src/share/vm/opto/loopnode.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 4023
0acd345fd810
child 4115
e626685e9f6c
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

duke@435 1 /*
brutisso@3489 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/divnode.hpp"
stefank@2314 34 #include "opto/idealGraphPrinter.hpp"
stefank@2314 35 #include "opto/loopnode.hpp"
stefank@2314 36 #include "opto/mulnode.hpp"
stefank@2314 37 #include "opto/rootnode.hpp"
stefank@2314 38 #include "opto/superword.hpp"
duke@435 39
duke@435 40 //=============================================================================
duke@435 41 //------------------------------is_loop_iv-------------------------------------
duke@435 42 // Determine if a node is Counted loop induction variable.
duke@435 43 // The method is declared in node.hpp.
duke@435 44 const Node* Node::is_loop_iv() const {
duke@435 45 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
duke@435 46 this->as_Phi()->region()->is_CountedLoop() &&
duke@435 47 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
duke@435 48 return this;
duke@435 49 } else {
duke@435 50 return NULL;
duke@435 51 }
duke@435 52 }
duke@435 53
duke@435 54 //=============================================================================
duke@435 55 //------------------------------dump_spec--------------------------------------
duke@435 56 // Dump special per-node info
duke@435 57 #ifndef PRODUCT
duke@435 58 void LoopNode::dump_spec(outputStream *st) const {
kvn@2665 59 if (is_inner_loop()) st->print( "inner " );
kvn@2665 60 if (is_partial_peel_loop()) st->print( "partial_peel " );
kvn@2665 61 if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
duke@435 62 }
duke@435 63 #endif
duke@435 64
kvn@2665 65 //------------------------------is_valid_counted_loop-------------------------
kvn@2665 66 bool LoopNode::is_valid_counted_loop() const {
kvn@2665 67 if (is_CountedLoop()) {
kvn@2665 68 CountedLoopNode* l = as_CountedLoop();
kvn@2665 69 CountedLoopEndNode* le = l->loopexit();
kvn@2665 70 if (le != NULL &&
kvn@2665 71 le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
kvn@2665 72 Node* phi = l->phi();
kvn@2665 73 Node* exit = le->proj_out(0 /* false */);
kvn@2665 74 if (exit != NULL && exit->Opcode() == Op_IfFalse &&
kvn@2665 75 phi != NULL && phi->is_Phi() &&
kvn@2665 76 phi->in(LoopNode::LoopBackControl) == l->incr() &&
kvn@2665 77 le->loopnode() == l && le->stride_is_con()) {
kvn@2665 78 return true;
kvn@2665 79 }
kvn@2665 80 }
kvn@2665 81 }
kvn@2665 82 return false;
kvn@2665 83 }
kvn@2665 84
duke@435 85 //------------------------------get_early_ctrl---------------------------------
duke@435 86 // Compute earliest legal control
duke@435 87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
duke@435 88 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
duke@435 89 uint i;
duke@435 90 Node *early;
duke@435 91 if( n->in(0) ) {
duke@435 92 early = n->in(0);
duke@435 93 if( !early->is_CFG() ) // Might be a non-CFG multi-def
duke@435 94 early = get_ctrl(early); // So treat input as a straight data input
duke@435 95 i = 1;
duke@435 96 } else {
duke@435 97 early = get_ctrl(n->in(1));
duke@435 98 i = 2;
duke@435 99 }
duke@435 100 uint e_d = dom_depth(early);
duke@435 101 assert( early, "" );
duke@435 102 for( ; i < n->req(); i++ ) {
duke@435 103 Node *cin = get_ctrl(n->in(i));
duke@435 104 assert( cin, "" );
duke@435 105 // Keep deepest dominator depth
duke@435 106 uint c_d = dom_depth(cin);
duke@435 107 if( c_d > e_d ) { // Deeper guy?
duke@435 108 early = cin; // Keep deepest found so far
duke@435 109 e_d = c_d;
duke@435 110 } else if( c_d == e_d && // Same depth?
duke@435 111 early != cin ) { // If not equal, must use slower algorithm
duke@435 112 // If same depth but not equal, one _must_ dominate the other
duke@435 113 // and we want the deeper (i.e., dominated) guy.
duke@435 114 Node *n1 = early;
duke@435 115 Node *n2 = cin;
duke@435 116 while( 1 ) {
duke@435 117 n1 = idom(n1); // Walk up until break cycle
duke@435 118 n2 = idom(n2);
duke@435 119 if( n1 == cin || // Walked early up to cin
duke@435 120 dom_depth(n2) < c_d )
duke@435 121 break; // early is deeper; keep him
duke@435 122 if( n2 == early || // Walked cin up to early
duke@435 123 dom_depth(n1) < c_d ) {
duke@435 124 early = cin; // cin is deeper; keep him
duke@435 125 break;
duke@435 126 }
duke@435 127 }
duke@435 128 e_d = dom_depth(early); // Reset depth register cache
duke@435 129 }
duke@435 130 }
duke@435 131
duke@435 132 // Return earliest legal location
duke@435 133 assert(early == find_non_split_ctrl(early), "unexpected early control");
duke@435 134
duke@435 135 return early;
duke@435 136 }
duke@435 137
duke@435 138 //------------------------------set_early_ctrl---------------------------------
duke@435 139 // Set earliest legal control
duke@435 140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
duke@435 141 Node *early = get_early_ctrl(n);
duke@435 142
duke@435 143 // Record earliest legal location
duke@435 144 set_ctrl(n, early);
duke@435 145 }
duke@435 146
duke@435 147 //------------------------------set_subtree_ctrl-------------------------------
duke@435 148 // set missing _ctrl entries on new nodes
duke@435 149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
duke@435 150 // Already set? Get out.
duke@435 151 if( _nodes[n->_idx] ) return;
duke@435 152 // Recursively set _nodes array to indicate where the Node goes
duke@435 153 uint i;
duke@435 154 for( i = 0; i < n->req(); ++i ) {
duke@435 155 Node *m = n->in(i);
duke@435 156 if( m && m != C->root() )
duke@435 157 set_subtree_ctrl( m );
duke@435 158 }
duke@435 159
duke@435 160 // Fixup self
duke@435 161 set_early_ctrl( n );
duke@435 162 }
duke@435 163
duke@435 164 //------------------------------is_counted_loop--------------------------------
kvn@2665 165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
duke@435 166 PhaseGVN *gvn = &_igvn;
duke@435 167
duke@435 168 // Counted loop head must be a good RegionNode with only 3 not NULL
duke@435 169 // control input edges: Self, Entry, LoopBack.
kvn@2665 170 if (x->in(LoopNode::Self) == NULL || x->req() != 3)
kvn@2665 171 return false;
duke@435 172
duke@435 173 Node *init_control = x->in(LoopNode::EntryControl);
duke@435 174 Node *back_control = x->in(LoopNode::LoopBackControl);
kvn@2665 175 if (init_control == NULL || back_control == NULL) // Partially dead
kvn@2665 176 return false;
duke@435 177 // Must also check for TOP when looking for a dead loop
kvn@2665 178 if (init_control->is_top() || back_control->is_top())
kvn@2665 179 return false;
duke@435 180
duke@435 181 // Allow funny placement of Safepoint
kvn@2665 182 if (back_control->Opcode() == Op_SafePoint)
duke@435 183 back_control = back_control->in(TypeFunc::Control);
duke@435 184
duke@435 185 // Controlling test for loop
duke@435 186 Node *iftrue = back_control;
duke@435 187 uint iftrue_op = iftrue->Opcode();
kvn@2665 188 if (iftrue_op != Op_IfTrue &&
kvn@2665 189 iftrue_op != Op_IfFalse)
duke@435 190 // I have a weird back-control. Probably the loop-exit test is in
duke@435 191 // the middle of the loop and I am looking at some trailing control-flow
duke@435 192 // merge point. To fix this I would have to partially peel the loop.
kvn@2665 193 return false; // Obscure back-control
duke@435 194
duke@435 195 // Get boolean guarding loop-back test
duke@435 196 Node *iff = iftrue->in(0);
kvn@2665 197 if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
kvn@2665 198 return false;
duke@435 199 BoolNode *test = iff->in(1)->as_Bool();
duke@435 200 BoolTest::mask bt = test->_test._test;
duke@435 201 float cl_prob = iff->as_If()->_prob;
kvn@2665 202 if (iftrue_op == Op_IfFalse) {
duke@435 203 bt = BoolTest(bt).negate();
duke@435 204 cl_prob = 1.0 - cl_prob;
duke@435 205 }
duke@435 206 // Get backedge compare
duke@435 207 Node *cmp = test->in(1);
duke@435 208 int cmp_op = cmp->Opcode();
kvn@2877 209 if (cmp_op != Op_CmpI)
kvn@2665 210 return false; // Avoid pointer & float compares
duke@435 211
duke@435 212 // Find the trip-counter increment & limit. Limit must be loop invariant.
duke@435 213 Node *incr = cmp->in(1);
duke@435 214 Node *limit = cmp->in(2);
duke@435 215
duke@435 216 // ---------
duke@435 217 // need 'loop()' test to tell if limit is loop invariant
duke@435 218 // ---------
duke@435 219
kvn@2665 220 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
kvn@2665 221 Node *tmp = incr; // Then reverse order into the CmpI
duke@435 222 incr = limit;
duke@435 223 limit = tmp;
duke@435 224 bt = BoolTest(bt).commute(); // And commute the exit test
duke@435 225 }
kvn@2665 226 if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
kvn@2665 227 return false;
kvn@2665 228 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 229 return false;
duke@435 230
kvn@2665 231 Node* phi_incr = NULL;
duke@435 232 // Trip-counter increment must be commutative & associative.
kvn@2665 233 if (incr->is_Phi()) {
kvn@2665 234 if (incr->as_Phi()->region() != x || incr->req() != 3)
kvn@2665 235 return false; // Not simple trip counter expression
kvn@2665 236 phi_incr = incr;
kvn@2665 237 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
kvn@2665 238 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 239 return false;
duke@435 240 }
kvn@2665 241
duke@435 242 Node* trunc1 = NULL;
duke@435 243 Node* trunc2 = NULL;
duke@435 244 const TypeInt* iv_trunc_t = NULL;
duke@435 245 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
kvn@2665 246 return false; // Funny increment opcode
duke@435 247 }
kvn@2665 248 assert(incr->Opcode() == Op_AddI, "wrong increment code");
duke@435 249
duke@435 250 // Get merge point
duke@435 251 Node *xphi = incr->in(1);
duke@435 252 Node *stride = incr->in(2);
kvn@2665 253 if (!stride->is_Con()) { // Oops, swap these
kvn@2665 254 if (!xphi->is_Con()) // Is the other guy a constant?
kvn@2665 255 return false; // Nope, unknown stride, bail out
duke@435 256 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
duke@435 257 xphi = stride;
duke@435 258 stride = tmp;
duke@435 259 }
kvn@2665 260 // Stride must be constant
kvn@2665 261 int stride_con = stride->get_int();
kvn@2877 262 if (stride_con == 0)
kvn@2877 263 return false; // missed some peephole opt
kvn@2665 264
kvn@2665 265 if (!xphi->is_Phi())
kvn@2665 266 return false; // Too much math on the trip counter
kvn@2665 267 if (phi_incr != NULL && phi_incr != xphi)
kvn@2665 268 return false;
duke@435 269 PhiNode *phi = xphi->as_Phi();
duke@435 270
duke@435 271 // Phi must be of loop header; backedge must wrap to increment
kvn@2665 272 if (phi->region() != x)
kvn@2665 273 return false;
kvn@2665 274 if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
kvn@2665 275 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
kvn@2665 276 return false;
duke@435 277 }
duke@435 278 Node *init_trip = phi->in(LoopNode::EntryControl);
duke@435 279
duke@435 280 // If iv trunc type is smaller than int, check for possible wrap.
duke@435 281 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
duke@435 282 assert(trunc1 != NULL, "must have found some truncation");
duke@435 283
duke@435 284 // Get a better type for the phi (filtered thru if's)
duke@435 285 const TypeInt* phi_ft = filtered_type(phi);
duke@435 286
duke@435 287 // Can iv take on a value that will wrap?
duke@435 288 //
duke@435 289 // Ensure iv's limit is not within "stride" of the wrap value.
duke@435 290 //
duke@435 291 // Example for "short" type
duke@435 292 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
duke@435 293 // If the stride is +10, then the last value of the induction
duke@435 294 // variable before the increment (phi_ft->_hi) must be
duke@435 295 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
duke@435 296 // ensure no truncation occurs after the increment.
duke@435 297
duke@435 298 if (stride_con > 0) {
duke@435 299 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
duke@435 300 iv_trunc_t->_lo > phi_ft->_lo) {
kvn@2665 301 return false; // truncation may occur
duke@435 302 }
duke@435 303 } else if (stride_con < 0) {
duke@435 304 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
duke@435 305 iv_trunc_t->_hi < phi_ft->_hi) {
kvn@2665 306 return false; // truncation may occur
duke@435 307 }
duke@435 308 }
duke@435 309 // No possibility of wrap so truncation can be discarded
duke@435 310 // Promote iv type to Int
duke@435 311 } else {
duke@435 312 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
duke@435 313 }
duke@435 314
kvn@2665 315 // If the condition is inverted and we will be rolling
kvn@2665 316 // through MININT to MAXINT, then bail out.
kvn@2665 317 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
kvn@2665 318 // Odd stride
kvn@2665 319 bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
kvn@2665 320 // Count down loop rolls through MAXINT
kvn@2665 321 (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
kvn@2665 322 // Count up loop rolls through MININT
kvn@2877 323 (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
kvn@2665 324 return false; // Bail out
kvn@2665 325 }
kvn@2665 326
kvn@2665 327 const TypeInt* init_t = gvn->type(init_trip)->is_int();
kvn@2665 328 const TypeInt* limit_t = gvn->type(limit)->is_int();
kvn@2665 329
kvn@2665 330 if (stride_con > 0) {
kvn@2665 331 long init_p = (long)init_t->_lo + stride_con;
kvn@2665 332 if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
kvn@2665 333 return false; // cyclic loop or this loop trips only once
kvn@2665 334 } else {
kvn@2665 335 long init_p = (long)init_t->_hi + stride_con;
kvn@2665 336 if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
kvn@2665 337 return false; // cyclic loop or this loop trips only once
kvn@2665 338 }
kvn@2665 339
duke@435 340 // =================================================
duke@435 341 // ---- SUCCESS! Found A Trip-Counted Loop! -----
duke@435 342 //
kvn@2665 343 assert(x->Opcode() == Op_Loop, "regular loops only");
duke@435 344 C->print_method("Before CountedLoop", 3);
kvn@2877 345
kvn@2877 346 Node *hook = new (C, 6) Node(6);
kvn@2877 347
kvn@2877 348 if (LoopLimitCheck) {
kvn@2877 349
kvn@2877 350 // ===================================================
kvn@2877 351 // Generate loop limit check to avoid integer overflow
kvn@2877 352 // in cases like next (cyclic loops):
kvn@2877 353 //
kvn@2877 354 // for (i=0; i <= max_jint; i++) {}
kvn@2877 355 // for (i=0; i < max_jint; i+=2) {}
kvn@2877 356 //
kvn@2877 357 //
kvn@2877 358 // Limit check predicate depends on the loop test:
kvn@2877 359 //
kvn@2877 360 // for(;i != limit; i++) --> limit <= (max_jint)
kvn@2877 361 // for(;i < limit; i+=stride) --> limit <= (max_jint - stride + 1)
kvn@2877 362 // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride )
kvn@2877 363 //
kvn@2877 364
kvn@2877 365 // Check if limit is excluded to do more precise int overflow check.
kvn@2877 366 bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
kvn@2877 367 int stride_m = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
kvn@2877 368
kvn@2877 369 // If compare points directly to the phi we need to adjust
kvn@2877 370 // the compare so that it points to the incr. Limit have
kvn@2877 371 // to be adjusted to keep trip count the same and the
kvn@2877 372 // adjusted limit should be checked for int overflow.
kvn@2877 373 if (phi_incr != NULL) {
kvn@2877 374 stride_m += stride_con;
kvn@2877 375 }
kvn@2877 376
kvn@2877 377 if (limit->is_Con()) {
kvn@2877 378 int limit_con = limit->get_int();
kvn@2877 379 if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
kvn@2877 380 (stride_con < 0 && limit_con < (min_jint - stride_m))) {
kvn@2877 381 // Bailout: it could be integer overflow.
kvn@2877 382 return false;
kvn@2877 383 }
kvn@2877 384 } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
kvn@2877 385 (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
kvn@2877 386 // Limit's type may satisfy the condition, for example,
kvn@2877 387 // when it is an array length.
kvn@2877 388 } else {
kvn@2877 389 // Generate loop's limit check.
kvn@2877 390 // Loop limit check predicate should be near the loop.
kvn@2877 391 ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
kvn@2877 392 if (!limit_check_proj) {
kvn@2877 393 // The limit check predicate is not generated if this method trapped here before.
kvn@2877 394 #ifdef ASSERT
kvn@2877 395 if (TraceLoopLimitCheck) {
kvn@2877 396 tty->print("missing loop limit check:");
kvn@2877 397 loop->dump_head();
kvn@2877 398 x->dump(1);
kvn@2877 399 }
kvn@2877 400 #endif
kvn@2877 401 return false;
kvn@2877 402 }
kvn@2877 403
kvn@2877 404 IfNode* check_iff = limit_check_proj->in(0)->as_If();
kvn@2877 405 Node* cmp_limit;
kvn@2877 406 Node* bol;
kvn@2877 407
kvn@2877 408 if (stride_con > 0) {
kvn@2877 409 cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
kvn@2877 410 bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
kvn@2877 411 } else {
kvn@2877 412 cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
kvn@2877 413 bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
kvn@2877 414 }
kvn@2877 415 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
kvn@2877 416 bol = _igvn.register_new_node_with_optimizer(bol);
kvn@2877 417 set_subtree_ctrl(bol);
kvn@2877 418
kvn@2877 419 // Replace condition in original predicate but preserve Opaque node
kvn@2877 420 // so that previous predicates could be found.
kvn@2877 421 assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
kvn@2877 422 check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
kvn@2877 423 Node* opq = check_iff->in(1)->in(1);
kvn@2877 424 _igvn.hash_delete(opq);
kvn@2877 425 opq->set_req(1, bol);
kvn@2877 426 // Update ctrl.
kvn@2877 427 set_ctrl(opq, check_iff->in(0));
kvn@2877 428 set_ctrl(check_iff->in(1), check_iff->in(0));
kvn@2877 429
kvn@2727 430 #ifndef PRODUCT
kvn@2877 431 // report that the loop predication has been actually performed
kvn@2877 432 // for this loop
kvn@2877 433 if (TraceLoopLimitCheck) {
kvn@2877 434 tty->print_cr("Counted Loop Limit Check generated:");
kvn@2877 435 debug_only( bol->dump(2); )
kvn@2877 436 }
kvn@2877 437 #endif
kvn@2727 438 }
kvn@2877 439
kvn@2877 440 if (phi_incr != NULL) {
kvn@2877 441 // If compare points directly to the phi we need to adjust
kvn@2877 442 // the compare so that it points to the incr. Limit have
kvn@2877 443 // to be adjusted to keep trip count the same and we
kvn@2877 444 // should avoid int overflow.
kvn@2877 445 //
kvn@2877 446 // i = init; do {} while(i++ < limit);
kvn@2877 447 // is converted to
kvn@2877 448 // i = init; do {} while(++i < limit+1);
kvn@2877 449 //
kvn@2877 450 limit = gvn->transform(new (C, 3) AddINode(limit, stride));
kvn@2877 451 }
kvn@2877 452
kvn@2877 453 // Now we need to canonicalize loop condition.
kvn@2877 454 if (bt == BoolTest::ne) {
kvn@2877 455 assert(stride_con == 1 || stride_con == -1, "simple increment only");
kvn@2979 456 // 'ne' can be replaced with 'lt' only when init < limit.
kvn@2979 457 if (stride_con > 0 && init_t->_hi < limit_t->_lo)
kvn@2979 458 bt = BoolTest::lt;
kvn@2979 459 // 'ne' can be replaced with 'gt' only when init > limit.
kvn@2979 460 if (stride_con < 0 && init_t->_lo > limit_t->_hi)
kvn@2979 461 bt = BoolTest::gt;
kvn@2877 462 }
kvn@2877 463
kvn@2877 464 if (incl_limit) {
kvn@2877 465 // The limit check guaranties that 'limit <= (max_jint - stride)' so
kvn@2877 466 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
kvn@2877 467 //
kvn@2877 468 Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
kvn@2877 469 limit = gvn->transform(new (C, 3) AddINode(limit, one));
kvn@2877 470 if (bt == BoolTest::le)
kvn@2877 471 bt = BoolTest::lt;
kvn@2877 472 else if (bt == BoolTest::ge)
kvn@2877 473 bt = BoolTest::gt;
kvn@2877 474 else
kvn@2877 475 ShouldNotReachHere();
kvn@2877 476 }
kvn@2877 477 set_subtree_ctrl( limit );
kvn@2877 478
kvn@2877 479 } else { // LoopLimitCheck
kvn@2877 480
duke@435 481 // If compare points to incr, we are ok. Otherwise the compare
duke@435 482 // can directly point to the phi; in this case adjust the compare so that
twisti@1040 483 // it points to the incr by adjusting the limit.
