src/share/vm/opto/compile.cpp

Wed, 12 Dec 2012 21:40:04 -0500

author
rkennke
date
Wed, 12 Dec 2012 21:40:04 -0500
changeset 4346
18712b1caf7a
parent 4318
cd3d6a6b95d9
child 4357
ad5dd04754ee
permissions
-rw-r--r--

8004898: library_call.cpp build error after 7172640 with GCC 4.7.2
Summary: fix opto/library_call.cpp compilation errors
Reviewed-by: twisti, coleenp

duke@435 1 /*
kvn@3651 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "code/exceptionHandlerTable.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "compiler/compileLog.hpp"
twisti@4318 32 #include "compiler/disassembler.hpp"
stefank@2314 33 #include "compiler/oopMap.hpp"
stefank@2314 34 #include "opto/addnode.hpp"
stefank@2314 35 #include "opto/block.hpp"
stefank@2314 36 #include "opto/c2compiler.hpp"
stefank@2314 37 #include "opto/callGenerator.hpp"
stefank@2314 38 #include "opto/callnode.hpp"
stefank@2314 39 #include "opto/cfgnode.hpp"
stefank@2314 40 #include "opto/chaitin.hpp"
stefank@2314 41 #include "opto/compile.hpp"
stefank@2314 42 #include "opto/connode.hpp"
stefank@2314 43 #include "opto/divnode.hpp"
stefank@2314 44 #include "opto/escape.hpp"
stefank@2314 45 #include "opto/idealGraphPrinter.hpp"
stefank@2314 46 #include "opto/loopnode.hpp"
stefank@2314 47 #include "opto/machnode.hpp"
stefank@2314 48 #include "opto/macro.hpp"
stefank@2314 49 #include "opto/matcher.hpp"
stefank@2314 50 #include "opto/memnode.hpp"
stefank@2314 51 #include "opto/mulnode.hpp"
stefank@2314 52 #include "opto/node.hpp"
stefank@2314 53 #include "opto/opcodes.hpp"
stefank@2314 54 #include "opto/output.hpp"
stefank@2314 55 #include "opto/parse.hpp"
stefank@2314 56 #include "opto/phaseX.hpp"
stefank@2314 57 #include "opto/rootnode.hpp"
stefank@2314 58 #include "opto/runtime.hpp"
stefank@2314 59 #include "opto/stringopts.hpp"
stefank@2314 60 #include "opto/type.hpp"
stefank@2314 61 #include "opto/vectornode.hpp"
stefank@2314 62 #include "runtime/arguments.hpp"
stefank@2314 63 #include "runtime/signature.hpp"
stefank@2314 64 #include "runtime/stubRoutines.hpp"
stefank@2314 65 #include "runtime/timer.hpp"
stefank@2314 66 #include "utilities/copy.hpp"
stefank@2314 67 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 68 # include "adfiles/ad_x86_32.hpp"
stefank@2314 69 #endif
stefank@2314 70 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 71 # include "adfiles/ad_x86_64.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 74 # include "adfiles/ad_sparc.hpp"
stefank@2314 75 #endif
stefank@2314 76 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 77 # include "adfiles/ad_zero.hpp"
stefank@2314 78 #endif
bobv@2508 79 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 80 # include "adfiles/ad_arm.hpp"
bobv@2508 81 #endif
bobv@2508 82 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 83 # include "adfiles/ad_ppc.hpp"
bobv@2508 84 #endif
duke@435 85
twisti@2350 86
twisti@2350 87 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 88 // Constant table base node singleton.
twisti@2350 89 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 90 if (_mach_constant_base_node == NULL) {
twisti@2350 91 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 92 _mach_constant_base_node->add_req(C->root());
twisti@2350 93 }
twisti@2350 94 return _mach_constant_base_node;
twisti@2350 95 }
twisti@2350 96
twisti@2350 97
duke@435 98 /// Support for intrinsics.
duke@435 99
duke@435 100 // Return the index at which m must be inserted (or already exists).
duke@435 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 103 #ifdef ASSERT
duke@435 104 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 105 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 106 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 107 assert(cg1->method() != cg2->method()
duke@435 108 ? cg1->method() < cg2->method()
duke@435 109 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 110 "compiler intrinsics list must stay sorted");
duke@435 111 }
duke@435 112 #endif
duke@435 113 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 114 int lo = 0, hi = _intrinsics->length()-1;
duke@435 115 while (lo <= hi) {
duke@435 116 int mid = (uint)(hi + lo) / 2;
duke@435 117 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 118 if (m < mid_m) {
duke@435 119 hi = mid-1;
duke@435 120 } else if (m > mid_m) {
duke@435 121 lo = mid+1;
duke@435 122 } else {
duke@435 123 // look at minor sort key
duke@435 124 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 125 if (is_virtual < mid_virt) {
duke@435 126 hi = mid-1;
duke@435 127 } else if (is_virtual > mid_virt) {
duke@435 128 lo = mid+1;
duke@435 129 } else {
duke@435 130 return mid; // exact match
duke@435 131 }
duke@435 132 }
duke@435 133 }
duke@435 134 return lo; // inexact match
duke@435 135 }
duke@435 136
duke@435 137 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 138 if (_intrinsics == NULL) {
duke@435 139 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 140 }
duke@435 141 // This code is stolen from ciObjectFactory::insert.
duke@435 142 // Really, GrowableArray should have methods for
duke@435 143 // insert_at, remove_at, and binary_search.
duke@435 144 int len = _intrinsics->length();
duke@435 145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 146 if (index == len) {
duke@435 147 _intrinsics->append(cg);
duke@435 148 } else {
duke@435 149 #ifdef ASSERT
duke@435 150 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 151 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 152 #endif
duke@435 153 _intrinsics->append(_intrinsics->at(len-1));
duke@435 154 int pos;
duke@435 155 for (pos = len-2; pos >= index; pos--) {
duke@435 156 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 157 }
duke@435 158 _intrinsics->at_put(index, cg);
duke@435 159 }
duke@435 160 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 161 }
duke@435 162
duke@435 163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 164 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 165 if (_intrinsics != NULL) {
duke@435 166 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 167 if (index < _intrinsics->length()
duke@435 168 && _intrinsics->at(index)->method() == m
duke@435 169 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 170 return _intrinsics->at(index);
duke@435 171 }
duke@435 172 }
duke@435 173 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 174 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 175 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 176 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 177 if (cg != NULL) {
duke@435 178 // Save it for next time:
duke@435 179 register_intrinsic(cg);
duke@435 180 return cg;
duke@435 181 } else {
duke@435 182 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 183 }
duke@435 184 }
duke@435 185 return NULL;
duke@435 186 }
duke@435 187
duke@435 188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 189 // in library_call.cpp.
duke@435 190
duke@435 191
duke@435 192 #ifndef PRODUCT
duke@435 193 // statistics gathering...
duke@435 194
duke@435 195 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 197
duke@435 198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 199 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 200 int oflags = _intrinsic_hist_flags[id];
duke@435 201 assert(flags != 0, "what happened?");
duke@435 202 if (is_virtual) {
duke@435 203 flags |= _intrinsic_virtual;
duke@435 204 }
duke@435 205 bool changed = (flags != oflags);
duke@435 206 if ((flags & _intrinsic_worked) != 0) {
duke@435 207 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 208 if (count == 1) {
duke@435 209 changed = true; // first time
duke@435 210 }
duke@435 211 // increment the overall count also:
duke@435 212 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 213 }
duke@435 214 if (changed) {
duke@435 215 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 216 // Something changed about the intrinsic's virtuality.
duke@435 217 if ((flags & _intrinsic_virtual) != 0) {
duke@435 218 // This is the first use of this intrinsic as a virtual call.
duke@435 219 if (oflags != 0) {
duke@435 220 // We already saw it as a non-virtual, so note both cases.
duke@435 221 flags |= _intrinsic_both;
duke@435 222 }
duke@435 223 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 224 // This is the first use of this intrinsic as a non-virtual
duke@435 225 flags |= _intrinsic_both;
duke@435 226 }
duke@435 227 }
duke@435 228 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 229 }
duke@435 230 // update the overall flags also:
duke@435 231 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 232 return changed;
duke@435 233 }
duke@435 234
duke@435 235 static char* format_flags(int flags, char* buf) {
duke@435 236 buf[0] = 0;
duke@435 237 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 238 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 239 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 240 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 241 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 242 if (buf[0] == 0) strcat(buf, ",");
duke@435 243 assert(buf[0] == ',', "must be");
duke@435 244 return &buf[1];
duke@435 245 }
duke@435 246
duke@435 247 void Compile::print_intrinsic_statistics() {
duke@435 248 char flagsbuf[100];
duke@435 249 ttyLocker ttyl;
duke@435 250 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 251 tty->print_cr("Compiler intrinsic usage:");
duke@435 252 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 253 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 254 #define PRINT_STAT_LINE(name, c, f) \
duke@435 255 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 256 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 257 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 258 int flags = _intrinsic_hist_flags[id];
duke@435 259 juint count = _intrinsic_hist_count[id];
duke@435 260 if ((flags | count) != 0) {
duke@435 261 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 262 }
duke@435 263 }
duke@435 264 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 265 if (xtty != NULL) xtty->tail("statistics");
duke@435 266 }
duke@435 267
duke@435 268 void Compile::print_statistics() {
duke@435 269 { ttyLocker ttyl;
duke@435 270 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 271 Parse::print_statistics();
duke@435 272 PhaseCCP::print_statistics();
duke@435 273 PhaseRegAlloc::print_statistics();
duke@435 274 Scheduling::print_statistics();
duke@435 275 PhasePeephole::print_statistics();
duke@435 276 PhaseIdealLoop::print_statistics();
duke@435 277 if (xtty != NULL) xtty->tail("statistics");
duke@435 278 }
duke@435 279 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 280 // put this under its own <statistics> element.
duke@435 281 print_intrinsic_statistics();
duke@435 282 }
duke@435 283 }
duke@435 284 #endif //PRODUCT
duke@435 285
duke@435 286 // Support for bundling info
duke@435 287 Bundle* Compile::node_bundling(const Node *n) {
duke@435 288 assert(valid_bundle_info(n), "oob");
duke@435 289 return &_node_bundling_base[n->_idx];
duke@435 290 }
duke@435 291
duke@435 292 bool Compile::valid_bundle_info(const Node *n) {
duke@435 293 return (_node_bundling_limit > n->_idx);
duke@435 294 }
duke@435 295
duke@435 296
never@1515 297 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 298 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 299 Node* use = n->last_out(i);
never@1515 300 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 301 uint uses_found = 0;
never@1515 302 for (uint j = 0; j < use->len(); j++) {
never@1515 303 if (use->in(j) == n) {
never@1515 304 if (j < use->req())
never@1515 305 use->set_req(j, nn);
never@1515 306 else
never@1515 307 use->set_prec(j, nn);
never@1515 308 uses_found++;
never@1515 309 }
never@1515 310 }
never@1515 311 if (is_in_table) {
never@1515 312 // reinsert into table
never@1515 313 initial_gvn()->hash_find_insert(use);
never@1515 314 }
never@1515 315 record_for_igvn(use);
never@1515 316 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 317 }
never@1515 318 }
never@1515 319
never@1515 320
bharadwaj@4315 321 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 322 if (n == NULL) return true;
bharadwaj@4315 323 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 324 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 325 return false;
bharadwaj@4315 326 }
never@1515 327
duke@435 328 // Identify all nodes that are reachable from below, useful.
duke@435 329 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 330 // recursive traversal is slower.
duke@435 331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 332 int estimated_worklist_size = unique();
duke@435 333 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 334
duke@435 335 // Initialize worklist
duke@435 336 if (root() != NULL) { useful.push(root()); }
duke@435 337 // If 'top' is cached, declare it useful to preserve cached node
duke@435 338 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 339
duke@435 340 // Push all useful nodes onto the list, breadthfirst
duke@435 341 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 342 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 343 Node *n = useful.at(next);
duke@435 344 uint max = n->len();
duke@435 345 for( uint i = 0; i < max; ++i ) {
duke@435 346 Node *m = n->in(i);
bharadwaj@4315 347 if (not_a_node(m)) continue;
duke@435 348 useful.push(m);
duke@435 349 }
duke@435 350 }
duke@435 351 }
duke@435 352
bharadwaj@4315 353 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 356 uint max_idx = unique();
bharadwaj@4315 357 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 358
bharadwaj@4315 359 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 360 // If node with index node_idx is not in useful set,
bharadwaj@4315 361 // mark it as dead in dead node list.
bharadwaj@4315 362 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 363 record_dead_node(node_idx);
bharadwaj@4315 364 }
bharadwaj@4315 365 }
bharadwaj@4315 366 }
bharadwaj@4315 367
duke@435 368 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 369 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 370 uint next = 0;
kvn@3260 371 while (next < useful.size()) {
duke@435 372 Node *n = useful.at(next++);
duke@435 373 // Use raw traversal of out edges since this code removes out edges
duke@435 374 int max = n->outcnt();
kvn@3260 375 for (int j = 0; j < max; ++j) {
duke@435 376 Node* child = n->raw_out(j);
kvn@3260 377 if (! useful.member(child)) {
kvn@3260 378 assert(!child->is_top() || child != top(),
kvn@3260 379 "If top is cached in Compile object it is in useful list");
duke@435 380 // Only need to remove this out-edge to the useless node
duke@435 381 n->raw_del_out(j);
duke@435 382 --j;
duke@435 383 --max;
duke@435 384 }
duke@435 385 }
duke@435 386 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 387 record_for_igvn(n->unique_out());
kvn@3260 388 }
kvn@3260 389 }
kvn@3260 390 // Remove useless macro and predicate opaq nodes
kvn@3260 391 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 392 Node* n = C->macro_node(i);
kvn@3260 393 if (!useful.member(n)) {
kvn@3260 394 remove_macro_node(n);
duke@435 395 }
duke@435 396 }
duke@435 397 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 398 }
duke@435 399
duke@435 400 //------------------------------frame_size_in_words-----------------------------
duke@435 401 // frame_slots in units of words
duke@435 402 int Compile::frame_size_in_words() const {
duke@435 403 // shift is 0 in LP32 and 1 in LP64
duke@435 404 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 405 int words = _frame_slots >> shift;
duke@435 406 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 407 return words;
duke@435 408 }
duke@435 409
duke@435 410 // ============================================================================
duke@435 411 //------------------------------CompileWrapper---------------------------------
duke@435 412 class CompileWrapper : public StackObj {
duke@435 413 Compile *const _compile;
duke@435 414 public:
duke@435 415 CompileWrapper(Compile* compile);
duke@435 416
duke@435 417 ~CompileWrapper();
duke@435 418 };
duke@435 419
duke@435 420 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 421 // the Compile* pointer is stored in the current ciEnv:
duke@435 422 ciEnv* env = compile->env();
duke@435 423 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 424 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 425 env->set_compiler_data(compile);
duke@435 426 assert(compile == Compile::current(), "sanity");
duke@435 427
duke@435 428 compile->set_type_dict(NULL);
duke@435 429 compile->set_type_hwm(NULL);
duke@435 430 compile->set_type_last_size(0);
duke@435 431 compile->set_last_tf(NULL, NULL);
duke@435 432 compile->set_indexSet_arena(NULL);
duke@435 433 compile->set_indexSet_free_block_list(NULL);
duke@435 434 compile->init_type_arena();
duke@435 435 Type::Initialize(compile);
duke@435 436 _compile->set_scratch_buffer_blob(NULL);
duke@435 437 _compile->begin_method();
duke@435 438 }
duke@435 439 CompileWrapper::~CompileWrapper() {
duke@435 440 _compile->end_method();
duke@435 441 if (_compile->scratch_buffer_blob() != NULL)
duke@435 442 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 443 _compile->env()->set_compiler_data(NULL);
duke@435 444 }
duke@435 445
duke@435 446
duke@435 447 //----------------------------print_compile_messages---------------------------
duke@435 448 void Compile::print_compile_messages() {
duke@435 449 #ifndef PRODUCT
duke@435 450 // Check if recompiling
duke@435 451 if (_subsume_loads == false && PrintOpto) {
duke@435 452 // Recompiling without allowing machine instructions to subsume loads
duke@435 453 tty->print_cr("*********************************************************");
duke@435 454 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 455 tty->print_cr("*********************************************************");
duke@435 456 }
kvn@473 457 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 458 // Recompiling without escape analysis
kvn@473 459 tty->print_cr("*********************************************************");
kvn@473 460 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 461 tty->print_cr("*********************************************************");
kvn@473 462 }
duke@435 463 if (env()->break_at_compile()) {
twisti@1040 464 // Open the debugger when compiling this method.
