src/share/vm/opto/output.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 4037
da91efe96a93
child 4115
e626685e9f6c
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.inline.hpp"
stefank@2314 27 #include "code/debugInfo.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "compiler/compileBroker.hpp"
stefank@2314 30 #include "compiler/oopMap.hpp"
stefank@2314 31 #include "memory/allocation.inline.hpp"
stefank@2314 32 #include "opto/callnode.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/locknode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/output.hpp"
stefank@2314 37 #include "opto/regalloc.hpp"
stefank@2314 38 #include "opto/runtime.hpp"
stefank@2314 39 #include "opto/subnode.hpp"
stefank@2314 40 #include "opto/type.hpp"
stefank@2314 41 #include "runtime/handles.inline.hpp"
stefank@2314 42 #include "utilities/xmlstream.hpp"
duke@435 43
duke@435 44 extern uint size_java_to_interp();
duke@435 45 extern uint reloc_java_to_interp();
duke@435 46 extern uint size_exception_handler();
duke@435 47 extern uint size_deopt_handler();
duke@435 48
duke@435 49 #ifndef PRODUCT
duke@435 50 #define DEBUG_ARG(x) , x
duke@435 51 #else
duke@435 52 #define DEBUG_ARG(x)
duke@435 53 #endif
duke@435 54
duke@435 55 extern int emit_exception_handler(CodeBuffer &cbuf);
duke@435 56 extern int emit_deopt_handler(CodeBuffer &cbuf);
duke@435 57
duke@435 58 //------------------------------Output-----------------------------------------
duke@435 59 // Convert Nodes to instruction bits and pass off to the VM
duke@435 60 void Compile::Output() {
duke@435 61 // RootNode goes
duke@435 62 assert( _cfg->_broot->_nodes.size() == 0, "" );
duke@435 63
kvn@1294 64 // The number of new nodes (mostly MachNop) is proportional to
kvn@1294 65 // the number of java calls and inner loops which are aligned.
kvn@1294 66 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
kvn@1294 67 C->inner_loops()*(OptoLoopAlignment-1)),
kvn@1294 68 "out of nodes before code generation" ) ) {
kvn@1294 69 return;
kvn@1294 70 }
duke@435 71 // Make sure I can find the Start Node
duke@435 72 Block_Array& bbs = _cfg->_bbs;
duke@435 73 Block *entry = _cfg->_blocks[1];
duke@435 74 Block *broot = _cfg->_broot;
duke@435 75
duke@435 76 const StartNode *start = entry->_nodes[0]->as_Start();
duke@435 77
duke@435 78 // Replace StartNode with prolog
duke@435 79 MachPrologNode *prolog = new (this) MachPrologNode();
duke@435 80 entry->_nodes.map( 0, prolog );
duke@435 81 bbs.map( prolog->_idx, entry );
duke@435 82 bbs.map( start->_idx, NULL ); // start is no longer in any block
duke@435 83
duke@435 84 // Virtual methods need an unverified entry point
duke@435 85
duke@435 86 if( is_osr_compilation() ) {
duke@435 87 if( PoisonOSREntry ) {
duke@435 88 // TODO: Should use a ShouldNotReachHereNode...
duke@435 89 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 90 }
duke@435 91 } else {
duke@435 92 if( _method && !_method->flags().is_static() ) {
duke@435 93 // Insert unvalidated entry point
duke@435 94 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 95 }
duke@435 96
duke@435 97 }
duke@435 98
duke@435 99
duke@435 100 // Break before main entry point
duke@435 101 if( (_method && _method->break_at_execute())
duke@435 102 #ifndef PRODUCT
duke@435 103 ||(OptoBreakpoint && is_method_compilation())
duke@435 104 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 105 ||(OptoBreakpointC2R && !_method)
duke@435 106 #endif
duke@435 107 ) {
duke@435 108 // checking for _method means that OptoBreakpoint does not apply to
duke@435 109 // runtime stubs or frame converters
duke@435 110 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 111 }
duke@435 112
duke@435 113 // Insert epilogs before every return
duke@435 114 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 115 Block *b = _cfg->_blocks[i];
duke@435 116 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
duke@435 117 Node *m = b->end();
duke@435 118 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
duke@435 119 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
duke@435 120 b->add_inst( epilog );
duke@435 121 bbs.map(epilog->_idx, b);
duke@435 122 //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
duke@435 123 }
duke@435 124 }
duke@435 125 }
duke@435 126
duke@435 127 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 128 if ( ZapDeadCompiledLocals ) Insert_zap_nodes();
duke@435 129 # endif
duke@435 130
kvn@3049 131 uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
kvn@3049 132 blk_starts[0] = 0;
kvn@3049 133
kvn@3049 134 // Initialize code buffer and process short branches.
kvn@3049 135 CodeBuffer* cb = init_buffer(blk_starts);
kvn@3049 136
kvn@3049 137 if (cb == NULL || failing()) return;
kvn@3049 138
duke@435 139 ScheduleAndBundle();
duke@435 140
duke@435 141 #ifndef PRODUCT
duke@435 142 if (trace_opto_output()) {
duke@435 143 tty->print("\n---- After ScheduleAndBundle ----\n");
duke@435 144 for (uint i = 0; i < _cfg->_num_blocks; i++) {
duke@435 145 tty->print("\nBB#%03d:\n", i);
duke@435 146 Block *bb = _cfg->_blocks[i];
duke@435 147 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 148 Node *n = bb->_nodes[j];
duke@435 149 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 150 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 151 n->dump();
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 #endif
duke@435 156
duke@435 157 if (failing()) return;
duke@435 158
duke@435 159 BuildOopMaps();
duke@435 160
duke@435 161 if (failing()) return;
duke@435 162
kvn@3049 163 fill_buffer(cb, blk_starts);
duke@435 164 }
duke@435 165
duke@435 166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 167 // Determine if we need to generate a stack overflow check.
duke@435 168 // Do it if the method is not a stub function and
duke@435 169 // has java calls or has frame size > vm_page_size/8.
kvn@3574 170 return (UseStackBanging && stub_function() == NULL &&
duke@435 171 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
duke@435 172 }
duke@435 173
duke@435 174 bool Compile::need_register_stack_bang() const {
duke@435 175 // Determine if we need to generate a register stack overflow check.
duke@435 176 // This is only used on architectures which have split register
duke@435 177 // and memory stacks (ie. IA64).
duke@435 178 // Bang if the method is not a stub function and has java calls
duke@435 179 return (stub_function() == NULL && has_java_calls());
duke@435 180 }
duke@435 181
duke@435 182 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 183
duke@435 184
duke@435 185 // In order to catch compiler oop-map bugs, we have implemented
duke@435 186 // a debugging mode called ZapDeadCompilerLocals.
duke@435 187 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 188 // "zap_dead_locals", right before each place in compiled code
duke@435 189 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 190 // The runtime routine checks that locations mapped as oops are really
duke@435 191 // oops, that locations mapped as values do not look like oops,
duke@435 192 // and that locations mapped as dead are not used later
duke@435 193 // (by zapping them to an invalid address).
duke@435 194
duke@435 195 int Compile::_CompiledZap_count = 0;
duke@435 196
duke@435 197 void Compile::Insert_zap_nodes() {
duke@435 198 bool skip = false;
duke@435 199
duke@435 200
duke@435 201 // Dink with static counts because code code without the extra
duke@435 202 // runtime calls is MUCH faster for debugging purposes
duke@435 203
duke@435 204 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 205 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 206 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 207 warning("starting zap compilation after skipping");
duke@435 208
duke@435 209 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 210 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 211 else if ( CompileZapLast == CompiledZap_count() )
duke@435 212 warning("about to compile last zap");
duke@435 213
duke@435 214 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 215
duke@435 216 if ( skip ) return;
duke@435 217
duke@435 218
duke@435 219 if ( _method == NULL )
duke@435 220 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 221
duke@435 222 // Insert call to zap runtime stub before every node with an oop map
duke@435 223 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 224 Block *b = _cfg->_blocks[i];
duke@435 225 for ( uint j = 0; j < b->_nodes.size(); ++j ) {
duke@435 226 Node *n = b->_nodes[j];
duke@435 227
duke@435 228 // Determining if we should insert a zap-a-lot node in output.
duke@435 229 // We do that for all nodes that has oopmap info, except for calls
duke@435 230 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 231 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 232 // the inlined-allocation and the call to new_Java, etc.
duke@435 233 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 234 // during the call to Zap, which also wants to grab the microlock.
duke@435 235 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 236 if ( insert ) { // it is MachSafePoint
duke@435 237 if ( !n->is_MachCall() ) {
duke@435 238 insert = false;
duke@435 239 } else if ( n->is_MachCall() ) {
duke@435 240 MachCallNode* call = n->as_MachCall();
duke@435 241 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 242 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 243 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 244 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 245 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 246 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 247 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 248 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 249 ) {
duke@435 250 insert = false;
duke@435 251 }
duke@435 252 }
duke@435 253 if (insert) {
duke@435 254 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
duke@435 255 b->_nodes.insert( j, zap );
duke@435 256 _cfg->_bbs.map( zap->_idx, b );
duke@435 257 ++j;
duke@435 258 }
duke@435 259 }
duke@435 260 }
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264
duke@435 265 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 266 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 267 CallStaticJavaNode* ideal_node =
duke@435 268 new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
duke@435 269 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
duke@435 270 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 271 // We need to copy the OopMap from the site we're zapping at.
duke@435 272 // We have to make a copy, because the zap site might not be
duke@435 273 // a call site, and zap_dead is a call site.
duke@435 274 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 275
duke@435 276 // Add the cloned OopMap to the zap node
duke@435 277 ideal_node->set_oop_map(clone);
duke@435 278 return _matcher->match_sfpt(ideal_node);
duke@435 279 }
duke@435 280
duke@435 281 //------------------------------is_node_getting_a_safepoint--------------------
duke@435 282 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 283 // This code duplicates the logic prior to the call of add_safepoint
duke@435 284 // below in this file.
duke@435 285 if( n->is_MachSafePoint() ) return true;
duke@435 286 return false;
duke@435 287 }
duke@435 288
duke@435 289 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 290
duke@435 291 //------------------------------compute_loop_first_inst_sizes------------------
rasbold@853 292 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
duke@435 293 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 294 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 295 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 296 // By default, the size is set to 999999 by Block's constructor so that
duke@435 297 // a loop will be aligned if the size is not reset here.
duke@435 298 //
duke@435 299 // Note: Mach instructions could contain several HW instructions
duke@435 300 // so the size is estimated only.
duke@435 301 //
duke@435 302 void Compile::compute_loop_first_inst_sizes() {
duke@435 303 // The next condition is used to gate the loop alignment optimization.
duke@435 304 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 305 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 306 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 307 // equal to 11 bytes which is the largest address NOP instruction.
duke@435 308 if( MaxLoopPad < OptoLoopAlignment-1 ) {
duke@435 309 uint last_block = _cfg->_num_blocks-1;
duke@435 310 for( uint i=1; i <= last_block; i++ ) {
duke@435 311 Block *b = _cfg->_blocks[i];
duke@435 312 // Check the first loop's block which requires an alignment.
rasbold@853 313 if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
duke@435 314 uint sum_size = 0;
duke@435 315 uint inst_cnt = NumberOfLoopInstrToAlign;
rasbold@853 316 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 317
rasbold@853 318 // Check subsequent fallthrough blocks if the loop's first
rasbold@853 319 // block(s) does not have enough instructions.
rasbold@853 320 Block *nb = b;
rasbold@853 321 while( inst_cnt > 0 &&
rasbold@853 322 i < last_block &&
rasbold@853 323 !_cfg->_blocks[i+1]->has_loop_alignment() &&
rasbold@853 324 !nb->has_successor(b) ) {
rasbold@853 325 i++;
rasbold@853 326 nb = _cfg->_blocks[i];
rasbold@853 327 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 328 } // while( inst_cnt > 0 && i < last_block )
rasbold@853 329
duke@435 330 b->set_first_inst_size(sum_size);
duke@435 331 } // f( b->head()->is_Loop() )
duke@435 332 } // for( i <= last_block )
duke@435 333 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 334 }
duke@435 335
kvn@3049 336 //----------------------shorten_branches---------------------------------------
duke@435 337 // The architecture description provides short branch variants for some long
duke@435 338 // branch instructions. Replace eligible long branches with short branches.
kvn@3049 339 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
duke@435 340
duke@435 341 // ------------------
duke@435 342 // Compute size of each block, method size, and relocation information size
kvn@3049 343 uint nblocks = _cfg->_num_blocks;
kvn@3049 344
kvn@3049 345 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 346 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 347 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
kvn@3049 348 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 349 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 350
kvn@3049 351 bool has_short_branch_candidate = false;
duke@435 352
duke@435 353 // Initialize the sizes to 0
duke@435 354 code_size = 0; // Size in bytes of generated code
duke@435 355 stub_size = 0; // Size in bytes of all stub entries
duke@435 356 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 357 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 358 reloc_size = 1; // Number of relocation entries
duke@435 359
duke@435 360 // Make three passes. The first computes pessimistic blk_starts,
kvn@3049 361 // relative jmp_offset and reloc_size information. The second performs
twisti@2350 362 // short branch substitution using the pessimistic sizing. The
twisti@2350 363 // third inserts nops where needed.
duke@435 364
duke@435 365 // Step one, perform a pessimistic sizing pass.
kvn@3049 366 uint last_call_adr = max_uint;
kvn@3049 367 uint last_avoid_back_to_back_adr = max_uint;
duke@435 368 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
kvn@3049 369 for (uint i = 0; i < nblocks; i++) { // For all blocks
duke@435 370 Block *b = _cfg->_blocks[i];
duke@435 371
kvn@3049 372 // During short branch replacement, we store the relative (to blk_starts)
kvn@3049 373 // offset of jump in jmp_offset, rather than the absolute offset of jump.
kvn@3049 374 // This is so that we do not need to recompute sizes of all nodes when
kvn@3049 375 // we compute correct blk_starts in our next sizing pass.
kvn@3049 376 jmp_offset[i] = 0;
kvn@3049 377 jmp_size[i] = 0;
kvn@3049 378 jmp_nidx[i] = -1;
kvn@3049 379 DEBUG_ONLY( jmp_target[i] = 0; )
kvn@3049 380 DEBUG_ONLY( jmp_rule[i] = 0; )
kvn@3049 381
duke@435 382 // Sum all instruction sizes to compute block size
duke@435 383 uint last_inst = b->_nodes.size();
duke@435 384 uint blk_size = 0;
kvn@3049 385 for (uint j = 0; j < last_inst; j++) {
kvn@3049 386 Node* nj = b->_nodes[j];
duke@435 387 // Handle machine instruction nodes
kvn@3049 388 if (nj->is_Mach()) {
duke@435 389 MachNode *mach = nj->as_Mach();
duke@435 390 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 391 reloc_size += mach->reloc();
duke@435 392 if( mach->is_MachCall() ) {
duke@435 393 MachCallNode *mcall = mach->as_MachCall();
duke@435 394 // This destination address is NOT PC-relative
duke@435 395
duke@435 396 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 397
duke@435 398 if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
duke@435 399 stub_size += size_java_to_interp();
duke@435 400 reloc_size += reloc_java_to_interp();
duke@435 401 }
duke@435 402 } else if (mach->is_MachSafePoint()) {
duke@435 403 // If call/safepoint are adjacent, account for possible
duke@435 404 // nop to disambiguate the two safepoints.
