src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 959
c9004fe53695
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
    28 #define __ masm->
    29 #ifdef COMPILER2
    30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
    31 #endif // COMPILER2
    33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
    34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
    35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
    36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
    37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
    38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
    39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
    40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
    42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    44 class RegisterSaver {
    45   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    46   // Capture info about frame layout
    47   enum layout {
    48                 fpu_state_off = 0,
    49                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    50                 st0_off, st0H_off,
    51                 st1_off, st1H_off,
    52                 st2_off, st2H_off,
    53                 st3_off, st3H_off,
    54                 st4_off, st4H_off,
    55                 st5_off, st5H_off,
    56                 st6_off, st6H_off,
    57                 st7_off, st7H_off,
    59                 xmm0_off, xmm0H_off,
    60                 xmm1_off, xmm1H_off,
    61                 xmm2_off, xmm2H_off,
    62                 xmm3_off, xmm3H_off,
    63                 xmm4_off, xmm4H_off,
    64                 xmm5_off, xmm5H_off,
    65                 xmm6_off, xmm6H_off,
    66                 xmm7_off, xmm7H_off,
    67                 flags_off,
    68                 rdi_off,
    69                 rsi_off,
    70                 ignore_off,  // extra copy of rbp,
    71                 rsp_off,
    72                 rbx_off,
    73                 rdx_off,
    74                 rcx_off,
    75                 rax_off,
    76                 // The frame sender code expects that rbp will be in the "natural" place and
    77                 // will override any oopMap setting for it. We must therefore force the layout
    78                 // so that it agrees with the frame sender code.
    79                 rbp_off,
    80                 return_off,      // slot for return address
    81                 reg_save_size };
    84   public:
    86   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    87                                      int* total_frame_words, bool verify_fpu = true);
    88   static void restore_live_registers(MacroAssembler* masm);
    90   static int rax_offset() { return rax_off; }
    91   static int rbx_offset() { return rbx_off; }
    93   // Offsets into the register save area
    94   // Used by deoptimization when it is managing result register
    95   // values on its own
    97   static int raxOffset(void) { return rax_off; }
    98   static int rdxOffset(void) { return rdx_off; }
    99   static int rbxOffset(void) { return rbx_off; }
   100   static int xmm0Offset(void) { return xmm0_off; }
   101   // This really returns a slot in the fp save area, which one is not important
   102   static int fpResultOffset(void) { return st0_off; }
   104   // During deoptimization only the result register need to be restored
   105   // all the other values have already been extracted.
   107   static void restore_result_registers(MacroAssembler* masm);
   109 };
   111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   112                                            int* total_frame_words, bool verify_fpu) {
   114   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   115   int frame_words = frame_size_in_bytes / wordSize;
   116   *total_frame_words = frame_words;
   118   assert(FPUStateSizeInWords == 27, "update stack layout");
   120   // save registers, fpu state, and flags
   121   // We assume caller has already has return address slot on the stack
   122   // We push epb twice in this sequence because we want the real rbp,
   123   // to be under the return like a normal enter and we want to use pusha
   124   // We push by hand instead of pusing push
   125   __ enter();
   126   __ pusha();
   127   __ pushf();
   128   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   129   __ push_FPU_state();          // Save FPU state & init
   131   if (verify_fpu) {
   132     // Some stubs may have non standard FPU control word settings so
   133     // only check and reset the value when it required to be the
   134     // standard value.  The safepoint blob in particular can be used
   135     // in methods which are using the 24 bit control word for
   136     // optimized float math.
   138 #ifdef ASSERT
   139     // Make sure the control word has the expected value
   140     Label ok;
   141     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   142     __ jccb(Assembler::equal, ok);
   143     __ stop("corrupted control word detected");
   144     __ bind(ok);
   145 #endif
   147     // Reset the control word to guard against exceptions being unmasked
   148     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   149     // into the on stack copy and then reload that to make sure that the
   150     // current and future values are correct.
   151     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   152   }
   154   __ frstor(Address(rsp, 0));
   155   if (!verify_fpu) {
   156     // Set the control word so that exceptions are masked for the
   157     // following code.
   158     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   159   }
   161   // Save the FPU registers in de-opt-able form
   163   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   164   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   165   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   166   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   167   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   168   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   169   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   170   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   172   if( UseSSE == 1 ) {           // Save the XMM state
   173     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   174     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   175     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   176     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   177     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   178     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   179     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   180     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   181   } else if( UseSSE >= 2 ) {
   182     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   183     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   184     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   185     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   186     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   187     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   188     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   189     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   190   }
   192   // Set an oopmap for the call site.  This oopmap will map all
   193   // oop-registers and debug-info registers as callee-saved.  This
   194   // will allow deoptimization at this safepoint to find all possible
   195   // debug-info recordings, as well as let GC find all oops.
   197   OopMapSet *oop_maps = new OopMapSet();
   198   OopMap* map =  new OopMap( frame_words, 0 );
   200 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   202   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   203   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   204   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   205   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   206   // rbp, location is known implicitly, no oopMap
   207   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   210   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   211   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   225   // %%% This is really a waste but we'll keep things as they were for now
   226   if (true) {
   227 #define NEXTREG(x) (x)->as_VMReg()->next()
   228     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   229     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   230     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   231     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   232     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   233     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   234     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   235     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   236     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   237     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   238     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   239     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   240     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   241     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   242     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   243     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   244 #undef NEXTREG
   245 #undef STACK_OFFSET
   246   }
   248   return map;
   250 }
   252 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   254   // Recover XMM & FPU state
   255   if( UseSSE == 1 ) {
   256     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   257     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   258     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   259     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   260     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   261     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   262     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   263     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   264   } else if( UseSSE >= 2 ) {
   265     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   266     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   267     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   268     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   269     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   270     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   271     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   272     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   273   }
   274   __ pop_FPU_state();
   275   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   277   __ popf();
   278   __ popa();
   279   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   280   __ pop(rbp);
   282 }
   284 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   286   // Just restore result register. Only used by deoptimization. By
   287   // now any callee save register that needs to be restore to a c2
   288   // caller of the deoptee has been extracted into the vframeArray
   289   // and will be stuffed into the c2i adapter we create for later
   290   // restoration so only result registers need to be restored here.
   291   //
   293   __ frstor(Address(rsp, 0));      // Restore fpu state
   295   // Recover XMM & FPU state
   296   if( UseSSE == 1 ) {
   297     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   298   } else if( UseSSE >= 2 ) {
   299     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   300   }
   301   __ movptr(rax, Address(rsp, rax_off*wordSize));
   302   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   303   // Pop all of the register save are off the stack except the return address
   304   __ addptr(rsp, return_off * wordSize);
   305 }
   307 // The java_calling_convention describes stack locations as ideal slots on
   308 // a frame with no abi restrictions. Since we must observe abi restrictions
   309 // (like the placement of the register window) the slots must be biased by
   310 // the following value.
   311 static int reg2offset_in(VMReg r) {
   312   // Account for saved rbp, and return address
   313   // This should really be in_preserve_stack_slots
   314   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   315 }
   317 static int reg2offset_out(VMReg r) {
   318   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   319 }
   321 // ---------------------------------------------------------------------------
   322 // Read the array of BasicTypes from a signature, and compute where the
   323 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   324 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   325 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   326 // as framesizes are fixed.
   327 // VMRegImpl::stack0 refers to the first slot 0(sp).
   328 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   329 // up to RegisterImpl::number_of_registers) are the 32-bit
   330 // integer registers.
   332 // Pass first two oop/int args in registers ECX and EDX.
   333 // Pass first two float/double args in registers XMM0 and XMM1.
   334 // Doubles have precedence, so if you pass a mix of floats and doubles
   335 // the doubles will grab the registers before the floats will.
   337 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   338 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   339 // units regardless of build. Of course for i486 there is no 64 bit build
   342 // ---------------------------------------------------------------------------
   343 // The compiled Java calling convention.
   344 // Pass first two oop/int args in registers ECX and EDX.
   345 // Pass first two float/double args in registers XMM0 and XMM1.
   346 // Doubles have precedence, so if you pass a mix of floats and doubles
   347 // the doubles will grab the registers before the floats will.
   348 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   349                                            VMRegPair *regs,
   350                                            int total_args_passed,
   351                                            int is_outgoing) {
   352   uint    stack = 0;          // Starting stack position for args on stack
   355   // Pass first two oop/int args in registers ECX and EDX.
   356   uint reg_arg0 = 9999;
   357   uint reg_arg1 = 9999;
   359   // Pass first two float/double args in registers XMM0 and XMM1.
   360   // Doubles have precedence, so if you pass a mix of floats and doubles
   361   // the doubles will grab the registers before the floats will.
   362   // CNC - TURNED OFF FOR non-SSE.
   363   //       On Intel we have to round all doubles (and most floats) at
   364   //       call sites by storing to the stack in any case.
   365   // UseSSE=0 ==> Don't Use ==> 9999+0
   366   // UseSSE=1 ==> Floats only ==> 9999+1
   367   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   368   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   369   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   370   uint freg_arg0 = 9999+fargs;
   371   uint freg_arg1 = 9999+fargs;
   373   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   374   int i;
   375   for( i = 0; i < total_args_passed; i++) {
   376     if( sig_bt[i] == T_DOUBLE ) {
   377       // first 2 doubles go in registers
   378       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   379       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   380       else // Else double is passed low on the stack to be aligned.
   381         stack += 2;
   382     } else if( sig_bt[i] == T_LONG ) {
   383       stack += 2;
   384     }
   385   }
   386   int dstack = 0;             // Separate counter for placing doubles
   388   // Now pick where all else goes.
   389   for( i = 0; i < total_args_passed; i++) {
   390     // From the type and the argument number (count) compute the location
   391     switch( sig_bt[i] ) {
   392     case T_SHORT:
   393     case T_CHAR:
   394     case T_BYTE:
   395     case T_BOOLEAN:
   396     case T_INT:
   397     case T_ARRAY:
   398     case T_OBJECT:
   399     case T_ADDRESS:
   400       if( reg_arg0 == 9999 )  {
   401         reg_arg0 = i;
   402         regs[i].set1(rcx->as_VMReg());
   403       } else if( reg_arg1 == 9999 )  {
   404         reg_arg1 = i;
   405         regs[i].set1(rdx->as_VMReg());
   406       } else {
   407         regs[i].set1(VMRegImpl::stack2reg(stack++));
   408       }
   409       break;
   410     case T_FLOAT:
   411       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   412         freg_arg0 = i;
   413         regs[i].set1(xmm0->as_VMReg());
   414       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   415         freg_arg1 = i;
   416         regs[i].set1(xmm1->as_VMReg());
   417       } else {
   418         regs[i].set1(VMRegImpl::stack2reg(stack++));
   419       }
   420       break;
   421     case T_LONG:
   422       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   423       regs[i].set2(VMRegImpl::stack2reg(dstack));
   424       dstack += 2;
   425       break;
   426     case T_DOUBLE:
   427       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   428       if( freg_arg0 == (uint)i ) {
   429         regs[i].set2(xmm0->as_VMReg());
   430       } else if( freg_arg1 == (uint)i ) {
   431         regs[i].set2(xmm1->as_VMReg());
   432       } else {
   433         regs[i].set2(VMRegImpl::stack2reg(dstack));
   434         dstack += 2;
   435       }
   436       break;
   437     case T_VOID: regs[i].set_bad(); break;
   438       break;
   439     default:
   440       ShouldNotReachHere();
   441       break;
   442     }
   443   }
   445   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   446   return round_to(stack, 2);
   447 }
   449 // Patch the callers callsite with entry to compiled code if it exists.