duke@435 465 tty->print("### Breaking when compiling: ");
duke@435 466 method()->print_short_name();
duke@435 467 tty->cr();
duke@435 468 BREAKPOINT;
duke@435 469 }
duke@435 470
duke@435 471 if( PrintOpto ) {
duke@435 472 if (is_osr_compilation()) {
duke@435 473 tty->print("[OSR]%3d", _compile_id);
duke@435 474 } else {
duke@435 475 tty->print("%3d", _compile_id);
duke@435 476 }
duke@435 477 }
duke@435 478 #endif
duke@435 479 }
duke@435 480
duke@435 481
kvn@2414 482 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 483 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 484 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 485 // If there is already a scratch buffer blob allocated and the
kvn@2414 486 // constant section is big enough, use it. Otherwise free the
kvn@2414 487 // current and allocate a new one.
kvn@2414 488 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 489 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 490 // Use the current blob.
kvn@2414 491 } else {
kvn@2414 492 if (blob != NULL) {
kvn@2414 493 BufferBlob::free(blob);
kvn@2414 494 }
duke@435 495
kvn@2414 496 ResourceMark rm;
kvn@2414 497 _scratch_const_size = const_size;
kvn@2414 498 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 499 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 500 // Record the buffer blob for next time.
kvn@2414 501 set_scratch_buffer_blob(blob);
kvn@2414 502 // Have we run out of code space?
kvn@2414 503 if (scratch_buffer_blob() == NULL) {
kvn@2414 504 // Let CompilerBroker disable further compilations.
kvn@2414 505 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 506 return;
kvn@2414 507 }
kvn@598 508 }
duke@435 509
duke@435 510 // Initialize the relocation buffers
twisti@2103 511 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 512 set_scratch_locs_memory(locs_buf);
duke@435 513 }
duke@435 514
duke@435 515
duke@435 516 //-----------------------scratch_emit_size-------------------------------------
duke@435 517 // Helper function that computes size by emitting code
duke@435 518 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 519 // Start scratch_emit_size section.
twisti@2350 520 set_in_scratch_emit_size(true);
twisti@2350 521
duke@435 522 // Emit into a trash buffer and count bytes emitted.
duke@435 523 // This is a pretty expensive way to compute a size,
duke@435 524 // but it works well enough if seldom used.
duke@435 525 // All common fixed-size instructions are given a size
duke@435 526 // method by the AD file.
duke@435 527 // Note that the scratch buffer blob and locs memory are
duke@435 528 // allocated at the beginning of the compile task, and
duke@435 529 // may be shared by several calls to scratch_emit_size.
duke@435 530 // The allocation of the scratch buffer blob is particularly
duke@435 531 // expensive, since it has to grab the code cache lock.
duke@435 532 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 533 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 534 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 535 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 536 address blob_begin = blob->content_begin();
duke@435 537 address blob_end = (address)locs_buf;
twisti@2103 538 assert(blob->content_contains(blob_end), "sanity");
duke@435 539 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 540 buf.initialize_consts_size(_scratch_const_size);
duke@435 541 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 542 assert(locs_buf != NULL, "sanity");
twisti@2350 543 int lsize = MAX_locs_size / 3;
twisti@2350 544 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 545 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 546 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 547
twisti@2350 548 // Do the emission.
kvn@3037 549
kvn@3037 550 Label fakeL; // Fake label for branch instructions.
kvn@3051 551 Label* saveL = NULL;
kvn@3051 552 uint save_bnum = 0;
kvn@3051 553 bool is_branch = n->is_MachBranch();
kvn@3037 554 if (is_branch) {
kvn@3037 555 MacroAssembler masm(&buf);
kvn@3037 556 masm.bind(fakeL);
kvn@3051 557 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 558 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 559 }
duke@435 560 n->emit(buf, this->regalloc());
kvn@3051 561 if (is_branch) // Restore label.
kvn@3051 562 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 563
twisti@2350 564 // End scratch_emit_size section.
twisti@2350 565 set_in_scratch_emit_size(false);
twisti@2350 566
twisti@2103 567 return buf.insts_size();
duke@435 568 }
duke@435 569
duke@435 570
duke@435 571 // ============================================================================
duke@435 572 //------------------------------Compile standard-------------------------------
duke@435 573 debug_only( int Compile::_debug_idx = 100000; )
duke@435 574
duke@435 575 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 576 // the continuation bci for on stack replacement.
duke@435 577
duke@435 578
kvn@473 579 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 580 : Phase(Compiler),
duke@435 581 _env(ci_env),
duke@435 582 _log(ci_env->log()),
duke@435 583 _compile_id(ci_env->compile_id()),
duke@435 584 _save_argument_registers(false),
duke@435 585 _stub_name(NULL),
duke@435 586 _stub_function(NULL),
duke@435 587 _stub_entry_point(NULL),
duke@435 588 _method(target),
duke@435 589 _entry_bci(osr_bci),
duke@435 590 _initial_gvn(NULL),
duke@435 591 _for_igvn(NULL),
duke@435 592 _warm_calls(NULL),
duke@435 593 _subsume_loads(subsume_loads),
kvn@473 594 _do_escape_analysis(do_escape_analysis),
duke@435 595 _failure_reason(NULL),
duke@435 596 _code_buffer("Compile::Fill_buffer"),
duke@435 597 _orig_pc_slot(0),
duke@435 598 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 599 _has_method_handle_invokes(false),
twisti@2350 600 _mach_constant_base_node(NULL),
duke@435 601 _node_bundling_limit(0),
duke@435 602 _node_bundling_base(NULL),
kvn@1294 603 _java_calls(0),
kvn@1294 604 _inner_loops(0),
twisti@2350 605 _scratch_const_size(-1),
twisti@2350 606 _in_scratch_emit_size(false),
bharadwaj@4315 607 _dead_node_list(comp_arena()),
bharadwaj@4315 608 _dead_node_count(0),
duke@435 609 #ifndef PRODUCT
duke@435 610 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 611 _printer(IdealGraphPrinter::printer()),
duke@435 612 #endif
duke@435 613 _congraph(NULL) {
duke@435 614 C = this;
duke@435 615
duke@435 616 CompileWrapper cw(this);
duke@435 617 #ifndef PRODUCT
duke@435 618 if (TimeCompiler2) {
duke@435 619 tty->print(" ");
duke@435 620 target->holder()->name()->print();
duke@435 621 tty->print(".");
duke@435 622 target->print_short_name();
duke@435 623 tty->print(" ");
duke@435 624 }
duke@435 625 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 626 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 627 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 628 if (!print_opto_assembly) {
jrose@535 629 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 630 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 631 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 632 print_opto_assembly = true;
jrose@535 633 }
jrose@535 634 }
jrose@535 635 set_print_assembly(print_opto_assembly);
never@802 636 set_parsed_irreducible_loop(false);
duke@435 637 #endif
duke@435 638
duke@435 639 if (ProfileTraps) {
duke@435 640 // Make sure the method being compiled gets its own MDO,
duke@435 641 // so we can at least track the decompile_count().
iveresov@2349 642 method()->ensure_method_data();
duke@435 643 }
duke@435 644
duke@435 645 Init(::AliasLevel);
duke@435 646
duke@435 647
duke@435 648 print_compile_messages();
duke@435 649
duke@435 650 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 651 _ilt = InlineTree::build_inline_tree_root();
duke@435 652 else
duke@435 653 _ilt = NULL;
duke@435 654
duke@435 655 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 656 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 657
duke@435 658 #define MINIMUM_NODE_HASH 1023
duke@435 659 // Node list that Iterative GVN will start with
duke@435 660 Unique_Node_List for_igvn(comp_arena());
duke@435 661 set_for_igvn(&for_igvn);
duke@435 662
duke@435 663 // GVN that will be run immediately on new nodes
duke@435 664 uint estimated_size = method()->code_size()*4+64;
duke@435 665 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 666 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 667 set_initial_gvn(&gvn);
duke@435 668
duke@435 669 { // Scope for timing the parser
duke@435 670 TracePhase t3("parse", &_t_parser, true);
duke@435 671
duke@435 672 // Put top into the hash table ASAP.
duke@435 673 initial_gvn()->transform_no_reclaim(top());
duke@435 674
duke@435 675 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 676 CallGenerator* cg = NULL;
duke@435 677 if (is_osr_compilation()) {
duke@435 678 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 679 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 680 init_tf(TypeFunc::make(domain, range));
kvn@4115 681 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 682 initial_gvn()->set_type_bottom(s);
duke@435 683 init_start(s);
duke@435 684 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 685 } else {
duke@435 686 // Normal case.
duke@435 687 init_tf(TypeFunc::make(method()));
kvn@4115 688 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 689 initial_gvn()->set_type_bottom(s);
duke@435 690 init_start(s);
johnc@2781 691 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 692 // With java.lang.ref.reference.get() we must go through the
johnc@2781 693 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 694 // method of the compile - so that, if necessary, the value in
johnc@2781 695 // the referent field of the reference object gets recorded by
johnc@2781 696 // the pre-barrier code.
johnc@2781 697 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 698 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 699 // result in the referent being marked live and the reference
johnc@2781 700 // object removed from the list of discovered references during
johnc@2781 701 // reference processing.
johnc@2781 702 cg = find_intrinsic(method(), false);
johnc@2781 703 }
johnc@2781 704 if (cg == NULL) {
johnc@2781 705 float past_uses = method()->interpreter_invocation_count();
johnc@2781 706 float expected_uses = past_uses;
johnc@2781 707 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 708 }
duke@435 709 }
duke@435 710 if (failing()) return;
duke@435 711 if (cg == NULL) {
duke@435 712 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 713 return;
duke@435 714 }
duke@435 715 JVMState* jvms = build_start_state(start(), tf());
duke@435 716 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 717 record_method_not_compilable("method parse failed");
duke@435 718 return;
duke@435 719 }
duke@435 720 GraphKit kit(jvms);
duke@435 721
duke@435 722 if (!kit.stopped()) {
duke@435 723 // Accept return values, and transfer control we know not where.
duke@435 724 // This is done by a special, unique ReturnNode bound to root.
duke@435 725 return_values(kit.jvms());
duke@435 726 }
duke@435 727
duke@435 728 if (kit.has_exceptions()) {
duke@435 729 // Any exceptions that escape from this call must be rethrown
duke@435 730 // to whatever caller is dynamically above us on the stack.
duke@435 731 // This is done by a special, unique RethrowNode bound to root.
duke@435 732 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 733 }
duke@435 734
never@1515 735 if (!failing() && has_stringbuilder()) {
never@1515 736 {
never@1515 737 // remove useless nodes to make the usage analysis simpler
never@1515 738 ResourceMark rm;
never@1515 739 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
never@1515 740 }
never@1515 741
never@1515 742 {
never@1515 743 ResourceMark rm;
never@1515 744 print_method("Before StringOpts", 3);
never@1515 745 PhaseStringOpts pso(initial_gvn(), &for_igvn);
never@1515 746 print_method("After StringOpts", 3);
never@1515 747 }
never@1515 748
never@1515 749 // now inline anything that we skipped the first time around
never@1515 750 while (_late_inlines.length() > 0) {
never@1515 751 CallGenerator* cg = _late_inlines.pop();
never@1515 752 cg->do_late_inline();
kvn@3260 753 if (failing()) return;
never@1515 754 }
never@1515 755 }
never@1515 756 assert(_late_inlines.length() == 0, "should have been processed");
never@1515 757
never@852 758 print_method("Before RemoveUseless", 3);
never@802 759
duke@435 760 // Remove clutter produced by parsing.
duke@435 761 if (!failing()) {
duke@435 762 ResourceMark rm;
duke@435 763 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 764 }
duke@435 765 }
duke@435 766
duke@435 767 // Note: Large methods are capped off in do_one_bytecode().
duke@435 768 if (failing()) return;
duke@435 769
duke@435 770 // After parsing, node notes are no longer automagic.
duke@435 771 // They must be propagated by register_new_node_with_optimizer(),
duke@435 772 // clone(), or the like.
duke@435 773 set_default_node_notes(NULL);
duke@435 774
duke@435 775 for (;;) {
duke@435 776 int successes = Inline_Warm();
duke@435 777 if (failing()) return;
duke@435 778 if (successes == 0) break;
duke@435 779 }
duke@435 780
duke@435 781 // Drain the list.
duke@435 782 Finish_Warm();
duke@435 783 #ifndef PRODUCT
duke@435 784 if (_printer) {
duke@435 785 _printer->print_inlining(this);
duke@435 786 }
duke@435 787 #endif
duke@435 788
duke@435 789 if (failing()) return;
duke@435 790 NOT_PRODUCT( verify_graph_edges(); )
duke@435 791
duke@435 792 // Now optimize
duke@435 793 Optimize();
duke@435 794 if (failing()) return;
duke@435 795 NOT_PRODUCT( verify_graph_edges(); )
duke@435 796
duke@435 797 #ifndef PRODUCT
duke@435 798 if (PrintIdeal) {
duke@435 799 ttyLocker ttyl; // keep the following output all in one block
duke@435 800 // This output goes directly to the tty, not the compiler log.
duke@435 801 // To enable tools to match it up with the compilation activity,
duke@435 802 // be sure to tag this tty output with the compile ID.
duke@435 803 if (xtty != NULL) {
duke@435 804 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 805 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 806 "");
duke@435 807 }
duke@435 808 root()->dump(9999);
duke@435 809 if (xtty != NULL) {
duke@435 810 xtty->tail("ideal");
duke@435 811 }
duke@435 812 }
duke@435 813 #endif
duke@435 814
duke@435 815 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 816 // for the original deopt pc.
duke@435 817
duke@435 818 _orig_pc_slot = fixed_slots();
duke@435 819 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 820 set_fixed_slots(next_slot);
duke@435 821
duke@435 822 // Now generate code
duke@435 823 Code_Gen();
duke@435 824 if (failing()) return;
duke@435 825
duke@435 826 // Check if we want to skip execution of all compiled code.
