src/share/vm/utilities/hashtable.cpp

Fri, 29 Aug 2014 13:08:01 +0200

author
mgerdin
date
Fri, 29 Aug 2014 13:08:01 +0200
changeset 7207
152cf4afc11f
parent 6351
f9e35a9dc8c7
child 7208
7baf47cb97cb
permissions
-rw-r--r--

8056084: Refactor Hashtable to allow implementations without rehashing support
Reviewed-by: gziemski, jmasa, brutisso, coleenp, tschatzl

duke@435 1 /*
minqi@6351 2 * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
coleenp@3904 26 #include "classfile/altHashing.hpp"
coleenp@3904 27 #include "classfile/javaClasses.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
coleenp@3875 29 #include "memory/filemap.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
stefank@2314 31 #include "oops/oop.inline.hpp"
stefank@2314 32 #include "runtime/safepoint.hpp"
stefank@2314 33 #include "utilities/dtrace.hpp"
stefank@2314 34 #include "utilities/hashtable.hpp"
stefank@2314 35 #include "utilities/hashtable.inline.hpp"
iklam@5144 36 #include "utilities/numberSeq.hpp"
duke@435 37
coleenp@2497 38
mgerdin@7207 39 // This hashtable is implemented as an open hash table with a fixed number of buckets.
duke@435 40
mgerdin@7207 41 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry_free_list() {
mgerdin@7207 42 BasicHashtableEntry<F>* entry = NULL;
mgerdin@7207 43 if (_free_list != NULL) {
duke@435 44 entry = _free_list;
duke@435 45 _free_list = _free_list->next();
mgerdin@7207 46 }
mgerdin@7207 47 return entry;
mgerdin@7207 48 }
mgerdin@7207 49
mgerdin@7207 50 // HashtableEntrys are allocated in blocks to reduce the space overhead.
mgerdin@7207 51 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
mgerdin@7207 52 BasicHashtableEntry<F>* entry = new_entry_free_list();
mgerdin@7207 53
mgerdin@7207 54 if (entry == NULL) {
jrose@867 55 if (_first_free_entry + _entry_size >= _end_block) {
jrose@867 56 int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
duke@435 57 int len = _entry_size * block_size;
jrose@867 58 len = 1 << log2_intptr(len); // round down to power of 2
jrose@867 59 assert(len >= _entry_size, "");
zgu@3900 60 _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
duke@435 61 _end_block = _first_free_entry + len;
duke@435 62 }
zgu@3900 63 entry = (BasicHashtableEntry<F>*)_first_free_entry;
duke@435 64 _first_free_entry += _entry_size;
duke@435 65 }
duke@435 66
jrose@867 67 assert(_entry_size % HeapWordSize == 0, "");
duke@435 68 entry->set_hash(hashValue);
duke@435 69 return entry;
duke@435 70 }
duke@435 71
duke@435 72
zgu@3900 73 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
zgu@3900 74 HashtableEntry<T, F>* entry;
duke@435 75
zgu@3900 76 entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
coleenp@2497 77 entry->set_literal(obj);
duke@435 78 return entry;
duke@435 79 }
duke@435 80
coleenp@3865 81 // Check to see if the hashtable is unbalanced. The caller set a flag to
coleenp@3865 82 // rehash at the next safepoint. If this bucket is 60 times greater than the
coleenp@3865 83 // expected average bucket length, it's an unbalanced hashtable.
coleenp@3865 84 // This is somewhat an arbitrary heuristic but if one bucket gets to
coleenp@3865 85 // rehash_count which is currently 100, there's probably something wrong.
coleenp@3865 86
mgerdin@7207 87 template <class T, MEMFLAGS F> bool RehashableHashtable<T, F>::check_rehash_table(int count) {
mgerdin@7207 88 assert(this->table_size() != 0, "underflow");
mgerdin@7207 89 if (count > (((double)this->number_of_entries()/(double)this->table_size())*rehash_multiple)) {
coleenp@3865 90 // Set a flag for the next safepoint, which should be at some guaranteed
coleenp@3865 91 // safepoint interval.
coleenp@3865 92 return true;
coleenp@3865 93 }
coleenp@3865 94 return false;
coleenp@3865 95 }
coleenp@3865 96
mgerdin@7207 97 template <class T, MEMFLAGS F> juint RehashableHashtable<T, F>::_seed = 0;
coleenp@3904 98
coleenp@3865 99 // Create a new table and using alternate hash code, populate the new table
coleenp@3865 100 // with the existing elements. This can be used to change the hash code
coleenp@3865 101 // and could in the future change the size of the table.