   450 static void patch_callers_callsite(MacroAssembler *masm) {
   451   Label L;
   452   __ verify_oop(rbx);
   453   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   454   __ jcc(Assembler::equal, L);
   455   // Schedule the branch target address early.
   456   // Call into the VM to patch the caller, then jump to compiled callee
   457   // rax, isn't live so capture return address while we easily can
   458   __ movptr(rax, Address(rsp, 0));
   459   __ pusha();
   460   __ pushf();
   462   if (UseSSE == 1) {
   463     __ subptr(rsp, 2*wordSize);
   464     __ movflt(Address(rsp, 0), xmm0);
   465     __ movflt(Address(rsp, wordSize), xmm1);
   466   }
   467   if (UseSSE >= 2) {
   468     __ subptr(rsp, 4*wordSize);
   469     __ movdbl(Address(rsp, 0), xmm0);
   470     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   471   }
   472 #ifdef COMPILER2
   473   // C2 may leave the stack dirty if not in SSE2+ mode
   474   if (UseSSE >= 2) {
   475     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   476   } else {
   477     __ empty_FPU_stack();
   478   }
   479 #endif /* COMPILER2 */
   481   // VM needs caller's callsite
   482   __ push(rax);
   483   // VM needs target method
   484   __ push(rbx);
   485   __ verify_oop(rbx);
   486   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   487   __ addptr(rsp, 2*wordSize);
   489   if (UseSSE == 1) {
   490     __ movflt(xmm0, Address(rsp, 0));
   491     __ movflt(xmm1, Address(rsp, wordSize));
   492     __ addptr(rsp, 2*wordSize);
   493   }
   494   if (UseSSE >= 2) {
   495     __ movdbl(xmm0, Address(rsp, 0));
   496     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   497     __ addptr(rsp, 4*wordSize);
   498   }
   500   __ popf();
   501   __ popa();
   502   __ bind(L);
   503 }
   506 // Helper function to put tags in interpreter stack.
   507 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
   508   if (TaggedStackInterpreter) {
   509     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
   510     if (sig == T_OBJECT || sig == T_ARRAY) {
   511       __ movptr(Address(rsp, tag_offset), frame::TagReference);
   512     } else if (sig == T_LONG || sig == T_DOUBLE) {
   513       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
   514       __ movptr(Address(rsp, next_tag_offset), frame::TagValue);
   515       __ movptr(Address(rsp, tag_offset), frame::TagValue);
   516     } else {
   517       __ movptr(Address(rsp, tag_offset), frame::TagValue);
   518     }
   519   }
   520 }
   522 // Double and long values with Tagged stacks are not contiguous.
   523 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   524   int next_off = st_off - Interpreter::stackElementSize();
   525   if (TaggedStackInterpreter) {
   526    __ movdbl(Address(rsp, next_off), r);
   527    // Move top half up and put tag in the middle.
   528    __ movl(rdi, Address(rsp, next_off+wordSize));
   529    __ movl(Address(rsp, st_off), rdi);
   530    tag_stack(masm, T_DOUBLE, next_off);
   531   } else {
   532    __ movdbl(Address(rsp, next_off), r);
   533   }
   534 }
   536 static void gen_c2i_adapter(MacroAssembler *masm,
   537                             int total_args_passed,
   538                             int comp_args_on_stack,
   539                             const BasicType *sig_bt,
   540                             const VMRegPair *regs,
   541                             Label& skip_fixup) {
   542   // Before we get into the guts of the C2I adapter, see if we should be here
   543   // at all.  We've come from compiled code and are attempting to jump to the
   544   // interpreter, which means the caller made a static call to get here
   545   // (vcalls always get a compiled target if there is one).  Check for a
   546   // compiled target.  If there is one, we need to patch the caller's call.
   547   patch_callers_callsite(masm);
   549   __ bind(skip_fixup);
   551 #ifdef COMPILER2
   552   // C2 may leave the stack dirty if not in SSE2+ mode
   553   if (UseSSE >= 2) {
   554     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   555   } else {
   556     __ empty_FPU_stack();
   557   }
   558 #endif /* COMPILER2 */
   560   // Since all args are passed on the stack, total_args_passed * interpreter_
   561   // stack_element_size  is the
   562   // space we need.
   563   int extraspace = total_args_passed * Interpreter::stackElementSize();
   565   // Get return address
   566   __ pop(rax);
   568   // set senderSP value
   569   __ movptr(rsi, rsp);
   571   __ subptr(rsp, extraspace);
   573   // Now write the args into the outgoing interpreter space
   574   for (int i = 0; i < total_args_passed; i++) {
   575     if (sig_bt[i] == T_VOID) {
   576       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   577       continue;
   578     }
   580     // st_off points to lowest address on stack.
   581     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
   582     int next_off = st_off - Interpreter::stackElementSize();
   584     // Say 4 args:
   585     // i   st_off
   586     // 0   12 T_LONG
   587     // 1    8 T_VOID
   588     // 2    4 T_OBJECT
   589     // 3    0 T_BOOL
   590     VMReg r_1 = regs[i].first();
   591     VMReg r_2 = regs[i].second();
   592     if (!r_1->is_valid()) {
   593       assert(!r_2->is_valid(), "");
   594       continue;
   595     }
   597     if (r_1->is_stack()) {
   598       // memory to memory use fpu stack top
   599       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   601       if (!r_2->is_valid()) {
   602         __ movl(rdi, Address(rsp, ld_off));
   603         __ movptr(Address(rsp, st_off), rdi);
   604         tag_stack(masm, sig_bt[i], st_off);
   605       } else {
   607         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   608         // st_off == MSW, st_off-wordSize == LSW
   610         __ movptr(rdi, Address(rsp, ld_off));
   611         __ movptr(Address(rsp, next_off), rdi);
   612 #ifndef _LP64
   613         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   614         __ movptr(Address(rsp, st_off), rdi);
   615 #else
   616 #ifdef ASSERT
   617         // Overwrite the unused slot with known junk
   618         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   619         __ movptr(Address(rsp, st_off), rax);
   620 #endif /* ASSERT */
   621 #endif // _LP64
   622         tag_stack(masm, sig_bt[i], next_off);
   623       }
   624     } else if (r_1->is_Register()) {
   625       Register r = r_1->as_Register();
   626       if (!r_2->is_valid()) {
   627         __ movl(Address(rsp, st_off), r);
   628         tag_stack(masm, sig_bt[i], st_off);
   629       } else {
   630         // long/double in gpr
   631         NOT_LP64(ShouldNotReachHere());
   632         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   633         // T_DOUBLE and T_LONG use two slots in the interpreter
   634         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   635           // long/double in gpr
   636 #ifdef ASSERT
   637           // Overwrite the unused slot with known junk
   638           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   639           __ movptr(Address(rsp, st_off), rax);
   640 #endif /* ASSERT */
   641           __ movptr(Address(rsp, next_off), r);
   642           tag_stack(masm, sig_bt[i], next_off);
   643         } else {
   644           __ movptr(Address(rsp, st_off), r);
   645           tag_stack(masm, sig_bt[i], st_off);
   646         }
   647       }
   648     } else {
   649       assert(r_1->is_XMMRegister(), "");
   650       if (!r_2->is_valid()) {
   651         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   652         tag_stack(masm, sig_bt[i], st_off);
   653       } else {
   654         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   655         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   656       }
   657     }
   658   }
   660   // Schedule the branch target address early.
   661   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   662   // And repush original return address
   663   __ push(rax);
   664   __ jmp(rcx);
   665 }
   668 // For tagged stacks, double or long value aren't contiguous on the stack
   669 // so get them contiguous for the xmm load
   670 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   671   int next_val_off = ld_off - Interpreter::stackElementSize();
   672   if (TaggedStackInterpreter) {
   673     // use tag slot temporarily for MSW
   674     __ movptr(rsi, Address(saved_sp, ld_off));
   675     __ movptr(Address(saved_sp, next_val_off+wordSize), rsi);
   676     __ movdbl(r, Address(saved_sp, next_val_off));
   677     // restore tag
   678     __ movptr(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
   679   } else {
   680     __ movdbl(r, Address(saved_sp, next_val_off));
   681   }
   682 }
   684 static void gen_i2c_adapter(MacroAssembler *masm,
   685                             int total_args_passed,
   686                             int comp_args_on_stack,
   687                             const BasicType *sig_bt,
   688                             const VMRegPair *regs) {
   689   // we're being called from the interpreter but need to find the
   690   // compiled return entry point.  The return address on the stack
   691   // should point at it and we just need to pull the old value out.
   692   // load up the pointer to the compiled return entry point and
   693   // rewrite our return pc. The code is arranged like so:
   694   //
   695   // .word Interpreter::return_sentinel
   696   // .word address_of_compiled_return_point
   697   // return_entry_point: blah_blah_blah
   698   //
   699   // So we can find the appropriate return point by loading up the word
   700   // just prior to the current return address we have on the stack.
   701   //
   702   // We will only enter here from an interpreted frame and never from after
   703   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   704   // race and use a c2i we will remain interpreted for the race loser(s).
   705   // This removes all sorts of headaches on the x86 side and also eliminates
   706   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   709   // Note: rsi contains the senderSP on entry. We must preserve it since
   710   // we may do a i2c -> c2i transition if we lose a race where compiled
   711   // code goes non-entrant while we get args ready.
   713   // Pick up the return address
   714   __ movptr(rax, Address(rsp, 0));
   716   // If UseSSE >= 2 then no cleanup is needed on the return to the
   717   // interpreter so skip fixing up the return entry point unless
   718   // VerifyFPU is enabled.
   719   if (UseSSE < 2 || VerifyFPU) {
   720     Label skip, chk_int;
   721     // If we were called from the call stub we need to do a little bit different
   722     // cleanup than if the interpreter returned to the call stub.
   724     ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
   725     __ cmpptr(rax, stub_return_address.addr());
   726     __ jcc(Assembler::notEqual, chk_int);
   727     assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
   728     __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
   729     __ jmp(skip);
   731     // It must be the interpreter since we never get here via a c2i (unlike Azul)
   733     __ bind(chk_int);
   734 #ifdef ASSERT
   735     {
   736       Label ok;
   737       __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
   738       __ jcc(Assembler::equal, ok);
   739       __ int3();
   740       __ bind(ok);
   741     }
   742 #endif // ASSERT
   743     __ movptr(rax, Address(rax, -wordSize));
   744     __ bind(skip);
   745   }
   747   // rax, now contains the compiled return entry point which will do an
   748   // cleanup needed for the return from compiled to interpreted.
   750   // Must preserve original SP for loading incoming arguments because
   751   // we need to align the outgoing SP for compiled code.
   752   __ movptr(rdi, rsp);
   754   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   755   // in registers, we will occasionally have no stack args.
