src/share/vm/memory/space.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 953
0af8b0718fc9
child 1577
4ce7240d622c
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_space.cpp.incl"
duke@435 27
coleenp@548 28 void SpaceMemRegionOopsIterClosure::do_oop(oop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
coleenp@548 29 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
coleenp@548 30
duke@435 31 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
duke@435 32 HeapWord* top_obj) {
duke@435 33 if (top_obj != NULL) {
duke@435 34 if (_sp->block_is_obj(top_obj)) {
duke@435 35 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
duke@435 36 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
duke@435 37 // An arrayOop is starting on the dirty card - since we do exact
duke@435 38 // store checks for objArrays we are done.
duke@435 39 } else {
duke@435 40 // Otherwise, it is possible that the object starting on the dirty
duke@435 41 // card spans the entire card, and that the store happened on a
duke@435 42 // later card. Figure out where the object ends.
duke@435 43 // Use the block_size() method of the space over which
duke@435 44 // the iteration is being done. That space (e.g. CMS) may have
duke@435 45 // specific requirements on object sizes which will
duke@435 46 // be reflected in the block_size() method.
duke@435 47 top = top_obj + oop(top_obj)->size();
duke@435 48 }
duke@435 49 }
duke@435 50 } else {
duke@435 51 top = top_obj;
duke@435 52 }
duke@435 53 } else {
duke@435 54 assert(top == _sp->end(), "only case where top_obj == NULL");
duke@435 55 }
duke@435 56 return top;
duke@435 57 }
duke@435 58
duke@435 59 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
duke@435 60 HeapWord* bottom,
duke@435 61 HeapWord* top) {
duke@435 62 // 1. Blocks may or may not be objects.
duke@435 63 // 2. Even when a block_is_obj(), it may not entirely
duke@435 64 // occupy the block if the block quantum is larger than
duke@435 65 // the object size.
duke@435 66 // We can and should try to optimize by calling the non-MemRegion
duke@435 67 // version of oop_iterate() for all but the extremal objects
duke@435 68 // (for which we need to call the MemRegion version of
duke@435 69 // oop_iterate()) To be done post-beta XXX
duke@435 70 for (; bottom < top; bottom += _sp->block_size(bottom)) {
duke@435 71 // As in the case of contiguous space above, we'd like to
duke@435 72 // just use the value returned by oop_iterate to increment the
duke@435 73 // current pointer; unfortunately, that won't work in CMS because
duke@435 74 // we'd need an interface change (it seems) to have the space
duke@435 75 // "adjust the object size" (for instance pad it up to its
duke@435 76 // block alignment or minimum block size restrictions. XXX
duke@435 77 if (_sp->block_is_obj(bottom) &&
duke@435 78 !_sp->obj_allocated_since_save_marks(oop(bottom))) {
duke@435 79 oop(bottom)->oop_iterate(_cl, mr);
duke@435 80 }
duke@435 81 }
duke@435 82 }
duke@435 83
duke@435 84 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
duke@435 85
duke@435 86 // Some collectors need to do special things whenever their dirty
duke@435 87 // cards are processed. For instance, CMS must remember mutator updates
duke@435 88 // (i.e. dirty cards) so as to re-scan mutated objects.
duke@435 89 // Such work can be piggy-backed here on dirty card scanning, so as to make
duke@435 90 // it slightly more efficient than doing a complete non-detructive pre-scan
duke@435 91 // of the card table.
duke@435 92 MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
duke@435 93 if (pCl != NULL) {
duke@435 94 pCl->do_MemRegion(mr);
duke@435 95 }
duke@435 96
duke@435 97 HeapWord* bottom = mr.start();
duke@435 98 HeapWord* last = mr.last();
duke@435 99 HeapWord* top = mr.end();
duke@435 100 HeapWord* bottom_obj;
duke@435 101 HeapWord* top_obj;
duke@435 102
duke@435 103 assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
duke@435 104 _precision == CardTableModRefBS::Precise,
duke@435 105 "Only ones we deal with for now.");
duke@435 106
duke@435 107 assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
ysr@777 108 _cl->idempotent() || _last_bottom == NULL ||
duke@435 109 top <= _last_bottom,
duke@435 110 "Not decreasing");
duke@435 111 NOT_PRODUCT(_last_bottom = mr.start());
duke@435 112
duke@435 113 bottom_obj = _sp->block_start(bottom);
duke@435 114 top_obj = _sp->block_start(last);
duke@435 115
duke@435 116 assert(bottom_obj <= bottom, "just checking");
duke@435 117 assert(top_obj <= top, "just checking");
duke@435 118
duke@435 119 // Given what we think is the top of the memory region and
duke@435 120 // the start of the object at the top, get the actual
duke@435 121 // value of the top.
duke@435 122 top = get_actual_top(top, top_obj);
duke@435 123
duke@435 124 // If the previous call did some part of this region, don't redo.
duke@435 125 if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
duke@435 126 _min_done != NULL &&
duke@435 127 _min_done < top) {
duke@435 128 top = _min_done;
duke@435 129 }
duke@435 130
duke@435 131 // Top may have been reset, and in fact may be below bottom,
duke@435 132 // e.g. the dirty card region is entirely in a now free object
duke@435 133 // -- something that could happen with a concurrent sweeper.
