src/share/vm/opto/output.cpp

Fri, 22 Feb 2008 17:55:13 -0800

author
kvn
date
Fri, 22 Feb 2008 17:55:13 -0800
changeset 463
67914967a4b5
parent 435
a61af66fc99e
child 498
eac007780a58
permissions
-rw-r--r--

6650373: Assert in methodOopDesc::make_adapters()
Summary: AdapterHandlerLibrary::get_create_adapter_index() returns incorrect value (-2) when CodeCache is full.
Reviewed-by: sgoldman

duke@435 1 /*
duke@435 2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_output.cpp.incl"
duke@435 27
duke@435 28 extern uint size_java_to_interp();
duke@435 29 extern uint reloc_java_to_interp();
duke@435 30 extern uint size_exception_handler();
duke@435 31 extern uint size_deopt_handler();
duke@435 32
duke@435 33 #ifndef PRODUCT
duke@435 34 #define DEBUG_ARG(x) , x
duke@435 35 #else
duke@435 36 #define DEBUG_ARG(x)
duke@435 37 #endif
duke@435 38
duke@435 39 extern int emit_exception_handler(CodeBuffer &cbuf);
duke@435 40 extern int emit_deopt_handler(CodeBuffer &cbuf);
duke@435 41
duke@435 42 //------------------------------Output-----------------------------------------
duke@435 43 // Convert Nodes to instruction bits and pass off to the VM
duke@435 44 void Compile::Output() {
duke@435 45 // RootNode goes
duke@435 46 assert( _cfg->_broot->_nodes.size() == 0, "" );
duke@435 47
duke@435 48 // Initialize the space for the BufferBlob used to find and verify
duke@435 49 // instruction size in MachNode::emit_size()
duke@435 50 init_scratch_buffer_blob();
duke@435 51
duke@435 52 // Make sure I can find the Start Node
duke@435 53 Block_Array& bbs = _cfg->_bbs;
duke@435 54 Block *entry = _cfg->_blocks[1];
duke@435 55 Block *broot = _cfg->_broot;
duke@435 56
duke@435 57 const StartNode *start = entry->_nodes[0]->as_Start();
duke@435 58
duke@435 59 // Replace StartNode with prolog
duke@435 60 MachPrologNode *prolog = new (this) MachPrologNode();
duke@435 61 entry->_nodes.map( 0, prolog );
duke@435 62 bbs.map( prolog->_idx, entry );
duke@435 63 bbs.map( start->_idx, NULL ); // start is no longer in any block
duke@435 64
duke@435 65 // Virtual methods need an unverified entry point
duke@435 66
duke@435 67 if( is_osr_compilation() ) {
duke@435 68 if( PoisonOSREntry ) {
duke@435 69 // TODO: Should use a ShouldNotReachHereNode...
duke@435 70 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 71 }
duke@435 72 } else {
duke@435 73 if( _method && !_method->flags().is_static() ) {
duke@435 74 // Insert unvalidated entry point
duke@435 75 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 76 }
duke@435 77
duke@435 78 }
duke@435 79
duke@435 80
duke@435 81 // Break before main entry point
duke@435 82 if( (_method && _method->break_at_execute())
duke@435 83 #ifndef PRODUCT
duke@435 84 ||(OptoBreakpoint && is_method_compilation())
duke@435 85 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 86 ||(OptoBreakpointC2R && !_method)
duke@435 87 #endif
duke@435 88 ) {
duke@435 89 // checking for _method means that OptoBreakpoint does not apply to
duke@435 90 // runtime stubs or frame converters
duke@435 91 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 92 }
duke@435 93
duke@435 94 // Insert epilogs before every return
duke@435 95 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 96 Block *b = _cfg->_blocks[i];
duke@435 97 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
duke@435 98 Node *m = b->end();
duke@435 99 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
duke@435 100 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
duke@435 101 b->add_inst( epilog );
duke@435 102 bbs.map(epilog->_idx, b);
duke@435 103 //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
duke@435 104 }
duke@435 105 }
duke@435 106 }
duke@435 107
duke@435 108 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 109 if ( ZapDeadCompiledLocals ) Insert_zap_nodes();
duke@435 110 # endif
duke@435 111
duke@435 112 ScheduleAndBundle();
duke@435 113
duke@435 114 #ifndef PRODUCT
duke@435 115 if (trace_opto_output()) {
duke@435 116 tty->print("\n---- After ScheduleAndBundle ----\n");
duke@435 117 for (uint i = 0; i < _cfg->_num_blocks; i++) {
duke@435 118 tty->print("\nBB#%03d:\n", i);
duke@435 119 Block *bb = _cfg->_blocks[i];
duke@435 120 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 121 Node *n = bb->_nodes[j];
duke@435 122 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 123 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 124 n->dump();
duke@435 125 }
duke@435 126 }
duke@435 127 }
duke@435 128 #endif
duke@435 129
duke@435 130 if (failing()) return;
duke@435 131
duke@435 132 BuildOopMaps();
duke@435 133
duke@435 134 if (failing()) return;
duke@435 135
duke@435 136 Fill_buffer();
duke@435 137 }
duke@435 138
duke@435 139 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 140 // Determine if we need to generate a stack overflow check.
duke@435 141 // Do it if the method is not a stub function and
duke@435 142 // has java calls or has frame size > vm_page_size/8.
duke@435 143 return (stub_function() == NULL &&
duke@435 144 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
duke@435 145 }
duke@435 146
duke@435 147 bool Compile::need_register_stack_bang() const {
duke@435 148 // Determine if we need to generate a register stack overflow check.
duke@435 149 // This is only used on architectures which have split register
duke@435 150 // and memory stacks (ie. IA64).
duke@435 151 // Bang if the method is not a stub function and has java calls
duke@435 152 return (stub_function() == NULL && has_java_calls());
duke@435 153 }
duke@435 154
duke@435 155 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 156
duke@435 157
duke@435 158 // In order to catch compiler oop-map bugs, we have implemented
duke@435 159 // a debugging mode called ZapDeadCompilerLocals.
duke@435 160 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 161 // "zap_dead_locals", right before each place in compiled code
duke@435 162 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 163 // The runtime routine checks that locations mapped as oops are really
duke@435 164 // oops, that locations mapped as values do not look like oops,
duke@435 165 // and that locations mapped as dead are not used later
duke@435 166 // (by zapping them to an invalid address).
duke@435 167
duke@435 168 int Compile::_CompiledZap_count = 0;
duke@435 169
duke@435 170 void Compile::Insert_zap_nodes() {
duke@435 171 bool skip = false;
duke@435 172
duke@435 173
duke@435 174 // Dink with static counts because code code without the extra
duke@435 175 // runtime calls is MUCH faster for debugging purposes
duke@435 176
duke@435 177 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 178 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 179 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 180 warning("starting zap compilation after skipping");
duke@435 181
duke@435 182 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 183 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 184 else if ( CompileZapLast == CompiledZap_count() )
duke@435 185 warning("about to compile last zap");
duke@435 186
duke@435 187 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 188
duke@435 189 if ( skip ) return;
duke@435 190
duke@435 191
duke@435 192 if ( _method == NULL )
duke@435 193 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 194
duke@435 195 // Insert call to zap runtime stub before every node with an oop map
duke@435 196 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 197 Block *b = _cfg->_blocks[i];
duke@435 198 for ( uint j = 0; j < b->_nodes.size(); ++j ) {
duke@435 199 Node *n = b->_nodes[j];
duke@435 200
duke@435 201 // Determining if we should insert a zap-a-lot node in output.
duke@435 202 // We do that for all nodes that has oopmap info, except for calls
duke@435 203 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 204 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 205 // the inlined-allocation and the call to new_Java, etc.
duke@435 206 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 207 // during the call to Zap, which also wants to grab the microlock.
duke@435 208 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 209 if ( insert ) { // it is MachSafePoint
duke@435 210 if ( !n->is_MachCall() ) {
duke@435 211 insert = false;
duke@435 212 } else if ( n->is_MachCall() ) {
duke@435 213 MachCallNode* call = n->as_MachCall();
duke@435 214 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 215 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 216 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 217 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 218 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 219 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 220 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 221 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 222 ) {
duke@435 223 insert = false;
duke@435 224 }
duke@435 225 }
duke@435 226 if (insert) {
duke@435 227 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
duke@435 228 b->_nodes.insert( j, zap );
duke@435 229 _cfg->_bbs.map( zap->_idx, b );
duke@435 230 ++j;
duke@435 231 }
duke@435 232 }
duke@435 233 }
duke@435 234 }
duke@435 235 }
duke@435 236
duke@435 237
duke@435 238 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 239 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 240 CallStaticJavaNode* ideal_node =
duke@435 241 new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
duke@435 242 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
duke@435 243 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 244 // We need to copy the OopMap from the site we're zapping at.
duke@435 245 // We have to make a copy, because the zap site might not be
duke@435 246 // a call site, and zap_dead is a call site.
duke@435 247 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 248
duke@435 249 // Add the cloned OopMap to the zap node
duke@435 250 ideal_node->set_oop_map(clone);
duke@435 251 return _matcher->match_sfpt(ideal_node);
duke@435 252 }
duke@435 253
duke@435 254 //------------------------------is_node_getting_a_safepoint--------------------
duke@435 255 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 256 // This code duplicates the logic prior to the call of add_safepoint
duke@435 257 // below in this file.
duke@435 258 if( n->is_MachSafePoint() ) return true;
duke@435 259 return false;
duke@435 260 }
duke@435 261
duke@435 262 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 263
duke@435 264 //------------------------------compute_loop_first_inst_sizes------------------
duke@435 265 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
duke@435 266 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 267 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 268 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 269 // By default, the size is set to 999999 by Block's constructor so that
duke@435 270 // a loop will be aligned if the size is not reset here.
duke@435 271 //
duke@435 272 // Note: Mach instructions could contain several HW instructions
duke@435 273 // so the size is estimated only.
duke@435 274 //
duke@435 275 void Compile::compute_loop_first_inst_sizes() {
duke@435 276 // The next condition is used to gate the loop alignment optimization.
duke@435 277 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 278 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 279 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 280 // equal to 11 bytes which is the largest address NOP instruction.
duke@435 281 if( MaxLoopPad < OptoLoopAlignment-1 ) {
duke@435 282 uint last_block = _cfg->_num_blocks-1;
duke@435 283 for( uint i=1; i <= last_block; i++ ) {
duke@435 284 Block *b = _cfg->_blocks[i];
duke@435 285 // Check the first loop's block which requires an alignment.
duke@435 286 if( b->head()->is_Loop() &&
duke@435 287 b->code_alignment() > (uint)relocInfo::addr_unit() ) {
duke@435 288 uint sum_size = 0;
duke@435 289 uint inst_cnt = NumberOfLoopInstrToAlign;
duke@435 290 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
duke@435 291 _regalloc);
duke@435 292 // Check the next fallthrough block if first loop's block does not have
duke@435 293 // enough instructions.
duke@435 294 if( inst_cnt > 0 && i < last_block ) {
duke@435 295 // First, check if the first loop's block contains whole loop.
duke@435 296 // LoopNode::LoopBackControl == 2.
duke@435 297 Block *bx = _cfg->_bbs[b->pred(2)->_idx];
duke@435 298 // Skip connector blocks (with limit in case of irreducible loops).
duke@435 299 int search_limit = 16;
duke@435 300 while( bx->is_connector() && search_limit-- > 0) {
duke@435 301 bx = _cfg->_bbs[bx->pred(1)->_idx];
duke@435 302 }
duke@435 303 if( bx != b ) { // loop body is in several blocks.
duke@435 304 Block *nb = NULL;
duke@435 305 while( inst_cnt > 0 && i < last_block && nb != bx &&
duke@435 306 !_cfg->_blocks[i+1]->head()->is_Loop() ) {
duke@435 307 i++;
duke@435 308 nb = _cfg->_blocks[i];
duke@435 309 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt,
duke@435 310 _regalloc);
duke@435 311 } // while( inst_cnt > 0 && i < last_block )
duke@435 312 } // if( bx != b )
duke@435 313 } // if( inst_cnt > 0 && i < last_block )
duke@435 314 b->set_first_inst_size(sum_size);
duke@435 315 } // f( b->head()->is_Loop() )
duke@435 316 } // for( i <= last_block )
duke@435 317 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 318 }
duke@435 319
duke@435 320 //----------------------Shorten_branches---------------------------------------
duke@435 321 // The architecture description provides short branch variants for some long
duke@435 322 // branch instructions. Replace eligible long branches with short branches.
duke@435 323 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
duke@435 324
duke@435 325 // fill in the nop array for bundling computations
duke@435 326 MachNode *_nop_list[Bundle::_nop_count];
duke@435 327 Bundle::initialize_nops(_nop_list, this);
duke@435 328
duke@435 329 // ------------------
duke@435 330 // Compute size of each block, method size, and relocation information size
duke@435 331 uint *jmp_end = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
duke@435 332 uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
duke@435 333 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
duke@435 334 blk_starts[0] = 0;
duke@435 335
duke@435 336 // Initialize the sizes to 0
duke@435 337 code_size = 0; // Size in bytes of generated code
duke@435 338 stub_size = 0; // Size in bytes of all stub entries
duke@435 339 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 340 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 341 reloc_size = 1; // Number of relocation entries
duke@435 342 const_size = 0; // size of fp constants in words
duke@435 343
duke@435 344 // Make three passes. The first computes pessimistic blk_starts,
duke@435 345 // relative jmp_end, reloc_size and const_size information.