   756   int comp_words_on_stack = 0;
   757   if (comp_args_on_stack) {
   758     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   759     // registers are below.  By subtracting stack0, we either get a negative
   760     // number (all values in registers) or the maximum stack slot accessed.
   761     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   762     // Convert 4-byte stack slots to words.
   763     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   764     // Round up to miminum stack alignment, in wordSize
   765     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   766     __ subptr(rsp, comp_words_on_stack * wordSize);
   767   }
   769   // Align the outgoing SP
   770   __ andptr(rsp, -(StackAlignmentInBytes));
   772   // push the return address on the stack (note that pushing, rather
   773   // than storing it, yields the correct frame alignment for the callee)
   774   __ push(rax);
   776   // Put saved SP in another register
   777   const Register saved_sp = rax;
   778   __ movptr(saved_sp, rdi);
   781   // Will jump to the compiled code just as if compiled code was doing it.
   782   // Pre-load the register-jump target early, to schedule it better.
   783   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   785   // Now generate the shuffle code.  Pick up all register args and move the
   786   // rest through the floating point stack top.
   787   for (int i = 0; i < total_args_passed; i++) {
   788     if (sig_bt[i] == T_VOID) {
   789       // Longs and doubles are passed in native word order, but misaligned
   790       // in the 32-bit build.
   791       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   792       continue;
   793     }
   795     // Pick up 0, 1 or 2 words from SP+offset.
   797     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   798             "scrambled load targets?");
   799     // Load in argument order going down.
   800     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   801     // Point to interpreter value (vs. tag)
   802     int next_off = ld_off - Interpreter::stackElementSize();
   803     //
   804     //
   805     //
   806     VMReg r_1 = regs[i].first();
   807     VMReg r_2 = regs[i].second();
   808     if (!r_1->is_valid()) {
   809       assert(!r_2->is_valid(), "");
   810       continue;
   811     }
   812     if (r_1->is_stack()) {
   813       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   814       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   816       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   817       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   818       // we be generated.
   819       if (!r_2->is_valid()) {
   820         // __ fld_s(Address(saved_sp, ld_off));
   821         // __ fstp_s(Address(rsp, st_off));
   822         __ movl(rsi, Address(saved_sp, ld_off));
   823         __ movptr(Address(rsp, st_off), rsi);
   824       } else {
   825         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   826         // are accessed as negative so LSW is at LOW address
   828         // ld_off is MSW so get LSW
   829         // st_off is LSW (i.e. reg.first())
   830         // __ fld_d(Address(saved_sp, next_off));
   831         // __ fstp_d(Address(rsp, st_off));
   832         //
   833         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   834         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   835         // So we must adjust where to pick up the data to match the interpreter.
   836         //
   837         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   838         // are accessed as negative so LSW is at LOW address
   840         // ld_off is MSW so get LSW
   841         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   842                            next_off : ld_off;
   843         __ movptr(rsi, Address(saved_sp, offset));
   844         __ movptr(Address(rsp, st_off), rsi);
   845 #ifndef _LP64
   846         __ movptr(rsi, Address(saved_sp, ld_off));
   847         __ movptr(Address(rsp, st_off + wordSize), rsi);
   848 #endif // _LP64
   849       }
   850     } else if (r_1->is_Register()) {  // Register argument
   851       Register r = r_1->as_Register();
   852       assert(r != rax, "must be different");
   853       if (r_2->is_valid()) {
   854         //
   855         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   856         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   857         // So we must adjust where to pick up the data to match the interpreter.
   859         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   860                            next_off : ld_off;
   862         // this can be a misaligned move
   863         __ movptr(r, Address(saved_sp, offset));
   864 #ifndef _LP64
   865         assert(r_2->as_Register() != rax, "need another temporary register");
   866         // Remember r_1 is low address (and LSB on x86)
   867         // So r_2 gets loaded from high address regardless of the platform
   868         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   869 #endif // _LP64
   870       } else {
   871         __ movl(r, Address(saved_sp, ld_off));
   872       }
   873     } else {
   874       assert(r_1->is_XMMRegister(), "");
   875       if (!r_2->is_valid()) {
   876         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   877       } else {
   878         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   879       }
   880     }
   881   }
   883   // 6243940 We might end up in handle_wrong_method if
   884   // the callee is deoptimized as we race thru here. If that
   885   // happens we don't want to take a safepoint because the
   886   // caller frame will look interpreted and arguments are now
   887   // "compiled" so it is much better to make this transition
   888   // invisible to the stack walking code. Unfortunately if
   889   // we try and find the callee by normal means a safepoint
   890   // is possible. So we stash the desired callee in the thread
   891   // and the vm will find there should this case occur.
   893   __ get_thread(rax);
   894   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   896   // move methodOop to rax, in case we end up in an c2i adapter.
   897   // the c2i adapters expect methodOop in rax, (c2) because c2's
   898   // resolve stubs return the result (the method) in rax,.
   899   // I'd love to fix this.
   900   __ mov(rax, rbx);
   902   __ jmp(rdi);
   903 }
   905 // ---------------------------------------------------------------
   906 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   907                                                             int total_args_passed,
   908                                                             int comp_args_on_stack,
   909                                                             const BasicType *sig_bt,
   910                                                             const VMRegPair *regs) {
   911   address i2c_entry = __ pc();
   913   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   915   // -------------------------------------------------------------------------
   916   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   917   // to the interpreter.  The args start out packed in the compiled layout.  They
   918   // need to be unpacked into the interpreter layout.  This will almost always
   919   // require some stack space.  We grow the current (compiled) stack, then repack
   920   // the args.  We  finally end in a jump to the generic interpreter entry point.
   921   // On exit from the interpreter, the interpreter will restore our SP (lest the
   922   // compiled code, which relys solely on SP and not EBP, get sick).
   924   address c2i_unverified_entry = __ pc();
   925   Label skip_fixup;
   927   Register holder = rax;
   928   Register receiver = rcx;
   929   Register temp = rbx;
   931   {
   933     Label missed;
   935     __ verify_oop(holder);
   936     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   937     __ verify_oop(temp);
   939     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   940     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   941     __ jcc(Assembler::notEqual, missed);
   942     // Method might have been compiled since the call site was patched to
   943     // interpreted if that is the case treat it as a miss so we can get
   944     // the call site corrected.
   945     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   946     __ jcc(Assembler::equal, skip_fixup);
   948     __ bind(missed);
   949     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   950   }
   952   address c2i_entry = __ pc();
   954   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   956   __ flush();
   957   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
   958 }
   960 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   961                                          VMRegPair *regs,
   962                                          int total_args_passed) {
   963 // We return the amount of VMRegImpl stack slots we need to reserve for all
   964 // the arguments NOT counting out_preserve_stack_slots.
   966   uint    stack = 0;        // All arguments on stack
   968   for( int i = 0; i < total_args_passed; i++) {
   969     // From the type and the argument number (count) compute the location
   970     switch( sig_bt[i] ) {
   971     case T_BOOLEAN:
   972     case T_CHAR:
   973     case T_FLOAT:
   974     case T_BYTE:
   975     case T_SHORT:
   976     case T_INT:
   977     case T_OBJECT:
   978     case T_ARRAY:
   979     case T_ADDRESS:
   980       regs[i].set1(VMRegImpl::stack2reg(stack++));
   981       break;
   982     case T_LONG:
   983     case T_DOUBLE: // The stack numbering is reversed from Java
   984       // Since C arguments do not get reversed, the ordering for
   985       // doubles on the stack must be opposite the Java convention
   986       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   987       regs[i].set2(VMRegImpl::stack2reg(stack));
   988       stack += 2;
   989       break;
   990     case T_VOID: regs[i].set_bad(); break;
   991     default:
   992       ShouldNotReachHere();
   993       break;
   994     }
   995   }
   996   return stack;
   997 }
   999 // A simple move of integer like type
  1000 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1001   if (src.first()->is_stack()) {
  1002     if (dst.first()->is_stack()) {
  1003       // stack to stack
  1004       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1005       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1006       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
  1007       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1008     } else {
  1009       // stack to reg
  1010       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
  1012   } else if (dst.first()->is_stack()) {
  1013     // reg to stack
  1014     // no need to sign extend on 64bit
  1015     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1016   } else {
  1017     if (dst.first() != src.first()) {
  1018       __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1023 // An oop arg. Must pass a handle not the oop itself
  1024 static void object_move(MacroAssembler* masm,
  1025                         OopMap* map,
  1026                         int oop_handle_offset,
  1027                         int framesize_in_slots,
  1028                         VMRegPair src,
  1029                         VMRegPair dst,
  1030                         bool is_receiver,
  1031                         int* receiver_offset) {
  1033   // Because of the calling conventions we know that src can be a
  1034   // register or a stack location. dst can only be a stack location.
  1036   assert(dst.first()->is_stack(), "must be stack");
  1037   // must pass a handle. First figure out the location we use as a handle
  1039   if (src.first()->is_stack()) {
  1040     // Oop is already on the stack as an argument
  1041     Register rHandle = rax;
  1042     Label nil;
  1043     __ xorptr(rHandle, rHandle);
  1044     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1045     __ jcc(Assembler::equal, nil);
  1046     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1047     __ bind(nil);
  1048     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1050     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1051     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1052     if (is_receiver) {
  1053       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1055   } else {
  1056     // Oop is in an a register we must store it to the space we reserve
  1057     // on the stack for oop_handles
  1058     const Register rOop = src.first()->as_Register();
  1059     const Register rHandle = rax;
  1060     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1061     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1062     Label skip;
  1063     __ movptr(Address(rsp, offset), rOop);
  1064     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1065     __ xorptr(rHandle, rHandle);
  1066     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1067     __ jcc(Assembler::equal, skip);
  1068     __ lea(rHandle, Address(rsp, offset));
  1069     __ bind(skip);
  1070     // Store the handle parameter
  1071     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1072     if (is_receiver) {
  1073       *receiver_offset = offset;
  1078 // A float arg may have to do float reg int reg conversion
  1079 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1080   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1082   // Because of the calling convention we know that src is either a stack location
  1083   // or an xmm register. dst can only be a stack location.
  1085   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1087   if (src.first()->is_stack()) {
  1088     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1089     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1090   } else {
  1091     // reg to stack
  1092     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1096 // A long move
  1097 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1099   // The only legal possibility for a long_move VMRegPair is:
  1100   // 1: two stack slots (possibly unaligned)
  1101   // as neither the java  or C calling convention will use registers
  1102   // for longs.
  1104   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1105     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1106     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1107     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1108     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1109     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1110   } else {
  1111     ShouldNotReachHere();
  1115 // A double move
  1116 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1118   // The only legal possibilities for a double_move VMRegPair are:
  1119   // The painful thing here is that like long_move a VMRegPair might be
  1121   // Because of the calling convention we know that src is either
  1122   //   1: a single physical register (xmm registers only)
  1123   //   2: two stack slots (possibly unaligned)
  1124   // dst can only be a pair of stack slots.