kvn@2665 484 if (cmp->in(1) == phi || cmp->in(2) == phi)
duke@435 485 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
duke@435 486
duke@435 487 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
duke@435 488 // Final value for iterator should be: trip_count * stride + init_trip.
duke@435 489 Node *one_p = gvn->intcon( 1);
duke@435 490 Node *one_m = gvn->intcon(-1);
duke@435 491
duke@435 492 Node *trip_count = NULL;
duke@435 493 switch( bt ) {
duke@435 494 case BoolTest::eq:
kvn@2665 495 ShouldNotReachHere();
duke@435 496 case BoolTest::ne: // Ahh, the case we desire
kvn@2665 497 if (stride_con == 1)
duke@435 498 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
kvn@2665 499 else if (stride_con == -1)
duke@435 500 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
duke@435 501 else
kvn@2665 502 ShouldNotReachHere();
kvn@2665 503 set_subtree_ctrl(trip_count);
duke@435 504 //_loop.map(trip_count->_idx,loop(limit));
duke@435 505 break;
duke@435 506 case BoolTest::le: // Maybe convert to '<' case
duke@435 507 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
duke@435 508 set_subtree_ctrl( limit );
duke@435 509 hook->init_req(4, limit);
duke@435 510
duke@435 511 bt = BoolTest::lt;
duke@435 512 // Make the new limit be in the same loop nest as the old limit
duke@435 513 //_loop.map(limit->_idx,limit_loop);
duke@435 514 // Fall into next case
duke@435 515 case BoolTest::lt: { // Maybe convert to '!=' case
kvn@2665 516 if (stride_con < 0) // Count down loop rolls through MAXINT
kvn@2665 517 ShouldNotReachHere();
duke@435 518 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 519 set_subtree_ctrl( range );
duke@435 520 hook->init_req(0, range);
duke@435 521
duke@435 522 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 523 set_subtree_ctrl( bias );
duke@435 524 hook->init_req(1, bias);
duke@435 525
duke@435 526 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
duke@435 527 set_subtree_ctrl( bias1 );
duke@435 528 hook->init_req(2, bias1);
duke@435 529
duke@435 530 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 531 set_subtree_ctrl( trip_count );
duke@435 532 hook->init_req(3, trip_count);
duke@435 533 break;
duke@435 534 }
duke@435 535
duke@435 536 case BoolTest::ge: // Maybe convert to '>' case
duke@435 537 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
duke@435 538 set_subtree_ctrl( limit );
duke@435 539 hook->init_req(4 ,limit);
duke@435 540
duke@435 541 bt = BoolTest::gt;
duke@435 542 // Make the new limit be in the same loop nest as the old limit
duke@435 543 //_loop.map(limit->_idx,limit_loop);
duke@435 544 // Fall into next case
duke@435 545 case BoolTest::gt: { // Maybe convert to '!=' case
kvn@2665 546 if (stride_con > 0) // count up loop rolls through MININT
kvn@2665 547 ShouldNotReachHere();
duke@435 548 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 549 set_subtree_ctrl( range );
duke@435 550 hook->init_req(0, range);
duke@435 551
duke@435 552 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 553 set_subtree_ctrl( bias );
duke@435 554 hook->init_req(1, bias);
duke@435 555
duke@435 556 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
duke@435 557 set_subtree_ctrl( bias1 );
duke@435 558 hook->init_req(2, bias1);
duke@435 559
duke@435 560 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 561 set_subtree_ctrl( trip_count );
duke@435 562 hook->init_req(3, trip_count);
duke@435 563 break;
duke@435 564 }
kvn@2665 565 } // switch( bt )
duke@435 566
duke@435 567 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
duke@435 568 set_subtree_ctrl( span );
duke@435 569 hook->init_req(5, span);
duke@435 570
duke@435 571 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
duke@435 572 set_subtree_ctrl( limit );
duke@435 573
kvn@2877 574 } // LoopLimitCheck
kvn@2877 575
kvn@2665 576 // Check for SafePoint on backedge and remove
kvn@2665 577 Node *sfpt = x->in(LoopNode::LoopBackControl);
kvn@2665 578 if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
kvn@2665 579 lazy_replace( sfpt, iftrue );
kvn@4023 580 if (loop->_safepts != NULL) {
kvn@4023 581 loop->_safepts->yank(sfpt);
kvn@4023 582 }
kvn@2665 583 loop->_tail = iftrue;
kvn@2665 584 }
kvn@2665 585
duke@435 586 // Build a canonical trip test.
duke@435 587 // Clone code, as old values may be in use.
duke@435 588 incr = incr->clone();
kvn@3135 589 incr->set_req(1,phi);
duke@435 590 incr->set_req(2,stride);
duke@435 591 incr = _igvn.register_new_node_with_optimizer(incr);
duke@435 592 set_early_ctrl( incr );
kvn@3135 593 _igvn.hash_delete(phi);
kvn@3135 594 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
kvn@3135 595
kvn@3135 596 // If phi type is more restrictive than Int, raise to
kvn@3135 597 // Int to prevent (almost) infinite recursion in igvn
kvn@3135 598 // which can only handle integer types for constants or minint..maxint.
kvn@3135 599 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
kvn@3135 600 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
kvn@3135 601 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
kvn@3135 602 nphi = _igvn.register_new_node_with_optimizer(nphi);
kvn@3135 603 set_ctrl(nphi, get_ctrl(phi));
kvn@3135 604 _igvn.replace_node(phi, nphi);
kvn@3135 605 phi = nphi->as_Phi();
kvn@3135 606 }
duke@435 607 cmp = cmp->clone();
duke@435 608 cmp->set_req(1,incr);
duke@435 609 cmp->set_req(2,limit);
duke@435 610 cmp = _igvn.register_new_node_with_optimizer(cmp);
duke@435 611 set_ctrl(cmp, iff->in(0));
duke@435 612
kvn@2665 613 test = test->clone()->as_Bool();
kvn@2665 614 (*(BoolTest*)&test->_test)._test = bt;
duke@435 615 test->set_req(1,cmp);
duke@435 616 _igvn.register_new_node_with_optimizer(test);
duke@435 617 set_ctrl(test, iff->in(0));
duke@435 618
duke@435 619 // Replace the old IfNode with a new LoopEndNode
kvn@2665 620 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
duke@435 621 IfNode *le = lex->as_If();
duke@435 622 uint dd = dom_depth(iff);
duke@435 623 set_idom(le, le->in(0), dd); // Update dominance for loop exit
duke@435 624 set_loop(le, loop);
duke@435 625
duke@435 626 // Get the loop-exit control
kvn@2665 627 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
duke@435 628
duke@435 629 // Need to swap loop-exit and loop-back control?
kvn@2665 630 if (iftrue_op == Op_IfFalse) {
duke@435 631 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
duke@435 632 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
duke@435 633
duke@435 634 loop->_tail = back_control = ift2;
duke@435 635 set_loop(ift2, loop);
kvn@2665 636 set_loop(iff2, get_loop(iffalse));
duke@435 637
duke@435 638 // Lazy update of 'get_ctrl' mechanism.
kvn@2665 639 lazy_replace_proj( iffalse, iff2 );
kvn@2665 640 lazy_replace_proj( iftrue, ift2 );
duke@435 641
duke@435 642 // Swap names
kvn@2665 643 iffalse = iff2;
kvn@2665 644 iftrue = ift2;
duke@435 645 } else {
kvn@2665 646 _igvn.hash_delete(iffalse);
duke@435 647 _igvn.hash_delete(iftrue);
kvn@2665 648 iffalse->set_req_X( 0, le, &_igvn );
kvn@2665 649 iftrue ->set_req_X( 0, le, &_igvn );
duke@435 650 }
duke@435 651
kvn@2665 652 set_idom(iftrue, le, dd+1);
kvn@2665 653 set_idom(iffalse, le, dd+1);
kvn@2665 654 assert(iff->outcnt() == 0, "should be dead now");
kvn@2665 655 lazy_replace( iff, le ); // fix 'get_ctrl'
duke@435 656
duke@435 657 // Now setup a new CountedLoopNode to replace the existing LoopNode
duke@435 658 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
kvn@2665 659 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
duke@435 660 // The following assert is approximately true, and defines the intention
duke@435 661 // of can_be_counted_loop. It fails, however, because phase->type
duke@435 662 // is not yet initialized for this loop and its parts.
duke@435 663 //assert(l->can_be_counted_loop(this), "sanity");
duke@435 664 _igvn.register_new_node_with_optimizer(l);
duke@435 665 set_loop(l, loop);
duke@435 666 loop->_head = l;
duke@435 667 // Fix all data nodes placed at the old loop head.
duke@435 668 // Uses the lazy-update mechanism of 'get_ctrl'.
duke@435 669 lazy_replace( x, l );
duke@435 670 set_idom(l, init_control, dom_depth(x));
duke@435 671
twisti@1040 672 // Check for immediately preceding SafePoint and remove
duke@435 673 Node *sfpt2 = le->in(0);
kvn@4023 674 if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
duke@435 675 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
kvn@4023 676 if (loop->_safepts != NULL) {
kvn@4023 677 loop->_safepts->yank(sfpt2);
kvn@4023 678 }
kvn@4023 679 }
duke@435 680
duke@435 681 // Free up intermediate goo
duke@435 682 _igvn.remove_dead_node(hook);
duke@435 683
kvn@2665 684 #ifdef ASSERT
kvn@2665 685 assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
kvn@2665 686 assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
kvn@2665 687 #endif
kvn@2877 688 #ifndef PRODUCT
kvn@2877 689 if (TraceLoopOpts) {
kvn@2877 690 tty->print("Counted ");
kvn@2877 691 loop->dump_head();
kvn@2877 692 }
kvn@2877 693 #endif
kvn@2665 694
duke@435 695 C->print_method("After CountedLoop", 3);
duke@435 696
kvn@2665 697 return true;
duke@435 698 }
duke@435 699
kvn@2877 700 //----------------------exact_limit-------------------------------------------
kvn@2877 701 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
kvn@2877 702 assert(loop->_head->is_CountedLoop(), "");
kvn@2877 703 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 704 assert(cl->is_valid_counted_loop(), "");
kvn@2877 705
kvn@2877 706 if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
kvn@2877 707 cl->limit()->Opcode() == Op_LoopLimit) {
kvn@2877 708 // Old code has exact limit (it could be incorrect in case of int overflow).
kvn@2877 709 // Loop limit is exact with stride == 1. And loop may already have exact limit.
kvn@2877 710 return cl->limit();
kvn@2877 711 }
kvn@2877 712 Node *limit = NULL;
kvn@2877 713 #ifdef ASSERT
kvn@2877 714 BoolTest::mask bt = cl->loopexit()->test_trip();
kvn@2877 715 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
kvn@2877 716 #endif
kvn@2877 717 if (cl->has_exact_trip_count()) {
kvn@2877 718 // Simple case: loop has constant boundaries.
kvn@2877 719 // Use longs to avoid integer overflow.
kvn@2877 720 int stride_con = cl->stride_con();
kvn@2877 721 long init_con = cl->init_trip()->get_int();
kvn@2877 722 long limit_con = cl->limit()->get_int();
kvn@2877 723 julong trip_cnt = cl->trip_count();
kvn@2877 724 long final_con = init_con + trip_cnt*stride_con;
kvn@2877 725 int final_int = (int)final_con;
kvn@2877 726 // The final value should be in integer range since the loop
kvn@2877 727 // is counted and the limit was checked for overflow.
kvn@2877 728 assert(final_con == (long)final_int, "final value should be integer");
kvn@2877 729 limit = _igvn.intcon(final_int);
kvn@2877 730 } else {
kvn@2877 731 // Create new LoopLimit node to get exact limit (final iv value).
kvn@2877 732 limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
kvn@2877 733 register_new_node(limit, cl->in(LoopNode::EntryControl));
kvn@2877 734 }
kvn@2877 735 assert(limit != NULL, "sanity");
kvn@2877 736 return limit;
kvn@2877 737 }
duke@435 738
duke@435 739 //------------------------------Ideal------------------------------------------
duke@435 740 // Return a node which is more "ideal" than the current node.
duke@435 741 // Attempt to convert into a counted-loop.
duke@435 742 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 743 if (!can_be_counted_loop(phase)) {
duke@435 744 phase->C->set_major_progress();
duke@435 745 }
duke@435 746 return RegionNode::Ideal(phase, can_reshape);
duke@435 747 }
duke@435 748
duke@435 749
duke@435 750 //=============================================================================
duke@435 751 //------------------------------Ideal------------------------------------------
duke@435 752 // Return a node which is more "ideal" than the current node.
duke@435 753 // Attempt to convert into a counted-loop.
duke@435 754 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 755 return RegionNode::Ideal(phase, can_reshape);
duke@435 756 }
duke@435 757
duke@435 758 //------------------------------dump_spec--------------------------------------
duke@435 759 // Dump special per-node info
duke@435 760 #ifndef PRODUCT
duke@435 761 void CountedLoopNode::dump_spec(outputStream *st) const {
duke@435 762 LoopNode::dump_spec(st);
kvn@2877 763 if (stride_is_con()) {
duke@435 764 st->print("stride: %d ",stride_con());
duke@435 765 }
kvn@2877 766 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
kvn@2877 767 if (is_main_loop()) st->print("main of N%d", _idx);
kvn@2877 768 if (is_post_loop()) st->print("post of N%d", _main_idx);
duke@435 769 }
duke@435 770 #endif
duke@435 771
duke@435 772 //=============================================================================
duke@435 773 int CountedLoopEndNode::stride_con() const {
duke@435 774 return stride()->bottom_type()->is_int()->get_con();
duke@435 775 }
duke@435 776
kvn@2877 777 //=============================================================================
kvn@2877 778 //------------------------------Value-----------------------------------------
kvn@2877 779 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
kvn@2877 780 const Type* init_t = phase->type(in(Init));
kvn@2877 781 const Type* limit_t = phase->type(in(Limit));
kvn@2877 782 const Type* stride_t = phase->type(in(Stride));
kvn@2877 783 // Either input is TOP ==> the result is TOP
kvn@2877 784 if (init_t == Type::TOP) return Type::TOP;
kvn@2877 785 if (limit_t == Type::TOP) return Type::TOP;
kvn@2877 786 if (stride_t == Type::TOP) return Type::TOP;
kvn@2877 787
kvn@2877 788 int stride_con = stride_t->is_int()->get_con();
kvn@2877 789 if (stride_con == 1)
kvn@2877 790 return NULL; // Identity
kvn@2877 791
kvn@2877 792 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
kvn@2877 793 // Use longs to avoid integer overflow.
kvn@2877 794 long init_con = init_t->is_int()->get_con();
kvn@2877 795 long limit_con = limit_t->is_int()->get_con();
kvn@2877 796 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
kvn@2877 797 long trip_count = (limit_con - init_con + stride_m)/stride_con;
kvn@2877 798 long final_con = init_con + stride_con*trip_count;
kvn@2877 799 int final_int = (int)final_con;
kvn@2877 800 // The final value should be in integer range since the loop
kvn@2877 801 // is counted and the limit was checked for overflow.
kvn@2877 802 assert(final_con == (long)final_int, "final value should be integer");
kvn@2877 803 return TypeInt::make(final_int);
kvn@2877 804 }
kvn@2877 805
kvn@2877 806 return bottom_type(); // TypeInt::INT
kvn@2877 807 }
kvn@2877 808
kvn@2877 809 //------------------------------Ideal------------------------------------------
kvn@2877 810 // Return a node which is more "ideal" than the current node.
kvn@2877 811 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2877 812 if (phase->type(in(Init)) == Type::TOP ||
kvn@2877 813 phase->type(in(Limit)) == Type::TOP ||
kvn@2877 814 phase->type(in(Stride)) == Type::TOP)
kvn@2877 815 return NULL; // Dead
kvn@2877 816
kvn@2877 817 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 818 if (stride_con == 1)
kvn@2877 819 return NULL; // Identity
kvn@2877 820
kvn@2877 821 if (in(Init)->is_Con() && in(Limit)->is_Con())
kvn@2877 822 return NULL; // Value
kvn@2877 823
kvn@2877 824 // Delay following optimizations until all loop optimizations
kvn@2877 825 // done to keep Ideal graph simple.
kvn@2877 826 if (!can_reshape || phase->C->major_progress())
kvn@2877 827 return NULL;
kvn@2877 828
kvn@2877 829 const TypeInt* init_t = phase->type(in(Init) )->is_int();
kvn@2877 830 const TypeInt* limit_t = phase->type(in(Limit))->is_int();
kvn@2877 831 int stride_p;
kvn@2877 832 long lim, ini;
kvn@2877 833 julong max;
kvn@2877 834 if (stride_con > 0) {
kvn@2877 835 stride_p = stride_con;
kvn@2877 836 lim = limit_t->_hi;
kvn@2877 837 ini = init_t->_lo;
kvn@2877 838 max = (julong)max_jint;
kvn@2877 839 } else {
kvn@2877 840 stride_p = -stride_con;
kvn@2877 841 lim = init_t->_hi;
kvn@2877 842 ini = limit_t->_lo;
kvn@2877 843 max = (julong)min_jint;
kvn@2877 844 }
kvn@2877 845 julong range = lim - ini + stride_p;
kvn@2877 846 if (range <= max) {
kvn@2877 847 // Convert to integer expression if it is not overflow.
kvn@2877 848 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@2877 849 Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
kvn@2877 850 Node *bias = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
kvn@2877 851 Node *trip = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
kvn@2877 852 Node *span = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
kvn@2877 853 return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
kvn@2877 854 }
kvn@2877 855
kvn@2877 856 if (is_power_of_2(stride_p) || // divisor is 2^n
kvn@2877 857 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
kvn@2877 858 // Convert to long expression to avoid integer overflow
kvn@2877 859 // and let igvn optimizer convert this division.
kvn@2877 860 //
kvn@2877 861 Node* init = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
kvn@2877 862 Node* limit = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
kvn@2877 863 Node* stride = phase->longcon(stride_con);
kvn@2877 864 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@2877 865
kvn@2877 866 Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
kvn@2877 867 Node *bias = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
kvn@2877 868 Node *span;
kvn@2877 869 if (stride_con > 0 && is_power_of_2(stride_p)) {
kvn@2877 870 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
kvn@2877 871 // and avoid generating rounding for division. Zero trip guard should
kvn@2877 872 // guarantee that init < limit but sometimes the guard is missing and
kvn@2877 873 // we can get situation when init > limit. Note, for the empty loop
kvn@2877 874 // optimization zero trip guard is generated explicitly which leaves
kvn@2877 875 // only RCE predicate where exact limit is used and the predicate
kvn@2877 876 // will simply fail forcing recompilation.
kvn@2877 877 Node* neg_stride = phase->longcon(-stride_con);
kvn@2877 878 span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
kvn@2877 879 } else {
kvn@2877 880 Node *trip = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
kvn@2877 881 span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
kvn@2877 882 }
kvn@2877 883 // Convert back to int
kvn@2877 884 Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
kvn@2877 885 return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
kvn@2877 886 }
kvn@2877 887
kvn@2877 888 return NULL; // No progress
kvn@2877 889 }
kvn@2877 890
kvn@2877 891 //------------------------------Identity---------------------------------------
kvn@2877 892 // If stride == 1 return limit node.
kvn@2877 893 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
kvn@2877 894 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 895 if (stride_con == 1 || stride_con == -1)
kvn@2877 896 return in(Limit);
kvn@2877 897 return this;
kvn@2877 898 }
kvn@2877 899
kvn@2877 900 //=============================================================================
duke@435 901 //----------------------match_incr_with_optional_truncation--------------------
duke@435 902 // Match increment with optional truncation:
duke@435 903 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
duke@435 904 // Return NULL for failure. Success returns the increment node.
duke@435 905 Node* CountedLoopNode::match_incr_with_optional_truncation(
duke@435 906 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
duke@435 907 // Quick cutouts:
brutisso@3489 908 if (expr == NULL || expr->req() != 3) return NULL;
duke@435 909
duke@435 910 Node *t1 = NULL;
duke@435 911 Node *t2 = NULL;
duke@435 912 const TypeInt* trunc_t = TypeInt::INT;
duke@435 913 Node* n1 = expr;
duke@435 914 int n1op = n1->Opcode();
duke@435 915
duke@435 916 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
duke@435 917 if (n1op == Op_AndI &&
duke@435 918 n1->in(2)->is_Con() &&
duke@435 919 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
duke@435 920 // %%% This check should match any mask of 2**K-1.