kvn@3049 405 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 406 // check for all offsets inside this block.
kvn@3049 407 if (last_call_adr >= blk_starts[i]) {
duke@435 408 blk_size += nop_size;
duke@435 409 }
duke@435 410 }
kvn@3049 411 if (mach->avoid_back_to_back()) {
kvn@3049 412 // Nop is inserted between "avoid back to back" instructions.
kvn@3049 413 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 414 // check for all offsets inside this block.
kvn@3049 415 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
kvn@3049 416 blk_size += nop_size;
kvn@3049 417 }
kvn@3049 418 }
kvn@3049 419 if (mach->may_be_short_branch()) {
kvn@3051 420 if (!nj->is_MachBranch()) {
kvn@3049 421 #ifndef PRODUCT
kvn@3049 422 nj->dump(3);
kvn@3049 423 #endif
kvn@3049 424 Unimplemented();
kvn@3049 425 }
kvn@3049 426 assert(jmp_nidx[i] == -1, "block should have only one branch");
kvn@3049 427 jmp_offset[i] = blk_size;
kvn@3055 428 jmp_size[i] = nj->size(_regalloc);
kvn@3049 429 jmp_nidx[i] = j;
kvn@3049 430 has_short_branch_candidate = true;
kvn@3049 431 }
duke@435 432 }
kvn@3055 433 blk_size += nj->size(_regalloc);
duke@435 434 // Remember end of call offset
kvn@3040 435 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
kvn@3049 436 last_call_adr = blk_starts[i]+blk_size;
kvn@3049 437 }
kvn@3049 438 // Remember end of avoid_back_to_back offset
kvn@3049 439 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
kvn@3049 440 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
duke@435 441 }
duke@435 442 }
duke@435 443
duke@435 444 // When the next block starts a loop, we may insert pad NOP
duke@435 445 // instructions. Since we cannot know our future alignment,
duke@435 446 // assume the worst.
kvn@3049 447 if (i< nblocks-1) {
duke@435 448 Block *nb = _cfg->_blocks[i+1];
duke@435 449 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
kvn@3049 450 if (max_loop_pad > 0) {
duke@435 451 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
duke@435 452 blk_size += max_loop_pad;
duke@435 453 }
duke@435 454 }
duke@435 455
duke@435 456 // Save block size; update total method size
duke@435 457 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 458 }
duke@435 459
duke@435 460 // Step two, replace eligible long jumps.
kvn@3049 461 bool progress = true;
kvn@3049 462 uint last_may_be_short_branch_adr = max_uint;
kvn@3049 463 while (has_short_branch_candidate && progress) {
kvn@3049 464 progress = false;
kvn@3049 465 has_short_branch_candidate = false;
kvn@3049 466 int adjust_block_start = 0;
kvn@3049 467 for (uint i = 0; i < nblocks; i++) {
kvn@3049 468 Block *b = _cfg->_blocks[i];
kvn@3049 469 int idx = jmp_nidx[i];
kvn@3049 470 MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
kvn@3049 471 if (mach != NULL && mach->may_be_short_branch()) {
kvn@3049 472 #ifdef ASSERT
kvn@3051 473 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
kvn@3049 474 int j;
kvn@3049 475 // Find the branch; ignore trailing NOPs.
kvn@3049 476 for (j = b->_nodes.size()-1; j>=0; j--) {
kvn@3049 477 Node* n = b->_nodes[j];
kvn@3049 478 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
kvn@3049 479 break;
kvn@3049 480 }
kvn@3049 481 assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
kvn@3049 482 #endif
kvn@3049 483 int br_size = jmp_size[i];
kvn@3049 484 int br_offs = blk_starts[i] + jmp_offset[i];
kvn@3049 485
duke@435 486 // This requires the TRUE branch target be in succs[0]
duke@435 487 uint bnum = b->non_connector_successor(0)->_pre_order;
kvn@3049 488 int offset = blk_starts[bnum] - br_offs;
kvn@3049 489 if (bnum > i) { // adjust following block's offset
kvn@3049 490 offset -= adjust_block_start;
kvn@3049 491 }
kvn@3049 492 // In the following code a nop could be inserted before
kvn@3049 493 // the branch which will increase the backward distance.
kvn@3049 494 bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
kvn@3049 495 if (needs_padding && offset <= 0)
kvn@3049 496 offset -= nop_size;
kvn@3049 497
kvn@3049 498 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3049 499 // We've got a winner. Replace this branch.
kvn@3051 500 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3049 501
kvn@3049 502 // Update the jmp_size.
kvn@3049 503 int new_size = replacement->size(_regalloc);
kvn@3049 504 int diff = br_size - new_size;
kvn@3049 505 assert(diff >= (int)nop_size, "short_branch size should be smaller");
kvn@3049 506 // Conservatively take into accound padding between
kvn@3049 507 // avoid_back_to_back branches. Previous branch could be
kvn@3049 508 // converted into avoid_back_to_back branch during next
kvn@3049 509 // rounds.
kvn@3049 510 if (needs_padding && replacement->avoid_back_to_back()) {
kvn@3049 511 jmp_offset[i] += nop_size;
kvn@3049 512 diff -= nop_size;
duke@435 513 }
kvn@3049 514 adjust_block_start += diff;
kvn@3049 515 b->_nodes.map(idx, replacement);
kvn@3049 516 mach->subsume_by(replacement);
kvn@3049 517 mach = replacement;
kvn@3049 518 progress = true;
kvn@3049 519
kvn@3049 520 jmp_size[i] = new_size;
kvn@3049 521 DEBUG_ONLY( jmp_target[i] = bnum; );
kvn@3049 522 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
duke@435 523 } else {
kvn@3049 524 // The jump distance is not short, try again during next iteration.
kvn@3049 525 has_short_branch_candidate = true;
duke@435 526 }
kvn@3049 527 } // (mach->may_be_short_branch())
kvn@3049 528 if (mach != NULL && (mach->may_be_short_branch() ||
kvn@3049 529 mach->avoid_back_to_back())) {
kvn@3049 530 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
duke@435 531 }
kvn@3049 532 blk_starts[i+1] -= adjust_block_start;
duke@435 533 }
duke@435 534 }
duke@435 535
kvn@3049 536 #ifdef ASSERT
kvn@3049 537 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3049 538 if (jmp_target[i] != 0) {
kvn@3049 539 int br_size = jmp_size[i];
kvn@3049 540 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3049 541 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3049 542 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3049 543 }
kvn@3049 544 assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
kvn@3049 545 }
kvn@3049 546 }
kvn@3049 547 #endif
kvn@3049 548
kvn@3055 549 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
kvn@3049 550 // after ScheduleAndBundle().
kvn@3049 551
kvn@3049 552 // ------------------
kvn@3049 553 // Compute size for code buffer
kvn@3049 554 code_size = blk_starts[nblocks];
kvn@3049 555
kvn@3049 556 // Relocation records
kvn@3049 557 reloc_size += 1; // Relo entry for exception handler
kvn@3049 558
kvn@3049 559 // Adjust reloc_size to number of record of relocation info
kvn@3049 560 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
kvn@3049 561 // a relocation index.
kvn@3049 562 // The CodeBuffer will expand the locs array if this estimate is too low.
kvn@3049 563 reloc_size *= 10 / sizeof(relocInfo);
kvn@3049 564 }
kvn@3049 565
duke@435 566 //------------------------------FillLocArray-----------------------------------
duke@435 567 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 568 // Java local or expression stack to constant, register or stack-slot. For
duke@435 569 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 570 // entry has been taken care of and caller should skip it).
duke@435 571 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 572 // This should never have accepted Bad before
duke@435 573 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 574 return (OptoReg::is_reg(regnum))
duke@435 575 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 576 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 577 }
duke@435 578
kvn@498 579
kvn@498 580 ObjectValue*
kvn@498 581 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
kvn@498 582 for (int i = 0; i < objs->length(); i++) {
kvn@498 583 assert(objs->at(i)->is_object(), "corrupt object cache");
kvn@498 584 ObjectValue* sv = (ObjectValue*) objs->at(i);
kvn@498 585 if (sv->id() == id) {
kvn@498 586 return sv;
kvn@498 587 }
kvn@498 588 }
kvn@498 589 // Otherwise..
kvn@498 590 return NULL;
kvn@498 591 }
kvn@498 592
kvn@498 593 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
kvn@498 594 ObjectValue* sv ) {
kvn@498 595 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
kvn@498 596 objs->append(sv);
kvn@498 597 }
kvn@498 598
kvn@498 599
kvn@498 600 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
kvn@498 601 GrowableArray<ScopeValue*> *array,
kvn@498 602 GrowableArray<ScopeValue*> *objs ) {
duke@435 603 assert( local, "use _top instead of null" );
duke@435 604 if (array->length() != idx) {
duke@435 605 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 606 // Old functionality:
duke@435 607 // return
duke@435 608 // New functionality:
duke@435 609 // Assert if the local is not top. In product mode let the new node
duke@435 610 // override the old entry.
duke@435 611 assert(local == top(), "LocArray collision");
duke@435 612 if (local == top()) {
duke@435 613 return;
duke@435 614 }
duke@435 615 array->pop();
duke@435 616 }
duke@435 617 const Type *t = local->bottom_type();
duke@435 618
kvn@498 619 // Is it a safepoint scalar object node?
kvn@498 620 if (local->is_SafePointScalarObject()) {
kvn@498 621 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
kvn@498 622
kvn@498 623 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 624 if (sv == NULL) {
kvn@498 625 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 626 assert(cik->is_instance_klass() ||
kvn@498 627 cik->is_array_klass(), "Not supported allocation.");
kvn@498 628 sv = new ObjectValue(spobj->_idx,
coleenp@4037 629 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 630 Compile::set_sv_for_object_node(objs, sv);
kvn@498 631
kvn@498 632 uint first_ind = spobj->first_index();
kvn@498 633 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 634 Node* fld_node = sfpt->in(first_ind+i);
kvn@498 635 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
kvn@498 636 }
kvn@498 637 }
kvn@498 638 array->append(sv);
kvn@498 639 return;
kvn@498 640 }
kvn@498 641
duke@435 642 // Grab the register number for the local
duke@435 643 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 644 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 645 // Record the double as two float registers.
duke@435 646 // The register mask for such a value always specifies two adjacent
duke@435 647 // float registers, with the lower register number even.
duke@435 648 // Normally, the allocation of high and low words to these registers
duke@435 649 // is irrelevant, because nearly all operations on register pairs
duke@435 650 // (e.g., StoreD) treat them as a single unit.
duke@435 651 // Here, we assume in addition that the words in these two registers
duke@435 652 // stored "naturally" (by operations like StoreD and double stores
duke@435 653 // within the interpreter) such that the lower-numbered register
duke@435 654 // is written to the lower memory address. This may seem like
duke@435 655 // a machine dependency, but it is not--it is a requirement on
duke@435 656 // the author of the <arch>.ad file to ensure that, for every
duke@435 657 // even/odd double-register pair to which a double may be allocated,
duke@435 658 // the word in the even single-register is stored to the first
duke@435 659 // memory word. (Note that register numbers are completely
duke@435 660 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 661 #ifdef _LP64
duke@435 662 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 663 array->append(new ConstantIntValue(0));
duke@435 664 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 665 } else if ( t->base() == Type::Long ) {
duke@435 666 array->append(new ConstantIntValue(0));
duke@435 667 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 668 } else if ( t->base() == Type::RawPtr ) {
duke@435 669 // jsr/ret return address which must be restored into a the full
duke@435 670 // width 64-bit stack slot.
duke@435 671 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 672 }
duke@435 673 #else //_LP64
duke@435 674 #ifdef SPARC
duke@435 675 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 676 // For SPARC we have to swap high and low words for
duke@435 677 // long values stored in a single-register (g0-g7).
duke@435 678 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 679 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 680 } else
duke@435 681 #endif //SPARC
duke@435 682 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 683 // Repack the double/long as two jints.
duke@435 684 // The convention the interpreter uses is that the second local
duke@435 685 // holds the first raw word of the native double representation.
duke@435 686 // This is actually reasonable, since locals and stack arrays
duke@435 687 // grow downwards in all implementations.
duke@435 688 // (If, on some machine, the interpreter's Java locals or stack
duke@435 689 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 690 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 691 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 692 }
duke@435 693 #endif //_LP64
duke@435 694 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 695 OptoReg::is_reg(regnum) ) {
kvn@1709 696 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
duke@435 697 ? Location::float_in_dbl : Location::normal ));
duke@435 698 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 699 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 700 ? Location::int_in_long : Location::normal ));
kvn@766 701 } else if( t->base() == Type::NarrowOop ) {
kvn@766 702 array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
duke@435 703 } else {
duke@435 704 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 705 }
duke@435 706 return;
duke@435 707 }
duke@435 708
duke@435 709 // No register. It must be constant data.
duke@435 710 switch (t->base()) {
duke@435 711 case Type::Half: // Second half of a double
duke@435 712 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 713 break;
duke@435 714 case Type::AnyPtr:
duke@435 715 array->append(new ConstantOopWriteValue(NULL));
duke@435 716 break;
duke@435 717 case Type::AryPtr:
coleenp@4037 718 case Type::InstPtr: // fall through
jrose@1424 719 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
duke@435 720 break;
kvn@766 721 case Type::NarrowOop:
kvn@766 722 if (t == TypeNarrowOop::NULL_PTR) {
kvn@766 723 array->append(new ConstantOopWriteValue(NULL));
kvn@766 724 } else {
jrose@1424 725 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
kvn@766 726 }
kvn@766 727 break;
duke@435 728 case Type::Int:
duke@435 729 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 730 break;
duke@435 731 case Type::RawPtr:
duke@435 732 // A return address (T_ADDRESS).
duke@435 733 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 734 #ifdef _LP64
duke@435 735 // Must be restored to the full-width 64-bit stack slot.
duke@435 736 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 737 #else
duke@435 738 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 739 #endif
duke@435 740 break;
duke@435 741 case Type::FloatCon: {
duke@435 742 float f = t->is_float_constant()->getf();
duke@435 743 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 744 break;
duke@435 745 }
duke@435 746 case Type::DoubleCon: {
duke@435 747 jdouble d = t->is_double_constant()->getd();
duke@435 748 #ifdef _LP64
duke@435 749 array->append(new ConstantIntValue(0));
duke@435 750 array->append(new ConstantDoubleValue(d));
duke@435 751 #else
duke@435 752 // Repack the double as two jints.
duke@435 753 // The convention the interpreter uses is that the second local
duke@435 754 // holds the first raw word of the native double representation.
duke@435 755 // This is actually reasonable, since locals and stack arrays
duke@435 756 // grow downwards in all implementations.