duke@435 134 bottom = MIN2(bottom, top);
duke@435 135 mr = MemRegion(bottom, top);
duke@435 136 assert(bottom <= top &&
duke@435 137 (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
duke@435 138 _min_done == NULL ||
duke@435 139 top <= _min_done),
duke@435 140 "overlap!");
duke@435 141
duke@435 142 // Walk the region if it is not empty; otherwise there is nothing to do.
duke@435 143 if (!mr.is_empty()) {
duke@435 144 walk_mem_region(mr, bottom_obj, top);
duke@435 145 }
duke@435 146
ysr@777 147 // An idempotent closure might be applied in any order, so we don't
ysr@777 148 // record a _min_done for it.
ysr@777 149 if (!_cl->idempotent()) {
ysr@777 150 _min_done = bottom;
ysr@777 151 } else {
ysr@777 152 assert(_min_done == _last_explicit_min_done,
ysr@777 153 "Don't update _min_done for idempotent cl");
ysr@777 154 }
duke@435 155 }
duke@435 156
duke@435 157 DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
duke@435 158 CardTableModRefBS::PrecisionStyle precision,
duke@435 159 HeapWord* boundary) {
duke@435 160 return new DirtyCardToOopClosure(this, cl, precision, boundary);
duke@435 161 }
duke@435 162
duke@435 163 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
duke@435 164 HeapWord* top_obj) {
duke@435 165 if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
duke@435 166 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
duke@435 167 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
duke@435 168 // An arrayOop is starting on the dirty card - since we do exact
duke@435 169 // store checks for objArrays we are done.
duke@435 170 } else {
duke@435 171 // Otherwise, it is possible that the object starting on the dirty
duke@435 172 // card spans the entire card, and that the store happened on a
duke@435 173 // later card. Figure out where the object ends.
duke@435 174 assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
duke@435 175 "Block size and object size mismatch");
duke@435 176 top = top_obj + oop(top_obj)->size();
duke@435 177 }
duke@435 178 }
duke@435 179 } else {
duke@435 180 top = (_sp->toContiguousSpace())->top();
duke@435 181 }
duke@435 182 return top;
duke@435 183 }
duke@435 184
duke@435 185 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
duke@435 186 HeapWord* bottom,
duke@435 187 HeapWord* top) {
duke@435 188 // Note that this assumption won't hold if we have a concurrent
duke@435 189 // collector in this space, which may have freed up objects after
duke@435 190 // they were dirtied and before the stop-the-world GC that is
duke@435 191 // examining cards here.
duke@435 192 assert(bottom < top, "ought to be at least one obj on a dirty card.");
duke@435 193
duke@435 194 if (_boundary != NULL) {
duke@435 195 // We have a boundary outside of which we don't want to look
duke@435 196 // at objects, so create a filtering closure around the
duke@435 197 // oop closure before walking the region.
duke@435 198 FilteringClosure filter(_boundary, _cl);
duke@435 199 walk_mem_region_with_cl(mr, bottom, top, &filter);
duke@435 200 } else {
duke@435 201 // No boundary, simply walk the heap with the oop closure.
duke@435 202 walk_mem_region_with_cl(mr, bottom, top, _cl);
duke@435 203 }
duke@435 204
duke@435 205 }
duke@435 206
duke@435 207 // We must replicate this so that the static type of "FilteringClosure"
duke@435 208 // (see above) is apparent at the oop_iterate calls.
duke@435 209 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 210 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 211 HeapWord* bottom, \
duke@435 212 HeapWord* top, \
duke@435 213 ClosureType* cl) { \
duke@435 214 bottom += oop(bottom)->oop_iterate(cl, mr); \
duke@435 215 if (bottom < top) { \
duke@435 216 HeapWord* next_obj = bottom + oop(bottom)->size(); \
duke@435 217 while (next_obj < top) { \
duke@435 218 /* Bottom lies entirely below top, so we can call the */ \
duke@435 219 /* non-memRegion version of oop_iterate below. */ \
duke@435 220 oop(bottom)->oop_iterate(cl); \
duke@435 221 bottom = next_obj; \
duke@435 222 next_obj = bottom + oop(bottom)->size(); \
duke@435 223 } \
duke@435 224 /* Last object. */ \
duke@435 225 oop(bottom)->oop_iterate(cl, mr); \
duke@435 226 } \
duke@435 227 }
duke@435 228
duke@435 229 // (There are only two of these, rather than N, because the split is due
duke@435 230 // only to the introduction of the FilteringClosure, a local part of the
duke@435 231 // impl of this abstraction.)
