. The field in
duke@435 118 // the Projection and the block-ending Node determine which Block follows.
duke@435 119 uint _num_succs;
duke@435 120
duke@435 121 // Basic blocks also carry all sorts of good old fashioned DFS information
duke@435 122 // used to find loops, loop nesting depth, dominators, etc.
duke@435 123 uint _pre_order; // Pre-order DFS number
duke@435 124
duke@435 125 // Dominator tree
duke@435 126 uint _dom_depth; // Depth in dominator tree for fast LCA
duke@435 127 Block* _idom; // Immediate dominator block
duke@435 128
duke@435 129 CFGLoop *_loop; // Loop to which this block belongs
duke@435 130 uint _rpo; // Number in reverse post order walk
duke@435 131
duke@435 132 virtual bool is_block() { return true; }
rasbold@853 133 float succ_prob(uint i); // return probability of i'th successor
rasbold@853 134 int num_fall_throughs(); // How many fall-through candidate this block has
rasbold@853 135 void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
rasbold@853 136 bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
rasbold@853 137 Block* lone_fall_through(); // Return lone fall-through Block or null
duke@435 138
duke@435 139 Block* dom_lca(Block* that); // Compute LCA in dominator tree.
duke@435 140 #ifdef ASSERT
duke@435 141 bool dominates(Block* that) {
duke@435 142 int dom_diff = this->_dom_depth - that->_dom_depth;
duke@435 143 if (dom_diff > 0) return false;
duke@435 144 for (; dom_diff < 0; dom_diff++) that = that->_idom;
duke@435 145 return this == that;
duke@435 146 }
duke@435 147 #endif
duke@435 148
duke@435 149 // Report the alignment required by this block. Must be a power of 2.
duke@435 150 // The previous block will insert nops to get this alignment.
duke@435 151 uint code_alignment();
rasbold@853 152 uint compute_loop_alignment();
duke@435 153
duke@435 154 // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
duke@435 155 // It is currently also used to scale such frequencies relative to
duke@435 156 // FreqCountInvocations relative to the old value of 1500.
duke@435 157 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
duke@435 158
duke@435 159 // Register Pressure (estimate) for Splitting heuristic
duke@435 160 uint _reg_pressure;
duke@435 161 uint _ihrp_index;
duke@435 162 uint _freg_pressure;
duke@435 163 uint _fhrp_index;
duke@435 164
duke@435 165 // Mark and visited bits for an LCA calculation in insert_anti_dependences.
duke@435 166 // Since they hold unique node indexes, they do not need reinitialization.
duke@435 167 node_idx_t _raise_LCA_mark;
duke@435 168 void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
duke@435 169 node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
duke@435 170 node_idx_t _raise_LCA_visited;
duke@435 171 void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
duke@435 172 node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
duke@435 173
duke@435 174 // Estimated size in bytes of first instructions in a loop.
duke@435 175 uint _first_inst_size;
duke@435 176 uint first_inst_size() const { return _first_inst_size; }
duke@435 177 void set_first_inst_size(uint s) { _first_inst_size = s; }
duke@435 178
duke@435 179 // Compute the size of first instructions in this block.
duke@435 180 uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
duke@435 181
duke@435 182 // Compute alignment padding if the block needs it.
duke@435 183 // Align a loop if loop's padding is less or equal to padding limit
duke@435 184 // or the size of first instructions in the loop > padding.
duke@435 185 uint alignment_padding(int current_offset) {
duke@435 186 int block_alignment = code_alignment();
duke@435 187 int max_pad = block_alignment-relocInfo::addr_unit();
duke@435 188 if( max_pad > 0 ) {
duke@435 189 assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
duke@435 190 int current_alignment = current_offset & max_pad;
duke@435 191 if( current_alignment != 0 ) {
duke@435 192 uint padding = (block_alignment-current_alignment) & max_pad;
rasbold@853 193 if( has_loop_alignment() &&
rasbold@853 194 padding > (uint)MaxLoopPad &&
rasbold@853 195 first_inst_size() <= padding ) {
rasbold@853 196 return 0;
duke@435 197 }
rasbold@853 198 return padding;
duke@435 199 }
duke@435 200 }
duke@435 201 return 0;
duke@435 202 }
duke@435 203
duke@435 204 // Connector blocks. Connector blocks are basic blocks devoid of
duke@435 205 // instructions, but may have relevant non-instruction Nodes, such as
duke@435 206 // Phis or MergeMems. Such blocks are discovered and marked during the
duke@435 207 // RemoveEmpty phase, and elided during Output.