duke@435 757 // (If, on some machine, the interpreter's Java locals or stack
duke@435 758 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 759 jint *dp = (jint*)&d;
duke@435 760 array->append(new ConstantIntValue(dp[1]));
duke@435 761 array->append(new ConstantIntValue(dp[0]));
duke@435 762 #endif
duke@435 763 break;
duke@435 764 }
duke@435 765 case Type::Long: {
duke@435 766 jlong d = t->is_long()->get_con();
duke@435 767 #ifdef _LP64
duke@435 768 array->append(new ConstantIntValue(0));
duke@435 769 array->append(new ConstantLongValue(d));
duke@435 770 #else
duke@435 771 // Repack the long as two jints.
duke@435 772 // The convention the interpreter uses is that the second local
duke@435 773 // holds the first raw word of the native double representation.
duke@435 774 // This is actually reasonable, since locals and stack arrays
duke@435 775 // grow downwards in all implementations.
duke@435 776 // (If, on some machine, the interpreter's Java locals or stack
duke@435 777 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 778 jint *dp = (jint*)&d;
duke@435 779 array->append(new ConstantIntValue(dp[1]));
duke@435 780 array->append(new ConstantIntValue(dp[0]));
duke@435 781 #endif
duke@435 782 break;
duke@435 783 }
duke@435 784 case Type::Top: // Add an illegal value here
duke@435 785 array->append(new LocationValue(Location()));
duke@435 786 break;
duke@435 787 default:
duke@435 788 ShouldNotReachHere();
duke@435 789 break;
duke@435 790 }
duke@435 791 }
duke@435 792
duke@435 793 // Determine if this node starts a bundle
duke@435 794 bool Compile::starts_bundle(const Node *n) const {
duke@435 795 return (_node_bundling_limit > n->_idx &&
duke@435 796 _node_bundling_base[n->_idx].starts_bundle());
duke@435 797 }
duke@435 798
duke@435 799 //--------------------------Process_OopMap_Node--------------------------------
duke@435 800 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 801
duke@435 802 // Handle special safepoint nodes for synchronization
duke@435 803 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 804 MachCallNode *mcall;
duke@435 805
duke@435 806 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 807 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 808 #endif
duke@435 809
duke@435 810 int safepoint_pc_offset = current_offset;
twisti@1572 811 bool is_method_handle_invoke = false;
kvn@1688 812 bool return_oop = false;
duke@435 813
duke@435 814 // Add the safepoint in the DebugInfoRecorder
duke@435 815 if( !mach->is_MachCall() ) {
duke@435 816 mcall = NULL;
duke@435 817 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 818 } else {
duke@435 819 mcall = mach->as_MachCall();
twisti@1572 820
twisti@1572 821 // Is the call a MethodHandle call?
twisti@1700 822 if (mcall->is_MachCallJava()) {
twisti@1700 823 if (mcall->as_MachCallJava()->_method_handle_invoke) {
twisti@1700 824 assert(has_method_handle_invokes(), "must have been set during call generation");
twisti@1700 825 is_method_handle_invoke = true;
twisti@1700 826 }
twisti@1700 827 }
twisti@1572 828
kvn@1688 829 // Check if a call returns an object.
kvn@1688 830 if (mcall->return_value_is_used() &&
kvn@1688 831 mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
kvn@1688 832 return_oop = true;
kvn@1688 833 }
duke@435 834 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 835 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 836 }
duke@435 837
duke@435 838 // Loop over the JVMState list to add scope information
duke@435 839 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 840 JVMState* youngest_jvms = sfn->jvms();
duke@435 841 int max_depth = youngest_jvms->depth();
duke@435 842
kvn@498 843 // Allocate the object pool for scalar-replaced objects -- the map from
kvn@498 844 // small-integer keys (which can be recorded in the local and ostack
kvn@498 845 // arrays) to descriptions of the object state.
kvn@498 846 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
kvn@498 847
duke@435 848 // Visit scopes from oldest to youngest.
duke@435 849 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 850 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 851 int idx;
duke@435 852 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 853 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 854 // to support GC; these do not support deoptimization.
duke@435 855 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 856 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 857 int num_mon = jvms->nof_monitors();
duke@435 858 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 859 "JVMS local count must match that of the method");
duke@435 860
duke@435 861 // Add Local and Expression Stack Information
duke@435 862
duke@435 863 // Insert locals into the locarray
duke@435 864 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 865 for( idx = 0; idx < num_locs; idx++ ) {
kvn@498 866 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
duke@435 867 }
duke@435 868
duke@435 869 // Insert expression stack entries into the exparray
duke@435 870 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 871 for( idx = 0; idx < num_exps; idx++ ) {
kvn@498 872 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
duke@435 873 }
duke@435 874
duke@435 875 // Add in mappings of the monitors
duke@435 876 assert( !method ||
duke@435 877 !method->is_synchronized() ||
duke@435 878 method->is_native() ||
duke@435 879 num_mon > 0 ||
duke@435 880 !GenerateSynchronizationCode,
duke@435 881 "monitors must always exist for synchronized methods");
duke@435 882
duke@435 883 // Build the growable array of ScopeValues for exp stack
duke@435 884 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 885
duke@435 886 // Loop over monitors and insert into array
duke@435 887 for(idx = 0; idx < num_mon; idx++) {
duke@435 888 // Grab the node that defines this monitor
kvn@895 889 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 890 Node* obj_node = sfn->monitor_obj(jvms, idx);
duke@435 891
duke@435 892 // Create ScopeValue for object
duke@435 893 ScopeValue *scval = NULL;
kvn@498 894
kvn@498 895 if( obj_node->is_SafePointScalarObject() ) {
kvn@498 896 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
kvn@498 897 scval = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 898 if (scval == NULL) {
kvn@498 899 const Type *t = obj_node->bottom_type();
kvn@498 900 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 901 assert(cik->is_instance_klass() ||
kvn@498 902 cik->is_array_klass(), "Not supported allocation.");
kvn@498 903 ObjectValue* sv = new ObjectValue(spobj->_idx,
coleenp@4037 904 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 905 Compile::set_sv_for_object_node(objs, sv);
kvn@498 906
kvn@498 907 uint first_ind = spobj->first_index();
kvn@498 908 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 909 Node* fld_node = sfn->in(first_ind+i);
kvn@498 910 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
kvn@498 911 }
kvn@498 912 scval = sv;
kvn@498 913 }
kvn@498 914 } else if( !obj_node->is_Con() ) {
duke@435 915 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
kvn@766 916 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
kvn@766 917 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
kvn@766 918 } else {
kvn@766 919 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
kvn@766 920 }
duke@435 921 } else {
kvn@766 922 const TypePtr *tp = obj_node->bottom_type()->make_ptr();
kvn@2931 923 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
duke@435 924 }
duke@435 925
kvn@3406 926 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
kvn@501 927 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
kvn@3406 928 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
kvn@3406 929 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
duke@435 930 }
duke@435 931
kvn@498 932 // We dump the object pool first, since deoptimization reads it in first.
kvn@498 933 debug_info()->dump_object_pool(objs);
kvn@498 934
duke@435 935 // Build first class objects to pass to scope
duke@435 936 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 937 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 938 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 939
duke@435 940 // Make method available for all Safepoints
duke@435 941 ciMethod* scope_method = method ? method : _method;
duke@435 942 // Describe the scope here
duke@435 943 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
twisti@1570 944 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
kvn@498 945 // Now we can describe the scope.
kvn@1688 946 debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
duke@435 947 } // End jvms loop
duke@435 948
duke@435 949 // Mark the end of the scope set.
duke@435 950 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 951 }
duke@435 952
duke@435 953
duke@435 954
duke@435 955 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 956 class NonSafepointEmitter {
duke@435 957 Compile* C;
duke@435 958 JVMState* _pending_jvms;
duke@435 959 int _pending_offset;
duke@435 960
duke@435 961 void emit_non_safepoint();
duke@435 962
duke@435 963 public:
duke@435 964 NonSafepointEmitter(Compile* compile) {
duke@435 965 this->C = compile;
duke@435 966 _pending_jvms = NULL;
duke@435 967 _pending_offset = 0;
duke@435 968 }
duke@435 969
duke@435 970 void observe_instruction(Node* n, int pc_offset) {
duke@435 971 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 972
duke@435 973 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 974 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 975 if (_pending_jvms != NULL &&
duke@435 976 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 977 // Repeated JVMS? Stretch it up here.
duke@435 978 _pending_offset = pc_offset;
duke@435 979 } else {
duke@435 980 if (_pending_jvms != NULL &&
duke@435 981 _pending_offset < pc_offset) {
duke@435 982 emit_non_safepoint();
duke@435 983 }
duke@435 984 _pending_jvms = NULL;
duke@435 985 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 986 // This is the only way _pending_jvms can become non-NULL:
duke@435 987 _pending_jvms = nn->jvms();
duke@435 988 _pending_offset = pc_offset;
duke@435 989 }
duke@435 990 }
duke@435 991 }
duke@435 992
duke@435 993 // Stay out of the way of real safepoints:
duke@435 994 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 995 if (_pending_jvms != NULL &&
duke@435 996 !_pending_jvms->same_calls_as(jvms) &&
duke@435 997 _pending_offset < pc_offset) {
duke@435 998 emit_non_safepoint();
duke@435 999 }
duke@435 1000 _pending_jvms = NULL;
duke@435 1001 }
duke@435 1002
duke@435 1003 void flush_at_end() {
duke@435 1004 if (_pending_jvms != NULL) {
duke@435 1005 emit_non_safepoint();
duke@435 1006 }
duke@435 1007 _pending_jvms = NULL;
duke@435 1008 }
duke@435 1009 };
duke@435 1010
duke@435 1011 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 1012 JVMState* youngest_jvms = _pending_jvms;
duke@435 1013 int pc_offset = _pending_offset;
duke@435 1014
duke@435 1015 // Clear it now:
duke@435 1016 _pending_jvms = NULL;
duke@435 1017
duke@435 1018 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 1019 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 1020
duke@435 1021 debug_info->add_non_safepoint(pc_offset);
duke@435 1022 int max_depth = youngest_jvms->depth();
duke@435 1023
duke@435 1024 // Visit scopes from oldest to youngest.
duke@435 1025 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 1026 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1027 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
cfang@1335 1028 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
cfang@1335 1029 debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
duke@435 1030 }
duke@435 1031
duke@435 1032 // Mark the end of the scope set.
duke@435 1033 debug_info->end_non_safepoint(pc_offset);
duke@435 1034 }
duke@435 1035
duke@435 1036
duke@435 1037
kvn@3049 1038 // helper for fill_buffer bailout logic
duke@435 1039 static void turn_off_compiler(Compile* C) {
kvn@2635 1040 if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
duke@435 1041 // Do not turn off compilation if a single giant method has
duke@435 1042 // blown the code cache size.
duke@435 1043 C->record_failure("excessive request to CodeCache");
duke@435 1044 } else {
kvn@463 1045 // Let CompilerBroker disable further compilations.
duke@435 1046 C->record_failure("CodeCache is full");
duke@435 1047 }
duke@435 1048 }
duke@435 1049
duke@435 1050
kvn@3049 1051 //------------------------------init_buffer------------------------------------
kvn@3049 1052 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
duke@435 1053
duke@435 1054 // Set the initially allocated size
duke@435 1055 int code_req = initial_code_capacity;
duke@435 1056 int locs_req = initial_locs_capacity;
duke@435 1057 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 1058 int const_req = initial_const_capacity;
duke@435 1059
duke@435 1060 int pad_req = NativeCall::instruction_size;
duke@435 1061 // The extra spacing after the code is necessary on some platforms.
duke@435 1062 // Sometimes we need to patch in a jump after the last instruction,
duke@435 1063 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 1064
duke@435 1065 // Compute the byte offset where we can store the deopt pc.
duke@435 1066 if (fixed_slots() != 0) {
duke@435 1067 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 1068 }
duke@435 1069
duke@435 1070 // Compute prolog code size
duke@435 1071 _method_size = 0;
duke@435 1072 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
duke@435 1073 #ifdef IA64
duke@435 1074 if (save_argument_registers()) {
duke@435 1075 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 1076 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 1077 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 1078 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 1079 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 1080 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 1081 //
duke@435 1082 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 1083 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 1084 // instead of stfd/stfs/ldfd/ldfs.
duke@435 1085 _frame_slots += 8*(16/BytesPerInt);
duke@435 1086 }
duke@435 1087 #endif
kvn@3049 1088 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
duke@435 1089
twisti@2350 1090 if (has_mach_constant_base_node()) {
twisti@2350 1091 // Fill the constant table.
kvn@3049 1092 // Note: This must happen before shorten_branches.
kvn@3049 1093 for (uint i = 0; i < _cfg->_num_blocks; i++) {
twisti@2350 1094 Block* b = _cfg->_blocks[i];
twisti@2350 1095
twisti@2350 1096 for (uint j = 0; j < b->_nodes.size(); j++) {
twisti@2350 1097 Node* n = b->_nodes[j];
twisti@2350 1098
twisti@2350 1099 // If the node is a MachConstantNode evaluate the constant
twisti@2350 1100 // value section.
twisti@2350 1101 if (n->is_MachConstant()) {
twisti@2350 1102 MachConstantNode* machcon = n->as_MachConstant();
twisti@2350 1103 machcon->eval_constant(C);
twisti@2350 1104 }
twisti@2350 1105 }
twisti@2350 1106 }
twisti@2350 1107
twisti@2350 1108 // Calculate the offsets of the constants and the size of the
twisti@2350 1109 // constant table (including the padding to the next section).
twisti@2350 1110 constant_table().calculate_offsets_and_size();
twisti@2350 1111 const_req = constant_table().size();
twisti@2350 1112 }
twisti@2350 1113
twisti@2350 1114 // Initialize the space for the BufferBlob used to find and verify
twisti@2350 1115 // instruction size in MachNode::emit_size()
twisti@2350 1116 init_scratch_buffer_blob(const_req);
kvn@3049 1117 if (failing()) return NULL; // Out of memory
kvn@3049 1118
kvn@3049 1119 // Pre-compute the length of blocks and replace
kvn@3049 1120 // long branches with short if machine supports it.
kvn@3049 1121 shorten_branches(blk_starts, code_req, locs_req, stub_req);
duke@435 1122
duke@435 1123 // nmethod and CodeBuffer count stubs & constants as part of method's code.
duke@435 1124 int exception_handler_req = size_exception_handler();
duke@435 1125 int deopt_handler_req = size_deopt_handler();
duke@435 1126 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1127 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1128 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 1129 code_req += MAX_inst_size; // ensure per-instruction margin
twisti@1700 1130
duke@435 1131 if (StressCodeBuffers)
duke@435 1132 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
twisti@1700 1133
twisti@1700 1134 int total_req =
twisti@2350 1135 const_req +
twisti@1700 1136 code_req +
twisti@1700 1137 pad_req +
twisti@1700 1138 stub_req +
twisti@1700 1139 exception_handler_req +
twisti@2350 1140 deopt_handler_req; // deopt handler
twisti@1700 1141
twisti@1700 1142 if (has_method_handle_invokes())
twisti@1700 1143 total_req += deopt_handler_req; // deopt MH handler
twisti@1700 1144
duke@435 1145 CodeBuffer* cb = code_buffer();
duke@435 1146 cb->initialize(total_req, locs_req);
duke@435 1147
duke@435 1148 // Have we run out of code space?
