src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 959
c9004fe53695
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 2003-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
duke@435 27
duke@435 28 #define __ masm->
duke@435 29 #ifdef COMPILER2
duke@435 30 UncommonTrapBlob *SharedRuntime::_uncommon_trap_blob;
duke@435 31 #endif // COMPILER2
duke@435 32
duke@435 33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
duke@435 34 SafepointBlob *SharedRuntime::_polling_page_safepoint_handler_blob;
duke@435 35 SafepointBlob *SharedRuntime::_polling_page_return_handler_blob;
duke@435 36 RuntimeStub* SharedRuntime::_wrong_method_blob;
duke@435 37 RuntimeStub* SharedRuntime::_ic_miss_blob;
duke@435 38 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
duke@435 39 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
duke@435 40 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
duke@435 41
xlu@959 42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 43
duke@435 44 class RegisterSaver {
duke@435 45 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 46 // Capture info about frame layout
duke@435 47 enum layout {
duke@435 48 fpu_state_off = 0,
duke@435 49 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 50 st0_off, st0H_off,
duke@435 51 st1_off, st1H_off,
duke@435 52 st2_off, st2H_off,
duke@435 53 st3_off, st3H_off,
duke@435 54 st4_off, st4H_off,
duke@435 55 st5_off, st5H_off,
duke@435 56 st6_off, st6H_off,
duke@435 57 st7_off, st7H_off,
duke@435 58
duke@435 59 xmm0_off, xmm0H_off,
duke@435 60 xmm1_off, xmm1H_off,
duke@435 61 xmm2_off, xmm2H_off,
duke@435 62 xmm3_off, xmm3H_off,
duke@435 63 xmm4_off, xmm4H_off,
duke@435 64 xmm5_off, xmm5H_off,
duke@435 65 xmm6_off, xmm6H_off,
duke@435 66 xmm7_off, xmm7H_off,
duke@435 67 flags_off,
duke@435 68 rdi_off,
duke@435 69 rsi_off,
duke@435 70 ignore_off, // extra copy of rbp,
duke@435 71 rsp_off,
duke@435 72 rbx_off,
duke@435 73 rdx_off,
duke@435 74 rcx_off,
duke@435 75 rax_off,
duke@435 76 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 77 // will override any oopMap setting for it. We must therefore force the layout
duke@435 78 // so that it agrees with the frame sender code.
duke@435 79 rbp_off,
duke@435 80 return_off, // slot for return address
duke@435 81 reg_save_size };
duke@435 82
duke@435 83
duke@435 84 public:
duke@435 85
duke@435 86 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 87 int* total_frame_words, bool verify_fpu = true);
duke@435 88 static void restore_live_registers(MacroAssembler* masm);
duke@435 89
duke@435 90 static int rax_offset() { return rax_off; }
duke@435 91 static int rbx_offset() { return rbx_off; }
duke@435 92
duke@435 93 // Offsets into the register save area
duke@435 94 // Used by deoptimization when it is managing result register
duke@435 95 // values on its own
duke@435 96
duke@435 97 static int raxOffset(void) { return rax_off; }
duke@435 98 static int rdxOffset(void) { return rdx_off; }
duke@435 99 static int rbxOffset(void) { return rbx_off; }
duke@435 100 static int xmm0Offset(void) { return xmm0_off; }
duke@435 101 // This really returns a slot in the fp save area, which one is not important
duke@435 102 static int fpResultOffset(void) { return st0_off; }
duke@435 103
duke@435 104 // During deoptimization only the result register need to be restored
duke@435 105 // all the other values have already been extracted.
duke@435 106
duke@435 107 static void restore_result_registers(MacroAssembler* masm);
duke@435 108
duke@435 109 };
duke@435 110
duke@435 111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 112 int* total_frame_words, bool verify_fpu) {
duke@435 113
duke@435 114 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 115 int frame_words = frame_size_in_bytes / wordSize;
duke@435 116 *total_frame_words = frame_words;
duke@435 117
duke@435 118 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 119
duke@435 120 // save registers, fpu state, and flags
duke@435 121 // We assume caller has already has return address slot on the stack
duke@435 122 // We push epb twice in this sequence because we want the real rbp,
never@739 123 // to be under the return like a normal enter and we want to use pusha
duke@435 124 // We push by hand instead of pusing push
duke@435 125 __ enter();
never@739 126 __ pusha();
never@739 127 __ pushf();
never@739 128 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 129 __ push_FPU_state(); // Save FPU state & init
duke@435 130
duke@435 131 if (verify_fpu) {
duke@435 132 // Some stubs may have non standard FPU control word settings so
duke@435 133 // only check and reset the value when it required to be the
duke@435 134 // standard value. The safepoint blob in particular can be used
duke@435 135 // in methods which are using the 24 bit control word for
duke@435 136 // optimized float math.
duke@435 137
duke@435 138 #ifdef ASSERT
duke@435 139 // Make sure the control word has the expected value
duke@435 140 Label ok;
duke@435 141 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 142 __ jccb(Assembler::equal, ok);
duke@435 143 __ stop("corrupted control word detected");
duke@435 144 __ bind(ok);
duke@435 145 #endif
duke@435 146
duke@435 147 // Reset the control word to guard against exceptions being unmasked
duke@435 148 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 149 // into the on stack copy and then reload that to make sure that the
duke@435 150 // current and future values are correct.
duke@435 151 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 152 }
duke@435 153
duke@435 154 __ frstor(Address(rsp, 0));
duke@435 155 if (!verify_fpu) {
duke@435 156 // Set the control word so that exceptions are masked for the
duke@435 157 // following code.
duke@435 158 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 159 }
duke@435 160
duke@435 161 // Save the FPU registers in de-opt-able form
duke@435 162
duke@435 163 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 164 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 165 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 166 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 167 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 168 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 169 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 170 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 171
duke@435 172 if( UseSSE == 1 ) { // Save the XMM state
duke@435 173 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 174 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 175 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 176 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 177 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 178 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 179 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 180 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 181 } else if( UseSSE >= 2 ) {
duke@435 182 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 183 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 184 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 185 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 186 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 187 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 188 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 189 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 190 }
duke@435 191
duke@435 192 // Set an oopmap for the call site. This oopmap will map all
duke@435 193 // oop-registers and debug-info registers as callee-saved. This
duke@435 194 // will allow deoptimization at this safepoint to find all possible
duke@435 195 // debug-info recordings, as well as let GC find all oops.
duke@435 196
duke@435 197 OopMapSet *oop_maps = new OopMapSet();
duke@435 198 OopMap* map = new OopMap( frame_words, 0 );
duke@435 199
duke@435 200 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 201
duke@435 202 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 203 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 204 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 205 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 206 // rbp, location is known implicitly, no oopMap
duke@435 207 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 210 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 211 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 223 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 224 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 225 // %%% This is really a waste but we'll keep things as they were for now
duke@435 226 if (true) {
duke@435 227 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 228 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 229 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 230 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 231 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 232 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 235 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 236 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 237 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 238 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 239 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 242 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 243 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 244 #undef NEXTREG
duke@435 245 #undef STACK_OFFSET
duke@435 246 }
duke@435 247
duke@435 248 return map;
duke@435 249
duke@435 250 }
duke@435 251
duke@435 252 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 253
duke@435 254 // Recover XMM & FPU state
duke@435 255 if( UseSSE == 1 ) {
duke@435 256 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 257 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 258 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 259 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 260 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 261 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 262 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 263 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 264 } else if( UseSSE >= 2 ) {
duke@435 265 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 266 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 267 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 268 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 269 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 270 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 271 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 272 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 273 }
duke@435 274 __ pop_FPU_state();
never@739 275 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 276
never@739 277 __ popf();
never@739 278 __ popa();
duke@435 279 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 280 __ pop(rbp);
duke@435 281
duke@435 282 }
duke@435 283
duke@435 284 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 285
duke@435 286 // Just restore result register. Only used by deoptimization. By
duke@435 287 // now any callee save register that needs to be restore to a c2
duke@435 288 // caller of the deoptee has been extracted into the vframeArray
duke@435 289 // and will be stuffed into the c2i adapter we create for later
duke@435 290 // restoration so only result registers need to be restored here.
duke@435 291 //
duke@435 292
duke@435 293 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 294
duke@435 295 // Recover XMM & FPU state
duke@435 296 if( UseSSE == 1 ) {
duke@435 297 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 298 } else if( UseSSE >= 2 ) {
duke@435 299 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 300 }
never@739 301 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 302 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 303 // Pop all of the register save are off the stack except the return address
never@739 304 __ addptr(rsp, return_off * wordSize);
duke@435 305 }
duke@435 306
duke@435 307 // The java_calling_convention describes stack locations as ideal slots on
duke@435 308 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 309 // (like the placement of the register window) the slots must be biased by
duke@435 310 // the following value.
duke@435 311 static int reg2offset_in(VMReg r) {
duke@435 312 // Account for saved rbp, and return address
duke@435 313 // This should really be in_preserve_stack_slots
duke@435 314 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 315 }
duke@435 316
duke@435 317 static int reg2offset_out(VMReg r) {
duke@435 318 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 319 }
duke@435 320
duke@435 321 // ---------------------------------------------------------------------------
duke@435 322 // Read the array of BasicTypes from a signature, and compute where the
duke@435 323 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 324 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 325 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 326 // as framesizes are fixed.
duke@435 327 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 328 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 329 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 330 // integer registers.
duke@435 331
duke@435 332 // Pass first two oop/int args in registers ECX and EDX.
duke@435 333 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 334 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 335 // the doubles will grab the registers before the floats will.
duke@435 336
duke@435 337 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 338 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 339 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 340
duke@435 341
duke@435 342 // ---------------------------------------------------------------------------
duke@435 343 // The compiled Java calling convention.
duke@435 344 // Pass first two oop/int args in registers ECX and EDX.
duke@435 345 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 346 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 347 // the doubles will grab the registers before the floats will.
duke@435 348 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 349 VMRegPair *regs,
duke@435 350 int total_args_passed,
duke@435 351 int is_outgoing) {
duke@435 352 uint stack = 0; // Starting stack position for args on stack
duke@435 353
duke@435 354
duke@435 355 // Pass first two oop/int args in registers ECX and EDX.
duke@435 356 uint reg_arg0 = 9999;
duke@435 357 uint reg_arg1 = 9999;
duke@435 358
duke@435 359 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 360 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 361 // the doubles will grab the registers before the floats will.
duke@435 362 // CNC - TURNED OFF FOR non-SSE.
duke@435 363 // On Intel we have to round all doubles (and most floats) at
duke@435 364 // call sites by storing to the stack in any case.
duke@435 365 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 366 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 367 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 368 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 369 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 370 uint freg_arg0 = 9999+fargs;
duke@435 371 uint freg_arg1 = 9999+fargs;
duke@435 372
duke@435 373 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 374 int i;
duke@435 375 for( i = 0; i < total_args_passed; i++) {
duke@435 376 if( sig_bt[i] == T_DOUBLE ) {
duke@435 377 // first 2 doubles go in registers
duke@435 378 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 379 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 380 else // Else double is passed low on the stack to be aligned.
duke@435 381 stack += 2;
duke@435 382 } else if( sig_bt[i] == T_LONG ) {
duke@435 383 stack += 2;
duke@435 384 }
duke@435 385 }
duke@435 386 int dstack = 0; // Separate counter for placing doubles
duke@435 387
duke@435 388 // Now pick where all else goes.
duke@435 389 for( i = 0; i < total_args_passed; i++) {
duke@435 390 // From the type and the argument number (count) compute the location
duke@435 391 switch( sig_bt[i] ) {
duke@435 392 case T_SHORT:
duke@435 393 case T_CHAR:
duke@435 394 case T_BYTE:
duke@435 395 case T_BOOLEAN:
duke@435 396 case T_INT:
duke@435 397 case T_ARRAY:
duke@435 398 case T_OBJECT:
duke@435 399 case T_ADDRESS:
duke@435 400 if( reg_arg0 == 9999 ) {
duke@435 401 reg_arg0 = i;
duke@435 402 regs[i].set1(rcx->as_VMReg());
duke@435 403 } else if( reg_arg1 == 9999 ) {
duke@435 404 reg_arg1 = i;
duke@435 405 regs[i].set1(rdx->as_VMReg());
duke@435 406 } else {
duke@435 407 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 408 }
duke@435 409 break;
duke@435 410 case T_FLOAT:
duke@435 411 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 412 freg_arg0 = i;
duke@435 413 regs[i].set1(xmm0->as_VMReg());
duke@435 414 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 415 freg_arg1 = i;
duke@435 416 regs[i].set1(xmm1->as_VMReg());
duke@435 417 } else {
duke@435 418 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 419 }
duke@435 420 break;
duke@435 421 case T_LONG:
duke@435 422 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 423 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 424 dstack += 2;
duke@435 425 break;
duke@435 426 case T_DOUBLE:
duke@435 427 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 428 if( freg_arg0 == (uint)i ) {
duke@435 429 regs[i].set2(xmm0->as_VMReg());
duke@435 430 } else if( freg_arg1 == (uint)i ) {
duke@435 431 regs[i].set2(xmm1->as_VMReg());
duke@435 432 } else {
duke@435 433 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 434 dstack += 2;
duke@435 435 }
duke@435 436 break;
duke@435 437 case T_VOID: regs[i].set_bad(); break;
duke@435 438 break;
duke@435 439 default:
duke@435 440 ShouldNotReachHere();
duke@435 441 break;
duke@435 442 }
duke@435 443 }
duke@435 444
duke@435 445 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 446 return round_to(stack, 2);
duke@435 447 }
duke@435 448
duke@435 449 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 450 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 451 Label L;
duke@435 452 __ verify_oop(rbx);
never@739 453 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 454 __ jcc(Assembler::equal, L);
duke@435 455 // Schedule the branch target address early.
