src/share/vm/memory/space.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 953
0af8b0718fc9
child 1577
4ce7240d622c
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_space.cpp.incl"
    28 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    29 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    31 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    32                                                 HeapWord* top_obj) {
    33   if (top_obj != NULL) {
    34     if (_sp->block_is_obj(top_obj)) {
    35       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    36         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    37           // An arrayOop is starting on the dirty card - since we do exact
    38           // store checks for objArrays we are done.
    39         } else {
    40           // Otherwise, it is possible that the object starting on the dirty
    41           // card spans the entire card, and that the store happened on a
    42           // later card.  Figure out where the object ends.
    43           // Use the block_size() method of the space over which
    44           // the iteration is being done.  That space (e.g. CMS) may have
    45           // specific requirements on object sizes which will
    46           // be reflected in the block_size() method.
    47           top = top_obj + oop(top_obj)->size();
    48         }
    49       }
    50     } else {
    51       top = top_obj;
    52     }
    53   } else {
    54     assert(top == _sp->end(), "only case where top_obj == NULL");
    55   }
    56   return top;
    57 }
    59 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    60                                             HeapWord* bottom,
    61                                             HeapWord* top) {
    62   // 1. Blocks may or may not be objects.
    63   // 2. Even when a block_is_obj(), it may not entirely
    64   //    occupy the block if the block quantum is larger than
    65   //    the object size.
    66   // We can and should try to optimize by calling the non-MemRegion
    67   // version of oop_iterate() for all but the extremal objects
    68   // (for which we need to call the MemRegion version of
    69   // oop_iterate()) To be done post-beta XXX
    70   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    71     // As in the case of contiguous space above, we'd like to
    72     // just use the value returned by oop_iterate to increment the
    73     // current pointer; unfortunately, that won't work in CMS because
    74     // we'd need an interface change (it seems) to have the space
    75     // "adjust the object size" (for instance pad it up to its
    76     // block alignment or minimum block size restrictions. XXX
    77     if (_sp->block_is_obj(bottom) &&
    78         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    79       oop(bottom)->oop_iterate(_cl, mr);
    80     }
    81   }
    82 }
    84 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
    86   // Some collectors need to do special things whenever their dirty
    87   // cards are processed. For instance, CMS must remember mutator updates
    88   // (i.e. dirty cards) so as to re-scan mutated objects.
    89   // Such work can be piggy-backed here on dirty card scanning, so as to make
    90   // it slightly more efficient than doing a complete non-detructive pre-scan
    91   // of the card table.
    92   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
    93   if (pCl != NULL) {
    94     pCl->do_MemRegion(mr);
    95   }
    97   HeapWord* bottom = mr.start();
    98   HeapWord* last = mr.last();
    99   HeapWord* top = mr.end();
   100   HeapWord* bottom_obj;
   101   HeapWord* top_obj;
   103   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   104          _precision == CardTableModRefBS::Precise,
   105          "Only ones we deal with for now.");
   107   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   108          _cl->idempotent() || _last_bottom == NULL ||
   109          top <= _last_bottom,
   110          "Not decreasing");
   111   NOT_PRODUCT(_last_bottom = mr.start());
   113   bottom_obj = _sp->block_start(bottom);
   114   top_obj    = _sp->block_start(last);
   116   assert(bottom_obj <= bottom, "just checking");
   117   assert(top_obj    <= top,    "just checking");
   119   // Given what we think is the top of the memory region and
   120   // the start of the object at the top, get the actual
   121   // value of the top.
   122   top = get_actual_top(top, top_obj);
   124   // If the previous call did some part of this region, don't redo.
   125   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   126       _min_done != NULL &&
   127       _min_done < top) {
   128     top = _min_done;
   129   }
   131   // Top may have been reset, and in fact may be below bottom,
   132   // e.g. the dirty card region is entirely in a now free object
   133   // -- something that could happen with a concurrent sweeper.