duke@435 208 bool _connector;
duke@435 209 void set_connector() { _connector = true; }
duke@435 210 bool is_connector() const { return _connector; };
duke@435 211
rasbold@853 212 // Loop_alignment will be set for blocks which are at the top of loops.
rasbold@853 213 // The block layout pass may rotate loops such that the loop head may not
rasbold@853 214 // be the sequentially first block of the loop encountered in the linear
rasbold@853 215 // list of blocks. If the layout pass is not run, loop alignment is set
rasbold@853 216 // for each block which is the head of a loop.
rasbold@853 217 uint _loop_alignment;
rasbold@853 218 void set_loop_alignment(Block *loop_top) {
rasbold@853 219 uint new_alignment = loop_top->compute_loop_alignment();
rasbold@853 220 if (new_alignment > _loop_alignment) {
rasbold@853 221 _loop_alignment = new_alignment;
rasbold@853 222 }
rasbold@853 223 }
rasbold@853 224 uint loop_alignment() const { return _loop_alignment; }
rasbold@853 225 bool has_loop_alignment() const { return loop_alignment() > 0; }
rasbold@853 226
duke@435 227 // Create a new Block with given head Node.
duke@435 228 // Creates the (empty) predecessor arrays.
duke@435 229 Block( Arena *a, Node *headnode )
duke@435 230 : CFGElement(),
duke@435 231 _nodes(a),
duke@435 232 _succs(a),
duke@435 233 _num_succs(0),
duke@435 234 _pre_order(0),
duke@435 235 _idom(0),
duke@435 236 _loop(NULL),
duke@435 237 _reg_pressure(0),
duke@435 238 _ihrp_index(1),
duke@435 239 _freg_pressure(0),
duke@435 240 _fhrp_index(1),
duke@435 241 _raise_LCA_mark(0),
duke@435 242 _raise_LCA_visited(0),
duke@435 243 _first_inst_size(999999),
rasbold@853 244 _connector(false),
rasbold@853 245 _loop_alignment(0) {
duke@435 246 _nodes.push(headnode);
duke@435 247 }
duke@435 248
duke@435 249 // Index of 'end' Node
duke@435 250 uint end_idx() const {
duke@435 251 // %%%%% add a proj after every goto
duke@435 252 // so (last->is_block_proj() != last) always, then simplify this code
duke@435 253 // This will not give correct end_idx for block 0 when it only contains root.
duke@435 254 int last_idx = _nodes.size() - 1;
duke@435 255 Node *last = _nodes[last_idx];
duke@435 256 assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
duke@435 257 return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
duke@435 258 }
duke@435 259
duke@435 260 // Basic blocks have a Node which ends them. This Node determines which
duke@435 261 // basic block follows this one in the program flow. This Node is either an
duke@435 262 // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
duke@435 263 Node *end() const { return _nodes[end_idx()]; }
duke@435 264
duke@435 265 // Add an instruction to an existing block. It must go after the head
duke@435 266 // instruction and before the end instruction.
duke@435 267 void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
duke@435 268 // Find node in block
duke@435 269 uint find_node( const Node *n ) const;
duke@435 270 // Find and remove n from block list
duke@435 271 void find_remove( const Node *n );
duke@435 272
duke@435 273 // Schedule a call next in the block
duke@435 274 uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
duke@435 275
duke@435 276 // Perform basic-block local scheduling
duke@435 277 Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
duke@435 278 void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
duke@435 279 void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
duke@435 280 bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
duke@435 281 // Cleanup if any code lands between a Call and his Catch
duke@435 282 void call_catch_cleanup(Block_Array &bbs);
duke@435 283 // Detect implicit-null-check opportunities. Basically, find NULL checks
duke@435 284 // with suitable memory ops nearby. Use the memory op to do the NULL check.