duke@435 921 t1 = n1;
duke@435 922 n1 = t1->in(1);
duke@435 923 n1op = n1->Opcode();
duke@435 924 trunc_t = TypeInt::CHAR;
duke@435 925 } else if (n1op == Op_RShiftI &&
duke@435 926 n1->in(1) != NULL &&
duke@435 927 n1->in(1)->Opcode() == Op_LShiftI &&
duke@435 928 n1->in(2) == n1->in(1)->in(2) &&
duke@435 929 n1->in(2)->is_Con()) {
duke@435 930 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
duke@435 931 // %%% This check should match any shift in [1..31].
duke@435 932 if (shift == 16 || shift == 8) {
duke@435 933 t1 = n1;
duke@435 934 t2 = t1->in(1);
duke@435 935 n1 = t2->in(1);
duke@435 936 n1op = n1->Opcode();
duke@435 937 if (shift == 16) {
duke@435 938 trunc_t = TypeInt::SHORT;
duke@435 939 } else if (shift == 8) {
duke@435 940 trunc_t = TypeInt::BYTE;
duke@435 941 }
duke@435 942 }
duke@435 943 }
duke@435 944
duke@435 945 // If (maybe after stripping) it is an AddI, we won:
duke@435 946 if (n1op == Op_AddI) {
duke@435 947 *trunc1 = t1;
duke@435 948 *trunc2 = t2;
duke@435 949 *trunc_type = trunc_t;
duke@435 950 return n1;
duke@435 951 }
duke@435 952
duke@435 953 // failed
duke@435 954 return NULL;
duke@435 955 }
duke@435 956
duke@435 957
duke@435 958 //------------------------------filtered_type--------------------------------
duke@435 959 // Return a type based on condition control flow
duke@435 960 // A successful return will be a type that is restricted due
duke@435 961 // to a series of dominating if-tests, such as:
duke@435 962 // if (i < 10) {
duke@435 963 // if (i > 0) {
duke@435 964 // here: "i" type is [1..10)
duke@435 965 // }
duke@435 966 // }
duke@435 967 // or a control flow merge
duke@435 968 // if (i < 10) {
duke@435 969 // do {
duke@435 970 // phi( , ) -- at top of loop type is [min_int..10)
duke@435 971 // i = ?
duke@435 972 // } while ( i < 10)
duke@435 973 //
duke@435 974 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
duke@435 975 assert(n && n->bottom_type()->is_int(), "must be int");
duke@435 976 const TypeInt* filtered_t = NULL;
duke@435 977 if (!n->is_Phi()) {
duke@435 978 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
duke@435 979 filtered_t = filtered_type_from_dominators(n, n_ctrl);
duke@435 980
duke@435 981 } else {
duke@435 982 Node* phi = n->as_Phi();
duke@435 983 Node* region = phi->in(0);
duke@435 984 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
duke@435 985 if (region && region != C->top()) {
duke@435 986 for (uint i = 1; i < phi->req(); i++) {
duke@435 987 Node* val = phi->in(i);
duke@435 988 Node* use_c = region->in(i);
duke@435 989 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
duke@435 990 if (val_t != NULL) {
duke@435 991 if (filtered_t == NULL) {
duke@435 992 filtered_t = val_t;
duke@435 993 } else {
duke@435 994 filtered_t = filtered_t->meet(val_t)->is_int();
duke@435 995 }
duke@435 996 }
duke@435 997 }
duke@435 998 }
duke@435 999 }
duke@435 1000 const TypeInt* n_t = _igvn.type(n)->is_int();
duke@435 1001 if (filtered_t != NULL) {
duke@435 1002 n_t = n_t->join(filtered_t)->is_int();
duke@435 1003 }
duke@435 1004 return n_t;
duke@435 1005 }
duke@435 1006
duke@435 1007
duke@435 1008 //------------------------------filtered_type_from_dominators--------------------------------
duke@435 1009 // Return a possibly more restrictive type for val based on condition control flow of dominators
duke@435 1010 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
duke@435 1011 if (val->is_Con()) {
duke@435 1012 return val->bottom_type()->is_int();
duke@435 1013 }
duke@435 1014 uint if_limit = 10; // Max number of dominating if's visited
duke@435 1015 const TypeInt* rtn_t = NULL;
duke@435 1016
duke@435 1017 if (use_ctrl && use_ctrl != C->top()) {
duke@435 1018 Node* val_ctrl = get_ctrl(val);
duke@435 1019 uint val_dom_depth = dom_depth(val_ctrl);
duke@435 1020 Node* pred = use_ctrl;
duke@435 1021 uint if_cnt = 0;
duke@435 1022 while (if_cnt < if_limit) {
duke@435 1023 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
duke@435 1024 if_cnt++;
never@452 1025 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
duke@435 1026 if (if_t != NULL) {
duke@435 1027 if (rtn_t == NULL) {
duke@435 1028 rtn_t = if_t;
duke@435 1029 } else {
duke@435 1030 rtn_t = rtn_t->join(if_t)->is_int();
duke@435 1031 }
duke@435 1032 }
duke@435 1033 }
duke@435 1034 pred = idom(pred);
duke@435 1035 if (pred == NULL || pred == C->top()) {
duke@435 1036 break;
duke@435 1037 }
duke@435 1038 // Stop if going beyond definition block of val
duke@435 1039 if (dom_depth(pred) < val_dom_depth) {
duke@435 1040 break;
duke@435 1041 }
duke@435 1042 }
duke@435 1043 }
duke@435 1044 return rtn_t;
duke@435 1045 }
duke@435 1046
duke@435 1047
duke@435 1048 //------------------------------dump_spec--------------------------------------
duke@435 1049 // Dump special per-node info
duke@435 1050 #ifndef PRODUCT
duke@435 1051 void CountedLoopEndNode::dump_spec(outputStream *st) const {
duke@435 1052 if( in(TestValue)->is_Bool() ) {
duke@435 1053 BoolTest bt( test_trip()); // Added this for g++.
duke@435 1054
duke@435 1055 st->print("[");
duke@435 1056 bt.dump_on(st);
duke@435 1057 st->print("]");
duke@435 1058 }
duke@435 1059 st->print(" ");
duke@435 1060 IfNode::dump_spec(st);
duke@435 1061 }
duke@435 1062 #endif
duke@435 1063
duke@435 1064 //=============================================================================
duke@435 1065 //------------------------------is_member--------------------------------------
duke@435 1066 // Is 'l' a member of 'this'?
duke@435 1067 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
duke@435 1068 while( l->_nest > _nest ) l = l->_parent;
duke@435 1069 return l == this;
duke@435 1070 }
duke@435 1071
duke@435 1072 //------------------------------set_nest---------------------------------------
duke@435 1073 // Set loop tree nesting depth. Accumulate _has_call bits.
duke@435 1074 int IdealLoopTree::set_nest( uint depth ) {
duke@435 1075 _nest = depth;
duke@435 1076 int bits = _has_call;
duke@435 1077 if( _child ) bits |= _child->set_nest(depth+1);
duke@435 1078 if( bits ) _has_call = 1;
duke@435 1079 if( _next ) bits |= _next ->set_nest(depth );
duke@435 1080 return bits;
duke@435 1081 }
duke@435 1082
duke@435 1083 //------------------------------split_fall_in----------------------------------
duke@435 1084 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 1085 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 1086 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
duke@435 1087 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1088 uint i;
duke@435 1089
duke@435 1090 // Make a new RegionNode to be the landing pad.
duke@435 1091 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
duke@435 1092 phase->set_loop(landing_pad,_parent);
duke@435 1093 // Gather all the fall-in control paths into the landing pad
duke@435 1094 uint icnt = fall_in_cnt;
duke@435 1095 uint oreq = _head->req();
duke@435 1096 for( i = oreq-1; i>0; i-- )
duke@435 1097 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1098 landing_pad->set_req(icnt--,_head->in(i));
duke@435 1099
duke@435 1100 // Peel off PhiNode edges as well
duke@435 1101 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1102 Node *oj = _head->fast_out(j);
duke@435 1103 if( oj->is_Phi() ) {
duke@435 1104 PhiNode* old_phi = oj->as_Phi();
duke@435 1105 assert( old_phi->region() == _head, "" );
duke@435 1106 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
duke@435 1107 Node *p = PhiNode::make_blank(landing_pad, old_phi);
duke@435 1108 uint icnt = fall_in_cnt;
duke@435 1109 for( i = oreq-1; i>0; i-- ) {
duke@435 1110 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1111 p->init_req(icnt--, old_phi->in(i));
duke@435 1112 // Go ahead and clean out old edges from old phi
duke@435 1113 old_phi->del_req(i);
duke@435 1114 }
duke@435 1115 }
duke@435 1116 // Search for CSE's here, because ZKM.jar does a lot of
duke@435 1117 // loop hackery and we need to be a little incremental
duke@435 1118 // with the CSE to avoid O(N^2) node blow-up.
duke@435 1119 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
duke@435 1120 if( p2 ) { // Found CSE
duke@435 1121 p->destruct(); // Recover useless new node
duke@435 1122 p = p2; // Use old node
duke@435 1123 } else {
duke@435 1124 igvn.register_new_node_with_optimizer(p, old_phi);
duke@435 1125 }
duke@435 1126 // Make old Phi refer to new Phi.
duke@435 1127 old_phi->add_req(p);
duke@435 1128 // Check for the special case of making the old phi useless and
duke@435 1129 // disappear it. In JavaGrande I have a case where this useless
duke@435 1130 // Phi is the loop limit and prevents recognizing a CountedLoop
duke@435 1131 // which in turn prevents removing an empty loop.
duke@435 1132 Node *id_old_phi = old_phi->Identity( &igvn );
duke@435 1133 if( id_old_phi != old_phi ) { // Found a simple identity?
kvn@1976 1134 // Note that I cannot call 'replace_node' here, because
duke@435 1135 // that will yank the edge from old_phi to the Region and
duke@435 1136 // I'm mid-iteration over the Region's uses.
duke@435 1137 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
duke@435 1138 Node* use = old_phi->last_out(i);
kvn@3847 1139 igvn.rehash_node_delayed(use);
duke@435 1140 uint uses_found = 0;
duke@435 1141 for (uint j = 0; j < use->len(); j++) {
duke@435 1142 if (use->in(j) == old_phi) {
duke@435 1143 if (j < use->req()) use->set_req (j, id_old_phi);
duke@435 1144 else use->set_prec(j, id_old_phi);
duke@435 1145 uses_found++;
duke@435 1146 }
duke@435 1147 }
duke@435 1148 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 1149 }
duke@435 1150 }
duke@435 1151 igvn._worklist.push(old_phi);
duke@435 1152 }
duke@435 1153 }
duke@435 1154 // Finally clean out the fall-in edges from the RegionNode
duke@435 1155 for( i = oreq-1; i>0; i-- ) {
duke@435 1156 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1157 _head->del_req(i);
duke@435 1158 }
duke@435 1159 }
duke@435 1160 // Transform landing pad
duke@435 1161 igvn.register_new_node_with_optimizer(landing_pad, _head);
duke@435 1162 // Insert landing pad into the header
duke@435 1163 _head->add_req(landing_pad);
duke@435 1164 }
duke@435 1165
duke@435 1166 //------------------------------split_outer_loop-------------------------------
duke@435 1167 // Split out the outermost loop from this shared header.
duke@435 1168 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
duke@435 1169 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1170
duke@435 1171 // Find index of outermost loop; it should also be my tail.
duke@435 1172 uint outer_idx = 1;
duke@435 1173 while( _head->in(outer_idx) != _tail ) outer_idx++;
duke@435 1174
duke@435 1175 // Make a LoopNode for the outermost loop.
duke@435 1176 Node *ctl = _head->in(LoopNode::EntryControl);
duke@435 1177 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
duke@435 1178 outer = igvn.register_new_node_with_optimizer(outer, _head);
duke@435 1179 phase->set_created_loop_node();
kvn@2727 1180
duke@435 1181 // Outermost loop falls into '_head' loop
kvn@3043 1182 _head->set_req(LoopNode::EntryControl, outer);
duke@435 1183 _head->del_req(outer_idx);
duke@435 1184 // Split all the Phis up between '_head' loop and 'outer' loop.
duke@435 1185 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1186 Node *out = _head->fast_out(j);
duke@435 1187 if( out->is_Phi() ) {
duke@435 1188 PhiNode *old_phi = out->as_Phi();
duke@435 1189 assert( old_phi->region() == _head, "" );
duke@435 1190 Node *phi = PhiNode::make_blank(outer, old_phi);
duke@435 1191 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
duke@435 1192 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
duke@435 1193 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
duke@435 1194 // Make old Phi point to new Phi on the fall-in path
kvn@3847 1195 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
duke@435 1196 old_phi->del_req(outer_idx);
duke@435 1197 }
duke@435 1198 }
duke@435 1199
duke@435 1200 // Use the new loop head instead of the old shared one
duke@435 1201 _head = outer;
duke@435 1202 phase->set_loop(_head, this);
duke@435 1203 }
duke@435 1204
duke@435 1205 //------------------------------fix_parent-------------------------------------
duke@435 1206 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
duke@435 1207 loop->_parent = parent;
duke@435 1208 if( loop->_child ) fix_parent( loop->_child, loop );
duke@435 1209 if( loop->_next ) fix_parent( loop->_next , parent );
duke@435 1210 }
duke@435 1211
duke@435 1212 //------------------------------estimate_path_freq-----------------------------
duke@435 1213 static float estimate_path_freq( Node *n ) {
duke@435 1214 // Try to extract some path frequency info
duke@435 1215 IfNode *iff;
duke@435 1216 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
duke@435 1217 uint nop = n->Opcode();
duke@435 1218 if( nop == Op_SafePoint ) { // Skip any safepoint
duke@435 1219 n = n->in(0);
duke@435 1220 continue;
duke@435 1221 }
duke@435 1222 if( nop == Op_CatchProj ) { // Get count from a prior call
duke@435 1223 // Assume call does not always throw exceptions: means the call-site
duke@435 1224 // count is also the frequency of the fall-through path.
duke@435 1225 assert( n->is_CatchProj(), "" );
duke@435 1226 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
duke@435 1227 return 0.0f; // Assume call exception path is rare
duke@435 1228 Node *call = n->in(0)->in(0)->in(0);
duke@435 1229 assert( call->is_Call(), "expect a call here" );
duke@435 1230 const JVMState *jvms = ((CallNode*)call)->jvms();
duke@435 1231 ciMethodData* methodData = jvms->method()->method_data();
duke@435 1232 if (!methodData->is_mature()) return 0.0f; // No call-site data
duke@435 1233 ciProfileData* data = methodData->bci_to_data(jvms->bci());
duke@435 1234 if ((data == NULL) || !data->is_CounterData()) {
duke@435 1235 // no call profile available, try call's control input
duke@435 1236 n = n->in(0);
duke@435 1237 continue;
duke@435 1238 }
duke@435 1239 return data->as_CounterData()->count()/FreqCountInvocations;
duke@435 1240 }
duke@435 1241 // See if there's a gating IF test
duke@435 1242 Node *n_c = n->in(0);
duke@435 1243 if( !n_c->is_If() ) break; // No estimate available
duke@435 1244 iff = n_c->as_If();
duke@435 1245 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
duke@435 1246 // Compute how much count comes on this path
duke@435 1247 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
duke@435 1248 // Have no count info. Skip dull uncommon-trap like branches.
duke@435 1249 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
duke@435 1250 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
duke@435 1251 break;
duke@435 1252 // Skip through never-taken branch; look for a real loop exit.
duke@435 1253 n = iff->in(0);
duke@435 1254 }
duke@435 1255 return 0.0f; // No estimate available
duke@435 1256 }
duke@435 1257
duke@435 1258 //------------------------------merge_many_backedges---------------------------
duke@435 1259 // Merge all the backedges from the shared header into a private Region.
duke@435 1260 // Feed that region as the one backedge to this loop.
duke@435 1261 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
duke@435 1262 uint i;
duke@435 1263
duke@435 1264 // Scan for the top 2 hottest backedges
duke@435 1265 float hotcnt = 0.0f;
duke@435 1266 float warmcnt = 0.0f;
duke@435 1267 uint hot_idx = 0;
duke@435 1268 // Loop starts at 2 because slot 1 is the fall-in path
duke@435 1269 for( i = 2; i < _head->req(); i++ ) {
duke@435 1270 float cnt = estimate_path_freq(_head->in(i));
duke@435 1271 if( cnt > hotcnt ) { // Grab hottest path
duke@435 1272 warmcnt = hotcnt;
duke@435 1273 hotcnt = cnt;
duke@435 1274 hot_idx = i;
duke@435 1275 } else if( cnt > warmcnt ) { // And 2nd hottest path
duke@435 1276 warmcnt = cnt;
duke@435 1277 }
duke@435 1278 }
duke@435 1279
duke@435 1280 // See if the hottest backedge is worthy of being an inner loop
duke@435 1281 // by being much hotter than the next hottest backedge.
duke@435 1282 if( hotcnt <= 0.0001 ||
duke@435 1283 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
duke@435 1284
duke@435 1285 // Peel out the backedges into a private merge point; peel
duke@435 1286 // them all except optionally hot_idx.
duke@435 1287 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1288
duke@435 1289 Node *hot_tail = NULL;
duke@435 1290 // Make a Region for the merge point
duke@435 1291 Node *r = new (phase->C, 1) RegionNode(1);
duke@435 1292 for( i = 2; i < _head->req(); i++ ) {
duke@435 1293 if( i != hot_idx )
duke@435 1294 r->add_req( _head->in(i) );
duke@435 1295 else hot_tail = _head->in(i);
duke@435 1296 }
duke@435 1297 igvn.register_new_node_with_optimizer(r, _head);
duke@435 1298 // Plug region into end of loop _head, followed by hot_tail
duke@435 1299 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
duke@435 1300 _head->set_req(2, r);
duke@435 1301 if( hot_idx ) _head->add_req(hot_tail);
duke@435 1302
duke@435 1303 // Split all the Phis up between '_head' loop and the Region 'r'
duke@435 1304 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1305 Node *out = _head->fast_out(j);
duke@435 1306 if( out->is_Phi() ) {
duke@435 1307 PhiNode* n = out->as_Phi();
duke@435 1308 igvn.hash_delete(n); // Delete from hash before hacking edges
duke@435 1309 Node *hot_phi = NULL;
duke@435 1310 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
duke@435 1311 // Check all inputs for the ones to peel out
duke@435 1312 uint j = 1;
duke@435 1313 for( uint i = 2; i < n->req(); i++ ) {
duke@435 1314 if( i != hot_idx )
duke@435 1315 phi->set_req( j++, n->in(i) );
duke@435 1316 else hot_phi = n->in(i);
duke@435 1317 }
duke@435 1318 // Register the phi but do not transform until whole place transforms
duke@435 1319 igvn.register_new_node_with_optimizer(phi, n);
duke@435 1320 // Add the merge phi to the old Phi
duke@435 1321 while( n->req() > 3 ) n->del_req( n->req()-1 );
duke@435 1322 n->set_req(2, phi);
duke@435 1323 if( hot_idx ) n->add_req(hot_phi);
duke@435 1324 }
duke@435 1325 }
duke@435 1326
duke@435 1327
duke@435 1328 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
duke@435 1329 // of self loop tree. Turn self into a loop headed by _head and with
duke@435 1330 // tail being the new merge point.
duke@435 1331 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
duke@435 1332 phase->set_loop(_tail,ilt); // Adjust tail
duke@435 1333 _tail = r; // Self's tail is new merge point
duke@435 1334 phase->set_loop(r,this);
duke@435 1335 ilt->_child = _child; // New guy has my children
duke@435 1336 _child = ilt; // Self has new guy as only child
duke@435 1337 ilt->_parent = this; // new guy has self for parent
duke@435 1338 ilt->_nest = _nest; // Same nesting depth (for now)
duke@435 1339
duke@435 1340 // Starting with 'ilt', look for child loop trees using the same shared
duke@435 1341 // header. Flatten these out; they will no longer be loops in the end.
duke@435 1342 IdealLoopTree **pilt = &_child;
duke@435 1343 while( ilt ) {
duke@435 1344 if( ilt->_head == _head ) {
duke@435 1345 uint i;
duke@435 1346 for( i = 2; i < _head->req(); i++ )
duke@435 1347 if( _head->in(i) == ilt->_tail )
duke@435 1348 break; // Still a loop
duke@435 1349 if( i == _head->req() ) { // No longer a loop
duke@435 1350 // Flatten ilt. Hang ilt's "_next" list from the end of
duke@435 1351 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
duke@435 1352 IdealLoopTree **cp = &ilt->_child;
duke@435 1353 while( *cp ) cp = &(*cp)->_next; // Find end of child list
duke@435 1354 *cp = ilt->_next; // Hang next list at end of child list
duke@435 1355 *pilt = ilt->_child; // Move child up to replace ilt
duke@435 1356 ilt->_head = NULL; // Flag as a loop UNIONED into parent
duke@435 1357 ilt = ilt->_child; // Repeat using new ilt
duke@435 1358 continue; // do not advance over ilt->_child
duke@435 1359 }
duke@435 1360 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
duke@435 1361 phase->set_loop(_head,ilt);
duke@435 1362 }
duke@435 1363 pilt = &ilt->_child; // Advance to next
duke@435 1364 ilt = *pilt;
duke@435 1365 }
duke@435 1366
duke@435 1367 if( _child ) fix_parent( _child, this );
duke@435 1368 }
duke@435 1369
duke@435 1370 //------------------------------beautify_loops---------------------------------
duke@435 1371 // Split shared headers and insert loop landing pads.