kvn@1637 1149 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
duke@435 1150 turn_off_compiler(this);
kvn@3049 1151 return NULL;
duke@435 1152 }
duke@435 1153 // Configure the code buffer.
duke@435 1154 cb->initialize_consts_size(const_req);
duke@435 1155 cb->initialize_stubs_size(stub_req);
duke@435 1156 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1157
duke@435 1158 // fill in the nop array for bundling computations
duke@435 1159 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1160 Bundle::initialize_nops(_nop_list, this);
duke@435 1161
kvn@3049 1162 return cb;
kvn@3049 1163 }
kvn@3049 1164
kvn@3049 1165 //------------------------------fill_buffer------------------------------------
kvn@3049 1166 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
kvn@3055 1167 // blk_starts[] contains offsets calculated during short branches processing,
kvn@3055 1168 // offsets should not be increased during following steps.
kvn@3055 1169
kvn@3055 1170 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
kvn@3055 1171 // of a loop. It is used to determine the padding for loop alignment.
kvn@3055 1172 compute_loop_first_inst_sizes();
kvn@3049 1173
duke@435 1174 // Create oopmap set.
duke@435 1175 _oop_map_set = new OopMapSet();
duke@435 1176
duke@435 1177 // !!!!! This preserves old handling of oopmaps for now
duke@435 1178 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1179
kvn@3055 1180 uint nblocks = _cfg->_num_blocks;
duke@435 1181 // Count and start of implicit null check instructions
duke@435 1182 uint inct_cnt = 0;
kvn@3055 1183 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1184
duke@435 1185 // Count and start of calls
kvn@3055 1186 uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1187
duke@435 1188 uint return_offset = 0;
kvn@1294 1189 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1190
duke@435 1191 int previous_offset = 0;
duke@435 1192 int current_offset = 0;
duke@435 1193 int last_call_offset = -1;
kvn@3049 1194 int last_avoid_back_to_back_offset = -1;
kvn@3055 1195 #ifdef ASSERT
kvn@3055 1196 int block_alignment_padding = 0;
kvn@3055 1197
kvn@3055 1198 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1199 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1200 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1201 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 1202 #endif
kvn@3055 1203
duke@435 1204 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1205 #ifndef PRODUCT
duke@435 1206 int *node_offsets = NULL;
kvn@3049 1207 uint node_offset_limit = unique();
kvn@3049 1208
kvn@3049 1209 if (print_assembly())
duke@435 1210 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1211 #endif
duke@435 1212
duke@435 1213 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1214
twisti@2350 1215 // Emit the constant table.
twisti@2350 1216 if (has_mach_constant_base_node()) {
twisti@2350 1217 constant_table().emit(*cb);
twisti@2350 1218 }
twisti@2350 1219
kvn@3049 1220 // Create an array of labels, one for each basic block
kvn@3055 1221 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
kvn@3055 1222 for (uint i=0; i <= nblocks; i++) {
kvn@3049 1223 blk_labels[i].init();
kvn@3049 1224 }
kvn@3049 1225
duke@435 1226 // ------------------
duke@435 1227 // Now fill in the code buffer
duke@435 1228 Node *delay_slot = NULL;
duke@435 1229
kvn@3055 1230 for (uint i=0; i < nblocks; i++) {
kvn@3055 1231 guarantee(blk_starts[i] >= (uint)cb->insts_size(),"should not increase size");
kvn@3049 1232
duke@435 1233 Block *b = _cfg->_blocks[i];
duke@435 1234
duke@435 1235 Node *head = b->head();
duke@435 1236
duke@435 1237 // If this block needs to start aligned (i.e, can be reached other
duke@435 1238 // than by falling-thru from the previous block), then force the
duke@435 1239 // start of a new bundle.
kvn@3049 1240 if (Pipeline::requires_bundling() && starts_bundle(head))
duke@435 1241 cb->flush_bundle(true);
duke@435 1242
kvn@3049 1243 #ifdef ASSERT
kvn@3049 1244 if (!b->is_connector()) {
kvn@3049 1245 stringStream st;
kvn@3049 1246 b->dump_head(&_cfg->_bbs, &st);
kvn@3049 1247 MacroAssembler(cb).block_comment(st.as_string());
kvn@3049 1248 }
kvn@3055 1249 jmp_target[i] = 0;
kvn@3055 1250 jmp_offset[i] = 0;
kvn@3055 1251 jmp_size[i] = 0;
kvn@3055 1252 jmp_rule[i] = 0;
kvn@3055 1253
kvn@3055 1254 // Maximum alignment padding for loop block was used
kvn@3055 1255 // during first round of branches shortening, as result
kvn@3055 1256 // padding for nodes (sfpt after call) was not added.
kvn@3055 1257 // Take this into account for block's size change check
kvn@3055 1258 // and allow increase block's size by the difference
kvn@3055 1259 // of maximum and actual alignment paddings.
kvn@3055 1260 int orig_blk_size = blk_starts[i+1] - blk_starts[i] + block_alignment_padding;
kvn@3049 1261 #endif
kvn@3055 1262 int blk_offset = current_offset;
kvn@3049 1263
duke@435 1264 // Define the label at the beginning of the basic block
kvn@3049 1265 MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
duke@435 1266
duke@435 1267 uint last_inst = b->_nodes.size();
duke@435 1268
duke@435 1269 // Emit block normally, except for last instruction.
duke@435 1270 // Emit means "dump code bits into code buffer".
kvn@3049 1271 for (uint j = 0; j<last_inst; j++) {
duke@435 1272
duke@435 1273 // Get the node
duke@435 1274 Node* n = b->_nodes[j];
duke@435 1275
duke@435 1276 // See if delay slots are supported
duke@435 1277 if (valid_bundle_info(n) &&
duke@435 1278 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1279 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1280 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1281
duke@435 1282 delay_slot = n;
duke@435 1283 continue;
duke@435 1284 }
duke@435 1285
duke@435 1286 // If this starts a new instruction group, then flush the current one
duke@435 1287 // (but allow split bundles)
kvn@3049 1288 if (Pipeline::requires_bundling() && starts_bundle(n))
duke@435 1289 cb->flush_bundle(false);
duke@435 1290
duke@435 1291 // The following logic is duplicated in the code ifdeffed for
twisti@1040 1292 // ENABLE_ZAP_DEAD_LOCALS which appears above in this file. It
duke@435 1293 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1294
duke@435 1295 // Special handling for SafePoint/Call Nodes
duke@435 1296 bool is_mcall = false;
kvn@3049 1297 if (n->is_Mach()) {
duke@435 1298 MachNode *mach = n->as_Mach();
duke@435 1299 is_mcall = n->is_MachCall();
duke@435 1300 bool is_sfn = n->is_MachSafePoint();
duke@435 1301
duke@435 1302 // If this requires all previous instructions be flushed, then do so
kvn@3049 1303 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1304 cb->flush_bundle(true);
twisti@2103 1305 current_offset = cb->insts_size();
duke@435 1306 }
duke@435 1307
kvn@3049 1308 // A padding may be needed again since a previous instruction
kvn@3049 1309 // could be moved to delay slot.
kvn@3049 1310
duke@435 1311 // align the instruction if necessary
duke@435 1312 int padding = mach->compute_padding(current_offset);
duke@435 1313 // Make sure safepoint node for polling is distinct from a call's
duke@435 1314 // return by adding a nop if needed.
kvn@3049 1315 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
duke@435 1316 padding = nop_size;
duke@435 1317 }
kvn@3049 1318 if (padding == 0 && mach->avoid_back_to_back() &&
kvn@3049 1319 current_offset == last_avoid_back_to_back_offset) {
kvn@3049 1320 // Avoid back to back some instructions.
kvn@3049 1321 padding = nop_size;
duke@435 1322 }
kvn@3055 1323
kvn@3055 1324 if(padding > 0) {
kvn@3055 1325 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
kvn@3055 1326 int nops_cnt = padding / nop_size;
kvn@3055 1327 MachNode *nop = new (this) MachNopNode(nops_cnt);
kvn@3055 1328 b->_nodes.insert(j++, nop);
kvn@3055 1329 last_inst++;
kvn@3055 1330 _cfg->_bbs.map( nop->_idx, b );
kvn@3055 1331 nop->emit(*cb, _regalloc);
kvn@3055 1332 cb->flush_bundle(true);
kvn@3055 1333 current_offset = cb->insts_size();
kvn@3055 1334 }
kvn@3055 1335
duke@435 1336 // Remember the start of the last call in a basic block
duke@435 1337 if (is_mcall) {
duke@435 1338 MachCallNode *mcall = mach->as_MachCall();
duke@435 1339
duke@435 1340 // This destination address is NOT PC-relative
duke@435 1341 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1342
duke@435 1343 // Save the return address
duke@435 1344 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1345
kvn@3040 1346 if (mcall->is_MachCallLeaf()) {
duke@435 1347 is_mcall = false;
duke@435 1348 is_sfn = false;
duke@435 1349 }
duke@435 1350 }
duke@435 1351
duke@435 1352 // sfn will be valid whenever mcall is valid now because of inheritance
kvn@3049 1353 if (is_sfn || is_mcall) {
duke@435 1354
duke@435 1355 // Handle special safepoint nodes for synchronization
kvn@3049 1356 if (!is_mcall) {
duke@435 1357 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1358 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1359 if (sfn->jvms()->method() == NULL) {
duke@435 1360 // Write the oopmap directly to the code blob??!!
duke@435 1361 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1362 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1363 # endif
duke@435 1364 continue;
duke@435 1365 }
duke@435 1366 } // End synchronization
duke@435 1367
duke@435 1368 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1369 current_offset);
duke@435 1370 Process_OopMap_Node(mach, current_offset);
duke@435 1371 } // End if safepoint
duke@435 1372
duke@435 1373 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1374 else if( mach->is_MachNullCheck() ) {
duke@435 1375 inct_starts[inct_cnt++] = previous_offset;
duke@435 1376 }
duke@435 1377
duke@435 1378 // If this is a branch, then fill in the label with the target BB's label
kvn@3051 1379 else if (mach->is_MachBranch()) {
kvn@3051 1380 // This requires the TRUE branch target be in succs[0]
kvn@3051 1381 uint block_num = b->non_connector_successor(0)->_pre_order;
kvn@3055 1382
kvn@3055 1383 // Try to replace long branch if delay slot is not used,
kvn@3055 1384 // it is mostly for back branches since forward branch's
kvn@3055 1385 // distance is not updated yet.
kvn@3055 1386 bool delay_slot_is_used = valid_bundle_info(n) &&
kvn@3055 1387 node_bundling(n)->use_unconditional_delay();
kvn@3055 1388 if (!delay_slot_is_used && mach->may_be_short_branch()) {
kvn@3055 1389 assert(delay_slot == NULL, "not expecting delay slot node");
kvn@3055 1390 int br_size = n->size(_regalloc);
kvn@3055 1391 int offset = blk_starts[block_num] - current_offset;
kvn@3055 1392 if (block_num >= i) {
kvn@3055 1393 // Current and following block's offset are not
kvn@3055 1394 // finilized yet, adjust distance by the difference
kvn@3055 1395 // between calculated and final offsets of current block.
kvn@3055 1396 offset -= (blk_starts[i] - blk_offset);
kvn@3055 1397 }
kvn@3055 1398 // In the following code a nop could be inserted before
kvn@3055 1399 // the branch which will increase the backward distance.
kvn@3055 1400 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
kvn@3055 1401 if (needs_padding && offset <= 0)
kvn@3055 1402 offset -= nop_size;
kvn@3055 1403
kvn@3055 1404 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3055 1405 // We've got a winner. Replace this branch.
kvn@3055 1406 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3055 1407
kvn@3055 1408 // Update the jmp_size.
kvn@3055 1409 int new_size = replacement->size(_regalloc);
kvn@3055 1410 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
kvn@3055 1411 // Insert padding between avoid_back_to_back branches.
kvn@3055 1412 if (needs_padding && replacement->avoid_back_to_back()) {
kvn@3055 1413 MachNode *nop = new (this) MachNopNode();
kvn@3055 1414 b->_nodes.insert(j++, nop);
kvn@3055 1415 _cfg->_bbs.map(nop->_idx, b);
kvn@3055 1416 last_inst++;
kvn@3055 1417 nop->emit(*cb, _regalloc);
kvn@3055 1418 cb->flush_bundle(true);
kvn@3055 1419 current_offset = cb->insts_size();
kvn@3055 1420 }
kvn@3055 1421 #ifdef ASSERT
kvn@3055 1422 jmp_target[i] = block_num;
kvn@3055 1423 jmp_offset[i] = current_offset - blk_offset;
kvn@3055 1424 jmp_size[i] = new_size;
kvn@3055 1425 jmp_rule[i] = mach->rule();
kvn@3055 1426 #endif
kvn@3055 1427 b->_nodes.map(j, replacement);
kvn@3055 1428 mach->subsume_by(replacement);
kvn@3055 1429 n = replacement;
kvn@3055 1430 mach = replacement;
kvn@3055 1431 }
kvn@3055 1432 }
kvn@3051 1433 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
kvn@3051 1434 } else if (mach->ideal_Opcode() == Op_Jump) {
kvn@3051 1435 for (uint h = 0; h < b->_num_succs; h++) {
kvn@3051 1436 Block* succs_block = b->_succs[h];
kvn@3051 1437 for (uint j = 1; j < succs_block->num_preds(); j++) {
kvn@3051 1438 Node* jpn = succs_block->pred(j);
kvn@3051 1439 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
kvn@3051 1440 uint block_num = succs_block->non_connector()->_pre_order;
kvn@3051 1441 Label *blkLabel = &blk_labels[block_num];
kvn@3051 1442 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1443 }
duke@435 1444 }
duke@435 1445 }
duke@435 1446 }
duke@435 1447
duke@435 1448 #ifdef ASSERT
twisti@1040 1449 // Check that oop-store precedes the card-mark
kvn@3049 1450 else if (mach->ideal_Opcode() == Op_StoreCM) {
duke@435 1451 uint storeCM_idx = j;
never@2780 1452 int count = 0;
never@2780 1453 for (uint prec = mach->req(); prec < mach->len(); prec++) {
never@2780 1454 Node *oop_store = mach->in(prec); // Precedence edge
never@2780 1455 if (oop_store == NULL) continue;
never@2780 1456 count++;
never@2780 1457 uint i4;
never@2780 1458 for( i4 = 0; i4 < last_inst; ++i4 ) {
never@2780 1459 if( b->_nodes[i4] == oop_store ) break;
never@2780 1460 }
never@2780 1461 // Note: This test can provide a false failure if other precedence
never@2780 1462 // edges have been added to the storeCMNode.