duke@435 285 // I can generate a memory op if there is not one nearby.
duke@435 286 void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
duke@435 287
duke@435 288 // Return the empty status of a block
duke@435 289 enum { not_empty, empty_with_goto, completely_empty };
duke@435 290 int is_Empty() const;
duke@435 291
duke@435 292 // Forward through connectors
duke@435 293 Block* non_connector() {
duke@435 294 Block* s = this;
duke@435 295 while (s->is_connector()) {
duke@435 296 s = s->_succs[0];
duke@435 297 }
duke@435 298 return s;
duke@435 299 }
duke@435 300
rasbold@853 301 // Return true if b is a successor of this block
rasbold@853 302 bool has_successor(Block* b) const {
rasbold@853 303 for (uint i = 0; i < _num_succs; i++ ) {
rasbold@853 304 if (non_connector_successor(i) == b) {
rasbold@853 305 return true;
rasbold@853 306 }
rasbold@853 307 }
rasbold@853 308 return false;
rasbold@853 309 }
rasbold@853 310
duke@435 311 // Successor block, after forwarding through connectors
duke@435 312 Block* non_connector_successor(int i) const {
duke@435 313 return _succs[i]->non_connector();
duke@435 314 }
duke@435 315
duke@435 316 // Examine block's code shape to predict if it is not commonly executed.
duke@435 317 bool has_uncommon_code() const;
duke@435 318
duke@435 319 // Use frequency calculations and code shape to predict if the block
duke@435 320 // is uncommon.
duke@435 321 bool is_uncommon( Block_Array &bbs ) const;
duke@435 322
duke@435 323 #ifndef PRODUCT
duke@435 324 // Debugging print of basic block
duke@435 325 void dump_bidx(const Block* orig) const;
duke@435 326 void dump_pred(const Block_Array *bbs, Block* orig) const;
duke@435 327 void dump_head( const Block_Array *bbs ) const;
duke@435 328 void dump( ) const;
duke@435 329 void dump( const Block_Array *bbs ) const;
duke@435 330 #endif
duke@435 331 };
duke@435 332
duke@435 333
duke@435 334 //------------------------------PhaseCFG---------------------------------------
duke@435 335 // Build an array of Basic Block pointers, one per Node.
duke@435 336 class PhaseCFG : public Phase {
duke@435 337 private:
duke@435 338 // Build a proper looking cfg. Return count of basic blocks
duke@435 339 uint build_cfg();
duke@435 340
duke@435 341 // Perform DFS search.
duke@435 342 // Setup 'vertex' as DFS to vertex mapping.
duke@435 343 // Setup 'semi' as vertex to DFS mapping.
duke@435 344 // Set 'parent' to DFS parent.
duke@435 345 uint DFS( Tarjan *tarjan );
duke@435 346
duke@435 347 // Helper function to insert a node into a block
duke@435 348 void schedule_node_into_block( Node *n, Block *b );
duke@435 349
kvn@1039 350 void replace_block_proj_ctrl( Node *n );
kvn@1036 351
duke@435 352 // Set the basic block for pinned Nodes
duke@435 353 void schedule_pinned_nodes( VectorSet &visited );
duke@435 354
duke@435 355 // I'll need a few machine-specific GotoNodes. Clone from this one.