duke@435 232 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
duke@435 233 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 234
duke@435 235 DirtyCardToOopClosure*
duke@435 236 ContiguousSpace::new_dcto_cl(OopClosure* cl,
duke@435 237 CardTableModRefBS::PrecisionStyle precision,
duke@435 238 HeapWord* boundary) {
duke@435 239 return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
duke@435 240 }
duke@435 241
jmasa@698 242 void Space::initialize(MemRegion mr,
jmasa@698 243 bool clear_space,
jmasa@698 244 bool mangle_space) {
duke@435 245 HeapWord* bottom = mr.start();
duke@435 246 HeapWord* end = mr.end();
duke@435 247 assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
duke@435 248 "invalid space boundaries");
duke@435 249 set_bottom(bottom);
duke@435 250 set_end(end);
jmasa@698 251 if (clear_space) clear(mangle_space);
duke@435 252 }
duke@435 253
jmasa@698 254 void Space::clear(bool mangle_space) {
jmasa@698 255 if (ZapUnusedHeapArea && mangle_space) {
jmasa@698 256 mangle_unused_area();
jmasa@698 257 }
duke@435 258 }
duke@435 259
tonyp@791 260 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
tonyp@791 261 _concurrent_iteration_safe_limit(NULL) {
jmasa@698 262 _mangler = new GenSpaceMangler(this);
jmasa@698 263 }
jmasa@698 264
jmasa@698 265 ContiguousSpace::~ContiguousSpace() {
jmasa@698 266 delete _mangler;
jmasa@698 267 }
jmasa@698 268
jmasa@698 269 void ContiguousSpace::initialize(MemRegion mr,
jmasa@698 270 bool clear_space,
jmasa@698 271 bool mangle_space)
duke@435 272 {
jmasa@698 273 CompactibleSpace::initialize(mr, clear_space, mangle_space);
ysr@782 274 set_concurrent_iteration_safe_limit(top());
duke@435 275 }
duke@435 276
jmasa@698 277 void ContiguousSpace::clear(bool mangle_space) {
duke@435 278 set_top(bottom());
duke@435 279 set_saved_mark();
tonyp@791 280 CompactibleSpace::clear(mangle_space);
duke@435 281 }
duke@435 282
duke@435 283 bool Space::is_in(const void* p) const {
ysr@777 284 HeapWord* b = block_start_const(p);
duke@435 285 return b != NULL && block_is_obj(b);
duke@435 286 }
duke@435 287
duke@435 288 bool ContiguousSpace::is_in(const void* p) const {
duke@435 289 return _bottom <= p && p < _top;
duke@435 290 }
duke@435 291
duke@435 292 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
duke@435 293 return p >= _top;
duke@435 294 }
duke@435 295
jmasa@698 296 void OffsetTableContigSpace::clear(bool mangle_space) {
jmasa@698 297 ContiguousSpace::clear(mangle_space);
duke@435 298 _offsets.initialize_threshold();
duke@435 299 }
duke@435 300
duke@435 301 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
duke@435 302 Space::set_bottom(new_bottom);
duke@435 303 _offsets.set_bottom(new_bottom);
duke@435 304 }
duke@435 305
duke@435 306 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
duke@435 307 // Space should not advertize an increase in size
duke@435 308 // until after the underlying offest table has been enlarged.
duke@435 309 _offsets.resize(pointer_delta(new_end, bottom()));
duke@435 310 Space::set_end(new_end);
duke@435 311 }
duke@435 312
jmasa@698 313 #ifndef PRODUCT
jmasa@698 314
jmasa@698 315 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 316 mangler()->set_top_for_allocations(v);
jmasa@698 317 }
jmasa@698 318 void ContiguousSpace::set_top_for_allocations() {
jmasa@698 319 mangler()->set_top_for_allocations(top());
jmasa@698 320 }
jmasa@698 321 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 322 mangler()->check_mangled_unused_area(limit);
duke@435 323 }
duke@435 324
jmasa@698 325 void ContiguousSpace::check_mangled_unused_area_complete() {
jmasa@698 326 mangler()->check_mangled_unused_area_complete();
duke@435 327 }
duke@435 328
jmasa@698 329 // Mangled only the unused space that has not previously
jmasa@698 330 // been mangled and that has not been allocated since being
jmasa@698 331 // mangled.
jmasa@698 332 void ContiguousSpace::mangle_unused_area() {
jmasa@698 333 mangler()->mangle_unused_area();
jmasa@698 334 }
jmasa@698 335 void ContiguousSpace::mangle_unused_area_complete() {
jmasa@698 336 mangler()->mangle_unused_area_complete();
jmasa@698 337 }
jmasa@698 338 void ContiguousSpace::mangle_region(MemRegion mr) {
jmasa@698 339 // Although this method uses SpaceMangler::mangle_region() which
jmasa@698 340 // is not specific to a space, the when the ContiguousSpace version
jmasa@698 341 // is called, it is always with regard to a space and this
jmasa@698 342 // bounds checking is appropriate.
jmasa@698 343 MemRegion space_mr(bottom(), end());
jmasa@698 344 assert(space_mr.contains(mr), "Mangling outside space");
jmasa@698 345 SpaceMangler::mangle_region(mr);
jmasa@698 346 }
jmasa@698 347 #endif // NOT_PRODUCT
jmasa@698 348
jmasa@698 349 void CompactibleSpace::initialize(MemRegion mr,
jmasa@698 350 bool clear_space,
jmasa@698 351 bool mangle_space) {
jmasa@698 352 Space::initialize(mr, clear_space, mangle_space);
tonyp@791 353 set_compaction_top(bottom());
tonyp@791 354 _next_compaction_space = NULL;
tonyp@791 355 }
tonyp@791 356
tonyp@791 357 void CompactibleSpace::clear(bool mangle_space) {
tonyp@791 358 Space::clear(mangle_space);
duke@435 359 _compaction_top = bottom();
duke@435 360 }
duke@435 361
duke@435 362 HeapWord* CompactibleSpace::forward(oop q, size_t size,
duke@435 363 CompactPoint* cp, HeapWord* compact_top) {
duke@435 364 // q is alive
duke@435 365 // First check if we should switch compaction space
duke@435 366 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 367 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 368 while (size > compaction_max_size) {
duke@435 369 // switch to next compaction space
duke@435 370 cp->space->set_compaction_top(compact_top);
duke@435 371 cp->space = cp->space->next_compaction_space();
duke@435 372 if (cp->space == NULL) {
duke@435 373 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 374 assert(cp->gen != NULL, "compaction must succeed");
duke@435 375 cp->space = cp->gen->first_compaction_space();
duke@435 376 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 377 }
duke@435 378 compact_top = cp->space->bottom();
duke@435 379 cp->space->set_compaction_top(compact_top);
duke@435 380 cp->threshold = cp->space->initialize_threshold();
duke@435 381 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 382 }
duke@435 383
duke@435 384 // store the forwarding pointer into the mark word
duke@435 385 if ((HeapWord*)q != compact_top) {
duke@435 386 q->forward_to(oop(compact_top));
duke@435 387 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 388 } else {
duke@435 389 // if the object isn't moving we can just set the mark to the default
duke@435 390 // mark and handle it specially later on.