duke@435 346 // The second performs short branch substitution using the pessimistic
duke@435 347 // sizing. The third inserts nops where needed.
duke@435 348
duke@435 349 Node *nj; // tmp
duke@435 350
duke@435 351 // Step one, perform a pessimistic sizing pass.
duke@435 352 uint i;
duke@435 353 uint min_offset_from_last_call = 1; // init to a positive value
duke@435 354 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 355 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 356 Block *b = _cfg->_blocks[i];
duke@435 357
duke@435 358 // Sum all instruction sizes to compute block size
duke@435 359 uint last_inst = b->_nodes.size();
duke@435 360 uint blk_size = 0;
duke@435 361 for( uint j = 0; j<last_inst; j++ ) {
duke@435 362 nj = b->_nodes[j];
duke@435 363 uint inst_size = nj->size(_regalloc);
duke@435 364 blk_size += inst_size;
duke@435 365 // Handle machine instruction nodes
duke@435 366 if( nj->is_Mach() ) {
duke@435 367 MachNode *mach = nj->as_Mach();
duke@435 368 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 369 reloc_size += mach->reloc();
duke@435 370 const_size += mach->const_size();
duke@435 371 if( mach->is_MachCall() ) {
duke@435 372 MachCallNode *mcall = mach->as_MachCall();
duke@435 373 // This destination address is NOT PC-relative
duke@435 374
duke@435 375 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 376
duke@435 377 if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
duke@435 378 stub_size += size_java_to_interp();
duke@435 379 reloc_size += reloc_java_to_interp();
duke@435 380 }
duke@435 381 } else if (mach->is_MachSafePoint()) {
duke@435 382 // If call/safepoint are adjacent, account for possible
duke@435 383 // nop to disambiguate the two safepoints.
duke@435 384 if (min_offset_from_last_call == 0) {
duke@435 385 blk_size += nop_size;
duke@435 386 }
duke@435 387 }
duke@435 388 }
duke@435 389 min_offset_from_last_call += inst_size;
duke@435 390 // Remember end of call offset
duke@435 391 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 392 min_offset_from_last_call = 0;
duke@435 393 }
duke@435 394 }
duke@435 395
duke@435 396 // During short branch replacement, we store the relative (to blk_starts)
duke@435 397 // end of jump in jmp_end, rather than the absolute end of jump. This
duke@435 398 // is so that we do not need to recompute sizes of all nodes when we compute
duke@435 399 // correct blk_starts in our next sizing pass.
duke@435 400 jmp_end[i] = blk_size;
duke@435 401 DEBUG_ONLY( jmp_target[i] = 0; )
duke@435 402
duke@435 403 // When the next block starts a loop, we may insert pad NOP
duke@435 404 // instructions. Since we cannot know our future alignment,
duke@435 405 // assume the worst.
duke@435 406 if( i<_cfg->_num_blocks-1 ) {
duke@435 407 Block *nb = _cfg->_blocks[i+1];
duke@435 408 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
duke@435 409 if( max_loop_pad > 0 ) {
duke@435 410 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
duke@435 411 blk_size += max_loop_pad;
duke@435 412 }
duke@435 413 }
duke@435 414
duke@435 415 // Save block size; update total method size
duke@435 416 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 417 }
duke@435 418
duke@435 419 // Step two, replace eligible long jumps.
duke@435 420
duke@435 421 // Note: this will only get the long branches within short branch
duke@435 422 // range. Another pass might detect more branches that became
duke@435 423 // candidates because the shortening in the first pass exposed
duke@435 424 // more opportunities. Unfortunately, this would require
duke@435 425 // recomputing the starting and ending positions for the blocks
duke@435 426 for( i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 427 Block *b = _cfg->_blocks[i];
duke@435 428
duke@435 429 int j;
duke@435 430 // Find the branch; ignore trailing NOPs.
duke@435 431 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 432 nj = b->_nodes[j];
duke@435 433 if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 434 break;
duke@435 435 }
duke@435 436
duke@435 437 if (j >= 0) {
duke@435 438 if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
duke@435 439 MachNode *mach = nj->as_Mach();
duke@435 440 // This requires the TRUE branch target be in succs[0]
duke@435 441 uint bnum = b->non_connector_successor(0)->_pre_order;
duke@435 442 uintptr_t target = blk_starts[bnum];
duke@435 443 if( mach->is_pc_relative() ) {
duke@435 444 int offset = target-(blk_starts[i] + jmp_end[i]);
duke@435 445 if (_matcher->is_short_branch_offset(offset)) {
duke@435 446 // We've got a winner. Replace this branch.
duke@435 447 MachNode *replacement = mach->short_branch_version(this);
duke@435 448 b->_nodes.map(j, replacement);
duke@435 449
duke@435 450 // Update the jmp_end size to save time in our
duke@435 451 // next pass.
duke@435 452 jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
duke@435 453 DEBUG_ONLY( jmp_target[i] = bnum; );
duke@435 454 }
duke@435 455 } else {
duke@435 456 #ifndef PRODUCT
duke@435 457 mach->dump(3);
duke@435 458 #endif
duke@435 459 Unimplemented();
duke@435 460 }
duke@435 461 }
duke@435 462 }
duke@435 463 }
duke@435 464
duke@435 465 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
duke@435 466 // of a loop. It is used to determine the padding for loop alignment.
duke@435 467 compute_loop_first_inst_sizes();
duke@435 468
duke@435 469 // Step 3, compute the offsets of all the labels
duke@435 470 uint last_call_adr = max_uint;
duke@435 471 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 472 // copy the offset of the beginning to the corresponding label
duke@435 473 assert(labels[i].is_unused(), "cannot patch at this point");
duke@435 474 labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
duke@435 475
duke@435 476 // insert padding for any instructions that need it
duke@435 477 Block *b = _cfg->_blocks[i];
duke@435 478 uint last_inst = b->_nodes.size();
duke@435 479 uint adr = blk_starts[i];
duke@435 480 for( uint j = 0; j<last_inst; j++ ) {
duke@435 481 nj = b->_nodes[j];
duke@435 482 if( nj->is_Mach() ) {
duke@435 483 int padding = nj->as_Mach()->compute_padding(adr);
duke@435 484 // If call/safepoint are adjacent insert a nop (5010568)
duke@435 485 if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
duke@435 486 adr == last_call_adr ) {
duke@435 487 padding = nop_size;
duke@435 488 }
duke@435 489 if(padding > 0) {
duke@435 490 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 491 int nops_cnt = padding / nop_size;
duke@435 492 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 493 b->_nodes.insert(j++, nop);
duke@435 494 _cfg->_bbs.map( nop->_idx, b );
duke@435 495 adr += padding;
duke@435 496 last_inst++;
duke@435 497 }
duke@435 498 }
duke@435 499 adr += nj->size(_regalloc);
duke@435 500
duke@435 501 // Remember end of call offset
duke@435 502 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 503 last_call_adr = adr;
duke@435 504 }
duke@435 505 }
duke@435 506
duke@435 507 if ( i != _cfg->_num_blocks-1) {
duke@435 508 // Get the size of the block
duke@435 509 uint blk_size = adr - blk_starts[i];
duke@435 510
duke@435 511 // When the next block starts a loop, we may insert pad NOP
duke@435 512 // instructions.
duke@435 513 Block *nb = _cfg->_blocks[i+1];
duke@435 514 int current_offset = blk_starts[i] + blk_size;
duke@435 515 current_offset += nb->alignment_padding(current_offset);
duke@435 516 // Save block size; update total method size
duke@435 517 blk_starts[i+1] = current_offset;
duke@435 518 }
duke@435 519 }
duke@435 520
duke@435 521 #ifdef ASSERT
duke@435 522 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 523 if( jmp_target[i] != 0 ) {
duke@435 524 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
duke@435 525 if (!_matcher->is_short_branch_offset(offset)) {
duke@435 526 tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
duke@435 527 }
duke@435 528 assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
duke@435 529 }
duke@435 530 }
duke@435 531 #endif
duke@435 532
duke@435 533 // ------------------
duke@435 534 // Compute size for code buffer
duke@435 535 code_size = blk_starts[i-1] + jmp_end[i-1];
duke@435 536
duke@435 537 // Relocation records
duke@435 538 reloc_size += 1; // Relo entry for exception handler
duke@435 539
duke@435 540 // Adjust reloc_size to number of record of relocation info
duke@435 541 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
duke@435 542 // a relocation index.
duke@435 543 // The CodeBuffer will expand the locs array if this estimate is too low.
duke@435 544 reloc_size *= 10 / sizeof(relocInfo);
duke@435 545
duke@435 546 // Adjust const_size to number of bytes
duke@435 547 const_size *= 2*jintSize; // both float and double take two words per entry
duke@435 548
duke@435 549 }
duke@435 550
duke@435 551 //------------------------------FillLocArray-----------------------------------
duke@435 552 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 553 // Java local or expression stack to constant, register or stack-slot. For
duke@435 554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 555 // entry has been taken care of and caller should skip it).
duke@435 556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 557 // This should never have accepted Bad before
duke@435 558 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 559 return (OptoReg::is_reg(regnum))
duke@435 560 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 561 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 562 }
duke@435 563
duke@435 564 void Compile::FillLocArray( int idx, Node *local, GrowableArray<ScopeValue*> *array ) {
duke@435 565 assert( local, "use _top instead of null" );
duke@435 566 if (array->length() != idx) {
duke@435 567 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 568 // Old functionality:
duke@435 569 // return
duke@435 570 // New functionality:
duke@435 571 // Assert if the local is not top. In product mode let the new node
duke@435 572 // override the old entry.
duke@435 573 assert(local == top(), "LocArray collision");
duke@435 574 if (local == top()) {
duke@435 575 return;
duke@435 576 }
duke@435 577 array->pop();
duke@435 578 }
duke@435 579 const Type *t = local->bottom_type();
duke@435 580
duke@435 581 // Grab the register number for the local
duke@435 582 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 583 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 584 // Record the double as two float registers.
duke@435 585 // The register mask for such a value always specifies two adjacent
duke@435 586 // float registers, with the lower register number even.
duke@435 587 // Normally, the allocation of high and low words to these registers
duke@435 588 // is irrelevant, because nearly all operations on register pairs
duke@435 589 // (e.g., StoreD) treat them as a single unit.
duke@435 590 // Here, we assume in addition that the words in these two registers
duke@435 591 // stored "naturally" (by operations like StoreD and double stores
duke@435 592 // within the interpreter) such that the lower-numbered register
duke@435 593 // is written to the lower memory address. This may seem like
duke@435 594 // a machine dependency, but it is not--it is a requirement on
duke@435 595 // the author of the <arch>.ad file to ensure that, for every
duke@435 596 // even/odd double-register pair to which a double may be allocated,
duke@435 597 // the word in the even single-register is stored to the first
duke@435 598 // memory word. (Note that register numbers are completely
duke@435 599 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 600 #ifdef _LP64
duke@435 601 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 602 array->append(new ConstantIntValue(0));
duke@435 603 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 604 } else if ( t->base() == Type::Long ) {
duke@435 605 array->append(new ConstantIntValue(0));
duke@435 606 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 607 } else if ( t->base() == Type::RawPtr ) {
duke@435 608 // jsr/ret return address which must be restored into a the full
duke@435 609 // width 64-bit stack slot.
duke@435 610 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 611 }
duke@435 612 #else //_LP64
duke@435 613 #ifdef SPARC
duke@435 614 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 615 // For SPARC we have to swap high and low words for
duke@435 616 // long values stored in a single-register (g0-g7).
duke@435 617 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 618 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 619 } else
duke@435 620 #endif //SPARC
duke@435 621 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 622 // Repack the double/long as two jints.
duke@435 623 // The convention the interpreter uses is that the second local
duke@435 624 // holds the first raw word of the native double representation.
duke@435 625 // This is actually reasonable, since locals and stack arrays
duke@435 626 // grow downwards in all implementations.
duke@435 627 // (If, on some machine, the interpreter's Java locals or stack
duke@435 628 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 629 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 630 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 631 }
duke@435 632 #endif //_LP64
duke@435 633 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 634 OptoReg::is_reg(regnum) ) {
duke@435 635 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
duke@435 636 ? Location::float_in_dbl : Location::normal ));
duke@435 637 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 638 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 639 ? Location::int_in_long : Location::normal ));
duke@435 640 } else {
duke@435 641 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 642 }
duke@435 643 return;
duke@435 644 }
duke@435 645
duke@435 646 // No register. It must be constant data.