duke@435 356 MachNode *_goto;
duke@435 357
duke@435 358 Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
duke@435 359 void verify_anti_dependences(Block* LCA, Node* load) {
duke@435 360 assert(LCA == _bbs[load->_idx], "should already be scheduled");
duke@435 361 insert_anti_dependences(LCA, load, true);
duke@435 362 }
duke@435 363
duke@435 364 public:
duke@435 365 PhaseCFG( Arena *a, RootNode *r, Matcher &m );
duke@435 366
duke@435 367 uint _num_blocks; // Count of basic blocks
duke@435 368 Block_List _blocks; // List of basic blocks
duke@435 369 RootNode *_root; // Root of whole program
duke@435 370 Block_Array _bbs; // Map Nodes to owning Basic Block
duke@435 371 Block *_broot; // Basic block of root
duke@435 372 uint _rpo_ctr;
duke@435 373 CFGLoop* _root_loop;
duke@435 374
duke@435 375 // Per node latency estimation, valid only during GCM
duke@435 376 GrowableArray<uint> _node_latency;
duke@435 377
duke@435 378 #ifndef PRODUCT
duke@435 379 bool _trace_opto_pipelining; // tracing flag
duke@435 380 #endif
duke@435 381
duke@435 382 // Build dominators
duke@435 383 void Dominators();
duke@435 384
duke@435 385 // Estimate block frequencies based on IfNode probabilities
duke@435 386 void Estimate_Block_Frequency();
duke@435 387
duke@435 388 // Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
duke@435 389 // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
duke@435 390 void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
duke@435 391
duke@435 392 // Compute the (backwards) latency of a node from the uses
duke@435 393 void latency_from_uses(Node *n);
duke@435 394
duke@435 395 // Compute the (backwards) latency of a node from a single use
duke@435 396 int latency_from_use(Node *n, const Node *def, Node *use);
duke@435 397
duke@435 398 // Compute the (backwards) latency of a node from the uses of this instruction
duke@435 399 void partial_latency_of_defs(Node *n);
duke@435 400
duke@435 401 // Schedule Nodes early in their basic blocks.
duke@435 402 bool schedule_early(VectorSet &visited, Node_List &roots);
duke@435 403
duke@435 404 // For each node, find the latest block it can be scheduled into
duke@435 405 // and then select the cheapest block between the latest and earliest
duke@435 406 // block to place the node.
duke@435 407 void schedule_late(VectorSet &visited, Node_List &stack);
duke@435 408
duke@435 409 // Pick a block between early and late that is a cheaper alternative
duke@435 410 // to late. Helper for schedule_late.
duke@435 411 Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
duke@435 412
duke@435 413 // Compute the instruction global latency with a backwards walk
duke@435 414 void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
duke@435 415
rasbold@853 416 // Set loop alignment
rasbold@853 417 void set_loop_alignment();
rasbold@853 418
duke@435 419 // Remove empty basic blocks
rasbold@853 420 void remove_empty();
rasbold@853 421 void fixup_flow();
rasbold@853 422 bool move_to_next(Block* bx, uint b_index);
rasbold@853 423 void move_to_end(Block* bx, uint b_index);
rasbold@853 424 void insert_goto_at(uint block_no, uint succ_no);
duke@435 425
duke@435 426 // Check for NeverBranch at block end. This needs to become a GOTO to the
duke@435 427 // true target. NeverBranch are treated as a conditional branch that always
duke@435 428 // goes the same direction for most of the optimizer and are used to give a
duke@435 429 // fake exit path to infinite loops. At this late stage they need to turn
duke@435 430 // into Goto's so that when you enter the infinite loop you indeed hang.
duke@435 431 void convert_NeverBranch_to_Goto(Block *b);
duke@435 432
duke@435 433 CFGLoop* create_loop_tree();
duke@435 434
duke@435 435 // Insert a node into a block, and update the _bbs
duke@435 436 void insert( Block *b, uint idx, Node *n ) {
duke@435 437 b->_nodes.insert( idx, n );
duke@435 438 _bbs.map( n->_idx, b );
duke@435 439 }
duke@435 440
duke@435 441 #ifndef PRODUCT
duke@435 442 bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
duke@435 443
duke@435 444 // Debugging print of CFG
duke@435 445 void dump( ) const; // CFG only
duke@435 446 void _dump_cfg( const Node *end, VectorSet &visited ) const;
duke@435 447 void verify() const;
duke@435 448 void dump_headers();
duke@435 449 #else
duke@435 450 bool trace_opto_pipelining() const { return false; }
duke@435 451 #endif
duke@435 452 };
duke@435 453
duke@435 454
rasbold@853 455 //------------------------------UnionFind--------------------------------------
duke@435 456 // Map Block indices to a block-index for a cfg-cover.