  1126   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1128   if (src.first()->is_stack()) {
  1129     // source is all stack
  1130     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1131     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1132     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1133     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1134   } else {
  1135     // reg to stack
  1136     // No worries about stack alignment
  1137     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1142 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1143   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1144   // which by this time is free to use
  1145   switch (ret_type) {
  1146   case T_FLOAT:
  1147     __ fstp_s(Address(rbp, -wordSize));
  1148     break;
  1149   case T_DOUBLE:
  1150     __ fstp_d(Address(rbp, -2*wordSize));
  1151     break;
  1152   case T_VOID:  break;
  1153   case T_LONG:
  1154     __ movptr(Address(rbp, -wordSize), rax);
  1155     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1156     break;
  1157   default: {
  1158     __ movptr(Address(rbp, -wordSize), rax);
  1163 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1164   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1165   // which by this time is free to use
  1166   switch (ret_type) {
  1167   case T_FLOAT:
  1168     __ fld_s(Address(rbp, -wordSize));
  1169     break;
  1170   case T_DOUBLE:
  1171     __ fld_d(Address(rbp, -2*wordSize));
  1172     break;
  1173   case T_LONG:
  1174     __ movptr(rax, Address(rbp, -wordSize));
  1175     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1176     break;
  1177   case T_VOID:  break;
  1178   default: {
  1179     __ movptr(rax, Address(rbp, -wordSize));
  1184 // ---------------------------------------------------------------------------
  1185 // Generate a native wrapper for a given method.  The method takes arguments
  1186 // in the Java compiled code convention, marshals them to the native
  1187 // convention (handlizes oops, etc), transitions to native, makes the call,
  1188 // returns to java state (possibly blocking), unhandlizes any result and
  1189 // returns.
  1190 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1191                                                 methodHandle method,
  1192                                                 int total_in_args,
  1193                                                 int comp_args_on_stack,
  1194                                                 BasicType *in_sig_bt,
  1195                                                 VMRegPair *in_regs,
  1196                                                 BasicType ret_type) {
  1198   // An OopMap for lock (and class if static)
  1199   OopMapSet *oop_maps = new OopMapSet();
  1201   // We have received a description of where all the java arg are located
  1202   // on entry to the wrapper. We need to convert these args to where
  1203   // the jni function will expect them. To figure out where they go
  1204   // we convert the java signature to a C signature by inserting
  1205   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1207   int total_c_args = total_in_args + 1;
  1208   if (method->is_static()) {
  1209     total_c_args++;
  1212   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1213   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1215   int argc = 0;
  1216   out_sig_bt[argc++] = T_ADDRESS;
  1217   if (method->is_static()) {
  1218     out_sig_bt[argc++] = T_OBJECT;
  1221   int i;
  1222   for (i = 0; i < total_in_args ; i++ ) {
  1223     out_sig_bt[argc++] = in_sig_bt[i];
  1227   // Now figure out where the args must be stored and how much stack space
  1228   // they require (neglecting out_preserve_stack_slots but space for storing
  1229   // the 1st six register arguments). It's weird see int_stk_helper.
  1230   //
  1231   int out_arg_slots;
  1232   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1234   // Compute framesize for the wrapper.  We need to handlize all oops in
  1235   // registers a max of 2 on x86.
  1237   // Calculate the total number of stack slots we will need.
  1239   // First count the abi requirement plus all of the outgoing args
  1240   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1242   // Now the space for the inbound oop handle area
  1244   int oop_handle_offset = stack_slots;
  1245   stack_slots += 2*VMRegImpl::slots_per_word;
  1247   // Now any space we need for handlizing a klass if static method
  1249   int klass_slot_offset = 0;
  1250   int klass_offset = -1;
  1251   int lock_slot_offset = 0;
  1252   bool is_static = false;
  1253   int oop_temp_slot_offset = 0;
  1255   if (method->is_static()) {
  1256     klass_slot_offset = stack_slots;
  1257     stack_slots += VMRegImpl::slots_per_word;
  1258     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1259     is_static = true;
  1262   // Plus a lock if needed
  1264   if (method->is_synchronized()) {
  1265     lock_slot_offset = stack_slots;
  1266     stack_slots += VMRegImpl::slots_per_word;
  1269   // Now a place (+2) to save return values or temp during shuffling
  1270   // + 2 for return address (which we own) and saved rbp,
  1271   stack_slots += 4;
  1273   // Ok The space we have allocated will look like:
  1274   //
  1275   //
  1276   // FP-> |                     |
  1277   //      |---------------------|
  1278   //      | 2 slots for moves   |
  1279   //      |---------------------|
  1280   //      | lock box (if sync)  |
  1281   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1282   //      | klass (if static)   |
  1283   //      |---------------------| <- klass_slot_offset
  1284   //      | oopHandle area      |
  1285   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1286   //      | outbound memory     |
  1287   //      | based arguments     |
  1288   //      |                     |
  1289   //      |---------------------|
  1290   //      |                     |
  1291   // SP-> | out_preserved_slots |
  1292   //
  1293   //
  1294   // ****************************************************************************
  1295   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1296   // arguments off of the stack after the jni call. Before the call we can use
  1297   // instructions that are SP relative. After the jni call we switch to FP
  1298   // relative instructions instead of re-adjusting the stack on windows.
  1299   // ****************************************************************************
  1302   // Now compute actual number of stack words we need rounding to make
  1303   // stack properly aligned.
  1304   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1306   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1308   intptr_t start = (intptr_t)__ pc();
  1310   // First thing make an ic check to see if we should even be here
  1312   // We are free to use all registers as temps without saving them and
  1313   // restoring them except rbp,. rbp, is the only callee save register
  1314   // as far as the interpreter and the compiler(s) are concerned.
  1317   const Register ic_reg = rax;
  1318   const Register receiver = rcx;
  1319   Label hit;
  1320   Label exception_pending;
  1323   __ verify_oop(receiver);
  1324   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1325   __ jcc(Assembler::equal, hit);
  1327   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1329   // verified entry must be aligned for code patching.
  1330   // and the first 5 bytes must be in the same cache line
  1331   // if we align at 8 then we will be sure 5 bytes are in the same line
  1332   __ align(8);
  1334   __ bind(hit);
  1336   int vep_offset = ((intptr_t)__ pc()) - start;
  1338 #ifdef COMPILER1
  1339   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1340     // Object.hashCode can pull the hashCode from the header word
  1341     // instead of doing a full VM transition once it's been computed.
  1342     // Since hashCode is usually polymorphic at call sites we can't do
  1343     // this optimization at the call site without a lot of work.
  1344     Label slowCase;
  1345     Register receiver = rcx;
  1346     Register result = rax;
  1347     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1349     // check if locked
  1350     __ testptr(result, markOopDesc::unlocked_value);
  1351     __ jcc (Assembler::zero, slowCase);
  1353     if (UseBiasedLocking) {
  1354       // Check if biased and fall through to runtime if so
  1355       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1356       __ jcc (Assembler::notZero, slowCase);
  1359     // get hash
  1360     __ andptr(result, markOopDesc::hash_mask_in_place);
  1361     // test if hashCode exists
  1362     __ jcc  (Assembler::zero, slowCase);
  1363     __ shrptr(result, markOopDesc::hash_shift);
  1364     __ ret(0);
  1365     __ bind (slowCase);
  1367 #endif // COMPILER1
  1369   // The instruction at the verified entry point must be 5 bytes or longer
  1370   // because it can be patched on the fly by make_non_entrant. The stack bang
  1371   // instruction fits that requirement.
  1373   // Generate stack overflow check
  1375   if (UseStackBanging) {
  1376     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1377   } else {
  1378     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1379     __ fat_nop();
  1382   // Generate a new frame for the wrapper.
  1383   __ enter();
  1384   // -2 because return address is already present and so is saved rbp,
  1385   __ subptr(rsp, stack_size - 2*wordSize);
  1387   // Frame is now completed as far a size and linkage.
  1389   int frame_complete = ((intptr_t)__ pc()) - start;
  1391   // Calculate the difference between rsp and rbp,. We need to know it
  1392   // after the native call because on windows Java Natives will pop
  1393   // the arguments and it is painful to do rsp relative addressing
  1394   // in a platform independent way. So after the call we switch to
  1395   // rbp, relative addressing.
  1397   int fp_adjustment = stack_size - 2*wordSize;
  1399 #ifdef COMPILER2
  1400   // C2 may leave the stack dirty if not in SSE2+ mode
  1401   if (UseSSE >= 2) {
  1402     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1403   } else {
  1404     __ empty_FPU_stack();
  1406 #endif /* COMPILER2 */
  1408   // Compute the rbp, offset for any slots used after the jni call
  1410   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1411   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1413   // We use rdi as a thread pointer because it is callee save and
  1414   // if we load it once it is usable thru the entire wrapper
  1415   const Register thread = rdi;
  1417   // We use rsi as the oop handle for the receiver/klass
  1418   // It is callee save so it survives the call to native
  1420   const Register oop_handle_reg = rsi;
  1422   __ get_thread(thread);
  1425   //
  1426   // We immediately shuffle the arguments so that any vm call we have to
  1427   // make from here on out (sync slow path, jvmti, etc.) we will have
  1428   // captured the oops from our caller and have a valid oopMap for
  1429   // them.
  1431   // -----------------
  1432   // The Grand Shuffle
  1433   //
  1434   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1435   // and, if static, the class mirror instead of a receiver.  This pretty much
  1436   // guarantees that register layout will not match (and x86 doesn't use reg
  1437   // parms though amd does).  Since the native abi doesn't use register args
  1438   // and the java conventions does we don't have to worry about collisions.
  1439   // All of our moved are reg->stack or stack->stack.
  1440   // We ignore the extra arguments during the shuffle and handle them at the
  1441   // last moment. The shuffle is described by the two calling convention
  1442   // vectors we have in our possession. We simply walk the java vector to
  1443   // get the source locations and the c vector to get the destinations.
  1445   int c_arg = method->is_static() ? 2 : 1 ;
  1447   // Record rsp-based slot for receiver on stack for non-static methods
  1448   int receiver_offset = -1;
  1450   // This is a trick. We double the stack slots so we can claim
  1451   // the oops in the caller's frame. Since we are sure to have
  1452   // more args than the caller doubling is enough to make
  1453   // sure we can capture all the incoming oop args from the
  1454   // caller.
  1455   //
  1456   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1458   // Mark location of rbp,
  1459   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1461   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1462   // Are free to temporaries if we have to do  stack to steck moves.
  1463   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1465   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
  1466     switch (in_sig_bt[i]) {
  1467       case T_ARRAY:
  1468       case T_OBJECT:
  1469         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1470                     ((i == 0) && (!is_static)),
  1471                     &receiver_offset);
  1472         break;
  1473       case T_VOID:
  1474         break;
  1476       case T_FLOAT:
  1477         float_move(masm, in_regs[i], out_regs[c_arg]);
  1478           break;
  1480       case T_DOUBLE:
  1481         assert( i + 1 < total_in_args &&
  1482                 in_sig_bt[i + 1] == T_VOID &&
  1483                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1484         double_move(masm, in_regs[i], out_regs[c_arg]);
  1485         break;
  1487       case T_LONG :
  1488         long_move(masm, in_regs[i], out_regs[c_arg]);
  1489         break;
  1491       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1493       default:
  1494         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1498   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1499   // the normal JNI call code.
  1500   if (method->is_static()) {
  1502     //  load opp into a register
  1503     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1505     // Now handlize the static class mirror it's known not-null.