duke@435 647 switch (t->base()) {
duke@435 648 case Type::Half: // Second half of a double
duke@435 649 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 650 break;
duke@435 651 case Type::AnyPtr:
duke@435 652 array->append(new ConstantOopWriteValue(NULL));
duke@435 653 break;
duke@435 654 case Type::AryPtr:
duke@435 655 case Type::InstPtr:
duke@435 656 case Type::KlassPtr: // fall through
duke@435 657 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
duke@435 658 break;
duke@435 659 case Type::Int:
duke@435 660 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 661 break;
duke@435 662 case Type::RawPtr:
duke@435 663 // A return address (T_ADDRESS).
duke@435 664 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 665 #ifdef _LP64
duke@435 666 // Must be restored to the full-width 64-bit stack slot.
duke@435 667 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 668 #else
duke@435 669 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 670 #endif
duke@435 671 break;
duke@435 672 case Type::FloatCon: {
duke@435 673 float f = t->is_float_constant()->getf();
duke@435 674 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 675 break;
duke@435 676 }
duke@435 677 case Type::DoubleCon: {
duke@435 678 jdouble d = t->is_double_constant()->getd();
duke@435 679 #ifdef _LP64
duke@435 680 array->append(new ConstantIntValue(0));
duke@435 681 array->append(new ConstantDoubleValue(d));
duke@435 682 #else
duke@435 683 // Repack the double as two jints.
duke@435 684 // The convention the interpreter uses is that the second local
duke@435 685 // holds the first raw word of the native double representation.
duke@435 686 // This is actually reasonable, since locals and stack arrays
duke@435 687 // grow downwards in all implementations.
duke@435 688 // (If, on some machine, the interpreter's Java locals or stack
duke@435 689 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 690 jint *dp = (jint*)&d;
duke@435 691 array->append(new ConstantIntValue(dp[1]));
duke@435 692 array->append(new ConstantIntValue(dp[0]));
duke@435 693 #endif
duke@435 694 break;
duke@435 695 }
duke@435 696 case Type::Long: {
duke@435 697 jlong d = t->is_long()->get_con();
duke@435 698 #ifdef _LP64
duke@435 699 array->append(new ConstantIntValue(0));
duke@435 700 array->append(new ConstantLongValue(d));
duke@435 701 #else
duke@435 702 // Repack the long as two jints.
duke@435 703 // The convention the interpreter uses is that the second local
duke@435 704 // holds the first raw word of the native double representation.
duke@435 705 // This is actually reasonable, since locals and stack arrays
duke@435 706 // grow downwards in all implementations.
duke@435 707 // (If, on some machine, the interpreter's Java locals or stack
duke@435 708 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 709 jint *dp = (jint*)&d;
duke@435 710 array->append(new ConstantIntValue(dp[1]));
duke@435 711 array->append(new ConstantIntValue(dp[0]));
duke@435 712 #endif
duke@435 713 break;
duke@435 714 }
duke@435 715 case Type::Top: // Add an illegal value here
duke@435 716 array->append(new LocationValue(Location()));
duke@435 717 break;
duke@435 718 default:
duke@435 719 ShouldNotReachHere();
duke@435 720 break;
duke@435 721 }
duke@435 722 }
duke@435 723
duke@435 724 // Determine if this node starts a bundle
duke@435 725 bool Compile::starts_bundle(const Node *n) const {
duke@435 726 return (_node_bundling_limit > n->_idx &&
duke@435 727 _node_bundling_base[n->_idx].starts_bundle());
duke@435 728 }
duke@435 729
duke@435 730 //--------------------------Process_OopMap_Node--------------------------------
duke@435 731 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 732
duke@435 733 // Handle special safepoint nodes for synchronization
duke@435 734 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 735 MachCallNode *mcall;
duke@435 736
duke@435 737 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 738 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 739 #endif
duke@435 740
duke@435 741 int safepoint_pc_offset = current_offset;
duke@435 742
duke@435 743 // Add the safepoint in the DebugInfoRecorder
duke@435 744 if( !mach->is_MachCall() ) {
duke@435 745 mcall = NULL;
duke@435 746 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 747 } else {
duke@435 748 mcall = mach->as_MachCall();
duke@435 749 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 750 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 751 }
duke@435 752
duke@435 753 // Loop over the JVMState list to add scope information
duke@435 754 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 755 JVMState* youngest_jvms = sfn->jvms();
duke@435 756 int max_depth = youngest_jvms->depth();
duke@435 757
duke@435 758 // Visit scopes from oldest to youngest.
duke@435 759 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 760 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 761 int idx;
duke@435 762 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 763 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 764 // to support GC; these do not support deoptimization.
duke@435 765 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 766 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 767 int num_mon = jvms->nof_monitors();
duke@435 768 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 769 "JVMS local count must match that of the method");
duke@435 770
duke@435 771 // Add Local and Expression Stack Information
duke@435 772
duke@435 773 // Insert locals into the locarray
duke@435 774 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 775 for( idx = 0; idx < num_locs; idx++ ) {
duke@435 776 FillLocArray( idx, sfn->local(jvms, idx), locarray );
duke@435 777 }
duke@435 778
duke@435 779 // Insert expression stack entries into the exparray
duke@435 780 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 781 for( idx = 0; idx < num_exps; idx++ ) {
duke@435 782 FillLocArray( idx, sfn->stack(jvms, idx), exparray );
duke@435 783 }
duke@435 784
duke@435 785 // Add in mappings of the monitors
duke@435 786 assert( !method ||
duke@435 787 !method->is_synchronized() ||
duke@435 788 method->is_native() ||
duke@435 789 num_mon > 0 ||
duke@435 790 !GenerateSynchronizationCode,
duke@435 791 "monitors must always exist for synchronized methods");
duke@435 792
duke@435 793 // Build the growable array of ScopeValues for exp stack
duke@435 794 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 795
duke@435 796 // Loop over monitors and insert into array
duke@435 797 for(idx = 0; idx < num_mon; idx++) {
duke@435 798 // Grab the node that defines this monitor
duke@435 799 Node* box_node;
duke@435 800 Node* obj_node;
duke@435 801 box_node = sfn->monitor_box(jvms, idx);
duke@435 802 obj_node = sfn->monitor_obj(jvms, idx);
duke@435 803
duke@435 804 // Create ScopeValue for object
duke@435 805 ScopeValue *scval = NULL;
duke@435 806 if( !obj_node->is_Con() ) {
duke@435 807 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
duke@435 808 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
duke@435 809 } else {
duke@435 810 scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
duke@435 811 }
duke@435 812
duke@435 813 OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
duke@435 814 monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
duke@435 815 }
duke@435 816
duke@435 817 // Build first class objects to pass to scope
duke@435 818 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 819 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 820 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 821
duke@435 822 // Make method available for all Safepoints
duke@435 823 ciMethod* scope_method = method ? method : _method;
duke@435 824 // Describe the scope here
duke@435 825 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
duke@435 826 debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
duke@435 827 } // End jvms loop
duke@435 828
duke@435 829 // Mark the end of the scope set.
duke@435 830 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834
duke@435 835 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 836 class NonSafepointEmitter {
duke@435 837 Compile* C;
duke@435 838 JVMState* _pending_jvms;
duke@435 839 int _pending_offset;
duke@435 840
duke@435 841 void emit_non_safepoint();
duke@435 842
duke@435 843 public:
duke@435 844 NonSafepointEmitter(Compile* compile) {
duke@435 845 this->C = compile;
duke@435 846 _pending_jvms = NULL;
duke@435 847 _pending_offset = 0;
duke@435 848 }
duke@435 849
duke@435 850 void observe_instruction(Node* n, int pc_offset) {
duke@435 851 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 852
duke@435 853 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 854 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 855 if (_pending_jvms != NULL &&
duke@435 856 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 857 // Repeated JVMS? Stretch it up here.
duke@435 858 _pending_offset = pc_offset;
duke@435 859 } else {
duke@435 860 if (_pending_jvms != NULL &&
duke@435 861 _pending_offset < pc_offset) {
duke@435 862 emit_non_safepoint();
duke@435 863 }
duke@435 864 _pending_jvms = NULL;
duke@435 865 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 866 // This is the only way _pending_jvms can become non-NULL:
duke@435 867 _pending_jvms = nn->jvms();
duke@435 868 _pending_offset = pc_offset;
duke@435 869 }
duke@435 870 }
duke@435 871 }
duke@435 872
duke@435 873 // Stay out of the way of real safepoints:
duke@435 874 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 875 if (_pending_jvms != NULL &&
duke@435 876 !_pending_jvms->same_calls_as(jvms) &&
duke@435 877 _pending_offset < pc_offset) {
duke@435 878 emit_non_safepoint();
duke@435 879 }
duke@435 880 _pending_jvms = NULL;
duke@435 881 }
duke@435 882
duke@435 883 void flush_at_end() {
duke@435 884 if (_pending_jvms != NULL) {
duke@435 885 emit_non_safepoint();
duke@435 886 }
duke@435 887 _pending_jvms = NULL;
duke@435 888 }
duke@435 889 };
duke@435 890
duke@435 891 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 892 JVMState* youngest_jvms = _pending_jvms;
duke@435 893 int pc_offset = _pending_offset;
duke@435 894
duke@435 895 // Clear it now:
duke@435 896 _pending_jvms = NULL;
duke@435 897
duke@435 898 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 899 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 900
duke@435 901 debug_info->add_non_safepoint(pc_offset);
duke@435 902 int max_depth = youngest_jvms->depth();
duke@435 903
duke@435 904 // Visit scopes from oldest to youngest.
duke@435 905 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 906 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 907 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 908 debug_info->describe_scope(pc_offset, method, jvms->bci());
duke@435 909 }
duke@435 910
duke@435 911 // Mark the end of the scope set.
duke@435 912 debug_info->end_non_safepoint(pc_offset);
duke@435 913 }
duke@435 914
duke@435 915
duke@435 916
duke@435 917 // helper for Fill_buffer bailout logic
duke@435 918 static void turn_off_compiler(Compile* C) {
duke@435 919 if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
duke@435 920 // Do not turn off compilation if a single giant method has
duke@435 921 // blown the code cache size.
duke@435 922 C->record_failure("excessive request to CodeCache");
duke@435 923 } else {
kvn@463 924 // Let CompilerBroker disable further compilations.
duke@435 925 C->record_failure("CodeCache is full");
duke@435 926 }
duke@435 927 }
duke@435 928
duke@435 929
duke@435 930 //------------------------------Fill_buffer------------------------------------
duke@435 931 void Compile::Fill_buffer() {
duke@435 932
duke@435 933 // Set the initially allocated size
duke@435 934 int code_req = initial_code_capacity;
duke@435 935 int locs_req = initial_locs_capacity;
duke@435 936 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 937 int const_req = initial_const_capacity;
duke@435 938 bool labels_not_set = true;
duke@435 939
duke@435 940 int pad_req = NativeCall::instruction_size;
duke@435 941 // The extra spacing after the code is necessary on some platforms.
duke@435 942 // Sometimes we need to patch in a jump after the last instruction,
duke@435 943 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 944
duke@435 945 uint i;
duke@435 946 // Compute the byte offset where we can store the deopt pc.
duke@435 947 if (fixed_slots() != 0) {
duke@435 948 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 949 }
duke@435 950
duke@435 951 // Compute prolog code size
duke@435 952 _method_size = 0;
duke@435 953 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
duke@435 954 #ifdef IA64
duke@435 955 if (save_argument_registers()) {
duke@435 956 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 957 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 958 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 959 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 960 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 961 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 962 //
duke@435 963 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 964 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 965 // instead of stfd/stfs/ldfd/ldfs.
duke@435 966 _frame_slots += 8*(16/BytesPerInt);
duke@435 967 }
duke@435 968 #endif
duke@435 969 assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
duke@435 970
duke@435 971 // Create an array of unused labels, one for each basic block
duke@435 972 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
duke@435 973
duke@435 974 for( i=0; i <= _cfg->_num_blocks; i++ ) {
duke@435 975 blk_labels[i].init();
duke@435 976 }
duke@435 977
duke@435 978 // If this machine supports different size branch offsets, then pre-compute
duke@435 979 // the length of the blocks
duke@435 980 if( _matcher->is_short_branch_offset(0) ) {
duke@435 981 Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
duke@435 982 labels_not_set = false;
duke@435 983 }
duke@435 984
duke@435 985 // nmethod and CodeBuffer count stubs & constants as part of method's code.
duke@435 986 int exception_handler_req = size_exception_handler();
duke@435 987 int deopt_handler_req = size_deopt_handler();
duke@435 988 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 989 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 990 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 991 code_req += MAX_inst_size; // ensure per-instruction margin
duke@435 992 if (StressCodeBuffers)
duke@435 993 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
duke@435 994 int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
duke@435 995 CodeBuffer* cb = code_buffer();
duke@435 996 cb->initialize(total_req, locs_req);
duke@435 997
duke@435 998 // Have we run out of code space?
duke@435 999 if (cb->blob() == NULL) {
duke@435 1000 turn_off_compiler(this);
duke@435 1001 return;
duke@435 1002 }
duke@435 1003 // Configure the code buffer.