   134   bottom = MIN2(bottom, top);
   135   mr     = MemRegion(bottom, top);
   136   assert(bottom <= top &&
   137          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   138           _min_done == NULL ||
   139           top <= _min_done),
   140          "overlap!");
   142   // Walk the region if it is not empty; otherwise there is nothing to do.
   143   if (!mr.is_empty()) {
   144     walk_mem_region(mr, bottom_obj, top);
   145   }
   147   // An idempotent closure might be applied in any order, so we don't
   148   // record a _min_done for it.
   149   if (!_cl->idempotent()) {
   150     _min_done = bottom;
   151   } else {
   152     assert(_min_done == _last_explicit_min_done,
   153            "Don't update _min_done for idempotent cl");
   154   }
   155 }
   157 DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
   158                                           CardTableModRefBS::PrecisionStyle precision,
   159                                           HeapWord* boundary) {
   160   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   161 }
   163 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   164                                                HeapWord* top_obj) {
   165   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   166     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   167       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   168         // An arrayOop is starting on the dirty card - since we do exact
   169         // store checks for objArrays we are done.
   170       } else {
   171         // Otherwise, it is possible that the object starting on the dirty
   172         // card spans the entire card, and that the store happened on a
   173         // later card.  Figure out where the object ends.
   174         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   175           "Block size and object size mismatch");
   176         top = top_obj + oop(top_obj)->size();
   177       }
   178     }
   179   } else {
   180     top = (_sp->toContiguousSpace())->top();
   181   }
   182   return top;
   183 }
   185 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   186                                       HeapWord* bottom,
   187                                       HeapWord* top) {
   188   // Note that this assumption won't hold if we have a concurrent
   189   // collector in this space, which may have freed up objects after
   190   // they were dirtied and before the stop-the-world GC that is
   191   // examining cards here.
   192   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   194   if (_boundary != NULL) {
   195     // We have a boundary outside of which we don't want to look
   196     // at objects, so create a filtering closure around the
   197     // oop closure before walking the region.
   198     FilteringClosure filter(_boundary, _cl);
   199     walk_mem_region_with_cl(mr, bottom, top, &filter);
   200   } else {
   201     // No boundary, simply walk the heap with the oop closure.
   202     walk_mem_region_with_cl(mr, bottom, top, _cl);
   203   }
   205 }
   207 // We must replicate this so that the static type of "FilteringClosure"
   208 // (see above) is apparent at the oop_iterate calls.
   209 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   210 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   211                                                    HeapWord* bottom,    \
   212                                                    HeapWord* top,       \
   213                                                    ClosureType* cl) {   \
   214   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   215   if (bottom < top) {                                                   \
   216     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   217     while (next_obj < top) {                                            \
   218       /* Bottom lies entirely below top, so we can call the */          \
   219       /* non-memRegion version of oop_iterate below. */                 \
   220       oop(bottom)->oop_iterate(cl);                                     \
   221       bottom = next_obj;                                                \
   222       next_obj = bottom + oop(bottom)->size();                          \
   223     }                                                                   \
   224     /* Last object. */                                                  \
   225     oop(bottom)->oop_iterate(cl, mr);                                   \
   226   }                                                                     \
   227 }
   229 // (There are only two of these, rather than N, because the split is due
   230 // only to the introduction of the FilteringClosure, a local part of the
   231 // impl of this abstraction.)