duke@435 457 // Array lookup in the optimized case.
duke@435 458 class UnionFind : public ResourceObj {
duke@435 459 uint _cnt, _max;
duke@435 460 uint* _indices;
duke@435 461 ReallocMark _nesting; // assertion check for reallocations
duke@435 462 public:
duke@435 463 UnionFind( uint max );
duke@435 464 void reset( uint max ); // Reset to identity map for [0..max]
duke@435 465
duke@435 466 uint lookup( uint nidx ) const {
duke@435 467 return _indices[nidx];
duke@435 468 }
duke@435 469 uint operator[] (uint nidx) const { return lookup(nidx); }
duke@435 470
duke@435 471 void map( uint from_idx, uint to_idx ) {
duke@435 472 assert( from_idx < _cnt, "oob" );
duke@435 473 _indices[from_idx] = to_idx;
duke@435 474 }
duke@435 475 void extend( uint from_idx, uint to_idx );
duke@435 476
duke@435 477 uint Size() const { return _cnt; }
duke@435 478
duke@435 479 uint Find( uint idx ) {
duke@435 480 assert( idx < 65536, "Must fit into uint");
duke@435 481 uint uf_idx = lookup(idx);
duke@435 482 return (uf_idx == idx) ? uf_idx : Find_compress(idx);
duke@435 483 }
duke@435 484 uint Find_compress( uint idx );
duke@435 485 uint Find_const( uint idx ) const;
duke@435 486 void Union( uint idx1, uint idx2 );
duke@435 487
duke@435 488 };
duke@435 489
duke@435 490 //----------------------------BlockProbPair---------------------------
duke@435 491 // Ordered pair of Node*.
duke@435 492 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
duke@435 493 protected:
duke@435 494 Block* _target; // block target
duke@435 495 float _prob; // probability of edge to block
duke@435 496 public:
duke@435 497 BlockProbPair() : _target(NULL), _prob(0.0) {}
duke@435 498 BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
duke@435 499
duke@435 500 Block* get_target() const { return _target; }
duke@435 501 float get_prob() const { return _prob; }
duke@435 502 };
duke@435 503
duke@435 504 //------------------------------CFGLoop-------------------------------------------
duke@435 505 class CFGLoop : public CFGElement {
duke@435 506 int _id;
duke@435 507 int _depth;
duke@435 508 CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
duke@435 509 CFGLoop *_sibling; // null terminated list
duke@435 510 CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
duke@435 511 GrowableArray<CFGElement*> _members; // list of members of loop
duke@435 512 GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
duke@435 513 float _exit_prob; // probability any loop exit is taken on a single loop iteration
duke@435 514 void update_succ_freq(Block* b, float freq);
duke@435 515
duke@435 516 public:
duke@435 517 CFGLoop(int id) :
duke@435 518 CFGElement(),
duke@435 519 _id(id),
duke@435 520 _depth(0),
duke@435 521 _parent(NULL),
duke@435 522 _sibling(NULL),
duke@435 523 _child(NULL),
duke@435 524 _exit_prob(1.0f) {}
duke@435 525 CFGLoop* parent() { return _parent; }
duke@435 526 void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
duke@435 527 void add_member(CFGElement *s) { _members.push(s); }
duke@435 528 void add_nested_loop(CFGLoop* cl);
duke@435 529 Block* head() {
duke@435 530 assert(_members.at(0)->is_block(), "head must be a block");
duke@435 531 Block* hd = _members.at(0)->as_Block();
duke@435 532 assert(hd->_loop == this, "just checking");
duke@435 533 assert(hd->head()->is_Loop(), "must begin with loop head node");
duke@435 534 return hd;
duke@435 535 }
duke@435 536 Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
duke@435 537 void compute_loop_depth(int depth);
duke@435 538 void compute_freq(); // compute frequency with loop assuming head freq 1.0f
duke@435 539 void scale_freq(); // scale frequency by loop trip count (including outer loops)
duke@435 540 bool in_loop_nest(Block* b);
duke@435 541 float trip_count() const { return 1.0f / _exit_prob; }
duke@435 542 virtual bool is_loop() { return true; }
duke@435 543 int id() { return _id; }
duke@435 544
duke@435 545 #ifndef PRODUCT
duke@435 546 void dump( ) const;
duke@435 547 void dump_tree() const;
duke@435 548 #endif
duke@435 549 };
rasbold@853 550
rasbold@853 551
rasbold@853 552 //----------------------------------CFGEdge------------------------------------
rasbold@853 553 // A edge between two basic blocks that will be embodied by a branch or a
rasbold@853 554 // fall-through.