duke@435 391 q->init_mark();
duke@435 392 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 393 }
duke@435 394
coleenp@548 395 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
duke@435 396 compact_top += size;
duke@435 397
duke@435 398 // we need to update the offset table so that the beginnings of objects can be
duke@435 399 // found during scavenge. Note that we are updating the offset table based on
duke@435 400 // where the object will be once the compaction phase finishes.
duke@435 401 if (compact_top > cp->threshold)
duke@435 402 cp->threshold =
duke@435 403 cp->space->cross_threshold(compact_top - size, compact_top);
duke@435 404 return compact_top;
duke@435 405 }
duke@435 406
duke@435 407
duke@435 408 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
duke@435 409 HeapWord* q, size_t deadlength) {
duke@435 410 if (allowed_deadspace_words >= deadlength) {
duke@435 411 allowed_deadspace_words -= deadlength;
jcoomes@916 412 CollectedHeap::fill_with_object(q, deadlength);
jcoomes@916 413 oop(q)->set_mark(oop(q)->mark()->set_marked());
jcoomes@916 414 assert((int) deadlength == oop(q)->size(), "bad filler object size");
duke@435 415 // Recall that we required "q == compaction_top".
duke@435 416 return true;
duke@435 417 } else {
duke@435 418 allowed_deadspace_words = 0;
duke@435 419 return false;
duke@435 420 }
duke@435 421 }
duke@435 422
duke@435 423 #define block_is_always_obj(q) true
duke@435 424 #define obj_size(q) oop(q)->size()
duke@435 425 #define adjust_obj_size(s) s
duke@435 426
duke@435 427 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 428 SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
duke@435 429 }
duke@435 430
duke@435 431 // Faster object search.
duke@435 432 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 433 SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
duke@435 434 }
duke@435 435
duke@435 436 void Space::adjust_pointers() {
duke@435 437 // adjust all the interior pointers to point at the new locations of objects
duke@435 438 // Used by MarkSweep::mark_sweep_phase3()
duke@435 439
duke@435 440 // First check to see if there is any work to be done.
duke@435 441 if (used() == 0) {
duke@435 442 return; // Nothing to do.
duke@435 443 }
duke@435 444
duke@435 445 // Otherwise...
duke@435 446 HeapWord* q = bottom();
duke@435 447 HeapWord* t = end();
duke@435 448
duke@435 449 debug_only(HeapWord* prev_q = NULL);
duke@435 450 while (q < t) {
duke@435 451 if (oop(q)->is_gc_marked()) {
duke@435 452 // q is alive
duke@435 453
coleenp@548 454 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
duke@435 455 // point all the oops to the new location
duke@435 456 size_t size = oop(q)->adjust_pointers();
coleenp@548 457 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
duke@435 458
duke@435 459 debug_only(prev_q = q);
coleenp@548 460 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
duke@435 461
duke@435 462 q += size;
duke@435 463 } else {
duke@435 464 // q is not a live object. But we're not in a compactible space,
duke@435 465 // So we don't have live ranges.
duke@435 466 debug_only(prev_q = q);
duke@435 467 q += block_size(q);
duke@435 468 assert(q > prev_q, "we should be moving forward through memory");
duke@435 469 }
duke@435 470 }
duke@435 471 assert(q == t, "just checking");
duke@435 472 }
duke@435 473
duke@435 474 void CompactibleSpace::adjust_pointers() {
duke@435 475 // Check first is there is any work to do.
duke@435 476 if (used() == 0) {
duke@435 477 return; // Nothing to do.