coleenp@3865 102
mgerdin@7207 103 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::move_to(RehashableHashtable<T, F>* new_table) {
coleenp@3904 104
coleenp@3904 105 // Initialize the global seed for hashing.
coleenp@3904 106 _seed = AltHashing::compute_seed();
coleenp@3904 107 assert(seed() != 0, "shouldn't be zero");
coleenp@3904 108
coleenp@3904 109 int saved_entry_count = this->number_of_entries();
coleenp@3865 110
coleenp@3865 111 // Iterate through the table and create a new entry for the new table
coleenp@3865 112 for (int i = 0; i < new_table->table_size(); ++i) {
mgerdin@7207 113 for (HashtableEntry<T, F>* p = this->bucket(i); p != NULL; ) {
zgu@3900 114 HashtableEntry<T, F>* next = p->next();
coleenp@3865 115 T string = p->literal();
coleenp@3865 116 // Use alternate hashing algorithm on the symbol in the first table
coleenp@4037 117 unsigned int hashValue = string->new_hash(seed());
coleenp@3865 118 // Get a new index relative to the new table (can also change size)
coleenp@3865 119 int index = new_table->hash_to_index(hashValue);
coleenp@3865 120 p->set_hash(hashValue);
coleenp@3875 121 // Keep the shared bit in the Hashtable entry to indicate that this entry
coleenp@3875 122 // can't be deleted. The shared bit is the LSB in the _next field so
coleenp@3875 123 // walking the hashtable past these entries requires
coleenp@3875 124 // BasicHashtableEntry::make_ptr() call.
coleenp@3875 125 bool keep_shared = p->is_shared();
andrew@3963 126 this->unlink_entry(p);
coleenp@3865 127 new_table->add_entry(index, p);
coleenp@3875 128 if (keep_shared) {
coleenp@3875 129 p->set_shared();
coleenp@3875 130 }
coleenp@3865 131 p = next;
coleenp@3865 132 }
coleenp@3865 133 }
coleenp@3865 134 // give the new table the free list as well
coleenp@3865 135 new_table->copy_freelist(this);
coleenp@3865 136 assert(new_table->number_of_entries() == saved_entry_count, "lost entry on dictionary copy?");
coleenp@3865 137
coleenp@3865 138 // Destroy memory used by the buckets in the hashtable. The memory
coleenp@3865 139 // for the elements has been used in a new table and is not
coleenp@3865 140 // destroyed. The memory reuse will benefit resizing the SystemDictionary
coleenp@3865 141 // to avoid a memory allocation spike at safepoint.
zgu@3900 142 BasicHashtable<F>::free_buckets();
coleenp@3865 143 }
coleenp@3865 144
zgu@3900 145 template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
coleenp@3875 146 if (NULL != _buckets) {
coleenp@3875 147 // Don't delete the buckets in the shared space. They aren't
coleenp@3875 148 // allocated by os::malloc
coleenp@3875 149 if (!UseSharedSpaces ||
coleenp@3875 150 !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
zgu@3900 151 FREE_C_HEAP_ARRAY(HashtableBucket, _buckets, F);
coleenp@3875 152 }
coleenp@3875 153 _buckets = NULL;
coleenp@3875 154 }
coleenp@3875 155 }
coleenp@3875 156
coleenp@3875 157
duke@435 158 // Reverse the order of elements in the hash buckets.
duke@435 159
zgu@3900 160 template <MEMFLAGS F> void BasicHashtable<F>::reverse() {
duke@435 161
duke@435 162 for (int i = 0; i < _table_size; ++i) {
zgu@3900 163 BasicHashtableEntry<F>* new_list = NULL;
zgu@3900 164 BasicHashtableEntry<F>* p = bucket(i);
duke@435 165 while (p != NULL) {
zgu@3900 166 BasicHashtableEntry<F>* next = p->next();
duke@435 167 p->set_next(new_list);
duke@435 168 new_list = p;
duke@435 169 p = next;
duke@435 170 }
duke@435 171 *bucket_addr(i) = new_list;
duke@435 172 }
duke@435 173 }
duke@435 174
duke@435 175
duke@435 176 // Copy the table to the shared space.
duke@435 177
zgu@3900 178 template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {
duke@435 179
duke@435 180 // Dump the hash table entries.
duke@435 181
duke@435 182 intptr_t *plen = (intptr_t*)(*top);
duke@435 183 *top += sizeof(*plen);
duke@435 184
duke@435 185 int i;
duke@435 186 for (i = 0; i < _table_size; ++i) {
zgu@3900 187 for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
duke@435 188 *p != NULL;
duke@435 189 p = (*p)->next_addr()) {
duke@435 190 if (*top + entry_size() > end) {
coleenp@2497 191 report_out_of_shared_space(SharedMiscData);
duke@435 192 }
zgu@3900 193 *p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
duke@435 194 *top += entry_size();
duke@435 195 }
duke@435 196 }
duke@435 197 *plen = (char*)(*top) - (char*)plen - sizeof(*plen);
duke@435 198
duke@435 199 // Set the shared bit.