duke@435 1004 cb->initialize_consts_size(const_req);
duke@435 1005 cb->initialize_stubs_size(stub_req);
duke@435 1006 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1007
duke@435 1008 // fill in the nop array for bundling computations
duke@435 1009 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1010 Bundle::initialize_nops(_nop_list, this);
duke@435 1011
duke@435 1012 // Create oopmap set.
duke@435 1013 _oop_map_set = new OopMapSet();
duke@435 1014
duke@435 1015 // !!!!! This preserves old handling of oopmaps for now
duke@435 1016 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1017
duke@435 1018 // Count and start of implicit null check instructions
duke@435 1019 uint inct_cnt = 0;
duke@435 1020 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1021
duke@435 1022 // Count and start of calls
duke@435 1023 uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1024
duke@435 1025 uint return_offset = 0;
duke@435 1026 MachNode *nop = new (this) MachNopNode();
duke@435 1027
duke@435 1028 int previous_offset = 0;
duke@435 1029 int current_offset = 0;
duke@435 1030 int last_call_offset = -1;
duke@435 1031
duke@435 1032 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1033 #ifndef PRODUCT
duke@435 1034 int *node_offsets = NULL;
duke@435 1035 uint node_offset_limit = unique();
duke@435 1036
duke@435 1037
duke@435 1038 if ( print_assembly() )
duke@435 1039 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1040 #endif
duke@435 1041
duke@435 1042 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1043
duke@435 1044 // ------------------
duke@435 1045 // Now fill in the code buffer
duke@435 1046 Node *delay_slot = NULL;
duke@435 1047
duke@435 1048 for( i=0; i < _cfg->_num_blocks; i++ ) {
duke@435 1049 Block *b = _cfg->_blocks[i];
duke@435 1050
duke@435 1051 Node *head = b->head();
duke@435 1052
duke@435 1053 // If this block needs to start aligned (i.e, can be reached other
duke@435 1054 // than by falling-thru from the previous block), then force the
duke@435 1055 // start of a new bundle.
duke@435 1056 if( Pipeline::requires_bundling() && starts_bundle(head) )
duke@435 1057 cb->flush_bundle(true);
duke@435 1058
duke@435 1059 // Define the label at the beginning of the basic block
duke@435 1060 if( labels_not_set )
duke@435 1061 MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
duke@435 1062
duke@435 1063 else
duke@435 1064 assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
duke@435 1065 "label position does not match code offset" );
duke@435 1066
duke@435 1067 uint last_inst = b->_nodes.size();
duke@435 1068
duke@435 1069 // Emit block normally, except for last instruction.
duke@435 1070 // Emit means "dump code bits into code buffer".
duke@435 1071 for( uint j = 0; j<last_inst; j++ ) {
duke@435 1072
duke@435 1073 // Get the node
duke@435 1074 Node* n = b->_nodes[j];
duke@435 1075
duke@435 1076 // See if delay slots are supported
duke@435 1077 if (valid_bundle_info(n) &&
duke@435 1078 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1079 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1080 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1081
duke@435 1082 delay_slot = n;
duke@435 1083 continue;
duke@435 1084 }
duke@435 1085
duke@435 1086 // If this starts a new instruction group, then flush the current one
duke@435 1087 // (but allow split bundles)
duke@435 1088 if( Pipeline::requires_bundling() && starts_bundle(n) )
duke@435 1089 cb->flush_bundle(false);
duke@435 1090
duke@435 1091 // The following logic is duplicated in the code ifdeffed for
duke@435 1092 // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file. It
duke@435 1093 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1094
duke@435 1095 // Special handling for SafePoint/Call Nodes
duke@435 1096 bool is_mcall = false;
duke@435 1097 if( n->is_Mach() ) {
duke@435 1098 MachNode *mach = n->as_Mach();
duke@435 1099 is_mcall = n->is_MachCall();
duke@435 1100 bool is_sfn = n->is_MachSafePoint();
duke@435 1101
duke@435 1102 // If this requires all previous instructions be flushed, then do so
duke@435 1103 if( is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1104 cb->flush_bundle(true);
duke@435 1105 current_offset = cb->code_size();
duke@435 1106 }
duke@435 1107
duke@435 1108 // align the instruction if necessary
duke@435 1109 int nop_size = nop->size(_regalloc);
duke@435 1110 int padding = mach->compute_padding(current_offset);
duke@435 1111 // Make sure safepoint node for polling is distinct from a call's
duke@435 1112 // return by adding a nop if needed.
duke@435 1113 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
duke@435 1114 padding = nop_size;
duke@435 1115 }
duke@435 1116 assert( labels_not_set || padding == 0, "instruction should already be aligned")
duke@435 1117
duke@435 1118 if(padding > 0) {
duke@435 1119 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 1120 int nops_cnt = padding / nop_size;
duke@435 1121 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 1122 b->_nodes.insert(j++, nop);
duke@435 1123 last_inst++;
duke@435 1124 _cfg->_bbs.map( nop->_idx, b );
duke@435 1125 nop->emit(*cb, _regalloc);
duke@435 1126 cb->flush_bundle(true);
duke@435 1127 current_offset = cb->code_size();
duke@435 1128 }
duke@435 1129
duke@435 1130 // Remember the start of the last call in a basic block
duke@435 1131 if (is_mcall) {
duke@435 1132 MachCallNode *mcall = mach->as_MachCall();
duke@435 1133
duke@435 1134 // This destination address is NOT PC-relative
duke@435 1135 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1136
duke@435 1137 // Save the return address
duke@435 1138 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1139
duke@435 1140 if (!mcall->is_safepoint_node()) {
duke@435 1141 is_mcall = false;
duke@435 1142 is_sfn = false;
duke@435 1143 }
duke@435 1144 }
duke@435 1145
duke@435 1146 // sfn will be valid whenever mcall is valid now because of inheritance
duke@435 1147 if( is_sfn || is_mcall ) {
duke@435 1148
duke@435 1149 // Handle special safepoint nodes for synchronization
duke@435 1150 if( !is_mcall ) {
duke@435 1151 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1152 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1153 if( sfn->jvms()->method() == NULL) {
duke@435 1154 // Write the oopmap directly to the code blob??!!
duke@435 1155 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1156 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1157 # endif
duke@435 1158 continue;
duke@435 1159 }
duke@435 1160 } // End synchronization
duke@435 1161
duke@435 1162 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1163 current_offset);
duke@435 1164 Process_OopMap_Node(mach, current_offset);
duke@435 1165 } // End if safepoint
duke@435 1166
duke@435 1167 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1168 else if( mach->is_MachNullCheck() ) {
duke@435 1169 inct_starts[inct_cnt++] = previous_offset;
duke@435 1170 }
duke@435 1171
duke@435 1172 // If this is a branch, then fill in the label with the target BB's label
duke@435 1173 else if ( mach->is_Branch() ) {
duke@435 1174
duke@435 1175 if ( mach->ideal_Opcode() == Op_Jump ) {
duke@435 1176 for (uint h = 0; h < b->_num_succs; h++ ) {
duke@435 1177 Block* succs_block = b->_succs[h];
duke@435 1178 for (uint j = 1; j < succs_block->num_preds(); j++) {
duke@435 1179 Node* jpn = succs_block->pred(j);
duke@435 1180 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
duke@435 1181 uint block_num = succs_block->non_connector()->_pre_order;
duke@435 1182 Label *blkLabel = &blk_labels[block_num];
duke@435 1183 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1184 }
duke@435 1185 }
duke@435 1186 }
duke@435 1187 } else {
duke@435 1188 // For Branchs
duke@435 1189 // This requires the TRUE branch target be in succs[0]
duke@435 1190 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1191 mach->label_set( blk_labels[block_num], block_num );
duke@435 1192 }
duke@435 1193 }
duke@435 1194
duke@435 1195 #ifdef ASSERT
duke@435 1196 // Check that oop-store preceeds the card-mark
duke@435 1197 else if( mach->ideal_Opcode() == Op_StoreCM ) {
duke@435 1198 uint storeCM_idx = j;
duke@435 1199 Node *oop_store = mach->in(mach->_cnt); // First precedence edge
duke@435 1200 assert( oop_store != NULL, "storeCM expects a precedence edge");
duke@435 1201 uint i4;
duke@435 1202 for( i4 = 0; i4 < last_inst; ++i4 ) {
duke@435 1203 if( b->_nodes[i4] == oop_store ) break;
duke@435 1204 }
duke@435 1205 // Note: This test can provide a false failure if other precedence
duke@435 1206 // edges have been added to the storeCMNode.
duke@435 1207 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1208 }
duke@435 1209 #endif
duke@435 1210
duke@435 1211 else if( !n->is_Proj() ) {
duke@435 1212 // Remember the begining of the previous instruction, in case
duke@435 1213 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1214 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1215 previous_offset = current_offset;
duke@435 1216 }
duke@435 1217 }
duke@435 1218
duke@435 1219 // Verify that there is sufficient space remaining
duke@435 1220 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
duke@435 1221 if (cb->blob() == NULL) {
duke@435 1222 turn_off_compiler(this);
duke@435 1223 return;
duke@435 1224 }
duke@435 1225
duke@435 1226 // Save the offset for the listing
duke@435 1227 #ifndef PRODUCT
duke@435 1228 if( node_offsets && n->_idx < node_offset_limit )
duke@435 1229 node_offsets[n->_idx] = cb->code_size();
duke@435 1230 #endif
duke@435 1231
duke@435 1232 // "Normal" instruction case
duke@435 1233 n->emit(*cb, _regalloc);
duke@435 1234 current_offset = cb->code_size();
duke@435 1235 non_safepoints.observe_instruction(n, current_offset);
duke@435 1236
duke@435 1237 // mcall is last "call" that can be a safepoint
duke@435 1238 // record it so we can see if a poll will directly follow it
duke@435 1239 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1240 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1241 // in the case that return address is not actually at current_offset.
duke@435 1242 // This is a small price to pay.
duke@435 1243
duke@435 1244 if (is_mcall) {
duke@435 1245 last_call_offset = current_offset;
duke@435 1246 }
duke@435 1247
duke@435 1248 // See if this instruction has a delay slot
duke@435 1249 if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1250 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1251
duke@435 1252 // Back up 1 instruction
duke@435 1253 cb->set_code_end(
duke@435 1254 cb->code_end()-Pipeline::instr_unit_size());
duke@435 1255
duke@435 1256 // Save the offset for the listing
duke@435 1257 #ifndef PRODUCT
duke@435 1258 if( node_offsets && delay_slot->_idx < node_offset_limit )
duke@435 1259 node_offsets[delay_slot->_idx] = cb->code_size();
duke@435 1260 #endif
duke@435 1261
duke@435 1262 // Support a SafePoint in the delay slot
duke@435 1263 if( delay_slot->is_MachSafePoint() ) {
duke@435 1264 MachNode *mach = delay_slot->as_Mach();
duke@435 1265 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1266 if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
duke@435 1267 // Write the oopmap directly to the code blob??!!
duke@435 1268 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1269 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1270 # endif
duke@435 1271 delay_slot = NULL;
duke@435 1272 continue;
duke@435 1273 }
duke@435 1274
duke@435 1275 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1276 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1277 adjusted_offset);
duke@435 1278 // Generate an OopMap entry
duke@435 1279 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1280 }
duke@435 1281
duke@435 1282 // Insert the delay slot instruction
duke@435 1283 delay_slot->emit(*cb, _regalloc);
duke@435 1284
duke@435 1285 // Don't reuse it
duke@435 1286 delay_slot = NULL;
duke@435 1287 }
duke@435 1288
duke@435 1289 } // End for all instructions in block
duke@435 1290
duke@435 1291 // If the next block _starts_ a loop, pad this block out to align
duke@435 1292 // the loop start a little. Helps prevent pipe stalls at loop starts
duke@435 1293 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1294 if( i<_cfg->_num_blocks-1 ) {
duke@435 1295 Block *nb = _cfg->_blocks[i+1];
duke@435 1296 uint padding = nb->alignment_padding(current_offset);
duke@435 1297 if( padding > 0 ) {
duke@435 1298 MachNode *nop = new (this) MachNopNode(padding / nop_size);
duke@435 1299 b->_nodes.insert( b->_nodes.size(), nop );
duke@435 1300 _cfg->_bbs.map( nop->_idx, b );
duke@435 1301 nop->emit(*cb, _regalloc);
duke@435 1302 current_offset = cb->code_size();
duke@435 1303 }
duke@435 1304 }
duke@435 1305
duke@435 1306 } // End of for all blocks
duke@435 1307
duke@435 1308 non_safepoints.flush_at_end();
duke@435 1309
duke@435 1310 // Offset too large?
duke@435 1311 if (failing()) return;
duke@435 1312
duke@435 1313 // Define a pseudo-label at the end of the code
duke@435 1314 MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
duke@435 1315
duke@435 1316 // Compute the size of the first block
duke@435 1317 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1318
duke@435 1319 assert(cb->code_size() < 500000, "method is unreasonably large");
duke@435 1320
duke@435 1321 // ------------------
duke@435 1322
duke@435 1323 #ifndef PRODUCT
duke@435 1324 // Information on the size of the method, without the extraneous code
duke@435 1325 Scheduling::increment_method_size(cb->code_size());
duke@435 1326 #endif
duke@435 1327
duke@435 1328 // ------------------
duke@435 1329 // Fill in exception table entries.