   232 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
   233 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   235 DirtyCardToOopClosure*
   236 ContiguousSpace::new_dcto_cl(OopClosure* cl,
   237                              CardTableModRefBS::PrecisionStyle precision,
   238                              HeapWord* boundary) {
   239   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   240 }
   242 void Space::initialize(MemRegion mr,
   243                        bool clear_space,
   244                        bool mangle_space) {
   245   HeapWord* bottom = mr.start();
   246   HeapWord* end    = mr.end();
   247   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   248          "invalid space boundaries");
   249   set_bottom(bottom);
   250   set_end(end);
   251   if (clear_space) clear(mangle_space);
   252 }
   254 void Space::clear(bool mangle_space) {
   255   if (ZapUnusedHeapArea && mangle_space) {
   256     mangle_unused_area();
   257   }
   258 }
   260 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   261     _concurrent_iteration_safe_limit(NULL) {
   262   _mangler = new GenSpaceMangler(this);
   263 }
   265 ContiguousSpace::~ContiguousSpace() {
   266   delete _mangler;
   267 }
   269 void ContiguousSpace::initialize(MemRegion mr,
   270                                  bool clear_space,
   271                                  bool mangle_space)
   272 {
   273   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   274   set_concurrent_iteration_safe_limit(top());
   275 }
   277 void ContiguousSpace::clear(bool mangle_space) {
   278   set_top(bottom());
   279   set_saved_mark();
   280   CompactibleSpace::clear(mangle_space);
   281 }
   283 bool Space::is_in(const void* p) const {
   284   HeapWord* b = block_start_const(p);
   285   return b != NULL && block_is_obj(b);
   286 }
   288 bool ContiguousSpace::is_in(const void* p) const {
   289   return _bottom <= p && p < _top;
   290 }
   292 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   293   return p >= _top;
   294 }
   296 void OffsetTableContigSpace::clear(bool mangle_space) {
   297   ContiguousSpace::clear(mangle_space);
   298   _offsets.initialize_threshold();
   299 }
   301 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   302   Space::set_bottom(new_bottom);
   303   _offsets.set_bottom(new_bottom);
   304 }
   306 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   307   // Space should not advertize an increase in size
   308   // until after the underlying offest table has been enlarged.
   309   _offsets.resize(pointer_delta(new_end, bottom()));
   310   Space::set_end(new_end);
   311 }
   313 #ifndef PRODUCT
   315 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   316   mangler()->set_top_for_allocations(v);
   317 }
   318 void ContiguousSpace::set_top_for_allocations() {
   319   mangler()->set_top_for_allocations(top());
   320 }
   321 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   322   mangler()->check_mangled_unused_area(limit);
   323 }
   325 void ContiguousSpace::check_mangled_unused_area_complete() {
   326   mangler()->check_mangled_unused_area_complete();
   327 }
   329 // Mangled only the unused space that has not previously
   330 // been mangled and that has not been allocated since being
   331 // mangled.
   332 void ContiguousSpace::mangle_unused_area() {
   333   mangler()->mangle_unused_area();
   334 }
   335 void ContiguousSpace::mangle_unused_area_complete() {
   336   mangler()->mangle_unused_area_complete();
   337 }
   338 void ContiguousSpace::mangle_region(MemRegion mr) {
   339   // Although this method uses SpaceMangler::mangle_region() which
   340   // is not specific to a space, the when the ContiguousSpace version
   341   // is called, it is always with regard to a space and this
   342   // bounds checking is appropriate.
   343   MemRegion space_mr(bottom(), end());
   344   assert(space_mr.contains(mr), "Mangling outside space");
   345   SpaceMangler::mangle_region(mr);
   346 }
   347 #endif  // NOT_PRODUCT
   349 void CompactibleSpace::initialize(MemRegion mr,
   350                                   bool clear_space,
   351                                   bool mangle_space) {
   352   Space::initialize(mr, clear_space, mangle_space);
   353   set_compaction_top(bottom());
   354   _next_compaction_space = NULL;
   355 }
   357 void CompactibleSpace::clear(bool mangle_space) {
   358   Space::clear(mangle_space);
   359   _compaction_top = bottom();
   360 }
   362 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   363                                     CompactPoint* cp, HeapWord* compact_top) {
   364   // q is alive
   365   // First check if we should switch compaction space
   366   assert(this == cp->space, "'this' should be current compaction space.");
   367   size_t compaction_max_size = pointer_delta(end(), compact_top);
   368   while (size > compaction_max_size) {
   369     // switch to next compaction space
   370     cp->space->set_compaction_top(compact_top);
   371     cp->space = cp->space->next_compaction_space();
   372     if (cp->space == NULL) {
   373       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   374       assert(cp->gen != NULL, "compaction must succeed");
   375       cp->space = cp->gen->first_compaction_space();
   376       assert(cp->space != NULL, "generation must have a first compaction space");
   377     }
   378     compact_top = cp->space->bottom();
   379     cp->space->set_compaction_top(compact_top);
   380     cp->threshold = cp->space->initialize_threshold();
   381     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   382   }
   384   // store the forwarding pointer into the mark word
   385   if ((HeapWord*)q != compact_top) {
   386     q->forward_to(oop(compact_top));
   387     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   388   } else {
   389     // if the object isn't moving we can just set the mark to the default
   390     // mark and handle it specially later on.