duke@435 478 }
duke@435 479
duke@435 480 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 481 }
duke@435 482
duke@435 483 void CompactibleSpace::compact() {
duke@435 484 SCAN_AND_COMPACT(obj_size);
duke@435 485 }
duke@435 486
duke@435 487 void Space::print_short() const { print_short_on(tty); }
duke@435 488
duke@435 489 void Space::print_short_on(outputStream* st) const {
duke@435 490 st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
duke@435 491 (int) ((double) used() * 100 / capacity()));
duke@435 492 }
duke@435 493
duke@435 494 void Space::print() const { print_on(tty); }
duke@435 495
duke@435 496 void Space::print_on(outputStream* st) const {
duke@435 497 print_short_on(st);
duke@435 498 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 499 bottom(), end());
duke@435 500 }
duke@435 501
duke@435 502 void ContiguousSpace::print_on(outputStream* st) const {
duke@435 503 print_short_on(st);
duke@435 504 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 505 bottom(), top(), end());
duke@435 506 }
duke@435 507
duke@435 508 void OffsetTableContigSpace::print_on(outputStream* st) const {
duke@435 509 print_short_on(st);
duke@435 510 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
duke@435 511 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 512 bottom(), top(), _offsets.threshold(), end());
duke@435 513 }
duke@435 514
duke@435 515 void ContiguousSpace::verify(bool allow_dirty) const {
duke@435 516 HeapWord* p = bottom();
duke@435 517 HeapWord* t = top();
duke@435 518 HeapWord* prev_p = NULL;
duke@435 519 while (p < t) {
duke@435 520 oop(p)->verify();
duke@435 521 prev_p = p;
duke@435 522 p += oop(p)->size();
duke@435 523 }
duke@435 524 guarantee(p == top(), "end of last object must match end of space");
duke@435 525 if (top() != end()) {
ysr@777 526 guarantee(top() == block_start_const(end()-1) &&
ysr@777 527 top() == block_start_const(top()),
duke@435 528 "top should be start of unallocated block, if it exists");
duke@435 529 }
duke@435 530 }
duke@435 531
duke@435 532 void Space::oop_iterate(OopClosure* blk) {
duke@435 533 ObjectToOopClosure blk2(blk);
duke@435 534 object_iterate(&blk2);
duke@435 535 }
duke@435 536
duke@435 537 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 538 guarantee(false, "NYI");
duke@435 539 return bottom();
duke@435 540 }
duke@435 541
duke@435 542 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
duke@435 543 ObjectClosureCareful* cl) {
duke@435 544 guarantee(false, "NYI");
duke@435 545 return bottom();
duke@435 546 }
duke@435 547
duke@435 548
duke@435 549 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
duke@435 550 assert(!mr.is_empty(), "Should be non-empty");
duke@435 551 // We use MemRegion(bottom(), end()) rather than used_region() below
duke@435 552 // because the two are not necessarily equal for some kinds of
duke@435 553 // spaces, in particular, certain kinds of free list spaces.
duke@435 554 // We could use the more complicated but more precise:
duke@435 555 // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
duke@435 556 // but the slight imprecision seems acceptable in the assertion check.
duke@435 557 assert(MemRegion(bottom(), end()).contains(mr),
duke@435 558 "Should be within used space");
duke@435 559 HeapWord* prev = cl->previous(); // max address from last time
duke@435 560 if (prev >= mr.end()) { // nothing to do
duke@435 561 return;
duke@435 562 }
duke@435 563 // This assert will not work when we go from cms space to perm
duke@435 564 // space, and use same closure. Easy fix deferred for later. XXX YSR
duke@435 565 // assert(prev == NULL || contains(prev), "Should be within space");
duke@435 566
duke@435 567 bool last_was_obj_array = false;
duke@435 568 HeapWord *blk_start_addr, *region_start_addr;
duke@435 569 if (prev > mr.start()) {
duke@435 570 region_start_addr = prev;
duke@435 571 blk_start_addr = prev;
jmasa@953 572 // The previous invocation may have pushed "prev" beyond the
jmasa@953 573 // last allocated block yet there may be still be blocks
jmasa@953 574 // in this region due to a particular coalescing policy.
jmasa@953 575 // Relax the assertion so that the case where the unallocated
jmasa@953 576 // block is maintained and "prev" is beyond the unallocated
jmasa@953 577 // block does not cause the assertion to fire.
jmasa@953 578 assert((BlockOffsetArrayUseUnallocatedBlock &&
jmasa@953 579 (!is_in(prev))) ||
jmasa@953 580 (blk_start_addr == block_start(region_start_addr)), "invariant");
duke@435 581 } else {
duke@435 582 region_start_addr = mr.start();
duke@435 583 blk_start_addr = block_start(region_start_addr);
duke@435 584 }
duke@435 585 HeapWord* region_end_addr = mr.end();
duke@435 586 MemRegion derived_mr(region_start_addr, region_end_addr);
duke@435 587 while (blk_start_addr < region_end_addr) {
duke@435 588 const size_t size = block_size(blk_start_addr);
duke@435 589 if (block_is_obj(blk_start_addr)) {
duke@435 590 last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
duke@435 591 } else {
duke@435 592 last_was_obj_array = false;
duke@435 593 }
duke@435 594 blk_start_addr += size;
duke@435 595 }
duke@435 596 if (!last_was_obj_array) {
duke@435 597 assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
duke@435 598 "Should be within (closed) used space");
duke@435 599 assert(blk_start_addr > prev, "Invariant");
duke@435 600 cl->set_previous(blk_start_addr); // min address for next time
duke@435 601 }
duke@435 602 }
duke@435 603
duke@435 604 bool Space::obj_is_alive(const HeapWord* p) const {
duke@435 605 assert (block_is_obj(p), "The address should point to an object");
duke@435 606 return true;
duke@435 607 }
duke@435 608
duke@435 609 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
duke@435 610 assert(!mr.is_empty(), "Should be non-empty");
duke@435 611 assert(used_region().contains(mr), "Should be within used space");
duke@435 612 HeapWord* prev = cl->previous(); // max address from last time
duke@435 613 if (prev >= mr.end()) { // nothing to do
duke@435 614 return;
duke@435 615 }
duke@435 616 // See comment above (in more general method above) in case you
duke@435 617 // happen to use this method.