never@2780 1463 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1464 }
never@2780 1465 assert(count > 0, "storeCM expects at least one precedence edge");
duke@435 1466 }
duke@435 1467 #endif
duke@435 1468
kvn@3049 1469 else if (!n->is_Proj()) {
twisti@1040 1470 // Remember the beginning of the previous instruction, in case
duke@435 1471 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1472 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1473 previous_offset = current_offset;
duke@435 1474 }
duke@435 1475 }
duke@435 1476
duke@435 1477 // Verify that there is sufficient space remaining
duke@435 1478 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
kvn@1637 1479 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
duke@435 1480 turn_off_compiler(this);
duke@435 1481 return;
duke@435 1482 }
duke@435 1483
duke@435 1484 // Save the offset for the listing
duke@435 1485 #ifndef PRODUCT
kvn@3049 1486 if (node_offsets && n->_idx < node_offset_limit)
twisti@2103 1487 node_offsets[n->_idx] = cb->insts_size();
duke@435 1488 #endif
duke@435 1489
duke@435 1490 // "Normal" instruction case
kvn@3049 1491 DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
duke@435 1492 n->emit(*cb, _regalloc);
twisti@2103 1493 current_offset = cb->insts_size();
kvn@3049 1494
kvn@3049 1495 #ifdef ASSERT
kvn@3055 1496 if (n->size(_regalloc) < (current_offset-instr_offset)) {
kvn@3049 1497 n->dump();
kvn@3055 1498 assert(false, "wrong size of mach node");
kvn@3049 1499 }
kvn@3049 1500 #endif
duke@435 1501 non_safepoints.observe_instruction(n, current_offset);
duke@435 1502
duke@435 1503 // mcall is last "call" that can be a safepoint
duke@435 1504 // record it so we can see if a poll will directly follow it
duke@435 1505 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1506 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1507 // in the case that return address is not actually at current_offset.
duke@435 1508 // This is a small price to pay.
duke@435 1509
duke@435 1510 if (is_mcall) {
duke@435 1511 last_call_offset = current_offset;
duke@435 1512 }
duke@435 1513
kvn@3049 1514 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
kvn@3049 1515 // Avoid back to back some instructions.
kvn@3049 1516 last_avoid_back_to_back_offset = current_offset;
kvn@3049 1517 }
kvn@3049 1518
duke@435 1519 // See if this instruction has a delay slot
kvn@3049 1520 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1521 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1522
duke@435 1523 // Back up 1 instruction
twisti@2103 1524 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
duke@435 1525
duke@435 1526 // Save the offset for the listing
duke@435 1527 #ifndef PRODUCT
kvn@3049 1528 if (node_offsets && delay_slot->_idx < node_offset_limit)
twisti@2103 1529 node_offsets[delay_slot->_idx] = cb->insts_size();
duke@435 1530 #endif
duke@435 1531
duke@435 1532 // Support a SafePoint in the delay slot
kvn@3049 1533 if (delay_slot->is_MachSafePoint()) {
duke@435 1534 MachNode *mach = delay_slot->as_Mach();
duke@435 1535 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1536 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
duke@435 1537 // Write the oopmap directly to the code blob??!!
duke@435 1538 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1539 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1540 # endif
duke@435 1541 delay_slot = NULL;
duke@435 1542 continue;
duke@435 1543 }
duke@435 1544
duke@435 1545 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1546 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1547 adjusted_offset);
duke@435 1548 // Generate an OopMap entry
duke@435 1549 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1550 }
duke@435 1551
duke@435 1552 // Insert the delay slot instruction
duke@435 1553 delay_slot->emit(*cb, _regalloc);
duke@435 1554
duke@435 1555 // Don't reuse it
duke@435 1556 delay_slot = NULL;
duke@435 1557 }
duke@435 1558
duke@435 1559 } // End for all instructions in block
kvn@3055 1560 assert((uint)blk_offset <= blk_starts[i], "shouldn't increase distance");
kvn@3055 1561 blk_starts[i] = blk_offset;
kvn@3055 1562
rasbold@853 1563 // If the next block is the top of a loop, pad this block out to align
rasbold@853 1564 // the loop top a little. Helps prevent pipe stalls at loop back branches.
kvn@3055 1565 if (i < nblocks-1) {
duke@435 1566 Block *nb = _cfg->_blocks[i+1];
kvn@3055 1567 int padding = nb->alignment_padding(current_offset);
kvn@3055 1568 if( padding > 0 ) {
kvn@3055 1569 MachNode *nop = new (this) MachNopNode(padding / nop_size);
kvn@3055 1570 b->_nodes.insert( b->_nodes.size(), nop );
kvn@3055 1571 _cfg->_bbs.map( nop->_idx, b );
kvn@3055 1572 nop->emit(*cb, _regalloc);
kvn@3055 1573 current_offset = cb->insts_size();
kvn@3055 1574 }
kvn@3055 1575 #ifdef ASSERT
kvn@3055 1576 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
kvn@3055 1577 block_alignment_padding = (max_loop_pad - padding);
kvn@3055 1578 assert(block_alignment_padding >= 0, "sanity");
kvn@3055 1579 #endif
duke@435 1580 }
kvn@3055 1581 // Verify that the distance for generated before forward
kvn@3055 1582 // short branches is still valid.
kvn@3055 1583 assert(orig_blk_size >= (current_offset - blk_offset), "shouldn't increase block size");
kvn@3055 1584
duke@435 1585 } // End of for all blocks
kvn@3055 1586 blk_starts[nblocks] = current_offset;
duke@435 1587
duke@435 1588 non_safepoints.flush_at_end();
duke@435 1589
duke@435 1590 // Offset too large?
duke@435 1591 if (failing()) return;
duke@435 1592
duke@435 1593 // Define a pseudo-label at the end of the code
kvn@3055 1594 MacroAssembler(cb).bind( blk_labels[nblocks] );
duke@435 1595
duke@435 1596 // Compute the size of the first block
duke@435 1597 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1598
twisti@2103 1599 assert(cb->insts_size() < 500000, "method is unreasonably large");
duke@435 1600
kvn@3055 1601 #ifdef ASSERT
kvn@3055 1602 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3055 1603 if (jmp_target[i] != 0) {
kvn@3055 1604 int br_size = jmp_size[i];
kvn@3055 1605 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3055 1606 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3055 1607 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3055 1608 assert(false, "Displacement too large for short jmp");
kvn@3055 1609 }
kvn@3055 1610 }
kvn@3055 1611 }
kvn@3055 1612 #endif
kvn@3055 1613
duke@435 1614 // ------------------
duke@435 1615
duke@435 1616 #ifndef PRODUCT
duke@435 1617 // Information on the size of the method, without the extraneous code
twisti@2103 1618 Scheduling::increment_method_size(cb->insts_size());
duke@435 1619 #endif
duke@435 1620
duke@435 1621 // ------------------
duke@435 1622 // Fill in exception table entries.
duke@435 1623 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1624
duke@435 1625 // Only java methods have exception handlers and deopt handlers
duke@435 1626 if (_method) {
duke@435 1627 // Emit the exception handler code.
duke@435 1628 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
duke@435 1629 // Emit the deopt handler code.
duke@435 1630 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
twisti@1700 1631
twisti@1700 1632 // Emit the MethodHandle deopt handler code (if required).
twisti@1700 1633 if (has_method_handle_invokes()) {
twisti@1700 1634 // We can use the same code as for the normal deopt handler, we
twisti@1700 1635 // just need a different entry point address.
twisti@1700 1636 _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
twisti@1700 1637 }
duke@435 1638 }
duke@435 1639
duke@435 1640 // One last check for failed CodeBuffer::expand:
kvn@1637 1641 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
duke@435 1642 turn_off_compiler(this);
duke@435 1643 return;
duke@435 1644 }
duke@435 1645
duke@435 1646 #ifndef PRODUCT
duke@435 1647 // Dump the assembly code, including basic-block numbers
duke@435 1648 if (print_assembly()) {
duke@435 1649 ttyLocker ttyl; // keep the following output all in one block
duke@435 1650 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1651 // This output goes directly to the tty, not the compiler log.
duke@435 1652 // To enable tools to match it up with the compilation activity,
duke@435 1653 // be sure to tag this tty output with the compile ID.
duke@435 1654 if (xtty != NULL) {
duke@435 1655 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1656 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1657 "");
duke@435 1658 }
duke@435 1659 if (method() != NULL) {
coleenp@4037 1660 method()->print_metadata();
duke@435 1661 }
duke@435 1662 dump_asm(node_offsets, node_offset_limit);
duke@435 1663 if (xtty != NULL) {
duke@435 1664 xtty->tail("opto_assembly");
duke@435 1665 }
duke@435 1666 }
duke@435 1667 }
duke@435 1668 #endif
duke@435 1669
duke@435 1670 }
duke@435 1671
duke@435 1672 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1673 _inc_table.set_size(cnt);
duke@435 1674
duke@435 1675 uint inct_cnt = 0;
duke@435 1676 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1677 Block *b = _cfg->_blocks[i];
duke@435 1678 Node *n = NULL;
duke@435 1679 int j;
duke@435 1680
duke@435 1681 // Find the branch; ignore trailing NOPs.
duke@435 1682 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 1683 n = b->_nodes[j];
duke@435 1684 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 1685 break;
duke@435 1686 }
duke@435 1687
duke@435 1688 // If we didn't find anything, continue
duke@435 1689 if( j < 0 ) continue;
duke@435 1690
duke@435 1691 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1692 // (skip empty blocks)
duke@435 1693 if( n->is_Catch() ) {
duke@435 1694
duke@435 1695 // Get the offset of the return from the call
duke@435 1696 uint call_return = call_returns[b->_pre_order];
duke@435 1697 #ifdef ASSERT
duke@435 1698 assert( call_return > 0, "no call seen for this basic block" );
kvn@3040 1699 while( b->_nodes[--j]->is_MachProj() ) ;
kvn@3040 1700 assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
duke@435 1701 #endif
duke@435 1702 // last instruction is a CatchNode, find it's CatchProjNodes
duke@435 1703 int nof_succs = b->_num_succs;
duke@435 1704 // allocate space
duke@435 1705 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1706 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1707 // iterate through all successors
duke@435 1708 for (int j = 0; j < nof_succs; j++) {
duke@435 1709 Block* s = b->_succs[j];
duke@435 1710 bool found_p = false;
duke@435 1711 for( uint k = 1; k < s->num_preds(); k++ ) {
duke@435 1712 Node *pk = s->pred(k);
duke@435 1713 if( pk->is_CatchProj() && pk->in(0) == n ) {
duke@435 1714 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1715 found_p = true;
duke@435 1716 // add the corresponding handler bci & pco information
duke@435 1717 if( p->_con != CatchProjNode::fall_through_index ) {
duke@435 1718 // p leads to an exception handler (and is not fall through)
duke@435 1719 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
duke@435 1720 // no duplicates, please
duke@435 1721 if( !handler_bcis.contains(p->handler_bci()) ) {
duke@435 1722 uint block_num = s->non_connector()->_pre_order;
duke@435 1723 handler_bcis.append(p->handler_bci());
duke@435 1724 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1725 }
duke@435 1726 }
duke@435 1727 }
duke@435 1728 }
duke@435 1729 assert(found_p, "no matching predecessor found");
duke@435 1730 // Note: Due to empty block removal, one block may have
duke@435 1731 // several CatchProj inputs, from the same Catch.
duke@435 1732 }
duke@435 1733
duke@435 1734 // Set the offset of the return from the call
duke@435 1735 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1736 continue;
duke@435 1737 }
duke@435 1738
duke@435 1739 // Handle implicit null exception table updates
duke@435 1740 if( n->is_MachNullCheck() ) {
duke@435 1741 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1742 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
duke@435 1743 continue;
duke@435 1744 }
duke@435 1745 } // End of for all blocks fill in exception table entries
duke@435 1746 }
duke@435 1747
duke@435 1748 // Static Variables
duke@435 1749 #ifndef PRODUCT
duke@435 1750 uint Scheduling::_total_nop_size = 0;
duke@435 1751 uint Scheduling::_total_method_size = 0;
duke@435 1752 uint Scheduling::_total_branches = 0;
duke@435 1753 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1754 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1755 #endif
duke@435 1756
duke@435 1757 // Initializer for class Scheduling
duke@435 1758
duke@435 1759 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1760 : _arena(arena),
duke@435 1761 _cfg(compile.cfg()),
duke@435 1762 _bbs(compile.cfg()->_bbs),
duke@435 1763 _regalloc(compile.regalloc()),
duke@435 1764 _reg_node(arena),
duke@435 1765 _bundle_instr_count(0),
duke@435 1766 _bundle_cycle_number(0),
duke@435 1767 _scheduled(arena),
duke@435 1768 _available(arena),
duke@435 1769 _next_node(NULL),
duke@435 1770 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1771 _pinch_free_list(arena)
duke@435 1772 #ifndef PRODUCT
duke@435 1773 , _branches(0)
duke@435 1774 , _unconditional_delays(0)
duke@435 1775 #endif
duke@435 1776 {
duke@435 1777 // Create a MachNopNode
duke@435 1778 _nop = new (&compile) MachNopNode();
duke@435 1779
duke@435 1780 // Now that the nops are in the array, save the count
duke@435 1781 // (but allow entries for the nops)
duke@435 1782 _node_bundling_limit = compile.unique();
duke@435 1783 uint node_max = _regalloc->node_regs_max_index();
duke@435 1784
duke@435 1785 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1786
twisti@1040 1787 // This one is persistent within the Compile class
duke@435 1788 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1789
duke@435 1790 // Allocate space for fixed-size arrays
duke@435 1791 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1792 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1793 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1794
duke@435 1795 // Clear the arrays
duke@435 1796 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1797 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1798 memset(_uses, 0, node_max * sizeof(short));
duke@435 1799 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1800
duke@435 1801 // Clear the bundling information
duke@435 1802 memcpy(_bundle_use_elements,
duke@435 1803 Pipeline_Use::elaborated_elements,
duke@435 1804 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1805
duke@435 1806 // Get the last node
duke@435 1807 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
duke@435 1808
duke@435 1809 _next_node = bb->_nodes[bb->_nodes.size()-1];
duke@435 1810 }
duke@435 1811
duke@435 1812 #ifndef PRODUCT
duke@435 1813 // Scheduling destructor
duke@435 1814 Scheduling::~Scheduling() {
duke@435 1815 _total_branches += _branches;
duke@435 1816 _total_unconditional_delays += _unconditional_delays;
duke@435 1817 }
duke@435 1818 #endif
duke@435 1819
duke@435 1820 // Step ahead "i" cycles
duke@435 1821 void Scheduling::step(uint i) {
duke@435 1822
duke@435 1823 Bundle *bundle = node_bundling(_next_node);
duke@435 1824 bundle->set_starts_bundle();
duke@435 1825
duke@435 1826 // Update the bundle record, but leave the flags information alone
duke@435 1827 if (_bundle_instr_count > 0) {
duke@435 1828 bundle->set_instr_count(_bundle_instr_count);
duke@435 1829 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1830 }
duke@435 1831
duke@435 1832 // Update the state information
duke@435 1833 _bundle_instr_count = 0;
duke@435 1834 _bundle_cycle_number += i;
duke@435 1835 _bundle_use.step(i);
duke@435 1836 }
duke@435 1837
duke@435 1838 void Scheduling::step_and_clear() {
duke@435 1839 Bundle *bundle = node_bundling(_next_node);
duke@435 1840 bundle->set_starts_bundle();
duke@435 1841
duke@435 1842 // Update the bundle record
duke@435 1843 if (_bundle_instr_count > 0) {
duke@435 1844 bundle->set_instr_count(_bundle_instr_count);
duke@435 1845 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1846
duke@435 1847 _bundle_cycle_number += 1;
duke@435 1848 }
duke@435 1849
duke@435 1850 // Clear the bundling information
duke@435 1851 _bundle_instr_count = 0;
duke@435 1852 _bundle_use.reset();
duke@435 1853
duke@435 1854 memcpy(_bundle_use_elements,
duke@435 1855 Pipeline_Use::elaborated_elements,
duke@435 1856 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1857 }
duke@435 1858
duke@435 1859 //------------------------------ScheduleAndBundle------------------------------
duke@435 1860 // Perform instruction scheduling and bundling over the sequence of
duke@435 1861 // instructions in backwards order.