duke@435 1330 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1331
duke@435 1332 // Only java methods have exception handlers and deopt handlers
duke@435 1333 if (_method) {
duke@435 1334 // Emit the exception handler code.
duke@435 1335 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
duke@435 1336 // Emit the deopt handler code.
duke@435 1337 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
duke@435 1338 }
duke@435 1339
duke@435 1340 // One last check for failed CodeBuffer::expand:
duke@435 1341 if (cb->blob() == NULL) {
duke@435 1342 turn_off_compiler(this);
duke@435 1343 return;
duke@435 1344 }
duke@435 1345
duke@435 1346 #ifndef PRODUCT
duke@435 1347 // Dump the assembly code, including basic-block numbers
duke@435 1348 if (print_assembly()) {
duke@435 1349 ttyLocker ttyl; // keep the following output all in one block
duke@435 1350 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1351 // This output goes directly to the tty, not the compiler log.
duke@435 1352 // To enable tools to match it up with the compilation activity,
duke@435 1353 // be sure to tag this tty output with the compile ID.
duke@435 1354 if (xtty != NULL) {
duke@435 1355 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1356 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1357 "");
duke@435 1358 }
duke@435 1359 if (method() != NULL) {
duke@435 1360 method()->print_oop();
duke@435 1361 print_codes();
duke@435 1362 }
duke@435 1363 dump_asm(node_offsets, node_offset_limit);
duke@435 1364 if (xtty != NULL) {
duke@435 1365 xtty->tail("opto_assembly");
duke@435 1366 }
duke@435 1367 }
duke@435 1368 }
duke@435 1369 #endif
duke@435 1370
duke@435 1371 }
duke@435 1372
duke@435 1373 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1374 _inc_table.set_size(cnt);
duke@435 1375
duke@435 1376 uint inct_cnt = 0;
duke@435 1377 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1378 Block *b = _cfg->_blocks[i];
duke@435 1379 Node *n = NULL;
duke@435 1380 int j;
duke@435 1381
duke@435 1382 // Find the branch; ignore trailing NOPs.
duke@435 1383 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 1384 n = b->_nodes[j];
duke@435 1385 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 1386 break;
duke@435 1387 }
duke@435 1388
duke@435 1389 // If we didn't find anything, continue
duke@435 1390 if( j < 0 ) continue;
duke@435 1391
duke@435 1392 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1393 // (skip empty blocks)
duke@435 1394 if( n->is_Catch() ) {
duke@435 1395
duke@435 1396 // Get the offset of the return from the call
duke@435 1397 uint call_return = call_returns[b->_pre_order];
duke@435 1398 #ifdef ASSERT
duke@435 1399 assert( call_return > 0, "no call seen for this basic block" );
duke@435 1400 while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
duke@435 1401 assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
duke@435 1402 #endif
duke@435 1403 // last instruction is a CatchNode, find it's CatchProjNodes
duke@435 1404 int nof_succs = b->_num_succs;
duke@435 1405 // allocate space
duke@435 1406 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1407 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1408 // iterate through all successors
duke@435 1409 for (int j = 0; j < nof_succs; j++) {
duke@435 1410 Block* s = b->_succs[j];
duke@435 1411 bool found_p = false;
duke@435 1412 for( uint k = 1; k < s->num_preds(); k++ ) {
duke@435 1413 Node *pk = s->pred(k);
duke@435 1414 if( pk->is_CatchProj() && pk->in(0) == n ) {
duke@435 1415 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1416 found_p = true;
duke@435 1417 // add the corresponding handler bci & pco information
duke@435 1418 if( p->_con != CatchProjNode::fall_through_index ) {
duke@435 1419 // p leads to an exception handler (and is not fall through)
duke@435 1420 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
duke@435 1421 // no duplicates, please
duke@435 1422 if( !handler_bcis.contains(p->handler_bci()) ) {
duke@435 1423 uint block_num = s->non_connector()->_pre_order;
duke@435 1424 handler_bcis.append(p->handler_bci());
duke@435 1425 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1426 }
duke@435 1427 }
duke@435 1428 }
duke@435 1429 }
duke@435 1430 assert(found_p, "no matching predecessor found");
duke@435 1431 // Note: Due to empty block removal, one block may have
duke@435 1432 // several CatchProj inputs, from the same Catch.
duke@435 1433 }
duke@435 1434
duke@435 1435 // Set the offset of the return from the call
duke@435 1436 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1437 continue;
duke@435 1438 }
duke@435 1439
duke@435 1440 // Handle implicit null exception table updates
duke@435 1441 if( n->is_MachNullCheck() ) {
duke@435 1442 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1443 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
duke@435 1444 continue;
duke@435 1445 }
duke@435 1446 } // End of for all blocks fill in exception table entries
duke@435 1447 }
duke@435 1448
duke@435 1449 // Static Variables
duke@435 1450 #ifndef PRODUCT
duke@435 1451 uint Scheduling::_total_nop_size = 0;
duke@435 1452 uint Scheduling::_total_method_size = 0;
duke@435 1453 uint Scheduling::_total_branches = 0;
duke@435 1454 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1455 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1456 #endif
duke@435 1457
duke@435 1458 // Initializer for class Scheduling
duke@435 1459
duke@435 1460 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1461 : _arena(arena),
duke@435 1462 _cfg(compile.cfg()),
duke@435 1463 _bbs(compile.cfg()->_bbs),
duke@435 1464 _regalloc(compile.regalloc()),
duke@435 1465 _reg_node(arena),
duke@435 1466 _bundle_instr_count(0),
duke@435 1467 _bundle_cycle_number(0),
duke@435 1468 _scheduled(arena),
duke@435 1469 _available(arena),
duke@435 1470 _next_node(NULL),
duke@435 1471 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1472 _pinch_free_list(arena)
duke@435 1473 #ifndef PRODUCT
duke@435 1474 , _branches(0)
duke@435 1475 , _unconditional_delays(0)
duke@435 1476 #endif
duke@435 1477 {
duke@435 1478 // Create a MachNopNode
duke@435 1479 _nop = new (&compile) MachNopNode();
duke@435 1480
duke@435 1481 // Now that the nops are in the array, save the count
duke@435 1482 // (but allow entries for the nops)
duke@435 1483 _node_bundling_limit = compile.unique();
duke@435 1484 uint node_max = _regalloc->node_regs_max_index();
duke@435 1485
duke@435 1486 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1487
duke@435 1488 // This one is persistant within the Compile class
duke@435 1489 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1490
duke@435 1491 // Allocate space for fixed-size arrays
duke@435 1492 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1493 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1494 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1495
duke@435 1496 // Clear the arrays
duke@435 1497 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1498 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1499 memset(_uses, 0, node_max * sizeof(short));
duke@435 1500 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1501
duke@435 1502 // Clear the bundling information
duke@435 1503 memcpy(_bundle_use_elements,
duke@435 1504 Pipeline_Use::elaborated_elements,
duke@435 1505 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1506
duke@435 1507 // Get the last node
duke@435 1508 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
duke@435 1509
duke@435 1510 _next_node = bb->_nodes[bb->_nodes.size()-1];
duke@435 1511 }
duke@435 1512
duke@435 1513 #ifndef PRODUCT
duke@435 1514 // Scheduling destructor
duke@435 1515 Scheduling::~Scheduling() {
duke@435 1516 _total_branches += _branches;
duke@435 1517 _total_unconditional_delays += _unconditional_delays;
duke@435 1518 }
duke@435 1519 #endif
duke@435 1520
duke@435 1521 // Step ahead "i" cycles
duke@435 1522 void Scheduling::step(uint i) {
duke@435 1523
duke@435 1524 Bundle *bundle = node_bundling(_next_node);
duke@435 1525 bundle->set_starts_bundle();
duke@435 1526
duke@435 1527 // Update the bundle record, but leave the flags information alone
duke@435 1528 if (_bundle_instr_count > 0) {
duke@435 1529 bundle->set_instr_count(_bundle_instr_count);
duke@435 1530 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1531 }
duke@435 1532
duke@435 1533 // Update the state information
duke@435 1534 _bundle_instr_count = 0;
duke@435 1535 _bundle_cycle_number += i;
duke@435 1536 _bundle_use.step(i);
duke@435 1537 }
duke@435 1538
duke@435 1539 void Scheduling::step_and_clear() {
duke@435 1540 Bundle *bundle = node_bundling(_next_node);
duke@435 1541 bundle->set_starts_bundle();
duke@435 1542
duke@435 1543 // Update the bundle record
duke@435 1544 if (_bundle_instr_count > 0) {
duke@435 1545 bundle->set_instr_count(_bundle_instr_count);
duke@435 1546 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1547
duke@435 1548 _bundle_cycle_number += 1;
duke@435 1549 }
duke@435 1550
duke@435 1551 // Clear the bundling information
duke@435 1552 _bundle_instr_count = 0;
duke@435 1553 _bundle_use.reset();
duke@435 1554
duke@435 1555 memcpy(_bundle_use_elements,
duke@435 1556 Pipeline_Use::elaborated_elements,
duke@435 1557 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1558 }
duke@435 1559
duke@435 1560 //------------------------------ScheduleAndBundle------------------------------
duke@435 1561 // Perform instruction scheduling and bundling over the sequence of
duke@435 1562 // instructions in backwards order.
duke@435 1563 void Compile::ScheduleAndBundle() {
duke@435 1564
duke@435 1565 // Don't optimize this if it isn't a method
duke@435 1566 if (!_method)
duke@435 1567 return;
duke@435 1568
duke@435 1569 // Don't optimize this if scheduling is disabled
duke@435 1570 if (!do_scheduling())
duke@435 1571 return;
duke@435 1572
duke@435 1573 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1574
duke@435 1575 // Create a data structure for all the scheduling information
duke@435 1576 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1577
duke@435 1578 // Walk backwards over each basic block, computing the needed alignment
duke@435 1579 // Walk over all the basic blocks
duke@435 1580 scheduling.DoScheduling();
duke@435 1581 }
duke@435 1582
duke@435 1583 //------------------------------ComputeLocalLatenciesForward-------------------
duke@435 1584 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1585 // because we already have a legal ordering. Walk over the instructions
duke@435 1586 // from first to last, and compute the latency of the instruction based
duke@435 1587 // on the latency of the preceeding instruction(s).