duke@435 618 assert(prev == NULL || is_in_reserved(prev), "Should be within space");
duke@435 619
duke@435 620 bool last_was_obj_array = false;
duke@435 621 HeapWord *obj_start_addr, *region_start_addr;
duke@435 622 if (prev > mr.start()) {
duke@435 623 region_start_addr = prev;
duke@435 624 obj_start_addr = prev;
duke@435 625 assert(obj_start_addr == block_start(region_start_addr), "invariant");
duke@435 626 } else {
duke@435 627 region_start_addr = mr.start();
duke@435 628 obj_start_addr = block_start(region_start_addr);
duke@435 629 }
duke@435 630 HeapWord* region_end_addr = mr.end();
duke@435 631 MemRegion derived_mr(region_start_addr, region_end_addr);
duke@435 632 while (obj_start_addr < region_end_addr) {
duke@435 633 oop obj = oop(obj_start_addr);
duke@435 634 const size_t size = obj->size();
duke@435 635 last_was_obj_array = cl->do_object_bm(obj, derived_mr);
duke@435 636 obj_start_addr += size;
duke@435 637 }
duke@435 638 if (!last_was_obj_array) {
duke@435 639 assert((bottom() <= obj_start_addr) && (obj_start_addr <= end()),
duke@435 640 "Should be within (closed) used space");
duke@435 641 assert(obj_start_addr > prev, "Invariant");
duke@435 642 cl->set_previous(obj_start_addr); // min address for next time
duke@435 643 }
duke@435 644 }
duke@435 645
duke@435 646 #ifndef SERIALGC
duke@435 647 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
duke@435 648 \
duke@435 649 void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
duke@435 650 HeapWord* obj_addr = mr.start(); \
duke@435 651 HeapWord* t = mr.end(); \
duke@435 652 while (obj_addr < t) { \
duke@435 653 assert(oop(obj_addr)->is_oop(), "Should be an oop"); \
duke@435 654 obj_addr += oop(obj_addr)->oop_iterate(blk); \
duke@435 655 } \
duke@435 656 }
duke@435 657
duke@435 658 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
duke@435 659
duke@435 660 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
duke@435 661 #endif // SERIALGC
duke@435 662
duke@435 663 void ContiguousSpace::oop_iterate(OopClosure* blk) {
duke@435 664 if (is_empty()) return;
duke@435 665 HeapWord* obj_addr = bottom();
duke@435 666 HeapWord* t = top();
duke@435 667 // Could call objects iterate, but this is easier.
duke@435 668 while (obj_addr < t) {
duke@435 669 obj_addr += oop(obj_addr)->oop_iterate(blk);
duke@435 670 }
duke@435 671 }
duke@435 672
duke@435 673 void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
duke@435 674 if (is_empty()) {
duke@435 675 return;
duke@435 676 }
duke@435 677 MemRegion cur = MemRegion(bottom(), top());
duke@435 678 mr = mr.intersection(cur);
duke@435 679 if (mr.is_empty()) {
duke@435 680 return;
duke@435 681 }
duke@435 682 if (mr.equals(cur)) {
duke@435 683 oop_iterate(blk);
duke@435 684 return;
duke@435 685 }
duke@435 686 assert(mr.end() <= top(), "just took an intersection above");
duke@435 687 HeapWord* obj_addr = block_start(mr.start());
duke@435 688 HeapWord* t = mr.end();
duke@435 689
duke@435 690 // Handle first object specially.
duke@435 691 oop obj = oop(obj_addr);
duke@435 692 SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
duke@435 693 obj_addr += obj->oop_iterate(&smr_blk);
duke@435 694 while (obj_addr < t) {
duke@435 695 oop obj = oop(obj_addr);
duke@435 696 assert(obj->is_oop(), "expected an oop");
duke@435 697 obj_addr += obj->size();
duke@435 698 // If "obj_addr" is not greater than top, then the
duke@435 699 // entire object "obj" is within the region.
duke@435 700 if (obj_addr <= t) {
duke@435 701 obj->oop_iterate(blk);
duke@435 702 } else {
duke@435 703 // "obj" extends beyond end of region
duke@435 704 obj->oop_iterate(&smr_blk);
duke@435 705 break;
duke@435 706 }
duke@435 707 };
duke@435 708 }
duke@435 709
duke@435 710 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
duke@435 711 if (is_empty()) return;
duke@435 712 WaterMark bm = bottom_mark();
duke@435 713 object_iterate_from(bm, blk);
duke@435 714 }
duke@435 715
jmasa@952 716 // For a continguous space object_iterate() and safe_object_iterate()
jmasa@952 717 // are the same.
jmasa@952 718 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 719 object_iterate(blk);
jmasa@952 720 }
jmasa@952 721
duke@435 722 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
duke@435 723 assert(mark.space() == this, "Mark does not match space");
duke@435 724 HeapWord* p = mark.point();
duke@435 725 while (p < top()) {
duke@435 726 blk->do_object(oop(p));
duke@435 727 p += oop(p)->size();
duke@435 728 }
duke@435 729 }
duke@435 730
duke@435 731 HeapWord*
duke@435 732 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
duke@435 733 HeapWord * limit = concurrent_iteration_safe_limit();
duke@435 734 assert(limit <= top(), "sanity check");
duke@435 735 for (HeapWord* p = bottom(); p < limit;) {
duke@435 736 size_t size = blk->do_object_careful(oop(p));
duke@435 737 if (size == 0) {
duke@435 738 return p; // failed at p
duke@435 739 } else {
duke@435 740 p += size;
duke@435 741 }
duke@435 742 }
duke@435 743 return NULL; // all done
duke@435 744 }
duke@435 745
duke@435 746 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 747 \
duke@435 748 void ContiguousSpace:: \
duke@435 749 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 750 HeapWord* t; \
duke@435 751 HeapWord* p = saved_mark_word(); \
duke@435 752 assert(p != NULL, "expected saved mark"); \
duke@435 753 \
duke@435 754 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 755 do { \
duke@435 756 t = top(); \
duke@435 757 while (p < t) { \
duke@435 758 Prefetch::write(p, interval); \
duke@435 759 debug_only(HeapWord* prev = p); \
duke@435 760 oop m = oop(p); \
duke@435 761 p += m->oop_iterate(blk); \
duke@435 762 } \
duke@435 763 } while (t < top()); \
duke@435 764 \
duke@435 765 set_saved_mark_word(p); \
duke@435 766 }
duke@435 767
duke@435 768 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 769
duke@435 770 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
duke@435 771
duke@435 772 // Very general, slow implementation.