duke@435 1862 void Compile::ScheduleAndBundle() {
duke@435 1863
duke@435 1864 // Don't optimize this if it isn't a method
duke@435 1865 if (!_method)
duke@435 1866 return;
duke@435 1867
duke@435 1868 // Don't optimize this if scheduling is disabled
duke@435 1869 if (!do_scheduling())
duke@435 1870 return;
duke@435 1871
kvn@4103 1872 // Scheduling code works only with pairs (8 bytes) maximum.
kvn@4103 1873 if (max_vector_size() > 8)
kvn@4103 1874 return;
kvn@4007 1875
duke@435 1876 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1877
duke@435 1878 // Create a data structure for all the scheduling information
duke@435 1879 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1880
duke@435 1881 // Walk backwards over each basic block, computing the needed alignment
duke@435 1882 // Walk over all the basic blocks
duke@435 1883 scheduling.DoScheduling();
duke@435 1884 }
duke@435 1885
duke@435 1886 //------------------------------ComputeLocalLatenciesForward-------------------
duke@435 1887 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1888 // because we already have a legal ordering. Walk over the instructions
duke@435 1889 // from first to last, and compute the latency of the instruction based
twisti@1040 1890 // on the latency of the preceding instruction(s).
duke@435 1891 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1892 #ifndef PRODUCT
duke@435 1893 if (_cfg->C->trace_opto_output())
duke@435 1894 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1895 #endif
duke@435 1896
duke@435 1897 // Walk over all the schedulable instructions
duke@435 1898 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1899
duke@435 1900 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1901 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1902 // of the bb
duke@435 1903 uint latency = 1;
duke@435 1904 Node *use = bb->_nodes[j];
duke@435 1905 uint nlen = use->len();
duke@435 1906
duke@435 1907 // Walk over all the inputs
duke@435 1908 for ( uint k=0; k < nlen; k++ ) {
duke@435 1909 Node *def = use->in(k);
duke@435 1910 if (!def)
duke@435 1911 continue;
duke@435 1912
duke@435 1913 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1914 if (latency < l)
duke@435 1915 latency = l;
duke@435 1916 }
duke@435 1917
duke@435 1918 _node_latency[use->_idx] = latency;
duke@435 1919
duke@435 1920 #ifndef PRODUCT
duke@435 1921 if (_cfg->C->trace_opto_output()) {
duke@435 1922 tty->print("# latency %4d: ", latency);
duke@435 1923 use->dump();
duke@435 1924 }
duke@435 1925 #endif
duke@435 1926 }
duke@435 1927
duke@435 1928 #ifndef PRODUCT
duke@435 1929 if (_cfg->C->trace_opto_output())
duke@435 1930 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1931 #endif
duke@435 1932
duke@435 1933 } // end ComputeLocalLatenciesForward
duke@435 1934
duke@435 1935 // See if this node fits into the present instruction bundle
duke@435 1936 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 1937 uint n_idx = n->_idx;
duke@435 1938
duke@435 1939 // If this is the unconditional delay instruction, then it fits
duke@435 1940 if (n == _unconditional_delay_slot) {
duke@435 1941 #ifndef PRODUCT
duke@435 1942 if (_cfg->C->trace_opto_output())
duke@435 1943 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 1944 #endif
duke@435 1945 return (true);
duke@435 1946 }
duke@435 1947
duke@435 1948 // If the node cannot be scheduled this cycle, skip it
duke@435 1949 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 1950 #ifndef PRODUCT
duke@435 1951 if (_cfg->C->trace_opto_output())
duke@435 1952 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 1953 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 1954 #endif
duke@435 1955 return (false);
duke@435 1956 }
duke@435 1957
duke@435 1958 const Pipeline *node_pipeline = n->pipeline();
duke@435 1959
duke@435 1960 uint instruction_count = node_pipeline->instructionCount();
duke@435 1961 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1962 instruction_count = 0;
duke@435 1963 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1964 instruction_count++;
duke@435 1965
duke@435 1966 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1967 #ifndef PRODUCT
duke@435 1968 if (_cfg->C->trace_opto_output())
duke@435 1969 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 1970 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 1971 #endif
duke@435 1972 return (false);
duke@435 1973 }
duke@435 1974
duke@435 1975 // Don't allow non-machine nodes to be handled this way
duke@435 1976 if (!n->is_Mach() && instruction_count == 0)
duke@435 1977 return (false);
duke@435 1978
duke@435 1979 // See if there is any overlap
duke@435 1980 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 1981
duke@435 1982 if (delay > 0) {
duke@435 1983 #ifndef PRODUCT
duke@435 1984 if (_cfg->C->trace_opto_output())
duke@435 1985 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 1986 #endif
duke@435 1987 return false;
duke@435 1988 }
duke@435 1989
duke@435 1990 #ifndef PRODUCT
duke@435 1991 if (_cfg->C->trace_opto_output())
duke@435 1992 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 1993 #endif
duke@435 1994
duke@435 1995 return true;
duke@435 1996 }
duke@435 1997
duke@435 1998 Node * Scheduling::ChooseNodeToBundle() {
duke@435 1999 uint siz = _available.size();
duke@435 2000
duke@435 2001 if (siz == 0) {
duke@435 2002
duke@435 2003 #ifndef PRODUCT
duke@435 2004 if (_cfg->C->trace_opto_output())
duke@435 2005 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 2006 #endif
duke@435 2007 return (NULL);
duke@435 2008 }
duke@435 2009
duke@435 2010 // Fast path, if only 1 instruction in the bundle
duke@435 2011 if (siz == 1) {
duke@435 2012 #ifndef PRODUCT
duke@435 2013 if (_cfg->C->trace_opto_output()) {
duke@435 2014 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 2015 _available[0]->dump();
duke@435 2016 }
duke@435 2017 #endif
duke@435 2018 return (_available[0]);
duke@435 2019 }
duke@435 2020
duke@435 2021 // Don't bother, if the bundle is already full
duke@435 2022 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 2023 for ( uint i = 0; i < siz; i++ ) {
duke@435 2024 Node *n = _available[i];
duke@435 2025
duke@435 2026 // Skip projections, we'll handle them another way
duke@435 2027 if (n->is_Proj())
duke@435 2028 continue;
duke@435 2029
duke@435 2030 // This presupposed that instructions are inserted into the
duke@435 2031 // available list in a legality order; i.e. instructions that
duke@435 2032 // must be inserted first are at the head of the list
duke@435 2033 if (NodeFitsInBundle(n)) {
duke@435 2034 #ifndef PRODUCT
duke@435 2035 if (_cfg->C->trace_opto_output()) {
duke@435 2036 tty->print("# ChooseNodeToBundle: ");
duke@435 2037 n->dump();
duke@435 2038 }
duke@435 2039 #endif
duke@435 2040 return (n);
duke@435 2041 }
duke@435 2042 }
duke@435 2043 }
duke@435 2044
duke@435 2045 // Nothing fits in this bundle, choose the highest priority
duke@435 2046 #ifndef PRODUCT
duke@435 2047 if (_cfg->C->trace_opto_output()) {
duke@435 2048 tty->print("# ChooseNodeToBundle: ");
duke@435 2049 _available[0]->dump();
duke@435 2050 }
duke@435 2051 #endif
duke@435 2052
duke@435 2053 return _available[0];
duke@435 2054 }
duke@435 2055
duke@435 2056 //------------------------------AddNodeToAvailableList-------------------------
duke@435 2057 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 2058 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 2059 #ifndef PRODUCT
duke@435 2060 if (_cfg->C->trace_opto_output()) {
duke@435 2061 tty->print("# AddNodeToAvailableList: ");
duke@435 2062 n->dump();
duke@435 2063 }
duke@435 2064 #endif
duke@435 2065
duke@435 2066 int latency = _current_latency[n->_idx];
duke@435 2067
duke@435 2068 // Insert in latency order (insertion sort)
duke@435 2069 uint i;
duke@435 2070 for ( i=0; i < _available.size(); i++ )
duke@435 2071 if (_current_latency[_available[i]->_idx] > latency)
duke@435 2072 break;
duke@435 2073
duke@435 2074 // Special Check for compares following branches
duke@435 2075 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 2076 int op = n->as_Mach()->ideal_Opcode();
duke@435 2077 Node *last = _scheduled[0];
duke@435 2078 if( last->is_MachIf() && last->in(1) == n &&
duke@435 2079 ( op == Op_CmpI ||
duke@435 2080 op == Op_CmpU ||
duke@435 2081 op == Op_CmpP ||
duke@435 2082 op == Op_CmpF ||
duke@435 2083 op == Op_CmpD ||
duke@435 2084 op == Op_CmpL ) ) {
duke@435 2085
duke@435 2086 // Recalculate position, moving to front of same latency
duke@435 2087 for ( i=0 ; i < _available.size(); i++ )
duke@435 2088 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 2089 break;
duke@435 2090 }
duke@435 2091 }
duke@435 2092
duke@435 2093 // Insert the node in the available list
duke@435 2094 _available.insert(i, n);
duke@435 2095
duke@435 2096 #ifndef PRODUCT
duke@435 2097 if (_cfg->C->trace_opto_output())
duke@435 2098 dump_available();
duke@435 2099 #endif
duke@435 2100 }
duke@435 2101
duke@435 2102 //------------------------------DecrementUseCounts-----------------------------
duke@435 2103 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 2104 for ( uint i=0; i < n->len(); i++ ) {
duke@435 2105 Node *def = n->in(i);
duke@435 2106 if (!def) continue;
duke@435 2107 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 2108 def = def->in(0); // propagate usage thru to the base instruction
duke@435 2109
duke@435 2110 if( _bbs[def->_idx] != bb ) // Ignore if not block-local
duke@435 2111 continue;
duke@435 2112
duke@435 2113 // Compute the latency
duke@435 2114 uint l = _bundle_cycle_number + n->latency(i);
duke@435 2115 if (_current_latency[def->_idx] < l)
duke@435 2116 _current_latency[def->_idx] = l;
duke@435 2117
duke@435 2118 // If this does not have uses then schedule it
duke@435 2119 if ((--_uses[def->_idx]) == 0)
duke@435 2120 AddNodeToAvailableList(def);
duke@435 2121 }
duke@435 2122 }
duke@435 2123
duke@435 2124 //------------------------------AddNodeToBundle--------------------------------
duke@435 2125 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 2126 #ifndef PRODUCT
duke@435 2127 if (_cfg->C->trace_opto_output()) {
duke@435 2128 tty->print("# AddNodeToBundle: ");
duke@435 2129 n->dump();
duke@435 2130 }
duke@435 2131 #endif
duke@435 2132
duke@435 2133 // Remove this from the available list
duke@435 2134 uint i;
duke@435 2135 for (i = 0; i < _available.size(); i++)
duke@435 2136 if (_available[i] == n)
duke@435 2137 break;
duke@435 2138 assert(i < _available.size(), "entry in _available list not found");
duke@435 2139 _available.remove(i);
duke@435 2140
duke@435 2141 // See if this fits in the current bundle
duke@435 2142 const Pipeline *node_pipeline = n->pipeline();
duke@435 2143 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 2144
duke@435 2145 // Check for instructions to be placed in the delay slot. We
duke@435 2146 // do this before we actually schedule the current instruction,
duke@435 2147 // because the delay slot follows the current instruction.
duke@435 2148 if (Pipeline::_branch_has_delay_slot &&
duke@435 2149 node_pipeline->hasBranchDelay() &&
duke@435 2150 !_unconditional_delay_slot) {
duke@435 2151
duke@435 2152 uint siz = _available.size();
duke@435 2153
duke@435 2154 // Conditional branches can support an instruction that
twisti@1040 2155 // is unconditionally executed and not dependent by the
duke@435 2156 // branch, OR a conditionally executed instruction if
duke@435 2157 // the branch is taken. In practice, this means that
duke@435 2158 // the first instruction at the branch target is
duke@435 2159 // copied to the delay slot, and the branch goes to
duke@435 2160 // the instruction after that at the branch target
kvn@3051 2161 if ( n->is_MachBranch() ) {
duke@435 2162
duke@435 2163 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 2164 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 2165
duke@435 2166 #ifndef PRODUCT
duke@435 2167 _branches++;
duke@435 2168 #endif
duke@435 2169
duke@435 2170 // At least 1 instruction is on the available list
twisti@1040 2171 // that is not dependent on the branch
duke@435 2172 for (uint i = 0; i < siz; i++) {
duke@435 2173 Node *d = _available[i];
duke@435 2174 const Pipeline *avail_pipeline = d->pipeline();
duke@435 2175
duke@435 2176 // Don't allow safepoints in the branch shadow, that will
duke@435 2177 // cause a number of difficulties
duke@435 2178 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 2179 !avail_pipeline->hasMultipleBundles() &&
duke@435 2180 !avail_pipeline->hasBranchDelay() &&
duke@435 2181 Pipeline::instr_has_unit_size() &&
duke@435 2182 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 2183 NodeFitsInBundle(d) &&
duke@435 2184 !node_bundling(d)->used_in_delay()) {
duke@435 2185
duke@435 2186 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 2187 // A node that fits in the delay slot was found, so we need to
duke@435 2188 // set the appropriate bits in the bundle pipeline information so
duke@435 2189 // that it correctly indicates resource usage. Later, when we
duke@435 2190 // attempt to add this instruction to the bundle, we will skip
duke@435 2191 // setting the resource usage.
duke@435 2192 _unconditional_delay_slot = d;
duke@435 2193 node_bundling(n)->set_use_unconditional_delay();
duke@435 2194 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 2195 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 2196 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 2197 _next_node = d;
duke@435 2198 ++_bundle_instr_count;
duke@435 2199 #ifndef PRODUCT
duke@435 2200 _unconditional_delays++;
duke@435 2201 #endif
duke@435 2202 break;
duke@435 2203 }
duke@435 2204 }
duke@435 2205 }
duke@435 2206 }
duke@435 2207
duke@435 2208 // No delay slot, add a nop to the usage
duke@435 2209 if (!_unconditional_delay_slot) {
duke@435 2210 // See if adding an instruction in the delay slot will overflow
duke@435 2211 // the bundle.