duke@435 1588 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1589 #ifndef PRODUCT
duke@435 1590 if (_cfg->C->trace_opto_output())
duke@435 1591 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1592 #endif
duke@435 1593
duke@435 1594 // Walk over all the schedulable instructions
duke@435 1595 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1596
duke@435 1597 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1598 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1599 // of the bb
duke@435 1600 uint latency = 1;
duke@435 1601 Node *use = bb->_nodes[j];
duke@435 1602 uint nlen = use->len();
duke@435 1603
duke@435 1604 // Walk over all the inputs
duke@435 1605 for ( uint k=0; k < nlen; k++ ) {
duke@435 1606 Node *def = use->in(k);
duke@435 1607 if (!def)
duke@435 1608 continue;
duke@435 1609
duke@435 1610 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1611 if (latency < l)
duke@435 1612 latency = l;
duke@435 1613 }
duke@435 1614
duke@435 1615 _node_latency[use->_idx] = latency;
duke@435 1616
duke@435 1617 #ifndef PRODUCT
duke@435 1618 if (_cfg->C->trace_opto_output()) {
duke@435 1619 tty->print("# latency %4d: ", latency);
duke@435 1620 use->dump();
duke@435 1621 }
duke@435 1622 #endif
duke@435 1623 }
duke@435 1624
duke@435 1625 #ifndef PRODUCT
duke@435 1626 if (_cfg->C->trace_opto_output())
duke@435 1627 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1628 #endif
duke@435 1629
duke@435 1630 } // end ComputeLocalLatenciesForward
duke@435 1631
duke@435 1632 // See if this node fits into the present instruction bundle
duke@435 1633 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 1634 uint n_idx = n->_idx;
duke@435 1635
duke@435 1636 // If this is the unconditional delay instruction, then it fits
duke@435 1637 if (n == _unconditional_delay_slot) {
duke@435 1638 #ifndef PRODUCT
duke@435 1639 if (_cfg->C->trace_opto_output())
duke@435 1640 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 1641 #endif
duke@435 1642 return (true);
duke@435 1643 }
duke@435 1644
duke@435 1645 // If the node cannot be scheduled this cycle, skip it
duke@435 1646 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 1647 #ifndef PRODUCT
duke@435 1648 if (_cfg->C->trace_opto_output())
duke@435 1649 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 1650 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 1651 #endif
duke@435 1652 return (false);
duke@435 1653 }
duke@435 1654
duke@435 1655 const Pipeline *node_pipeline = n->pipeline();
duke@435 1656
duke@435 1657 uint instruction_count = node_pipeline->instructionCount();
duke@435 1658 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1659 instruction_count = 0;
duke@435 1660 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1661 instruction_count++;
duke@435 1662
duke@435 1663 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1664 #ifndef PRODUCT
duke@435 1665 if (_cfg->C->trace_opto_output())
duke@435 1666 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 1667 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 1668 #endif
duke@435 1669 return (false);
duke@435 1670 }
duke@435 1671
duke@435 1672 // Don't allow non-machine nodes to be handled this way
duke@435 1673 if (!n->is_Mach() && instruction_count == 0)
duke@435 1674 return (false);
duke@435 1675
duke@435 1676 // See if there is any overlap
duke@435 1677 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 1678
duke@435 1679 if (delay > 0) {
duke@435 1680 #ifndef PRODUCT
duke@435 1681 if (_cfg->C->trace_opto_output())
duke@435 1682 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 1683 #endif
duke@435 1684 return false;
duke@435 1685 }
duke@435 1686
duke@435 1687 #ifndef PRODUCT
duke@435 1688 if (_cfg->C->trace_opto_output())
duke@435 1689 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 1690 #endif
duke@435 1691
duke@435 1692 return true;
duke@435 1693 }
duke@435 1694
duke@435 1695 Node * Scheduling::ChooseNodeToBundle() {
duke@435 1696 uint siz = _available.size();
duke@435 1697
duke@435 1698 if (siz == 0) {
duke@435 1699
duke@435 1700 #ifndef PRODUCT
duke@435 1701 if (_cfg->C->trace_opto_output())
duke@435 1702 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 1703 #endif
duke@435 1704 return (NULL);
duke@435 1705 }
duke@435 1706
duke@435 1707 // Fast path, if only 1 instruction in the bundle
duke@435 1708 if (siz == 1) {
duke@435 1709 #ifndef PRODUCT
duke@435 1710 if (_cfg->C->trace_opto_output()) {
duke@435 1711 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 1712 _available[0]->dump();
duke@435 1713 }
duke@435 1714 #endif
duke@435 1715 return (_available[0]);
duke@435 1716 }
duke@435 1717
duke@435 1718 // Don't bother, if the bundle is already full
duke@435 1719 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 1720 for ( uint i = 0; i < siz; i++ ) {
duke@435 1721 Node *n = _available[i];
duke@435 1722
duke@435 1723 // Skip projections, we'll handle them another way
duke@435 1724 if (n->is_Proj())
duke@435 1725 continue;
duke@435 1726
duke@435 1727 // This presupposed that instructions are inserted into the
duke@435 1728 // available list in a legality order; i.e. instructions that
duke@435 1729 // must be inserted first are at the head of the list
duke@435 1730 if (NodeFitsInBundle(n)) {
duke@435 1731 #ifndef PRODUCT
duke@435 1732 if (_cfg->C->trace_opto_output()) {
duke@435 1733 tty->print("# ChooseNodeToBundle: ");
duke@435 1734 n->dump();
duke@435 1735 }
duke@435 1736 #endif
duke@435 1737 return (n);
duke@435 1738 }
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742 // Nothing fits in this bundle, choose the highest priority
duke@435 1743 #ifndef PRODUCT
duke@435 1744 if (_cfg->C->trace_opto_output()) {
duke@435 1745 tty->print("# ChooseNodeToBundle: ");
duke@435 1746 _available[0]->dump();
duke@435 1747 }
duke@435 1748 #endif
duke@435 1749
duke@435 1750 return _available[0];
duke@435 1751 }
duke@435 1752
duke@435 1753 //------------------------------AddNodeToAvailableList-------------------------
duke@435 1754 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 1755 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 1756 #ifndef PRODUCT
duke@435 1757 if (_cfg->C->trace_opto_output()) {
duke@435 1758 tty->print("# AddNodeToAvailableList: ");
duke@435 1759 n->dump();
duke@435 1760 }
duke@435 1761 #endif
duke@435 1762
duke@435 1763 int latency = _current_latency[n->_idx];
duke@435 1764
duke@435 1765 // Insert in latency order (insertion sort)
duke@435 1766 uint i;
duke@435 1767 for ( i=0; i < _available.size(); i++ )
duke@435 1768 if (_current_latency[_available[i]->_idx] > latency)
duke@435 1769 break;
duke@435 1770
duke@435 1771 // Special Check for compares following branches
duke@435 1772 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 1773 int op = n->as_Mach()->ideal_Opcode();
duke@435 1774 Node *last = _scheduled[0];
duke@435 1775 if( last->is_MachIf() && last->in(1) == n &&
duke@435 1776 ( op == Op_CmpI ||
duke@435 1777 op == Op_CmpU ||
duke@435 1778 op == Op_CmpP ||
duke@435 1779 op == Op_CmpF ||
duke@435 1780 op == Op_CmpD ||
duke@435 1781 op == Op_CmpL ) ) {
duke@435 1782
duke@435 1783 // Recalculate position, moving to front of same latency
duke@435 1784 for ( i=0 ; i < _available.size(); i++ )
duke@435 1785 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 1786 break;
duke@435 1787 }
duke@435 1788 }
duke@435 1789
duke@435 1790 // Insert the node in the available list
duke@435 1791 _available.insert(i, n);
duke@435 1792
duke@435 1793 #ifndef PRODUCT
duke@435 1794 if (_cfg->C->trace_opto_output())
duke@435 1795 dump_available();
duke@435 1796 #endif
duke@435 1797 }
duke@435 1798
duke@435 1799 //------------------------------DecrementUseCounts-----------------------------
duke@435 1800 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 1801 for ( uint i=0; i < n->len(); i++ ) {
duke@435 1802 Node *def = n->in(i);
duke@435 1803 if (!def) continue;
duke@435 1804 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 1805 def = def->in(0); // propagate usage thru to the base instruction
duke@435 1806
duke@435 1807 if( _bbs[def->_idx] != bb ) // Ignore if not block-local
duke@435 1808 continue;
duke@435 1809
duke@435 1810 // Compute the latency
duke@435 1811 uint l = _bundle_cycle_number + n->latency(i);
duke@435 1812 if (_current_latency[def->_idx] < l)
duke@435 1813 _current_latency[def->_idx] = l;
duke@435 1814
duke@435 1815 // If this does not have uses then schedule it
duke@435 1816 if ((--_uses[def->_idx]) == 0)
duke@435 1817 AddNodeToAvailableList(def);
duke@435 1818 }
duke@435 1819 }
duke@435 1820
duke@435 1821 //------------------------------AddNodeToBundle--------------------------------
duke@435 1822 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 1823 #ifndef PRODUCT
duke@435 1824 if (_cfg->C->trace_opto_output()) {
duke@435 1825 tty->print("# AddNodeToBundle: ");
duke@435 1826 n->dump();
duke@435 1827 }
duke@435 1828 #endif
duke@435 1829
duke@435 1830 // Remove this from the available list
duke@435 1831 uint i;
duke@435 1832 for (i = 0; i < _available.size(); i++)
duke@435 1833 if (_available[i] == n)
duke@435 1834 break;
duke@435 1835 assert(i < _available.size(), "entry in _available list not found");
duke@435 1836 _available.remove(i);
duke@435 1837
duke@435 1838 // See if this fits in the current bundle
duke@435 1839 const Pipeline *node_pipeline = n->pipeline();
duke@435 1840 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 1841
duke@435 1842 // Check for instructions to be placed in the delay slot. We
duke@435 1843 // do this before we actually schedule the current instruction,
duke@435 1844 // because the delay slot follows the current instruction.
duke@435 1845 if (Pipeline::_branch_has_delay_slot &&
duke@435 1846 node_pipeline->hasBranchDelay() &&
duke@435 1847 !_unconditional_delay_slot) {
duke@435 1848
duke@435 1849 uint siz = _available.size();
duke@435 1850
duke@435 1851 // Conditional branches can support an instruction that
duke@435 1852 // is unconditionally executed and not dependant by the
duke@435 1853 // branch, OR a conditionally executed instruction if
duke@435 1854 // the branch is taken. In practice, this means that
duke@435 1855 // the first instruction at the branch target is
duke@435 1856 // copied to the delay slot, and the branch goes to
duke@435 1857 // the instruction after that at the branch target
duke@435 1858 if ( n->is_Mach() && n->is_Branch() ) {
duke@435 1859
duke@435 1860 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 1861 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 1862
duke@435 1863 #ifndef PRODUCT
duke@435 1864 _branches++;
duke@435 1865 #endif
duke@435 1866
duke@435 1867 // At least 1 instruction is on the available list
duke@435 1868 // that is not dependant on the branch
duke@435 1869 for (uint i = 0; i < siz; i++) {
duke@435 1870 Node *d = _available[i];
duke@435 1871 const Pipeline *avail_pipeline = d->pipeline();
duke@435 1872
duke@435 1873 // Don't allow safepoints in the branch shadow, that will
duke@435 1874 // cause a number of difficulties
duke@435 1875 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 1876 !avail_pipeline->hasMultipleBundles() &&
duke@435 1877 !avail_pipeline->hasBranchDelay() &&
duke@435 1878 Pipeline::instr_has_unit_size() &&
duke@435 1879 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 1880 NodeFitsInBundle(d) &&
duke@435 1881 !node_bundling(d)->used_in_delay()) {
duke@435 1882
duke@435 1883 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 1884 // A node that fits in the delay slot was found, so we need to
duke@435 1885 // set the appropriate bits in the bundle pipeline information so
duke@435 1886 // that it correctly indicates resource usage. Later, when we
duke@435 1887 // attempt to add this instruction to the bundle, we will skip
duke@435 1888 // setting the resource usage.
duke@435 1889 _unconditional_delay_slot = d;
duke@435 1890 node_bundling(n)->set_use_unconditional_delay();
duke@435 1891 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 1892 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 1893 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 1894 _next_node = d;
duke@435 1895 ++_bundle_instr_count;
duke@435 1896 #ifndef PRODUCT
duke@435 1897 _unconditional_delays++;
duke@435 1898 #endif
duke@435 1899 break;
duke@435 1900 }
duke@435 1901 }
duke@435 1902 }
duke@435 1903 }
duke@435 1904
duke@435 1905 // No delay slot, add a nop to the usage
duke@435 1906 if (!_unconditional_delay_slot) {
duke@435 1907 // See if adding an instruction in the delay slot will overflow
duke@435 1908 // the bundle.
duke@435 1909 if (!NodeFitsInBundle(_nop)) {
duke@435 1910 #ifndef PRODUCT
duke@435 1911 if (_cfg->C->trace_opto_output())
duke@435 1912 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 1913 #endif
duke@435 1914 step(1);
duke@435 1915 }
duke@435 1916
duke@435 1917 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 1918 _next_node = _nop;
duke@435 1919 ++_bundle_instr_count;
duke@435 1920 }
duke@435 1921
duke@435 1922 // See if the instruction in the delay slot requires a
duke@435 1923 // step of the bundles
duke@435 1924 if (!NodeFitsInBundle(n)) {
duke@435 1925 #ifndef PRODUCT
duke@435 1926 if (_cfg->C->trace_opto_output())
duke@435 1927 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 1928 #endif
duke@435 1929 // Update the state information
duke@435 1930 _bundle_instr_count = 0;
duke@435 1931 _bundle_cycle_number += 1;
duke@435 1932 _bundle_use.step(1);
duke@435 1933 }
duke@435 1934 }
duke@435 1935
duke@435 1936 // Get the number of instructions
duke@435 1937 uint instruction_count = node_pipeline->instructionCount();
duke@435 1938 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1939 instruction_count = 0;
duke@435 1940
duke@435 1941 // Compute the latency information
duke@435 1942 uint delay = 0;
duke@435 1943
duke@435 1944 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 1945 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 1946 if (relative_latency < 0)
duke@435 1947 relative_latency = 0;
duke@435 1948
duke@435 1949 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 1950
duke@435 1951 // Does not fit in this bundle, start a new one
duke@435 1952 if (delay > 0) {
duke@435 1953 step(delay);
duke@435 1954
duke@435 1955 #ifndef PRODUCT
duke@435 1956 if (_cfg->C->trace_opto_output())
duke@435 1957 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 1958 #endif
duke@435 1959 }
duke@435 1960 }
duke@435 1961
duke@435 1962 // If this was placed in the delay slot, ignore it
duke@435 1963 if (n != _unconditional_delay_slot) {
duke@435 1964
duke@435 1965 if (delay == 0) {
duke@435 1966 if (node_pipeline->hasMultipleBundles()) {
duke@435 1967 #ifndef PRODUCT
duke@435 1968 if (_cfg->C->trace_opto_output())
duke@435 1969 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 1970 #endif
duke@435 1971 step(1);
duke@435 1972 }
duke@435 1973
duke@435 1974 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1975 #ifndef PRODUCT
duke@435 1976 if (_cfg->C->trace_opto_output())
duke@435 1977 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 1978 instruction_count + _bundle_instr_count,
duke@435 1979 Pipeline::_max_instrs_per_cycle);
duke@435 1980 #endif
duke@435 1981 step(1);
duke@435 1982 }
duke@435 1983 }
duke@435 1984
duke@435 1985 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1986 _bundle_instr_count++;
duke@435 1987
duke@435 1988 // Set the node's latency
duke@435 1989 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 1990
duke@435 1991 // Now merge the functional unit information
duke@435 1992 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 1993 _bundle_use.add_usage(node_usage);
duke@435 1994
duke@435 1995 // Increment the number of instructions in this bundle
duke@435 1996 _bundle_instr_count += instruction_count;
duke@435 1997
duke@435 1998 // Remember this node for later
duke@435 1999 if (n->is_Mach())
duke@435 2000 _next_node = n;
duke@435 2001 }
duke@435 2002
duke@435 2003 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2004 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2005 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2006 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2007 int op = n->Opcode();
duke@435 2008 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2009 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2010 // not an unallocated boxlock
duke@435 2011 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2012
duke@435 2013 // Push any trailing projections
duke@435 2014 if( bb->_nodes[bb->_nodes.size()-1] != n ) {
duke@435 2015 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2016 Node *foi = n->fast_out(i);
duke@435 2017 if( foi->is_Proj() )
duke@435 2018 _scheduled.push(foi);
duke@435 2019 }
duke@435 2020 }
duke@435 2021
duke@435 2022 // Put the instruction in the schedule list
duke@435 2023 _scheduled.push(n);
duke@435 2024 }
duke@435 2025
duke@435 2026 #ifndef PRODUCT
duke@435 2027 if (_cfg->C->trace_opto_output())
duke@435 2028 dump_available();
duke@435 2029 #endif
duke@435 2030
duke@435 2031 // Walk all the definitions, decrementing use counts, and
duke@435 2032 // if a definition has a 0 use count, place it in the available list.