duke@435 456 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 457 // rax, isn't live so capture return address while we easily can
never@739 458 __ movptr(rax, Address(rsp, 0));
never@739 459 __ pusha();
never@739 460 __ pushf();
duke@435 461
duke@435 462 if (UseSSE == 1) {
never@739 463 __ subptr(rsp, 2*wordSize);
duke@435 464 __ movflt(Address(rsp, 0), xmm0);
duke@435 465 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 466 }
duke@435 467 if (UseSSE >= 2) {
never@739 468 __ subptr(rsp, 4*wordSize);
duke@435 469 __ movdbl(Address(rsp, 0), xmm0);
duke@435 470 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 471 }
duke@435 472 #ifdef COMPILER2
duke@435 473 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 474 if (UseSSE >= 2) {
duke@435 475 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 476 } else {
duke@435 477 __ empty_FPU_stack();
duke@435 478 }
duke@435 479 #endif /* COMPILER2 */
duke@435 480
duke@435 481 // VM needs caller's callsite
never@739 482 __ push(rax);
duke@435 483 // VM needs target method
never@739 484 __ push(rbx);
duke@435 485 __ verify_oop(rbx);
duke@435 486 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 487 __ addptr(rsp, 2*wordSize);
duke@435 488
duke@435 489 if (UseSSE == 1) {
duke@435 490 __ movflt(xmm0, Address(rsp, 0));
duke@435 491 __ movflt(xmm1, Address(rsp, wordSize));
never@739 492 __ addptr(rsp, 2*wordSize);
duke@435 493 }
duke@435 494 if (UseSSE >= 2) {
duke@435 495 __ movdbl(xmm0, Address(rsp, 0));
duke@435 496 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 497 __ addptr(rsp, 4*wordSize);
duke@435 498 }
duke@435 499
never@739 500 __ popf();
never@739 501 __ popa();
duke@435 502 __ bind(L);
duke@435 503 }
duke@435 504
duke@435 505
duke@435 506 // Helper function to put tags in interpreter stack.
duke@435 507 static void tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
duke@435 508 if (TaggedStackInterpreter) {
duke@435 509 int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
duke@435 510 if (sig == T_OBJECT || sig == T_ARRAY) {
never@739 511 __ movptr(Address(rsp, tag_offset), frame::TagReference);
duke@435 512 } else if (sig == T_LONG || sig == T_DOUBLE) {
duke@435 513 int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
never@739 514 __ movptr(Address(rsp, next_tag_offset), frame::TagValue);
never@739 515 __ movptr(Address(rsp, tag_offset), frame::TagValue);
duke@435 516 } else {
never@739 517 __ movptr(Address(rsp, tag_offset), frame::TagValue);
duke@435 518 }
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 // Double and long values with Tagged stacks are not contiguous.
duke@435 523 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
duke@435 524 int next_off = st_off - Interpreter::stackElementSize();
duke@435 525 if (TaggedStackInterpreter) {
duke@435 526 __ movdbl(Address(rsp, next_off), r);
duke@435 527 // Move top half up and put tag in the middle.
duke@435 528 __ movl(rdi, Address(rsp, next_off+wordSize));
duke@435 529 __ movl(Address(rsp, st_off), rdi);
duke@435 530 tag_stack(masm, T_DOUBLE, next_off);
duke@435 531 } else {
duke@435 532 __ movdbl(Address(rsp, next_off), r);
duke@435 533 }
duke@435 534 }
duke@435 535
duke@435 536 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 537 int total_args_passed,
duke@435 538 int comp_args_on_stack,
duke@435 539 const BasicType *sig_bt,
duke@435 540 const VMRegPair *regs,
duke@435 541 Label& skip_fixup) {
duke@435 542 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 543 // at all. We've come from compiled code and are attempting to jump to the
duke@435 544 // interpreter, which means the caller made a static call to get here
duke@435 545 // (vcalls always get a compiled target if there is one). Check for a
duke@435 546 // compiled target. If there is one, we need to patch the caller's call.
duke@435 547 patch_callers_callsite(masm);
duke@435 548
duke@435 549 __ bind(skip_fixup);
duke@435 550
duke@435 551 #ifdef COMPILER2
duke@435 552 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 553 if (UseSSE >= 2) {
duke@435 554 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 555 } else {
duke@435 556 __ empty_FPU_stack();
duke@435 557 }
duke@435 558 #endif /* COMPILER2 */
duke@435 559
duke@435 560 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 561 // stack_element_size is the
duke@435 562 // space we need.
duke@435 563 int extraspace = total_args_passed * Interpreter::stackElementSize();
duke@435 564
duke@435 565 // Get return address
never@739 566 __ pop(rax);
duke@435 567
duke@435 568 // set senderSP value
never@739 569 __ movptr(rsi, rsp);
never@739 570
never@739 571 __ subptr(rsp, extraspace);
duke@435 572
duke@435 573 // Now write the args into the outgoing interpreter space
duke@435 574 for (int i = 0; i < total_args_passed; i++) {
duke@435 575 if (sig_bt[i] == T_VOID) {
duke@435 576 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 577 continue;
duke@435 578 }
duke@435 579
duke@435 580 // st_off points to lowest address on stack.
duke@435 581 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
never@739 582 int next_off = st_off - Interpreter::stackElementSize();
never@739 583
duke@435 584 // Say 4 args:
duke@435 585 // i st_off
duke@435 586 // 0 12 T_LONG
duke@435 587 // 1 8 T_VOID
duke@435 588 // 2 4 T_OBJECT
duke@435 589 // 3 0 T_BOOL
duke@435 590 VMReg r_1 = regs[i].first();
duke@435 591 VMReg r_2 = regs[i].second();
duke@435 592 if (!r_1->is_valid()) {
duke@435 593 assert(!r_2->is_valid(), "");
duke@435 594 continue;
duke@435 595 }
duke@435 596
duke@435 597 if (r_1->is_stack()) {
duke@435 598 // memory to memory use fpu stack top
duke@435 599 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 600
duke@435 601 if (!r_2->is_valid()) {
duke@435 602 __ movl(rdi, Address(rsp, ld_off));
never@739 603 __ movptr(Address(rsp, st_off), rdi);
duke@435 604 tag_stack(masm, sig_bt[i], st_off);
duke@435 605 } else {
duke@435 606
duke@435 607 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 608 // st_off == MSW, st_off-wordSize == LSW
duke@435 609
never@739 610 __ movptr(rdi, Address(rsp, ld_off));
never@739 611 __ movptr(Address(rsp, next_off), rdi);
never@739 612 #ifndef _LP64
never@739 613 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 614 __ movptr(Address(rsp, st_off), rdi);
never@739 615 #else
never@739 616 #ifdef ASSERT
never@739 617 // Overwrite the unused slot with known junk
never@739 618 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 619 __ movptr(Address(rsp, st_off), rax);
never@739 620 #endif /* ASSERT */
never@739 621 #endif // _LP64
duke@435 622 tag_stack(masm, sig_bt[i], next_off);
duke@435 623 }
duke@435 624 } else if (r_1->is_Register()) {
duke@435 625 Register r = r_1->as_Register();
duke@435 626 if (!r_2->is_valid()) {
duke@435 627 __ movl(Address(rsp, st_off), r);
duke@435 628 tag_stack(masm, sig_bt[i], st_off);
duke@435 629 } else {
duke@435 630 // long/double in gpr
never@739 631 NOT_LP64(ShouldNotReachHere());
never@739 632 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 633 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 634 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 635 // long/double in gpr
never@739 636 #ifdef ASSERT
never@739 637 // Overwrite the unused slot with known junk
never@739 638 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 639 __ movptr(Address(rsp, st_off), rax);
never@739 640 #endif /* ASSERT */
never@739 641 __ movptr(Address(rsp, next_off), r);
never@739 642 tag_stack(masm, sig_bt[i], next_off);
never@739 643 } else {
never@739 644 __ movptr(Address(rsp, st_off), r);
never@739 645 tag_stack(masm, sig_bt[i], st_off);
never@739 646 }
duke@435 647 }
duke@435 648 } else {
duke@435 649 assert(r_1->is_XMMRegister(), "");
duke@435 650 if (!r_2->is_valid()) {
duke@435 651 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 652 tag_stack(masm, sig_bt[i], st_off);
duke@435 653 } else {
duke@435 654 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 655 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 656 }
duke@435 657 }
duke@435 658 }
duke@435 659
duke@435 660 // Schedule the branch target address early.
never@739 661 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 662 // And repush original return address
never@739 663 __ push(rax);
duke@435 664 __ jmp(rcx);
duke@435 665 }
duke@435 666
duke@435 667
duke@435 668 // For tagged stacks, double or long value aren't contiguous on the stack
duke@435 669 // so get them contiguous for the xmm load
duke@435 670 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
duke@435 671 int next_val_off = ld_off - Interpreter::stackElementSize();
duke@435 672 if (TaggedStackInterpreter) {
duke@435 673 // use tag slot temporarily for MSW
never@739 674 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 675 __ movptr(Address(saved_sp, next_val_off+wordSize), rsi);
duke@435 676 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 677 // restore tag
never@739 678 __ movptr(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
duke@435 679 } else {
duke@435 680 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 681 }
duke@435 682 }
duke@435 683
duke@435 684 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 685 int total_args_passed,
duke@435 686 int comp_args_on_stack,
duke@435 687 const BasicType *sig_bt,
duke@435 688 const VMRegPair *regs) {
duke@435 689 // we're being called from the interpreter but need to find the
duke@435 690 // compiled return entry point. The return address on the stack
duke@435 691 // should point at it and we just need to pull the old value out.
duke@435 692 // load up the pointer to the compiled return entry point and
duke@435 693 // rewrite our return pc. The code is arranged like so:
duke@435 694 //
duke@435 695 // .word Interpreter::return_sentinel
duke@435 696 // .word address_of_compiled_return_point
duke@435 697 // return_entry_point: blah_blah_blah
duke@435 698 //
duke@435 699 // So we can find the appropriate return point by loading up the word
duke@435 700 // just prior to the current return address we have on the stack.
duke@435 701 //
duke@435 702 // We will only enter here from an interpreted frame and never from after
duke@435 703 // passing thru a c2i. Azul allowed this but we do not. If we lose the
duke@435 704 // race and use a c2i we will remain interpreted for the race loser(s).
duke@435 705 // This removes all sorts of headaches on the x86 side and also eliminates
duke@435 706 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
duke@435 707
duke@435 708
duke@435 709 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 710 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 711 // code goes non-entrant while we get args ready.
duke@435 712
duke@435 713 // Pick up the return address
never@739 714 __ movptr(rax, Address(rsp, 0));
duke@435 715
duke@435 716 // If UseSSE >= 2 then no cleanup is needed on the return to the
duke@435 717 // interpreter so skip fixing up the return entry point unless
duke@435 718 // VerifyFPU is enabled.
duke@435 719 if (UseSSE < 2 || VerifyFPU) {
duke@435 720 Label skip, chk_int;
duke@435 721 // If we were called from the call stub we need to do a little bit different
duke@435 722 // cleanup than if the interpreter returned to the call stub.
duke@435 723
duke@435 724 ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
never@739 725 __ cmpptr(rax, stub_return_address.addr());
duke@435 726 __ jcc(Assembler::notEqual, chk_int);
never@739 727 assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
never@739 728 __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
duke@435 729 __ jmp(skip);
duke@435 730
duke@435 731 // It must be the interpreter since we never get here via a c2i (unlike Azul)
duke@435 732
duke@435 733 __ bind(chk_int);
duke@435 734 #ifdef ASSERT
duke@435 735 {
duke@435 736 Label ok;
never@739 737 __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
duke@435 738 __ jcc(Assembler::equal, ok);
duke@435 739 __ int3();
duke@435 740 __ bind(ok);
duke@435 741 }
duke@435 742 #endif // ASSERT
never@739 743 __ movptr(rax, Address(rax, -wordSize));
duke@435 744 __ bind(skip);
duke@435 745 }
duke@435 746
duke@435 747 // rax, now contains the compiled return entry point which will do an
duke@435 748 // cleanup needed for the return from compiled to interpreted.
duke@435 749
duke@435 750 // Must preserve original SP for loading incoming arguments because
duke@435 751 // we need to align the outgoing SP for compiled code.
never@739 752 __ movptr(rdi, rsp);
duke@435 753
duke@435 754 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 755 // in registers, we will occasionally have no stack args.
duke@435 756 int comp_words_on_stack = 0;
duke@435 757 if (comp_args_on_stack) {
duke@435 758 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 759 // registers are below. By subtracting stack0, we either get a negative
duke@435 760 // number (all values in registers) or the maximum stack slot accessed.