   391     q->init_mark();
   392     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   393   }
   395   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
   396   compact_top += size;
   398   // we need to update the offset table so that the beginnings of objects can be
   399   // found during scavenge.  Note that we are updating the offset table based on
   400   // where the object will be once the compaction phase finishes.
   401   if (compact_top > cp->threshold)
   402     cp->threshold =
   403       cp->space->cross_threshold(compact_top - size, compact_top);
   404   return compact_top;
   405 }
   408 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   409                                         HeapWord* q, size_t deadlength) {
   410   if (allowed_deadspace_words >= deadlength) {
   411     allowed_deadspace_words -= deadlength;
   412     CollectedHeap::fill_with_object(q, deadlength);
   413     oop(q)->set_mark(oop(q)->mark()->set_marked());
   414     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   415     // Recall that we required "q == compaction_top".
   416     return true;
   417   } else {
   418     allowed_deadspace_words = 0;
   419     return false;
   420   }
   421 }
   423 #define block_is_always_obj(q) true
   424 #define obj_size(q) oop(q)->size()
   425 #define adjust_obj_size(s) s
   427 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   428   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   429 }
   431 // Faster object search.
   432 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   433   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   434 }
   436 void Space::adjust_pointers() {
   437   // adjust all the interior pointers to point at the new locations of objects
   438   // Used by MarkSweep::mark_sweep_phase3()
   440   // First check to see if there is any work to be done.
   441   if (used() == 0) {
   442     return;  // Nothing to do.
   443   }
   445   // Otherwise...
   446   HeapWord* q = bottom();
   447   HeapWord* t = end();
   449   debug_only(HeapWord* prev_q = NULL);
   450   while (q < t) {
   451     if (oop(q)->is_gc_marked()) {
   452       // q is alive
   454       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
   455       // point all the oops to the new location
   456       size_t size = oop(q)->adjust_pointers();
   457       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
   459       debug_only(prev_q = q);
   460       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
   462       q += size;
   463     } else {
   464       // q is not a live object.  But we're not in a compactible space,
   465       // So we don't have live ranges.
   466       debug_only(prev_q = q);
   467       q += block_size(q);
   468       assert(q > prev_q, "we should be moving forward through memory");
   469     }
   470   }
   471   assert(q == t, "just checking");
   472 }
   474 void CompactibleSpace::adjust_pointers() {
   475   // Check first is there is any work to do.
   476   if (used() == 0) {
   477     return;   // Nothing to do.