duke@435 827 {
duke@435 828 #ifndef PRODUCT
duke@435 829 if (OptoNoExecute) {
duke@435 830 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 831 return;
duke@435 832 }
duke@435 833 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 834 #endif
duke@435 835
duke@435 836 if (is_osr_compilation()) {
duke@435 837 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 838 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 839 } else {
duke@435 840 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 841 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 842 }
duke@435 843
duke@435 844 env()->register_method(_method, _entry_bci,
duke@435 845 &_code_offsets,
duke@435 846 _orig_pc_slot_offset_in_bytes,
duke@435 847 code_buffer(),
duke@435 848 frame_size_in_words(), _oop_map_set,
duke@435 849 &_handler_table, &_inc_table,
duke@435 850 compiler,
duke@435 851 env()->comp_level(),
kvn@4103 852 has_unsafe_access(),
kvn@4103 853 SharedRuntime::is_wide_vector(max_vector_size())
duke@435 854 );
vlivanov@4154 855
vlivanov@4154 856 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 857 log()->code_cache_state();
duke@435 858 }
duke@435 859 }
duke@435 860
duke@435 861 //------------------------------Compile----------------------------------------
duke@435 862 // Compile a runtime stub
duke@435 863 Compile::Compile( ciEnv* ci_env,
duke@435 864 TypeFunc_generator generator,
duke@435 865 address stub_function,
duke@435 866 const char *stub_name,
duke@435 867 int is_fancy_jump,
duke@435 868 bool pass_tls,
duke@435 869 bool save_arg_registers,
duke@435 870 bool return_pc )
duke@435 871 : Phase(Compiler),
duke@435 872 _env(ci_env),
duke@435 873 _log(ci_env->log()),
duke@435 874 _compile_id(-1),
duke@435 875 _save_argument_registers(save_arg_registers),
duke@435 876 _method(NULL),
duke@435 877 _stub_name(stub_name),
duke@435 878 _stub_function(stub_function),
duke@435 879 _stub_entry_point(NULL),
duke@435 880 _entry_bci(InvocationEntryBci),
duke@435 881 _initial_gvn(NULL),
duke@435 882 _for_igvn(NULL),
duke@435 883 _warm_calls(NULL),
duke@435 884 _orig_pc_slot(0),
duke@435 885 _orig_pc_slot_offset_in_bytes(0),
duke@435 886 _subsume_loads(true),
kvn@473 887 _do_escape_analysis(false),
duke@435 888 _failure_reason(NULL),
duke@435 889 _code_buffer("Compile::Fill_buffer"),
twisti@1700 890 _has_method_handle_invokes(false),
twisti@2350 891 _mach_constant_base_node(NULL),
duke@435 892 _node_bundling_limit(0),
duke@435 893 _node_bundling_base(NULL),
kvn@1294 894 _java_calls(0),
kvn@1294 895 _inner_loops(0),
duke@435 896 #ifndef PRODUCT
duke@435 897 _trace_opto_output(TraceOptoOutput),
duke@435 898 _printer(NULL),
duke@435 899 #endif
bharadwaj@4315 900 _dead_node_list(comp_arena()),
bharadwaj@4315 901 _dead_node_count(0),
duke@435 902 _congraph(NULL) {
duke@435 903 C = this;
duke@435 904
duke@435 905 #ifndef PRODUCT
duke@435 906 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 907 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 908 set_print_assembly(PrintFrameConverterAssembly);
never@802 909 set_parsed_irreducible_loop(false);
duke@435 910 #endif
duke@435 911 CompileWrapper cw(this);
duke@435 912 Init(/*AliasLevel=*/ 0);
duke@435 913 init_tf((*generator)());
duke@435 914
duke@435 915 {
duke@435 916 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 917 Unique_Node_List for_igvn(comp_arena());
duke@435 918 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 919 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 920 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 921 gvn.transform_no_reclaim(top());
duke@435 922
duke@435 923 GraphKit kit;
duke@435 924 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 925 }
duke@435 926
duke@435 927 NOT_PRODUCT( verify_graph_edges(); )
duke@435 928 Code_Gen();
duke@435 929 if (failing()) return;
duke@435 930
duke@435 931
duke@435 932 // Entry point will be accessed using compile->stub_entry_point();
duke@435 933 if (code_buffer() == NULL) {
duke@435 934 Matcher::soft_match_failure();
duke@435 935 } else {
duke@435 936 if (PrintAssembly && (WizardMode || Verbose))
duke@435 937 tty->print_cr("### Stub::%s", stub_name);
duke@435 938
duke@435 939 if (!failing()) {
duke@435 940 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 941
duke@435 942 // Make the NMethod
duke@435 943 // For now we mark the frame as never safe for profile stackwalking
duke@435 944 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 945 code_buffer(),
duke@435 946 CodeOffsets::frame_never_safe,
duke@435 947 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 948 frame_size_in_words(),
duke@435 949 _oop_map_set,
duke@435 950 save_arg_registers);
duke@435 951 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 952
duke@435 953 _stub_entry_point = rs->entry_point();
duke@435 954 }
duke@435 955 }
duke@435 956 }
duke@435 957
duke@435 958 //------------------------------Init-------------------------------------------
duke@435 959 // Prepare for a single compilation
duke@435 960 void Compile::Init(int aliaslevel) {
duke@435 961 _unique = 0;
duke@435 962 _regalloc = NULL;
duke@435 963
duke@435 964 _tf = NULL; // filled in later
duke@435 965 _top = NULL; // cached later
duke@435 966 _matcher = NULL; // filled in later
duke@435 967 _cfg = NULL; // filled in later
duke@435 968
duke@435 969 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 970
duke@435 971 _node_note_array = NULL;
duke@435 972 _default_node_notes = NULL;
duke@435 973
duke@435 974 _immutable_memory = NULL; // filled in at first inquiry
duke@435 975
duke@435 976 // Globally visible Nodes
duke@435 977 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 978 set_cached_top_node(NULL);
kvn@4115 979 set_root(new (this) RootNode());
duke@435 980 // Now that you have a Root to point to, create the real TOP
kvn@4115 981 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 982 set_recent_alloc(NULL, NULL);
duke@435 983
duke@435 984 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 985 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 986 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 987 env()->set_dependencies(new Dependencies(env()));
duke@435 988
duke@435 989 _fixed_slots = 0;
duke@435 990 set_has_split_ifs(false);
duke@435 991 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 992 set_has_stringbuilder(false);
duke@435 993 _trap_can_recompile = false; // no traps emitted yet
duke@435 994 _major_progress = true; // start out assuming good things will happen
duke@435 995 set_has_unsafe_access(false);
kvn@4103 996 set_max_vector_size(0);
duke@435 997 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 998 set_decompile_count(0);
duke@435 999
rasbold@853 1000 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1001 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1002 set_do_inlining(Inline);
iveresov@2138 1003 set_max_inline_size(MaxInlineSize);
iveresov@2138 1004 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1005 set_do_scheduling(OptoScheduling);
iveresov@2138 1006 set_do_count_invocations(false);
iveresov@2138 1007 set_do_method_data_update(false);
duke@435 1008
duke@435 1009 if (debug_info()->recording_non_safepoints()) {
duke@435 1010 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1011 (comp_arena(), 8, 0, NULL));
duke@435 1012 set_default_node_notes(Node_Notes::make(this));
duke@435 1013 }
duke@435 1014
duke@435 1015 // // -- Initialize types before each compile --
duke@435 1016 // // Update cached type information
duke@435 1017 // if( _method && _method->constants() )
duke@435 1018 // Type::update_loaded_types(_method, _method->constants());
duke@435 1019
duke@435 1020 // Init alias_type map.
kvn@473 1021 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1022 aliaslevel = 2; // No unique types without escape analysis
duke@435 1023 _AliasLevel = aliaslevel;
duke@435 1024 const int grow_ats = 16;
duke@435 1025 _max_alias_types = grow_ats;
duke@435 1026 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1027 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1028 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1029 {
duke@435 1030 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1031 }
duke@435 1032 // Initialize the first few types.
duke@435 1033 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1034 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1035 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1036 _num_alias_types = AliasIdxRaw+1;
duke@435 1037 // Zero out the alias type cache.
duke@435 1038 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1039 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1040 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1041
duke@435 1042 _intrinsics = NULL;
kvn@2040 1043 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1044 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1045 register_library_intrinsics();
duke@435 1046 }
duke@435 1047
duke@435 1048 //---------------------------init_start----------------------------------------
duke@435 1049 // Install the StartNode on this compile object.
duke@435 1050 void Compile::init_start(StartNode* s) {
duke@435 1051 if (failing())
duke@435 1052 return; // already failing
duke@435 1053 assert(s == start(), "");
duke@435 1054 }
duke@435 1055
duke@435 1056 StartNode* Compile::start() const {
duke@435 1057 assert(!failing(), "");
duke@435 1058 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1059 Node* start = root()->fast_out(i);
duke@435 1060 if( start->is_Start() )
duke@435 1061 return start->as_Start();
duke@435 1062 }
duke@435 1063 ShouldNotReachHere();
duke@435 1064 return NULL;
duke@435 1065 }
duke@435 1066
duke@435 1067 //-------------------------------immutable_memory-------------------------------------
duke@435 1068 // Access immutable memory
duke@435 1069 Node* Compile::immutable_memory() {
duke@435 1070 if (_immutable_memory != NULL) {
duke@435 1071 return _immutable_memory;
duke@435 1072 }
duke@435 1073 StartNode* s = start();
duke@435 1074 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1075 Node *p = s->fast_out(i);
duke@435 1076 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1077 _immutable_memory = p;
duke@435 1078 return _immutable_memory;
duke@435 1079 }
duke@435 1080 }
duke@435 1081 ShouldNotReachHere();
duke@435 1082 return NULL;
duke@435 1083 }
duke@435 1084
duke@435 1085 //----------------------set_cached_top_node------------------------------------
duke@435 1086 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1087 void Compile::set_cached_top_node(Node* tn) {
duke@435 1088 if (tn != NULL) verify_top(tn);
duke@435 1089 Node* old_top = _top;
duke@435 1090 _top = tn;
duke@435 1091 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1092 // their _out arrays.
duke@435 1093 if (_top != NULL) _top->setup_is_top();
duke@435 1094 if (old_top != NULL) old_top->setup_is_top();
duke@435 1095 assert(_top == NULL || top()->is_top(), "");
duke@435 1096 }
duke@435 1097
bharadwaj@4315 1098 #ifdef ASSERT
bharadwaj@4315 1099 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1100 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1101 // Get useful node list by walking the graph.
bharadwaj@4315 1102 identify_useful_nodes(useful);
bharadwaj@4315 1103 return useful.size();
bharadwaj@4315 1104 }
bharadwaj@4315 1105
bharadwaj@4315 1106 void Compile::print_missing_nodes() {
bharadwaj@4315 1107
bharadwaj@4315 1108 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1109 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1110 return;
bharadwaj@4315 1111 }
bharadwaj@4315 1112
bharadwaj@4315 1113 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1114 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1115 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1116 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1117 // _dead_node_list.
bharadwaj@4315 1118
bharadwaj@4315 1119 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1120 // Get useful node list by walking the graph.
bharadwaj@4315 1121 identify_useful_nodes(useful);
bharadwaj@4315 1122
bharadwaj@4315 1123 uint l_nodes = C->live_nodes();
bharadwaj@4315 1124 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1125
bharadwaj@4315 1126 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1127 if (_log != NULL) {
bharadwaj@4315 1128 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1129 _log->stamp();
bharadwaj@4315 1130 _log->end_head();
bharadwaj@4315 1131 }
bharadwaj@4315 1132 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1133 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1134 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1135 if (useful_member_set.test(i)) {
bharadwaj@4315 1136 if (_dead_node_list.test(i)) {
bharadwaj@4315 1137 if (_log != NULL) {
bharadwaj@4315 1138 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1139 }
bharadwaj@4315 1140 if (PrintIdealNodeCount) {
bharadwaj@4315 1141 // Print the log message to tty
bharadwaj@4315 1142 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1143 useful.at(i)->dump();
bharadwaj@4315 1144 }
bharadwaj@4315 1145 }
bharadwaj@4315 1146 }
bharadwaj@4315 1147 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1148 if (_log != NULL) {
bharadwaj@4315 1149 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1150 }
bharadwaj@4315 1151 if (PrintIdealNodeCount) {
bharadwaj@4315 1152 // Print the log message to tty
bharadwaj@4315 1153 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1154 }
bharadwaj@4315 1155 }
bharadwaj@4315 1156 }
bharadwaj@4315 1157 if (_log != NULL) {
bharadwaj@4315 1158 _log->tail("mismatched_nodes");
bharadwaj@4315 1159 }
bharadwaj@4315 1160 }
bharadwaj@4315 1161 }
bharadwaj@4315 1162 #endif
bharadwaj@4315 1163
duke@435 1164 #ifndef PRODUCT
duke@435 1165 void Compile::verify_top(Node* tn) const {
duke@435 1166 if (tn != NULL) {
duke@435 1167 assert(tn->is_Con(), "top node must be a constant");
duke@435 1168 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1169 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1170 }
duke@435 1171 }
duke@435 1172 #endif
duke@435 1173
duke@435 1174
duke@435 1175 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1176
duke@435 1177 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1178 guarantee(arr != NULL, "");
duke@435 1179 int num_blocks = arr->length();
duke@435 1180 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1181 int num_notes = grow_by * _node_notes_block_size;
duke@435 1182 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1183 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1184 while (num_notes > 0) {
duke@435 1185 arr->append(notes);
duke@435 1186 notes += _node_notes_block_size;
duke@435 1187 num_notes -= _node_notes_block_size;
duke@435 1188 }
duke@435 1189 assert(num_notes == 0, "exact multiple, please");
duke@435 1190 }
duke@435 1191
duke@435 1192 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1193 if (source == NULL || dest == NULL) return false;
duke@435 1194
duke@435 1195 if (dest->is_Con())
duke@435 1196 return false; // Do not push debug info onto constants.
duke@435 1197
duke@435 1198 #ifdef ASSERT
duke@435 1199 // Leave a bread crumb trail pointing to the original node:
duke@435 1200 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1201 dest->set_debug_orig(source);
duke@435 1202 }
duke@435 1203 #endif
duke@435 1204
duke@435 1205 if (node_note_array() == NULL)
duke@435 1206 return false; // Not collecting any notes now.
duke@435 1207
duke@435 1208 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1209 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1210 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1211 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1212 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1213 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1214 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1215 }
duke@435 1216
duke@435 1217 Node_Notes merged_notes = (*source_notes);
duke@435 1218 // The order of operations here ensures that dest notes will win...
duke@435 1219 merged_notes.update_from(dest_notes);
duke@435 1220 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1221 }
duke@435 1222
duke@435 1223
duke@435 1224 //--------------------------allow_range_check_smearing-------------------------
duke@435 1225 // Gating condition for coalescing similar range checks.
duke@435 1226 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1227 // single covering check that is at least as strong as any of them.
duke@435 1228 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1229 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1230 // on the optimization.