  1506     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1507     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1509     // Now get the handle
  1510     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1511     // store the klass handle as second argument
  1512     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1515   // Change state to native (we save the return address in the thread, since it might not
  1516   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1517   // points into the right code segment. It does not have to be the correct return pc.
  1518   // We use the same pc/oopMap repeatedly when we call out
  1520   intptr_t the_pc = (intptr_t) __ pc();
  1521   oop_maps->add_gc_map(the_pc - start, map);
  1523   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1526   // We have all of the arguments setup at this point. We must not touch any register
  1527   // argument registers at this point (what if we save/restore them there are no oop?
  1530     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1531     __ movoop(rax, JNIHandles::make_local(method()));
  1532     __ call_VM_leaf(
  1533          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1534          thread, rax);
  1538   // These are register definitions we need for locking/unlocking
  1539   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1540   const Register obj_reg  = rcx;  // Will contain the oop
  1541   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1543   Label slow_path_lock;
  1544   Label lock_done;
  1546   // Lock a synchronized method
  1547   if (method->is_synchronized()) {
  1550     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1552     // Get the handle (the 2nd argument)
  1553     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1555     // Get address of the box
  1557     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1559     // Load the oop from the handle
  1560     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1562     if (UseBiasedLocking) {
  1563       // Note that oop_handle_reg is trashed during this call
  1564       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1567     // Load immediate 1 into swap_reg %rax,
  1568     __ movptr(swap_reg, 1);
  1570     // Load (object->mark() | 1) into swap_reg %rax,
  1571     __ orptr(swap_reg, Address(obj_reg, 0));
  1573     // Save (object->mark() | 1) into BasicLock's displaced header
  1574     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1576     if (os::is_MP()) {
  1577       __ lock();
  1580     // src -> dest iff dest == rax, else rax, <- dest
  1581     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1582     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1583     __ jcc(Assembler::equal, lock_done);
  1585     // Test if the oopMark is an obvious stack pointer, i.e.,
  1586     //  1) (mark & 3) == 0, and
  1587     //  2) rsp <= mark < mark + os::pagesize()
  1588     // These 3 tests can be done by evaluating the following
  1589     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1590     // assuming both stack pointer and pagesize have their
  1591     // least significant 2 bits clear.
  1592     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1594     __ subptr(swap_reg, rsp);
  1595     __ andptr(swap_reg, 3 - os::vm_page_size());
  1597     // Save the test result, for recursive case, the result is zero
  1598     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1599     __ jcc(Assembler::notEqual, slow_path_lock);
  1600     // Slow path will re-enter here
  1601     __ bind(lock_done);
  1603     if (UseBiasedLocking) {
  1604       // Re-fetch oop_handle_reg as we trashed it above
  1605       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1610   // Finally just about ready to make the JNI call
  1613   // get JNIEnv* which is first argument to native
  1615   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  1616   __ movptr(Address(rsp, 0), rdx);
  1618   // Now set thread in native
  1619   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1621   __ call(RuntimeAddress(method->native_function()));
  1623   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1624   // arguments off of the stack. We could just re-adjust the stack pointer here
  1625   // and continue to do SP relative addressing but we instead switch to FP
  1626   // relative addressing.
  1628   // Unpack native results.
  1629   switch (ret_type) {
  1630   case T_BOOLEAN: __ c2bool(rax);            break;
  1631   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  1632   case T_BYTE   : __ sign_extend_byte (rax); break;
  1633   case T_SHORT  : __ sign_extend_short(rax); break;
  1634   case T_INT    : /* nothing to do */        break;
  1635   case T_DOUBLE :
  1636   case T_FLOAT  :
  1637     // Result is in st0 we'll save as needed
  1638     break;
  1639   case T_ARRAY:                 // Really a handle
  1640   case T_OBJECT:                // Really a handle
  1641       break; // can't de-handlize until after safepoint check
  1642   case T_VOID: break;
  1643   case T_LONG: break;
  1644   default       : ShouldNotReachHere();
  1647   // Switch thread to "native transition" state before reading the synchronization state.
  1648   // This additional state is necessary because reading and testing the synchronization
  1649   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1650   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1651   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1652   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1653   //     didn't see any synchronization is progress, and escapes.
  1654   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1656   if(os::is_MP()) {
  1657     if (UseMembar) {
  1658       // Force this write out before the read below
  1659       __ membar(Assembler::Membar_mask_bits(
  1660            Assembler::LoadLoad | Assembler::LoadStore |
  1661            Assembler::StoreLoad | Assembler::StoreStore));
  1662     } else {
  1663       // Write serialization page so VM thread can do a pseudo remote membar.
  1664       // We use the current thread pointer to calculate a thread specific
  1665       // offset to write to within the page. This minimizes bus traffic
  1666       // due to cache line collision.
  1667       __ serialize_memory(thread, rcx);
  1671   if (AlwaysRestoreFPU) {
  1672     // Make sure the control word is correct.
  1673     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1676   // check for safepoint operation in progress and/or pending suspend requests
  1677   { Label Continue;
  1679     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1680              SafepointSynchronize::_not_synchronized);
  1682     Label L;
  1683     __ jcc(Assembler::notEqual, L);
  1684     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1685     __ jcc(Assembler::equal, Continue);
  1686     __ bind(L);
  1688     // Don't use call_VM as it will see a possible pending exception and forward it
  1689     // and never return here preventing us from clearing _last_native_pc down below.
  1690     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1691     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1692     // by hand.
  1693     //
  1694     save_native_result(masm, ret_type, stack_slots);
  1695     __ push(thread);
  1696     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1697                                             JavaThread::check_special_condition_for_native_trans)));
  1698     __ increment(rsp, wordSize);
  1699     // Restore any method result value
  1700     restore_native_result(masm, ret_type, stack_slots);
  1702     __ bind(Continue);
  1705   // change thread state
  1706   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1708   Label reguard;
  1709   Label reguard_done;
  1710   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1711   __ jcc(Assembler::equal, reguard);
  1713   // slow path reguard  re-enters here
  1714   __ bind(reguard_done);
  1716   // Handle possible exception (will unlock if necessary)
  1718   // native result if any is live
  1720   // Unlock
  1721   Label slow_path_unlock;
  1722   Label unlock_done;
  1723   if (method->is_synchronized()) {
  1725     Label done;
  1727     // Get locked oop from the handle we passed to jni
  1728     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1730     if (UseBiasedLocking) {
  1731       __ biased_locking_exit(obj_reg, rbx, done);
  1734     // Simple recursive lock?
  1736     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  1737     __ jcc(Assembler::equal, done);
  1739     // Must save rax, if if it is live now because cmpxchg must use it
  1740     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1741       save_native_result(masm, ret_type, stack_slots);
  1744     //  get old displaced header
  1745     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  1747     // get address of the stack lock
  1748     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1750     // Atomic swap old header if oop still contains the stack lock
  1751     if (os::is_MP()) {
  1752     __ lock();
  1755     // src -> dest iff dest == rax, else rax, <- dest
  1756     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  1757     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  1758     __ jcc(Assembler::notEqual, slow_path_unlock);
  1760     // slow path re-enters here
  1761     __ bind(unlock_done);
  1762     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1763       restore_native_result(masm, ret_type, stack_slots);
  1766     __ bind(done);
  1771     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1772     // Tell dtrace about this method exit
  1773     save_native_result(masm, ret_type, stack_slots);
  1774     __ movoop(rax, JNIHandles::make_local(method()));
  1775     __ call_VM_leaf(
  1776          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1777          thread, rax);
  1778     restore_native_result(masm, ret_type, stack_slots);
  1781   // We can finally stop using that last_Java_frame we setup ages ago
  1783   __ reset_last_Java_frame(thread, false, true);
  1785   // Unpack oop result
  1786   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  1787       Label L;
  1788       __ cmpptr(rax, (int32_t)NULL_WORD);
  1789       __ jcc(Assembler::equal, L);
  1790       __ movptr(rax, Address(rax, 0));
  1791       __ bind(L);
  1792       __ verify_oop(rax);
  1795   // reset handle block
  1796   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  1798   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1800   // Any exception pending?
  1801   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1802   __ jcc(Assembler::notEqual, exception_pending);
  1805   // no exception, we're almost done
  1807   // check that only result value is on FPU stack
  1808   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  1810   // Fixup floating pointer results so that result looks like a return from a compiled method
  1811   if (ret_type == T_FLOAT) {
  1812     if (UseSSE >= 1) {
  1813       // Pop st0 and store as float and reload into xmm register
  1814       __ fstp_s(Address(rbp, -4));
  1815       __ movflt(xmm0, Address(rbp, -4));
  1817   } else if (ret_type == T_DOUBLE) {
  1818     if (UseSSE >= 2) {
  1819       // Pop st0 and store as double and reload into xmm register
  1820       __ fstp_d(Address(rbp, -8));
  1821       __ movdbl(xmm0, Address(rbp, -8));
  1825   // Return
  1827   __ leave();
  1828   __ ret(0);
  1830   // Unexpected paths are out of line and go here
  1832   // Slow path locking & unlocking
  1833   if (method->is_synchronized()) {
  1835     // BEGIN Slow path lock
  1837     __ bind(slow_path_lock);
  1839     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  1840     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  1841     __ push(thread);
  1842     __ push(lock_reg);
  1843     __ push(obj_reg);
  1844     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  1845     __ addptr(rsp, 3*wordSize);
  1847 #ifdef ASSERT
  1848     { Label L;
  1849     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  1850     __ jcc(Assembler::equal, L);
  1851     __ stop("no pending exception allowed on exit from monitorenter");
  1852     __ bind(L);
  1854 #endif
  1855     __ jmp(lock_done);
  1857     // END Slow path lock
  1859     // BEGIN Slow path unlock
  1860     __ bind(slow_path_unlock);
  1862     // Slow path unlock
  1864     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1865       save_native_result(masm, ret_type, stack_slots);
  1867     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  1869     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1870     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  1873     // should be a peal
  1874     // +wordSize because of the push above
  1875     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  1876     __ push(rax);
  1878     __ push(obj_reg);
  1879     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  1880     __ addptr(rsp, 2*wordSize);
  1881 #ifdef ASSERT
  1883       Label L;
  1884       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  1885       __ jcc(Assembler::equal, L);
  1886       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  1887       __ bind(L);
  1889 #endif /* ASSERT */
  1891     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  1893     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  1894       restore_native_result(masm, ret_type, stack_slots);
  1896     __ jmp(unlock_done);
  1897     // END Slow path unlock
  1901   // SLOW PATH Reguard the stack if needed
  1903   __ bind(reguard);
  1904   save_native_result(masm, ret_type, stack_slots);
  1906     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1908   restore_native_result(masm, ret_type, stack_slots);
  1909   __ jmp(reguard_done);
  1912   // BEGIN EXCEPTION PROCESSING
  1914   // Forward  the exception
  1915   __ bind(exception_pending);
  1917   // remove possible return value from FPU register stack
  1918   __ empty_FPU_stack();
  1920   // pop our frame
  1921   __ leave();
  1922   // and forward the exception
  1923   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1925   __ flush();
  1927   nmethod *nm = nmethod::new_native_nmethod(method,
  1928                                             masm->code(),
  1929                                             vep_offset,
  1930                                             frame_complete,
  1931                                             stack_slots / VMRegImpl::slots_per_word,
  1932                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  1933                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  1934                                             oop_maps);
  1935   return nm;
  1939 #ifdef HAVE_DTRACE_H
  1940 // ---------------------------------------------------------------------------
  1941 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  1942 // in the Java compiled code convention, marshals them to the native
  1943 // abi and then leaves nops at the position you would expect to call a native
  1944 // function. When the probe is enabled the nops are replaced with a trap
  1945 // instruction that dtrace inserts and the trace will cause a notification
  1946 // to dtrace.