   478   }
   480   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   481 }
   483 void CompactibleSpace::compact() {
   484   SCAN_AND_COMPACT(obj_size);
   485 }
   487 void Space::print_short() const { print_short_on(tty); }
   489 void Space::print_short_on(outputStream* st) const {
   490   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   491               (int) ((double) used() * 100 / capacity()));
   492 }
   494 void Space::print() const { print_on(tty); }
   496 void Space::print_on(outputStream* st) const {
   497   print_short_on(st);
   498   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   499                 bottom(), end());
   500 }
   502 void ContiguousSpace::print_on(outputStream* st) const {
   503   print_short_on(st);
   504   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   505                 bottom(), top(), end());
   506 }
   508 void OffsetTableContigSpace::print_on(outputStream* st) const {
   509   print_short_on(st);
   510   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   511                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   512               bottom(), top(), _offsets.threshold(), end());
   513 }
   515 void ContiguousSpace::verify(bool allow_dirty) const {
   516   HeapWord* p = bottom();
   517   HeapWord* t = top();
   518   HeapWord* prev_p = NULL;
   519   while (p < t) {
   520     oop(p)->verify();
   521     prev_p = p;
   522     p += oop(p)->size();
   523   }
   524   guarantee(p == top(), "end of last object must match end of space");
   525   if (top() != end()) {
   526     guarantee(top() == block_start_const(end()-1) &&
   527               top() == block_start_const(top()),
   528               "top should be start of unallocated block, if it exists");
   529   }
   530 }
   532 void Space::oop_iterate(OopClosure* blk) {
   533   ObjectToOopClosure blk2(blk);
   534   object_iterate(&blk2);
   535 }
   537 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   538   guarantee(false, "NYI");
   539   return bottom();
   540 }
   542 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   543                                           ObjectClosureCareful* cl) {
   544   guarantee(false, "NYI");
   545   return bottom();
   546 }
   549 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   550   assert(!mr.is_empty(), "Should be non-empty");
   551   // We use MemRegion(bottom(), end()) rather than used_region() below
   552   // because the two are not necessarily equal for some kinds of
   553   // spaces, in particular, certain kinds of free list spaces.
   554   // We could use the more complicated but more precise:
   555   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   556   // but the slight imprecision seems acceptable in the assertion check.
   557   assert(MemRegion(bottom(), end()).contains(mr),
   558          "Should be within used space");
   559   HeapWord* prev = cl->previous();   // max address from last time
   560   if (prev >= mr.end()) { // nothing to do
   561     return;
   562   }
   563   // This assert will not work when we go from cms space to perm
   564   // space, and use same closure. Easy fix deferred for later. XXX YSR
   565   // assert(prev == NULL || contains(prev), "Should be within space");
   567   bool last_was_obj_array = false;
   568   HeapWord *blk_start_addr, *region_start_addr;
   569   if (prev > mr.start()) {
   570     region_start_addr = prev;
   571     blk_start_addr    = prev;
   572     // The previous invocation may have pushed "prev" beyond the
   573     // last allocated block yet there may be still be blocks
   574     // in this region due to a particular coalescing policy.
   575     // Relax the assertion so that the case where the unallocated
   576     // block is maintained and "prev" is beyond the unallocated
   577     // block does not cause the assertion to fire.
   578     assert((BlockOffsetArrayUseUnallocatedBlock &&
   579             (!is_in(prev))) ||
   580            (blk_start_addr == block_start(region_start_addr)), "invariant");
   581   } else {
   582     region_start_addr = mr.start();
   583     blk_start_addr    = block_start(region_start_addr);
   584   }
   585   HeapWord* region_end_addr = mr.end();
   586   MemRegion derived_mr(region_start_addr, region_end_addr);
   587   while (blk_start_addr < region_end_addr) {
   588     const size_t size = block_size(blk_start_addr);
   589     if (block_is_obj(blk_start_addr)) {
   590       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   591     } else {
   592       last_was_obj_array = false;
   593     }
   594     blk_start_addr += size;
   595   }
   596   if (!last_was_obj_array) {
   597     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   598            "Should be within (closed) used space");
   599     assert(blk_start_addr > prev, "Invariant");
   600     cl->set_previous(blk_start_addr); // min address for next time
   601   }
   602 }
   604 bool Space::obj_is_alive(const HeapWord* p) const {
   605   assert (block_is_obj(p), "The address should point to an object");
   606   return true;
   607 }
   609 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   610   assert(!mr.is_empty(), "Should be non-empty");
   611   assert(used_region().contains(mr), "Should be within used space");
   612   HeapWord* prev = cl->previous();   // max address from last time
   613   if (prev >= mr.end()) { // nothing to do
   614     return;
   615   }
   616   // See comment above (in more general method above) in case you
   617   // happen to use this method.