duke@435 1231 bool Compile::allow_range_check_smearing() const {
duke@435 1232 // If this method has already thrown a range-check,
duke@435 1233 // assume it was because we already tried range smearing
duke@435 1234 // and it failed.
duke@435 1235 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1236 return !already_trapped;
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 //------------------------------flatten_alias_type-----------------------------
duke@435 1241 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1242 int offset = tj->offset();
duke@435 1243 TypePtr::PTR ptr = tj->ptr();
duke@435 1244
kvn@682 1245 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1246 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1247 tj->is_oopptr()->is_known_instance();
kvn@682 1248
duke@435 1249 // Process weird unsafe references.
duke@435 1250 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1251 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1252 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1253 tj = TypeOopPtr::BOTTOM;
duke@435 1254 ptr = tj->ptr();
duke@435 1255 offset = tj->offset();
duke@435 1256 }
duke@435 1257
duke@435 1258 // Array pointers need some flattening
duke@435 1259 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1260 if( ta && is_known_inst ) {
kvn@682 1261 if ( offset != Type::OffsetBot &&
kvn@682 1262 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1263 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1264 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1265 }
kvn@682 1266 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1267 // For arrays indexed by constant indices, we flatten the alias
duke@435 1268 // space to include all of the array body. Only the header, klass
duke@435 1269 // and array length can be accessed un-aliased.
duke@435 1270 if( offset != Type::OffsetBot ) {
coleenp@4037 1271 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1272 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1273 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1274 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1275 // range is OK as-is.
duke@435 1276 tj = ta = TypeAryPtr::RANGE;
duke@435 1277 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1278 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1279 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1280 ptr = TypePtr::BotPTR;
duke@435 1281 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1282 tj = TypeInstPtr::MARK;
duke@435 1283 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1284 ptr = TypePtr::BotPTR;
duke@435 1285 } else { // Random constant offset into array body
duke@435 1286 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1287 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1288 }
duke@435 1289 }
duke@435 1290 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1291 if (ta->size() != TypeInt::POS) {
duke@435 1292 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1293 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1294 }
duke@435 1295 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1296 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1297 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1298 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1299 }
duke@435 1300 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1301 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1302 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1303 }
duke@435 1304 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1305 // cannot be distinguished by bytecode alone.
duke@435 1306 if (ta->elem() == TypeInt::BOOL) {
duke@435 1307 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1308 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1309 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1310 }
duke@435 1311 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1312 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1313 // Also, make sure exact and non-exact variants alias the same.
duke@435 1314 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
kvn@2986 1315 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1316 }
duke@435 1317 }
duke@435 1318
duke@435 1319 // Oop pointers need some flattening
duke@435 1320 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1321 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1322 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1323 if( ptr == TypePtr::Constant ) {
never@2658 1324 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1325 offset < k->size_helper() * wordSize) {
never@2658 1326 // No constant oop pointers (such as Strings); they alias with
never@2658 1327 // unknown strings.
never@2658 1328 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1329 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1330 }
kvn@682 1331 } else if( is_known_inst ) {
kvn@598 1332 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1333 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1334 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1335 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1336 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1337 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1338 }
duke@435 1339 // Canonicalize the holder of this field
coleenp@548 1340 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1341 // First handle header references such as a LoadKlassNode, even if the
duke@435 1342 // object's klass is unloaded at compile time (4965979).
kvn@682 1343 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1344 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1345 }
duke@435 1346 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1347 // Static fields are in the space above the normal instance
never@2658 1348 // fields in the java.lang.Class instance.
never@2658 1349 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1350 to = NULL;
never@2658 1351 tj = TypeOopPtr::BOTTOM;
never@2658 1352 offset = tj->offset();
never@2658 1353 }
duke@435 1354 } else {
duke@435 1355 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1356 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1357 if( is_known_inst ) {
kvn@682 1358 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1359 } else {
kvn@682 1360 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1361 }
duke@435 1362 }
duke@435 1363 }
duke@435 1364 }
duke@435 1365
duke@435 1366 // Klass pointers to object array klasses need some flattening
duke@435 1367 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1368 if( tk ) {
duke@435 1369 // If we are referencing a field within a Klass, we need
duke@435 1370 // to assume the worst case of an Object. Both exact and
never@3389 1371 // inexact types must flatten to the same alias class so
never@3389 1372 // use NotNull as the PTR.
duke@435 1373 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1374
never@3389 1375 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1376 TypeKlassPtr::OBJECT->klass(),
duke@435 1377 offset);
duke@435 1378 }
duke@435 1379
duke@435 1380 ciKlass* klass = tk->klass();
duke@435 1381 if( klass->is_obj_array_klass() ) {
duke@435 1382 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1383 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1384 k = TypeInstPtr::BOTTOM->klass();
duke@435 1385 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1386 }
duke@435 1387
duke@435 1388 // Check for precise loads from the primary supertype array and force them
duke@435 1389 // to the supertype cache alias index. Check for generic array loads from
duke@435 1390 // the primary supertype array and also force them to the supertype cache
duke@435 1391 // alias index. Since the same load can reach both, we need to merge
duke@435 1392 // these 2 disparate memories into the same alias class. Since the
duke@435 1393 // primary supertype array is read-only, there's no chance of confusion
duke@435 1394 // where we bypass an array load and an array store.
stefank@3391 1395 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1396 if (offset == Type::OffsetBot ||
never@3389 1397 (offset >= primary_supers_offset &&
never@3389 1398 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1399 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1400 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1401 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1402 }
duke@435 1403 }
duke@435 1404
duke@435 1405 // Flatten all Raw pointers together.
duke@435 1406 if (tj->base() == Type::RawPtr)
duke@435 1407 tj = TypeRawPtr::BOTTOM;
duke@435 1408
duke@435 1409 if (tj->base() == Type::AnyPtr)
duke@435 1410 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1411
duke@435 1412 // Flatten all to bottom for now
duke@435 1413 switch( _AliasLevel ) {
duke@435 1414 case 0:
duke@435 1415 tj = TypePtr::BOTTOM;
duke@435 1416 break;
duke@435 1417 case 1: // Flatten to: oop, static, field or array
duke@435 1418 switch (tj->base()) {
duke@435 1419 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1420 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1421 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1422 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1423 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1424 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1425 default: ShouldNotReachHere();
duke@435 1426 }
duke@435 1427 break;
twisti@1040 1428 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1429 case 3: // No collapsing at level 3; keep all splits
duke@435 1430 break;
duke@435 1431 default:
duke@435 1432 Unimplemented();
duke@435 1433 }
duke@435 1434
duke@435 1435 offset = tj->offset();
duke@435 1436 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1437
duke@435 1438 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1439 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1440 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1441 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1442 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1443 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1444 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1445 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1446 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1447 tj->ptr() != TypePtr::AnyNull &&
duke@435 1448 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1449 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1450 // tj->base() == Type::RawPtr ||
duke@435 1451 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1452
duke@435 1453 return tj;
duke@435 1454 }
duke@435 1455
duke@435 1456 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1457 _index = i;
duke@435 1458 _adr_type = at;
duke@435 1459 _field = NULL;
duke@435 1460 _is_rewritable = true; // default
duke@435 1461 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1462 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1463 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1464 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1465 } else {
duke@435 1466 _general_index = 0;
duke@435 1467 }
duke@435 1468 }
duke@435 1469
duke@435 1470 //---------------------------------print_on------------------------------------
duke@435 1471 #ifndef PRODUCT
duke@435 1472 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1473 if (index() < 10)
duke@435 1474 st->print("@ <%d> ", index());
duke@435 1475 else st->print("@ <%d>", index());
duke@435 1476 st->print(is_rewritable() ? " " : " RO");
duke@435 1477 int offset = adr_type()->offset();
duke@435 1478 if (offset == Type::OffsetBot)
duke@435 1479 st->print(" +any");
duke@435 1480 else st->print(" +%-3d", offset);
duke@435 1481 st->print(" in ");
duke@435 1482 adr_type()->dump_on(st);
duke@435 1483 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1484 if (field() != NULL && tjp) {
duke@435 1485 if (tjp->klass() != field()->holder() ||
duke@435 1486 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1487 st->print(" != ");
duke@435 1488 field()->print();
duke@435 1489 st->print(" ***");
duke@435 1490 }
duke@435 1491 }
duke@435 1492 }
duke@435 1493
duke@435 1494 void print_alias_types() {
duke@435 1495 Compile* C = Compile::current();
duke@435 1496 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1497 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1498 C->alias_type(idx)->print_on(tty);
duke@435 1499 tty->cr();
duke@435 1500 }
duke@435 1501 }
duke@435 1502 #endif
duke@435 1503
duke@435 1504
duke@435 1505 //----------------------------probe_alias_cache--------------------------------
duke@435 1506 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1507 intptr_t key = (intptr_t) adr_type;
duke@435 1508 key ^= key >> logAliasCacheSize;
duke@435 1509 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1510 }
duke@435 1511
duke@435 1512
duke@435 1513 //-----------------------------grow_alias_types--------------------------------
duke@435 1514 void Compile::grow_alias_types() {
duke@435 1515 const int old_ats = _max_alias_types; // how many before?
duke@435 1516 const int new_ats = old_ats; // how many more?
duke@435 1517 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1518 _max_alias_types = grow_ats;
duke@435 1519 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1520 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1521 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1522 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1523 }
duke@435 1524
duke@435 1525
duke@435 1526 //--------------------------------find_alias_type------------------------------
never@2658 1527 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1528 if (_AliasLevel == 0)
duke@435 1529 return alias_type(AliasIdxBot);
duke@435 1530
duke@435 1531 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1532 if (ace->_adr_type == adr_type) {
duke@435 1533 return alias_type(ace->_index);
duke@435 1534 }
duke@435 1535
duke@435 1536 // Handle special cases.
duke@435 1537 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1538 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1539
duke@435 1540 // Do it the slow way.
duke@435 1541 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1542
duke@435 1543 #ifdef ASSERT
duke@435 1544 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1545 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1546 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1547 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1548 // Scalarizable allocations have exact klass always.
kvn@682 1549 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1550 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1551 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1552 }
duke@435 1553 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1554 #endif
duke@435 1555
duke@435 1556 int idx = AliasIdxTop;
duke@435 1557 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1558 if (alias_type(i)->adr_type() == flat) {
duke@435 1559 idx = i;
duke@435 1560 break;
duke@435 1561 }
duke@435 1562 }
duke@435 1563
duke@435 1564 if (idx == AliasIdxTop) {
duke@435 1565 if (no_create) return NULL;
duke@435 1566 // Grow the array if necessary.
duke@435 1567 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1568 // Add a new alias type.
duke@435 1569 idx = _num_alias_types++;
duke@435 1570 _alias_types[idx]->Init(idx, flat);
duke@435 1571 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1572 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1573 if (flat->isa_instptr()) {
duke@435 1574 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1575 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1576 alias_type(idx)->set_rewritable(false);
duke@435 1577 }
duke@435 1578 if (flat->isa_klassptr()) {
stefank@3391 1579 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1580 alias_type(idx)->set_rewritable(false);
stefank@3391 1581 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1582 alias_type(idx)->set_rewritable(false);
stefank@3391 1583 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1584 alias_type(idx)->set_rewritable(false);
stefank@3391 1585 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1586 alias_type(idx)->set_rewritable(false);
duke@435 1587 }
duke@435 1588 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1589 // but the base pointer type is not distinctive enough to identify
duke@435 1590 // references into JavaThread.)
duke@435 1591
never@2658 1592 // Check for final fields.
duke@435 1593 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1594 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1595 ciField* field;
never@2658 1596 if (tinst->const_oop() != NULL &&
never@2658 1597 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1598 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1599 // static field
never@2658 1600 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1601 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1602 } else {
never@2658 1603 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1604 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1605 }
never@2658 1606 assert(field == NULL ||
never@2658 1607 original_field == NULL ||
never@2658 1608 (field->holder() == original_field->holder() &&
never@2658 1609 field->offset() == original_field->offset() &&
never@2658 1610 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1611 // Set field() and is_rewritable() attributes.
duke@435 1612 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1613 }
duke@435 1614 }
duke@435 1615
duke@435 1616 // Fill the cache for next time.
duke@435 1617 ace->_adr_type = adr_type;
duke@435 1618 ace->_index = idx;
duke@435 1619 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1620
duke@435 1621 // Might as well try to fill the cache for the flattened version, too.
duke@435 1622 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1623 if (face->_adr_type == NULL) {
duke@435 1624 face->_adr_type = flat;
duke@435 1625 face->_index = idx;
duke@435 1626 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1627 }
duke@435 1628
duke@435 1629 return alias_type(idx);
duke@435 1630 }
duke@435 1631
duke@435 1632
duke@435 1633 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1634 const TypeOopPtr* t;
duke@435 1635 if (field->is_static())
never@2658 1636 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1637 else
duke@435 1638 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1639 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
duke@435 1640 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1641 return atp;
duke@435 1642 }
duke@435 1643
duke@435 1644
duke@435 1645 //------------------------------have_alias_type--------------------------------
duke@435 1646 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1647 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1648 if (ace->_adr_type == adr_type) {
duke@435 1649 return true;
duke@435 1650 }
duke@435 1651
duke@435 1652 // Handle special cases.
duke@435 1653 if (adr_type == NULL) return true;
duke@435 1654 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1655
never@2658 1656 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1657 }
duke@435 1658
duke@435 1659 //-----------------------------must_alias--------------------------------------
duke@435 1660 // True if all values of the given address type are in the given alias category.
duke@435 1661 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1662 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1663 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1664 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1665 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1666
duke@435 1667 // the only remaining possible overlap is identity
duke@435 1668 int adr_idx = get_alias_index(adr_type);
duke@435 1669 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1670 assert(adr_idx == alias_idx ||
duke@435 1671 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1672 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1673 "should not be testing for overlap with an unsafe pointer");
duke@435 1674 return adr_idx == alias_idx;
duke@435 1675 }
duke@435 1676
duke@435 1677 //------------------------------can_alias--------------------------------------
duke@435 1678 // True if any values of the given address type are in the given alias category.
duke@435 1679 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1680 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1681 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1682 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1683 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1684
duke@435 1685 // the only remaining possible overlap is identity
duke@435 1686 int adr_idx = get_alias_index(adr_type);
duke@435 1687 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1688 return adr_idx == alias_idx;
duke@435 1689 }
duke@435 1690
duke@435 1691
duke@435 1692
duke@435 1693 //---------------------------pop_warm_call-------------------------------------
duke@435 1694 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1695 WarmCallInfo* wci = _warm_calls;
duke@435 1696 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1697 return wci;
duke@435 1698 }
duke@435 1699
duke@435 1700 //----------------------------Inline_Warm--------------------------------------
duke@435 1701 int Compile::Inline_Warm() {
duke@435 1702 // If there is room, try to inline some more warm call sites.
duke@435 1703 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1704 if (!InlineWarmCalls) return 0;
duke@435 1705
duke@435 1706 int calls_made_hot = 0;
duke@435 1707 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1708 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1709 int amount_grown = 0;
duke@435 1710 WarmCallInfo* call;
duke@435 1711 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1712 int est_size = (int)call->size();
duke@435 1713 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1714 // This one won't fit anyway. Get rid of it.