  1947 //
  1948 // The probes are only able to take primitive types and java/lang/String as
  1949 // arguments.  No other java types are allowed. Strings are converted to utf8
  1950 // strings so that from dtrace point of view java strings are converted to C
  1951 // strings. There is an arbitrary fixed limit on the total space that a method
  1952 // can use for converting the strings. (256 chars per string in the signature).
  1953 // So any java string larger then this is truncated.
  1955 nmethod *SharedRuntime::generate_dtrace_nmethod(
  1956     MacroAssembler *masm, methodHandle method) {
  1958   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  1959   // be single threaded in this method.
  1960   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  1962   // Fill in the signature array, for the calling-convention call.
  1963   int total_args_passed = method->size_of_parameters();
  1965   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  1966   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  1968   // The signature we are going to use for the trap that dtrace will see
  1969   // java/lang/String is converted. We drop "this" and any other object
  1970   // is converted to NULL.  (A one-slot java/lang/Long object reference
  1971   // is converted to a two-slot long, which is why we double the allocation).
  1972   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  1973   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  1975   int i=0;
  1976   int total_strings = 0;
  1977   int first_arg_to_pass = 0;
  1978   int total_c_args = 0;
  1980   if( !method->is_static() ) {  // Pass in receiver first
  1981     in_sig_bt[i++] = T_OBJECT;
  1982     first_arg_to_pass = 1;
  1985   // We need to convert the java args to where a native (non-jni) function
  1986   // would expect them. To figure out where they go we convert the java
  1987   // signature to a C signature.
  1989   SignatureStream ss(method->signature());
  1990   for ( ; !ss.at_return_type(); ss.next()) {
  1991     BasicType bt = ss.type();
  1992     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  1993     out_sig_bt[total_c_args++] = bt;
  1994     if( bt == T_OBJECT) {
  1995       symbolOop s = ss.as_symbol_or_null();
  1996       if (s == vmSymbols::java_lang_String()) {
  1997         total_strings++;
  1998         out_sig_bt[total_c_args-1] = T_ADDRESS;
  1999       } else if (s == vmSymbols::java_lang_Boolean() ||
  2000                  s == vmSymbols::java_lang_Character() ||
  2001                  s == vmSymbols::java_lang_Byte() ||
  2002                  s == vmSymbols::java_lang_Short() ||
  2003                  s == vmSymbols::java_lang_Integer() ||
  2004                  s == vmSymbols::java_lang_Float()) {
  2005         out_sig_bt[total_c_args-1] = T_INT;
  2006       } else if (s == vmSymbols::java_lang_Long() ||
  2007                  s == vmSymbols::java_lang_Double()) {
  2008         out_sig_bt[total_c_args-1] = T_LONG;
  2009         out_sig_bt[total_c_args++] = T_VOID;
  2011     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2012       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2013       out_sig_bt[total_c_args++] = T_VOID;
  2017   assert(i==total_args_passed, "validly parsed signature");
  2019   // Now get the compiled-Java layout as input arguments
  2020   int comp_args_on_stack;
  2021   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2022       in_sig_bt, in_regs, total_args_passed, false);
  2024   // Now figure out where the args must be stored and how much stack space
  2025   // they require (neglecting out_preserve_stack_slots).
  2027   int out_arg_slots;
  2028   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2030   // Calculate the total number of stack slots we will need.
  2032   // First count the abi requirement plus all of the outgoing args
  2033   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2035   // Now space for the string(s) we must convert
  2037   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2038   for (i = 0; i < total_strings ; i++) {
  2039     string_locs[i] = stack_slots;
  2040     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2043   // + 2 for return address (which we own) and saved rbp,
  2045   stack_slots += 2;
  2047   // Ok The space we have allocated will look like:
  2048   //
  2049   //
  2050   // FP-> |                     |
  2051   //      |---------------------|
  2052   //      | string[n]           |
  2053   //      |---------------------| <- string_locs[n]
  2054   //      | string[n-1]         |
  2055   //      |---------------------| <- string_locs[n-1]
  2056   //      | ...                 |
  2057   //      | ...                 |
  2058   //      |---------------------| <- string_locs[1]
  2059   //      | string[0]           |
  2060   //      |---------------------| <- string_locs[0]
  2061   //      | outbound memory     |
  2062   //      | based arguments     |
  2063   //      |                     |
  2064   //      |---------------------|
  2065   //      |                     |
  2066   // SP-> | out_preserved_slots |
  2067   //
  2068   //
  2070   // Now compute actual number of stack words we need rounding to make
  2071   // stack properly aligned.
  2072   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2074   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2076   intptr_t start = (intptr_t)__ pc();
  2078   // First thing make an ic check to see if we should even be here
  2080   // We are free to use all registers as temps without saving them and
  2081   // restoring them except rbp. rbp, is the only callee save register
  2082   // as far as the interpreter and the compiler(s) are concerned.
  2084   const Register ic_reg = rax;
  2085   const Register receiver = rcx;
  2086   Label hit;
  2087   Label exception_pending;
  2090   __ verify_oop(receiver);
  2091   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2092   __ jcc(Assembler::equal, hit);
  2094   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2096   // verified entry must be aligned for code patching.
  2097   // and the first 5 bytes must be in the same cache line
  2098   // if we align at 8 then we will be sure 5 bytes are in the same line
  2099   __ align(8);
  2101   __ bind(hit);
  2103   int vep_offset = ((intptr_t)__ pc()) - start;
  2106   // The instruction at the verified entry point must be 5 bytes or longer
  2107   // because it can be patched on the fly by make_non_entrant. The stack bang
  2108   // instruction fits that requirement.
  2110   // Generate stack overflow check
  2113   if (UseStackBanging) {
  2114     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2115       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2116     } else {
  2117       __ movl(rax, stack_size);
  2118       __ bang_stack_size(rax, rbx);
  2120   } else {
  2121     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2122     __ fat_nop();
  2125   assert(((int)__ pc() - start - vep_offset) >= 5,
  2126          "valid size for make_non_entrant");
  2128   // Generate a new frame for the wrapper.
  2129   __ enter();
  2131   // -2 because return address is already present and so is saved rbp,
  2132   if (stack_size - 2*wordSize != 0) {
  2133     __ subl(rsp, stack_size - 2*wordSize);
  2136   // Frame is now completed as far a size and linkage.
  2138   int frame_complete = ((intptr_t)__ pc()) - start;
  2140   // First thing we do store all the args as if we are doing the call.
  2141   // Since the C calling convention is stack based that ensures that
  2142   // all the Java register args are stored before we need to convert any
  2143   // string we might have.
  2145   int sid = 0;
  2146   int c_arg, j_arg;
  2147   int string_reg = 0;
  2149   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2150        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2152     VMRegPair src = in_regs[j_arg];
  2153     VMRegPair dst = out_regs[c_arg];
  2154     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2155            "stack based abi assumed");
  2157     switch (in_sig_bt[j_arg]) {
  2159       case T_ARRAY:
  2160       case T_OBJECT:
  2161         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2162           // Any register based arg for a java string after the first
  2163           // will be destroyed by the call to get_utf so we store
  2164           // the original value in the location the utf string address
  2165           // will eventually be stored.
  2166           if (src.first()->is_reg()) {
  2167             if (string_reg++ != 0) {
  2168               simple_move32(masm, src, dst);
  2171         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2172           // need to unbox a one-word value
  2173           Register in_reg = rax;
  2174           if ( src.first()->is_reg() ) {
  2175             in_reg = src.first()->as_Register();
  2176           } else {
  2177             simple_move32(masm, src, in_reg->as_VMReg());
  2179           Label skipUnbox;
  2180           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2181           if ( out_sig_bt[c_arg] == T_LONG ) {
  2182             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2184           __ testl(in_reg, in_reg);
  2185           __ jcc(Assembler::zero, skipUnbox);
  2186           assert(dst.first()->is_stack() &&
  2187                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2188                  "value(s) must go into stack slots");
  2190           BasicType bt = out_sig_bt[c_arg];
  2191           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2192           if ( bt == T_LONG ) {
  2193             __ movl(rbx, Address(in_reg,
  2194                                  box_offset + VMRegImpl::stack_slot_size));
  2195             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2197           __ movl(in_reg,  Address(in_reg, box_offset));
  2198           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2199           __ bind(skipUnbox);
  2200         } else {
  2201           // Convert the arg to NULL
  2202           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2204         if (out_sig_bt[c_arg] == T_LONG) {
  2205           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2206           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2208         break;
  2210       case T_VOID:
  2211         break;
  2213       case T_FLOAT:
  2214         float_move(masm, src, dst);
  2215         break;
  2217       case T_DOUBLE:
  2218         assert( j_arg + 1 < total_args_passed &&
  2219                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2220         double_move(masm, src, dst);
  2221         break;
  2223       case T_LONG :
  2224         long_move(masm, src, dst);
  2225         break;
  2227       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2229       default:
  2230         simple_move32(masm, src, dst);
  2234   // Now we must convert any string we have to utf8
  2235   //
  2237   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2238        sid < total_strings ; j_arg++, c_arg++ ) {
  2240     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2242       Address utf8_addr = Address(
  2243           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2244       __ leal(rax, utf8_addr);
  2246       // The first string we find might still be in the original java arg
  2247       // register
  2248       VMReg orig_loc = in_regs[j_arg].first();
  2249       Register string_oop;
  2251       // This is where the argument will eventually reside
  2252       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2254       if (sid == 1 && orig_loc->is_reg()) {
  2255         string_oop = orig_loc->as_Register();
  2256         assert(string_oop != rax, "smashed arg");
  2257       } else {
  2259         if (orig_loc->is_reg()) {
  2260           // Get the copy of the jls object
  2261           __ movl(rcx, dest);
  2262         } else {
  2263           // arg is still in the original location
  2264           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2266         string_oop = rcx;
  2269       Label nullString;
  2270       __ movl(dest, NULL_WORD);
  2271       __ testl(string_oop, string_oop);
  2272       __ jcc(Assembler::zero, nullString);
  2274       // Now we can store the address of the utf string as the argument
  2275       __ movl(dest, rax);
  2277       // And do the conversion
  2278       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2279              address, SharedRuntime::get_utf), string_oop, rax);
  2280       __ bind(nullString);
  2283     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2284       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2285       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2290   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2291   // patch in the trap
  2293   int patch_offset = ((intptr_t)__ pc()) - start;
  2295   __ nop();
  2298   // Return
  2300   __ leave();
  2301   __ ret(0);
  2303   __ flush();
  2305   nmethod *nm = nmethod::new_dtrace_nmethod(
  2306       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2307       stack_slots / VMRegImpl::slots_per_word);
  2308   return nm;
  2312 #endif // HAVE_DTRACE_H
  2314 // this function returns the adjust size (in number of words) to a c2i adapter
  2315 // activation for use during deoptimization
  2316 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2317   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  2321 uint SharedRuntime::out_preserve_stack_slots() {
  2322   return 0;
  2326 //------------------------------generate_deopt_blob----------------------------
  2327 void SharedRuntime::generate_deopt_blob() {
  2328   // allocate space for the code
  2329   ResourceMark rm;
  2330   // setup code generation tools
  2331   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2332   MacroAssembler* masm = new MacroAssembler(&buffer);
  2333   int frame_size_in_words;
  2334   OopMap* map = NULL;
  2335   // Account for the extra args we place on the stack
  2336   // by the time we call fetch_unroll_info
  2337   const int additional_words = 2; // deopt kind, thread
  2339   OopMapSet *oop_maps = new OopMapSet();
  2341   // -------------
  2342   // This code enters when returning to a de-optimized nmethod.  A return
  2343   // address has been pushed on the the stack, and return values are in
  2344   // registers.