duke@435 2033 DecrementUseCounts(n,bb);
duke@435 2034 }
duke@435 2035
duke@435 2036 //------------------------------ComputeUseCount--------------------------------
duke@435 2037 // This method sets the use count within a basic block. We will ignore all
duke@435 2038 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2039 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2040 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2041 // nodes are at the front of the basic block. This method also initializes
duke@435 2042 // the available list to the set of instructions that have no uses within this
duke@435 2043 // basic block.
duke@435 2044 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2045 #ifndef PRODUCT
duke@435 2046 if (_cfg->C->trace_opto_output())
duke@435 2047 tty->print("# -> ComputeUseCount\n");
duke@435 2048 #endif
duke@435 2049
duke@435 2050 // Clear the list of available and scheduled instructions, just in case
duke@435 2051 _available.clear();
duke@435 2052 _scheduled.clear();
duke@435 2053
duke@435 2054 // No delay slot specified
duke@435 2055 _unconditional_delay_slot = NULL;
duke@435 2056
duke@435 2057 #ifdef ASSERT
duke@435 2058 for( uint i=0; i < bb->_nodes.size(); i++ )
duke@435 2059 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
duke@435 2060 #endif
duke@435 2061
duke@435 2062 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2063 // of the block
duke@435 2064 for( uint k = 0; k < _bb_start; k++ )
duke@435 2065 _uses[bb->_nodes[k]->_idx] = 1;
duke@435 2066 for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
duke@435 2067 _uses[bb->_nodes[l]->_idx] = 1;
duke@435 2068
duke@435 2069 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2070 // branch projections at end or the block header instructions.
duke@435 2071 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
duke@435 2072 Node *n = bb->_nodes[j];
duke@435 2073 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2074
duke@435 2075 // Account for all uses
duke@435 2076 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2077 Node *inp = n->in(k);
duke@435 2078 if (!inp) continue;
duke@435 2079 assert(inp != n, "no cycles allowed" );
duke@435 2080 if( _bbs[inp->_idx] == bb ) { // Block-local use?
duke@435 2081 if( inp->is_Proj() ) // Skip through Proj's
duke@435 2082 inp = inp->in(0);
duke@435 2083 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2084 }
duke@435 2085 }
duke@435 2086
duke@435 2087 // If this instruction has a 0 use count, then it is available
duke@435 2088 if (!_uses[n->_idx]) {
duke@435 2089 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2090 AddNodeToAvailableList(n);
duke@435 2091 }
duke@435 2092
duke@435 2093 #ifndef PRODUCT
duke@435 2094 if (_cfg->C->trace_opto_output()) {
duke@435 2095 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2096 n->dump();
duke@435 2097 }
duke@435 2098 #endif
duke@435 2099 }
duke@435 2100
duke@435 2101 #ifndef PRODUCT
duke@435 2102 if (_cfg->C->trace_opto_output())
duke@435 2103 tty->print("# <- ComputeUseCount\n");
duke@435 2104 #endif
duke@435 2105 }
duke@435 2106
duke@435 2107 // This routine performs scheduling on each basic block in reverse order,
duke@435 2108 // using instruction latencies and taking into account function unit
duke@435 2109 // availability.
duke@435 2110 void Scheduling::DoScheduling() {
duke@435 2111 #ifndef PRODUCT
duke@435 2112 if (_cfg->C->trace_opto_output())
duke@435 2113 tty->print("# -> DoScheduling\n");
duke@435 2114 #endif
duke@435 2115
duke@435 2116 Block *succ_bb = NULL;
duke@435 2117 Block *bb;
duke@435 2118
duke@435 2119 // Walk over all the basic blocks in reverse order
duke@435 2120 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
duke@435 2121 bb = _cfg->_blocks[i];
duke@435 2122
duke@435 2123 #ifndef PRODUCT
duke@435 2124 if (_cfg->C->trace_opto_output()) {
duke@435 2125 tty->print("# Schedule BB#%03d (initial)\n", i);
duke@435 2126 for (uint j = 0; j < bb->_nodes.size(); j++)
duke@435 2127 bb->_nodes[j]->dump();
duke@435 2128 }
duke@435 2129 #endif
duke@435 2130
duke@435 2131 // On the head node, skip processing
duke@435 2132 if( bb == _cfg->_broot )
duke@435 2133 continue;
duke@435 2134
duke@435 2135 // Skip empty, connector blocks
duke@435 2136 if (bb->is_connector())
duke@435 2137 continue;
duke@435 2138
duke@435 2139 // If the following block is not the sole successor of
duke@435 2140 // this one, then reset the pipeline information
duke@435 2141 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2142 #ifndef PRODUCT
duke@435 2143 if (_cfg->C->trace_opto_output()) {
duke@435 2144 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2145 _next_node->_idx, _bundle_instr_count);
duke@435 2146 }
duke@435 2147 #endif
duke@435 2148 step_and_clear();
duke@435 2149 }
duke@435 2150
duke@435 2151 // Leave untouched the starting instruction, any Phis, a CreateEx node
duke@435 2152 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
duke@435 2153 _bb_end = bb->_nodes.size()-1;
duke@435 2154 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
duke@435 2155 Node *n = bb->_nodes[_bb_start];
duke@435 2156 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2157 // Also, MachIdealNodes do not get scheduled
duke@435 2158 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2159 MachNode *mach = n->as_Mach();
duke@435 2160 int iop = mach->ideal_Opcode();
duke@435 2161 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2162 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2163 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2164 mach->pipeline() == MachNode::pipeline_class() &&
duke@435 2165 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
duke@435 2166 continue;
duke@435 2167 break; // Funny loop structure to be sure...
duke@435 2168 }
duke@435 2169 // Compute last "interesting" instruction in block - last instruction we
duke@435 2170 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2171 // normally schedule conditional branches (despite them being forced last
duke@435 2172 // in the block), because they have delay slots we can fill. Calls all
duke@435 2173 // have their delay slots filled in the template expansions, so we don't
duke@435 2174 // bother scheduling them.
duke@435 2175 Node *last = bb->_nodes[_bb_end];
duke@435 2176 if( last->is_Catch() ||
duke@435 2177 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2178 // There must be a prior call. Skip it.
duke@435 2179 while( !bb->_nodes[--_bb_end]->is_Call() ) {
duke@435 2180 assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
duke@435 2181 }
duke@435 2182 } else if( last->is_MachNullCheck() ) {
duke@435 2183 // Backup so the last null-checked memory instruction is
duke@435 2184 // outside the schedulable range. Skip over the nullcheck,
duke@435 2185 // projection, and the memory nodes.
duke@435 2186 Node *mem = last->in(1);
duke@435 2187 do {
duke@435 2188 _bb_end--;
duke@435 2189 } while (mem != bb->_nodes[_bb_end]);
duke@435 2190 } else {
duke@435 2191 // Set _bb_end to point after last schedulable inst.
duke@435 2192 _bb_end++;
duke@435 2193 }
duke@435 2194
duke@435 2195 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2196
duke@435 2197 // Compute the register antidependencies for the basic block
duke@435 2198 ComputeRegisterAntidependencies(bb);
duke@435 2199 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2200
duke@435 2201 // Compute intra-bb latencies for the nodes
duke@435 2202 ComputeLocalLatenciesForward(bb);
duke@435 2203
duke@435 2204 // Compute the usage within the block, and set the list of all nodes
duke@435 2205 // in the block that have no uses within the block.
duke@435 2206 ComputeUseCount(bb);
duke@435 2207
duke@435 2208 // Schedule the remaining instructions in the block
duke@435 2209 while ( _available.size() > 0 ) {
duke@435 2210 Node *n = ChooseNodeToBundle();
duke@435 2211 AddNodeToBundle(n,bb);
duke@435 2212 }
duke@435 2213
duke@435 2214 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2215 #ifdef ASSERT
duke@435 2216 for( uint l = _bb_start; l < _bb_end; l++ ) {
duke@435 2217 Node *n = bb->_nodes[l];
duke@435 2218 uint m;
duke@435 2219 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2220 if( _scheduled[m] == n )
duke@435 2221 break;
duke@435 2222 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2223 }
duke@435 2224 #endif
duke@435 2225
duke@435 2226 // Now copy the instructions (in reverse order) back to the block
duke@435 2227 for ( uint k = _bb_start; k < _bb_end; k++ )
duke@435 2228 bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
duke@435 2229
duke@435 2230 #ifndef PRODUCT
duke@435 2231 if (_cfg->C->trace_opto_output()) {
duke@435 2232 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2233 uint current = 0;
duke@435 2234 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 2235 Node *n = bb->_nodes[j];
duke@435 2236 if( valid_bundle_info(n) ) {
duke@435 2237 Bundle *bundle = node_bundling(n);
duke@435 2238 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2239 tty->print("*** Bundle: ");
duke@435 2240 bundle->dump();
duke@435 2241 }
duke@435 2242 n->dump();
duke@435 2243 }
duke@435 2244 }
duke@435 2245 }
duke@435 2246 #endif
duke@435 2247 #ifdef ASSERT
duke@435 2248 verify_good_schedule(bb,"after block local scheduling");
duke@435 2249 #endif
duke@435 2250 }
duke@435 2251
duke@435 2252 #ifndef PRODUCT
duke@435 2253 if (_cfg->C->trace_opto_output())
duke@435 2254 tty->print("# <- DoScheduling\n");
duke@435 2255 #endif
duke@435 2256
duke@435 2257 // Record final node-bundling array location
duke@435 2258 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2259
duke@435 2260 } // end DoScheduling
duke@435 2261
duke@435 2262 //------------------------------verify_good_schedule---------------------------
duke@435 2263 // Verify that no live-range used in the block is killed in the block by a
duke@435 2264 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2265
duke@435 2266 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2267 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2268 for( uint i=0; i<from->len(); i++ )
duke@435 2269 if( from->in(i) == to )
duke@435 2270 return true;
duke@435 2271 return false;
duke@435 2272 }
duke@435 2273
duke@435 2274 #ifdef ASSERT
duke@435 2275 //------------------------------verify_do_def----------------------------------
duke@435 2276 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2277 // Check for bad kills
duke@435 2278 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2279 Node *prior_use = _reg_node[def];
duke@435 2280 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2281 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2282 n->dump();
duke@435 2283 tty->print_cr("...");
duke@435 2284 prior_use->dump();
duke@435 2285 assert_msg(edge_from_to(prior_use,n),msg);
duke@435 2286 }
duke@435 2287 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2288 }
duke@435 2289 }
duke@435 2290
duke@435 2291 //------------------------------verify_good_schedule---------------------------
duke@435 2292 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2293
duke@435 2294 // Zap to something reasonable for the verify code
duke@435 2295 _reg_node.clear();
duke@435 2296
duke@435 2297 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2298 // kill a live value (other than the one it's supposed to). Add each
duke@435 2299 // USE to the live set.