duke@435 1715 call->make_cold();
duke@435 1716 continue;
duke@435 1717 }
duke@435 1718 call->make_hot();
duke@435 1719 calls_made_hot++;
duke@435 1720 amount_grown += est_size;
duke@435 1721 amount_to_grow -= est_size;
duke@435 1722 }
duke@435 1723
duke@435 1724 if (calls_made_hot > 0) set_major_progress();
duke@435 1725 return calls_made_hot;
duke@435 1726 }
duke@435 1727
duke@435 1728
duke@435 1729 //----------------------------Finish_Warm--------------------------------------
duke@435 1730 void Compile::Finish_Warm() {
duke@435 1731 if (!InlineWarmCalls) return;
duke@435 1732 if (failing()) return;
duke@435 1733 if (warm_calls() == NULL) return;
duke@435 1734
duke@435 1735 // Clean up loose ends, if we are out of space for inlining.
duke@435 1736 WarmCallInfo* call;
duke@435 1737 while ((call = pop_warm_call()) != NULL) {
duke@435 1738 call->make_cold();
duke@435 1739 }
duke@435 1740 }
duke@435 1741
cfang@1607 1742 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1743 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1744 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1745 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1746 if (predicate_count()==0) return;
cfang@1607 1747 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1748 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1749 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1750 igvn.replace_node(n, n->in(1));
cfang@1607 1751 }
cfang@1607 1752 assert(predicate_count()==0, "should be clean!");
cfang@1607 1753 }
duke@435 1754
duke@435 1755 //------------------------------Optimize---------------------------------------
duke@435 1756 // Given a graph, optimize it.
duke@435 1757 void Compile::Optimize() {
duke@435 1758 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1759
duke@435 1760 #ifndef PRODUCT
duke@435 1761 if (env()->break_at_compile()) {
duke@435 1762 BREAKPOINT;
duke@435 1763 }
duke@435 1764
duke@435 1765 #endif
duke@435 1766
duke@435 1767 ResourceMark rm;
duke@435 1768 int loop_opts_cnt;
duke@435 1769
duke@435 1770 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1771
never@657 1772 print_method("After Parsing");
duke@435 1773
duke@435 1774 {
duke@435 1775 // Iterative Global Value Numbering, including ideal transforms
duke@435 1776 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1777 PhaseIterGVN igvn(initial_gvn());
duke@435 1778 {
duke@435 1779 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1780 igvn.optimize();
duke@435 1781 }
duke@435 1782
duke@435 1783 print_method("Iter GVN 1", 2);
duke@435 1784
duke@435 1785 if (failing()) return;
duke@435 1786
kvn@1989 1787 // Perform escape analysis
kvn@1989 1788 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 1789 if (has_loops()) {
kvn@3260 1790 // Cleanup graph (remove dead nodes).
kvn@3260 1791 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 1792 PhaseIdealLoop ideal_loop( igvn, false, true );
kvn@3260 1793 if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
kvn@3260 1794 if (failing()) return;
kvn@3260 1795 }
kvn@1989 1796 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 1797
kvn@1989 1798 if (failing()) return;
kvn@1989 1799
kvn@3311 1800 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 1801 igvn.optimize();
kvn@3260 1802 print_method("Iter GVN after EA", 2);
kvn@1989 1803
kvn@1989 1804 if (failing()) return;
kvn@1989 1805
kvn@3311 1806 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 1807 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 1808 PhaseMacroExpand mexp(igvn);
kvn@3311 1809 mexp.eliminate_macro_nodes();
kvn@3311 1810 igvn.set_delay_transform(false);
kvn@3311 1811
kvn@3311 1812 igvn.optimize();
kvn@3311 1813 print_method("Iter GVN after eliminating allocations and locks", 2);
kvn@3311 1814
kvn@3311 1815 if (failing()) return;
kvn@3311 1816 }
kvn@1989 1817 }
kvn@1989 1818
duke@435 1819 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1820 // peeling, unrolling, etc.
duke@435 1821
duke@435 1822 // Set loop opts counter
duke@435 1823 loop_opts_cnt = num_loop_opts();
duke@435 1824 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1825 {
duke@435 1826 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 1827 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1828 loop_opts_cnt--;
duke@435 1829 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1830 if (failing()) return;
duke@435 1831 }
duke@435 1832 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1833 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1834 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 1835 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1836 loop_opts_cnt--;
duke@435 1837 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1838 if (failing()) return;
duke@435 1839 }
duke@435 1840 // Loop opts pass for loop-unrolling before CCP
duke@435 1841 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1842 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 1843 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1844 loop_opts_cnt--;
duke@435 1845 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1846 }
never@1356 1847 if (!failing()) {
never@1356 1848 // Verify that last round of loop opts produced a valid graph
never@1356 1849 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1850 PhaseIdealLoop::verify(igvn);
never@1356 1851 }
duke@435 1852 }
duke@435 1853 if (failing()) return;
duke@435 1854
duke@435 1855 // Conditional Constant Propagation;
duke@435 1856 PhaseCCP ccp( &igvn );
duke@435 1857 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1858 {
duke@435 1859 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1860 ccp.do_transform();
duke@435 1861 }
duke@435 1862 print_method("PhaseCPP 1", 2);
duke@435 1863
duke@435 1864 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1865
duke@435 1866 // Iterative Global Value Numbering, including ideal transforms
duke@435 1867 {
duke@435 1868 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1869 igvn = ccp;
duke@435 1870 igvn.optimize();
duke@435 1871 }
duke@435 1872
duke@435 1873 print_method("Iter GVN 2", 2);
duke@435 1874
duke@435 1875 if (failing()) return;
duke@435 1876
duke@435 1877 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1878 // peeling, unrolling, etc.
duke@435 1879 if(loop_opts_cnt > 0) {
duke@435 1880 debug_only( int cnt = 0; );
duke@435 1881 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1882 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1883 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 1884 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 1885 loop_opts_cnt--;
duke@435 1886 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1887 if (failing()) return;
duke@435 1888 }
duke@435 1889 }
never@1356 1890
never@1356 1891 {
never@1356 1892 // Verify that all previous optimizations produced a valid graph
never@1356 1893 // at least to this point, even if no loop optimizations were done.
never@1356 1894 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1895 PhaseIdealLoop::verify(igvn);
never@1356 1896 }
never@1356 1897
duke@435 1898 {
duke@435 1899 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1900 PhaseMacroExpand mex(igvn);
duke@435 1901 if (mex.expand_macro_nodes()) {
duke@435 1902 assert(failing(), "must bail out w/ explicit message");
duke@435 1903 return;
duke@435 1904 }
duke@435 1905 }
duke@435 1906
duke@435 1907 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1908
duke@435 1909 // A method with only infinite loops has no edges entering loops from root
duke@435 1910 {
duke@435 1911 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1912 if (final_graph_reshaping()) {
duke@435 1913 assert(failing(), "must bail out w/ explicit message");
duke@435 1914 return;
duke@435 1915 }
duke@435 1916 }
duke@435 1917
duke@435 1918 print_method("Optimize finished", 2);
duke@435 1919 }
duke@435 1920
duke@435 1921
duke@435 1922 //------------------------------Code_Gen---------------------------------------
duke@435 1923 // Given a graph, generate code for it
duke@435 1924 void Compile::Code_Gen() {
duke@435 1925 if (failing()) return;
duke@435 1926
duke@435 1927 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1928 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1929 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1930 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1931 // set a bit in reclaimed memory.
duke@435 1932
duke@435 1933 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1934 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1935 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1936
duke@435 1937 Node_List proj_list;
duke@435 1938 Matcher m(proj_list);
duke@435 1939 _matcher = &m;
duke@435 1940 {
duke@435 1941 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1942 m.match();
duke@435 1943 }
duke@435 1944 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1945 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1946 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1947
duke@435 1948 // If you have too many nodes, or if matching has failed, bail out
duke@435 1949 check_node_count(0, "out of nodes matching instructions");
duke@435 1950 if (failing()) return;
duke@435 1951
duke@435 1952 // Build a proper-looking CFG
duke@435 1953 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1954 _cfg = &cfg;
duke@435 1955 {
duke@435 1956 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1957 cfg.Dominators();
duke@435 1958 if (failing()) return;
duke@435 1959
duke@435 1960 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1961
duke@435 1962 cfg.Estimate_Block_Frequency();
duke@435 1963 cfg.GlobalCodeMotion(m,unique(),proj_list);
never@3654 1964 if (failing()) return;
duke@435 1965
duke@435 1966 print_method("Global code motion", 2);
duke@435 1967
duke@435 1968 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1969
duke@435 1970 debug_only( cfg.verify(); )
duke@435 1971 }
duke@435 1972 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1973
duke@435 1974 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1975 _regalloc = &regalloc;
duke@435 1976 {
duke@435 1977 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1978 // Perform any platform dependent preallocation actions. This is used,
duke@435 1979 // for example, to avoid taking an implicit null pointer exception
duke@435 1980 // using the frame pointer on win95.
duke@435 1981 _regalloc->pd_preallocate_hook();
duke@435 1982
duke@435 1983 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1984 // no longer accurate (at spill code) and so must be ignored.
duke@435 1985 // Node->LRG->reg mappings are still accurate.
duke@435 1986 _regalloc->Register_Allocate();
duke@435 1987
duke@435 1988 // Bail out if the allocator builds too many nodes
duke@435 1989 if (failing()) return;
duke@435 1990 }
duke@435 1991
duke@435 1992 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1993 // the allocator needed a place to spill. After register allocation we
duke@435 1994 // are not adding any new instructions. If any basic block is empty, we
duke@435 1995 // can now safely remove it.
duke@435 1996 {
rasbold@853 1997 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1998 cfg.remove_empty();
rasbold@853 1999 if (do_freq_based_layout()) {
rasbold@853 2000 PhaseBlockLayout layout(cfg);
rasbold@853 2001 } else {
rasbold@853 2002 cfg.set_loop_alignment();
rasbold@853 2003 }
rasbold@853 2004 cfg.fixup_flow();
duke@435 2005 }
duke@435 2006
duke@435 2007 // Perform any platform dependent postallocation verifications.
duke@435 2008 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 2009
duke@435 2010 // Apply peephole optimizations
duke@435 2011 if( OptoPeephole ) {
duke@435 2012 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2013 PhasePeephole peep( _regalloc, cfg);
duke@435 2014 peep.do_transform();
duke@435 2015 }
duke@435 2016
duke@435 2017 // Convert Nodes to instruction bits in a buffer
duke@435 2018 {
duke@435 2019 // %%%% workspace merge brought two timers together for one job
duke@435 2020 TracePhase t2a("output", &_t_output, true);
duke@435 2021 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2022 Output();
duke@435 2023 }
duke@435 2024
never@657 2025 print_method("Final Code");
duke@435 2026
duke@435 2027 // He's dead, Jim.
duke@435 2028 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2029 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2030 }
duke@435 2031
duke@435 2032
duke@435 2033 //------------------------------dump_asm---------------------------------------
duke@435 2034 // Dump formatted assembly
duke@435 2035 #ifndef PRODUCT
duke@435 2036 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2037 bool cut_short = false;
duke@435 2038 tty->print_cr("#");
duke@435 2039 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2040 tty->print_cr("#");
duke@435 2041
duke@435 2042 // For all blocks
duke@435 2043 int pc = 0x0; // Program counter
duke@435 2044 char starts_bundle = ' ';
duke@435 2045 _regalloc->dump_frame();
duke@435 2046
duke@435 2047 Node *n = NULL;
duke@435 2048 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 2049 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 2050 Block *b = _cfg->_blocks[i];
duke@435 2051 if (b->is_connector() && !Verbose) continue;
duke@435 2052 n = b->_nodes[0];
duke@435 2053 if (pcs && n->_idx < pc_limit)
duke@435 2054 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 2055 else
duke@435 2056 tty->print(" ");
duke@435 2057 b->dump_head( &_cfg->_bbs );
duke@435 2058 if (b->is_connector()) {
duke@435 2059 tty->print_cr(" # Empty connector block");
duke@435 2060 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2061 tty->print_cr(" # Block is sole successor of call");
duke@435 2062 }
duke@435 2063
duke@435 2064 // For all instructions
duke@435 2065 Node *delay = NULL;
duke@435 2066 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 2067 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 2068 n = b->_nodes[j];
duke@435 2069 if (valid_bundle_info(n)) {
duke@435 2070 Bundle *bundle = node_bundling(n);
duke@435 2071 if (bundle->used_in_unconditional_delay()) {
duke@435 2072 delay = n;
duke@435 2073 continue;
duke@435 2074 }
duke@435 2075 if (bundle->starts_bundle())
duke@435 2076 starts_bundle = '+';
duke@435 2077 }
duke@435 2078
coleenp@548 2079 if (WizardMode) n->dump();
coleenp@548 2080
duke@435 2081 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2082 !n->is_Phi() && // a few noisely useless nodes
duke@435 2083 !n->is_Proj() &&
duke@435 2084 !n->is_MachTemp() &&
kvn@1535 2085 !n->is_SafePointScalarObject() &&
duke@435 2086 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2087 !n->is_MergeMem() && // Not very interesting
duke@435 2088 !n->is_top() && // Debug info table constants
duke@435 2089 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2090 ) {
duke@435 2091 if (pcs && n->_idx < pc_limit)
duke@435 2092 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2093 else
duke@435 2094 tty->print(" ");
duke@435 2095 tty->print(" %c ", starts_bundle);
duke@435 2096 starts_bundle = ' ';
duke@435 2097 tty->print("\t");
duke@435 2098 n->format(_regalloc, tty);
duke@435 2099 tty->cr();
duke@435 2100 }
duke@435 2101
duke@435 2102 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2103 // then back up and print it
duke@435 2104 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2105 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2106 if (WizardMode) delay->dump();
coleenp@548 2107
duke@435 2108 if (node_bundling(delay)->starts_bundle())
duke@435 2109 starts_bundle = '+';
duke@435 2110 if (pcs && n->_idx < pc_limit)
duke@435 2111 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2112 else
duke@435 2113 tty->print(" ");
duke@435 2114 tty->print(" %c ", starts_bundle);
duke@435 2115 starts_bundle = ' ';
duke@435 2116 tty->print("\t");
duke@435 2117 delay->format(_regalloc, tty);
duke@435 2118 tty->print_cr("");
duke@435 2119 delay = NULL;
duke@435 2120 }
duke@435 2121
duke@435 2122 // Dump the exception table as well
duke@435 2123 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2124 // Print the exception table for this offset
duke@435 2125 _handler_table.print_subtable_for(pc);
duke@435 2126 }
duke@435 2127 }
duke@435 2128
duke@435 2129 if (pcs && n->_idx < pc_limit)
duke@435 2130 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2131 else
duke@435 2132 tty->print_cr("");
duke@435 2133
duke@435 2134 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2135
duke@435 2136 } // End of per-block dump
duke@435 2137 tty->print_cr("");
duke@435 2138
duke@435 2139 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2140 }
duke@435 2141 #endif
duke@435 2142
duke@435 2143 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2144 // This class defines counters to help identify when a method
duke@435 2145 // may/must be executed using hardware with only 24-bit precision.