duke@435 761 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 762 // Convert 4-byte stack slots to words.
duke@435 763 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 764 // Round up to miminum stack alignment, in wordSize
duke@435 765 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 766 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 767 }
duke@435 768
duke@435 769 // Align the outgoing SP
never@739 770 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 771
duke@435 772 // push the return address on the stack (note that pushing, rather
duke@435 773 // than storing it, yields the correct frame alignment for the callee)
never@739 774 __ push(rax);
duke@435 775
duke@435 776 // Put saved SP in another register
duke@435 777 const Register saved_sp = rax;
never@739 778 __ movptr(saved_sp, rdi);
duke@435 779
duke@435 780
duke@435 781 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 782 // Pre-load the register-jump target early, to schedule it better.
never@739 783 __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 784
duke@435 785 // Now generate the shuffle code. Pick up all register args and move the
duke@435 786 // rest through the floating point stack top.
duke@435 787 for (int i = 0; i < total_args_passed; i++) {
duke@435 788 if (sig_bt[i] == T_VOID) {
duke@435 789 // Longs and doubles are passed in native word order, but misaligned
duke@435 790 // in the 32-bit build.
duke@435 791 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 792 continue;
duke@435 793 }
duke@435 794
duke@435 795 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 796
duke@435 797 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 798 "scrambled load targets?");
duke@435 799 // Load in argument order going down.
duke@435 800 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 801 // Point to interpreter value (vs. tag)
duke@435 802 int next_off = ld_off - Interpreter::stackElementSize();
duke@435 803 //
duke@435 804 //
duke@435 805 //
duke@435 806 VMReg r_1 = regs[i].first();
duke@435 807 VMReg r_2 = regs[i].second();
duke@435 808 if (!r_1->is_valid()) {
duke@435 809 assert(!r_2->is_valid(), "");
duke@435 810 continue;
duke@435 811 }
duke@435 812 if (r_1->is_stack()) {
duke@435 813 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 814 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 815
duke@435 816 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 817 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 818 // we be generated.
duke@435 819 if (!r_2->is_valid()) {
duke@435 820 // __ fld_s(Address(saved_sp, ld_off));
duke@435 821 // __ fstp_s(Address(rsp, st_off));
duke@435 822 __ movl(rsi, Address(saved_sp, ld_off));
never@739 823 __ movptr(Address(rsp, st_off), rsi);
duke@435 824 } else {
duke@435 825 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 826 // are accessed as negative so LSW is at LOW address
duke@435 827
duke@435 828 // ld_off is MSW so get LSW
duke@435 829 // st_off is LSW (i.e. reg.first())
duke@435 830 // __ fld_d(Address(saved_sp, next_off));
duke@435 831 // __ fstp_d(Address(rsp, st_off));
never@739 832 //
never@739 833 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 834 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 835 // So we must adjust where to pick up the data to match the interpreter.
never@739 836 //
never@739 837 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 838 // are accessed as negative so LSW is at LOW address
never@739 839
never@739 840 // ld_off is MSW so get LSW
never@739 841 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 842 next_off : ld_off;
never@739 843 __ movptr(rsi, Address(saved_sp, offset));
never@739 844 __ movptr(Address(rsp, st_off), rsi);
never@739 845 #ifndef _LP64
never@739 846 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 847 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 848 #endif // _LP64
duke@435 849 }
duke@435 850 } else if (r_1->is_Register()) { // Register argument
duke@435 851 Register r = r_1->as_Register();
duke@435 852 assert(r != rax, "must be different");
duke@435 853 if (r_2->is_valid()) {
never@739 854 //
never@739 855 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 856 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 857 // So we must adjust where to pick up the data to match the interpreter.
never@739 858
never@739 859 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 860 next_off : ld_off;
never@739 861
never@739 862 // this can be a misaligned move
never@739 863 __ movptr(r, Address(saved_sp, offset));
never@739 864 #ifndef _LP64
duke@435 865 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 866 // Remember r_1 is low address (and LSB on x86)
duke@435 867 // So r_2 gets loaded from high address regardless of the platform
never@739 868 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 869 #endif // _LP64
duke@435 870 } else {
duke@435 871 __ movl(r, Address(saved_sp, ld_off));
duke@435 872 }
duke@435 873 } else {
duke@435 874 assert(r_1->is_XMMRegister(), "");
duke@435 875 if (!r_2->is_valid()) {
duke@435 876 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 877 } else {
duke@435 878 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 879 }
duke@435 880 }
duke@435 881 }
duke@435 882
duke@435 883 // 6243940 We might end up in handle_wrong_method if
duke@435 884 // the callee is deoptimized as we race thru here. If that
duke@435 885 // happens we don't want to take a safepoint because the
duke@435 886 // caller frame will look interpreted and arguments are now
duke@435 887 // "compiled" so it is much better to make this transition
duke@435 888 // invisible to the stack walking code. Unfortunately if
duke@435 889 // we try and find the callee by normal means a safepoint
duke@435 890 // is possible. So we stash the desired callee in the thread
duke@435 891 // and the vm will find there should this case occur.
duke@435 892
duke@435 893 __ get_thread(rax);
never@739 894 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 895
duke@435 896 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 897 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 898 // resolve stubs return the result (the method) in rax,.
duke@435 899 // I'd love to fix this.
never@739 900 __ mov(rax, rbx);
duke@435 901
duke@435 902 __ jmp(rdi);
duke@435 903 }
duke@435 904
duke@435 905 // ---------------------------------------------------------------
duke@435 906 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 907 int total_args_passed,
duke@435 908 int comp_args_on_stack,
duke@435 909 const BasicType *sig_bt,
duke@435 910 const VMRegPair *regs) {
duke@435 911 address i2c_entry = __ pc();
duke@435 912
duke@435 913 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 914
duke@435 915 // -------------------------------------------------------------------------
duke@435 916 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 917 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 918 // need to be unpacked into the interpreter layout. This will almost always
duke@435 919 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 920 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 921 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 922 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 923
duke@435 924 address c2i_unverified_entry = __ pc();
duke@435 925 Label skip_fixup;
duke@435 926
duke@435 927 Register holder = rax;
duke@435 928 Register receiver = rcx;
duke@435 929 Register temp = rbx;
duke@435 930
duke@435 931 {
duke@435 932
duke@435 933 Label missed;
duke@435 934
duke@435 935 __ verify_oop(holder);
never@739 936 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 937 __ verify_oop(temp);
duke@435 938
never@739 939 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 940 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 941 __ jcc(Assembler::notEqual, missed);
duke@435 942 // Method might have been compiled since the call site was patched to
duke@435 943 // interpreted if that is the case treat it as a miss so we can get
duke@435 944 // the call site corrected.
never@739 945 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 946 __ jcc(Assembler::equal, skip_fixup);
duke@435 947
duke@435 948 __ bind(missed);
duke@435 949 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 950 }
duke@435 951
duke@435 952 address c2i_entry = __ pc();
duke@435 953
duke@435 954 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 955
duke@435 956 __ flush();
duke@435 957 return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 958 }
duke@435 959
duke@435 960 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 961 VMRegPair *regs,
duke@435 962 int total_args_passed) {
duke@435 963 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 964 // the arguments NOT counting out_preserve_stack_slots.
duke@435 965
duke@435 966 uint stack = 0; // All arguments on stack
duke@435 967
duke@435 968 for( int i = 0; i < total_args_passed; i++) {
duke@435 969 // From the type and the argument number (count) compute the location
duke@435 970 switch( sig_bt[i] ) {
duke@435 971 case T_BOOLEAN:
duke@435 972 case T_CHAR:
duke@435 973 case T_FLOAT:
duke@435 974 case T_BYTE:
duke@435 975 case T_SHORT:
duke@435 976 case T_INT:
duke@435 977 case T_OBJECT:
duke@435 978 case T_ARRAY:
duke@435 979 case T_ADDRESS:
duke@435 980 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 981 break;
duke@435 982 case T_LONG:
duke@435 983 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 984 // Since C arguments do not get reversed, the ordering for
duke@435 985 // doubles on the stack must be opposite the Java convention
duke@435 986 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 987 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 988 stack += 2;
duke@435 989 break;
duke@435 990 case T_VOID: regs[i].set_bad(); break;
duke@435 991 default:
duke@435 992 ShouldNotReachHere();
duke@435 993 break;
duke@435 994 }
duke@435 995 }
duke@435 996 return stack;
duke@435 997 }
duke@435 998
duke@435 999 // A simple move of integer like type
duke@435 1000 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1001 if (src.first()->is_stack()) {
duke@435 1002 if (dst.first()->is_stack()) {
duke@435 1003 // stack to stack
duke@435 1004 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1005 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 1006 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1007 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1008 } else {
duke@435 1009 // stack to reg
never@739 1010 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1011 }
duke@435 1012 } else if (dst.first()->is_stack()) {
duke@435 1013 // reg to stack
never@739 1014 // no need to sign extend on 64bit
never@739 1015 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1016 } else {
never@739 1017 if (dst.first() != src.first()) {
never@739 1018 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 1019 }
duke@435 1020 }
duke@435 1021 }
duke@435 1022
duke@435 1023 // An oop arg. Must pass a handle not the oop itself
duke@435 1024 static void object_move(MacroAssembler* masm,
duke@435 1025 OopMap* map,
duke@435 1026 int oop_handle_offset,
duke@435 1027 int framesize_in_slots,
duke@435 1028 VMRegPair src,
duke@435 1029 VMRegPair dst,
duke@435 1030 bool is_receiver,
duke@435 1031 int* receiver_offset) {
duke@435 1032
duke@435 1033 // Because of the calling conventions we know that src can be a
duke@435 1034 // register or a stack location. dst can only be a stack location.
duke@435 1035
duke@435 1036 assert(dst.first()->is_stack(), "must be stack");
duke@435 1037 // must pass a handle. First figure out the location we use as a handle
duke@435 1038
duke@435 1039 if (src.first()->is_stack()) {
duke@435 1040 // Oop is already on the stack as an argument
duke@435 1041 Register rHandle = rax;
duke@435 1042 Label nil;
never@739 1043 __ xorptr(rHandle, rHandle);
never@739 1044 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 1045 __ jcc(Assembler::equal, nil);
never@739 1046 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1047 __ bind(nil);
never@739 1048 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1049
duke@435 1050 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1051 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1052 if (is_receiver) {
duke@435 1053 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1054 }
duke@435 1055 } else {
duke@435 1056 // Oop is in an a register we must store it to the space we reserve
duke@435 1057 // on the stack for oop_handles
duke@435 1058 const Register rOop = src.first()->as_Register();
duke@435 1059 const Register rHandle = rax;
duke@435 1060 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1061 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1062 Label skip;
never@739 1063 __ movptr(Address(rsp, offset), rOop);
duke@435 1064 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 1065 __ xorptr(rHandle, rHandle);
never@739 1066 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 1067 __ jcc(Assembler::equal, skip);
never@739 1068 __ lea(rHandle, Address(rsp, offset));
duke@435 1069 __ bind(skip);
duke@435 1070 // Store the handle parameter
never@739 1071 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1072 if (is_receiver) {
duke@435 1073 *receiver_offset = offset;
duke@435 1074 }
duke@435 1075 }
duke@435 1076 }
duke@435 1077
duke@435 1078 // A float arg may have to do float reg int reg conversion
duke@435 1079 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1080 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1081
duke@435 1082 // Because of the calling convention we know that src is either a stack location
duke@435 1083 // or an xmm register. dst can only be a stack location.
duke@435 1084
duke@435 1085 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1086
duke@435 1087 if (src.first()->is_stack()) {
duke@435 1088 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1089 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1090 } else {
duke@435 1091 // reg to stack
duke@435 1092 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1093 }
duke@435 1094 }
duke@435 1095
duke@435 1096 // A long move
duke@435 1097 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1098
duke@435 1099 // The only legal possibility for a long_move VMRegPair is:
duke@435 1100 // 1: two stack slots (possibly unaligned)
duke@435 1101 // as neither the java or C calling convention will use registers
duke@435 1102 // for longs.
duke@435 1103
duke@435 1104 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1105 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1106 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1107 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1108 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1109 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1110 } else {
duke@435 1111 ShouldNotReachHere();
duke@435 1112 }
duke@435 1113 }
duke@435 1114
duke@435 1115 // A double move
duke@435 1116 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1117
duke@435 1118 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1119 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1120
duke@435 1121 // Because of the calling convention we know that src is either
duke@435 1122 // 1: a single physical register (xmm registers only)
duke@435 1123 // 2: two stack slots (possibly unaligned)
duke@435 1124 // dst can only be a pair of stack slots.