duke@435 1372 // Insert a LoopNode to replace the RegionNode.
duke@435 1373 // Return TRUE if loop tree is structurally changed.
duke@435 1374 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
duke@435 1375 bool result = false;
duke@435 1376 // Cache parts in locals for easy
duke@435 1377 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1378
duke@435 1379 igvn.hash_delete(_head); // Yank from hash before hacking edges
duke@435 1380
duke@435 1381 // Check for multiple fall-in paths. Peel off a landing pad if need be.
duke@435 1382 int fall_in_cnt = 0;
duke@435 1383 for( uint i = 1; i < _head->req(); i++ )
duke@435 1384 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1385 fall_in_cnt++;
duke@435 1386 assert( fall_in_cnt, "at least 1 fall-in path" );
duke@435 1387 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
duke@435 1388 split_fall_in( phase, fall_in_cnt );
duke@435 1389
duke@435 1390 // Swap inputs to the _head and all Phis to move the fall-in edge to
duke@435 1391 // the left.
duke@435 1392 fall_in_cnt = 1;
duke@435 1393 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
duke@435 1394 fall_in_cnt++;
duke@435 1395 if( fall_in_cnt > 1 ) {
duke@435 1396 // Since I am just swapping inputs I do not need to update def-use info
duke@435 1397 Node *tmp = _head->in(1);
duke@435 1398 _head->set_req( 1, _head->in(fall_in_cnt) );
duke@435 1399 _head->set_req( fall_in_cnt, tmp );
duke@435 1400 // Swap also all Phis
duke@435 1401 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
duke@435 1402 Node* phi = _head->fast_out(i);
duke@435 1403 if( phi->is_Phi() ) {
duke@435 1404 igvn.hash_delete(phi); // Yank from hash before hacking edges
duke@435 1405 tmp = phi->in(1);
duke@435 1406 phi->set_req( 1, phi->in(fall_in_cnt) );
duke@435 1407 phi->set_req( fall_in_cnt, tmp );
duke@435 1408 }
duke@435 1409 }
duke@435 1410 }
duke@435 1411 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
duke@435 1412 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
duke@435 1413
duke@435 1414 // If I am a shared header (multiple backedges), peel off the many
duke@435 1415 // backedges into a private merge point and use the merge point as
duke@435 1416 // the one true backedge.
duke@435 1417 if( _head->req() > 3 ) {
kvn@2727 1418 // Merge the many backedges into a single backedge but leave
kvn@2727 1419 // the hottest backedge as separate edge for the following peel.
duke@435 1420 merge_many_backedges( phase );
duke@435 1421 result = true;
duke@435 1422 }
duke@435 1423
kvn@2727 1424 // If I have one hot backedge, peel off myself loop.
duke@435 1425 // I better be the outermost loop.
duke@435 1426 if( _head->req() > 3 ) {
duke@435 1427 split_outer_loop( phase );
duke@435 1428 result = true;
duke@435 1429
duke@435 1430 } else if( !_head->is_Loop() && !_irreducible ) {
duke@435 1431 // Make a new LoopNode to replace the old loop head
duke@435 1432 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
duke@435 1433 l = igvn.register_new_node_with_optimizer(l, _head);
duke@435 1434 phase->set_created_loop_node();
duke@435 1435 // Go ahead and replace _head
kvn@1976 1436 phase->_igvn.replace_node( _head, l );
duke@435 1437 _head = l;
duke@435 1438 phase->set_loop(_head, this);
duke@435 1439 }
duke@435 1440
duke@435 1441 // Now recursively beautify nested loops
duke@435 1442 if( _child ) result |= _child->beautify_loops( phase );
duke@435 1443 if( _next ) result |= _next ->beautify_loops( phase );
duke@435 1444 return result;
duke@435 1445 }
duke@435 1446
duke@435 1447 //------------------------------allpaths_check_safepts----------------------------
duke@435 1448 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 1449 // encountered. Helper for check_safepts.
duke@435 1450 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1451 assert(stack.size() == 0, "empty stack");
duke@435 1452 stack.push(_tail);
duke@435 1453 visited.Clear();
duke@435 1454 visited.set(_tail->_idx);
duke@435 1455 while (stack.size() > 0) {
duke@435 1456 Node* n = stack.pop();
duke@435 1457 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1458 // Terminate this path
duke@435 1459 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1460 if (_phase->get_loop(n) != this) {
duke@435 1461 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1462 _required_safept->push(n); // save the one closest to the tail
duke@435 1463 }
duke@435 1464 // Terminate this path
duke@435 1465 } else {
duke@435 1466 uint start = n->is_Region() ? 1 : 0;
duke@435 1467 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
duke@435 1468 for (uint i = start; i < end; i++) {
duke@435 1469 Node* in = n->in(i);
duke@435 1470 assert(in->is_CFG(), "must be");
duke@435 1471 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
duke@435 1472 stack.push(in);
duke@435 1473 }
duke@435 1474 }
duke@435 1475 }
duke@435 1476 }
duke@435 1477 }
duke@435 1478
duke@435 1479 //------------------------------check_safepts----------------------------
duke@435 1480 // Given dominators, try to find loops with calls that must always be
duke@435 1481 // executed (call dominates loop tail). These loops do not need non-call
duke@435 1482 // safepoints (ncsfpt).
duke@435 1483 //
duke@435 1484 // A complication is that a safepoint in a inner loop may be needed
duke@435 1485 // by an outer loop. In the following, the inner loop sees it has a
duke@435 1486 // call (block 3) on every path from the head (block 2) to the
duke@435 1487 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
duke@435 1488 // in block 2, _but_ this leaves the outer loop without a safepoint.
duke@435 1489 //
duke@435 1490 // entry 0
duke@435 1491 // |
duke@435 1492 // v
duke@435 1493 // outer 1,2 +->1
duke@435 1494 // | |
duke@435 1495 // | v
duke@435 1496 // | 2<---+ ncsfpt in 2
duke@435 1497 // |_/|\ |
duke@435 1498 // | v |
duke@435 1499 // inner 2,3 / 3 | call in 3
duke@435 1500 // / | |
duke@435 1501 // v +--+
duke@435 1502 // exit 4
duke@435 1503 //
duke@435 1504 //
duke@435 1505 // This method creates a list (_required_safept) of ncsfpt nodes that must
duke@435 1506 // be protected is created for each loop. When a ncsfpt maybe deleted, it
duke@435 1507 // is first looked for in the lists for the outer loops of the current loop.
duke@435 1508 //
duke@435 1509 // The insights into the problem:
duke@435 1510 // A) counted loops are okay
duke@435 1511 // B) innermost loops are okay (only an inner loop can delete
duke@435 1512 // a ncsfpt needed by an outer loop)
duke@435 1513 // C) a loop is immune from an inner loop deleting a safepoint
duke@435 1514 // if the loop has a call on the idom-path
duke@435 1515 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
duke@435 1516 // idom-path that is not in a nested loop
duke@435 1517 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
duke@435 1518 // loop needs to be prevented from deletion by an inner loop
duke@435 1519 //
duke@435 1520 // There are two analyses:
duke@435 1521 // 1) The first, and cheaper one, scans the loop body from
duke@435 1522 // tail to head following the idom (immediate dominator)
duke@435 1523 // chain, looking for the cases (C,D,E) above.
duke@435 1524 // Since inner loops are scanned before outer loops, there is summary
duke@435 1525 // information about inner loops. Inner loops can be skipped over
duke@435 1526 // when the tail of an inner loop is encountered.
duke@435 1527 //
duke@435 1528 // 2) The second, invoked if the first fails to find a call or ncsfpt on
duke@435 1529 // the idom path (which is rare), scans all predecessor control paths
duke@435 1530 // from the tail to the head, terminating a path when a call or sfpt
duke@435 1531 // is encountered, to find the ncsfpt's that are closest to the tail.
duke@435 1532 //
duke@435 1533 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1534 // Bottom up traversal
duke@435 1535 IdealLoopTree* ch = _child;
kvn@4023 1536 if (_child) _child->check_safepts(visited, stack);
kvn@4023 1537 if (_next) _next ->check_safepts(visited, stack);
duke@435 1538
duke@435 1539 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
duke@435 1540 bool has_call = false; // call on dom-path
duke@435 1541 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
duke@435 1542 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
duke@435 1543 // Scan the dom-path nodes from tail to head
duke@435 1544 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
duke@435 1545 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1546 has_call = true;
duke@435 1547 _has_sfpt = 1; // Then no need for a safept!
duke@435 1548 break;
duke@435 1549 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1550 if (_phase->get_loop(n) == this) {
duke@435 1551 has_local_ncsfpt = true;
duke@435 1552 break;
duke@435 1553 }
duke@435 1554 if (nonlocal_ncsfpt == NULL) {
duke@435 1555 nonlocal_ncsfpt = n; // save the one closest to the tail
duke@435 1556 }
duke@435 1557 } else {
duke@435 1558 IdealLoopTree* nlpt = _phase->get_loop(n);
duke@435 1559 if (this != nlpt) {
duke@435 1560 // If at an inner loop tail, see if the inner loop has already
duke@435 1561 // recorded seeing a call on the dom-path (and stop.) If not,
duke@435 1562 // jump to the head of the inner loop.
duke@435 1563 assert(is_member(nlpt), "nested loop");
duke@435 1564 Node* tail = nlpt->_tail;
duke@435 1565 if (tail->in(0)->is_If()) tail = tail->in(0);
duke@435 1566 if (n == tail) {
duke@435 1567 // If inner loop has call on dom-path, so does outer loop
duke@435 1568 if (nlpt->_has_sfpt) {
duke@435 1569 has_call = true;
duke@435 1570 _has_sfpt = 1;
duke@435 1571 break;
duke@435 1572 }
duke@435 1573 // Skip to head of inner loop
duke@435 1574 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
duke@435 1575 n = nlpt->_head;
duke@435 1576 }
duke@435 1577 }
duke@435 1578 }
duke@435 1579 }
duke@435 1580 // Record safept's that this loop needs preserved when an
duke@435 1581 // inner loop attempts to delete it's safepoints.
duke@435 1582 if (_child != NULL && !has_call && !has_local_ncsfpt) {
duke@435 1583 if (nonlocal_ncsfpt != NULL) {
duke@435 1584 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1585 _required_safept->push(nonlocal_ncsfpt);
duke@435 1586 } else {
duke@435 1587 // Failed to find a suitable safept on the dom-path. Now use
duke@435 1588 // an all paths walk from tail to head, looking for safepoints to preserve.
duke@435 1589 allpaths_check_safepts(visited, stack);
duke@435 1590 }
duke@435 1591 }
duke@435 1592 }
duke@435 1593 }
duke@435 1594
duke@435 1595 //---------------------------is_deleteable_safept----------------------------
duke@435 1596 // Is safept not required by an outer loop?
duke@435 1597 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
duke@435 1598 assert(sfpt->Opcode() == Op_SafePoint, "");
duke@435 1599 IdealLoopTree* lp = get_loop(sfpt)->_parent;
duke@435 1600 while (lp != NULL) {
duke@435 1601 Node_List* sfpts = lp->_required_safept;
duke@435 1602 if (sfpts != NULL) {
duke@435 1603 for (uint i = 0; i < sfpts->size(); i++) {
duke@435 1604 if (sfpt == sfpts->at(i))
duke@435 1605 return false;
duke@435 1606 }
duke@435 1607 }
duke@435 1608 lp = lp->_parent;
duke@435 1609 }
duke@435 1610 return true;
duke@435 1611 }
duke@435 1612
kvn@2665 1613 //---------------------------replace_parallel_iv-------------------------------
kvn@2665 1614 // Replace parallel induction variable (parallel to trip counter)
kvn@2665 1615 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
kvn@2665 1616 assert(loop->_head->is_CountedLoop(), "");
kvn@2665 1617 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 1618 if (!cl->is_valid_counted_loop())
kvn@3048 1619 return; // skip malformed counted loop
kvn@2665 1620 Node *incr = cl->incr();
kvn@2665 1621 if (incr == NULL)
kvn@2665 1622 return; // Dead loop?
kvn@2665 1623 Node *init = cl->init_trip();
kvn@2665 1624 Node *phi = cl->phi();
kvn@2665 1625 int stride_con = cl->stride_con();
kvn@2665 1626
kvn@2665 1627 // Visit all children, looking for Phis
kvn@2665 1628 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
kvn@2665 1629 Node *out = cl->out(i);
kvn@2665 1630 // Look for other phis (secondary IVs). Skip dead ones
kvn@2665 1631 if (!out->is_Phi() || out == phi || !has_node(out))
kvn@2665 1632 continue;
kvn@2665 1633 PhiNode* phi2 = out->as_Phi();
kvn@2665 1634 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
kvn@2665 1635 // Look for induction variables of the form: X += constant
kvn@2665 1636 if (phi2->region() != loop->_head ||
kvn@2665 1637 incr2->req() != 3 ||
kvn@2665 1638 incr2->in(1) != phi2 ||
kvn@2665 1639 incr2 == incr ||
kvn@2665 1640 incr2->Opcode() != Op_AddI ||
kvn@2665 1641 !incr2->in(2)->is_Con())
kvn@2665 1642 continue;
kvn@2665 1643
kvn@2665 1644 // Check for parallel induction variable (parallel to trip counter)
kvn@2665 1645 // via an affine function. In particular, count-down loops with
kvn@2665 1646 // count-up array indices are common. We only RCE references off
kvn@2665 1647 // the trip-counter, so we need to convert all these to trip-counter
kvn@2665 1648 // expressions.
kvn@2665 1649 Node *init2 = phi2->in( LoopNode::EntryControl );
kvn@2665 1650 int stride_con2 = incr2->in(2)->get_int();
kvn@2665 1651
kvn@2665 1652 // The general case here gets a little tricky. We want to find the
kvn@2665 1653 // GCD of all possible parallel IV's and make a new IV using this
kvn@2665 1654 // GCD for the loop. Then all possible IVs are simple multiples of
kvn@2665 1655 // the GCD. In practice, this will cover very few extra loops.
kvn@2665 1656 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
kvn@2665 1657 // where +/-1 is the common case, but other integer multiples are
kvn@2665 1658 // also easy to handle.
kvn@2665 1659 int ratio_con = stride_con2/stride_con;
kvn@2665 1660
kvn@2665 1661 if ((ratio_con * stride_con) == stride_con2) { // Check for exact
kvn@3135 1662 #ifndef PRODUCT
kvn@3135 1663 if (TraceLoopOpts) {
kvn@3135 1664 tty->print("Parallel IV: %d ", phi2->_idx);
kvn@3135 1665 loop->dump_head();
kvn@3135 1666 }
kvn@3135 1667 #endif
kvn@2665 1668 // Convert to using the trip counter. The parallel induction
kvn@2665 1669 // variable differs from the trip counter by a loop-invariant
kvn@2665 1670 // amount, the difference between their respective initial values.
kvn@2665 1671 // It is scaled by the 'ratio_con'.
kvn@2665 1672 Node* ratio = _igvn.intcon(ratio_con);
kvn@2665 1673 set_ctrl(ratio, C->root());
kvn@3135 1674 Node* ratio_init = new (C, 3) MulINode(init, ratio);
kvn@3135 1675 _igvn.register_new_node_with_optimizer(ratio_init, init);
kvn@3135 1676 set_early_ctrl(ratio_init);
kvn@3135 1677 Node* diff = new (C, 3) SubINode(init2, ratio_init);
kvn@3135 1678 _igvn.register_new_node_with_optimizer(diff, init2);
kvn@3135 1679 set_early_ctrl(diff);
kvn@3135 1680 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
kvn@3135 1681 _igvn.register_new_node_with_optimizer(ratio_idx, phi);
kvn@3135 1682 set_ctrl(ratio_idx, cl);
kvn@3135 1683 Node* add = new (C, 3) AddINode(ratio_idx, diff);
kvn@3135 1684 _igvn.register_new_node_with_optimizer(add);
kvn@3135 1685 set_ctrl(add, cl);
kvn@2665 1686 _igvn.replace_node( phi2, add );
kvn@2665 1687 // Sometimes an induction variable is unused
kvn@2665 1688 if (add->outcnt() == 0) {
kvn@2665 1689 _igvn.remove_dead_node(add);
kvn@2665 1690 }
kvn@2665 1691 --i; // deleted this phi; rescan starting with next position
kvn@2665 1692 continue;
kvn@2665 1693 }
kvn@2665 1694 }
kvn@2665 1695 }
kvn@2665 1696
duke@435 1697 //------------------------------counted_loop-----------------------------------
duke@435 1698 // Convert to counted loops where possible
duke@435 1699 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
duke@435 1700
duke@435 1701 // For grins, set the inner-loop flag here
kvn@2665 1702 if (!_child) {
kvn@2665 1703 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
duke@435 1704 }
duke@435 1705
kvn@2665 1706 if (_head->is_CountedLoop() ||
kvn@2665 1707 phase->is_counted_loop(_head, this)) {
duke@435 1708 _has_sfpt = 1; // Indicate we do not need a safepoint here
duke@435 1709
kvn@4023 1710 // Look for safepoints to remove.
kvn@4023 1711 Node_List* sfpts = _safepts;
kvn@4023 1712 if (sfpts != NULL) {
kvn@4023 1713 for (uint i = 0; i < sfpts->size(); i++) {
kvn@4023 1714 Node* n = sfpts->at(i);
kvn@4023 1715 assert(phase->get_loop(n) == this, "");
kvn@4023 1716 if (phase->is_deleteable_safept(n)) {
kvn@4023 1717 phase->lazy_replace(n, n->in(TypeFunc::Control));
kvn@4023 1718 }
kvn@4023 1719 }
kvn@4023 1720 }
duke@435 1721
kvn@2665 1722 // Look for induction variables
kvn@2665 1723 phase->replace_parallel_iv(this);
duke@435 1724
duke@435 1725 } else if (_parent != NULL && !_irreducible) {
duke@435 1726 // Not a counted loop.
kvn@4023 1727 // Look for a safepoint on the idom-path.
kvn@4023 1728 Node* sfpt = tail();
kvn@4023 1729 for (; sfpt != _head; sfpt = phase->idom(sfpt)) {
kvn@4023 1730 if (sfpt->Opcode() == Op_SafePoint && phase->get_loop(sfpt) == this)
kvn@4023 1731 break; // Found one
duke@435 1732 }
kvn@4023 1733 // Delete other safepoints in this loop.