duke@435 2146 struct Final_Reshape_Counts : public StackObj {
duke@435 2147 int _call_count; // count non-inlined 'common' calls
duke@435 2148 int _float_count; // count float ops requiring 24-bit precision
duke@435 2149 int _double_count; // count double ops requiring more precision
duke@435 2150 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2151 int _inner_loop_count; // count loops which need alignment
duke@435 2152 VectorSet _visited; // Visitation flags
duke@435 2153 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2154
duke@435 2155 Final_Reshape_Counts() :
kvn@1294 2156 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2157 _java_call_count(0), _inner_loop_count(0),
duke@435 2158 _visited( Thread::current()->resource_area() ) { }
duke@435 2159
duke@435 2160 void inc_call_count () { _call_count ++; }
duke@435 2161 void inc_float_count () { _float_count ++; }
duke@435 2162 void inc_double_count() { _double_count++; }
duke@435 2163 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2164 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2165
duke@435 2166 int get_call_count () const { return _call_count ; }
duke@435 2167 int get_float_count () const { return _float_count ; }
duke@435 2168 int get_double_count() const { return _double_count; }
duke@435 2169 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2170 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2171 };
duke@435 2172
duke@435 2173 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2174 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2175 // Make sure the offset goes inside the instance layout.
coleenp@548 2176 return k->contains_field_offset(tp->offset());
duke@435 2177 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2178 }
duke@435 2179
never@2780 2180 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2181 // precedence edges.
bharadwaj@4315 2182 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2183 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2184 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2185 // There are multiple users of the same address so it might be
never@2780 2186 // possible to eliminate some of the StoreCMs
never@2780 2187 Node* mem = n->in(MemNode::Memory);
never@2780 2188 Node* adr = n->in(MemNode::Address);
never@2780 2189 Node* val = n->in(MemNode::ValueIn);
never@2780 2190 Node* prev = n;
never@2780 2191 bool done = false;
never@2780 2192 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2193 // long as it's a chain of single users then the optimization is
never@2780 2194 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2195 // cloning copies down the other paths.
never@2780 2196 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2197 if (adr == mem->in(MemNode::Address) &&
never@2780 2198 val == mem->in(MemNode::ValueIn)) {
never@2780 2199 // redundant StoreCM
never@2780 2200 if (mem->req() > MemNode::OopStore) {
never@2780 2201 // Hasn't been processed by this code yet.
never@2780 2202 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2203 } else {
never@2780 2204 // Already converted to precedence edge
never@2780 2205 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2206 // Accumulate any precedence edges
never@2780 2207 if (mem->in(i) != NULL) {
never@2780 2208 n->add_prec(mem->in(i));
never@2780 2209 }
never@2780 2210 }
never@2780 2211 // Everything above this point has been processed.
never@2780 2212 done = true;
never@2780 2213 }
never@2780 2214 // Eliminate the previous StoreCM
never@2780 2215 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2216 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2217 mem->disconnect_inputs(NULL, this);
never@2780 2218 } else {
never@2780 2219 prev = mem;
never@2780 2220 }
never@2780 2221 mem = prev->in(MemNode::Memory);
never@2780 2222 }
never@2780 2223 }
never@2780 2224 }
never@2780 2225
duke@435 2226 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2227 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2228 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2229
kvn@603 2230 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2231 uint nop = n->Opcode();
duke@435 2232
duke@435 2233 // Check for 2-input instruction with "last use" on right input.
duke@435 2234 // Swap to left input. Implements item (2).
duke@435 2235 if( n->req() == 3 && // two-input instruction
duke@435 2236 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2237 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2238 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2239 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2240 // Check for commutative opcode
duke@435 2241 switch( nop ) {
duke@435 2242 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2243 case Op_MaxI: case Op_MinI:
duke@435 2244 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2245 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2246 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2247 // Move "last use" input to left by swapping inputs
duke@435 2248 n->swap_edges(1, 2);
duke@435 2249 break;
duke@435 2250 }
duke@435 2251 default:
duke@435 2252 break;
duke@435 2253 }
duke@435 2254 }
duke@435 2255
kvn@1964 2256 #ifdef ASSERT
kvn@1964 2257 if( n->is_Mem() ) {
bharadwaj@4315 2258 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2259 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2260 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2261 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2262 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2263 "raw memory operations should have control edge");
kvn@1964 2264 }
kvn@1964 2265 #endif
duke@435 2266 // Count FPU ops and common calls, implements item (3)
duke@435 2267 switch( nop ) {
duke@435 2268 // Count all float operations that may use FPU
duke@435 2269 case Op_AddF:
duke@435 2270 case Op_SubF:
duke@435 2271 case Op_MulF:
duke@435 2272 case Op_DivF:
duke@435 2273 case Op_NegF:
duke@435 2274 case Op_ModF:
duke@435 2275 case Op_ConvI2F:
duke@435 2276 case Op_ConF:
duke@435 2277 case Op_CmpF:
duke@435 2278 case Op_CmpF3:
duke@435 2279 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2280 frc.inc_float_count();
duke@435 2281 break;
duke@435 2282
duke@435 2283 case Op_ConvF2D:
duke@435 2284 case Op_ConvD2F:
kvn@1294 2285 frc.inc_float_count();
kvn@1294 2286 frc.inc_double_count();
duke@435 2287 break;
duke@435 2288
duke@435 2289 // Count all double operations that may use FPU
duke@435 2290 case Op_AddD:
duke@435 2291 case Op_SubD:
duke@435 2292 case Op_MulD:
duke@435 2293 case Op_DivD:
duke@435 2294 case Op_NegD:
duke@435 2295 case Op_ModD:
duke@435 2296 case Op_ConvI2D:
duke@435 2297 case Op_ConvD2I:
duke@435 2298 // case Op_ConvL2D: // handled by leaf call
duke@435 2299 // case Op_ConvD2L: // handled by leaf call
duke@435 2300 case Op_ConD:
duke@435 2301 case Op_CmpD:
duke@435 2302 case Op_CmpD3:
kvn@1294 2303 frc.inc_double_count();
duke@435 2304 break;
duke@435 2305 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2306 case Op_Opaque2: // Remove Opaque Nodes before matching
bharadwaj@4315 2307 n->subsume_by(n->in(1), this);
duke@435 2308 break;
duke@435 2309 case Op_CallStaticJava:
duke@435 2310 case Op_CallJava:
duke@435 2311 case Op_CallDynamicJava:
kvn@1294 2312 frc.inc_java_call_count(); // Count java call site;
duke@435 2313 case Op_CallRuntime:
duke@435 2314 case Op_CallLeaf:
duke@435 2315 case Op_CallLeafNoFP: {
duke@435 2316 assert( n->is_Call(), "" );
duke@435 2317 CallNode *call = n->as_Call();
duke@435 2318 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2319 // Do not count uncommon runtime calls:
duke@435 2320 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2321 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2322 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2323 frc.inc_call_count(); // Count the call site
duke@435 2324 } else { // See if uncommon argument is shared
duke@435 2325 Node *n = call->in(TypeFunc::Parms);
duke@435 2326 int nop = n->Opcode();
duke@435 2327 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2328 if( n->outcnt() > 1 &&
duke@435 2329 !n->is_Proj() &&
duke@435 2330 nop != Op_CreateEx &&
duke@435 2331 nop != Op_CheckCastPP &&
kvn@766 2332 nop != Op_DecodeN &&
roland@4159 2333 nop != Op_DecodeNKlass &&
duke@435 2334 !n->is_Mem() ) {
duke@435 2335 Node *x = n->clone();
duke@435 2336 call->set_req( TypeFunc::Parms, x );
duke@435 2337 }
duke@435 2338 }
duke@435 2339 break;
duke@435 2340 }
duke@435 2341
duke@435 2342 case Op_StoreD:
duke@435 2343 case Op_LoadD:
duke@435 2344 case Op_LoadD_unaligned:
kvn@1294 2345 frc.inc_double_count();
duke@435 2346 goto handle_mem;
duke@435 2347 case Op_StoreF:
duke@435 2348 case Op_LoadF:
kvn@1294 2349 frc.inc_float_count();
duke@435 2350 goto handle_mem;
duke@435 2351
never@2780 2352 case Op_StoreCM:
never@2780 2353 {
never@2780 2354 // Convert OopStore dependence into precedence edge
never@2780 2355 Node* prec = n->in(MemNode::OopStore);
never@2780 2356 n->del_req(MemNode::OopStore);
never@2780 2357 n->add_prec(prec);
never@2780 2358 eliminate_redundant_card_marks(n);
never@2780 2359 }
never@2780 2360
never@2780 2361 // fall through
never@2780 2362
duke@435 2363 case Op_StoreB:
duke@435 2364 case Op_StoreC:
duke@435 2365 case Op_StorePConditional:
duke@435 2366 case Op_StoreI:
duke@435 2367 case Op_StoreL:
kvn@855 2368 case Op_StoreIConditional:
duke@435 2369 case Op_StoreLConditional:
duke@435 2370 case Op_CompareAndSwapI:
duke@435 2371 case Op_CompareAndSwapL:
duke@435 2372 case Op_CompareAndSwapP:
coleenp@548 2373 case Op_CompareAndSwapN:
roland@4106 2374 case Op_GetAndAddI:
roland@4106 2375 case Op_GetAndAddL:
roland@4106 2376 case Op_GetAndSetI:
roland@4106 2377 case Op_GetAndSetL:
roland@4106 2378 case Op_GetAndSetP:
roland@4106 2379 case Op_GetAndSetN:
duke@435 2380 case Op_StoreP:
coleenp@548 2381 case Op_StoreN:
roland@4159 2382 case Op_StoreNKlass:
duke@435 2383 case Op_LoadB:
twisti@1059 2384 case Op_LoadUB:
twisti@993 2385 case Op_LoadUS:
duke@435 2386 case Op_LoadI:
duke@435 2387 case Op_LoadKlass:
kvn@599 2388 case Op_LoadNKlass:
duke@435 2389 case Op_LoadL:
duke@435 2390 case Op_LoadL_unaligned:
duke@435 2391 case Op_LoadPLocked:
duke@435 2392 case Op_LoadP:
coleenp@548 2393 case Op_LoadN:
duke@435 2394 case Op_LoadRange:
duke@435 2395 case Op_LoadS: {
duke@435 2396 handle_mem:
duke@435 2397 #ifdef ASSERT
duke@435 2398 if( VerifyOptoOopOffsets ) {
duke@435 2399 assert( n->is_Mem(), "" );
duke@435 2400 MemNode *mem = (MemNode*)n;
duke@435 2401 // Check to see if address types have grounded out somehow.
duke@435 2402 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2403 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2404 }
duke@435 2405 #endif
duke@435 2406 break;
duke@435 2407 }
duke@435 2408
duke@435 2409 case Op_AddP: { // Assert sane base pointers
kvn@617 2410 Node *addp = n->in(AddPNode::Address);
duke@435 2411 assert( !addp->is_AddP() ||
duke@435 2412 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2413 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2414 "Base pointers must match" );
kvn@617 2415 #ifdef _LP64
roland@4159 2416 if ((UseCompressedOops || UseCompressedKlassPointers) &&
kvn@617 2417 addp->Opcode() == Op_ConP &&
kvn@617 2418 addp == n->in(AddPNode::Base) &&
kvn@617 2419 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2420 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2421 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2422 // instructions (4) then load 64-bits constant (7).
kvn@617 2423 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2424 const Type* t = addp->bottom_type();
roland@4159 2425 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2426 Node* nn = NULL;
kvn@617 2427
roland@4159 2428 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2429
kvn@617 2430 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2431 Node* r = root();
kvn@617 2432 uint cnt = r->outcnt();
kvn@617 2433 for (uint i = 0; i < cnt; i++) {
kvn@617 2434 Node* m = r->raw_out(i);
roland@4159 2435 if (m!= NULL && m->Opcode() == op &&
kvn@656 2436 m->bottom_type()->make_ptr() == t) {
kvn@617 2437 nn = m;
kvn@617 2438 break;
kvn@617 2439 }
kvn@617 2440 }
kvn@617 2441 if (nn != NULL) {
kvn@617 2442 // Decode a narrow oop to match address
kvn@617 2443 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2444 if (t->isa_oopptr()) {
bharadwaj@4315 2445 nn = new (this) DecodeNNode(nn, t);
roland@4159 2446 } else {
bharadwaj@4315 2447 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2448 }
kvn@617 2449 n->set_req(AddPNode::Base, nn);
kvn@617 2450 n->set_req(AddPNode::Address, nn);
kvn@617 2451 if (addp->outcnt() == 0) {
bharadwaj@4315 2452 addp->disconnect_inputs(NULL, this);
kvn@617 2453 }
kvn@617 2454 }
kvn@617 2455 }
kvn@617 2456 }
kvn@617 2457 #endif
duke@435 2458 break;
duke@435 2459 }
duke@435 2460
kvn@599 2461 #ifdef _LP64
kvn@803 2462 case Op_CastPP:
kvn@1930 2463 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2464 Node* in1 = n->in(1);
kvn@803 2465 const Type* t = n->bottom_type();
kvn@803 2466 Node* new_in1 = in1->clone();
kvn@803 2467 new_in1->as_DecodeN()->set_type(t);
kvn@803 2468
kvn@1930 2469 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2470 //
kvn@803 2471 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2472 // and Matcher can fold a DecodeN node into address by using
kvn@803 2473 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2474 //
kvn@803 2475 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2476 // NullCheck narrow_oop_reg
kvn@803 2477 //
kvn@803 2478 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2479 // use it to do implicit NULL check in address:
kvn@803 2480 //
kvn@803 2481 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2482 // [base_reg + offset]
kvn@803 2483 // NullCheck base_reg
kvn@803 2484 //
twisti@1040 2485 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2486 // to keep the information to which NULL check the new DecodeN node
kvn@803 2487 // corresponds to use it as value in implicit_null_check().
kvn@803 2488 //
kvn@803 2489 new_in1->set_req(0, n->in(0));
kvn@803 2490 }
kvn@803 2491
bharadwaj@4315 2492 n->subsume_by(new_in1, this);
kvn@803 2493 if (in1->outcnt() == 0) {
bharadwaj@4315 2494 in1->disconnect_inputs(NULL, this);
kvn@803 2495 }
kvn@803 2496 }
kvn@803 2497 break;
kvn@803 2498
kvn@599 2499 case Op_CmpP:
kvn@603 2500 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2501 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2502 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2503 Node* in1 = n->in(1);
kvn@766 2504 Node* in2 = n->in(2);
roland@4159 2505 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2506 in2 = in1;
kvn@766 2507 in1 = n->in(2);
kvn@766 2508 }
roland@4159 2509 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2510
kvn@766 2511 Node* new_in2 = NULL;
roland@4159 2512 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2513 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2514 new_in2 = in2->in(1);
kvn@766 2515 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2516 const Type* t = in2->bottom_type();
kvn@1930 2517 if (t == TypePtr::NULL_PTR) {
roland@4159 2518 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2519 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2520 // oops implicit null check is not generated.
kvn@1930 2521 // This will allow to generate normal oop implicit null check.