duke@435 200
duke@435 201 for (i = 0; i < _table_size; ++i) {
zgu@3900 202 for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
duke@435 203 p->set_shared();
duke@435 204 }
duke@435 205 }
duke@435 206 }
duke@435 207
duke@435 208
duke@435 209
duke@435 210 // Reverse the order of elements in the hash buckets.
duke@435 211
zgu@3900 212 template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {
duke@435 213
zgu@3900 214 for (int i = 0; i < this->table_size(); ++i) {
zgu@3900 215 HashtableEntry<T, F>* high_list = NULL;
zgu@3900 216 HashtableEntry<T, F>* low_list = NULL;
zgu@3900 217 HashtableEntry<T, F>* last_low_entry = NULL;
zgu@3900 218 HashtableEntry<T, F>* p = bucket(i);
duke@435 219 while (p != NULL) {
zgu@3900 220 HashtableEntry<T, F>* next = p->next();
duke@435 221 if ((void*)p->literal() >= boundary) {
duke@435 222 p->set_next(high_list);
duke@435 223 high_list = p;
duke@435 224 } else {
duke@435 225 p->set_next(low_list);
duke@435 226 low_list = p;
duke@435 227 if (last_low_entry == NULL) {
duke@435 228 last_low_entry = p;
duke@435 229 }
duke@435 230 }
duke@435 231 p = next;
duke@435 232 }
duke@435 233 if (low_list != NULL) {
duke@435 234 *bucket_addr(i) = low_list;
duke@435 235 last_low_entry->set_next(high_list);
duke@435 236 } else {
duke@435 237 *bucket_addr(i) = high_list;
duke@435 238 }
duke@435 239 }
duke@435 240 }
duke@435 241
mgerdin@7207 242 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(Symbol *symbol) {
iklam@5144 243 return symbol->size() * HeapWordSize;
iklam@5144 244 }
iklam@5144 245
mgerdin@7207 246 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(oop oop) {
iklam@5144 247 // NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
iklam@5144 248 // and the String.value array is shared by several Strings. However, starting from JDK8,
iklam@5144 249 // the String.value array is not shared anymore.
iklam@5144 250 assert(oop != NULL && oop->klass() == SystemDictionary::String_klass(), "only strings are supported");
iklam@5144 251 return (oop->size() + java_lang_String::value(oop)->size()) * HeapWordSize;
iklam@5144 252 }
iklam@5144 253
iklam@5144 254 // Dump footprint and bucket length statistics
iklam@5144 255 //
iklam@5144 256 // Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
iklam@5144 257 // add a new function Hashtable<T, F>::literal_size(MyNewType lit)
iklam@5144 258
mgerdin@7207 259 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::dump_table(outputStream* st, const char *table_name) {
iklam@5144 260 NumberSeq summary;
iklam@5144 261 int literal_bytes = 0;
iklam@5144 262 for (int i = 0; i < this->table_size(); ++i) {
iklam@5144 263 int count = 0;
mgerdin@7207 264 for (HashtableEntry<T, F>* e = this->bucket(i);
iklam@5144 265 e != NULL; e = e->next()) {
iklam@5144 266 count++;
iklam@5144 267 literal_bytes += literal_size(e->literal());
iklam@5144 268 }
iklam@5144 269 summary.add((double)count);
iklam@5144 270 }
iklam@5144 271 double num_buckets = summary.num();
iklam@5144 272 double num_entries = summary.sum();
iklam@5144 273
mgerdin@7207 274 int bucket_bytes = (int)num_buckets * sizeof(HashtableBucket<F>);
iklam@5144 275 int entry_bytes = (int)num_entries * sizeof(HashtableEntry<T, F>);
iklam@5144 276 int total_bytes = literal_bytes + bucket_bytes + entry_bytes;
iklam@5144 277
iklam@5144 278 double bucket_avg = (num_buckets <= 0) ? 0 : (bucket_bytes / num_buckets);
iklam@5144 279 double entry_avg = (num_entries <= 0) ? 0 : (entry_bytes / num_entries);
iklam@5144 280 double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
iklam@5144 281
iklam@5144 282 st->print_cr("%s statistics:", table_name);
iklam@5144 283 st->print_cr("Number of buckets : %9d = %9d bytes, avg %7.3f", (int)num_buckets, bucket_bytes, bucket_avg);
iklam@5144 284 st->print_cr("Number of entries : %9d = %9d bytes, avg %7.3f", (int)num_entries, entry_bytes, entry_avg);
iklam@5144 285 st->print_cr("Number of literals : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
iklam@5144 286 st->print_cr("Total footprint : %9s = %9d bytes", "", total_bytes);
iklam@5144 287 st->print_cr("Average bucket size : %9.3f", summary.avg());
iklam@5144 288 st->print_cr("Variance of bucket size : %9.3f", summary.variance());
iklam@5144 289 st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
iklam@5144 290 st->print_cr("Maximum bucket size : %9d", (int)summary.maximum());
iklam@5144 291 }
iklam@5144 292
duke@435 293
duke@435 294 // Dump the hash table buckets.