duke@435 2212 if (!NodeFitsInBundle(_nop)) {
duke@435 2213 #ifndef PRODUCT
duke@435 2214 if (_cfg->C->trace_opto_output())
duke@435 2215 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 2216 #endif
duke@435 2217 step(1);
duke@435 2218 }
duke@435 2219
duke@435 2220 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 2221 _next_node = _nop;
duke@435 2222 ++_bundle_instr_count;
duke@435 2223 }
duke@435 2224
duke@435 2225 // See if the instruction in the delay slot requires a
duke@435 2226 // step of the bundles
duke@435 2227 if (!NodeFitsInBundle(n)) {
duke@435 2228 #ifndef PRODUCT
duke@435 2229 if (_cfg->C->trace_opto_output())
duke@435 2230 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 2231 #endif
duke@435 2232 // Update the state information
duke@435 2233 _bundle_instr_count = 0;
duke@435 2234 _bundle_cycle_number += 1;
duke@435 2235 _bundle_use.step(1);
duke@435 2236 }
duke@435 2237 }
duke@435 2238
duke@435 2239 // Get the number of instructions
duke@435 2240 uint instruction_count = node_pipeline->instructionCount();
duke@435 2241 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2242 instruction_count = 0;
duke@435 2243
duke@435 2244 // Compute the latency information
duke@435 2245 uint delay = 0;
duke@435 2246
duke@435 2247 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 2248 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 2249 if (relative_latency < 0)
duke@435 2250 relative_latency = 0;
duke@435 2251
duke@435 2252 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 2253
duke@435 2254 // Does not fit in this bundle, start a new one
duke@435 2255 if (delay > 0) {
duke@435 2256 step(delay);
duke@435 2257
duke@435 2258 #ifndef PRODUCT
duke@435 2259 if (_cfg->C->trace_opto_output())
duke@435 2260 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 2261 #endif
duke@435 2262 }
duke@435 2263 }
duke@435 2264
duke@435 2265 // If this was placed in the delay slot, ignore it
duke@435 2266 if (n != _unconditional_delay_slot) {
duke@435 2267
duke@435 2268 if (delay == 0) {
duke@435 2269 if (node_pipeline->hasMultipleBundles()) {
duke@435 2270 #ifndef PRODUCT
duke@435 2271 if (_cfg->C->trace_opto_output())
duke@435 2272 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 2273 #endif
duke@435 2274 step(1);
duke@435 2275 }
duke@435 2276
duke@435 2277 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2278 #ifndef PRODUCT
duke@435 2279 if (_cfg->C->trace_opto_output())
duke@435 2280 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 2281 instruction_count + _bundle_instr_count,
duke@435 2282 Pipeline::_max_instrs_per_cycle);
duke@435 2283 #endif
duke@435 2284 step(1);
duke@435 2285 }
duke@435 2286 }
duke@435 2287
duke@435 2288 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2289 _bundle_instr_count++;
duke@435 2290
duke@435 2291 // Set the node's latency
duke@435 2292 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2293
duke@435 2294 // Now merge the functional unit information
duke@435 2295 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 2296 _bundle_use.add_usage(node_usage);
duke@435 2297
duke@435 2298 // Increment the number of instructions in this bundle
duke@435 2299 _bundle_instr_count += instruction_count;
duke@435 2300
duke@435 2301 // Remember this node for later
duke@435 2302 if (n->is_Mach())
duke@435 2303 _next_node = n;
duke@435 2304 }
duke@435 2305
duke@435 2306 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2307 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2308 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2309 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2310 int op = n->Opcode();
duke@435 2311 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2312 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2313 // not an unallocated boxlock
duke@435 2314 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2315
duke@435 2316 // Push any trailing projections
duke@435 2317 if( bb->_nodes[bb->_nodes.size()-1] != n ) {
duke@435 2318 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2319 Node *foi = n->fast_out(i);
duke@435 2320 if( foi->is_Proj() )
duke@435 2321 _scheduled.push(foi);
duke@435 2322 }
duke@435 2323 }
duke@435 2324
duke@435 2325 // Put the instruction in the schedule list
duke@435 2326 _scheduled.push(n);
duke@435 2327 }
duke@435 2328
duke@435 2329 #ifndef PRODUCT
duke@435 2330 if (_cfg->C->trace_opto_output())
duke@435 2331 dump_available();
duke@435 2332 #endif
duke@435 2333
duke@435 2334 // Walk all the definitions, decrementing use counts, and
duke@435 2335 // if a definition has a 0 use count, place it in the available list.
duke@435 2336 DecrementUseCounts(n,bb);
duke@435 2337 }
duke@435 2338
duke@435 2339 //------------------------------ComputeUseCount--------------------------------
duke@435 2340 // This method sets the use count within a basic block. We will ignore all
duke@435 2341 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2342 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2343 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2344 // nodes are at the front of the basic block. This method also initializes
duke@435 2345 // the available list to the set of instructions that have no uses within this
duke@435 2346 // basic block.
duke@435 2347 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2348 #ifndef PRODUCT
duke@435 2349 if (_cfg->C->trace_opto_output())
duke@435 2350 tty->print("# -> ComputeUseCount\n");
duke@435 2351 #endif
duke@435 2352
duke@435 2353 // Clear the list of available and scheduled instructions, just in case
duke@435 2354 _available.clear();
duke@435 2355 _scheduled.clear();
duke@435 2356
duke@435 2357 // No delay slot specified
duke@435 2358 _unconditional_delay_slot = NULL;
duke@435 2359
duke@435 2360 #ifdef ASSERT
duke@435 2361 for( uint i=0; i < bb->_nodes.size(); i++ )
duke@435 2362 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
duke@435 2363 #endif
duke@435 2364
duke@435 2365 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2366 // of the block
duke@435 2367 for( uint k = 0; k < _bb_start; k++ )
duke@435 2368 _uses[bb->_nodes[k]->_idx] = 1;
duke@435 2369 for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
duke@435 2370 _uses[bb->_nodes[l]->_idx] = 1;
duke@435 2371
duke@435 2372 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2373 // branch projections at end or the block header instructions.
duke@435 2374 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
duke@435 2375 Node *n = bb->_nodes[j];
duke@435 2376 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2377
duke@435 2378 // Account for all uses
duke@435 2379 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2380 Node *inp = n->in(k);
duke@435 2381 if (!inp) continue;
duke@435 2382 assert(inp != n, "no cycles allowed" );
duke@435 2383 if( _bbs[inp->_idx] == bb ) { // Block-local use?
duke@435 2384 if( inp->is_Proj() ) // Skip through Proj's
duke@435 2385 inp = inp->in(0);
duke@435 2386 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 // If this instruction has a 0 use count, then it is available
duke@435 2391 if (!_uses[n->_idx]) {
duke@435 2392 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2393 AddNodeToAvailableList(n);
duke@435 2394 }
duke@435 2395
duke@435 2396 #ifndef PRODUCT
duke@435 2397 if (_cfg->C->trace_opto_output()) {
duke@435 2398 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2399 n->dump();
duke@435 2400 }
duke@435 2401 #endif
duke@435 2402 }
duke@435 2403
duke@435 2404 #ifndef PRODUCT
duke@435 2405 if (_cfg->C->trace_opto_output())
duke@435 2406 tty->print("# <- ComputeUseCount\n");
duke@435 2407 #endif
duke@435 2408 }
duke@435 2409
duke@435 2410 // This routine performs scheduling on each basic block in reverse order,
duke@435 2411 // using instruction latencies and taking into account function unit
duke@435 2412 // availability.
duke@435 2413 void Scheduling::DoScheduling() {
duke@435 2414 #ifndef PRODUCT
duke@435 2415 if (_cfg->C->trace_opto_output())
duke@435 2416 tty->print("# -> DoScheduling\n");
duke@435 2417 #endif
duke@435 2418
duke@435 2419 Block *succ_bb = NULL;
duke@435 2420 Block *bb;
duke@435 2421
duke@435 2422 // Walk over all the basic blocks in reverse order
duke@435 2423 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
duke@435 2424 bb = _cfg->_blocks[i];
duke@435 2425
duke@435 2426 #ifndef PRODUCT
duke@435 2427 if (_cfg->C->trace_opto_output()) {
duke@435 2428 tty->print("# Schedule BB#%03d (initial)\n", i);
duke@435 2429 for (uint j = 0; j < bb->_nodes.size(); j++)
duke@435 2430 bb->_nodes[j]->dump();
duke@435 2431 }
duke@435 2432 #endif
duke@435 2433
duke@435 2434 // On the head node, skip processing
duke@435 2435 if( bb == _cfg->_broot )
duke@435 2436 continue;
duke@435 2437
duke@435 2438 // Skip empty, connector blocks
duke@435 2439 if (bb->is_connector())
duke@435 2440 continue;
duke@435 2441
duke@435 2442 // If the following block is not the sole successor of
duke@435 2443 // this one, then reset the pipeline information
duke@435 2444 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2445 #ifndef PRODUCT
duke@435 2446 if (_cfg->C->trace_opto_output()) {
duke@435 2447 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2448 _next_node->_idx, _bundle_instr_count);
duke@435 2449 }
duke@435 2450 #endif
duke@435 2451 step_and_clear();
duke@435 2452 }
duke@435 2453
duke@435 2454 // Leave untouched the starting instruction, any Phis, a CreateEx node
duke@435 2455 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
duke@435 2456 _bb_end = bb->_nodes.size()-1;
duke@435 2457 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
duke@435 2458 Node *n = bb->_nodes[_bb_start];
duke@435 2459 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2460 // Also, MachIdealNodes do not get scheduled
duke@435 2461 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2462 MachNode *mach = n->as_Mach();
duke@435 2463 int iop = mach->ideal_Opcode();
duke@435 2464 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2465 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2466 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2467 mach->pipeline() == MachNode::pipeline_class() &&
duke@435 2468 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
duke@435 2469 continue;
duke@435 2470 break; // Funny loop structure to be sure...
duke@435 2471 }
duke@435 2472 // Compute last "interesting" instruction in block - last instruction we
duke@435 2473 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2474 // normally schedule conditional branches (despite them being forced last
duke@435 2475 // in the block), because they have delay slots we can fill. Calls all
duke@435 2476 // have their delay slots filled in the template expansions, so we don't
duke@435 2477 // bother scheduling them.
duke@435 2478 Node *last = bb->_nodes[_bb_end];
kvn@3049 2479 // Ignore trailing NOPs.
kvn@3049 2480 while (_bb_end > 0 && last->is_Mach() &&
kvn@3049 2481 last->as_Mach()->ideal_Opcode() == Op_Con) {
kvn@3049 2482 last = bb->_nodes[--_bb_end];
kvn@3049 2483 }
kvn@3049 2484 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
duke@435 2485 if( last->is_Catch() ||
kvn@1142 2486 // Exclude unreachable path case when Halt node is in a separate block.
kvn@1142 2487 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2488 // There must be a prior call. Skip it.
kvn@3040 2489 while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
kvn@3040 2490 assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
duke@435 2491 }
duke@435 2492 } else if( last->is_MachNullCheck() ) {
duke@435 2493 // Backup so the last null-checked memory instruction is
duke@435 2494 // outside the schedulable range. Skip over the nullcheck,
duke@435 2495 // projection, and the memory nodes.
duke@435 2496 Node *mem = last->in(1);
duke@435 2497 do {
duke@435 2498 _bb_end--;
duke@435 2499 } while (mem != bb->_nodes[_bb_end]);
duke@435 2500 } else {
duke@435 2501 // Set _bb_end to point after last schedulable inst.
duke@435 2502 _bb_end++;
duke@435 2503 }
duke@435 2504
duke@435 2505 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2506
duke@435 2507 // Compute the register antidependencies for the basic block
duke@435 2508 ComputeRegisterAntidependencies(bb);
duke@435 2509 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2510
duke@435 2511 // Compute intra-bb latencies for the nodes
duke@435 2512 ComputeLocalLatenciesForward(bb);
duke@435 2513
duke@435 2514 // Compute the usage within the block, and set the list of all nodes
duke@435 2515 // in the block that have no uses within the block.
duke@435 2516 ComputeUseCount(bb);
duke@435 2517
duke@435 2518 // Schedule the remaining instructions in the block
duke@435 2519 while ( _available.size() > 0 ) {
duke@435 2520 Node *n = ChooseNodeToBundle();
duke@435 2521 AddNodeToBundle(n,bb);
duke@435 2522 }
duke@435 2523
duke@435 2524 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2525 #ifdef ASSERT
duke@435 2526 for( uint l = _bb_start; l < _bb_end; l++ ) {
duke@435 2527 Node *n = bb->_nodes[l];
duke@435 2528 uint m;
duke@435 2529 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2530 if( _scheduled[m] == n )
duke@435 2531 break;
duke@435 2532 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2533 }
duke@435 2534 #endif
duke@435 2535
duke@435 2536 // Now copy the instructions (in reverse order) back to the block
duke@435 2537 for ( uint k = _bb_start; k < _bb_end; k++ )
duke@435 2538 bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
duke@435 2539
duke@435 2540 #ifndef PRODUCT
duke@435 2541 if (_cfg->C->trace_opto_output()) {
duke@435 2542 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2543 uint current = 0;
duke@435 2544 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 2545 Node *n = bb->_nodes[j];
duke@435 2546 if( valid_bundle_info(n) ) {
duke@435 2547 Bundle *bundle = node_bundling(n);
duke@435 2548 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2549 tty->print("*** Bundle: ");
duke@435 2550 bundle->dump();
duke@435 2551 }
duke@435 2552 n->dump();
duke@435 2553 }
duke@435 2554 }
duke@435 2555 }
duke@435 2556 #endif
duke@435 2557 #ifdef ASSERT
duke@435 2558 verify_good_schedule(bb,"after block local scheduling");
duke@435 2559 #endif
duke@435 2560 }
duke@435 2561
duke@435 2562 #ifndef PRODUCT
duke@435 2563 if (_cfg->C->trace_opto_output())
duke@435 2564 tty->print("# <- DoScheduling\n");
duke@435 2565 #endif
duke@435 2566
duke@435 2567 // Record final node-bundling array location
duke@435 2568 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2569
duke@435 2570 } // end DoScheduling
duke@435 2571
duke@435 2572 //------------------------------verify_good_schedule---------------------------
duke@435 2573 // Verify that no live-range used in the block is killed in the block by a
duke@435 2574 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2575
duke@435 2576 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2577 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2578 for( uint i=0; i<from->len(); i++ )
duke@435 2579 if( from->in(i) == to )
duke@435 2580 return true;
duke@435 2581 return false;
duke@435 2582 }
duke@435 2583
duke@435 2584 #ifdef ASSERT
duke@435 2585 //------------------------------verify_do_def----------------------------------
duke@435 2586 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2587 // Check for bad kills
duke@435 2588 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2589 Node *prior_use = _reg_node[def];
duke@435 2590 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2591 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2592 n->dump();
duke@435 2593 tty->print_cr("...");
duke@435 2594 prior_use->dump();
jcoomes@1845 2595 assert(edge_from_to(prior_use,n),msg);
duke@435 2596 }
duke@435 2597 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2598 }
duke@435 2599 }
duke@435 2600
duke@435 2601 //------------------------------verify_good_schedule---------------------------
duke@435 2602 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2603
duke@435 2604 // Zap to something reasonable for the verify code
duke@435 2605 _reg_node.clear();
duke@435 2606
duke@435 2607 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2608 // kill a live value (other than the one it's supposed to). Add each
duke@435 2609 // USE to the live set.