kvn@1930 2522 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2523 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2524 //
kvn@803 2525 // This transformation together with CastPP transformation above
kvn@803 2526 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2527 //
kvn@803 2528 // The original code after Optimize()
kvn@803 2529 //
kvn@803 2530 // LoadN memory, narrow_oop_reg
kvn@803 2531 // decode narrow_oop_reg, base_reg
kvn@803 2532 // CmpP base_reg, NULL
kvn@803 2533 // CastPP base_reg // NotNull
kvn@803 2534 // Load [base_reg + offset], val_reg
kvn@803 2535 //
kvn@803 2536 // after these transformations will be
kvn@803 2537 //
kvn@803 2538 // LoadN memory, narrow_oop_reg
kvn@803 2539 // CmpN narrow_oop_reg, NULL
kvn@803 2540 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2541 // Load [base_reg + offset], val_reg
kvn@803 2542 //
kvn@803 2543 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2544 // since narrow oops can be used in debug info now (see the code in
kvn@803 2545 // final_graph_reshaping_walk()).
kvn@803 2546 //
kvn@803 2547 // At the end the code will be matched to
kvn@803 2548 // on x86:
kvn@803 2549 //
kvn@803 2550 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2551 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2552 // NullCheck narrow_oop_reg
kvn@803 2553 //
kvn@803 2554 // and on sparc:
kvn@803 2555 //
kvn@803 2556 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2557 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2558 // Load [base_reg + offset], val_reg
kvn@803 2559 // NullCheck base_reg
kvn@803 2560 //
kvn@599 2561 } else if (t->isa_oopptr()) {
bharadwaj@4315 2562 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2563 } else if (t->isa_klassptr()) {
bharadwaj@4315 2564 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2565 }
kvn@599 2566 }
kvn@766 2567 if (new_in2 != NULL) {
bharadwaj@4315 2568 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2569 n->subsume_by(cmpN, this);
kvn@766 2570 if (in1->outcnt() == 0) {
bharadwaj@4315 2571 in1->disconnect_inputs(NULL, this);
kvn@766 2572 }
kvn@766 2573 if (in2->outcnt() == 0) {
bharadwaj@4315 2574 in2->disconnect_inputs(NULL, this);
kvn@766 2575 }
kvn@599 2576 }
kvn@599 2577 }
kvn@728 2578 break;
kvn@803 2579
kvn@803 2580 case Op_DecodeN:
roland@4159 2581 case Op_DecodeNKlass:
roland@4159 2582 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2583 // DecodeN could be pinned when it can't be fold into
kvn@927 2584 // an address expression, see the code for Op_CastPP above.
roland@4159 2585 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2586 break;
kvn@803 2587
roland@4159 2588 case Op_EncodeP:
roland@4159 2589 case Op_EncodePKlass: {
kvn@803 2590 Node* in1 = n->in(1);
roland@4159 2591 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2592 n->subsume_by(in1->in(1), this);
kvn@803 2593 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2594 const Type* t = in1->bottom_type();
kvn@803 2595 if (t == TypePtr::NULL_PTR) {
roland@4159 2596 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2597 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2598 } else if (t->isa_oopptr()) {
bharadwaj@4315 2599 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2600 } else if (t->isa_klassptr()) {
bharadwaj@4315 2601 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2602 }
kvn@803 2603 }
kvn@803 2604 if (in1->outcnt() == 0) {
bharadwaj@4315 2605 in1->disconnect_inputs(NULL, this);
kvn@803 2606 }
kvn@803 2607 break;
kvn@803 2608 }
kvn@803 2609
never@1515 2610 case Op_Proj: {
never@1515 2611 if (OptimizeStringConcat) {
never@1515 2612 ProjNode* p = n->as_Proj();
never@1515 2613 if (p->_is_io_use) {
never@1515 2614 // Separate projections were used for the exception path which
never@1515 2615 // are normally removed by a late inline. If it wasn't inlined
never@1515 2616 // then they will hang around and should just be replaced with
never@1515 2617 // the original one.
never@1515 2618 Node* proj = NULL;
never@1515 2619 // Replace with just one
never@1515 2620 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2621 Node *use = i.get();
never@1515 2622 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2623 proj = use;
never@1515 2624 break;
never@1515 2625 }
never@1515 2626 }
kvn@3396 2627 assert(proj != NULL, "must be found");
bharadwaj@4315 2628 p->subsume_by(proj, this);
never@1515 2629 }
never@1515 2630 }
never@1515 2631 break;
never@1515 2632 }
never@1515 2633
kvn@803 2634 case Op_Phi:
roland@4159 2635 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2636 // The EncodeP optimization may create Phi with the same edges
kvn@803 2637 // for all paths. It is not handled well by Register Allocator.
kvn@803 2638 Node* unique_in = n->in(1);
kvn@803 2639 assert(unique_in != NULL, "");
kvn@803 2640 uint cnt = n->req();
kvn@803 2641 for (uint i = 2; i < cnt; i++) {
kvn@803 2642 Node* m = n->in(i);
kvn@803 2643 assert(m != NULL, "");
kvn@803 2644 if (unique_in != m)
kvn@803 2645 unique_in = NULL;
kvn@803 2646 }
kvn@803 2647 if (unique_in != NULL) {
bharadwaj@4315 2648 n->subsume_by(unique_in, this);
kvn@803 2649 }
kvn@803 2650 }
kvn@803 2651 break;
kvn@803 2652
kvn@599 2653 #endif
kvn@599 2654
duke@435 2655 case Op_ModI:
duke@435 2656 if (UseDivMod) {
duke@435 2657 // Check if a%b and a/b both exist
duke@435 2658 Node* d = n->find_similar(Op_DivI);
duke@435 2659 if (d) {
duke@435 2660 // Replace them with a fused divmod if supported
duke@435 2661 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2662 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2663 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2664 n->subsume_by(divmod->mod_proj(), this);
duke@435 2665 } else {
duke@435 2666 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2667 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2668 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2669 n->subsume_by(sub, this);
duke@435 2670 }
duke@435 2671 }
duke@435 2672 }
duke@435 2673 break;
duke@435 2674
duke@435 2675 case Op_ModL:
duke@435 2676 if (UseDivMod) {
duke@435 2677 // Check if a%b and a/b both exist
duke@435 2678 Node* d = n->find_similar(Op_DivL);
duke@435 2679 if (d) {
duke@435 2680 // Replace them with a fused divmod if supported
duke@435 2681 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 2682 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 2683 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2684 n->subsume_by(divmod->mod_proj(), this);
duke@435 2685 } else {
duke@435 2686 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2687 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 2688 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 2689 n->subsume_by(sub, this);
duke@435 2690 }
duke@435 2691 }
duke@435 2692 }
duke@435 2693 break;
duke@435 2694
kvn@3882 2695 case Op_LoadVector:
kvn@3882 2696 case Op_StoreVector:
duke@435 2697 break;
duke@435 2698
duke@435 2699 case Op_PackB:
duke@435 2700 case Op_PackS:
duke@435 2701 case Op_PackI:
duke@435 2702 case Op_PackF:
duke@435 2703 case Op_PackL:
duke@435 2704 case Op_PackD:
duke@435 2705 if (n->req()-1 > 2) {
duke@435 2706 // Replace many operand PackNodes with a binary tree for matching
duke@435 2707 PackNode* p = (PackNode*) n;
bharadwaj@4315 2708 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 2709 n->subsume_by(btp, this);
duke@435 2710 }
duke@435 2711 break;
kvn@1294 2712 case Op_Loop:
kvn@1294 2713 case Op_CountedLoop:
kvn@1294 2714 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2715 frc.inc_inner_loop_count();
kvn@1294 2716 }
kvn@1294 2717 break;
roland@2683 2718 case Op_LShiftI:
roland@2683 2719 case Op_RShiftI:
roland@2683 2720 case Op_URShiftI:
roland@2683 2721 case Op_LShiftL:
roland@2683 2722 case Op_RShiftL:
roland@2683 2723 case Op_URShiftL:
roland@2683 2724 if (Matcher::need_masked_shift_count) {
roland@2683 2725 // The cpu's shift instructions don't restrict the count to the
roland@2683 2726 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2727 Node* in2 = n->in(2);
roland@2683 2728 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2729 const TypeInt* t = in2->find_int_type();
roland@2683 2730 if (t != NULL && t->is_con()) {
roland@2683 2731 juint shift = t->get_con();
roland@2683 2732 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 2733 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 2734 }
roland@2683 2735 } else {
roland@2683 2736 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 2737 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 2738 n->set_req(2, shift);
roland@2683 2739 }
roland@2683 2740 }
roland@2683 2741 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 2742 in2->disconnect_inputs(NULL, this);
roland@2683 2743 }
roland@2683 2744 }
roland@2683 2745 break;
duke@435 2746 default:
duke@435 2747 assert( !n->is_Call(), "" );
duke@435 2748 assert( !n->is_Mem(), "" );
duke@435 2749 break;
duke@435 2750 }
never@562 2751
never@562 2752 // Collect CFG split points
never@562 2753 if (n->is_MultiBranch())
kvn@1294 2754 frc._tests.push(n);
duke@435 2755 }
duke@435 2756
duke@435 2757 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2758 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2759 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 2760 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2761 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2762 Unique_Node_List sfpt(area);
kvn@766 2763
kvn@1294 2764 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2765 uint cnt = root->req();
duke@435 2766 Node *n = root;
duke@435 2767 uint i = 0;
duke@435 2768 while (true) {
duke@435 2769 if (i < cnt) {
duke@435 2770 // Place all non-visited non-null inputs onto stack
duke@435 2771 Node* m = n->in(i);
duke@435 2772 ++i;
kvn@1294 2773 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2774 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2775 sfpt.push(m);
duke@435 2776 cnt = m->req();
duke@435 2777 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2778 n = m;
duke@435 2779 i = 0;
duke@435 2780 }
duke@435 2781 } else {
duke@435 2782 // Now do post-visit work
kvn@1294 2783 final_graph_reshaping_impl( n, frc );
duke@435 2784 if (nstack.is_empty())
duke@435 2785 break; // finished
duke@435 2786 n = nstack.node(); // Get node from stack
duke@435 2787 cnt = n->req();
duke@435 2788 i = nstack.index();
duke@435 2789 nstack.pop(); // Shift to the next node on stack
duke@435 2790 }
duke@435 2791 }
kvn@766 2792
kvn@1930 2793 // Skip next transformation if compressed oops are not used.
roland@4159 2794 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
roland@4159 2795 (!UseCompressedOops && !UseCompressedKlassPointers))
kvn@1930 2796 return;
kvn@1930 2797
roland@4159 2798 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 2799 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 2800 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 2801 while (sfpt.size() > 0) {
kvn@766 2802 n = sfpt.pop();
kvn@766 2803 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2804 assert(jvms != NULL, "sanity");
kvn@766 2805 int start = jvms->debug_start();
kvn@766 2806 int end = n->req();
kvn@766 2807 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2808 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2809 for (int j = start; j < end; j++) {
kvn@766 2810 Node* in = n->in(j);
roland@4159 2811 if (in->is_DecodeNarrowPtr()) {
kvn@766 2812 bool safe_to_skip = true;
kvn@766 2813 if (!is_uncommon ) {
kvn@766 2814 // Is it safe to skip?
kvn@766 2815 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2816 Node* u = in->raw_out(i);
kvn@766 2817 if (!u->is_SafePoint() ||
kvn@766 2818 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2819 safe_to_skip = false;
kvn@766 2820 }
kvn@766 2821 }
kvn@766 2822 }
kvn@766 2823 if (safe_to_skip) {
kvn@766 2824 n->set_req(j, in->in(1));
kvn@766 2825 }
kvn@766 2826 if (in->outcnt() == 0) {
bharadwaj@4315 2827 in->disconnect_inputs(NULL, this);
kvn@766 2828 }
kvn@766 2829 }
kvn@766 2830 }
kvn@766 2831 }
duke@435 2832 }
duke@435 2833
duke@435 2834 //------------------------------final_graph_reshaping--------------------------
duke@435 2835 // Final Graph Reshaping.
duke@435 2836 //
duke@435 2837 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2838 // and not commoned up and forced early. Must come after regular
duke@435 2839 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2840 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2841 // Remove Opaque nodes.
duke@435 2842 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2843 // Intel update-in-place two-address operations and better register usage
duke@435 2844 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2845 // calls canonicalizing them back.
duke@435 2846 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2847 // and call sites. On Intel, we can get correct rounding either by
duke@435 2848 // forcing singles to memory (requires extra stores and loads after each
duke@435 2849 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2850 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2851 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2852 // This is a key transform for SPEC mpeg_audio.
duke@435 2853 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2854 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2855 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2856 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2857 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2858 // reachable from below or CatchNodes missing some targets.
duke@435 2859 // (5) Assert for insane oop offsets in debug mode.
duke@435 2860
duke@435 2861 bool Compile::final_graph_reshaping() {
duke@435 2862 // an infinite loop may have been eliminated by the optimizer,
duke@435 2863 // in which case the graph will be empty.
duke@435 2864 if (root()->req() == 1) {
duke@435 2865 record_method_not_compilable("trivial infinite loop");
duke@435 2866 return true;
duke@435 2867 }
duke@435 2868
kvn@1294 2869 Final_Reshape_Counts frc;
duke@435 2870
duke@435 2871 // Visit everybody reachable!
duke@435 2872 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2873 Node_Stack nstack(unique() >> 1);
kvn@1294 2874 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2875
duke@435 2876 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2877 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2878 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2879 // Get number of CFG targets.
duke@435 2880 // Note that PCTables include exception targets after calls.
never@562 2881 uint required_outcnt = n->required_outcnt();
never@562 2882 if (n->outcnt() != required_outcnt) {
duke@435 2883 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2884 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2885 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2886 if (n->in(0)->in(0)->is_Call()) {
duke@435 2887 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2888 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2889 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2890 } else if (call->req() > TypeFunc::Parms &&
duke@435 2891 call->is_CallDynamicJava()) {
duke@435 2892 // Check for null receiver. In such case, the optimizer has
duke@435 2893 // detected that the virtual call will always result in a null
duke@435 2894 // pointer exception. The fall-through projection of this CatchNode
duke@435 2895 // will not be populated.
duke@435 2896 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2897 if (arg0->is_Type() &&
duke@435 2898 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2899 required_outcnt--;
duke@435 2900 }
duke@435 2901 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2902 call->req() > TypeFunc::Parms+1 &&
duke@435 2903 call->is_CallStaticJava()) {
duke@435 2904 // Check for negative array length. In such case, the optimizer has
duke@435 2905 // detected that the allocation attempt will always result in an
duke@435 2906 // exception. There is no fall-through projection of this CatchNode .
duke@435 2907 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2908 if (arg1->is_Type() &&
duke@435 2909 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2910 required_outcnt--;
duke@435 2911 }
duke@435 2912 }
duke@435 2913 }
duke@435 2914 }
never@562 2915 // Recheck with a better notion of 'required_outcnt'
never@562 2916 if (n->outcnt() != required_outcnt) {
duke@435 2917 record_method_not_compilable("malformed control flow");
duke@435 2918 return true; // Not all targets reachable!
duke@435 2919 }
duke@435 2920 }
duke@435 2921 // Check that I actually visited all kids. Unreached kids
duke@435 2922 // must be infinite loops.
duke@435 2923 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2924 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2925 record_method_not_compilable("infinite loop");
duke@435 2926 return true; // Found unvisited kid; must be unreach
duke@435 2927 }
duke@435 2928 }
duke@435 2929
duke@435 2930 // If original bytecodes contained a mixture of floats and doubles
duke@435 2931 // check if the optimizer has made it homogenous, item (3).