kvn@4023 1734 Node_List* sfpts = _safepts;
kvn@4023 1735 if (sfpts != NULL && sfpt != _head && sfpt->Opcode() == Op_SafePoint) {
kvn@4023 1736 for (uint i = 0; i < sfpts->size(); i++) {
kvn@4023 1737 Node* n = sfpts->at(i);
kvn@4023 1738 assert(phase->get_loop(n) == this, "");
kvn@4023 1739 if (n != sfpt && phase->is_deleteable_safept(n)) {
kvn@4023 1740 phase->lazy_replace(n, n->in(TypeFunc::Control));
kvn@4023 1741 }
kvn@4023 1742 }
duke@435 1743 }
duke@435 1744 }
duke@435 1745
duke@435 1746 // Recursively
kvn@2665 1747 if (_child) _child->counted_loop( phase );
kvn@2665 1748 if (_next) _next ->counted_loop( phase );
duke@435 1749 }
duke@435 1750
duke@435 1751 #ifndef PRODUCT
duke@435 1752 //------------------------------dump_head--------------------------------------
duke@435 1753 // Dump 1 liner for loop header info
duke@435 1754 void IdealLoopTree::dump_head( ) const {
kvn@2665 1755 for (uint i=0; i<_nest; i++)
duke@435 1756 tty->print(" ");
duke@435 1757 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
kvn@2665 1758 if (_irreducible) tty->print(" IRREDUCIBLE");
kvn@2877 1759 Node* entry = _head->in(LoopNode::EntryControl);
kvn@2877 1760 if (LoopLimitCheck) {
kvn@2877 1761 Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
kvn@2877 1762 if (predicate != NULL ) {
kvn@2877 1763 tty->print(" limit_check");
kvn@2877 1764 entry = entry->in(0)->in(0);
kvn@2877 1765 }
kvn@2877 1766 }
kvn@2665 1767 if (UseLoopPredicate) {
kvn@2877 1768 entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
kvn@2727 1769 if (entry != NULL) {
kvn@2665 1770 tty->print(" predicated");
kvn@2665 1771 }
kvn@2665 1772 }
kvn@2665 1773 if (_head->is_CountedLoop()) {
duke@435 1774 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1775 tty->print(" counted");
kvn@2747 1776
kvn@2747 1777 Node* init_n = cl->init_trip();
kvn@2747 1778 if (init_n != NULL && init_n->is_Con())
kvn@2747 1779 tty->print(" [%d,", cl->init_trip()->get_int());
kvn@2747 1780 else
kvn@2747 1781 tty->print(" [int,");
kvn@2747 1782 Node* limit_n = cl->limit();
kvn@2747 1783 if (limit_n != NULL && limit_n->is_Con())
kvn@2747 1784 tty->print("%d),", cl->limit()->get_int());
kvn@2747 1785 else
kvn@2747 1786 tty->print("int),");
kvn@2747 1787 int stride_con = cl->stride_con();
kvn@2747 1788 if (stride_con > 0) tty->print("+");
kvn@2747 1789 tty->print("%d", stride_con);
kvn@2747 1790
kvn@4001 1791 tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
kvn@4001 1792
kvn@2665 1793 if (cl->is_pre_loop ()) tty->print(" pre" );
kvn@2665 1794 if (cl->is_main_loop()) tty->print(" main");
kvn@2665 1795 if (cl->is_post_loop()) tty->print(" post");
duke@435 1796 }
duke@435 1797 tty->cr();
duke@435 1798 }
duke@435 1799
duke@435 1800 //------------------------------dump-------------------------------------------
duke@435 1801 // Dump loops by loop tree
duke@435 1802 void IdealLoopTree::dump( ) const {
duke@435 1803 dump_head();
kvn@2665 1804 if (_child) _child->dump();
kvn@2665 1805 if (_next) _next ->dump();
duke@435 1806 }
duke@435 1807
duke@435 1808 #endif
duke@435 1809
never@802 1810 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
never@802 1811 if (loop == root) {
never@802 1812 if (loop->_child != NULL) {
never@802 1813 log->begin_head("loop_tree");
never@802 1814 log->end_head();
never@802 1815 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1816 log->tail("loop_tree");
never@802 1817 assert(loop->_next == NULL, "what?");
never@802 1818 }
never@802 1819 } else {
never@802 1820 Node* head = loop->_head;
never@802 1821 log->begin_head("loop");
never@802 1822 log->print(" idx='%d' ", head->_idx);
never@802 1823 if (loop->_irreducible) log->print("irreducible='1' ");
never@802 1824 if (head->is_Loop()) {
never@802 1825 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
never@802 1826 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
never@802 1827 }
never@802 1828 if (head->is_CountedLoop()) {
never@802 1829 CountedLoopNode* cl = head->as_CountedLoop();
never@802 1830 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
never@802 1831 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
never@802 1832 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
never@802 1833 }
never@802 1834 log->end_head();
never@802 1835 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1836 log->tail("loop");
never@802 1837 if( loop->_next ) log_loop_tree(root, loop->_next, log);
never@802 1838 }
never@802 1839 }
never@802 1840
cfang@1607 1841 //---------------------collect_potentially_useful_predicates-----------------------
cfang@1607 1842 // Helper function to collect potentially useful predicates to prevent them from
cfang@1607 1843 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
cfang@1607 1844 void PhaseIdealLoop::collect_potentially_useful_predicates(
cfang@1607 1845 IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
cfang@1607 1846 if (loop->_child) { // child
cfang@1607 1847 collect_potentially_useful_predicates(loop->_child, useful_predicates);
cfang@1607 1848 }
cfang@1607 1849
cfang@1607 1850 // self (only loops that we can apply loop predication may use their predicates)
kvn@2665 1851 if (loop->_head->is_Loop() &&
kvn@2665 1852 !loop->_irreducible &&
cfang@1607 1853 !loop->tail()->is_top()) {
kvn@2665 1854 LoopNode* lpn = loop->_head->as_Loop();
cfang@1607 1855 Node* entry = lpn->in(LoopNode::EntryControl);
kvn@2877 1856 Node* predicate_proj = find_predicate(entry); // loop_limit_check first
cfang@1607 1857 if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
kvn@2665 1858 assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
cfang@1607 1859 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
kvn@2877 1860 entry = entry->in(0)->in(0);
kvn@2877 1861 }
kvn@2877 1862 predicate_proj = find_predicate(entry); // Predicate
kvn@2877 1863 if (predicate_proj != NULL ) {
kvn@2877 1864 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
cfang@1607 1865 }
cfang@1607 1866 }
cfang@1607 1867
kvn@2665 1868 if (loop->_next) { // sibling
cfang@1607 1869 collect_potentially_useful_predicates(loop->_next, useful_predicates);
cfang@1607 1870 }
cfang@1607 1871 }
cfang@1607 1872
cfang@1607 1873 //------------------------eliminate_useless_predicates-----------------------------
cfang@1607 1874 // Eliminate all inserted predicates if they could not be used by loop predication.
kvn@2877 1875 // Note: it will also eliminates loop limits check predicate since it also uses
kvn@2877 1876 // Opaque1 node (see Parse::add_predicate()).
cfang@1607 1877 void PhaseIdealLoop::eliminate_useless_predicates() {
kvn@2665 1878 if (C->predicate_count() == 0)
kvn@2665 1879 return; // no predicate left
cfang@1607 1880
cfang@1607 1881 Unique_Node_List useful_predicates; // to store useful predicates
cfang@1607 1882 if (C->has_loops()) {
cfang@1607 1883 collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
cfang@1607 1884 }
cfang@1607 1885
cfang@1607 1886 for (int i = C->predicate_count(); i > 0; i--) {
cfang@1607 1887 Node * n = C->predicate_opaque1_node(i-1);
cfang@1607 1888 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1889 if (!useful_predicates.member(n)) { // not in the useful list
cfang@1607 1890 _igvn.replace_node(n, n->in(1));
cfang@1607 1891 }
cfang@1607 1892 }
cfang@1607 1893 }
cfang@1607 1894
duke@435 1895 //=============================================================================
never@1356 1896 //----------------------------build_and_optimize-------------------------------
duke@435 1897 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
duke@435 1898 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
kvn@3260 1899 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
kvn@2555 1900 ResourceMark rm;
kvn@2555 1901
never@1356 1902 int old_progress = C->major_progress();
never@2685 1903 uint orig_worklist_size = _igvn._worklist.size();
never@1356 1904
duke@435 1905 // Reset major-progress flag for the driver's heuristics
duke@435 1906 C->clear_major_progress();
duke@435 1907
duke@435 1908 #ifndef PRODUCT
duke@435 1909 // Capture for later assert
duke@435 1910 uint unique = C->unique();
duke@435 1911 _loop_invokes++;
duke@435 1912 _loop_work += unique;
duke@435 1913 #endif
duke@435 1914
duke@435 1915 // True if the method has at least 1 irreducible loop
duke@435 1916 _has_irreducible_loops = false;
duke@435 1917
duke@435 1918 _created_loop_node = false;
duke@435 1919
duke@435 1920 Arena *a = Thread::current()->resource_area();
duke@435 1921 VectorSet visited(a);
duke@435 1922 // Pre-grow the mapping from Nodes to IdealLoopTrees.
duke@435 1923 _nodes.map(C->unique(), NULL);
duke@435 1924 memset(_nodes.adr(), 0, wordSize * C->unique());
duke@435 1925
duke@435 1926 // Pre-build the top-level outermost loop tree entry
duke@435 1927 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
duke@435 1928 // Do not need a safepoint at the top level
duke@435 1929 _ltree_root->_has_sfpt = 1;
duke@435 1930
kvn@2727 1931 // Initialize Dominators.
kvn@2727 1932 // Checked in clone_loop_predicate() during beautify_loops().
kvn@2727 1933 _idom_size = 0;
kvn@2727 1934 _idom = NULL;
kvn@2727 1935 _dom_depth = NULL;
kvn@2727 1936 _dom_stk = NULL;
kvn@2727 1937
duke@435 1938 // Empty pre-order array
duke@435 1939 allocate_preorders();
duke@435 1940
duke@435 1941 // Build a loop tree on the fly. Build a mapping from CFG nodes to
duke@435 1942 // IdealLoopTree entries. Data nodes are NOT walked.
duke@435 1943 build_loop_tree();
duke@435 1944 // Check for bailout, and return
duke@435 1945 if (C->failing()) {
duke@435 1946 return;
duke@435 1947 }
duke@435 1948
duke@435 1949 // No loops after all
never@1356 1950 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
duke@435 1951
duke@435 1952 // There should always be an outer loop containing the Root and Return nodes.
duke@435 1953 // If not, we have a degenerate empty program. Bail out in this case.
duke@435 1954 if (!has_node(C->root())) {
never@1356 1955 if (!_verify_only) {
never@1356 1956 C->clear_major_progress();
never@1356 1957 C->record_method_not_compilable("empty program detected during loop optimization");
never@1356 1958 }
duke@435 1959 return;
duke@435 1960 }
duke@435 1961
duke@435 1962 // Nothing to do, so get out
kvn@3311 1963 if( !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only ) {
duke@435 1964 _igvn.optimize(); // Cleanup NeverBranches
duke@435 1965 return;
duke@435 1966 }
duke@435 1967
duke@435 1968 // Set loop nesting depth
duke@435 1969 _ltree_root->set_nest( 0 );
duke@435 1970
duke@435 1971 // Split shared headers and insert loop landing pads.
duke@435 1972 // Do not bother doing this on the Root loop of course.
never@1356 1973 if( !_verify_me && !_verify_only && _ltree_root->_child ) {
never@2685 1974 C->print_method("Before beautify loops", 3);
duke@435 1975 if( _ltree_root->_child->beautify_loops( this ) ) {
duke@435 1976 // Re-build loop tree!
duke@435 1977 _ltree_root->_child = NULL;
duke@435 1978 _nodes.clear();
duke@435 1979 reallocate_preorders();
duke@435 1980 build_loop_tree();
duke@435 1981 // Check for bailout, and return
duke@435 1982 if (C->failing()) {
duke@435 1983 return;
duke@435 1984 }
duke@435 1985 // Reset loop nesting depth
duke@435 1986 _ltree_root->set_nest( 0 );
never@657 1987
never@657 1988 C->print_method("After beautify loops", 3);
duke@435 1989 }
duke@435 1990 }
duke@435 1991
duke@435 1992 // Build Dominators for elision of NULL checks & loop finding.
duke@435 1993 // Since nodes do not have a slot for immediate dominator, make
twisti@1040 1994 // a persistent side array for that info indexed on node->_idx.
duke@435 1995 _idom_size = C->unique();
duke@435 1996 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
duke@435 1997 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
duke@435 1998 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
duke@435 1999 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
duke@435 2000
duke@435 2001 Dominators();
duke@435 2002
never@1356 2003 if (!_verify_only) {
never@1356 2004 // As a side effect, Dominators removed any unreachable CFG paths
never@1356 2005 // into RegionNodes. It doesn't do this test against Root, so
never@1356 2006 // we do it here.
never@1356 2007 for( uint i = 1; i < C->root()->req(); i++ ) {
never@1356 2008 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
kvn@3847 2009 _igvn.delete_input_of(C->root(), i);
never@1356 2010 i--; // Rerun same iteration on compressed edges
never@1356 2011 }
duke@435 2012 }
never@1356 2013
never@1356 2014 // Given dominators, try to find inner loops with calls that must
never@1356 2015 // always be executed (call dominates loop tail). These loops do
never@1356 2016 // not need a separate safepoint.
never@1356 2017 Node_List cisstack(a);
never@1356 2018 _ltree_root->check_safepts(visited, cisstack);
duke@435 2019 }
duke@435 2020
duke@435 2021 // Walk the DATA nodes and place into loops. Find earliest control
duke@435 2022 // node. For CFG nodes, the _nodes array starts out and remains
duke@435 2023 // holding the associated IdealLoopTree pointer. For DATA nodes, the
duke@435 2024 // _nodes array holds the earliest legal controlling CFG node.
duke@435 2025
duke@435 2026 // Allocate stack with enough space to avoid frequent realloc
duke@435 2027 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
duke@435 2028 Node_Stack nstack( a, stack_size );
duke@435 2029
duke@435 2030 visited.Clear();
duke@435 2031 Node_List worklist(a);
duke@435 2032 // Don't need C->root() on worklist since
duke@435 2033 // it will be processed among C->top() inputs
duke@435 2034 worklist.push( C->top() );
duke@435 2035 visited.set( C->top()->_idx ); // Set C->top() as visited now
never@1356 2036 build_loop_early( visited, worklist, nstack );
duke@435 2037
duke@435 2038 // Given early legal placement, try finding counted loops. This placement
duke@435 2039 // is good enough to discover most loop invariants.
never@1356 2040 if( !_verify_me && !_verify_only )
duke@435 2041 _ltree_root->counted_loop( this );
duke@435 2042
duke@435 2043 // Find latest loop placement. Find ideal loop placement.
duke@435 2044 visited.Clear();
duke@435 2045 init_dom_lca_tags();
duke@435 2046 // Need C->root() on worklist when processing outs
duke@435 2047 worklist.push( C->root() );
duke@435 2048 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 2049 worklist.push( C->top() );
never@1356 2050 build_loop_late( visited, worklist, nstack );
never@1356 2051
never@1356 2052 if (_verify_only) {
never@1356 2053 // restore major progress flag
never@1356 2054 for (int i = 0; i < old_progress; i++)
never@1356 2055 C->set_major_progress();
never@1356 2056 assert(C->unique() == unique, "verification mode made Nodes? ? ?");
never@2685 2057 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
never@1356 2058 return;
never@1356 2059 }
duke@435 2060
kvn@2727 2061 // Some parser-inserted loop predicates could never be used by loop
kvn@2727 2062 // predication or they were moved away from loop during some optimizations.
kvn@2727 2063 // For example, peeling. Eliminate them before next loop optimizations.
kvn@2877 2064 if (UseLoopPredicate || LoopLimitCheck) {
cfang@1607 2065 eliminate_useless_predicates();
cfang@1607 2066 }
cfang@1607 2067
duke@435 2068 // clear out the dead code
duke@435 2069 while(_deadlist.size()) {
never@1356 2070 _igvn.remove_globally_dead_node(_deadlist.pop());
duke@435 2071 }
duke@435 2072
duke@435 2073 #ifndef PRODUCT
duke@435 2074 C->verify_graph_edges();
kvn@2665 2075 if (_verify_me) { // Nested verify pass?
duke@435 2076 // Check to see if the verify mode is broken
duke@435 2077 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
duke@435 2078 return;
duke@435 2079 }
kvn@2665 2080 if(VerifyLoopOptimizations) verify();
kvn@2665 2081 if(TraceLoopOpts && C->has_loops()) {
kvn@2665 2082 _ltree_root->dump();
kvn@2665 2083 }
duke@435 2084 #endif
duke@435 2085
kvn@3260 2086 if (skip_loop_opts) {
kvn@3260 2087 // Cleanup any modified bits
kvn@3260 2088 _igvn.optimize();
kvn@3260 2089
kvn@3260 2090 if (C->log() != NULL) {
kvn@3260 2091 log_loop_tree(_ltree_root, _ltree_root, C->log());
kvn@3260 2092 }
kvn@3260 2093 return;
kvn@3260 2094 }
kvn@3260 2095
duke@435 2096 if (ReassociateInvariants) {
duke@435 2097 // Reassociate invariants and prep for split_thru_phi
duke@435 2098 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2099 IdealLoopTree* lpt = iter.current();
duke@435 2100 if (!lpt->is_counted() || !lpt->is_inner()) continue;
duke@435 2101
duke@435 2102 lpt->reassociate_invariants(this);
duke@435 2103
duke@435 2104 // Because RCE opportunities can be masked by split_thru_phi,
duke@435 2105 // look for RCE candidates and inhibit split_thru_phi
duke@435 2106 // on just their loop-phi's for this pass of loop opts
cfang@1607 2107 if (SplitIfBlocks && do_split_ifs) {
duke@435 2108 if (lpt->policy_range_check(this)) {
kvn@474 2109 lpt->_rce_candidate = 1; // = true
duke@435 2110 }
duke@435 2111 }
duke@435 2112 }
duke@435 2113 }
duke@435 2114
duke@435 2115 // Check for aggressive application of split-if and other transforms
duke@435 2116 // that require basic-block info (like cloning through Phi's)
duke@435 2117 if( SplitIfBlocks && do_split_ifs ) {
duke@435 2118 visited.Clear();
duke@435 2119 split_if_with_blocks( visited, nstack );
duke@435 2120 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
duke@435 2121 }
duke@435 2122
cfang@1607 2123 // Perform loop predication before iteration splitting
kvn@2727 2124 if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
cfang@1607 2125 _ltree_root->_child->loop_predication(this);
cfang@1607 2126 }
cfang@1607 2127
never@2118 2128 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
never@2118 2129 if (do_intrinsify_fill()) {
never@2118 2130 C->set_major_progress();
never@2118 2131 }
never@2118 2132 }
never@2118 2133
duke@435 2134 // Perform iteration-splitting on inner loops. Split iterations to avoid
duke@435 2135 // range checks or one-shot null checks.
duke@435 2136
duke@435 2137 // If split-if's didn't hack the graph too bad (no CFG changes)
duke@435 2138 // then do loop opts.
cfang@1607 2139 if (C->has_loops() && !C->major_progress()) {
duke@435 2140 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
duke@435 2141 _ltree_root->_child->iteration_split( this, worklist );
duke@435 2142 // No verify after peeling! GCM has hoisted code out of the loop.
duke@435 2143 // After peeling, the hoisted code could sink inside the peeled area.
duke@435 2144 // The peeling code does not try to recompute the best location for
duke@435 2145 // all the code before the peeled area, so the verify pass will always
duke@435 2146 // complain about it.
duke@435 2147 }
duke@435 2148 // Do verify graph edges in any case
duke@435 2149 NOT_PRODUCT( C->verify_graph_edges(); );
duke@435 2150
cfang@1607 2151 if (!do_split_ifs) {
duke@435 2152 // We saw major progress in Split-If to get here. We forced a
duke@435 2153 // pass with unrolling and not split-if, however more split-if's
duke@435 2154 // might make progress. If the unrolling didn't make progress
duke@435 2155 // then the major-progress flag got cleared and we won't try
duke@435 2156 // another round of Split-If. In particular the ever-common
duke@435 2157 // instance-of/check-cast pattern requires at least 2 rounds of
duke@435 2158 // Split-If to clear out.
duke@435 2159 C->set_major_progress();
duke@435 2160 }
duke@435 2161
duke@435 2162 // Repeat loop optimizations if new loops were seen
duke@435 2163 if (created_loop_node()) {
duke@435 2164 C->set_major_progress();
duke@435 2165 }
duke@435 2166
kvn@2727 2167 // Keep loop predicates and perform optimizations with them
kvn@2727 2168 // until no more loop optimizations could be done.
kvn@2727 2169 // After that switch predicates off and do more loop optimizations.
kvn@2727 2170 if (!C->major_progress() && (C->predicate_count() > 0)) {
kvn@2727 2171 C->cleanup_loop_predicates(_igvn);
kvn@2727 2172 #ifndef PRODUCT
kvn@2727 2173 if (TraceLoopOpts) {
kvn@2727 2174 tty->print_cr("PredicatesOff");
kvn@2727 2175 }
kvn@2727 2176 #endif
kvn@2727 2177 C->set_major_progress();
kvn@2727 2178 }
duke@435 2179
kvn@2727 2180 // Convert scalar to superword operations at the end of all loop opts.
duke@435 2181 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
duke@435 2182 // SuperWord transform
duke@435 2183 SuperWord sw(this);
duke@435 2184 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2185 IdealLoopTree* lpt = iter.current();
duke@435 2186 if (lpt->is_counted()) {
duke@435 2187 sw.transform_loop(lpt);
duke@435 2188 }
duke@435 2189 }
duke@435 2190 }
duke@435 2191
duke@435 2192 // Cleanup any modified bits
duke@435 2193 _igvn.optimize();
duke@435 2194
never@802 2195 // disable assert until issue with split_flow_path is resolved (6742111)
never@802 2196 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
never@802 2197 // "shouldn't introduce irreducible loops");
never@802 2198
never@802 2199 if (C->log() != NULL) {
never@802 2200 log_loop_tree(_ltree_root, _ltree_root, C->log());
never@802 2201 }
duke@435 2202 }
duke@435 2203
duke@435 2204 #ifndef PRODUCT
duke@435 2205 //------------------------------print_statistics-------------------------------
duke@435 2206 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
duke@435 2207 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
duke@435 2208 void PhaseIdealLoop::print_statistics() {
duke@435 2209 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
duke@435 2210 }
duke@435 2211
duke@435 2212 //------------------------------verify-----------------------------------------
duke@435 2213 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
duke@435 2214 static int fail; // debug only, so its multi-thread dont care
duke@435 2215 void PhaseIdealLoop::verify() const {
duke@435 2216 int old_progress = C->major_progress();
duke@435 2217 ResourceMark rm;
never@1356 2218 PhaseIdealLoop loop_verify( _igvn, this );
duke@435 2219 VectorSet visited(Thread::current()->resource_area());
duke@435 2220
duke@435 2221 fail = 0;
duke@435 2222 verify_compare( C->root(), &loop_verify, visited );
duke@435 2223 assert( fail == 0, "verify loops failed" );
duke@435 2224 // Verify loop structure is the same
duke@435 2225 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
duke@435 2226 // Reset major-progress. It was cleared by creating a verify version of
duke@435 2227 // PhaseIdealLoop.