  2345   // If we are doing a normal deopt then we were called from the patched
  2346   // nmethod from the point we returned to the nmethod. So the return
  2347   // address on the stack is wrong by NativeCall::instruction_size
  2348   // We will adjust the value to it looks like we have the original return
  2349   // address on the stack (like when we eagerly deoptimized).
  2350   // In the case of an exception pending with deoptimized then we enter
  2351   // with a return address on the stack that points after the call we patched
  2352   // into the exception handler. We have the following register state:
  2353   //    rax,: exception
  2354   //    rbx,: exception handler
  2355   //    rdx: throwing pc
  2356   // So in this case we simply jam rdx into the useless return address and
  2357   // the stack looks just like we want.
  2358   //
  2359   // At this point we need to de-opt.  We save the argument return
  2360   // registers.  We call the first C routine, fetch_unroll_info().  This
  2361   // routine captures the return values and returns a structure which
  2362   // describes the current frame size and the sizes of all replacement frames.
  2363   // The current frame is compiled code and may contain many inlined
  2364   // functions, each with their own JVM state.  We pop the current frame, then
  2365   // push all the new frames.  Then we call the C routine unpack_frames() to
  2366   // populate these frames.  Finally unpack_frames() returns us the new target
  2367   // address.  Notice that callee-save registers are BLOWN here; they have
  2368   // already been captured in the vframeArray at the time the return PC was
  2369   // patched.
  2370   address start = __ pc();
  2371   Label cont;
  2373   // Prolog for non exception case!
  2375   // Save everything in sight.
  2377   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2378   // Normal deoptimization
  2379   __ push(Deoptimization::Unpack_deopt);
  2380   __ jmp(cont);
  2382   int reexecute_offset = __ pc() - start;
  2384   // Reexecute case
  2385   // return address is the pc describes what bci to do re-execute at
  2387   // No need to update map as each call to save_live_registers will produce identical oopmap
  2388   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2390   __ push(Deoptimization::Unpack_reexecute);
  2391   __ jmp(cont);
  2393   int exception_offset = __ pc() - start;
  2395   // Prolog for exception case
  2397   // all registers are dead at this entry point, except for rax, and
  2398   // rdx which contain the exception oop and exception pc
  2399   // respectively.  Set them in TLS and fall thru to the
  2400   // unpack_with_exception_in_tls entry point.
  2402   __ get_thread(rdi);
  2403   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2404   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2406   int exception_in_tls_offset = __ pc() - start;
  2408   // new implementation because exception oop is now passed in JavaThread
  2410   // Prolog for exception case
  2411   // All registers must be preserved because they might be used by LinearScan
  2412   // Exceptiop oop and throwing PC are passed in JavaThread
  2413   // tos: stack at point of call to method that threw the exception (i.e. only
  2414   // args are on the stack, no return address)
  2416   // make room on stack for the return address
  2417   // It will be patched later with the throwing pc. The correct value is not
  2418   // available now because loading it from memory would destroy registers.
  2419   __ push(0);
  2421   // Save everything in sight.
  2423   // No need to update map as each call to save_live_registers will produce identical oopmap
  2424   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words);
  2426   // Now it is safe to overwrite any register
  2428   // store the correct deoptimization type
  2429   __ push(Deoptimization::Unpack_exception);
  2431   // load throwing pc from JavaThread and patch it as the return address
  2432   // of the current frame. Then clear the field in JavaThread
  2433   __ get_thread(rdi);
  2434   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2435   __ movptr(Address(rbp, wordSize), rdx);
  2436   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2438 #ifdef ASSERT
  2439   // verify that there is really an exception oop in JavaThread
  2440   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2441   __ verify_oop(rax);
  2443   // verify that there is no pending exception
  2444   Label no_pending_exception;
  2445   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2446   __ testptr(rax, rax);
  2447   __ jcc(Assembler::zero, no_pending_exception);
  2448   __ stop("must not have pending exception here");
  2449   __ bind(no_pending_exception);
  2450 #endif
  2452   __ bind(cont);
  2454   // Compiled code leaves the floating point stack dirty, empty it.
  2455   __ empty_FPU_stack();
  2458   // Call C code.  Need thread and this frame, but NOT official VM entry
  2459   // crud.  We cannot block on this call, no GC can happen.
  2460   __ get_thread(rcx);
  2461   __ push(rcx);
  2462   // fetch_unroll_info needs to call last_java_frame()
  2463   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2465   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2467   // Need to have an oopmap that tells fetch_unroll_info where to
  2468   // find any register it might need.
  2470   oop_maps->add_gc_map( __ pc()-start, map);
  2472   // Discard arg to fetch_unroll_info
  2473   __ pop(rcx);
  2475   __ get_thread(rcx);
  2476   __ reset_last_Java_frame(rcx, false, false);
  2478   // Load UnrollBlock into EDI
  2479   __ mov(rdi, rax);
  2481   // Move the unpack kind to a safe place in the UnrollBlock because
  2482   // we are very short of registers
  2484   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2485   // retrieve the deopt kind from where we left it.
  2486   __ pop(rax);
  2487   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2489    Label noException;
  2490   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2491   __ jcc(Assembler::notEqual, noException);
  2492   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2493   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2494   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2495   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2497   __ verify_oop(rax);
  2499   // Overwrite the result registers with the exception results.
  2500   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2501   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2503   __ bind(noException);
  2505   // Stack is back to only having register save data on the stack.
  2506   // Now restore the result registers. Everything else is either dead or captured
  2507   // in the vframeArray.
  2509   RegisterSaver::restore_result_registers(masm);
  2511   // All of the register save area has been popped of the stack. Only the
  2512   // return address remains.
  2514   // Pop all the frames we must move/replace.
  2515   //
  2516   // Frame picture (youngest to oldest)
  2517   // 1: self-frame (no frame link)
  2518   // 2: deopting frame  (no frame link)
  2519   // 3: caller of deopting frame (could be compiled/interpreted).
  2520   //
  2521   // Note: by leaving the return address of self-frame on the stack
  2522   // and using the size of frame 2 to adjust the stack
  2523   // when we are done the return to frame 3 will still be on the stack.
  2525   // Pop deoptimized frame
  2526   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2528   // sp should be pointing at the return address to the caller (3)
  2530   // Stack bang to make sure there's enough room for these interpreter frames.
  2531   if (UseStackBanging) {
  2532     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2533     __ bang_stack_size(rbx, rcx);
  2536   // Load array of frame pcs into ECX
  2537   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2539   __ pop(rsi); // trash the old pc
  2541   // Load array of frame sizes into ESI
  2542   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2544   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2546   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2547   __ movl(counter, rbx);
  2549   // Pick up the initial fp we should save
  2550   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2552   // Now adjust the caller's stack to make up for the extra locals
  2553   // but record the original sp so that we can save it in the skeletal interpreter
  2554   // frame and the stack walking of interpreter_sender will get the unextended sp
  2555   // value and not the "real" sp value.
  2557   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2558   __ movptr(sp_temp, rsp);
  2559   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2560   __ subptr(rsp, rbx);
  2562   // Push interpreter frames in a loop
  2563   Label loop;
  2564   __ bind(loop);
  2565   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2566 #ifdef CC_INTERP
  2567   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2568 #ifdef ASSERT
  2569   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2570   __ push(0xDEADDEAD);
  2571 #else /* ASSERT */
  2572   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2573 #endif /* ASSERT */
  2574 #else /* CC_INTERP */
  2575   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2576 #endif /* CC_INTERP */
  2577   __ pushptr(Address(rcx, 0));          // save return address
  2578   __ enter();                           // save old & set new rbp,
  2579   __ subptr(rsp, rbx);                  // Prolog!
  2580   __ movptr(rbx, sp_temp);              // sender's sp
  2581 #ifdef CC_INTERP
  2582   __ movptr(Address(rbp,
  2583                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2584           rbx); // Make it walkable
  2585 #else /* CC_INTERP */
  2586   // This value is corrected by layout_activation_impl
  2587   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  2588   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2589 #endif /* CC_INTERP */
  2590   __ movptr(sp_temp, rsp);              // pass to next frame
  2591   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2592   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2593   __ decrementl(counter);             // decrement counter
  2594   __ jcc(Assembler::notZero, loop);
  2595   __ pushptr(Address(rcx, 0));          // save final return address
  2597   // Re-push self-frame
  2598   __ enter();                           // save old & set new rbp,
  2600   //  Return address and rbp, are in place
  2601   // We'll push additional args later. Just allocate a full sized
  2602   // register save area
  2603   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  2605   // Restore frame locals after moving the frame
  2606   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2607   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2608   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  2609   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2610   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2612   // Set up the args to unpack_frame
  2614   __ pushl(unpack_kind);                     // get the unpack_kind value
  2615   __ get_thread(rcx);
  2616   __ push(rcx);
  2618   // set last_Java_sp, last_Java_fp
  2619   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  2621   // Call C code.  Need thread but NOT official VM entry
  2622   // crud.  We cannot block on this call, no GC can happen.  Call should
  2623   // restore return values to their stack-slots with the new SP.
  2624   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2625   // Set an oopmap for the call site
  2626   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  2628   // rax, contains the return result type
  2629   __ push(rax);
  2631   __ get_thread(rcx);
  2632   __ reset_last_Java_frame(rcx, false, false);
  2634   // Collect return values
  2635   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  2636   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  2638   // Clear floating point stack before returning to interpreter
  2639   __ empty_FPU_stack();
  2641   // Check if we should push the float or double return value.
  2642   Label results_done, yes_double_value;
  2643   __ cmpl(Address(rsp, 0), T_DOUBLE);
  2644   __ jcc (Assembler::zero, yes_double_value);
  2645   __ cmpl(Address(rsp, 0), T_FLOAT);
  2646   __ jcc (Assembler::notZero, results_done);
  2648   // return float value as expected by interpreter
  2649   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2650   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2651   __ jmp(results_done);
  2653   // return double value as expected by interpreter
  2654   __ bind(yes_double_value);
  2655   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2656   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2658   __ bind(results_done);
  2660   // Pop self-frame.
  2661   __ leave();                              // Epilog!