never@1364 2932 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2933 frc.get_float_count() > 32 &&
kvn@1294 2934 frc.get_double_count() == 0 &&
kvn@1294 2935 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2936 set_24_bit_selection_and_mode( false, true );
duke@435 2937 }
duke@435 2938
kvn@1294 2939 set_java_calls(frc.get_java_call_count());
kvn@1294 2940 set_inner_loops(frc.get_inner_loop_count());
duke@435 2941
duke@435 2942 // No infinite loops, no reason to bail out.
duke@435 2943 return false;
duke@435 2944 }
duke@435 2945
duke@435 2946 //-----------------------------too_many_traps----------------------------------
duke@435 2947 // Report if there are too many traps at the current method and bci.
duke@435 2948 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2949 bool Compile::too_many_traps(ciMethod* method,
duke@435 2950 int bci,
duke@435 2951 Deoptimization::DeoptReason reason) {
duke@435 2952 ciMethodData* md = method->method_data();
duke@435 2953 if (md->is_empty()) {
duke@435 2954 // Assume the trap has not occurred, or that it occurred only
duke@435 2955 // because of a transient condition during start-up in the interpreter.
duke@435 2956 return false;
duke@435 2957 }
duke@435 2958 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2959 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2960 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2961 // assume the worst.
duke@435 2962 if (log())
duke@435 2963 log()->elem("observe trap='%s' count='%d'",
duke@435 2964 Deoptimization::trap_reason_name(reason),
duke@435 2965 md->trap_count(reason));
duke@435 2966 return true;
duke@435 2967 } else {
duke@435 2968 // Ignore method/bci and see if there have been too many globally.
duke@435 2969 return too_many_traps(reason, md);
duke@435 2970 }
duke@435 2971 }
duke@435 2972
duke@435 2973 // Less-accurate variant which does not require a method and bci.
duke@435 2974 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2975 ciMethodData* logmd) {
duke@435 2976 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2977 // Too many traps globally.
duke@435 2978 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2979 if (log()) {
duke@435 2980 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2981 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2982 Deoptimization::trap_reason_name(reason),
duke@435 2983 mcount, trap_count(reason));
duke@435 2984 }
duke@435 2985 return true;
duke@435 2986 } else {
duke@435 2987 // The coast is clear.
duke@435 2988 return false;
duke@435 2989 }
duke@435 2990 }
duke@435 2991
duke@435 2992 //--------------------------too_many_recompiles--------------------------------
duke@435 2993 // Report if there are too many recompiles at the current method and bci.
duke@435 2994 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2995 // Is not eager to return true, since this will cause the compiler to use
duke@435 2996 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2997 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2998 int bci,
duke@435 2999 Deoptimization::DeoptReason reason) {
duke@435 3000 ciMethodData* md = method->method_data();
duke@435 3001 if (md->is_empty()) {
duke@435 3002 // Assume the trap has not occurred, or that it occurred only
duke@435 3003 // because of a transient condition during start-up in the interpreter.
duke@435 3004 return false;
duke@435 3005 }
duke@435 3006 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3007 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3008 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3009 Deoptimization::DeoptReason per_bc_reason
duke@435 3010 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 3011 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 3012 || md->has_trap_at(bci, reason) != 0)
duke@435 3013 // The trap frequency measure we care about is the recompile count:
duke@435 3014 && md->trap_recompiled_at(bci)
duke@435 3015 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3016 // Do not emit a trap here if it has already caused recompilations.
duke@435 3017 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3018 // assume the worst.
duke@435 3019 if (log())
duke@435 3020 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3021 Deoptimization::trap_reason_name(reason),
duke@435 3022 md->trap_count(reason),
duke@435 3023 md->overflow_recompile_count());
duke@435 3024 return true;
duke@435 3025 } else if (trap_count(reason) != 0
duke@435 3026 && decompile_count() >= m_cutoff) {
duke@435 3027 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3028 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3029 if (log())
duke@435 3030 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3031 Deoptimization::trap_reason_name(reason),
duke@435 3032 md->trap_count(reason), trap_count(reason),
duke@435 3033 md->decompile_count(), decompile_count());
duke@435 3034 return true;
duke@435 3035 } else {
duke@435 3036 // The coast is clear.
duke@435 3037 return false;
duke@435 3038 }
duke@435 3039 }
duke@435 3040
duke@435 3041
duke@435 3042 #ifndef PRODUCT
duke@435 3043 //------------------------------verify_graph_edges---------------------------
duke@435 3044 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3045 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3046 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3047 if (VerifyGraphEdges) {
duke@435 3048 ResourceArea *area = Thread::current()->resource_area();
duke@435 3049 Unique_Node_List visited(area);
duke@435 3050 // Call recursive graph walk to check edges
duke@435 3051 _root->verify_edges(visited);
duke@435 3052 if (no_dead_code) {
duke@435 3053 // Now make sure that no visited node is used by an unvisited node.
duke@435 3054 bool dead_nodes = 0;
duke@435 3055 Unique_Node_List checked(area);
duke@435 3056 while (visited.size() > 0) {
duke@435 3057 Node* n = visited.pop();
duke@435 3058 checked.push(n);
duke@435 3059 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3060 Node* use = n->raw_out(i);
duke@435 3061 if (checked.member(use)) continue; // already checked
duke@435 3062 if (visited.member(use)) continue; // already in the graph
duke@435 3063 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3064 // At this point, we have found a dead node which is DU-reachable.
duke@435 3065 if (dead_nodes++ == 0)
duke@435 3066 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3067 use->dump(2);
duke@435 3068 tty->print_cr("---");
duke@435 3069 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3070 }
duke@435 3071 }
duke@435 3072 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3073 }
duke@435 3074 }
duke@435 3075 }
duke@435 3076 #endif
duke@435 3077
duke@435 3078 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3079 // This is required because there is not quite a 1-1 relation between the
duke@435 3080 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3081 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3082 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3083 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3084 // by the logic in C2Compiler.
duke@435 3085 void Compile::record_failure(const char* reason) {
duke@435 3086 if (log() != NULL) {
duke@435 3087 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3088 }
duke@435 3089 if (_failure_reason == NULL) {
duke@435 3090 // Record the first failure reason.
duke@435 3091 _failure_reason = reason;
duke@435 3092 }
never@657 3093 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 3094 C->print_method(_failure_reason);
never@657 3095 }
duke@435 3096 _root = NULL; // flush the graph, too
duke@435 3097 }
duke@435 3098
duke@435 3099 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3100 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3101 _phase_name(name), _dolog(dolog)
duke@435 3102 {
duke@435 3103 if (dolog) {
duke@435 3104 C = Compile::current();
duke@435 3105 _log = C->log();
duke@435 3106 } else {
duke@435 3107 C = NULL;
duke@435 3108 _log = NULL;
duke@435 3109 }
duke@435 3110 if (_log != NULL) {
bharadwaj@4315 3111 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3112 _log->stamp();
duke@435 3113 _log->end_head();
duke@435 3114 }
duke@435 3115 }
duke@435 3116
duke@435 3117 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3118
bharadwaj@4315 3119 C = Compile::current();
bharadwaj@4315 3120 if (_dolog) {
bharadwaj@4315 3121 _log = C->log();
bharadwaj@4315 3122 } else {
bharadwaj@4315 3123 _log = NULL;
bharadwaj@4315 3124 }
bharadwaj@4315 3125
bharadwaj@4315 3126 #ifdef ASSERT
bharadwaj@4315 3127 if (PrintIdealNodeCount) {
bharadwaj@4315 3128 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3129 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3130 }
bharadwaj@4315 3131
bharadwaj@4315 3132 if (VerifyIdealNodeCount) {
bharadwaj@4315 3133 Compile::current()->print_missing_nodes();
bharadwaj@4315 3134 }
bharadwaj@4315 3135 #endif
bharadwaj@4315 3136
duke@435 3137 if (_log != NULL) {
bharadwaj@4315 3138 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3139 }
duke@435 3140 }
twisti@2350 3141
twisti@2350 3142 //=============================================================================
twisti@2350 3143 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3144 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3145 if (type() != other.type() ) return false;
twisti@2350 3146 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3147 // For floating point values we compare the bit pattern.
twisti@2350 3148 switch (type()) {
coleenp@4037 3149 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3150 case T_LONG:
coleenp@4037 3151 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3152 case T_OBJECT:
coleenp@4037 3153 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3154 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3155 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3156 default: ShouldNotReachHere();
twisti@2350 3157 }
twisti@2350 3158 return false;
twisti@2350 3159 }
twisti@2350 3160
twisti@2350 3161 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3162 switch (t) {
twisti@2350 3163 case T_LONG: return sizeof(jlong );
twisti@2350 3164 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3165 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3166 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3167 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3168 // need an internal word relocation.
twisti@2350 3169 case T_VOID:
twisti@2350 3170 case T_ADDRESS:
twisti@2350 3171 case T_OBJECT: return sizeof(jobject);
twisti@2350 3172 }
twisti@2350 3173
twisti@2350 3174 ShouldNotReachHere();
twisti@2350 3175 return -1;
twisti@2350 3176 }
twisti@2350 3177
twisti@3310 3178 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3179 // sort descending
twisti@3310 3180 if (a->freq() > b->freq()) return -1;
twisti@3310 3181 if (a->freq() < b->freq()) return 1;
twisti@3310 3182 return 0;
twisti@3310 3183 }
twisti@3310 3184
twisti@2350 3185 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3186 // First, sort the array by frequencies.
twisti@3310 3187 _constants.sort(qsort_comparator);
twisti@3310 3188
twisti@3310 3189 #ifdef ASSERT
twisti@3310 3190 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3191 // array (they have a negative frequency).
twisti@3310 3192 bool found_void = false;
twisti@3310 3193 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3194 Constant con = _constants.at(i);
twisti@3310 3195 if (con.type() == T_VOID)
twisti@3310 3196 found_void = true; // jump-tables
twisti@3310 3197 else
twisti@3310 3198 assert(!found_void, "wrong sorting");
twisti@3310 3199 }
twisti@3310 3200 #endif
twisti@3310 3201
twisti@3310 3202 int offset = 0;
twisti@3310 3203 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3204 Constant* con = _constants.adr_at(i);
twisti@3310 3205
twisti@3310 3206 // Align offset for type.
twisti@3310 3207 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3208 offset = align_size_up(offset, typesize);
twisti@3310 3209 con->set_offset(offset); // set constant's offset
twisti@3310 3210
twisti@3310 3211 if (con->type() == T_VOID) {
twisti@3310 3212 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3213 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3214 } else {
twisti@3310 3215 offset = offset + typesize;
twisti@2350 3216 }
twisti@2350 3217 }
twisti@2350 3218
twisti@2350 3219 // Align size up to the next section start (which is insts; see
twisti@2350 3220 // CodeBuffer::align_at_start).
twisti@2350 3221 assert(_size == -1, "already set?");
twisti@3310 3222 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3223 }
twisti@2350 3224
twisti@2350 3225 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3226 MacroAssembler _masm(&cb);
twisti@3310 3227 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3228 Constant con = _constants.at(i);
twisti@3310 3229 address constant_addr;
twisti@3310 3230 switch (con.type()) {
twisti@3310 3231 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3232 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3233 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3234 case T_OBJECT: {
twisti@3310 3235 jobject obj = con.get_jobject();
twisti@3310 3236 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3237 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3238 break;
twisti@3310 3239 }
twisti@3310 3240 case T_ADDRESS: {
twisti@3310 3241 address addr = (address) con.get_jobject();
twisti@3310 3242 constant_addr = _masm.address_constant(addr);
twisti@3310 3243 break;
twisti@3310 3244 }
twisti@3310 3245 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3246 // need an internal word relocation.
twisti@3310 3247 case T_VOID: {
twisti@3310 3248 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3249 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3250 // filled in later in fill_jump_table.
twisti@3310 3251 address dummy = (address) n;
twisti@3310 3252 constant_addr = _masm.address_constant(dummy);
twisti@3310 3253 // Expand jump-table
twisti@3310 3254 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3255 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3256 assert(temp_addr, "consts section too small");
twisti@2350 3257 }
twisti@3310 3258 break;
twisti@2350 3259 }
coleenp@4037 3260 case T_METADATA: {
coleenp@4037 3261 Metadata* obj = con.get_metadata();
coleenp@4037 3262 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3263 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3264 break;
coleenp@4037 3265 }
twisti@3310 3266 default: ShouldNotReachHere();
twisti@3310 3267 }
twisti@3310 3268 assert(constant_addr, "consts section too small");
kvn@3971 3269 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3270 }
twisti@2350 3271 }
twisti@2350 3272
twisti@2350 3273 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3274 int idx = _constants.find(con);
twisti@2350 3275 assert(idx != -1, "constant must be in constant table");
twisti@2350 3276 int offset = _constants.at(idx).offset();
twisti@2350 3277 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3278 return offset;
twisti@2350 3279 }
twisti@2350 3280
twisti@2350 3281 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3282 if (con.can_be_reused()) {
twisti@2350 3283 int idx = _constants.find(con);
twisti@2350 3284 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3285 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3286 return;
twisti@2350 3287 }
twisti@2350 3288 }
twisti@2350 3289 (void) _constants.append(con);
twisti@2350 3290 }
twisti@2350 3291
twisti@3310 3292 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
twisti@3310 3293 Block* b = Compile::current()->cfg()->_bbs[n->_idx];
twisti@3310 3294 Constant con(type, value, b->_freq);
twisti@2350 3295 add(con);
twisti@2350 3296 return con;
twisti@2350 3297 }
twisti@2350 3298
coleenp@4037 3299 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3300 Constant con(metadata);
coleenp@4037 3301 add(con);
coleenp@4037 3302 return con;
coleenp@4037 3303 }
coleenp@4037 3304
twisti@3310 3305 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3306 jvalue value;
twisti@2350 3307 BasicType type = oper->type()->basic_type();
twisti@2350 3308 switch (type) {
twisti@2350 3309 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3310 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3311 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3312 case T_OBJECT:
twisti@2350 3313 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3314 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3315 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3316 }
twisti@3310 3317 return add(n, type, value);
twisti@2350 3318 }
twisti@2350 3319
twisti@3310 3320 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3321 jvalue value;
twisti@2350 3322 // We can use the node pointer here to identify the right jump-table
twisti@2350 3323 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3324 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3325 // MachNode pointers do not change anymore).
twisti@2350 3326 value.l = (jobject) n;
twisti@3310 3327 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3328 add(con);
twisti@2350 3329 return con;
twisti@2350 3330 }
twisti@2350 3331
twisti@2350 3332 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3333 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3334 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3335
twisti@2350 3336 assert(labels.is_nonempty(), "must be");
kvn@3971 3337 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3338
twisti@2350 3339 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3340 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3341 // to get the plain offset into the constant table.
twisti@2350 3342 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3343
twisti@2350 3344 MacroAssembler _masm(&cb);
twisti@2350 3345 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3346
twisti@3310 3347 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3348 address* constant_addr = &jump_table_base[i];
kvn@3971 3349 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3350 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3351 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3352 }
twisti@2350 3353 }

mercurial