duke@435 1125
duke@435 1126 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1127
duke@435 1128 if (src.first()->is_stack()) {
duke@435 1129 // source is all stack
never@739 1130 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1131 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1132 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1133 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1134 } else {
duke@435 1135 // reg to stack
duke@435 1136 // No worries about stack alignment
duke@435 1137 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1138 }
duke@435 1139 }
duke@435 1140
duke@435 1141
duke@435 1142 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1143 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1144 // which by this time is free to use
duke@435 1145 switch (ret_type) {
duke@435 1146 case T_FLOAT:
duke@435 1147 __ fstp_s(Address(rbp, -wordSize));
duke@435 1148 break;
duke@435 1149 case T_DOUBLE:
duke@435 1150 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1151 break;
duke@435 1152 case T_VOID: break;
duke@435 1153 case T_LONG:
never@739 1154 __ movptr(Address(rbp, -wordSize), rax);
never@739 1155 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1156 break;
duke@435 1157 default: {
never@739 1158 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1159 }
duke@435 1160 }
duke@435 1161 }
duke@435 1162
duke@435 1163 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1164 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1165 // which by this time is free to use
duke@435 1166 switch (ret_type) {
duke@435 1167 case T_FLOAT:
duke@435 1168 __ fld_s(Address(rbp, -wordSize));
duke@435 1169 break;
duke@435 1170 case T_DOUBLE:
duke@435 1171 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1172 break;
duke@435 1173 case T_LONG:
never@739 1174 __ movptr(rax, Address(rbp, -wordSize));
never@739 1175 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1176 break;
duke@435 1177 case T_VOID: break;
duke@435 1178 default: {
never@739 1179 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1180 }
duke@435 1181 }
duke@435 1182 }
duke@435 1183
duke@435 1184 // ---------------------------------------------------------------------------
duke@435 1185 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1186 // in the Java compiled code convention, marshals them to the native
duke@435 1187 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1188 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1189 // returns.
duke@435 1190 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1191 methodHandle method,
duke@435 1192 int total_in_args,
duke@435 1193 int comp_args_on_stack,
duke@435 1194 BasicType *in_sig_bt,
duke@435 1195 VMRegPair *in_regs,
duke@435 1196 BasicType ret_type) {
duke@435 1197
duke@435 1198 // An OopMap for lock (and class if static)
duke@435 1199 OopMapSet *oop_maps = new OopMapSet();
duke@435 1200
duke@435 1201 // We have received a description of where all the java arg are located
duke@435 1202 // on entry to the wrapper. We need to convert these args to where
duke@435 1203 // the jni function will expect them. To figure out where they go
duke@435 1204 // we convert the java signature to a C signature by inserting
duke@435 1205 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1206
duke@435 1207 int total_c_args = total_in_args + 1;
duke@435 1208 if (method->is_static()) {
duke@435 1209 total_c_args++;
duke@435 1210 }
duke@435 1211
duke@435 1212 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1213 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1214
duke@435 1215 int argc = 0;
duke@435 1216 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1217 if (method->is_static()) {
duke@435 1218 out_sig_bt[argc++] = T_OBJECT;
duke@435 1219 }
duke@435 1220
duke@435 1221 int i;
duke@435 1222 for (i = 0; i < total_in_args ; i++ ) {
duke@435 1223 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1224 }
duke@435 1225
duke@435 1226
duke@435 1227 // Now figure out where the args must be stored and how much stack space
duke@435 1228 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1229 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1230 //
duke@435 1231 int out_arg_slots;
duke@435 1232 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1233
duke@435 1234 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1235 // registers a max of 2 on x86.
duke@435 1236
duke@435 1237 // Calculate the total number of stack slots we will need.
duke@435 1238
duke@435 1239 // First count the abi requirement plus all of the outgoing args
duke@435 1240 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1241
duke@435 1242 // Now the space for the inbound oop handle area
duke@435 1243
duke@435 1244 int oop_handle_offset = stack_slots;
duke@435 1245 stack_slots += 2*VMRegImpl::slots_per_word;
duke@435 1246
duke@435 1247 // Now any space we need for handlizing a klass if static method
duke@435 1248
duke@435 1249 int klass_slot_offset = 0;
duke@435 1250 int klass_offset = -1;
duke@435 1251 int lock_slot_offset = 0;
duke@435 1252 bool is_static = false;
duke@435 1253 int oop_temp_slot_offset = 0;
duke@435 1254
duke@435 1255 if (method->is_static()) {
duke@435 1256 klass_slot_offset = stack_slots;
duke@435 1257 stack_slots += VMRegImpl::slots_per_word;
duke@435 1258 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1259 is_static = true;
duke@435 1260 }
duke@435 1261
duke@435 1262 // Plus a lock if needed
duke@435 1263
duke@435 1264 if (method->is_synchronized()) {
duke@435 1265 lock_slot_offset = stack_slots;
duke@435 1266 stack_slots += VMRegImpl::slots_per_word;
duke@435 1267 }
duke@435 1268
duke@435 1269 // Now a place (+2) to save return values or temp during shuffling
duke@435 1270 // + 2 for return address (which we own) and saved rbp,
duke@435 1271 stack_slots += 4;
duke@435 1272
duke@435 1273 // Ok The space we have allocated will look like:
duke@435 1274 //
duke@435 1275 //
duke@435 1276 // FP-> | |
duke@435 1277 // |---------------------|
duke@435 1278 // | 2 slots for moves |
duke@435 1279 // |---------------------|
duke@435 1280 // | lock box (if sync) |
duke@435 1281 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1282 // | klass (if static) |
duke@435 1283 // |---------------------| <- klass_slot_offset
duke@435 1284 // | oopHandle area |
duke@435 1285 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1286 // | outbound memory |
duke@435 1287 // | based arguments |
duke@435 1288 // | |
duke@435 1289 // |---------------------|
duke@435 1290 // | |
duke@435 1291 // SP-> | out_preserved_slots |
duke@435 1292 //
duke@435 1293 //
duke@435 1294 // ****************************************************************************
duke@435 1295 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1296 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1297 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1298 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1299 // ****************************************************************************
duke@435 1300
duke@435 1301
duke@435 1302 // Now compute actual number of stack words we need rounding to make
duke@435 1303 // stack properly aligned.
xlu@959 1304 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1305
duke@435 1306 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1307
duke@435 1308 intptr_t start = (intptr_t)__ pc();
duke@435 1309
duke@435 1310 // First thing make an ic check to see if we should even be here
duke@435 1311
duke@435 1312 // We are free to use all registers as temps without saving them and
duke@435 1313 // restoring them except rbp,. rbp, is the only callee save register
duke@435 1314 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1315
duke@435 1316
duke@435 1317 const Register ic_reg = rax;
duke@435 1318 const Register receiver = rcx;
duke@435 1319 Label hit;
duke@435 1320 Label exception_pending;
duke@435 1321
duke@435 1322
duke@435 1323 __ verify_oop(receiver);
never@739 1324 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1325 __ jcc(Assembler::equal, hit);
duke@435 1326
duke@435 1327 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1328
duke@435 1329 // verified entry must be aligned for code patching.
duke@435 1330 // and the first 5 bytes must be in the same cache line
duke@435 1331 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1332 __ align(8);
duke@435 1333
duke@435 1334 __ bind(hit);
duke@435 1335
duke@435 1336 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1337
duke@435 1338 #ifdef COMPILER1
duke@435 1339 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1340 // Object.hashCode can pull the hashCode from the header word
duke@435 1341 // instead of doing a full VM transition once it's been computed.
duke@435 1342 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1343 // this optimization at the call site without a lot of work.
duke@435 1344 Label slowCase;
duke@435 1345 Register receiver = rcx;
duke@435 1346 Register result = rax;
never@739 1347 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1348
duke@435 1349 // check if locked
never@739 1350 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1351 __ jcc (Assembler::zero, slowCase);
duke@435 1352
duke@435 1353 if (UseBiasedLocking) {
duke@435 1354 // Check if biased and fall through to runtime if so
never@739 1355 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1356 __ jcc (Assembler::notZero, slowCase);
duke@435 1357 }
duke@435 1358
duke@435 1359 // get hash
never@739 1360 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1361 // test if hashCode exists
duke@435 1362 __ jcc (Assembler::zero, slowCase);
never@739 1363 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1364 __ ret(0);
duke@435 1365 __ bind (slowCase);
duke@435 1366 }
duke@435 1367 #endif // COMPILER1
duke@435 1368
duke@435 1369 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1370 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1371 // instruction fits that requirement.
duke@435 1372
duke@435 1373 // Generate stack overflow check
duke@435 1374
duke@435 1375 if (UseStackBanging) {
duke@435 1376 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1377 } else {
duke@435 1378 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1379 __ fat_nop();
duke@435 1380 }
duke@435 1381
duke@435 1382 // Generate a new frame for the wrapper.
duke@435 1383 __ enter();
duke@435 1384 // -2 because return address is already present and so is saved rbp,
never@739 1385 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1386
duke@435 1387 // Frame is now completed as far a size and linkage.
duke@435 1388
duke@435 1389 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1390
duke@435 1391 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1392 // after the native call because on windows Java Natives will pop
duke@435 1393 // the arguments and it is painful to do rsp relative addressing
duke@435 1394 // in a platform independent way. So after the call we switch to
duke@435 1395 // rbp, relative addressing.
duke@435 1396
duke@435 1397 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1398
duke@435 1399 #ifdef COMPILER2
duke@435 1400 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1401 if (UseSSE >= 2) {
duke@435 1402 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1403 } else {
duke@435 1404 __ empty_FPU_stack();
duke@435 1405 }
duke@435 1406 #endif /* COMPILER2 */
duke@435 1407
duke@435 1408 // Compute the rbp, offset for any slots used after the jni call
duke@435 1409
duke@435 1410 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1411 int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1412
duke@435 1413 // We use rdi as a thread pointer because it is callee save and
duke@435 1414 // if we load it once it is usable thru the entire wrapper
duke@435 1415 const Register thread = rdi;
duke@435 1416
duke@435 1417 // We use rsi as the oop handle for the receiver/klass
duke@435 1418 // It is callee save so it survives the call to native
duke@435 1419
duke@435 1420 const Register oop_handle_reg = rsi;
duke@435 1421
duke@435 1422 __ get_thread(thread);
duke@435 1423
duke@435 1424
duke@435 1425 //
duke@435 1426 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1427 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1428 // captured the oops from our caller and have a valid oopMap for
duke@435 1429 // them.
duke@435 1430
duke@435 1431 // -----------------
duke@435 1432 // The Grand Shuffle
duke@435 1433 //
duke@435 1434 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1435 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1436 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1437 // parms though amd does). Since the native abi doesn't use register args
duke@435 1438 // and the java conventions does we don't have to worry about collisions.
duke@435 1439 // All of our moved are reg->stack or stack->stack.
duke@435 1440 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1441 // last moment. The shuffle is described by the two calling convention
duke@435 1442 // vectors we have in our possession. We simply walk the java vector to
duke@435 1443 // get the source locations and the c vector to get the destinations.
duke@435 1444
duke@435 1445 int c_arg = method->is_static() ? 2 : 1 ;
duke@435 1446
duke@435 1447 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1448 int receiver_offset = -1;
duke@435 1449
duke@435 1450 // This is a trick. We double the stack slots so we can claim
duke@435 1451 // the oops in the caller's frame. Since we are sure to have
duke@435 1452 // more args than the caller doubling is enough to make
duke@435 1453 // sure we can capture all the incoming oop args from the
duke@435 1454 // caller.
duke@435 1455 //
duke@435 1456 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1457
duke@435 1458 // Mark location of rbp,
duke@435 1459 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1460
duke@435 1461 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1462 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1463 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1464
duke@435 1465 for (i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1466 switch (in_sig_bt[i]) {
duke@435 1467 case T_ARRAY:
duke@435 1468 case T_OBJECT:
duke@435 1469 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1470 ((i == 0) && (!is_static)),
duke@435 1471 &receiver_offset);
duke@435 1472 break;
duke@435 1473 case T_VOID:
duke@435 1474 break;
duke@435 1475
duke@435 1476 case T_FLOAT:
duke@435 1477 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1478 break;
duke@435 1479
duke@435 1480 case T_DOUBLE:
duke@435 1481 assert( i + 1 < total_in_args &&
duke@435 1482 in_sig_bt[i + 1] == T_VOID &&
duke@435 1483 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1484 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1485 break;
duke@435 1486
duke@435 1487 case T_LONG :
duke@435 1488 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1489 break;
duke@435 1490
duke@435 1491 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1492
duke@435 1493 default:
duke@435 1494 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1495 }
duke@435 1496 }
duke@435 1497
duke@435 1498 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1499 // the normal JNI call code.
duke@435 1500 if (method->is_static()) {
duke@435 1501
duke@435 1502 // load opp into a register
duke@435 1503 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1504
duke@435 1505 // Now handlize the static class mirror it's known not-null.