   618   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   620   bool last_was_obj_array = false;
   621   HeapWord *obj_start_addr, *region_start_addr;
   622   if (prev > mr.start()) {
   623     region_start_addr = prev;
   624     obj_start_addr    = prev;
   625     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   626   } else {
   627     region_start_addr = mr.start();
   628     obj_start_addr    = block_start(region_start_addr);
   629   }
   630   HeapWord* region_end_addr = mr.end();
   631   MemRegion derived_mr(region_start_addr, region_end_addr);
   632   while (obj_start_addr < region_end_addr) {
   633     oop obj = oop(obj_start_addr);
   634     const size_t size = obj->size();
   635     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   636     obj_start_addr += size;
   637   }
   638   if (!last_was_obj_array) {
   639     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   640            "Should be within (closed) used space");
   641     assert(obj_start_addr > prev, "Invariant");
   642     cl->set_previous(obj_start_addr); // min address for next time
   643   }
   644 }
   646 #ifndef SERIALGC
   647 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   648                                                                             \
   649   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   650     HeapWord* obj_addr = mr.start();                                        \
   651     HeapWord* t = mr.end();                                                 \
   652     while (obj_addr < t) {                                                  \
   653       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   654       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   655     }                                                                       \
   656   }
   658   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   660 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   661 #endif // SERIALGC
   663 void ContiguousSpace::oop_iterate(OopClosure* blk) {
   664   if (is_empty()) return;
   665   HeapWord* obj_addr = bottom();
   666   HeapWord* t = top();
   667   // Could call objects iterate, but this is easier.
   668   while (obj_addr < t) {
   669     obj_addr += oop(obj_addr)->oop_iterate(blk);
   670   }
   671 }
   673 void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
   674   if (is_empty()) {
   675     return;
   676   }
   677   MemRegion cur = MemRegion(bottom(), top());
   678   mr = mr.intersection(cur);
   679   if (mr.is_empty()) {
   680     return;
   681   }
   682   if (mr.equals(cur)) {
   683     oop_iterate(blk);
   684     return;
   685   }
   686   assert(mr.end() <= top(), "just took an intersection above");
   687   HeapWord* obj_addr = block_start(mr.start());
   688   HeapWord* t = mr.end();
   690   // Handle first object specially.
   691   oop obj = oop(obj_addr);
   692   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   693   obj_addr += obj->oop_iterate(&smr_blk);
   694   while (obj_addr < t) {
   695     oop obj = oop(obj_addr);
   696     assert(obj->is_oop(), "expected an oop");
   697     obj_addr += obj->size();
   698     // If "obj_addr" is not greater than top, then the
   699     // entire object "obj" is within the region.
   700     if (obj_addr <= t) {
   701       obj->oop_iterate(blk);
   702     } else {
   703       // "obj" extends beyond end of region
   704       obj->oop_iterate(&smr_blk);
   705       break;
   706     }
   707   };
   708 }
   710 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   711   if (is_empty()) return;
   712   WaterMark bm = bottom_mark();
   713   object_iterate_from(bm, blk);
   714 }
   716 // For a continguous space object_iterate() and safe_object_iterate()
   717 // are the same.
   718 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   719   object_iterate(blk);
   720 }
   722 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   723   assert(mark.space() == this, "Mark does not match space");
   724   HeapWord* p = mark.point();
   725   while (p < top()) {
   726     blk->do_object(oop(p));
   727     p += oop(p)->size();
   728   }
   729 }
   731 HeapWord*
   732 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   733   HeapWord * limit = concurrent_iteration_safe_limit();
   734   assert(limit <= top(), "sanity check");
   735   for (HeapWord* p = bottom(); p < limit;) {
   736     size_t size = blk->do_object_careful(oop(p));
   737     if (size == 0) {
   738       return p;  // failed at p
   739     } else {
   740       p += size;
   741     }
   742   }
   743   return NULL; // all done
   744 }
   746 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   747                                                                           \
   748 void ContiguousSpace::                                                    \
   749 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   750   HeapWord* t;                                                            \
   751   HeapWord* p = saved_mark_word();                                        \
   752   assert(p != NULL, "expected saved mark");                               \
   753                                                                           \
   754   const intx interval = PrefetchScanIntervalInBytes;                      \
   755   do {                                                                    \
   756     t = top();                                                            \
   757     while (p < t) {                                                       \
   758       Prefetch::write(p, interval);                                       \
   759       debug_only(HeapWord* prev = p);                                     \
   760       oop m = oop(p);                                                     \
   761       p += m->oop_iterate(blk);                                           \
   762     }                                                                     \
   763   } while (t < top());                                                    \
   764                                                                           \
   765   set_saved_mark_word(p);                                                 \
   766 }
   768 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   770 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   772 // Very general, slow implementation.