ysr@777 773 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
duke@435 774 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 775 if (p >= top()) {
duke@435 776 return top();
duke@435 777 } else {
duke@435 778 HeapWord* last = bottom();
duke@435 779 HeapWord* cur = last;
duke@435 780 while (cur <= p) {
duke@435 781 last = cur;
duke@435 782 cur += oop(cur)->size();
duke@435 783 }
duke@435 784 assert(oop(last)->is_oop(), "Should be an object start");
duke@435 785 return last;
duke@435 786 }
duke@435 787 }
duke@435 788
duke@435 789 size_t ContiguousSpace::block_size(const HeapWord* p) const {
duke@435 790 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 791 HeapWord* current_top = top();
duke@435 792 assert(p <= current_top, "p is not a block start");
duke@435 793 assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
duke@435 794 if (p < current_top)
duke@435 795 return oop(p)->size();
duke@435 796 else {
duke@435 797 assert(p == current_top, "just checking");
duke@435 798 return pointer_delta(end(), (HeapWord*) p);
duke@435 799 }
duke@435 800 }
duke@435 801
duke@435 802 // This version requires locking.
duke@435 803 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
duke@435 804 HeapWord* const end_value) {
duke@435 805 assert(Heap_lock->owned_by_self() ||
duke@435 806 (SafepointSynchronize::is_at_safepoint() &&
duke@435 807 Thread::current()->is_VM_thread()),
duke@435 808 "not locked");
duke@435 809 HeapWord* obj = top();
duke@435 810 if (pointer_delta(end_value, obj) >= size) {
duke@435 811 HeapWord* new_top = obj + size;
duke@435 812 set_top(new_top);
duke@435 813 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 814 return obj;
duke@435 815 } else {
duke@435 816 return NULL;
duke@435 817 }
duke@435 818 }
duke@435 819
duke@435 820 // This version is lock-free.
duke@435 821 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
duke@435 822 HeapWord* const end_value) {
duke@435 823 do {
duke@435 824 HeapWord* obj = top();
duke@435 825 if (pointer_delta(end_value, obj) >= size) {
duke@435 826 HeapWord* new_top = obj + size;
duke@435 827 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
duke@435 828 // result can be one of two:
duke@435 829 // the old top value: the exchange succeeded
duke@435 830 // otherwise: the new value of the top is returned.
duke@435 831 if (result == obj) {
duke@435 832 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 833 return obj;
duke@435 834 }
duke@435 835 } else {
duke@435 836 return NULL;
duke@435 837 }
duke@435 838 } while (true);
duke@435 839 }
duke@435 840
duke@435 841 // Requires locking.
duke@435 842 HeapWord* ContiguousSpace::allocate(size_t size) {
duke@435 843 return allocate_impl(size, end());
duke@435 844 }
duke@435 845
duke@435 846 // Lock-free.
duke@435 847 HeapWord* ContiguousSpace::par_allocate(size_t size) {
duke@435 848 return par_allocate_impl(size, end());
duke@435 849 }
duke@435 850
duke@435 851 void ContiguousSpace::allocate_temporary_filler(int factor) {
duke@435 852 // allocate temporary type array decreasing free size with factor 'factor'
duke@435 853 assert(factor >= 0, "just checking");
duke@435 854 size_t size = pointer_delta(end(), top());
duke@435 855
duke@435 856 // if space is full, return
duke@435 857 if (size == 0) return;
duke@435 858
duke@435 859 if (factor > 0) {
duke@435 860 size -= size/factor;
duke@435 861 }
duke@435 862 size = align_object_size(size);
duke@435 863
duke@435 864 const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
duke@435 865 if (size >= min_int_array_size) {
duke@435 866 size_t length = (size - min_int_array_size) * (HeapWordSize / sizeof(jint));
duke@435 867 // allocate uninitialized int array
duke@435 868 typeArrayOop t = (typeArrayOop) allocate(size);
duke@435 869 assert(t != NULL, "allocation should succeed");
duke@435 870 t->set_mark(markOopDesc::prototype());
duke@435 871 t->set_klass(Universe::intArrayKlassObj());
duke@435 872 t->set_length((int)length);
duke@435 873 } else {
duke@435 874 assert((int) size == instanceOopDesc::header_size(),
duke@435 875 "size for smallest fake object doesn't match");
duke@435 876 instanceOop obj = (instanceOop) allocate(size);
duke@435 877 obj->set_mark(markOopDesc::prototype());
coleenp@602 878 obj->set_klass_gap(0);
duke@435 879 obj->set_klass(SystemDictionary::object_klass());
duke@435 880 }
duke@435 881 }
duke@435 882
jmasa@698 883 void EdenSpace::clear(bool mangle_space) {
jmasa@698 884 ContiguousSpace::clear(mangle_space);
duke@435 885 set_soft_end(end());
duke@435 886 }
duke@435 887
duke@435 888 // Requires locking.