never@739 1506 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1507 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1508
duke@435 1509 // Now get the handle
never@739 1510 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1511 // store the klass handle as second argument
never@739 1512 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1513 }
duke@435 1514
duke@435 1515 // Change state to native (we save the return address in the thread, since it might not
duke@435 1516 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1517 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1518 // We use the same pc/oopMap repeatedly when we call out
duke@435 1519
duke@435 1520 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1521 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1522
duke@435 1523 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1524
duke@435 1525
duke@435 1526 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1527 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1528
duke@435 1529 {
duke@435 1530 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1531 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1532 __ call_VM_leaf(
duke@435 1533 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1534 thread, rax);
duke@435 1535 }
duke@435 1536
duke@435 1537
duke@435 1538 // These are register definitions we need for locking/unlocking
duke@435 1539 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1540 const Register obj_reg = rcx; // Will contain the oop
duke@435 1541 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1542
duke@435 1543 Label slow_path_lock;
duke@435 1544 Label lock_done;
duke@435 1545
duke@435 1546 // Lock a synchronized method
duke@435 1547 if (method->is_synchronized()) {
duke@435 1548
duke@435 1549
duke@435 1550 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1551
duke@435 1552 // Get the handle (the 2nd argument)
never@739 1553 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1554
duke@435 1555 // Get address of the box
duke@435 1556
never@739 1557 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1558
duke@435 1559 // Load the oop from the handle
never@739 1560 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1561
duke@435 1562 if (UseBiasedLocking) {
duke@435 1563 // Note that oop_handle_reg is trashed during this call
duke@435 1564 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1565 }
duke@435 1566
duke@435 1567 // Load immediate 1 into swap_reg %rax,
never@739 1568 __ movptr(swap_reg, 1);
duke@435 1569
duke@435 1570 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1571 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1572
duke@435 1573 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1574 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1575
duke@435 1576 if (os::is_MP()) {
duke@435 1577 __ lock();
duke@435 1578 }
duke@435 1579
duke@435 1580 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1581 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1582 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1583 __ jcc(Assembler::equal, lock_done);
duke@435 1584
duke@435 1585 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1586 // 1) (mark & 3) == 0, and
duke@435 1587 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1588 // These 3 tests can be done by evaluating the following
duke@435 1589 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1590 // assuming both stack pointer and pagesize have their
duke@435 1591 // least significant 2 bits clear.
duke@435 1592 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1593
never@739 1594 __ subptr(swap_reg, rsp);
never@739 1595 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1596
duke@435 1597 // Save the test result, for recursive case, the result is zero
never@739 1598 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1599 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1600 // Slow path will re-enter here
duke@435 1601 __ bind(lock_done);
duke@435 1602
duke@435 1603 if (UseBiasedLocking) {
duke@435 1604 // Re-fetch oop_handle_reg as we trashed it above
never@739 1605 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1606 }
duke@435 1607 }
duke@435 1608
duke@435 1609
duke@435 1610 // Finally just about ready to make the JNI call
duke@435 1611
duke@435 1612
duke@435 1613 // get JNIEnv* which is first argument to native
duke@435 1614
never@739 1615 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@739 1616 __ movptr(Address(rsp, 0), rdx);
duke@435 1617
duke@435 1618 // Now set thread in native
duke@435 1619 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1620
duke@435 1621 __ call(RuntimeAddress(method->native_function()));
duke@435 1622
duke@435 1623 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1624 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1625 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1626 // relative addressing.
duke@435 1627
duke@435 1628 // Unpack native results.
duke@435 1629 switch (ret_type) {
duke@435 1630 case T_BOOLEAN: __ c2bool(rax); break;
never@739 1631 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 1632 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1633 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1634 case T_INT : /* nothing to do */ break;
duke@435 1635 case T_DOUBLE :
duke@435 1636 case T_FLOAT :
duke@435 1637 // Result is in st0 we'll save as needed
duke@435 1638 break;
duke@435 1639 case T_ARRAY: // Really a handle
duke@435 1640 case T_OBJECT: // Really a handle
duke@435 1641 break; // can't de-handlize until after safepoint check
duke@435 1642 case T_VOID: break;
duke@435 1643 case T_LONG: break;
duke@435 1644 default : ShouldNotReachHere();
duke@435 1645 }
duke@435 1646
duke@435 1647 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1648 // This additional state is necessary because reading and testing the synchronization
duke@435 1649 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1650 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1651 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1652 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1653 // didn't see any synchronization is progress, and escapes.
duke@435 1654 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1655
duke@435 1656 if(os::is_MP()) {
duke@435 1657 if (UseMembar) {
never@739 1658 // Force this write out before the read below
never@739 1659 __ membar(Assembler::Membar_mask_bits(
never@739 1660 Assembler::LoadLoad | Assembler::LoadStore |
never@739 1661 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1662 } else {
duke@435 1663 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1664 // We use the current thread pointer to calculate a thread specific
duke@435 1665 // offset to write to within the page. This minimizes bus traffic
duke@435 1666 // due to cache line collision.
duke@435 1667 __ serialize_memory(thread, rcx);
duke@435 1668 }
duke@435 1669 }
duke@435 1670
duke@435 1671 if (AlwaysRestoreFPU) {
duke@435 1672 // Make sure the control word is correct.
duke@435 1673 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1674 }
duke@435 1675
duke@435 1676 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1677 { Label Continue;
duke@435 1678
duke@435 1679 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1680 SafepointSynchronize::_not_synchronized);
duke@435 1681
duke@435 1682 Label L;
duke@435 1683 __ jcc(Assembler::notEqual, L);
duke@435 1684 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1685 __ jcc(Assembler::equal, Continue);
duke@435 1686 __ bind(L);
duke@435 1687
duke@435 1688 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1689 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1690 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1691 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1692 // by hand.
duke@435 1693 //
duke@435 1694 save_native_result(masm, ret_type, stack_slots);
never@739 1695 __ push(thread);
duke@435 1696 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
duke@435 1697 JavaThread::check_special_condition_for_native_trans)));
duke@435 1698 __ increment(rsp, wordSize);
duke@435 1699 // Restore any method result value
duke@435 1700 restore_native_result(masm, ret_type, stack_slots);
duke@435 1701
duke@435 1702 __ bind(Continue);
duke@435 1703 }
duke@435 1704
duke@435 1705 // change thread state
duke@435 1706 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1707
duke@435 1708 Label reguard;
duke@435 1709 Label reguard_done;
duke@435 1710 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1711 __ jcc(Assembler::equal, reguard);
duke@435 1712
duke@435 1713 // slow path reguard re-enters here
duke@435 1714 __ bind(reguard_done);
duke@435 1715
duke@435 1716 // Handle possible exception (will unlock if necessary)
duke@435 1717
duke@435 1718 // native result if any is live
duke@435 1719
duke@435 1720 // Unlock
duke@435 1721 Label slow_path_unlock;
duke@435 1722 Label unlock_done;
duke@435 1723 if (method->is_synchronized()) {
duke@435 1724
duke@435 1725 Label done;
duke@435 1726
duke@435 1727 // Get locked oop from the handle we passed to jni
never@739 1728 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1729
duke@435 1730 if (UseBiasedLocking) {
duke@435 1731 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1732 }
duke@435 1733
duke@435 1734 // Simple recursive lock?
duke@435 1735
never@739 1736 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 1737 __ jcc(Assembler::equal, done);
duke@435 1738
duke@435 1739 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1740 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1741 save_native_result(masm, ret_type, stack_slots);
duke@435 1742 }
duke@435 1743
duke@435 1744 // get old displaced header
never@739 1745 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1746
duke@435 1747 // get address of the stack lock
never@739 1748 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1749
duke@435 1750 // Atomic swap old header if oop still contains the stack lock
duke@435 1751 if (os::is_MP()) {
duke@435 1752 __ lock();
duke@435 1753 }
duke@435 1754
duke@435 1755 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1756 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1757 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 1758 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1759
duke@435 1760 // slow path re-enters here
duke@435 1761 __ bind(unlock_done);
duke@435 1762 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1763 restore_native_result(masm, ret_type, stack_slots);
duke@435 1764 }
duke@435 1765
duke@435 1766 __ bind(done);
duke@435 1767
duke@435 1768 }
duke@435 1769
duke@435 1770 {
duke@435 1771 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1772 // Tell dtrace about this method exit
duke@435 1773 save_native_result(masm, ret_type, stack_slots);
duke@435 1774 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1775 __ call_VM_leaf(
duke@435 1776 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1777 thread, rax);
duke@435 1778 restore_native_result(masm, ret_type, stack_slots);
duke@435 1779 }
duke@435 1780
duke@435 1781 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 1782
duke@435 1783 __ reset_last_Java_frame(thread, false, true);
duke@435 1784
duke@435 1785 // Unpack oop result
duke@435 1786 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1787 Label L;
never@739 1788 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 1789 __ jcc(Assembler::equal, L);
never@739 1790 __ movptr(rax, Address(rax, 0));
duke@435 1791 __ bind(L);
duke@435 1792 __ verify_oop(rax);
duke@435 1793 }
duke@435 1794
duke@435 1795 // reset handle block
never@739 1796 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@739 1797
xlu@947 1798 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
duke@435 1799
duke@435 1800 // Any exception pending?
never@739 1801 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1802 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1803
duke@435 1804
duke@435 1805 // no exception, we're almost done
duke@435 1806
duke@435 1807 // check that only result value is on FPU stack
duke@435 1808 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 1809
duke@435 1810 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 1811 if (ret_type == T_FLOAT) {
duke@435 1812 if (UseSSE >= 1) {
duke@435 1813 // Pop st0 and store as float and reload into xmm register
duke@435 1814 __ fstp_s(Address(rbp, -4));
duke@435 1815 __ movflt(xmm0, Address(rbp, -4));
duke@435 1816 }
duke@435 1817 } else if (ret_type == T_DOUBLE) {
duke@435 1818 if (UseSSE >= 2) {
duke@435 1819 // Pop st0 and store as double and reload into xmm register
duke@435 1820 __ fstp_d(Address(rbp, -8));
duke@435 1821 __ movdbl(xmm0, Address(rbp, -8));
duke@435 1822 }
duke@435 1823 }
duke@435 1824
duke@435 1825 // Return
duke@435 1826
duke@435 1827 __ leave();
duke@435 1828 __ ret(0);
duke@435 1829
duke@435 1830 // Unexpected paths are out of line and go here
duke@435 1831
duke@435 1832 // Slow path locking & unlocking
duke@435 1833 if (method->is_synchronized()) {
duke@435 1834
duke@435 1835 // BEGIN Slow path lock
duke@435 1836
duke@435 1837 __ bind(slow_path_lock);
duke@435 1838
duke@435 1839 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1840 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 1841 __ push(thread);
never@739 1842 __ push(lock_reg);
never@739 1843 __ push(obj_reg);
duke@435 1844 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 1845 __ addptr(rsp, 3*wordSize);
duke@435 1846
duke@435 1847 #ifdef ASSERT
duke@435 1848 { Label L;
never@739 1849 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1850 __ jcc(Assembler::equal, L);
duke@435 1851 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1852 __ bind(L);
duke@435 1853 }
duke@435 1854 #endif
duke@435 1855 __ jmp(lock_done);
duke@435 1856
duke@435 1857 // END Slow path lock
duke@435 1858
duke@435 1859 // BEGIN Slow path unlock
duke@435 1860 __ bind(slow_path_unlock);
duke@435 1861
duke@435 1862 // Slow path unlock
duke@435 1863
duke@435 1864 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1865 save_native_result(masm, ret_type, stack_slots);
duke@435 1866 }
duke@435 1867 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1868
never@739 1869 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 1870 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1871
duke@435 1872
duke@435 1873 // should be a peal
duke@435 1874 // +wordSize because of the push above
never@739 1875 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 1876 __ push(rax);
never@739 1877
never@739 1878 __ push(obj_reg);
duke@435 1879 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 1880 __ addptr(rsp, 2*wordSize);
duke@435 1881 #ifdef ASSERT
duke@435 1882 {
duke@435 1883 Label L;
never@739 1884 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1885 __ jcc(Assembler::equal, L);
duke@435 1886 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1887 __ bind(L);
duke@435 1888 }
duke@435 1889 #endif /* ASSERT */
duke@435 1890
never@739 1891 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1892
duke@435 1893 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1894 restore_native_result(masm, ret_type, stack_slots);
duke@435 1895 }
duke@435 1896 __ jmp(unlock_done);
duke@435 1897 // END Slow path unlock
duke@435 1898
duke@435 1899 }
duke@435 1900
duke@435 1901 // SLOW PATH Reguard the stack if needed
duke@435 1902
duke@435 1903 __ bind(reguard);
duke@435 1904 save_native_result(masm, ret_type, stack_slots);
duke@435 1905 {
duke@435 1906 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 1907 }
duke@435 1908 restore_native_result(masm, ret_type, stack_slots);
duke@435 1909 __ jmp(reguard_done);
duke@435 1910
duke@435 1911
duke@435 1912 // BEGIN EXCEPTION PROCESSING
duke@435 1913
duke@435 1914 // Forward the exception
duke@435 1915 __ bind(exception_pending);
duke@435 1916
duke@435 1917 // remove possible return value from FPU register stack
duke@435 1918 __ empty_FPU_stack();
duke@435 1919
duke@435 1920 // pop our frame
duke@435 1921 __ leave();
duke@435 1922 // and forward the exception
duke@435 1923 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1924
duke@435 1925 __ flush();
duke@435 1926
duke@435 1927 nmethod *nm = nmethod::new_native_nmethod(method,
duke@435 1928 masm->code(),
duke@435 1929 vep_offset,
duke@435 1930 frame_complete,
duke@435 1931 stack_slots / VMRegImpl::slots_per_word,
duke@435 1932 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1933 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1934 oop_maps);
duke@435 1935 return nm;
duke@435 1936
duke@435 1937 }
duke@435 1938
kamg@551 1939 #ifdef HAVE_DTRACE_H
kamg@551 1940 // ---------------------------------------------------------------------------
kamg@551 1941 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 1942 // in the Java compiled code convention, marshals them to the native
kamg@551 1943 // abi and then leaves nops at the position you would expect to call a native
kamg@551 1944 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 1945 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 1946 // to dtrace.