duke@435 2228 for( int i=0; i<old_progress; i++ )
duke@435 2229 C->set_major_progress();
duke@435 2230 }
duke@435 2231
duke@435 2232 //------------------------------verify_compare---------------------------------
duke@435 2233 // Make sure me and the given PhaseIdealLoop agree on key data structures
duke@435 2234 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
duke@435 2235 if( !n ) return;
duke@435 2236 if( visited.test_set( n->_idx ) ) return;
duke@435 2237 if( !_nodes[n->_idx] ) { // Unreachable
duke@435 2238 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
duke@435 2239 return;
duke@435 2240 }
duke@435 2241
duke@435 2242 uint i;
duke@435 2243 for( i = 0; i < n->req(); i++ )
duke@435 2244 verify_compare( n->in(i), loop_verify, visited );
duke@435 2245
duke@435 2246 // Check the '_nodes' block/loop structure
duke@435 2247 i = n->_idx;
duke@435 2248 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
duke@435 2249 if( _nodes[i] != loop_verify->_nodes[i] &&
duke@435 2250 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
duke@435 2251 tty->print("Mismatched control setting for: ");
duke@435 2252 n->dump();
duke@435 2253 if( fail++ > 10 ) return;
duke@435 2254 Node *c = get_ctrl_no_update(n);
duke@435 2255 tty->print("We have it as: ");
duke@435 2256 if( c->in(0) ) c->dump();
duke@435 2257 else tty->print_cr("N%d",c->_idx);
duke@435 2258 tty->print("Verify thinks: ");
duke@435 2259 if( loop_verify->has_ctrl(n) )
duke@435 2260 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2261 else
duke@435 2262 loop_verify->get_loop_idx(n)->dump();
duke@435 2263 tty->cr();
duke@435 2264 }
duke@435 2265 } else { // We have a loop
duke@435 2266 IdealLoopTree *us = get_loop_idx(n);
duke@435 2267 if( loop_verify->has_ctrl(n) ) {
duke@435 2268 tty->print("Mismatched loop setting for: ");
duke@435 2269 n->dump();
duke@435 2270 if( fail++ > 10 ) return;
duke@435 2271 tty->print("We have it as: ");
duke@435 2272 us->dump();
duke@435 2273 tty->print("Verify thinks: ");
duke@435 2274 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2275 tty->cr();
duke@435 2276 } else if (!C->major_progress()) {
duke@435 2277 // Loop selection can be messed up if we did a major progress
duke@435 2278 // operation, like split-if. Do not verify in that case.
duke@435 2279 IdealLoopTree *them = loop_verify->get_loop_idx(n);
duke@435 2280 if( us->_head != them->_head || us->_tail != them->_tail ) {
duke@435 2281 tty->print("Unequals loops for: ");
duke@435 2282 n->dump();
duke@435 2283 if( fail++ > 10 ) return;
duke@435 2284 tty->print("We have it as: ");
duke@435 2285 us->dump();
duke@435 2286 tty->print("Verify thinks: ");
duke@435 2287 them->dump();
duke@435 2288 tty->cr();
duke@435 2289 }
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293 // Check for immediate dominators being equal
duke@435 2294 if( i >= _idom_size ) {
duke@435 2295 if( !n->is_CFG() ) return;
duke@435 2296 tty->print("CFG Node with no idom: ");
duke@435 2297 n->dump();
duke@435 2298 return;
duke@435 2299 }
duke@435 2300 if( !n->is_CFG() ) return;
duke@435 2301 if( n == C->root() ) return; // No IDOM here
duke@435 2302
duke@435 2303 assert(n->_idx == i, "sanity");
duke@435 2304 Node *id = idom_no_update(n);
duke@435 2305 if( id != loop_verify->idom_no_update(n) ) {
duke@435 2306 tty->print("Unequals idoms for: ");
duke@435 2307 n->dump();
duke@435 2308 if( fail++ > 10 ) return;
duke@435 2309 tty->print("We have it as: ");
duke@435 2310 id->dump();
duke@435 2311 tty->print("Verify thinks: ");
duke@435 2312 loop_verify->idom_no_update(n)->dump();
duke@435 2313 tty->cr();
duke@435 2314 }
duke@435 2315
duke@435 2316 }
duke@435 2317
duke@435 2318 //------------------------------verify_tree------------------------------------
duke@435 2319 // Verify that tree structures match. Because the CFG can change, siblings
duke@435 2320 // within the loop tree can be reordered. We attempt to deal with that by
duke@435 2321 // reordering the verify's loop tree if possible.
duke@435 2322 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
duke@435 2323 assert( _parent == parent, "Badly formed loop tree" );
duke@435 2324
duke@435 2325 // Siblings not in same order? Attempt to re-order.
duke@435 2326 if( _head != loop->_head ) {
duke@435 2327 // Find _next pointer to update
duke@435 2328 IdealLoopTree **pp = &loop->_parent->_child;
duke@435 2329 while( *pp != loop )
duke@435 2330 pp = &((*pp)->_next);
duke@435 2331 // Find proper sibling to be next
duke@435 2332 IdealLoopTree **nn = &loop->_next;
duke@435 2333 while( (*nn) && (*nn)->_head != _head )
duke@435 2334 nn = &((*nn)->_next);
duke@435 2335
duke@435 2336 // Check for no match.
duke@435 2337 if( !(*nn) ) {
duke@435 2338 // Annoyingly, irreducible loops can pick different headers
duke@435 2339 // after a major_progress operation, so the rest of the loop
duke@435 2340 // tree cannot be matched.
duke@435 2341 if (_irreducible && Compile::current()->major_progress()) return;
duke@435 2342 assert( 0, "failed to match loop tree" );
duke@435 2343 }
duke@435 2344
duke@435 2345 // Move (*nn) to (*pp)
duke@435 2346 IdealLoopTree *hit = *nn;
duke@435 2347 *nn = hit->_next;
duke@435 2348 hit->_next = loop;
duke@435 2349 *pp = loop;
duke@435 2350 loop = hit;
duke@435 2351 // Now try again to verify
duke@435 2352 }
duke@435 2353
duke@435 2354 assert( _head == loop->_head , "mismatched loop head" );
duke@435 2355 Node *tail = _tail; // Inline a non-updating version of
duke@435 2356 while( !tail->in(0) ) // the 'tail()' call.
duke@435 2357 tail = tail->in(1);
duke@435 2358 assert( tail == loop->_tail, "mismatched loop tail" );
duke@435 2359
duke@435 2360 // Counted loops that are guarded should be able to find their guards
duke@435 2361 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
duke@435 2362 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 2363 Node *init = cl->init_trip();
duke@435 2364 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2365 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 2366 Node *iff = ctrl->in(0);
duke@435 2367 assert( iff->Opcode() == Op_If, "" );
duke@435 2368 Node *bol = iff->in(1);
duke@435 2369 assert( bol->Opcode() == Op_Bool, "" );
duke@435 2370 Node *cmp = bol->in(1);
duke@435 2371 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 2372 Node *add = cmp->in(1);
duke@435 2373 Node *opaq;
duke@435 2374 if( add->Opcode() == Op_Opaque1 ) {
duke@435 2375 opaq = add;
duke@435 2376 } else {
duke@435 2377 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
duke@435 2378 assert( add == init, "" );
duke@435 2379 opaq = cmp->in(2);
duke@435 2380 }
duke@435 2381 assert( opaq->Opcode() == Op_Opaque1, "" );
duke@435 2382
duke@435 2383 }
duke@435 2384
duke@435 2385 if (_child != NULL) _child->verify_tree(loop->_child, this);
duke@435 2386 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
duke@435 2387 // Innermost loops need to verify loop bodies,
duke@435 2388 // but only if no 'major_progress'
duke@435 2389 int fail = 0;
duke@435 2390 if (!Compile::current()->major_progress() && _child == NULL) {
duke@435 2391 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 2392 Node *n = _body.at(i);
duke@435 2393 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2394 uint j;
duke@435 2395 for( j = 0; j < loop->_body.size(); j++ )
duke@435 2396 if( loop->_body.at(j) == n )
duke@435 2397 break;
duke@435 2398 if( j == loop->_body.size() ) { // Not found in loop body
duke@435 2399 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2400 // have some users (so outcnt not zero) but are still dead.
duke@435 2401 // Try to find from root.
duke@435 2402 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2403 fail++;
duke@435 2404 tty->print("We have that verify does not: ");
duke@435 2405 n->dump();
duke@435 2406 }
duke@435 2407 }
duke@435 2408 }
duke@435 2409 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
duke@435 2410 Node *n = loop->_body.at(i2);
duke@435 2411 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2412 uint j;
duke@435 2413 for( j = 0; j < _body.size(); j++ )
duke@435 2414 if( _body.at(j) == n )
duke@435 2415 break;
duke@435 2416 if( j == _body.size() ) { // Not found in loop body
duke@435 2417 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2418 // have some users (so outcnt not zero) but are still dead.
duke@435 2419 // Try to find from root.
duke@435 2420 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2421 fail++;
duke@435 2422 tty->print("Verify has that we do not: ");
duke@435 2423 n->dump();
duke@435 2424 }
duke@435 2425 }
duke@435 2426 }
duke@435 2427 assert( !fail, "loop body mismatch" );
duke@435 2428 }
duke@435 2429 }
duke@435 2430
duke@435 2431 #endif
duke@435 2432
duke@435 2433 //------------------------------set_idom---------------------------------------
duke@435 2434 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
duke@435 2435 uint idx = d->_idx;
duke@435 2436 if (idx >= _idom_size) {
duke@435 2437 uint newsize = _idom_size<<1;
duke@435 2438 while( idx >= newsize ) {
duke@435 2439 newsize <<= 1;
duke@435 2440 }
duke@435 2441 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
duke@435 2442 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
duke@435 2443 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
duke@435 2444 _idom_size = newsize;
duke@435 2445 }
duke@435 2446 _idom[idx] = n;
duke@435 2447 _dom_depth[idx] = dom_depth;
duke@435 2448 }
duke@435 2449
duke@435 2450 //------------------------------recompute_dom_depth---------------------------------------
duke@435 2451 // The dominator tree is constructed with only parent pointers.
duke@435 2452 // This recomputes the depth in the tree by first tagging all
duke@435 2453 // nodes as "no depth yet" marker. The next pass then runs up
duke@435 2454 // the dom tree from each node marked "no depth yet", and computes
duke@435 2455 // the depth on the way back down.
duke@435 2456 void PhaseIdealLoop::recompute_dom_depth() {
duke@435 2457 uint no_depth_marker = C->unique();
duke@435 2458 uint i;
duke@435 2459 // Initialize depth to "no depth yet"
duke@435 2460 for (i = 0; i < _idom_size; i++) {
duke@435 2461 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
duke@435 2462 _dom_depth[i] = no_depth_marker;
duke@435 2463 }
duke@435 2464 }
duke@435 2465 if (_dom_stk == NULL) {
duke@435 2466 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
duke@435 2467 if (init_size < 10) init_size = 10;
kvn@2555 2468 _dom_stk = new GrowableArray<uint>(init_size);
duke@435 2469 }
duke@435 2470 // Compute new depth for each node.
duke@435 2471 for (i = 0; i < _idom_size; i++) {
duke@435 2472 uint j = i;
duke@435 2473 // Run up the dom tree to find a node with a depth
duke@435 2474 while (_dom_depth[j] == no_depth_marker) {
duke@435 2475 _dom_stk->push(j);
duke@435 2476 j = _idom[j]->_idx;
duke@435 2477 }
duke@435 2478 // Compute the depth on the way back down this tree branch
duke@435 2479 uint dd = _dom_depth[j] + 1;
duke@435 2480 while (_dom_stk->length() > 0) {
duke@435 2481 uint j = _dom_stk->pop();
duke@435 2482 _dom_depth[j] = dd;
duke@435 2483 dd++;
duke@435 2484 }
duke@435 2485 }
duke@435 2486 }
duke@435 2487
duke@435 2488 //------------------------------sort-------------------------------------------
duke@435 2489 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
duke@435 2490 // loop tree, not the root.
duke@435 2491 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
duke@435 2492 if( !innermost ) return loop; // New innermost loop
duke@435 2493
duke@435 2494 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
duke@435 2495 assert( loop_preorder, "not yet post-walked loop" );
duke@435 2496 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
duke@435 2497 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
duke@435 2498
duke@435 2499 // Insert at start of list
duke@435 2500 while( l ) { // Insertion sort based on pre-order
duke@435 2501 if( l == loop ) return innermost; // Already on list!
duke@435 2502 int l_preorder = get_preorder(l->_head); // Cache pre-order number
duke@435 2503 assert( l_preorder, "not yet post-walked l" );
duke@435 2504 // Check header pre-order number to figure proper nesting
duke@435 2505 if( loop_preorder > l_preorder )
duke@435 2506 break; // End of insertion
duke@435 2507 // If headers tie (e.g., shared headers) check tail pre-order numbers.
duke@435 2508 // Since I split shared headers, you'd think this could not happen.
duke@435 2509 // BUT: I must first do the preorder numbering before I can discover I
duke@435 2510 // have shared headers, so the split headers all get the same preorder
duke@435 2511 // number as the RegionNode they split from.
duke@435 2512 if( loop_preorder == l_preorder &&
duke@435 2513 get_preorder(loop->_tail) < get_preorder(l->_tail) )
duke@435 2514 break; // Also check for shared headers (same pre#)
duke@435 2515 pp = &l->_parent; // Chain up list
duke@435 2516 l = *pp;
duke@435 2517 }
duke@435 2518 // Link into list
duke@435 2519 // Point predecessor to me
duke@435 2520 *pp = loop;
duke@435 2521 // Point me to successor
duke@435 2522 IdealLoopTree *p = loop->_parent;
duke@435 2523 loop->_parent = l; // Point me to successor
duke@435 2524 if( p ) sort( p, innermost ); // Insert my parents into list as well
duke@435 2525 return innermost;
duke@435 2526 }
duke@435 2527
duke@435 2528 //------------------------------build_loop_tree--------------------------------
duke@435 2529 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
duke@435 2530 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
duke@435 2531 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
duke@435 2532 // tightest enclosing IdealLoopTree for post-walked.
duke@435 2533 //
duke@435 2534 // During my forward walk I do a short 1-layer lookahead to see if I can find
duke@435 2535 // a loop backedge with that doesn't have any work on the backedge. This
duke@435 2536 // helps me construct nested loops with shared headers better.
duke@435 2537 //
duke@435 2538 // Once I've done the forward recursion, I do the post-work. For each child
duke@435 2539 // I check to see if there is a backedge. Backedges define a loop! I
duke@435 2540 // insert an IdealLoopTree at the target of the backedge.
duke@435 2541 //
duke@435 2542 // During the post-work I also check to see if I have several children
duke@435 2543 // belonging to different loops. If so, then this Node is a decision point
duke@435 2544 // where control flow can choose to change loop nests. It is at this
duke@435 2545 // decision point where I can figure out how loops are nested. At this
duke@435 2546 // time I can properly order the different loop nests from my children.
duke@435 2547 // Note that there may not be any backedges at the decision point!
duke@435 2548 //
duke@435 2549 // Since the decision point can be far removed from the backedges, I can't
duke@435 2550 // order my loops at the time I discover them. Thus at the decision point
duke@435 2551 // I need to inspect loop header pre-order numbers to properly nest my
duke@435 2552 // loops. This means I need to sort my childrens' loops by pre-order.
duke@435 2553 // The sort is of size number-of-control-children, which generally limits
duke@435 2554 // it to size 2 (i.e., I just choose between my 2 target loops).
duke@435 2555 void PhaseIdealLoop::build_loop_tree() {
duke@435 2556 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2557 GrowableArray <Node *> bltstack(C->unique() >> 1);
duke@435 2558 Node *n = C->root();
duke@435 2559 bltstack.push(n);
duke@435 2560 int pre_order = 1;
duke@435 2561 int stack_size;
duke@435 2562
duke@435 2563 while ( ( stack_size = bltstack.length() ) != 0 ) {
duke@435 2564 n = bltstack.top(); // Leave node on stack
duke@435 2565 if ( !is_visited(n) ) {
duke@435 2566 // ---- Pre-pass Work ----
duke@435 2567 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2568
duke@435 2569 set_preorder_visited( n, pre_order ); // set as visited
duke@435 2570
duke@435 2571 // ---- Scan over children ----
duke@435 2572 // Scan first over control projections that lead to loop headers.
duke@435 2573 // This helps us find inner-to-outer loops with shared headers better.
duke@435 2574
duke@435 2575 // Scan children's children for loop headers.
duke@435 2576 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
duke@435 2577 Node* m = n->raw_out(i); // Child
duke@435 2578 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
duke@435 2579 // Scan over children's children to find loop
duke@435 2580 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2581 Node* l = m->fast_out(j);
duke@435 2582 if( is_visited(l) && // Been visited?
duke@435 2583 !is_postvisited(l) && // But not post-visited
duke@435 2584 get_preorder(l) < pre_order ) { // And smaller pre-order
duke@435 2585 // Found! Scan the DFS down this path before doing other paths
duke@435 2586 bltstack.push(m);
duke@435 2587 break;
duke@435 2588 }
duke@435 2589 }
duke@435 2590 }
duke@435 2591 }
duke@435 2592 pre_order++;
duke@435 2593 }
duke@435 2594 else if ( !is_postvisited(n) ) {
duke@435 2595 // Note: build_loop_tree_impl() adds out edges on rare occasions,
duke@435 2596 // such as com.sun.rsasign.am::a.
duke@435 2597 // For non-recursive version, first, process current children.
duke@435 2598 // On next iteration, check if additional children were added.
duke@435 2599 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
duke@435 2600 Node* u = n->raw_out(k);
duke@435 2601 if ( u->is_CFG() && !is_visited(u) ) {
duke@435 2602 bltstack.push(u);
duke@435 2603 }
duke@435 2604 }
duke@435 2605 if ( bltstack.length() == stack_size ) {
duke@435 2606 // There were no additional children, post visit node now
duke@435 2607 (void)bltstack.pop(); // Remove node from stack
duke@435 2608 pre_order = build_loop_tree_impl( n, pre_order );
duke@435 2609 // Check for bailout
duke@435 2610 if (C->failing()) {
duke@435 2611 return;
duke@435 2612 }
duke@435 2613 // Check to grow _preorders[] array for the case when
duke@435 2614 // build_loop_tree_impl() adds new nodes.
duke@435 2615 check_grow_preorders();
duke@435 2616 }
duke@435 2617 }
duke@435 2618 else {
duke@435 2619 (void)bltstack.pop(); // Remove post-visited node from stack
duke@435 2620 }
duke@435 2621 }
duke@435 2622 }
duke@435 2623
duke@435 2624 //------------------------------build_loop_tree_impl---------------------------
duke@435 2625 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
duke@435 2626 // ---- Post-pass Work ----
duke@435 2627 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2628
duke@435 2629 // Tightest enclosing loop for this Node
duke@435 2630 IdealLoopTree *innermost = NULL;
duke@435 2631
duke@435 2632 // For all children, see if any edge is a backedge. If so, make a loop
duke@435 2633 // for it. Then find the tightest enclosing loop for the self Node.
duke@435 2634 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2635 Node* m = n->fast_out(i); // Child
duke@435 2636 if( n == m ) continue; // Ignore control self-cycles
duke@435 2637 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
duke@435 2638
duke@435 2639 IdealLoopTree *l; // Child's loop
duke@435 2640 if( !is_postvisited(m) ) { // Child visited but not post-visited?
duke@435 2641 // Found a backedge
duke@435 2642 assert( get_preorder(m) < pre_order, "should be backedge" );
duke@435 2643 // Check for the RootNode, which is already a LoopNode and is allowed
duke@435 2644 // to have multiple "backedges".
duke@435 2645 if( m == C->root()) { // Found the root?
duke@435 2646 l = _ltree_root; // Root is the outermost LoopNode
duke@435 2647 } else { // Else found a nested loop
duke@435 2648 // Insert a LoopNode to mark this loop.
duke@435 2649 l = new IdealLoopTree(this, m, n);
duke@435 2650 } // End of Else found a nested loop
duke@435 2651 if( !has_loop(m) ) // If 'm' does not already have a loop set
duke@435 2652 set_loop(m, l); // Set loop header to loop now
duke@435 2653
duke@435 2654 } else { // Else not a nested loop
duke@435 2655 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
duke@435 2656 l = get_loop(m); // Get previously determined loop
duke@435 2657 // If successor is header of a loop (nest), move up-loop till it
duke@435 2658 // is a member of some outer enclosing loop. Since there are no
duke@435 2659 // shared headers (I've split them already) I only need to go up
duke@435 2660 // at most 1 level.
duke@435 2661 while( l && l->_head == m ) // Successor heads loop?
duke@435 2662 l = l->_parent; // Move up 1 for me
duke@435 2663 // If this loop is not properly parented, then this loop
duke@435 2664 // has no exit path out, i.e. its an infinite loop.