duke@435 2610 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
duke@435 2611 Node *n = b->_nodes[i];
duke@435 2612 int n_op = n->Opcode();
duke@435 2613 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2614 // Fat-proj kills a slew of registers
duke@435 2615 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2616 while( rm.is_NotEmpty() ) {
duke@435 2617 OptoReg::Name kill = rm.find_first_elem();
duke@435 2618 rm.Remove(kill);
duke@435 2619 verify_do_def( n, kill, msg );
duke@435 2620 }
duke@435 2621 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2622 // Get DEF'd registers the normal way
duke@435 2623 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2624 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2625 }
duke@435 2626
duke@435 2627 // Now make all USEs live
duke@435 2628 for( uint i=1; i<n->req(); i++ ) {
duke@435 2629 Node *def = n->in(i);
duke@435 2630 assert(def != 0, "input edge required");
duke@435 2631 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2632 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2633 if( OptoReg::is_valid(reg_lo) ) {
jcoomes@1845 2634 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
duke@435 2635 _reg_node.map(reg_lo,n);
duke@435 2636 }
duke@435 2637 if( OptoReg::is_valid(reg_hi) ) {
jcoomes@1845 2638 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
duke@435 2639 _reg_node.map(reg_hi,n);
duke@435 2640 }
duke@435 2641 }
duke@435 2642
duke@435 2643 }
duke@435 2644
duke@435 2645 // Zap to something reasonable for the Antidependence code
duke@435 2646 _reg_node.clear();
duke@435 2647 }
duke@435 2648 #endif
duke@435 2649
duke@435 2650 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2651 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2652 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2653 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2654 from = from->in(0);
duke@435 2655 }
duke@435 2656 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2657 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2658 from->add_prec(to);
duke@435 2659 }
duke@435 2660
duke@435 2661 //------------------------------anti_do_def------------------------------------
duke@435 2662 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2663 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2664 return;
duke@435 2665
duke@435 2666 Node *pinch = _reg_node[def_reg]; // Get pinch point
duke@435 2667 if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
duke@435 2668 is_def ) { // Check for a true def (not a kill)
duke@435 2669 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2670 return;
duke@435 2671 }
duke@435 2672
duke@435 2673 Node *kill = def; // Rename 'def' to more descriptive 'kill'
duke@435 2674 debug_only( def = (Node*)0xdeadbeef; )
duke@435 2675
duke@435 2676 // After some number of kills there _may_ be a later def
duke@435 2677 Node *later_def = NULL;
duke@435 2678
duke@435 2679 // Finding a kill requires a real pinch-point.
duke@435 2680 // Check for not already having a pinch-point.
duke@435 2681 // Pinch points are Op_Node's.
duke@435 2682 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2683 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2684 if ( _pinch_free_list.size() > 0) {
duke@435 2685 pinch = _pinch_free_list.pop();
duke@435 2686 } else {
duke@435 2687 pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
duke@435 2688 }
duke@435 2689 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2690 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2691 return;
duke@435 2692 }
duke@435 2693 _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
duke@435 2694 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2695 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2696 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2697 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2698 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2699 later_def = NULL; // and no later def
duke@435 2700 }
duke@435 2701 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2702 } else { // Else have valid pinch point
duke@435 2703 if( pinch->in(0) ) // If there is a later-def
duke@435 2704 later_def = pinch->in(0); // Get it
duke@435 2705 }
duke@435 2706
duke@435 2707 // Add output-dependence edge from later def to kill
duke@435 2708 if( later_def ) // If there is some original def
duke@435 2709 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2710
duke@435 2711 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2712 if( pinch->Opcode() == Op_Node ) {
duke@435 2713 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2714 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2715 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2716 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2717 // Yes, found a use/kill pinch-point
duke@435 2718 pinch->set_req(0,NULL); //
duke@435 2719 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2720 pinch = kill;
duke@435 2721 _reg_node.map(def_reg,pinch);
duke@435 2722 return;
duke@435 2723 }
duke@435 2724 }
duke@435 2725 }
duke@435 2726
duke@435 2727 // Add edge from kill to pinch-point
duke@435 2728 add_prec_edge_from_to(kill,pinch);
duke@435 2729 }
duke@435 2730
duke@435 2731 //------------------------------anti_do_use------------------------------------
duke@435 2732 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2733 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2734 return;
duke@435 2735 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2736 // Check for no later def_reg/kill in block
duke@435 2737 if( pinch && _bbs[pinch->_idx] == b &&
duke@435 2738 // Use has to be block-local as well
duke@435 2739 _bbs[use->_idx] == b ) {
duke@435 2740 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2741 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2742 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2743 // Insert the pinch-point in the block just after the last use
duke@435 2744 b->_nodes.insert(b->find_node(use)+1,pinch);
duke@435 2745 _bb_end++; // Increase size scheduled region in block
duke@435 2746 }
duke@435 2747
duke@435 2748 add_prec_edge_from_to(pinch,use);
duke@435 2749 }
duke@435 2750 }
duke@435 2751
duke@435 2752 //------------------------------ComputeRegisterAntidependences-----------------
duke@435 2753 // We insert antidependences between the reads and following write of
duke@435 2754 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2755 // number of added references should be fairly small, especially as we
duke@435 2756 // are only adding references within the current basic block.
duke@435 2757 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2758
duke@435 2759 #ifdef ASSERT
duke@435 2760 verify_good_schedule(b,"before block local scheduling");
duke@435 2761 #endif
duke@435 2762
duke@435 2763 // A valid schedule, for each register independently, is an endless cycle
duke@435 2764 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2765 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2766 // def. The uses are allowed to float relative to each other, as are the
duke@435 2767 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2768 // antidependencies between all uses of a single def and all kills that
duke@435 2769 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2770 // & kills are already serialized with true or antidependencies. To keep
duke@435 2771 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2772 // one use or more than one kill/def.
duke@435 2773
duke@435 2774 // We add dependencies in one bottom-up pass.
duke@435 2775
duke@435 2776 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2777
duke@435 2778 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2779 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2780 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2781 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2782 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2783 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2784 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2785
duke@435 2786 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2787 // put an edge from the pinch point to the USE.
duke@435 2788
duke@435 2789 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2790 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2791 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2792 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2793 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2794 // it being in the current block.
duke@435 2795 bool fat_proj_seen = false;
duke@435 2796 uint last_safept = _bb_end-1;
duke@435 2797 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
duke@435 2798 Node* last_safept_node = end_node;
duke@435 2799 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
duke@435 2800 Node *n = b->_nodes[i];
duke@435 2801 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
kvn@3040 2802 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2803 // Fat-proj kills a slew of registers
duke@435 2804 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2805 // hence the is_def flag.
duke@435 2806 fat_proj_seen = true;
duke@435 2807 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2808 while( rm.is_NotEmpty() ) {
duke@435 2809 OptoReg::Name kill = rm.find_first_elem();
duke@435 2810 rm.Remove(kill);
duke@435 2811 anti_do_def( b, n, kill, is_def );
duke@435 2812 }
duke@435 2813 } else {
duke@435 2814 // Get DEF'd registers the normal way
duke@435 2815 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2816 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2817 }
duke@435 2818
kvn@3049 2819 // Kill projections on a branch should appear to occur on the
kvn@3049 2820 // branch, not afterwards, so grab the masks from the projections
kvn@3049 2821 // and process them.
kvn@3051 2822 if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
kvn@3049 2823 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3049 2824 Node* use = n->fast_out(i);
kvn@3049 2825 if (use->is_Proj()) {
kvn@3049 2826 RegMask rm = use->out_RegMask();// Make local copy
kvn@3049 2827 while( rm.is_NotEmpty() ) {
kvn@3049 2828 OptoReg::Name kill = rm.find_first_elem();
kvn@3049 2829 rm.Remove(kill);
kvn@3049 2830 anti_do_def( b, n, kill, false );
kvn@3049 2831 }
kvn@3049 2832 }
kvn@3049 2833 }
kvn@3049 2834 }
kvn@3049 2835
duke@435 2836 // Check each register used by this instruction for a following DEF/KILL
duke@435 2837 // that must occur afterward and requires an anti-dependence edge.
duke@435 2838 for( uint j=0; j<n->req(); j++ ) {
duke@435 2839 Node *def = n->in(j);
duke@435 2840 if( def ) {
kvn@3040 2841 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2842 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2843 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2844 }
duke@435 2845 }
duke@435 2846 // Do not allow defs of new derived values to float above GC
duke@435 2847 // points unless the base is definitely available at the GC point.
duke@435 2848
duke@435 2849 Node *m = b->_nodes[i];
duke@435 2850
duke@435 2851 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2852 if( last_safept_node != end_node &&
duke@435 2853 m != last_safept_node) {
duke@435 2854 for (uint k = 1; k < m->req(); k++) {
duke@435 2855 const Type *t = m->in(k)->bottom_type();
duke@435 2856 if( t->isa_oop_ptr() &&
duke@435 2857 t->is_ptr()->offset() != 0 ) {
duke@435 2858 last_safept_node->add_prec( m );
duke@435 2859 break;
duke@435 2860 }
duke@435 2861 }
duke@435 2862 }
duke@435 2863
duke@435 2864 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2865 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
duke@435 2866 if( b->_nodes[last_safept] != last_safept_node ) {
duke@435 2867 last_safept = b->find_node(last_safept_node);
duke@435 2868 }
duke@435 2869 for( uint j=last_safept; j > i; j-- ) {
duke@435 2870 Node *mach = b->_nodes[j];
duke@435 2871 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2872 mach->add_prec( n );
duke@435 2873 }
duke@435 2874 last_safept = i;
duke@435 2875 last_safept_node = m;
duke@435 2876 }
duke@435 2877 }
duke@435 2878
duke@435 2879 if (fat_proj_seen) {
duke@435 2880 // Garbage collect pinch nodes that were not consumed.
duke@435 2881 // They are usually created by a fat kill MachProj for a call.
duke@435 2882 garbage_collect_pinch_nodes();
duke@435 2883 }
duke@435 2884 }
duke@435 2885
duke@435 2886 //------------------------------garbage_collect_pinch_nodes-------------------------------
duke@435 2887
duke@435 2888 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2889 //
duke@435 2890 // The block scheduler's insertion of anti-dependence
duke@435 2891 // edges creates many pinch nodes when the block contains
duke@435 2892 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2893 // combinatorial explosion of edges. If a set of kills for a
duke@435 2894 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2895 // than adding an edge in the graph between each pair of kill
duke@435 2896 // and use (or def), a pinch is inserted between them:
duke@435 2897 //
duke@435 2898 // use1 use2 use3
duke@435 2899 // \ | /
duke@435 2900 // \ | /
duke@435 2901 // pinch
duke@435 2902 // / | \
duke@435 2903 // / | \
duke@435 2904 // kill1 kill2 kill3
duke@435 2905 //
duke@435 2906 // One pinch node is created per register killed when
duke@435 2907 // the second call is encountered during a backwards pass
duke@435 2908 // over the block. Most of these pinch nodes are never
duke@435 2909 // wired into the graph because the register is never
duke@435 2910 // used or def'ed in the block.
duke@435 2911 //
duke@435 2912 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2913 #ifndef PRODUCT
duke@435 2914 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2915 #endif
duke@435 2916 int trace_cnt = 0;
duke@435 2917 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2918 Node* pinch = _reg_node[k];
duke@435 2919 if (pinch != NULL && pinch->Opcode() == Op_Node &&
duke@435 2920 // no predecence input edges
duke@435 2921 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2922 cleanup_pinch(pinch);
duke@435 2923 _pinch_free_list.push(pinch);
duke@435 2924 _reg_node.map(k, NULL);
duke@435 2925 #ifndef PRODUCT
duke@435 2926 if (_cfg->C->trace_opto_output()) {
duke@435 2927 trace_cnt++;
duke@435 2928 if (trace_cnt > 40) {
duke@435 2929 tty->print("\n");
duke@435 2930 trace_cnt = 0;
duke@435 2931 }
duke@435 2932 tty->print(" %d", pinch->_idx);
duke@435 2933 }
duke@435 2934 #endif
duke@435 2935 }
duke@435 2936 }
duke@435 2937 #ifndef PRODUCT
duke@435 2938 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2939 #endif
duke@435 2940 }
duke@435 2941
duke@435 2942 // Clean up a pinch node for reuse.
duke@435 2943 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 2944 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 2945
duke@435 2946 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 2947 Node* use = pinch->last_out(i);
duke@435 2948 uint uses_found = 0;
duke@435 2949 for (uint j = use->req(); j < use->len(); j++) {
duke@435 2950 if (use->in(j) == pinch) {
duke@435 2951 use->rm_prec(j);
duke@435 2952 uses_found++;
duke@435 2953 }
duke@435 2954 }
duke@435 2955 assert(uses_found > 0, "must be a precedence edge");
duke@435 2956 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 2957 }
duke@435 2958 // May have a later_def entry
duke@435 2959 pinch->set_req(0, NULL);
duke@435 2960 }
duke@435 2961
duke@435 2962 //------------------------------print_statistics-------------------------------
duke@435 2963 #ifndef PRODUCT
duke@435 2964
duke@435 2965 void Scheduling::dump_available() const {
duke@435 2966 tty->print("#Availist ");
duke@435 2967 for (uint i = 0; i < _available.size(); i++)
duke@435 2968 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 2969 tty->cr();
duke@435 2970 }
duke@435 2971
duke@435 2972 // Print Scheduling Statistics
duke@435 2973 void Scheduling::print_statistics() {
duke@435 2974 // Print the size added by nops for bundling
duke@435 2975 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 2976 _total_nop_size, _total_method_size);
duke@435 2977 if (_total_method_size > 0)
duke@435 2978 tty->print(", for %.2f%%",
duke@435 2979 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 2980 tty->print("\n");
duke@435 2981
duke@435 2982 // Print the number of branch shadows filled
duke@435 2983 if (Pipeline::_branch_has_delay_slot) {
duke@435 2984 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 2985 _total_branches, _total_unconditional_delays);
duke@435 2986 if (_total_branches > 0)
duke@435 2987 tty->print(", for %.2f%%",
duke@435 2988 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 2989 tty->print("\n");
duke@435 2990 }
duke@435 2991
duke@435 2992 uint total_instructions = 0, total_bundles = 0;
duke@435 2993
duke@435 2994 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 2995 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 2996 total_instructions += bundle_count * i;
duke@435 2997 total_bundles += bundle_count;
duke@435 2998 }
duke@435 2999
duke@435 3000 if (total_bundles > 0)
duke@435 3001 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 3002 ((double)total_instructions) / ((double)total_bundles));
duke@435 3003 }
duke@435 3004 #endif

mercurial