kamg@551 1947 //
kamg@551 1948 // The probes are only able to take primitive types and java/lang/String as
kamg@551 1949 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 1950 // strings so that from dtrace point of view java strings are converted to C
kamg@551 1951 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 1952 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 1953 // So any java string larger then this is truncated.
kamg@551 1954
kamg@551 1955 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 1956 MacroAssembler *masm, methodHandle method) {
kamg@551 1957
kamg@551 1958 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 1959 // be single threaded in this method.
kamg@551 1960 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 1961
kamg@551 1962 // Fill in the signature array, for the calling-convention call.
kamg@551 1963 int total_args_passed = method->size_of_parameters();
kamg@551 1964
kamg@551 1965 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 1966 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 1967
kamg@551 1968 // The signature we are going to use for the trap that dtrace will see
kamg@551 1969 // java/lang/String is converted. We drop "this" and any other object
kamg@551 1970 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 1971 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 1972 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 1973 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 1974
kamg@551 1975 int i=0;
kamg@551 1976 int total_strings = 0;
kamg@551 1977 int first_arg_to_pass = 0;
kamg@551 1978 int total_c_args = 0;
kamg@551 1979
kamg@551 1980 if( !method->is_static() ) { // Pass in receiver first
kamg@551 1981 in_sig_bt[i++] = T_OBJECT;
kamg@551 1982 first_arg_to_pass = 1;
kamg@551 1983 }
kamg@551 1984
kamg@551 1985 // We need to convert the java args to where a native (non-jni) function
kamg@551 1986 // would expect them. To figure out where they go we convert the java
kamg@551 1987 // signature to a C signature.
kamg@551 1988
kamg@551 1989 SignatureStream ss(method->signature());
kamg@551 1990 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 1991 BasicType bt = ss.type();
kamg@551 1992 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 1993 out_sig_bt[total_c_args++] = bt;
kamg@551 1994 if( bt == T_OBJECT) {
kamg@551 1995 symbolOop s = ss.as_symbol_or_null();
kamg@551 1996 if (s == vmSymbols::java_lang_String()) {
kamg@551 1997 total_strings++;
kamg@551 1998 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 1999 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2000 s == vmSymbols::java_lang_Character() ||
kamg@551 2001 s == vmSymbols::java_lang_Byte() ||
kamg@551 2002 s == vmSymbols::java_lang_Short() ||
kamg@551 2003 s == vmSymbols::java_lang_Integer() ||
kamg@551 2004 s == vmSymbols::java_lang_Float()) {
kamg@551 2005 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2006 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2007 s == vmSymbols::java_lang_Double()) {
kamg@551 2008 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2009 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2010 }
kamg@551 2011 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2012 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2013 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2014 }
kamg@551 2015 }
kamg@551 2016
kamg@551 2017 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2018
kamg@551 2019 // Now get the compiled-Java layout as input arguments
kamg@551 2020 int comp_args_on_stack;
kamg@551 2021 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2022 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2023
kamg@551 2024 // Now figure out where the args must be stored and how much stack space
kamg@551 2025 // they require (neglecting out_preserve_stack_slots).
kamg@551 2026
kamg@551 2027 int out_arg_slots;
kamg@551 2028 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2029
kamg@551 2030 // Calculate the total number of stack slots we will need.
kamg@551 2031
kamg@551 2032 // First count the abi requirement plus all of the outgoing args
kamg@551 2033 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2034
kamg@551 2035 // Now space for the string(s) we must convert
kamg@551 2036
kamg@551 2037 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2038 for (i = 0; i < total_strings ; i++) {
kamg@551 2039 string_locs[i] = stack_slots;
kamg@551 2040 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2041 }
kamg@551 2042
kamg@551 2043 // + 2 for return address (which we own) and saved rbp,
kamg@551 2044
kamg@551 2045 stack_slots += 2;
kamg@551 2046
kamg@551 2047 // Ok The space we have allocated will look like:
kamg@551 2048 //
kamg@551 2049 //
kamg@551 2050 // FP-> | |
kamg@551 2051 // |---------------------|
kamg@551 2052 // | string[n] |
kamg@551 2053 // |---------------------| <- string_locs[n]
kamg@551 2054 // | string[n-1] |
kamg@551 2055 // |---------------------| <- string_locs[n-1]
kamg@551 2056 // | ... |
kamg@551 2057 // | ... |
kamg@551 2058 // |---------------------| <- string_locs[1]
kamg@551 2059 // | string[0] |
kamg@551 2060 // |---------------------| <- string_locs[0]
kamg@551 2061 // | outbound memory |
kamg@551 2062 // | based arguments |
kamg@551 2063 // | |
kamg@551 2064 // |---------------------|
kamg@551 2065 // | |
kamg@551 2066 // SP-> | out_preserved_slots |
kamg@551 2067 //
kamg@551 2068 //
kamg@551 2069
kamg@551 2070 // Now compute actual number of stack words we need rounding to make
kamg@551 2071 // stack properly aligned.
kamg@551 2072 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2073
kamg@551 2074 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2075
kamg@551 2076 intptr_t start = (intptr_t)__ pc();
kamg@551 2077
kamg@551 2078 // First thing make an ic check to see if we should even be here
kamg@551 2079
kamg@551 2080 // We are free to use all registers as temps without saving them and
kamg@551 2081 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2082 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2083
kamg@551 2084 const Register ic_reg = rax;
kamg@551 2085 const Register receiver = rcx;
kamg@551 2086 Label hit;
kamg@551 2087 Label exception_pending;
kamg@551 2088
kamg@551 2089
kamg@551 2090 __ verify_oop(receiver);
kamg@551 2091 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2092 __ jcc(Assembler::equal, hit);
kamg@551 2093
kamg@551 2094 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2095
kamg@551 2096 // verified entry must be aligned for code patching.
kamg@551 2097 // and the first 5 bytes must be in the same cache line
kamg@551 2098 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2099 __ align(8);
kamg@551 2100
kamg@551 2101 __ bind(hit);
kamg@551 2102
kamg@551 2103 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2104
kamg@551 2105
kamg@551 2106 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2107 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2108 // instruction fits that requirement.
kamg@551 2109
kamg@551 2110 // Generate stack overflow check
kamg@551 2111
kamg@551 2112
kamg@551 2113 if (UseStackBanging) {
kamg@551 2114 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2115 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2116 } else {
kamg@551 2117 __ movl(rax, stack_size);
kamg@551 2118 __ bang_stack_size(rax, rbx);
kamg@551 2119 }
kamg@551 2120 } else {
kamg@551 2121 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2122 __ fat_nop();
kamg@551 2123 }
kamg@551 2124
kamg@551 2125 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2126 "valid size for make_non_entrant");
kamg@551 2127
kamg@551 2128 // Generate a new frame for the wrapper.
kamg@551 2129 __ enter();
kamg@551 2130
kamg@551 2131 // -2 because return address is already present and so is saved rbp,
kamg@551 2132 if (stack_size - 2*wordSize != 0) {
kamg@551 2133 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2134 }
kamg@551 2135
kamg@551 2136 // Frame is now completed as far a size and linkage.
kamg@551 2137
kamg@551 2138 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2139
kamg@551 2140 // First thing we do store all the args as if we are doing the call.
kamg@551 2141 // Since the C calling convention is stack based that ensures that
kamg@551 2142 // all the Java register args are stored before we need to convert any
kamg@551 2143 // string we might have.
kamg@551 2144
kamg@551 2145 int sid = 0;
kamg@551 2146 int c_arg, j_arg;
kamg@551 2147 int string_reg = 0;
kamg@551 2148
kamg@551 2149 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2150 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2151
kamg@551 2152 VMRegPair src = in_regs[j_arg];
kamg@551 2153 VMRegPair dst = out_regs[c_arg];
kamg@551 2154 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2155 "stack based abi assumed");
kamg@551 2156
kamg@551 2157 switch (in_sig_bt[j_arg]) {
kamg@551 2158
kamg@551 2159 case T_ARRAY:
kamg@551 2160 case T_OBJECT:
kamg@551 2161 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2162 // Any register based arg for a java string after the first
kamg@551 2163 // will be destroyed by the call to get_utf so we store
kamg@551 2164 // the original value in the location the utf string address
kamg@551 2165 // will eventually be stored.
kamg@551 2166 if (src.first()->is_reg()) {
kamg@551 2167 if (string_reg++ != 0) {
kamg@551 2168 simple_move32(masm, src, dst);
kamg@551 2169 }
kamg@551 2170 }
kamg@551 2171 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2172 // need to unbox a one-word value
kamg@551 2173 Register in_reg = rax;
kamg@551 2174 if ( src.first()->is_reg() ) {
kamg@551 2175 in_reg = src.first()->as_Register();
kamg@551 2176 } else {
kamg@551 2177 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2178 }
kamg@551 2179 Label skipUnbox;
kamg@551 2180 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2181 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2182 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2183 }
kamg@551 2184 __ testl(in_reg, in_reg);
kamg@551 2185 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2186 assert(dst.first()->is_stack() &&
kamg@551 2187 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2188 "value(s) must go into stack slots");
kvn@600 2189
kvn@600 2190 BasicType bt = out_sig_bt[c_arg];
kvn@600 2191 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2192 if ( bt == T_LONG ) {
kamg@551 2193 __ movl(rbx, Address(in_reg,
kamg@551 2194 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2195 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2196 }
kamg@551 2197 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2198 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2199 __ bind(skipUnbox);
kamg@551 2200 } else {
kamg@551 2201 // Convert the arg to NULL
kamg@551 2202 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2203 }
kamg@551 2204 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2205 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2206 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2207 }
kamg@551 2208 break;
kamg@551 2209
kamg@551 2210 case T_VOID:
kamg@551 2211 break;
kamg@551 2212
kamg@551 2213 case T_FLOAT:
kamg@551 2214 float_move(masm, src, dst);
kamg@551 2215 break;
kamg@551 2216
kamg@551 2217 case T_DOUBLE:
kamg@551 2218 assert( j_arg + 1 < total_args_passed &&
kamg@551 2219 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2220 double_move(masm, src, dst);
kamg@551 2221 break;
kamg@551 2222
kamg@551 2223 case T_LONG :
kamg@551 2224 long_move(masm, src, dst);
kamg@551 2225 break;
kamg@551 2226
kamg@551 2227 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2228
kamg@551 2229 default:
kamg@551 2230 simple_move32(masm, src, dst);
kamg@551 2231 }
kamg@551 2232 }
kamg@551 2233
kamg@551 2234 // Now we must convert any string we have to utf8
kamg@551 2235 //
kamg@551 2236
kamg@551 2237 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2238 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2239
kamg@551 2240 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2241
kamg@551 2242 Address utf8_addr = Address(
kamg@551 2243 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2244 __ leal(rax, utf8_addr);
kamg@551 2245
kamg@551 2246 // The first string we find might still be in the original java arg
kamg@551 2247 // register
kamg@551 2248 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2249 Register string_oop;
kamg@551 2250
kamg@551 2251 // This is where the argument will eventually reside
kamg@551 2252 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2253
kamg@551 2254 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2255 string_oop = orig_loc->as_Register();
kamg@551 2256 assert(string_oop != rax, "smashed arg");
kamg@551 2257 } else {
kamg@551 2258
kamg@551 2259 if (orig_loc->is_reg()) {
kamg@551 2260 // Get the copy of the jls object
kamg@551 2261 __ movl(rcx, dest);
kamg@551 2262 } else {
kamg@551 2263 // arg is still in the original location
kamg@551 2264 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2265 }
kamg@551 2266 string_oop = rcx;
kamg@551 2267
kamg@551 2268 }
kamg@551 2269 Label nullString;
kamg@551 2270 __ movl(dest, NULL_WORD);
kamg@551 2271 __ testl(string_oop, string_oop);
kamg@551 2272 __ jcc(Assembler::zero, nullString);
kamg@551 2273
kamg@551 2274 // Now we can store the address of the utf string as the argument
kamg@551 2275 __ movl(dest, rax);
kamg@551 2276
kamg@551 2277 // And do the conversion
kamg@551 2278 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2279 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2280 __ bind(nullString);
kamg@551 2281 }
kamg@551 2282
kamg@551 2283 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2284 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2285 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2286 }
kamg@551 2287 }
kamg@551 2288
kamg@551 2289
kamg@551 2290 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2291 // patch in the trap
kamg@551 2292
kamg@551 2293 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2294
kamg@551 2295 __ nop();
kamg@551 2296
kamg@551 2297
kamg@551 2298 // Return
kamg@551 2299
kamg@551 2300 __ leave();
kamg@551 2301 __ ret(0);
kamg@551 2302
kamg@551 2303 __ flush();
kamg@551 2304
kamg@551 2305 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2306 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2307 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2308 return nm;
kamg@551 2309
kamg@551 2310 }
kamg@551 2311
kamg@551 2312 #endif // HAVE_DTRACE_H
kamg@551 2313
duke@435 2314 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2315 // activation for use during deoptimization
duke@435 2316 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
duke@435 2317 return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
duke@435 2318 }
duke@435 2319
duke@435 2320
duke@435 2321 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2322 return 0;
duke@435 2323 }
duke@435 2324
duke@435 2325
duke@435 2326 //------------------------------generate_deopt_blob----------------------------
duke@435 2327 void SharedRuntime::generate_deopt_blob() {
duke@435 2328 // allocate space for the code
duke@435 2329 ResourceMark rm;
duke@435 2330 // setup code generation tools
duke@435 2331 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2332 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2333 int frame_size_in_words;
duke@435 2334 OopMap* map = NULL;
duke@435 2335 // Account for the extra args we place on the stack
duke@435 2336 // by the time we call fetch_unroll_info
duke@435 2337 const int additional_words = 2; // deopt kind, thread
duke@435 2338
duke@435 2339 OopMapSet *oop_maps = new OopMapSet();
duke@435 2340
duke@435 2341 // -------------
duke@435 2342 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2343 // address has been pushed on the the stack, and return values are in
duke@435 2344 // registers.