   773 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   774   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   775   if (p >= top()) {
   776     return top();
   777   } else {
   778     HeapWord* last = bottom();
   779     HeapWord* cur = last;
   780     while (cur <= p) {
   781       last = cur;
   782       cur += oop(cur)->size();
   783     }
   784     assert(oop(last)->is_oop(), "Should be an object start");
   785     return last;
   786   }
   787 }
   789 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   790   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   791   HeapWord* current_top = top();
   792   assert(p <= current_top, "p is not a block start");
   793   assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
   794   if (p < current_top)
   795     return oop(p)->size();
   796   else {
   797     assert(p == current_top, "just checking");
   798     return pointer_delta(end(), (HeapWord*) p);
   799   }
   800 }
   802 // This version requires locking.
   803 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   804                                                 HeapWord* const end_value) {
   805   assert(Heap_lock->owned_by_self() ||
   806          (SafepointSynchronize::is_at_safepoint() &&
   807           Thread::current()->is_VM_thread()),
   808          "not locked");
   809   HeapWord* obj = top();
   810   if (pointer_delta(end_value, obj) >= size) {
   811     HeapWord* new_top = obj + size;
   812     set_top(new_top);
   813     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   814     return obj;
   815   } else {
   816     return NULL;
   817   }
   818 }
   820 // This version is lock-free.
   821 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   822                                                     HeapWord* const end_value) {
   823   do {
   824     HeapWord* obj = top();
   825     if (pointer_delta(end_value, obj) >= size) {
   826       HeapWord* new_top = obj + size;
   827       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   828       // result can be one of two:
   829       //  the old top value: the exchange succeeded
   830       //  otherwise: the new value of the top is returned.
   831       if (result == obj) {
   832         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   833         return obj;
   834       }
   835     } else {
   836       return NULL;
   837     }
   838   } while (true);
   839 }
   841 // Requires locking.
   842 HeapWord* ContiguousSpace::allocate(size_t size) {
   843   return allocate_impl(size, end());
   844 }
   846 // Lock-free.
   847 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   848   return par_allocate_impl(size, end());
   849 }
   851 void ContiguousSpace::allocate_temporary_filler(int factor) {
   852   // allocate temporary type array decreasing free size with factor 'factor'
   853   assert(factor >= 0, "just checking");
   854   size_t size = pointer_delta(end(), top());
   856   // if space is full, return
   857   if (size == 0) return;
   859   if (factor > 0) {
   860     size -= size/factor;
   861   }
   862   size = align_object_size(size);
   864   const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
   865   if (size >= min_int_array_size) {
   866     size_t length = (size - min_int_array_size) * (HeapWordSize / sizeof(jint));
   867     // allocate uninitialized int array
   868     typeArrayOop t = (typeArrayOop) allocate(size);
   869     assert(t != NULL, "allocation should succeed");
   870     t->set_mark(markOopDesc::prototype());
   871     t->set_klass(Universe::intArrayKlassObj());
   872     t->set_length((int)length);
   873   } else {
   874     assert((int) size == instanceOopDesc::header_size(),
   875            "size for smallest fake object doesn't match");
   876     instanceOop obj = (instanceOop) allocate(size);
   877     obj->set_mark(markOopDesc::prototype());
   878     obj->set_klass_gap(0);
   879     obj->set_klass(SystemDictionary::object_klass());
   880   }
   881 }
   883 void EdenSpace::clear(bool mangle_space) {
   884   ContiguousSpace::clear(mangle_space);
   885   set_soft_end(end());
   886 }
   888 // Requires locking.