rasbold@853 555 class CFGEdge : public ResourceObj {
rasbold@853 556 private:
rasbold@853 557 Block * _from; // Source basic block
rasbold@853 558 Block * _to; // Destination basic block
rasbold@853 559 float _freq; // Execution frequency (estimate)
rasbold@853 560 int _state;
rasbold@853 561 bool _infrequent;
rasbold@853 562 int _from_pct;
rasbold@853 563 int _to_pct;
rasbold@853 564
rasbold@853 565 // Private accessors
rasbold@853 566 int from_pct() const { return _from_pct; }
rasbold@853 567 int to_pct() const { return _to_pct; }
rasbold@853 568 int from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
rasbold@853 569 int to_infrequent() const { return to_pct() < BlockLayoutMinDiamondPercentage; }
rasbold@853 570
rasbold@853 571 public:
rasbold@853 572 enum {
rasbold@853 573 open, // initial edge state; unprocessed
rasbold@853 574 connected, // edge used to connect two traces together
rasbold@853 575 interior // edge is interior to trace (could be backedge)
rasbold@853 576 };
rasbold@853 577
rasbold@853 578 CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
rasbold@853 579 _from(from), _to(to), _freq(freq),
rasbold@853 580 _from_pct(from_pct), _to_pct(to_pct), _state(open) {
rasbold@853 581 _infrequent = from_infrequent() || to_infrequent();
rasbold@853 582 }
rasbold@853 583
rasbold@853 584 float freq() const { return _freq; }
rasbold@853 585 Block* from() const { return _from; }
rasbold@853 586 Block* to () const { return _to; }
rasbold@853 587 int infrequent() const { return _infrequent; }
rasbold@853 588 int state() const { return _state; }
rasbold@853 589
rasbold@853 590 void set_state(int state) { _state = state; }
rasbold@853 591
rasbold@853 592 #ifndef PRODUCT
rasbold@853 593 void dump( ) const;
rasbold@853 594 #endif
rasbold@853 595 };
rasbold@853 596
rasbold@853 597
rasbold@853 598 //-----------------------------------Trace-------------------------------------
rasbold@853 599 // An ordered list of basic blocks.
rasbold@853 600 class Trace : public ResourceObj {
rasbold@853 601 private:
rasbold@853 602 uint _id; // Unique Trace id (derived from initial block)
rasbold@853 603 Block ** _next_list; // Array mapping index to next block
rasbold@853 604 Block ** _prev_list; // Array mapping index to previous block
rasbold@853 605 Block * _first; // First block in the trace
rasbold@853 606 Block * _last; // Last block in the trace
rasbold@853 607
rasbold@853 608 // Return the block that follows "b" in the trace.
rasbold@853 609 Block * next(Block *b) const { return _next_list[b->_pre_order]; }
rasbold@853 610 void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
rasbold@853 611
twisti@1040 612 // Return the block that precedes "b" in the trace.