duke@435 2345 // If we are doing a normal deopt then we were called from the patched
duke@435 2346 // nmethod from the point we returned to the nmethod. So the return
duke@435 2347 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2348 // We will adjust the value to it looks like we have the original return
duke@435 2349 // address on the stack (like when we eagerly deoptimized).
duke@435 2350 // In the case of an exception pending with deoptimized then we enter
duke@435 2351 // with a return address on the stack that points after the call we patched
duke@435 2352 // into the exception handler. We have the following register state:
duke@435 2353 // rax,: exception
duke@435 2354 // rbx,: exception handler
duke@435 2355 // rdx: throwing pc
duke@435 2356 // So in this case we simply jam rdx into the useless return address and
duke@435 2357 // the stack looks just like we want.
duke@435 2358 //
duke@435 2359 // At this point we need to de-opt. We save the argument return
duke@435 2360 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2361 // routine captures the return values and returns a structure which
duke@435 2362 // describes the current frame size and the sizes of all replacement frames.
duke@435 2363 // The current frame is compiled code and may contain many inlined
duke@435 2364 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2365 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2366 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2367 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2368 // already been captured in the vframeArray at the time the return PC was
duke@435 2369 // patched.
duke@435 2370 address start = __ pc();
duke@435 2371 Label cont;
duke@435 2372
duke@435 2373 // Prolog for non exception case!
duke@435 2374
duke@435 2375 // Save everything in sight.
duke@435 2376
duke@435 2377 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2378 // Normal deoptimization
never@739 2379 __ push(Deoptimization::Unpack_deopt);
duke@435 2380 __ jmp(cont);
duke@435 2381
duke@435 2382 int reexecute_offset = __ pc() - start;
duke@435 2383
duke@435 2384 // Reexecute case
duke@435 2385 // return address is the pc describes what bci to do re-execute at
duke@435 2386
duke@435 2387 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 2388 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2389
never@739 2390 __ push(Deoptimization::Unpack_reexecute);
duke@435 2391 __ jmp(cont);
duke@435 2392
duke@435 2393 int exception_offset = __ pc() - start;
duke@435 2394
duke@435 2395 // Prolog for exception case
duke@435 2396
duke@435 2397 // all registers are dead at this entry point, except for rax, and
duke@435 2398 // rdx which contain the exception oop and exception pc
duke@435 2399 // respectively. Set them in TLS and fall thru to the
duke@435 2400 // unpack_with_exception_in_tls entry point.
duke@435 2401
duke@435 2402 __ get_thread(rdi);
never@739 2403 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2404 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2405
duke@435 2406 int exception_in_tls_offset = __ pc() - start;
duke@435 2407
duke@435 2408 // new implementation because exception oop is now passed in JavaThread
duke@435 2409
duke@435 2410 // Prolog for exception case
duke@435 2411 // All registers must be preserved because they might be used by LinearScan
duke@435 2412 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2413 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2414 // args are on the stack, no return address)
duke@435 2415
duke@435 2416 // make room on stack for the return address
duke@435 2417 // It will be patched later with the throwing pc. The correct value is not
duke@435 2418 // available now because loading it from memory would destroy registers.
never@739 2419 __ push(0);
duke@435 2420
duke@435 2421 // Save everything in sight.
duke@435 2422
duke@435 2423 // No need to update map as each call to save_live_registers will produce identical oopmap
duke@435 2424 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
duke@435 2425
duke@435 2426 // Now it is safe to overwrite any register
duke@435 2427
duke@435 2428 // store the correct deoptimization type
never@739 2429 __ push(Deoptimization::Unpack_exception);
duke@435 2430
duke@435 2431 // load throwing pc from JavaThread and patch it as the return address
duke@435 2432 // of the current frame. Then clear the field in JavaThread
duke@435 2433 __ get_thread(rdi);
never@739 2434 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2435 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2436 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2437
duke@435 2438 #ifdef ASSERT
duke@435 2439 // verify that there is really an exception oop in JavaThread
never@739 2440 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2441 __ verify_oop(rax);
duke@435 2442
duke@435 2443 // verify that there is no pending exception
duke@435 2444 Label no_pending_exception;
never@739 2445 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2446 __ testptr(rax, rax);
duke@435 2447 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2448 __ stop("must not have pending exception here");
duke@435 2449 __ bind(no_pending_exception);
duke@435 2450 #endif
duke@435 2451
duke@435 2452 __ bind(cont);
duke@435 2453
duke@435 2454 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2455 __ empty_FPU_stack();
duke@435 2456
duke@435 2457
duke@435 2458 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2459 // crud. We cannot block on this call, no GC can happen.
duke@435 2460 __ get_thread(rcx);
never@739 2461 __ push(rcx);
duke@435 2462 // fetch_unroll_info needs to call last_java_frame()
duke@435 2463 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2464
duke@435 2465 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2466
duke@435 2467 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2468 // find any register it might need.
duke@435 2469
duke@435 2470 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2471
duke@435 2472 // Discard arg to fetch_unroll_info
never@739 2473 __ pop(rcx);
duke@435 2474
duke@435 2475 __ get_thread(rcx);
duke@435 2476 __ reset_last_Java_frame(rcx, false, false);
duke@435 2477
duke@435 2478 // Load UnrollBlock into EDI
never@739 2479 __ mov(rdi, rax);
duke@435 2480
duke@435 2481 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2482 // we are very short of registers
duke@435 2483
duke@435 2484 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2485 // retrieve the deopt kind from where we left it.
never@739 2486 __ pop(rax);
duke@435 2487 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2488
duke@435 2489 Label noException;
duke@435 2490 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2491 __ jcc(Assembler::notEqual, noException);
never@739 2492 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2493 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2494 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2495 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2496
duke@435 2497 __ verify_oop(rax);
duke@435 2498
duke@435 2499 // Overwrite the result registers with the exception results.
never@739 2500 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2501 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2502
duke@435 2503 __ bind(noException);
duke@435 2504
duke@435 2505 // Stack is back to only having register save data on the stack.
duke@435 2506 // Now restore the result registers. Everything else is either dead or captured
duke@435 2507 // in the vframeArray.
duke@435 2508
duke@435 2509 RegisterSaver::restore_result_registers(masm);
duke@435 2510
duke@435 2511 // All of the register save area has been popped of the stack. Only the
duke@435 2512 // return address remains.
duke@435 2513
duke@435 2514 // Pop all the frames we must move/replace.
duke@435 2515 //
duke@435 2516 // Frame picture (youngest to oldest)
duke@435 2517 // 1: self-frame (no frame link)
duke@435 2518 // 2: deopting frame (no frame link)
duke@435 2519 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2520 //
duke@435 2521 // Note: by leaving the return address of self-frame on the stack
duke@435 2522 // and using the size of frame 2 to adjust the stack
duke@435 2523 // when we are done the return to frame 3 will still be on the stack.
duke@435 2524
duke@435 2525 // Pop deoptimized frame
never@739 2526 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2527
duke@435 2528 // sp should be pointing at the return address to the caller (3)
duke@435 2529
duke@435 2530 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2531 if (UseStackBanging) {
duke@435 2532 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2533 __ bang_stack_size(rbx, rcx);
duke@435 2534 }
duke@435 2535
duke@435 2536 // Load array of frame pcs into ECX
never@739 2537 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2538
never@739 2539 __ pop(rsi); // trash the old pc
duke@435 2540
duke@435 2541 // Load array of frame sizes into ESI
never@739 2542 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2543
duke@435 2544 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2545
duke@435 2546 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2547 __ movl(counter, rbx);
duke@435 2548
duke@435 2549 // Pick up the initial fp we should save
never@739 2550 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2551
duke@435 2552 // Now adjust the caller's stack to make up for the extra locals
duke@435 2553 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2554 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2555 // value and not the "real" sp value.
duke@435 2556
duke@435 2557 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2558 __ movptr(sp_temp, rsp);
never@739 2559 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2560 __ subptr(rsp, rbx);
duke@435 2561
duke@435 2562 // Push interpreter frames in a loop
duke@435 2563 Label loop;
duke@435 2564 __ bind(loop);
never@739 2565 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2566 #ifdef CC_INTERP
never@739 2567 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2568 #ifdef ASSERT
never@739 2569 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2570 __ push(0xDEADDEAD);
duke@435 2571 #else /* ASSERT */
never@739 2572 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2573 #endif /* ASSERT */
duke@435 2574 #else /* CC_INTERP */
never@739 2575 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2576 #endif /* CC_INTERP */
never@739 2577 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2578 __ enter(); // save old & set new rbp,
never@739 2579 __ subptr(rsp, rbx); // Prolog!
never@739 2580 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2581 #ifdef CC_INTERP
never@739 2582 __ movptr(Address(rbp,
duke@435 2583 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2584 rbx); // Make it walkable
duke@435 2585 #else /* CC_INTERP */
duke@435 2586 // This value is corrected by layout_activation_impl
xlu@947 2587 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 2588 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2589 #endif /* CC_INTERP */
never@739 2590 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2591 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2592 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2593 __ decrementl(counter); // decrement counter
duke@435 2594 __ jcc(Assembler::notZero, loop);
never@739 2595 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2596
duke@435 2597 // Re-push self-frame
duke@435 2598 __ enter(); // save old & set new rbp,
duke@435 2599
duke@435 2600 // Return address and rbp, are in place
duke@435 2601 // We'll push additional args later. Just allocate a full sized
duke@435 2602 // register save area
never@739 2603 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2604
duke@435 2605 // Restore frame locals after moving the frame
never@739 2606 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2607 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2608 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2609 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2610 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2611
duke@435 2612 // Set up the args to unpack_frame
duke@435 2613
duke@435 2614 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2615 __ get_thread(rcx);
never@739 2616 __ push(rcx);
duke@435 2617
duke@435 2618 // set last_Java_sp, last_Java_fp
duke@435 2619 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2620
duke@435 2621 // Call C code. Need thread but NOT official VM entry
duke@435 2622 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2623 // restore return values to their stack-slots with the new SP.
duke@435 2624 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2625 // Set an oopmap for the call site
duke@435 2626 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2627
duke@435 2628 // rax, contains the return result type
never@739 2629 __ push(rax);
duke@435 2630
duke@435 2631 __ get_thread(rcx);
duke@435 2632 __ reset_last_Java_frame(rcx, false, false);
duke@435 2633
duke@435 2634 // Collect return values
never@739 2635 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 2636 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2637
duke@435 2638 // Clear floating point stack before returning to interpreter
duke@435 2639 __ empty_FPU_stack();
duke@435 2640
duke@435 2641 // Check if we should push the float or double return value.
duke@435 2642 Label results_done, yes_double_value;
duke@435 2643 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2644 __ jcc (Assembler::zero, yes_double_value);
duke@435 2645 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2646 __ jcc (Assembler::notZero, results_done);
duke@435 2647
duke@435 2648 // return float value as expected by interpreter
duke@435 2649 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2650 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2651 __ jmp(results_done);
duke@435 2652
duke@435 2653 // return double value as expected by interpreter
duke@435 2654 __ bind(yes_double_value);
duke@435 2655 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2656 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2657
duke@435 2658 __ bind(results_done);
duke@435 2659
duke@435 2660 // Pop self-frame.
duke@435 2661 __ leave(); // Epilog!
duke@435 2662
duke@435 2663 // Jump to interpreter
duke@435 2664 __ ret(0);
duke@435 2665
duke@435 2666 // -------------
duke@435 2667 // make sure all code is generated
duke@435 2668 masm->flush();
duke@435 2669
duke@435 2670 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2671 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2672 }
duke@435 2673
duke@435 2674
duke@435 2675 #ifdef COMPILER2
duke@435 2676 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2677 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2678 // allocate space for the code
duke@435 2679 ResourceMark rm;
duke@435 2680 // setup code generation tools
duke@435 2681 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2682 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2683
duke@435 2684 enum frame_layout {
duke@435 2685 arg0_off, // thread sp + 0 // Arg location for
duke@435 2686 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2687 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2688 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2689 // so that it agrees with the frame sender code.