duke@435 2300 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
duke@435 2301 Node *n = b->_nodes[i];
duke@435 2302 int n_op = n->Opcode();
duke@435 2303 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2304 // Fat-proj kills a slew of registers
duke@435 2305 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2306 while( rm.is_NotEmpty() ) {
duke@435 2307 OptoReg::Name kill = rm.find_first_elem();
duke@435 2308 rm.Remove(kill);
duke@435 2309 verify_do_def( n, kill, msg );
duke@435 2310 }
duke@435 2311 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2312 // Get DEF'd registers the normal way
duke@435 2313 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2314 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2315 }
duke@435 2316
duke@435 2317 // Now make all USEs live
duke@435 2318 for( uint i=1; i<n->req(); i++ ) {
duke@435 2319 Node *def = n->in(i);
duke@435 2320 assert(def != 0, "input edge required");
duke@435 2321 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2322 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2323 if( OptoReg::is_valid(reg_lo) ) {
duke@435 2324 assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
duke@435 2325 _reg_node.map(reg_lo,n);
duke@435 2326 }
duke@435 2327 if( OptoReg::is_valid(reg_hi) ) {
duke@435 2328 assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
duke@435 2329 _reg_node.map(reg_hi,n);
duke@435 2330 }
duke@435 2331 }
duke@435 2332
duke@435 2333 }
duke@435 2334
duke@435 2335 // Zap to something reasonable for the Antidependence code
duke@435 2336 _reg_node.clear();
duke@435 2337 }
duke@435 2338 #endif
duke@435 2339
duke@435 2340 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2341 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2342 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2343 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2344 from = from->in(0);
duke@435 2345 }
duke@435 2346 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2347 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2348 from->add_prec(to);
duke@435 2349 }
duke@435 2350
duke@435 2351 //------------------------------anti_do_def------------------------------------
duke@435 2352 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2353 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2354 return;
duke@435 2355
duke@435 2356 Node *pinch = _reg_node[def_reg]; // Get pinch point
duke@435 2357 if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
duke@435 2358 is_def ) { // Check for a true def (not a kill)
duke@435 2359 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2360 return;
duke@435 2361 }
duke@435 2362
duke@435 2363 Node *kill = def; // Rename 'def' to more descriptive 'kill'
duke@435 2364 debug_only( def = (Node*)0xdeadbeef; )
duke@435 2365
duke@435 2366 // After some number of kills there _may_ be a later def
duke@435 2367 Node *later_def = NULL;
duke@435 2368
duke@435 2369 // Finding a kill requires a real pinch-point.
duke@435 2370 // Check for not already having a pinch-point.
duke@435 2371 // Pinch points are Op_Node's.
duke@435 2372 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2373 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2374 if ( _pinch_free_list.size() > 0) {
duke@435 2375 pinch = _pinch_free_list.pop();
duke@435 2376 } else {
duke@435 2377 pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
duke@435 2378 }
duke@435 2379 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2380 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2381 return;
duke@435 2382 }
duke@435 2383 _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
duke@435 2384 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2385 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2386 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2387 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2388 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2389 later_def = NULL; // and no later def
duke@435 2390 }
duke@435 2391 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2392 } else { // Else have valid pinch point
duke@435 2393 if( pinch->in(0) ) // If there is a later-def
duke@435 2394 later_def = pinch->in(0); // Get it
duke@435 2395 }
duke@435 2396
duke@435 2397 // Add output-dependence edge from later def to kill
duke@435 2398 if( later_def ) // If there is some original def
duke@435 2399 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2400
duke@435 2401 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2402 if( pinch->Opcode() == Op_Node ) {
duke@435 2403 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2404 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2405 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2406 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2407 // Yes, found a use/kill pinch-point
duke@435 2408 pinch->set_req(0,NULL); //
duke@435 2409 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2410 pinch = kill;
duke@435 2411 _reg_node.map(def_reg,pinch);
duke@435 2412 return;
duke@435 2413 }
duke@435 2414 }
duke@435 2415 }
duke@435 2416
duke@435 2417 // Add edge from kill to pinch-point
duke@435 2418 add_prec_edge_from_to(kill,pinch);
duke@435 2419 }
duke@435 2420
duke@435 2421 //------------------------------anti_do_use------------------------------------
duke@435 2422 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2423 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2424 return;
duke@435 2425 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2426 // Check for no later def_reg/kill in block
duke@435 2427 if( pinch && _bbs[pinch->_idx] == b &&
duke@435 2428 // Use has to be block-local as well
duke@435 2429 _bbs[use->_idx] == b ) {
duke@435 2430 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2431 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2432 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2433 // Insert the pinch-point in the block just after the last use
duke@435 2434 b->_nodes.insert(b->find_node(use)+1,pinch);
duke@435 2435 _bb_end++; // Increase size scheduled region in block
duke@435 2436 }
duke@435 2437
duke@435 2438 add_prec_edge_from_to(pinch,use);
duke@435 2439 }
duke@435 2440 }
duke@435 2441
duke@435 2442 //------------------------------ComputeRegisterAntidependences-----------------
duke@435 2443 // We insert antidependences between the reads and following write of
duke@435 2444 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2445 // number of added references should be fairly small, especially as we
duke@435 2446 // are only adding references within the current basic block.
duke@435 2447 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2448
duke@435 2449 #ifdef ASSERT
duke@435 2450 verify_good_schedule(b,"before block local scheduling");
duke@435 2451 #endif
duke@435 2452
duke@435 2453 // A valid schedule, for each register independently, is an endless cycle
duke@435 2454 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2455 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2456 // def. The uses are allowed to float relative to each other, as are the
duke@435 2457 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2458 // antidependencies between all uses of a single def and all kills that
duke@435 2459 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2460 // & kills are already serialized with true or antidependencies. To keep
duke@435 2461 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2462 // one use or more than one kill/def.
duke@435 2463
duke@435 2464 // We add dependencies in one bottom-up pass.
duke@435 2465
duke@435 2466 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2467
duke@435 2468 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2469 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2470 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2471 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2472 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2473 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2474 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2475
duke@435 2476 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2477 // put an edge from the pinch point to the USE.
duke@435 2478
duke@435 2479 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2480 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2481 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2482 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2483 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2484 // it being in the current block.
duke@435 2485 bool fat_proj_seen = false;
duke@435 2486 uint last_safept = _bb_end-1;
duke@435 2487 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
duke@435 2488 Node* last_safept_node = end_node;
duke@435 2489 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
duke@435 2490 Node *n = b->_nodes[i];
duke@435 2491 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
duke@435 2492 if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2493 // Fat-proj kills a slew of registers
duke@435 2494 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2495 // hence the is_def flag.
duke@435 2496 fat_proj_seen = true;
duke@435 2497 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2498 while( rm.is_NotEmpty() ) {
duke@435 2499 OptoReg::Name kill = rm.find_first_elem();
duke@435 2500 rm.Remove(kill);
duke@435 2501 anti_do_def( b, n, kill, is_def );
duke@435 2502 }
duke@435 2503 } else {
duke@435 2504 // Get DEF'd registers the normal way
duke@435 2505 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2506 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2507 }
duke@435 2508
duke@435 2509 // Check each register used by this instruction for a following DEF/KILL
duke@435 2510 // that must occur afterward and requires an anti-dependence edge.
duke@435 2511 for( uint j=0; j<n->req(); j++ ) {
duke@435 2512 Node *def = n->in(j);
duke@435 2513 if( def ) {
duke@435 2514 assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2515 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2516 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2517 }
duke@435 2518 }
duke@435 2519 // Do not allow defs of new derived values to float above GC
duke@435 2520 // points unless the base is definitely available at the GC point.
duke@435 2521
duke@435 2522 Node *m = b->_nodes[i];
duke@435 2523
duke@435 2524 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2525 if( last_safept_node != end_node &&
duke@435 2526 m != last_safept_node) {
duke@435 2527 for (uint k = 1; k < m->req(); k++) {
duke@435 2528 const Type *t = m->in(k)->bottom_type();
duke@435 2529 if( t->isa_oop_ptr() &&
duke@435 2530 t->is_ptr()->offset() != 0 ) {
duke@435 2531 last_safept_node->add_prec( m );
duke@435 2532 break;
duke@435 2533 }
duke@435 2534 }
duke@435 2535 }
duke@435 2536
duke@435 2537 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2538 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
duke@435 2539 if( b->_nodes[last_safept] != last_safept_node ) {
duke@435 2540 last_safept = b->find_node(last_safept_node);
duke@435 2541 }
duke@435 2542 for( uint j=last_safept; j > i; j-- ) {
duke@435 2543 Node *mach = b->_nodes[j];
duke@435 2544 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2545 mach->add_prec( n );
duke@435 2546 }
duke@435 2547 last_safept = i;
duke@435 2548 last_safept_node = m;
duke@435 2549 }
duke@435 2550 }
duke@435 2551
duke@435 2552 if (fat_proj_seen) {
duke@435 2553 // Garbage collect pinch nodes that were not consumed.
duke@435 2554 // They are usually created by a fat kill MachProj for a call.
duke@435 2555 garbage_collect_pinch_nodes();
duke@435 2556 }
duke@435 2557 }
duke@435 2558
duke@435 2559 //------------------------------garbage_collect_pinch_nodes-------------------------------
duke@435 2560
duke@435 2561 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2562 //
duke@435 2563 // The block scheduler's insertion of anti-dependence
duke@435 2564 // edges creates many pinch nodes when the block contains
duke@435 2565 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2566 // combinatorial explosion of edges. If a set of kills for a
duke@435 2567 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2568 // than adding an edge in the graph between each pair of kill
duke@435 2569 // and use (or def), a pinch is inserted between them:
duke@435 2570 //
duke@435 2571 // use1 use2 use3
duke@435 2572 // \ | /
duke@435 2573 // \ | /
duke@435 2574 // pinch
duke@435 2575 // / | \
duke@435 2576 // / | \
duke@435 2577 // kill1 kill2 kill3
duke@435 2578 //
duke@435 2579 // One pinch node is created per register killed when
duke@435 2580 // the second call is encountered during a backwards pass
duke@435 2581 // over the block. Most of these pinch nodes are never
duke@435 2582 // wired into the graph because the register is never
duke@435 2583 // used or def'ed in the block.
duke@435 2584 //
duke@435 2585 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2586 #ifndef PRODUCT
duke@435 2587 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2588 #endif
duke@435 2589 int trace_cnt = 0;
duke@435 2590 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2591 Node* pinch = _reg_node[k];
duke@435 2592 if (pinch != NULL && pinch->Opcode() == Op_Node &&
duke@435 2593 // no predecence input edges
duke@435 2594 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2595 cleanup_pinch(pinch);
duke@435 2596 _pinch_free_list.push(pinch);
duke@435 2597 _reg_node.map(k, NULL);
duke@435 2598 #ifndef PRODUCT
duke@435 2599 if (_cfg->C->trace_opto_output()) {
duke@435 2600 trace_cnt++;
duke@435 2601 if (trace_cnt > 40) {
duke@435 2602 tty->print("\n");
duke@435 2603 trace_cnt = 0;
duke@435 2604 }
duke@435 2605 tty->print(" %d", pinch->_idx);
duke@435 2606 }
duke@435 2607 #endif
duke@435 2608 }
duke@435 2609 }
duke@435 2610 #ifndef PRODUCT
duke@435 2611 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2612 #endif
duke@435 2613 }
duke@435 2614
duke@435 2615 // Clean up a pinch node for reuse.
duke@435 2616 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 2617 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 2618
duke@435 2619 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 2620 Node* use = pinch->last_out(i);
duke@435 2621 uint uses_found = 0;
duke@435 2622 for (uint j = use->req(); j < use->len(); j++) {
duke@435 2623 if (use->in(j) == pinch) {
duke@435 2624 use->rm_prec(j);
duke@435 2625 uses_found++;
duke@435 2626 }
duke@435 2627 }
duke@435 2628 assert(uses_found > 0, "must be a precedence edge");
duke@435 2629 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 2630 }
duke@435 2631 // May have a later_def entry
duke@435 2632 pinch->set_req(0, NULL);
duke@435 2633 }
duke@435 2634
duke@435 2635 //------------------------------print_statistics-------------------------------
duke@435 2636 #ifndef PRODUCT
duke@435 2637
duke@435 2638 void Scheduling::dump_available() const {
duke@435 2639 tty->print("#Availist ");
duke@435 2640 for (uint i = 0; i < _available.size(); i++)
duke@435 2641 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 2642 tty->cr();
duke@435 2643 }
duke@435 2644
duke@435 2645 // Print Scheduling Statistics
duke@435 2646 void Scheduling::print_statistics() {
duke@435 2647 // Print the size added by nops for bundling
duke@435 2648 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 2649 _total_nop_size, _total_method_size);
duke@435 2650 if (_total_method_size > 0)
duke@435 2651 tty->print(", for %.2f%%",
duke@435 2652 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 2653 tty->print("\n");
duke@435 2654
duke@435 2655 // Print the number of branch shadows filled
duke@435 2656 if (Pipeline::_branch_has_delay_slot) {
duke@435 2657 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 2658 _total_branches, _total_unconditional_delays);
duke@435 2659 if (_total_branches > 0)
duke@435 2660 tty->print(", for %.2f%%",
duke@435 2661 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 2662 tty->print("\n");
duke@435 2663 }
duke@435 2664
duke@435 2665 uint total_instructions = 0, total_bundles = 0;
duke@435 2666
duke@435 2667 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 2668 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 2669 total_instructions += bundle_count * i;
duke@435 2670 total_bundles += bundle_count;
duke@435 2671 }
duke@435 2672
duke@435 2673 if (total_bundles > 0)
duke@435 2674 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 2675 ((double)total_instructions) / ((double)total_bundles));
duke@435 2676 }
duke@435 2677 #endif

mercurial