rasbold@853 613 Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
rasbold@853 614 void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
rasbold@853 615
rasbold@853 616 // We've discovered a loop in this trace. Reset last to be "b", and first as
rasbold@853 617 // the block following "b
rasbold@853 618 void break_loop_after(Block *b) {
rasbold@853 619 _last = b;
rasbold@853 620 _first = next(b);
rasbold@853 621 set_prev(_first, NULL);
rasbold@853 622 set_next(_last, NULL);
rasbold@853 623 }
rasbold@853 624
rasbold@853 625 public:
rasbold@853 626
rasbold@853 627 Trace(Block *b, Block **next_list, Block **prev_list) :
rasbold@853 628 _first(b),
rasbold@853 629 _last(b),
rasbold@853 630 _next_list(next_list),
rasbold@853 631 _prev_list(prev_list),
rasbold@853 632 _id(b->_pre_order) {
rasbold@853 633 set_next(b, NULL);
rasbold@853 634 set_prev(b, NULL);
rasbold@853 635 };
rasbold@853 636
rasbold@853 637 // Return the id number
rasbold@853 638 uint id() const { return _id; }
rasbold@853 639 void set_id(uint id) { _id = id; }
rasbold@853 640
rasbold@853 641 // Return the first block in the trace
rasbold@853 642 Block * first_block() const { return _first; }
rasbold@853 643
rasbold@853 644 // Return the last block in the trace
rasbold@853 645 Block * last_block() const { return _last; }
rasbold@853 646
rasbold@853 647 // Insert a trace in the middle of this one after b
rasbold@853 648 void insert_after(Block *b, Trace *tr) {
rasbold@853 649 set_next(tr->last_block(), next(b));
rasbold@853 650 if (next(b) != NULL) {
rasbold@853 651 set_prev(next(b), tr->last_block());
rasbold@853 652 }
rasbold@853 653
rasbold@853 654 set_next(b, tr->first_block());
rasbold@853 655 set_prev(tr->first_block(), b);
rasbold@853 656
rasbold@853 657 if (b == _last) {
rasbold@853 658 _last = tr->last_block();
rasbold@853 659 }
rasbold@853 660 }
rasbold@853 661
rasbold@853 662 void insert_before(Block *b, Trace *tr) {
rasbold@853 663 Block *p = prev(b);
rasbold@853 664 assert(p != NULL, "use append instead");
rasbold@853 665 insert_after(p, tr);
rasbold@853 666 }
rasbold@853 667
rasbold@853 668 // Append another trace to this one.
rasbold@853 669 void append(Trace *tr) {
rasbold@853 670 insert_after(_last, tr);
rasbold@853 671 }
rasbold@853 672
rasbold@853 673 // Append a block at the end of this trace
rasbold@853 674 void append(Block *b) {
rasbold@853 675 set_next(_last, b);
rasbold@853 676 set_prev(b, _last);
rasbold@853 677 _last = b;
rasbold@853 678 }
rasbold@853 679
rasbold@853 680 // Adjust the the blocks in this trace
rasbold@853 681 void fixup_blocks(PhaseCFG &cfg);
rasbold@853 682 bool backedge(CFGEdge *e);
rasbold@853 683
rasbold@853 684 #ifndef PRODUCT
rasbold@853 685 void dump( ) const;
rasbold@853 686 #endif
rasbold@853 687 };
rasbold@853 688
rasbold@853 689 //------------------------------PhaseBlockLayout-------------------------------
rasbold@853 690 // Rearrange blocks into some canonical order, based on edges and their frequencies
rasbold@853 691 class PhaseBlockLayout : public Phase {
rasbold@853 692 PhaseCFG &_cfg; // Control flow graph
rasbold@853 693
rasbold@853 694 GrowableArray<CFGEdge *> *edges;
rasbold@853 695 Trace **traces;
rasbold@853 696 Block **next;
rasbold@853 697 Block **prev;
rasbold@853 698 UnionFind *uf;
rasbold@853 699
rasbold@853 700 // Given a block, find its encompassing Trace
rasbold@853 701 Trace * trace(Block *b) {
rasbold@853 702 return traces[uf->Find_compress(b->_pre_order)];
rasbold@853 703 }
rasbold@853 704 public:
rasbold@853 705 PhaseBlockLayout(PhaseCFG &cfg);
rasbold@853 706
rasbold@853 707 void find_edges();
rasbold@853 708 void grow_traces();
rasbold@853 709 void merge_traces(bool loose_connections);
rasbold@853 710 void reorder_traces(int count);
rasbold@853 711 void union_traces(Trace* from, Trace* to);
rasbold@853 712 };

mercurial