duke@435 889 HeapWord* EdenSpace::allocate(size_t size) {
duke@435 890 return allocate_impl(size, soft_end());
duke@435 891 }
duke@435 892
duke@435 893 // Lock-free.
duke@435 894 HeapWord* EdenSpace::par_allocate(size_t size) {
duke@435 895 return par_allocate_impl(size, soft_end());
duke@435 896 }
duke@435 897
duke@435 898 HeapWord* ConcEdenSpace::par_allocate(size_t size)
duke@435 899 {
duke@435 900 do {
duke@435 901 // The invariant is top() should be read before end() because
duke@435 902 // top() can't be greater than end(), so if an update of _soft_end
duke@435 903 // occurs between 'end_val = end();' and 'top_val = top();' top()
duke@435 904 // also can grow up to the new end() and the condition
duke@435 905 // 'top_val > end_val' is true. To ensure the loading order
duke@435 906 // OrderAccess::loadload() is required after top() read.
duke@435 907 HeapWord* obj = top();
duke@435 908 OrderAccess::loadload();
duke@435 909 if (pointer_delta(*soft_end_addr(), obj) >= size) {
duke@435 910 HeapWord* new_top = obj + size;
duke@435 911 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
duke@435 912 // result can be one of two:
duke@435 913 // the old top value: the exchange succeeded
duke@435 914 // otherwise: the new value of the top is returned.
duke@435 915 if (result == obj) {
duke@435 916 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 917 return obj;
duke@435 918 }
duke@435 919 } else {
duke@435 920 return NULL;
duke@435 921 }
duke@435 922 } while (true);
duke@435 923 }
duke@435 924
duke@435 925
duke@435 926 HeapWord* OffsetTableContigSpace::initialize_threshold() {
duke@435 927 return _offsets.initialize_threshold();
duke@435 928 }
duke@435 929
duke@435 930 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
duke@435 931 _offsets.alloc_block(start, end);
duke@435 932 return _offsets.threshold();
duke@435 933 }
duke@435 934
duke@435 935 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 936 MemRegion mr) :
duke@435 937 _offsets(sharedOffsetArray, mr),
duke@435 938 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
duke@435 939 {
duke@435 940 _offsets.set_contig_space(this);
jmasa@698 941 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 942 }
duke@435 943
duke@435 944
duke@435 945 class VerifyOldOopClosure : public OopClosure {
duke@435 946 public:
coleenp@548 947 oop _the_obj;
coleenp@548 948 bool _allow_dirty;
duke@435 949 void do_oop(oop* p) {
coleenp@548 950 _the_obj->verify_old_oop(p, _allow_dirty);
coleenp@548 951 }
coleenp@548 952 void do_oop(narrowOop* p) {
coleenp@548 953 _the_obj->verify_old_oop(p, _allow_dirty);
duke@435 954 }
duke@435 955 };
duke@435 956
duke@435 957 #define OBJ_SAMPLE_INTERVAL 0
duke@435 958 #define BLOCK_SAMPLE_INTERVAL 100
duke@435 959
duke@435 960 void OffsetTableContigSpace::verify(bool allow_dirty) const {
duke@435 961 HeapWord* p = bottom();
duke@435 962 HeapWord* prev_p = NULL;
duke@435 963 VerifyOldOopClosure blk; // Does this do anything?
coleenp@548 964 blk._allow_dirty = allow_dirty;
duke@435 965 int objs = 0;
duke@435 966 int blocks = 0;
duke@435 967
duke@435 968 if (VerifyObjectStartArray) {
duke@435 969 _offsets.verify();
duke@435 970 }
duke@435 971
duke@435 972 while (p < top()) {
duke@435 973 size_t size = oop(p)->size();
duke@435 974 // For a sampling of objects in the space, find it using the
duke@435 975 // block offset table.
duke@435 976 if (blocks == BLOCK_SAMPLE_INTERVAL) {
ysr@777 977 guarantee(p == block_start_const(p + (size/2)),
ysr@777 978 "check offset computation");
duke@435 979 blocks = 0;
duke@435 980 } else {
duke@435 981 blocks++;
duke@435 982 }
duke@435 983
duke@435 984 if (objs == OBJ_SAMPLE_INTERVAL) {
duke@435 985 oop(p)->verify();
coleenp@548 986 blk._the_obj = oop(p);
duke@435 987 oop(p)->oop_iterate(&blk);
duke@435 988 objs = 0;
duke@435 989 } else {
duke@435 990 objs++;
duke@435 991 }
duke@435 992 prev_p = p;
duke@435 993 p += size;
duke@435 994 }
duke@435 995 guarantee(p == top(), "end of last object must match end of space");
duke@435 996 }
duke@435 997
duke@435 998 void OffsetTableContigSpace::serialize_block_offset_array_offsets(
duke@435 999 SerializeOopClosure* soc) {
duke@435 1000 _offsets.serialize(soc);
duke@435 1001 }
duke@435 1002
duke@435 1003
jcoomes@873 1004 size_t TenuredSpace::allowed_dead_ratio() const {
duke@435 1005 return MarkSweepDeadRatio;
duke@435 1006 }
duke@435 1007
duke@435 1008
jcoomes@873 1009 size_t ContigPermSpace::allowed_dead_ratio() const {
duke@435 1010 return PermMarkSweepDeadRatio;
duke@435 1011 }

mercurial