duke@435 2665 if( !l ) {
duke@435 2666 // Make loop "reachable" from root so the CFG is reachable. Basically
duke@435 2667 // insert a bogus loop exit that is never taken. 'm', the loop head,
duke@435 2668 // points to 'n', one (of possibly many) fall-in paths. There may be
duke@435 2669 // many backedges as well.
duke@435 2670
duke@435 2671 // Here I set the loop to be the root loop. I could have, after
duke@435 2672 // inserting a bogus loop exit, restarted the recursion and found my
duke@435 2673 // new loop exit. This would make the infinite loop a first-class
duke@435 2674 // loop and it would then get properly optimized. What's the use of
duke@435 2675 // optimizing an infinite loop?
duke@435 2676 l = _ltree_root; // Oops, found infinite loop
duke@435 2677
never@1356 2678 if (!_verify_only) {
never@1356 2679 // Insert the NeverBranch between 'm' and it's control user.
never@1356 2680 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
never@1356 2681 _igvn.register_new_node_with_optimizer(iff);
never@1356 2682 set_loop(iff, l);
never@1356 2683 Node *if_t = new (C, 1) CProjNode( iff, 0 );
never@1356 2684 _igvn.register_new_node_with_optimizer(if_t);
never@1356 2685 set_loop(if_t, l);
duke@435 2686
never@1356 2687 Node* cfg = NULL; // Find the One True Control User of m
never@1356 2688 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
never@1356 2689 Node* x = m->fast_out(j);
never@1356 2690 if (x->is_CFG() && x != m && x != iff)
never@1356 2691 { cfg = x; break; }
never@1356 2692 }
never@1356 2693 assert(cfg != NULL, "must find the control user of m");
never@1356 2694 uint k = 0; // Probably cfg->in(0)
never@1356 2695 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
never@1356 2696 cfg->set_req( k, if_t ); // Now point to NeverBranch
never@1356 2697
never@1356 2698 // Now create the never-taken loop exit
never@1356 2699 Node *if_f = new (C, 1) CProjNode( iff, 1 );
never@1356 2700 _igvn.register_new_node_with_optimizer(if_f);
never@1356 2701 set_loop(if_f, l);
never@1356 2702 // Find frame ptr for Halt. Relies on the optimizer
never@1356 2703 // V-N'ing. Easier and quicker than searching through
never@1356 2704 // the program structure.
never@1356 2705 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
never@1356 2706 _igvn.register_new_node_with_optimizer(frame);
never@1356 2707 // Halt & Catch Fire
never@1356 2708 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
never@1356 2709 _igvn.register_new_node_with_optimizer(halt);
never@1356 2710 set_loop(halt, l);
never@1356 2711 C->root()->add_req(halt);
duke@435 2712 }
duke@435 2713 set_loop(C->root(), _ltree_root);
duke@435 2714 }
duke@435 2715 }
duke@435 2716 // Weeny check for irreducible. This child was already visited (this
duke@435 2717 // IS the post-work phase). Is this child's loop header post-visited
duke@435 2718 // as well? If so, then I found another entry into the loop.
never@1356 2719 if (!_verify_only) {
never@1356 2720 while( is_postvisited(l->_head) ) {
never@1356 2721 // found irreducible
never@1356 2722 l->_irreducible = 1; // = true
never@1356 2723 l = l->_parent;
never@1356 2724 _has_irreducible_loops = true;
never@1356 2725 // Check for bad CFG here to prevent crash, and bailout of compile
never@1356 2726 if (l == NULL) {
never@1356 2727 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
never@1356 2728 return pre_order;
never@1356 2729 }
duke@435 2730 }
duke@435 2731 }
duke@435 2732
duke@435 2733 // This Node might be a decision point for loops. It is only if
duke@435 2734 // it's children belong to several different loops. The sort call
duke@435 2735 // does a trivial amount of work if there is only 1 child or all
duke@435 2736 // children belong to the same loop. If however, the children
duke@435 2737 // belong to different loops, the sort call will properly set the
duke@435 2738 // _parent pointers to show how the loops nest.
duke@435 2739 //
duke@435 2740 // In any case, it returns the tightest enclosing loop.
duke@435 2741 innermost = sort( l, innermost );
duke@435 2742 }
duke@435 2743
duke@435 2744 // Def-use info will have some dead stuff; dead stuff will have no
duke@435 2745 // loop decided on.
duke@435 2746
duke@435 2747 // Am I a loop header? If so fix up my parent's child and next ptrs.
duke@435 2748 if( innermost && innermost->_head == n ) {
duke@435 2749 assert( get_loop(n) == innermost, "" );
duke@435 2750 IdealLoopTree *p = innermost->_parent;
duke@435 2751 IdealLoopTree *l = innermost;
duke@435 2752 while( p && l->_head == n ) {
duke@435 2753 l->_next = p->_child; // Put self on parents 'next child'
duke@435 2754 p->_child = l; // Make self as first child of parent
duke@435 2755 l = p; // Now walk up the parent chain
duke@435 2756 p = l->_parent;
duke@435 2757 }
duke@435 2758 } else {
duke@435 2759 // Note that it is possible for a LoopNode to reach here, if the
duke@435 2760 // backedge has been made unreachable (hence the LoopNode no longer
duke@435 2761 // denotes a Loop, and will eventually be removed).
duke@435 2762
duke@435 2763 // Record tightest enclosing loop for self. Mark as post-visited.
duke@435 2764 set_loop(n, innermost);
duke@435 2765 // Also record has_call flag early on
duke@435 2766 if( innermost ) {
duke@435 2767 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
duke@435 2768 // Do not count uncommon calls
duke@435 2769 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
duke@435 2770 Node *iff = n->in(0)->in(0);
kvn@3882 2771 // No any calls for vectorized loops.
kvn@3882 2772 if( UseSuperWord || !iff->is_If() ||
duke@435 2773 (n->in(0)->Opcode() == Op_IfFalse &&
duke@435 2774 (1.0 - iff->as_If()->_prob) >= 0.01) ||
duke@435 2775 (iff->as_If()->_prob >= 0.01) )
duke@435 2776 innermost->_has_call = 1;
duke@435 2777 }
kvn@474 2778 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
kvn@474 2779 // Disable loop optimizations if the loop has a scalar replaceable
kvn@474 2780 // allocation. This disabling may cause a potential performance lost
kvn@474 2781 // if the allocation is not eliminated for some reason.
kvn@474 2782 innermost->_allow_optimizations = false;
kvn@474 2783 innermost->_has_call = 1; // = true
kvn@4023 2784 } else if (n->Opcode() == Op_SafePoint) {
kvn@4023 2785 // Record all safepoints in this loop.
kvn@4023 2786 if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
kvn@4023 2787 innermost->_safepts->push(n);
duke@435 2788 }
duke@435 2789 }
duke@435 2790 }
duke@435 2791
duke@435 2792 // Flag as post-visited now
duke@435 2793 set_postvisited(n);
duke@435 2794 return pre_order;
duke@435 2795 }
duke@435 2796
duke@435 2797
duke@435 2798 //------------------------------build_loop_early-------------------------------
duke@435 2799 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2800 // First pass computes the earliest controlling node possible. This is the
duke@435 2801 // controlling input with the deepest dominating depth.
never@1356 2802 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 2803 while (worklist.size() != 0) {
duke@435 2804 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 2805 // on nstack's top.
duke@435 2806 Node *nstack_top_n = worklist.pop();
duke@435 2807 uint nstack_top_i = 0;
duke@435 2808 //while_nstack_nonempty:
duke@435 2809 while (true) {
duke@435 2810 // Get parent node and next input's index from stack's top.
duke@435 2811 Node *n = nstack_top_n;
duke@435 2812 uint i = nstack_top_i;
duke@435 2813 uint cnt = n->req(); // Count of inputs
duke@435 2814 if (i == 0) { // Pre-process the node.
duke@435 2815 if( has_node(n) && // Have either loop or control already?
duke@435 2816 !has_ctrl(n) ) { // Have loop picked out already?
duke@435 2817 // During "merge_many_backedges" we fold up several nested loops
duke@435 2818 // into a single loop. This makes the members of the original
duke@435 2819 // loop bodies pointing to dead loops; they need to move up
duke@435 2820 // to the new UNION'd larger loop. I set the _head field of these
duke@435 2821 // dead loops to NULL and the _parent field points to the owning
duke@435 2822 // loop. Shades of UNION-FIND algorithm.
duke@435 2823 IdealLoopTree *ilt;
duke@435 2824 while( !(ilt = get_loop(n))->_head ) {
duke@435 2825 // Normally I would use a set_loop here. But in this one special
duke@435 2826 // case, it is legal (and expected) to change what loop a Node
duke@435 2827 // belongs to.
duke@435 2828 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
duke@435 2829 }
duke@435 2830 // Remove safepoints ONLY if I've already seen I don't need one.
duke@435 2831 // (the old code here would yank a 2nd safepoint after seeing a
duke@435 2832 // first one, even though the 1st did not dominate in the loop body
duke@435 2833 // and thus could be avoided indefinitely)
never@1356 2834 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
duke@435 2835 is_deleteable_safept(n)) {
duke@435 2836 Node *in = n->in(TypeFunc::Control);
duke@435 2837 lazy_replace(n,in); // Pull safepoint now
kvn@4023 2838 if (ilt->_safepts != NULL) {
kvn@4023 2839 ilt->_safepts->yank(n);
kvn@4023 2840 }
duke@435 2841 // Carry on with the recursion "as if" we are walking
duke@435 2842 // only the control input
duke@435 2843 if( !visited.test_set( in->_idx ) ) {
duke@435 2844 worklist.push(in); // Visit this guy later, using worklist
duke@435 2845 }
duke@435 2846 // Get next node from nstack:
duke@435 2847 // - skip n's inputs processing by setting i > cnt;
duke@435 2848 // - we also will not call set_early_ctrl(n) since
duke@435 2849 // has_node(n) == true (see the condition above).
duke@435 2850 i = cnt + 1;
duke@435 2851 }
duke@435 2852 }
duke@435 2853 } // if (i == 0)
duke@435 2854
duke@435 2855 // Visit all inputs
duke@435 2856 bool done = true; // Assume all n's inputs will be processed
duke@435 2857 while (i < cnt) {
duke@435 2858 Node *in = n->in(i);
duke@435 2859 ++i;
duke@435 2860 if (in == NULL) continue;
duke@435 2861 if (in->pinned() && !in->is_CFG())
duke@435 2862 set_ctrl(in, in->in(0));
duke@435 2863 int is_visited = visited.test_set( in->_idx );
duke@435 2864 if (!has_node(in)) { // No controlling input yet?
duke@435 2865 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
duke@435 2866 assert( !is_visited, "visit only once" );
duke@435 2867 nstack.push(n, i); // Save parent node and next input's index.
duke@435 2868 nstack_top_n = in; // Process current input now.
duke@435 2869 nstack_top_i = 0;
duke@435 2870 done = false; // Not all n's inputs processed.
duke@435 2871 break; // continue while_nstack_nonempty;
duke@435 2872 } else if (!is_visited) {
duke@435 2873 // This guy has a location picked out for him, but has not yet
duke@435 2874 // been visited. Happens to all CFG nodes, for instance.
duke@435 2875 // Visit him using the worklist instead of recursion, to break
duke@435 2876 // cycles. Since he has a location already we do not need to
duke@435 2877 // find his location before proceeding with the current Node.
duke@435 2878 worklist.push(in); // Visit this guy later, using worklist
duke@435 2879 }
duke@435 2880 }
duke@435 2881 if (done) {
duke@435 2882 // All of n's inputs have been processed, complete post-processing.
duke@435 2883
twisti@1040 2884 // Compute earliest point this Node can go.
duke@435 2885 // CFG, Phi, pinned nodes already know their controlling input.
duke@435 2886 if (!has_node(n)) {
duke@435 2887 // Record earliest legal location
duke@435 2888 set_early_ctrl( n );
duke@435 2889 }
duke@435 2890 if (nstack.is_empty()) {
duke@435 2891 // Finished all nodes on stack.
duke@435 2892 // Process next node on the worklist.
duke@435 2893 break;
duke@435 2894 }
duke@435 2895 // Get saved parent node and next input's index.
duke@435 2896 nstack_top_n = nstack.node();
duke@435 2897 nstack_top_i = nstack.index();
duke@435 2898 nstack.pop();
duke@435 2899 }
duke@435 2900 } // while (true)
duke@435 2901 }
duke@435 2902 }
duke@435 2903
duke@435 2904 //------------------------------dom_lca_internal--------------------------------
duke@435 2905 // Pair-wise LCA
duke@435 2906 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
duke@435 2907 if( !n1 ) return n2; // Handle NULL original LCA
duke@435 2908 assert( n1->is_CFG(), "" );
duke@435 2909 assert( n2->is_CFG(), "" );
duke@435 2910 // find LCA of all uses
duke@435 2911 uint d1 = dom_depth(n1);
duke@435 2912 uint d2 = dom_depth(n2);
duke@435 2913 while (n1 != n2) {
duke@435 2914 if (d1 > d2) {
duke@435 2915 n1 = idom(n1);
duke@435 2916 d1 = dom_depth(n1);
duke@435 2917 } else if (d1 < d2) {
duke@435 2918 n2 = idom(n2);
duke@435 2919 d2 = dom_depth(n2);
duke@435 2920 } else {
duke@435 2921 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2922 // of the tree might have the same depth. These sections have
duke@435 2923 // to be searched more carefully.
duke@435 2924
duke@435 2925 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2926 Node *t1 = idom(n1);
duke@435 2927 while (dom_depth(t1) == d1) {
duke@435 2928 if (t1 == n2) return n2;
duke@435 2929 t1 = idom(t1);
duke@435 2930 }
duke@435 2931 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2932 Node *t2 = idom(n2);
duke@435 2933 while (dom_depth(t2) == d2) {
duke@435 2934 if (t2 == n1) return n1;
duke@435 2935 t2 = idom(t2);
duke@435 2936 }
duke@435 2937 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2938 n1 = t1;
duke@435 2939 n2 = t2;
duke@435 2940 d1 = dom_depth(n1);
duke@435 2941 d2 = dom_depth(n2);
duke@435 2942 }
duke@435 2943 }
duke@435 2944 return n1;
duke@435 2945 }
duke@435 2946
duke@435 2947 //------------------------------compute_idom-----------------------------------
duke@435 2948 // Locally compute IDOM using dom_lca call. Correct only if the incoming
duke@435 2949 // IDOMs are correct.
duke@435 2950 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
duke@435 2951 assert( region->is_Region(), "" );
duke@435 2952 Node *LCA = NULL;
duke@435 2953 for( uint i = 1; i < region->req(); i++ ) {
duke@435 2954 if( region->in(i) != C->top() )
duke@435 2955 LCA = dom_lca( LCA, region->in(i) );
duke@435 2956 }
duke@435 2957 return LCA;
duke@435 2958 }
duke@435 2959
never@1356 2960 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
never@1356 2961 bool had_error = false;
never@1356 2962 #ifdef ASSERT
never@1356 2963 if (early != C->root()) {
never@1356 2964 // Make sure that there's a dominance path from use to LCA
never@1356 2965 Node* d = use;
never@1356 2966 while (d != LCA) {
never@1356 2967 d = idom(d);
never@1356 2968 if (d == C->root()) {
never@1356 2969 tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
never@1356 2970 n->dump();
never@1356 2971 use->dump();
never@1356 2972 had_error = true;
never@1356 2973 break;
never@1356 2974 }
never@1356 2975 }
never@1356 2976 }
never@1356 2977 #endif
never@1356 2978 return had_error;
never@1356 2979 }
duke@435 2980
never@1356 2981
never@1356 2982 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
duke@435 2983 // Compute LCA over list of uses
never@1356 2984 bool had_error = false;
duke@435 2985 Node *LCA = NULL;
duke@435 2986 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
duke@435 2987 Node* c = n->fast_out(i);
duke@435 2988 if (_nodes[c->_idx] == NULL)
duke@435 2989 continue; // Skip the occasional dead node
duke@435 2990 if( c->is_Phi() ) { // For Phis, we must land above on the path
duke@435 2991 for( uint j=1; j<c->req(); j++ ) {// For all inputs
duke@435 2992 if( c->in(j) == n ) { // Found matching input?
duke@435 2993 Node *use = c->in(0)->in(j);
never@1356 2994 if (_verify_only && use->is_top()) continue;
duke@435 2995 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 2996 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 2997 }
duke@435 2998 }
duke@435 2999 } else {
duke@435 3000 // For CFG data-users, use is in the block just prior
duke@435 3001 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
duke@435 3002 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 3003 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 3004 }
duke@435 3005 }
never@1356 3006 assert(!had_error, "bad dominance");
never@1356 3007 return LCA;
never@1356 3008 }
never@1356 3009
never@1356 3010 //------------------------------get_late_ctrl----------------------------------
never@1356 3011 // Compute latest legal control.
never@1356 3012 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
never@1356 3013 assert(early != NULL, "early control should not be NULL");
never@1356 3014
never@1356 3015 Node* LCA = compute_lca_of_uses(n, early);
never@1356 3016 #ifdef ASSERT
never@1356 3017 if (LCA == C->root() && LCA != early) {
never@1356 3018 // def doesn't dominate uses so print some useful debugging output
never@1356 3019 compute_lca_of_uses(n, early, true);
never@1356 3020 }
never@1356 3021 #endif
duke@435 3022
duke@435 3023 // if this is a load, check for anti-dependent stores
duke@435 3024 // We use a conservative algorithm to identify potential interfering
duke@435 3025 // instructions and for rescheduling the load. The users of the memory
duke@435 3026 // input of this load are examined. Any use which is not a load and is
duke@435 3027 // dominated by early is considered a potentially interfering store.
duke@435 3028 // This can produce false positives.
duke@435 3029 if (n->is_Load() && LCA != early) {
duke@435 3030 Node_List worklist;
duke@435 3031
duke@435 3032 Node *mem = n->in(MemNode::Memory);
duke@435 3033 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 3034 Node* s = mem->fast_out(i);
duke@435 3035 worklist.push(s);
duke@435 3036 }
duke@435 3037 while(worklist.size() != 0 && LCA != early) {
duke@435 3038 Node* s = worklist.pop();
duke@435 3039 if (s->is_Load()) {
duke@435 3040 continue;
duke@435 3041 } else if (s->is_MergeMem()) {
duke@435 3042 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
duke@435 3043 Node* s1 = s->fast_out(i);
duke@435 3044 worklist.push(s1);
duke@435 3045 }
duke@435 3046 } else {
duke@435 3047 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
duke@435 3048 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
duke@435 3049 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
duke@435 3050 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
duke@435 3051 }
duke@435 3052 }
duke@435 3053 }
duke@435 3054 }
duke@435 3055
duke@435 3056 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
duke@435 3057 return LCA;
duke@435 3058 }
duke@435 3059
duke@435 3060 // true if CFG node d dominates CFG node n
duke@435 3061 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
duke@435 3062 if (d == n)
duke@435 3063 return true;
duke@435 3064 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
duke@435 3065 uint dd = dom_depth(d);
duke@435 3066 while (dom_depth(n) >= dd) {
duke@435 3067 if (n == d)
duke@435 3068 return true;
duke@435 3069 n = idom(n);
duke@435 3070 }
duke@435 3071 return false;
duke@435 3072 }
duke@435 3073
duke@435 3074 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
duke@435 3075 // Pair-wise LCA with tags.
duke@435 3076 // Tag each index with the node 'tag' currently being processed
duke@435 3077 // before advancing up the dominator chain using idom().
duke@435 3078 // Later calls that find a match to 'tag' know that this path has already
duke@435 3079 // been considered in the current LCA (which is input 'n1' by convention).
duke@435 3080 // Since get_late_ctrl() is only called once for each node, the tag array
duke@435 3081 // does not need to be cleared between calls to get_late_ctrl().
duke@435 3082 // Algorithm trades a larger constant factor for better asymptotic behavior
duke@435 3083 //
duke@435 3084 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
duke@435 3085 uint d1 = dom_depth(n1);
duke@435 3086 uint d2 = dom_depth(n2);
duke@435 3087
duke@435 3088 do {
duke@435 3089 if (d1 > d2) {
duke@435 3090 // current lca is deeper than n2
duke@435 3091 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3092 n1 = idom(n1);
duke@435 3093 d1 = dom_depth(n1);
duke@435 3094 } else if (d1 < d2) {
duke@435 3095 // n2 is deeper than current lca
duke@435 3096 Node *memo = _dom_lca_tags[n2->_idx];
duke@435 3097 if( memo == tag ) {
duke@435 3098 return n1; // Return the current LCA
duke@435 3099 }
duke@435 3100 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3101 n2 = idom(n2);
duke@435 3102 d2 = dom_depth(n2);
duke@435 3103 } else {
duke@435 3104 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 3105 // of the tree might have the same depth. These sections have
duke@435 3106 // to be searched more carefully.
duke@435 3107
duke@435 3108 // Scan up all the n1's with equal depth, looking for n2.