  2663   // Jump to interpreter
  2664   __ ret(0);
  2666   // -------------
  2667   // make sure all code is generated
  2668   masm->flush();
  2670   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2671   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2675 #ifdef COMPILER2
  2676 //------------------------------generate_uncommon_trap_blob--------------------
  2677 void SharedRuntime::generate_uncommon_trap_blob() {
  2678   // allocate space for the code
  2679   ResourceMark rm;
  2680   // setup code generation tools
  2681   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  2682   MacroAssembler* masm = new MacroAssembler(&buffer);
  2684   enum frame_layout {
  2685     arg0_off,      // thread                     sp + 0 // Arg location for
  2686     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  2687     // The frame sender code expects that rbp will be in the "natural" place and
  2688     // will override any oopMap setting for it. We must therefore force the layout
  2689     // so that it agrees with the frame sender code.
  2690     rbp_off,       // callee saved register      sp + 2
  2691     return_off,    // slot for return address    sp + 3
  2692     framesize
  2693   };
  2695   address start = __ pc();
  2696   // Push self-frame.
  2697   __ subptr(rsp, return_off*wordSize);     // Epilog!
  2699   // rbp, is an implicitly saved callee saved register (i.e. the calling
  2700   // convention will save restore it in prolog/epilog) Other than that
  2701   // there are no callee save registers no that adapter frames are gone.
  2702   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  2704   // Clear the floating point exception stack
  2705   __ empty_FPU_stack();
  2707   // set last_Java_sp
  2708   __ get_thread(rdx);
  2709   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  2711   // Call C code.  Need thread but NOT official VM entry
  2712   // crud.  We cannot block on this call, no GC can happen.  Call should
  2713   // capture callee-saved registers as well as return values.
  2714   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  2715   // argument already in ECX
  2716   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  2717   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2719   // Set an oopmap for the call site
  2720   OopMapSet *oop_maps = new OopMapSet();
  2721   OopMap* map =  new OopMap( framesize, 0 );
  2722   // No oopMap for rbp, it is known implicitly
  2724   oop_maps->add_gc_map( __ pc()-start, map);
  2726   __ get_thread(rcx);
  2728   __ reset_last_Java_frame(rcx, false, false);
  2730   // Load UnrollBlock into EDI
  2731   __ movptr(rdi, rax);
  2733   // Pop all the frames we must move/replace.
  2734   //
  2735   // Frame picture (youngest to oldest)
  2736   // 1: self-frame (no frame link)
  2737   // 2: deopting frame  (no frame link)
  2738   // 3: caller of deopting frame (could be compiled/interpreted).
  2740   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  2741   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  2743   // Pop deoptimized frame
  2744   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2745   __ addptr(rsp, rcx);
  2747   // sp should be pointing at the return address to the caller (3)
  2749   // Stack bang to make sure there's enough room for these interpreter frames.
  2750   if (UseStackBanging) {
  2751     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2752     __ bang_stack_size(rbx, rcx);
  2756   // Load array of frame pcs into ECX
  2757   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2759   __ pop(rsi); // trash the pc
  2761   // Load array of frame sizes into ESI
  2762   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2764   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2766   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2767   __ movl(counter, rbx);
  2769   // Pick up the initial fp we should save
  2770   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
  2772   // Now adjust the caller's stack to make up for the extra locals
  2773   // but record the original sp so that we can save it in the skeletal interpreter
  2774   // frame and the stack walking of interpreter_sender will get the unextended sp
  2775   // value and not the "real" sp value.
  2777   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2778   __ movptr(sp_temp, rsp);
  2779   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2780   __ subptr(rsp, rbx);
  2782   // Push interpreter frames in a loop
  2783   Label loop;
  2784   __ bind(loop);
  2785   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2786 #ifdef CC_INTERP
  2787   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2788 #ifdef ASSERT
  2789   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2790   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  2791 #else /* ASSERT */
  2792   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2793 #endif /* ASSERT */
  2794 #else /* CC_INTERP */
  2795   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2796 #endif /* CC_INTERP */
  2797   __ pushptr(Address(rcx, 0));          // save return address
  2798   __ enter();                           // save old & set new rbp,
  2799   __ subptr(rsp, rbx);                  // Prolog!
  2800   __ movptr(rbx, sp_temp);              // sender's sp
  2801 #ifdef CC_INTERP
  2802   __ movptr(Address(rbp,
  2803                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2804           rbx); // Make it walkable
  2805 #else /* CC_INTERP */
  2806   // This value is corrected by layout_activation_impl
  2807   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  2808   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2809 #endif /* CC_INTERP */
  2810   __ movptr(sp_temp, rsp);              // pass to next frame
  2811   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2812   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2813   __ decrementl(counter);             // decrement counter
  2814   __ jcc(Assembler::notZero, loop);
  2815   __ pushptr(Address(rcx, 0));            // save final return address
  2817   // Re-push self-frame
  2818   __ enter();                           // save old & set new rbp,
  2819   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  2822   // set last_Java_sp, last_Java_fp
  2823   __ get_thread(rdi);
  2824   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  2826   // Call C code.  Need thread but NOT official VM entry
  2827   // crud.  We cannot block on this call, no GC can happen.  Call should
  2828   // restore return values to their stack-slots with the new SP.
  2829   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  2830   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  2831   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2832   // Set an oopmap for the call site
  2833   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  2835   __ get_thread(rdi);
  2836   __ reset_last_Java_frame(rdi, true, false);
  2838   // Pop self-frame.
  2839   __ leave();     // Epilog!
  2841   // Jump to interpreter
  2842   __ ret(0);
  2844   // -------------
  2845   // make sure all code is generated
  2846   masm->flush();
  2848    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  2850 #endif // COMPILER2
  2852 //------------------------------generate_handler_blob------
  2853 //
  2854 // Generate a special Compile2Runtime blob that saves all registers,
  2855 // setup oopmap, and calls safepoint code to stop the compiled code for
  2856 // a safepoint.
  2857 //
  2858 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  2860   // Account for thread arg in our frame
  2861   const int additional_words = 1;
  2862   int frame_size_in_words;
  2864   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2866   ResourceMark rm;
  2867   OopMapSet *oop_maps = new OopMapSet();
  2868   OopMap* map;
  2870   // allocate space for the code
  2871   // setup code generation tools
  2872   CodeBuffer   buffer("handler_blob", 1024, 512);
  2873   MacroAssembler* masm = new MacroAssembler(&buffer);
  2875   const Register java_thread = rdi; // callee-saved for VC++
  2876   address start   = __ pc();
  2877   address call_pc = NULL;
  2879   // If cause_return is true we are at a poll_return and there is
  2880   // the return address on the stack to the caller on the nmethod
  2881   // that is safepoint. We can leave this return on the stack and
  2882   // effectively complete the return and safepoint in the caller.
  2883   // Otherwise we push space for a return address that the safepoint
  2884   // handler will install later to make the stack walking sensible.
  2885   if( !cause_return )
  2886     __ push(rbx);                // Make room for return address (or push it again)
  2888   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2890   // The following is basically a call_VM. However, we need the precise
  2891   // address of the call in order to generate an oopmap. Hence, we do all the
  2892   // work ourselves.
  2894   // Push thread argument and setup last_Java_sp
  2895   __ get_thread(java_thread);
  2896   __ push(java_thread);
  2897   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  2899   // if this was not a poll_return then we need to correct the return address now.
  2900   if( !cause_return ) {
  2901     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  2902     __ movptr(Address(rbp, wordSize), rax);
  2905   // do the call
  2906   __ call(RuntimeAddress(call_ptr));
  2908   // Set an oopmap for the call site.  This oopmap will map all
  2909   // oop-registers and debug-info registers as callee-saved.  This
  2910   // will allow deoptimization at this safepoint to find all possible
  2911   // debug-info recordings, as well as let GC find all oops.
  2913   oop_maps->add_gc_map( __ pc() - start, map);
  2915   // Discard arg
  2916   __ pop(rcx);
  2918   Label noException;
  2920   // Clear last_Java_sp again
  2921   __ get_thread(java_thread);
  2922   __ reset_last_Java_frame(java_thread, false, false);
  2924   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2925   __ jcc(Assembler::equal, noException);
  2927   // Exception pending
  2929   RegisterSaver::restore_live_registers(masm);
  2931   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2933   __ bind(noException);
  2935   // Normal exit, register restoring and exit
  2936   RegisterSaver::restore_live_registers(masm);
  2938   __ ret(0);
  2940   // make sure all code is generated
  2941   masm->flush();
  2943   // Fill-out other meta info
  2944   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  2947 //
  2948 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  2949 //
  2950 // Generate a stub that calls into vm to find out the proper destination
  2951 // of a java call. All the argument registers are live at this point
  2952 // but since this is generic code we don't know what they are and the caller
  2953 // must do any gc of the args.
  2954 //
  2955 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  2956   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  2958   // allocate space for the code
  2959   ResourceMark rm;
  2961   CodeBuffer buffer(name, 1000, 512);
  2962   MacroAssembler* masm                = new MacroAssembler(&buffer);
  2964   int frame_size_words;
  2965   enum frame_layout {
  2966                 thread_off,
  2967                 extra_words };
  2969   OopMapSet *oop_maps = new OopMapSet();
  2970   OopMap* map = NULL;
  2972   int start = __ offset();
  2974   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  2976   int frame_complete = __ offset();
  2978   const Register thread = rdi;
  2979   __ get_thread(rdi);
  2981   __ push(thread);
  2982   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  2984   __ call(RuntimeAddress(destination));
  2987   // Set an oopmap for the call site.
  2988   // We need this not only for callee-saved registers, but also for volatile
  2989   // registers that the compiler might be keeping live across a safepoint.
  2991   oop_maps->add_gc_map( __ offset() - start, map);
  2993   // rax, contains the address we are going to jump to assuming no exception got installed
  2995   __ addptr(rsp, wordSize);
  2997   // clear last_Java_sp
  2998   __ reset_last_Java_frame(thread, true, false);
  2999   // check for pending exceptions
  3000   Label pending;
  3001   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3002   __ jcc(Assembler::notEqual, pending);
  3004   // get the returned methodOop
  3005   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  3006   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3008   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3010   RegisterSaver::restore_live_registers(masm);
  3012   // We are back the the original state on entry and ready to go.
  3014   __ jmp(rax);
  3016   // Pending exception after the safepoint
  3018   __ bind(pending);
  3020   RegisterSaver::restore_live_registers(masm);
  3022   // exception pending => remove activation and forward to exception handler
  3024   __ get_thread(thread);
  3025   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3026   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3027   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3029   // -------------
  3030   // make sure all code is generated
  3031   masm->flush();
  3033   // return the  blob
  3034   // frame_size_words or bytes??
  3035   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  3038 void SharedRuntime::generate_stubs() {
  3040   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3041                                         "wrong_method_stub");
  3043   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3044                                         "ic_miss_stub");
  3046   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3047                                         "resolve_opt_virtual_call");
  3049   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3050                                         "resolve_virtual_call");
  3052   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3053                                         "resolve_static_call");
  3055   _polling_page_safepoint_handler_blob =
  3056     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3057                    SafepointSynchronize::handle_polling_page_exception), false);
  3059   _polling_page_return_handler_blob =
  3060     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3061                    SafepointSynchronize::handle_polling_page_exception), true);
  3063   generate_deopt_blob();
  3064 #ifdef COMPILER2
  3065   generate_uncommon_trap_blob();
  3066 #endif // COMPILER2

mercurial