duke@435 295
zgu@3900 296 template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
zgu@3900 297 intptr_t len = _table_size * sizeof(HashtableBucket<F>);
duke@435 298 *(intptr_t*)(*top) = len;
duke@435 299 *top += sizeof(intptr_t);
duke@435 300
duke@435 301 *(intptr_t*)(*top) = _number_of_entries;
duke@435 302 *top += sizeof(intptr_t);
duke@435 303
duke@435 304 if (*top + len > end) {
coleenp@2497 305 report_out_of_shared_space(SharedMiscData);
duke@435 306 }
zgu@3900 307 _buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
duke@435 308 *top += len;
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 #ifndef PRODUCT
duke@435 313
zgu@3900 314 template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
duke@435 315 ResourceMark rm;
duke@435 316
zgu@3900 317 for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
zgu@3900 318 HashtableEntry<T, F>* entry = bucket(i);
duke@435 319 while(entry != NULL) {
duke@435 320 tty->print("%d : ", i);
duke@435 321 entry->literal()->print();
duke@435 322 tty->cr();
duke@435 323 entry = entry->next();
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
zgu@3900 329 template <MEMFLAGS F> void BasicHashtable<F>::verify() {
duke@435 330 int count = 0;
duke@435 331 for (int i = 0; i < table_size(); i++) {
zgu@3900 332 for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
duke@435 333 ++count;
duke@435 334 }
duke@435 335 }
duke@435 336 assert(count == number_of_entries(), "number of hashtable entries incorrect");
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 #endif // PRODUCT
duke@435 341
duke@435 342
duke@435 343 #ifdef ASSERT
duke@435 344
zgu@3900 345 template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
duke@435 346 if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
duke@435 347 warning("Performance bug: SystemDictionary lookup_count=%d "
duke@435 348 "lookup_length=%d average=%lf load=%f",
duke@435 349 _lookup_count, _lookup_length,
duke@435 350 (double) _lookup_length / _lookup_count, load);
duke@435 351 }
duke@435 352 }
duke@435 353
duke@435 354 #endif
coleenp@2497 355 // Explicitly instantiate these types
coleenp@4037 356 template class Hashtable<ConstantPool*, mtClass>;
mgerdin@7207 357 template class RehashableHashtable<Symbol*, mtSymbol>;
mgerdin@7207 358 template class RehashableHashtable<oopDesc*, mtSymbol>;
zgu@3900 359 template class Hashtable<Symbol*, mtSymbol>;
coleenp@4037 360 template class Hashtable<Klass*, mtClass>;
zgu@3900 361 template class Hashtable<oop, mtClass>;
hseigel@5784 362 #if defined(SOLARIS) || defined(CHECK_UNHANDLED_OOPS)
zgu@3900 363 template class Hashtable<oop, mtSymbol>;
mgerdin@7207 364 template class RehashableHashtable<oop, mtSymbol>;
hseigel@5784 365 #endif // SOLARIS || CHECK_UNHANDLED_OOPS
zgu@3900 366 template class Hashtable<oopDesc*, mtSymbol>;
zgu@3900 367 template class Hashtable<Symbol*, mtClass>;
zgu@3900 368 template class HashtableEntry<Symbol*, mtSymbol>;
zgu@3900 369 template class HashtableEntry<Symbol*, mtClass>;
zgu@3900 370 template class HashtableEntry<oop, mtSymbol>;
zgu@3900 371 template class BasicHashtableEntry<mtSymbol>;
zgu@3900 372 template class BasicHashtableEntry<mtCode>;
zgu@3900 373 template class BasicHashtable<mtClass>;
zgu@3900 374 template class BasicHashtable<mtSymbol>;
zgu@3900 375 template class BasicHashtable<mtCode>;
zgu@3900 376 template class BasicHashtable<mtInternal>;

mercurial