   889 HeapWord* EdenSpace::allocate(size_t size) {
   890   return allocate_impl(size, soft_end());
   891 }
   893 // Lock-free.
   894 HeapWord* EdenSpace::par_allocate(size_t size) {
   895   return par_allocate_impl(size, soft_end());
   896 }
   898 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   899 {
   900   do {
   901     // The invariant is top() should be read before end() because
   902     // top() can't be greater than end(), so if an update of _soft_end
   903     // occurs between 'end_val = end();' and 'top_val = top();' top()
   904     // also can grow up to the new end() and the condition
   905     // 'top_val > end_val' is true. To ensure the loading order
   906     // OrderAccess::loadload() is required after top() read.
   907     HeapWord* obj = top();
   908     OrderAccess::loadload();
   909     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   910       HeapWord* new_top = obj + size;
   911       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   912       // result can be one of two:
   913       //  the old top value: the exchange succeeded
   914       //  otherwise: the new value of the top is returned.
   915       if (result == obj) {
   916         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   917         return obj;
   918       }
   919     } else {
   920       return NULL;
   921     }
   922   } while (true);
   923 }
   926 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   927   return _offsets.initialize_threshold();
   928 }
   930 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   931   _offsets.alloc_block(start, end);
   932   return _offsets.threshold();
   933 }
   935 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   936                                                MemRegion mr) :
   937   _offsets(sharedOffsetArray, mr),
   938   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   939 {
   940   _offsets.set_contig_space(this);
   941   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   942 }
   945 class VerifyOldOopClosure : public OopClosure {
   946  public:
   947   oop  _the_obj;
   948   bool _allow_dirty;
   949   void do_oop(oop* p) {
   950     _the_obj->verify_old_oop(p, _allow_dirty);
   951   }
   952   void do_oop(narrowOop* p) {
   953     _the_obj->verify_old_oop(p, _allow_dirty);
   954   }
   955 };
   957 #define OBJ_SAMPLE_INTERVAL 0
   958 #define BLOCK_SAMPLE_INTERVAL 100
   960 void OffsetTableContigSpace::verify(bool allow_dirty) const {
   961   HeapWord* p = bottom();
   962   HeapWord* prev_p = NULL;
   963   VerifyOldOopClosure blk;      // Does this do anything?
   964   blk._allow_dirty = allow_dirty;
   965   int objs = 0;
   966   int blocks = 0;
   968   if (VerifyObjectStartArray) {
   969     _offsets.verify();
   970   }
   972   while (p < top()) {
   973     size_t size = oop(p)->size();
   974     // For a sampling of objects in the space, find it using the
   975     // block offset table.
   976     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   977       guarantee(p == block_start_const(p + (size/2)),
   978                 "check offset computation");
   979       blocks = 0;
   980     } else {
   981       blocks++;
   982     }
   984     if (objs == OBJ_SAMPLE_INTERVAL) {
   985       oop(p)->verify();
   986       blk._the_obj = oop(p);
   987       oop(p)->oop_iterate(&blk);
   988       objs = 0;
   989     } else {
   990       objs++;
   991     }
   992     prev_p = p;
   993     p += size;
   994   }
   995   guarantee(p == top(), "end of last object must match end of space");
   996 }
   998 void OffsetTableContigSpace::serialize_block_offset_array_offsets(
   999                                                       SerializeOopClosure* soc) {
  1000   _offsets.serialize(soc);
  1004 size_t TenuredSpace::allowed_dead_ratio() const {
  1005   return MarkSweepDeadRatio;
  1009 size_t ContigPermSpace::allowed_dead_ratio() const {
  1010   return PermMarkSweepDeadRatio;

mercurial