duke@435 3109 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3110 Node *t1 = idom(n1);
duke@435 3111 while (dom_depth(t1) == d1) {
duke@435 3112 if (t1 == n2) return n2;
duke@435 3113 _dom_lca_tags.map(t1->_idx, tag);
duke@435 3114 t1 = idom(t1);
duke@435 3115 }
duke@435 3116 // Scan up all the n2's with equal depth, looking for n1.
duke@435 3117 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3118 Node *t2 = idom(n2);
duke@435 3119 while (dom_depth(t2) == d2) {
duke@435 3120 if (t2 == n1) return n1;
duke@435 3121 _dom_lca_tags.map(t2->_idx, tag);
duke@435 3122 t2 = idom(t2);
duke@435 3123 }
duke@435 3124 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 3125 n1 = t1;
duke@435 3126 n2 = t2;
duke@435 3127 d1 = dom_depth(n1);
duke@435 3128 d2 = dom_depth(n2);
duke@435 3129 }
duke@435 3130 } while (n1 != n2);
duke@435 3131 return n1;
duke@435 3132 }
duke@435 3133
duke@435 3134 //------------------------------init_dom_lca_tags------------------------------
duke@435 3135 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3136 // Intended use does not involve any growth for the array, so it could
duke@435 3137 // be of fixed size.
duke@435 3138 void PhaseIdealLoop::init_dom_lca_tags() {
duke@435 3139 uint limit = C->unique() + 1;
duke@435 3140 _dom_lca_tags.map( limit, NULL );
duke@435 3141 #ifdef ASSERT
duke@435 3142 for( uint i = 0; i < limit; ++i ) {
duke@435 3143 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3144 }
duke@435 3145 #endif // ASSERT
duke@435 3146 }
duke@435 3147
duke@435 3148 //------------------------------clear_dom_lca_tags------------------------------
duke@435 3149 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3150 // Intended use does not involve any growth for the array, so it could
duke@435 3151 // be of fixed size.
duke@435 3152 void PhaseIdealLoop::clear_dom_lca_tags() {
duke@435 3153 uint limit = C->unique() + 1;
duke@435 3154 _dom_lca_tags.map( limit, NULL );
duke@435 3155 _dom_lca_tags.clear();
duke@435 3156 #ifdef ASSERT
duke@435 3157 for( uint i = 0; i < limit; ++i ) {
duke@435 3158 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3159 }
duke@435 3160 #endif // ASSERT
duke@435 3161 }
duke@435 3162
duke@435 3163 //------------------------------build_loop_late--------------------------------
duke@435 3164 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3165 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3166 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 3167 while (worklist.size() != 0) {
duke@435 3168 Node *n = worklist.pop();
duke@435 3169 // Only visit once
duke@435 3170 if (visited.test_set(n->_idx)) continue;
duke@435 3171 uint cnt = n->outcnt();
duke@435 3172 uint i = 0;
duke@435 3173 while (true) {
duke@435 3174 assert( _nodes[n->_idx], "no dead nodes" );
duke@435 3175 // Visit all children
duke@435 3176 if (i < cnt) {
duke@435 3177 Node* use = n->raw_out(i);
duke@435 3178 ++i;
duke@435 3179 // Check for dead uses. Aggressively prune such junk. It might be
duke@435 3180 // dead in the global sense, but still have local uses so I cannot
duke@435 3181 // easily call 'remove_dead_node'.
duke@435 3182 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
duke@435 3183 // Due to cycles, we might not hit the same fixed point in the verify
duke@435 3184 // pass as we do in the regular pass. Instead, visit such phis as
duke@435 3185 // simple uses of the loop head.
duke@435 3186 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
duke@435 3187 if( !visited.test(use->_idx) )
duke@435 3188 worklist.push(use);
duke@435 3189 } else if( !visited.test_set(use->_idx) ) {
duke@435 3190 nstack.push(n, i); // Save parent and next use's index.
duke@435 3191 n = use; // Process all children of current use.
duke@435 3192 cnt = use->outcnt();
duke@435 3193 i = 0;
duke@435 3194 }
duke@435 3195 } else {
duke@435 3196 // Do not visit around the backedge of loops via data edges.
duke@435 3197 // push dead code onto a worklist
duke@435 3198 _deadlist.push(use);
duke@435 3199 }
duke@435 3200 } else {
duke@435 3201 // All of n's children have been processed, complete post-processing.
never@1356 3202 build_loop_late_post(n);
duke@435 3203 if (nstack.is_empty()) {
duke@435 3204 // Finished all nodes on stack.
duke@435 3205 // Process next node on the worklist.
duke@435 3206 break;
duke@435 3207 }
duke@435 3208 // Get saved parent node and next use's index. Visit the rest of uses.
duke@435 3209 n = nstack.node();
duke@435 3210 cnt = n->outcnt();
duke@435 3211 i = nstack.index();
duke@435 3212 nstack.pop();
duke@435 3213 }
duke@435 3214 }
duke@435 3215 }
duke@435 3216 }
duke@435 3217
duke@435 3218 //------------------------------build_loop_late_post---------------------------
duke@435 3219 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3220 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3221 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
duke@435 3222
never@1356 3223 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
duke@435 3224 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
duke@435 3225 }
duke@435 3226
duke@435 3227 // CFG and pinned nodes already handled
duke@435 3228 if( n->in(0) ) {
duke@435 3229 if( n->in(0)->is_top() ) return; // Dead?
duke@435 3230
duke@435 3231 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
duke@435 3232 // _must_ be pinned (they have to observe their control edge of course).
duke@435 3233 // Unlike Stores (which modify an unallocable resource, the memory
duke@435 3234 // state), Mods/Loads can float around. So free them up.
duke@435 3235 bool pinned = true;
duke@435 3236 switch( n->Opcode() ) {
duke@435 3237 case Op_DivI:
duke@435 3238 case Op_DivF:
duke@435 3239 case Op_DivD:
duke@435 3240 case Op_ModI:
duke@435 3241 case Op_ModF:
duke@435 3242 case Op_ModD:
duke@435 3243 case Op_LoadB: // Same with Loads; they can sink
kvn@3882 3244 case Op_LoadUB: // during loop optimizations.
kvn@3882 3245 case Op_LoadUS:
duke@435 3246 case Op_LoadD:
duke@435 3247 case Op_LoadF:
duke@435 3248 case Op_LoadI:
duke@435 3249 case Op_LoadKlass:
kvn@728 3250 case Op_LoadNKlass:
duke@435 3251 case Op_LoadL:
duke@435 3252 case Op_LoadS:
duke@435 3253 case Op_LoadP:
kvn@728 3254 case Op_LoadN:
duke@435 3255 case Op_LoadRange:
duke@435 3256 case Op_LoadD_unaligned:
duke@435 3257 case Op_LoadL_unaligned:
duke@435 3258 case Op_StrComp: // Does a bunch of load-like effects
cfang@1116 3259 case Op_StrEquals:
cfang@1116 3260 case Op_StrIndexOf:
rasbold@604 3261 case Op_AryEq:
duke@435 3262 pinned = false;
duke@435 3263 }
duke@435 3264 if( pinned ) {
twisti@1040 3265 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
twisti@1040 3266 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3267 chosen_loop->_body.push(n); // Collect inner loops
duke@435 3268 return;
duke@435 3269 }
duke@435 3270 } else { // No slot zero
duke@435 3271 if( n->is_CFG() ) { // CFG with no slot 0 is dead
duke@435 3272 _nodes.map(n->_idx,0); // No block setting, it's globally dead
duke@435 3273 return;
duke@435 3274 }
duke@435 3275 assert(!n->is_CFG() || n->outcnt() == 0, "");
duke@435 3276 }
duke@435 3277
duke@435 3278 // Do I have a "safe range" I can select over?
duke@435 3279 Node *early = get_ctrl(n);// Early location already computed
duke@435 3280
duke@435 3281 // Compute latest point this Node can go
duke@435 3282 Node *LCA = get_late_ctrl( n, early );
duke@435 3283 // LCA is NULL due to uses being dead
duke@435 3284 if( LCA == NULL ) {
duke@435 3285 #ifdef ASSERT
duke@435 3286 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
duke@435 3287 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
duke@435 3288 }
duke@435 3289 #endif
duke@435 3290 _nodes.map(n->_idx, 0); // This node is useless
duke@435 3291 _deadlist.push(n);
duke@435 3292 return;
duke@435 3293 }
duke@435 3294 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
duke@435 3295
duke@435 3296 Node *legal = LCA; // Walk 'legal' up the IDOM chain
duke@435 3297 Node *least = legal; // Best legal position so far
duke@435 3298 while( early != legal ) { // While not at earliest legal
cfang@1607 3299 #ifdef ASSERT
cfang@1607 3300 if (legal->is_Start() && !early->is_Root()) {
cfang@1607 3301 // Bad graph. Print idom path and fail.
kvn@3408 3302 dump_bad_graph(n, early, LCA);
cfang@1607 3303 assert(false, "Bad graph detected in build_loop_late");
cfang@1607 3304 }
cfang@1607 3305 #endif
duke@435 3306 // Find least loop nesting depth
duke@435 3307 legal = idom(legal); // Bump up the IDOM tree
duke@435 3308 // Check for lower nesting depth
duke@435 3309 if( get_loop(legal)->_nest < get_loop(least)->_nest )
duke@435 3310 least = legal;
duke@435 3311 }
never@1356 3312 assert(early == legal || legal != C->root(), "bad dominance of inputs");
duke@435 3313
duke@435 3314 // Try not to place code on a loop entry projection
duke@435 3315 // which can inhibit range check elimination.
duke@435 3316 if (least != early) {
duke@435 3317 Node* ctrl_out = least->unique_ctrl_out();
duke@435 3318 if (ctrl_out && ctrl_out->is_CountedLoop() &&
duke@435 3319 least == ctrl_out->in(LoopNode::EntryControl)) {
duke@435 3320 Node* least_dom = idom(least);
duke@435 3321 if (get_loop(least_dom)->is_member(get_loop(least))) {
duke@435 3322 least = least_dom;
duke@435 3323 }
duke@435 3324 }
duke@435 3325 }
duke@435 3326
duke@435 3327 #ifdef ASSERT
duke@435 3328 // If verifying, verify that 'verify_me' has a legal location
duke@435 3329 // and choose it as our location.
never@1356 3330 if( _verify_me ) {
never@1356 3331 Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
duke@435 3332 Node *legal = LCA;
duke@435 3333 while( early != legal ) { // While not at earliest legal
duke@435 3334 if( legal == v_ctrl ) break; // Check for prior good location
duke@435 3335 legal = idom(legal) ;// Bump up the IDOM tree
duke@435 3336 }
duke@435 3337 // Check for prior good location
duke@435 3338 if( legal == v_ctrl ) least = legal; // Keep prior if found
duke@435 3339 }
duke@435 3340 #endif
duke@435 3341
duke@435 3342 // Assign discovered "here or above" point
duke@435 3343 least = find_non_split_ctrl(least);
duke@435 3344 set_ctrl(n, least);
duke@435 3345
duke@435 3346 // Collect inner loop bodies
twisti@1040 3347 IdealLoopTree *chosen_loop = get_loop(least);
twisti@1040 3348 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3349 chosen_loop->_body.push(n);// Collect inner loops
duke@435 3350 }
duke@435 3351
kvn@3408 3352 #ifdef ASSERT
kvn@3408 3353 void PhaseIdealLoop::dump_bad_graph(Node* n, Node* early, Node* LCA) {
kvn@3408 3354 tty->print_cr( "Bad graph detected in build_loop_late");
kvn@3408 3355 tty->print("n: "); n->dump();
kvn@3408 3356 tty->print("early(n): "); early->dump();
kvn@3408 3357 if (n->in(0) != NULL && !n->in(0)->is_top() &&
kvn@3408 3358 n->in(0) != early && !n->in(0)->is_Root()) {
kvn@3408 3359 tty->print("n->in(0): "); n->in(0)->dump();
kvn@3408 3360 }
kvn@3408 3361 for (uint i = 1; i < n->req(); i++) {
kvn@3408 3362 Node* in1 = n->in(i);
kvn@3408 3363 if (in1 != NULL && in1 != n && !in1->is_top()) {
kvn@3408 3364 tty->print("n->in(%d): ", i); in1->dump();
kvn@3408 3365 Node* in1_early = get_ctrl(in1);
kvn@3408 3366 tty->print("early(n->in(%d)): ", i); in1_early->dump();
kvn@3408 3367 if (in1->in(0) != NULL && !in1->in(0)->is_top() &&
kvn@3408 3368 in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
kvn@3408 3369 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
kvn@3408 3370 }
kvn@3408 3371 for (uint j = 1; j < in1->req(); j++) {
kvn@3408 3372 Node* in2 = in1->in(j);
kvn@3408 3373 if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
kvn@3408 3374 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
kvn@3408 3375 Node* in2_early = get_ctrl(in2);
kvn@3408 3376 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
kvn@3408 3377 if (in2->in(0) != NULL && !in2->in(0)->is_top() &&
kvn@3408 3378 in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
kvn@3408 3379 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
kvn@3408 3380 }
kvn@3408 3381 }
kvn@3408 3382 }
kvn@3408 3383 }
kvn@3408 3384 }
kvn@3408 3385 tty->cr();
kvn@3408 3386 tty->print("LCA(n): "); LCA->dump();
kvn@3408 3387 for (uint i = 0; i < n->outcnt(); i++) {
kvn@3408 3388 Node* u1 = n->raw_out(i);
kvn@3408 3389 if (u1 == n)
kvn@3408 3390 continue;
kvn@3408 3391 tty->print("n->out(%d): ", i); u1->dump();
kvn@3408 3392 if (u1->is_CFG()) {
kvn@3408 3393 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3394 Node* u2 = u1->raw_out(j);
kvn@3408 3395 if (u2 != u1 && u2 != n && u2->is_CFG()) {
kvn@3408 3396 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3397 }
kvn@3408 3398 }
kvn@3408 3399 } else {
kvn@3408 3400 Node* u1_later = get_ctrl(u1);
kvn@3408 3401 tty->print("later(n->out(%d)): ", i); u1_later->dump();
kvn@3408 3402 if (u1->in(0) != NULL && !u1->in(0)->is_top() &&
kvn@3408 3403 u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
kvn@3408 3404 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
kvn@3408 3405 }
kvn@3408 3406 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3407 Node* u2 = u1->raw_out(j);
kvn@3408 3408 if (u2 == n || u2 == u1)
kvn@3408 3409 continue;
kvn@3408 3410 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3411 if (!u2->is_CFG()) {
kvn@3408 3412 Node* u2_later = get_ctrl(u2);
kvn@3408 3413 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
kvn@3408 3414 if (u2->in(0) != NULL && !u2->in(0)->is_top() &&
kvn@3408 3415 u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
kvn@3408 3416 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
kvn@3408 3417 }
kvn@3408 3418 }
kvn@3408 3419 }
kvn@3408 3420 }
kvn@3408 3421 }
kvn@3408 3422 tty->cr();
kvn@3408 3423 int ct = 0;
kvn@3408 3424 Node *dbg_legal = LCA;
kvn@3408 3425 while(!dbg_legal->is_Start() && ct < 100) {
kvn@3408 3426 tty->print("idom[%d] ",ct); dbg_legal->dump();
kvn@3408 3427 ct++;
kvn@3408 3428 dbg_legal = idom(dbg_legal);
kvn@3408 3429 }
kvn@3408 3430 tty->cr();
kvn@3408 3431 }
kvn@3408 3432 #endif
kvn@3408 3433
duke@435 3434 #ifndef PRODUCT
duke@435 3435 //------------------------------dump-------------------------------------------
duke@435 3436 void PhaseIdealLoop::dump( ) const {
duke@435 3437 ResourceMark rm;
duke@435 3438 Arena* arena = Thread::current()->resource_area();
duke@435 3439 Node_Stack stack(arena, C->unique() >> 2);
duke@435 3440 Node_List rpo_list;
duke@435 3441 VectorSet visited(arena);
duke@435 3442 visited.set(C->top()->_idx);
duke@435 3443 rpo( C->root(), stack, visited, rpo_list );
duke@435 3444 // Dump root loop indexed by last element in PO order
duke@435 3445 dump( _ltree_root, rpo_list.size(), rpo_list );
duke@435 3446 }
duke@435 3447
duke@435 3448 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
never@802 3449 loop->dump_head();
duke@435 3450
duke@435 3451 // Now scan for CFG nodes in the same loop
duke@435 3452 for( uint j=idx; j > 0; j-- ) {
duke@435 3453 Node *n = rpo_list[j-1];
duke@435 3454 if( !_nodes[n->_idx] ) // Skip dead nodes
duke@435 3455 continue;
duke@435 3456 if( get_loop(n) != loop ) { // Wrong loop nest
duke@435 3457 if( get_loop(n)->_head == n && // Found nested loop?
duke@435 3458 get_loop(n)->_parent == loop )
duke@435 3459 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
duke@435 3460 continue;
duke@435 3461 }
duke@435 3462
duke@435 3463 // Dump controlling node
duke@435 3464 for( uint x = 0; x < loop->_nest; x++ )
duke@435 3465 tty->print(" ");
duke@435 3466 tty->print("C");
duke@435 3467 if( n == C->root() ) {
duke@435 3468 n->dump();
duke@435 3469 } else {
duke@435 3470 Node* cached_idom = idom_no_update(n);
duke@435 3471 Node *computed_idom = n->in(0);
duke@435 3472 if( n->is_Region() ) {
duke@435 3473 computed_idom = compute_idom(n);
duke@435 3474 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
duke@435 3475 // any MultiBranch ctrl node), so apply a similar transform to
duke@435 3476 // the cached idom returned from idom_no_update.
duke@435 3477 cached_idom = find_non_split_ctrl(cached_idom);
duke@435 3478 }
duke@435 3479 tty->print(" ID:%d",computed_idom->_idx);
duke@435 3480 n->dump();
duke@435 3481 if( cached_idom != computed_idom ) {
duke@435 3482 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
duke@435 3483 computed_idom->_idx, cached_idom->_idx);
duke@435 3484 }
duke@435 3485 }
duke@435 3486 // Dump nodes it controls
duke@435 3487 for( uint k = 0; k < _nodes.Size(); k++ ) {
duke@435 3488 // (k < C->unique() && get_ctrl(find(k)) == n)
duke@435 3489 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
duke@435 3490 Node *m = C->root()->find(k);
duke@435 3491 if( m && m->outcnt() > 0 ) {
duke@435 3492 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
duke@435 3493 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
duke@435 3494 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
duke@435 3495 }
duke@435 3496 for( uint j = 0; j < loop->_nest; j++ )
duke@435 3497 tty->print(" ");
duke@435 3498 tty->print(" ");
duke@435 3499 m->dump();
duke@435 3500 }
duke@435 3501 }
duke@435 3502 }
duke@435 3503 }
duke@435 3504 }
duke@435 3505
duke@435 3506 // Collect a R-P-O for the whole CFG.
duke@435 3507 // Result list is in post-order (scan backwards for RPO)
duke@435 3508 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
duke@435 3509 stk.push(start, 0);
duke@435 3510 visited.set(start->_idx);
duke@435 3511
duke@435 3512 while (stk.is_nonempty()) {
duke@435 3513 Node* m = stk.node();
duke@435 3514 uint idx = stk.index();
duke@435 3515 if (idx < m->outcnt()) {
duke@435 3516 stk.set_index(idx + 1);
duke@435 3517 Node* n = m->raw_out(idx);
duke@435 3518 if (n->is_CFG() && !visited.test_set(n->_idx)) {
duke@435 3519 stk.push(n, 0);
duke@435 3520 }
duke@435 3521 } else {
duke@435 3522 rpo_list.push(m);
duke@435 3523 stk.pop();
duke@435 3524 }
duke@435 3525 }
duke@435 3526 }
duke@435 3527 #endif
duke@435 3528
duke@435 3529
duke@435 3530 //=============================================================================
duke@435 3531 //------------------------------LoopTreeIterator-----------------------------------
duke@435 3532
duke@435 3533 // Advance to next loop tree using a preorder, left-to-right traversal.
duke@435 3534 void LoopTreeIterator::next() {
duke@435 3535 assert(!done(), "must not be done.");
duke@435 3536 if (_curnt->_child != NULL) {
duke@435 3537 _curnt = _curnt->_child;
duke@435 3538 } else if (_curnt->_next != NULL) {
duke@435 3539 _curnt = _curnt->_next;
duke@435 3540 } else {
duke@435 3541 while (_curnt != _root && _curnt->_next == NULL) {
duke@435 3542 _curnt = _curnt->_parent;
duke@435 3543 }
duke@435 3544 if (_curnt == _root) {
duke@435 3545 _curnt = NULL;
duke@435 3546 assert(done(), "must be done.");
duke@435 3547 } else {
duke@435 3548 assert(_curnt->_next != NULL, "must be more to do");
duke@435 3549 _curnt = _curnt->_next;
duke@435 3550 }
duke@435 3551 }
duke@435 3552 }

mercurial