duke@435 2690 rbp_off, // callee saved register sp + 2
duke@435 2691 return_off, // slot for return address sp + 3
duke@435 2692 framesize
duke@435 2693 };
duke@435 2694
duke@435 2695 address start = __ pc();
duke@435 2696 // Push self-frame.
never@739 2697 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 2698
duke@435 2699 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2700 // convention will save restore it in prolog/epilog) Other than that
duke@435 2701 // there are no callee save registers no that adapter frames are gone.
never@739 2702 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 2703
duke@435 2704 // Clear the floating point exception stack
duke@435 2705 __ empty_FPU_stack();
duke@435 2706
duke@435 2707 // set last_Java_sp
duke@435 2708 __ get_thread(rdx);
duke@435 2709 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2710
duke@435 2711 // Call C code. Need thread but NOT official VM entry
duke@435 2712 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2713 // capture callee-saved registers as well as return values.
never@739 2714 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 2715 // argument already in ECX
duke@435 2716 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2717 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2718
duke@435 2719 // Set an oopmap for the call site
duke@435 2720 OopMapSet *oop_maps = new OopMapSet();
duke@435 2721 OopMap* map = new OopMap( framesize, 0 );
duke@435 2722 // No oopMap for rbp, it is known implicitly
duke@435 2723
duke@435 2724 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2725
duke@435 2726 __ get_thread(rcx);
duke@435 2727
duke@435 2728 __ reset_last_Java_frame(rcx, false, false);
duke@435 2729
duke@435 2730 // Load UnrollBlock into EDI
never@739 2731 __ movptr(rdi, rax);
duke@435 2732
duke@435 2733 // Pop all the frames we must move/replace.
duke@435 2734 //
duke@435 2735 // Frame picture (youngest to oldest)
duke@435 2736 // 1: self-frame (no frame link)
duke@435 2737 // 2: deopting frame (no frame link)
duke@435 2738 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2739
duke@435 2740 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 2741 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 2742
duke@435 2743 // Pop deoptimized frame
never@739 2744 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 2745 __ addptr(rsp, rcx);
duke@435 2746
duke@435 2747 // sp should be pointing at the return address to the caller (3)
duke@435 2748
duke@435 2749 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2750 if (UseStackBanging) {
duke@435 2751 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2752 __ bang_stack_size(rbx, rcx);
duke@435 2753 }
duke@435 2754
duke@435 2755
duke@435 2756 // Load array of frame pcs into ECX
duke@435 2757 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2758
never@739 2759 __ pop(rsi); // trash the pc
duke@435 2760
duke@435 2761 // Load array of frame sizes into ESI
never@739 2762 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2763
duke@435 2764 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2765
duke@435 2766 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2767 __ movl(counter, rbx);
duke@435 2768
duke@435 2769 // Pick up the initial fp we should save
never@739 2770 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
duke@435 2771
duke@435 2772 // Now adjust the caller's stack to make up for the extra locals
duke@435 2773 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2774 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2775 // value and not the "real" sp value.
duke@435 2776
duke@435 2777 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2778 __ movptr(sp_temp, rsp);
never@739 2779 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2780 __ subptr(rsp, rbx);
duke@435 2781
duke@435 2782 // Push interpreter frames in a loop
duke@435 2783 Label loop;
duke@435 2784 __ bind(loop);
never@739 2785 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2786 #ifdef CC_INTERP
never@739 2787 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2788 #ifdef ASSERT
never@739 2789 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2790 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 2791 #else /* ASSERT */
never@739 2792 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2793 #endif /* ASSERT */
duke@435 2794 #else /* CC_INTERP */
never@739 2795 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2796 #endif /* CC_INTERP */
never@739 2797 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2798 __ enter(); // save old & set new rbp,
never@739 2799 __ subptr(rsp, rbx); // Prolog!
never@739 2800 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2801 #ifdef CC_INTERP
never@739 2802 __ movptr(Address(rbp,
duke@435 2803 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2804 rbx); // Make it walkable
duke@435 2805 #else /* CC_INTERP */
duke@435 2806 // This value is corrected by layout_activation_impl
xlu@947 2807 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 2808 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2809 #endif /* CC_INTERP */
never@739 2810 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2811 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2812 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2813 __ decrementl(counter); // decrement counter
duke@435 2814 __ jcc(Assembler::notZero, loop);
never@739 2815 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2816
duke@435 2817 // Re-push self-frame
duke@435 2818 __ enter(); // save old & set new rbp,
never@739 2819 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 2820
duke@435 2821
duke@435 2822 // set last_Java_sp, last_Java_fp
duke@435 2823 __ get_thread(rdi);
duke@435 2824 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 2825
duke@435 2826 // Call C code. Need thread but NOT official VM entry
duke@435 2827 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2828 // restore return values to their stack-slots with the new SP.
never@739 2829 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 2830 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 2831 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2832 // Set an oopmap for the call site
duke@435 2833 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 2834
duke@435 2835 __ get_thread(rdi);
duke@435 2836 __ reset_last_Java_frame(rdi, true, false);
duke@435 2837
duke@435 2838 // Pop self-frame.
duke@435 2839 __ leave(); // Epilog!
duke@435 2840
duke@435 2841 // Jump to interpreter
duke@435 2842 __ ret(0);
duke@435 2843
duke@435 2844 // -------------
duke@435 2845 // make sure all code is generated
duke@435 2846 masm->flush();
duke@435 2847
duke@435 2848 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 2849 }
duke@435 2850 #endif // COMPILER2
duke@435 2851
duke@435 2852 //------------------------------generate_handler_blob------
duke@435 2853 //
duke@435 2854 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 2855 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 2856 // a safepoint.
duke@435 2857 //
duke@435 2858 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 2859
duke@435 2860 // Account for thread arg in our frame
duke@435 2861 const int additional_words = 1;
duke@435 2862 int frame_size_in_words;
duke@435 2863
duke@435 2864 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2865
duke@435 2866 ResourceMark rm;
duke@435 2867 OopMapSet *oop_maps = new OopMapSet();
duke@435 2868 OopMap* map;
duke@435 2869
duke@435 2870 // allocate space for the code
duke@435 2871 // setup code generation tools
duke@435 2872 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 2873 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2874
duke@435 2875 const Register java_thread = rdi; // callee-saved for VC++
duke@435 2876 address start = __ pc();
duke@435 2877 address call_pc = NULL;
duke@435 2878
duke@435 2879 // If cause_return is true we are at a poll_return and there is
duke@435 2880 // the return address on the stack to the caller on the nmethod
duke@435 2881 // that is safepoint. We can leave this return on the stack and
duke@435 2882 // effectively complete the return and safepoint in the caller.
duke@435 2883 // Otherwise we push space for a return address that the safepoint
duke@435 2884 // handler will install later to make the stack walking sensible.
duke@435 2885 if( !cause_return )
never@739 2886 __ push(rbx); // Make room for return address (or push it again)
duke@435 2887
duke@435 2888 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2889
duke@435 2890 // The following is basically a call_VM. However, we need the precise
duke@435 2891 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 2892 // work ourselves.
duke@435 2893
duke@435 2894 // Push thread argument and setup last_Java_sp
duke@435 2895 __ get_thread(java_thread);
never@739 2896 __ push(java_thread);
duke@435 2897 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 2898
duke@435 2899 // if this was not a poll_return then we need to correct the return address now.
duke@435 2900 if( !cause_return ) {
never@739 2901 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 2902 __ movptr(Address(rbp, wordSize), rax);
duke@435 2903 }
duke@435 2904
duke@435 2905 // do the call
duke@435 2906 __ call(RuntimeAddress(call_ptr));
duke@435 2907
duke@435 2908 // Set an oopmap for the call site. This oopmap will map all
duke@435 2909 // oop-registers and debug-info registers as callee-saved. This
duke@435 2910 // will allow deoptimization at this safepoint to find all possible
duke@435 2911 // debug-info recordings, as well as let GC find all oops.
duke@435 2912
duke@435 2913 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 2914
duke@435 2915 // Discard arg
never@739 2916 __ pop(rcx);
duke@435 2917
duke@435 2918 Label noException;
duke@435 2919
duke@435 2920 // Clear last_Java_sp again
duke@435 2921 __ get_thread(java_thread);
duke@435 2922 __ reset_last_Java_frame(java_thread, false, false);
duke@435 2923
never@739 2924 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2925 __ jcc(Assembler::equal, noException);
duke@435 2926
duke@435 2927 // Exception pending
duke@435 2928
duke@435 2929 RegisterSaver::restore_live_registers(masm);
duke@435 2930
duke@435 2931 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2932
duke@435 2933 __ bind(noException);
duke@435 2934
duke@435 2935 // Normal exit, register restoring and exit
duke@435 2936 RegisterSaver::restore_live_registers(masm);
duke@435 2937
duke@435 2938 __ ret(0);
duke@435 2939
duke@435 2940 // make sure all code is generated
duke@435 2941 masm->flush();
duke@435 2942
duke@435 2943 // Fill-out other meta info
duke@435 2944 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 2945 }
duke@435 2946
duke@435 2947 //
duke@435 2948 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 2949 //
duke@435 2950 // Generate a stub that calls into vm to find out the proper destination
duke@435 2951 // of a java call. All the argument registers are live at this point
duke@435 2952 // but since this is generic code we don't know what they are and the caller
duke@435 2953 // must do any gc of the args.
duke@435 2954 //
duke@435 2955 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
duke@435 2956 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2957
duke@435 2958 // allocate space for the code
duke@435 2959 ResourceMark rm;
duke@435 2960
duke@435 2961 CodeBuffer buffer(name, 1000, 512);
duke@435 2962 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2963
duke@435 2964 int frame_size_words;
duke@435 2965 enum frame_layout {
duke@435 2966 thread_off,
duke@435 2967 extra_words };
duke@435 2968
duke@435 2969 OopMapSet *oop_maps = new OopMapSet();
duke@435 2970 OopMap* map = NULL;
duke@435 2971
duke@435 2972 int start = __ offset();
duke@435 2973
duke@435 2974 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 2975
duke@435 2976 int frame_complete = __ offset();
duke@435 2977
duke@435 2978 const Register thread = rdi;
duke@435 2979 __ get_thread(rdi);
duke@435 2980
never@739 2981 __ push(thread);
duke@435 2982 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 2983
duke@435 2984 __ call(RuntimeAddress(destination));
duke@435 2985
duke@435 2986
duke@435 2987 // Set an oopmap for the call site.
duke@435 2988 // We need this not only for callee-saved registers, but also for volatile
duke@435 2989 // registers that the compiler might be keeping live across a safepoint.
duke@435 2990
duke@435 2991 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 2992
duke@435 2993 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 2994
never@739 2995 __ addptr(rsp, wordSize);
duke@435 2996
duke@435 2997 // clear last_Java_sp
duke@435 2998 __ reset_last_Java_frame(thread, true, false);
duke@435 2999 // check for pending exceptions
duke@435 3000 Label pending;
never@739 3001 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3002 __ jcc(Assembler::notEqual, pending);
duke@435 3003
duke@435 3004 // get the returned methodOop
never@739 3005 __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
never@739 3006 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3007
never@739 3008 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3009
duke@435 3010 RegisterSaver::restore_live_registers(masm);
duke@435 3011
duke@435 3012 // We are back the the original state on entry and ready to go.
duke@435 3013
duke@435 3014 __ jmp(rax);
duke@435 3015
duke@435 3016 // Pending exception after the safepoint
duke@435 3017
duke@435 3018 __ bind(pending);
duke@435 3019
duke@435 3020 RegisterSaver::restore_live_registers(masm);
duke@435 3021
duke@435 3022 // exception pending => remove activation and forward to exception handler
duke@435 3023
duke@435 3024 __ get_thread(thread);
xlu@947 3025 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 3026 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3027 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3028
duke@435 3029 // -------------
duke@435 3030 // make sure all code is generated
duke@435 3031 masm->flush();
duke@435 3032
duke@435 3033 // return the blob
duke@435 3034 // frame_size_words or bytes??
duke@435 3035 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3036 }
duke@435 3037
duke@435 3038 void SharedRuntime::generate_stubs() {
duke@435 3039
duke@435 3040 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
duke@435 3041 "wrong_method_stub");
duke@435 3042
duke@435 3043 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
duke@435 3044 "ic_miss_stub");
duke@435 3045
duke@435 3046 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
duke@435 3047 "resolve_opt_virtual_call");
duke@435 3048
duke@435 3049 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
duke@435 3050 "resolve_virtual_call");
duke@435 3051
duke@435 3052 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
duke@435 3053 "resolve_static_call");
duke@435 3054
duke@435 3055 _polling_page_safepoint_handler_blob =
duke@435 3056 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3057 SafepointSynchronize::handle_polling_page_exception), false);
duke@435 3058
duke@435 3059 _polling_page_return_handler_blob =
duke@435 3060 generate_handler_blob(CAST_FROM_FN_PTR(address,
duke@435 3061 SafepointSynchronize::handle_polling_page_exception), true);
duke@435 3062
duke@435 3063 generate_deopt_blob();
duke@435 3064 #ifdef COMPILER2
duke@435 3065 generate_uncommon_trap_blob();
duke@435 3066 #endif // COMPILER2
duke@435 3067 }

mercurial