src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Mon, 20 Aug 2012 09:58:58 -0700

author
kvn
date
Mon, 20 Aug 2012 09:58:58 -0700
changeset 4002
09aad8452938
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

7190310: Inlining WeakReference.get(), and hoisting $referent may lead to non-terminating loops
Summary: In C2 add software membar after load from Reference.referent field to prevent commoning of loads across safepoint since GC can change its value. In C1 always generate Reference.get() intrinsic.
Reviewed-by: roland, twisti, dholmes, johnc

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
stefank@2314 32 #include "oops/compiledICHolderOop.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
never@2950 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class SimpleRuntimeFrame {
duke@435 49
duke@435 50 public:
duke@435 51
duke@435 52 // Most of the runtime stubs have this simple frame layout.
duke@435 53 // This class exists to make the layout shared in one place.
duke@435 54 // Offsets are for compiler stack slots, which are jints.
duke@435 55 enum layout {
duke@435 56 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 57 // will override any oopMap setting for it. We must therefore force the layout
duke@435 58 // so that it agrees with the frame sender code.
duke@435 59 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 60 rbp_off2,
duke@435 61 return_off, return_off2,
duke@435 62 framesize
duke@435 63 };
duke@435 64 };
duke@435 65
duke@435 66 class RegisterSaver {
duke@435 67 // Capture info about frame layout. Layout offsets are in jint
duke@435 68 // units because compiler frame slots are jints.
duke@435 69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 70 enum layout {
duke@435 71 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
duke@435 72 xmm_off = fpu_state_off + 160/BytesPerInt, // offset in fxsave save area
duke@435 73 DEF_XMM_OFFS(0),
duke@435 74 DEF_XMM_OFFS(1),
duke@435 75 DEF_XMM_OFFS(2),
duke@435 76 DEF_XMM_OFFS(3),
duke@435 77 DEF_XMM_OFFS(4),
duke@435 78 DEF_XMM_OFFS(5),
duke@435 79 DEF_XMM_OFFS(6),
duke@435 80 DEF_XMM_OFFS(7),
duke@435 81 DEF_XMM_OFFS(8),
duke@435 82 DEF_XMM_OFFS(9),
duke@435 83 DEF_XMM_OFFS(10),
duke@435 84 DEF_XMM_OFFS(11),
duke@435 85 DEF_XMM_OFFS(12),
duke@435 86 DEF_XMM_OFFS(13),
duke@435 87 DEF_XMM_OFFS(14),
duke@435 88 DEF_XMM_OFFS(15),
duke@435 89 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
duke@435 90 fpu_stateH_end,
duke@435 91 r15_off, r15H_off,
duke@435 92 r14_off, r14H_off,
duke@435 93 r13_off, r13H_off,
duke@435 94 r12_off, r12H_off,
duke@435 95 r11_off, r11H_off,
duke@435 96 r10_off, r10H_off,
duke@435 97 r9_off, r9H_off,
duke@435 98 r8_off, r8H_off,
duke@435 99 rdi_off, rdiH_off,
duke@435 100 rsi_off, rsiH_off,
duke@435 101 ignore_off, ignoreH_off, // extra copy of rbp
duke@435 102 rsp_off, rspH_off,
duke@435 103 rbx_off, rbxH_off,
duke@435 104 rdx_off, rdxH_off,
duke@435 105 rcx_off, rcxH_off,
duke@435 106 rax_off, raxH_off,
duke@435 107 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
duke@435 108 align_off, alignH_off,
duke@435 109 flags_off, flagsH_off,
duke@435 110 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 111 // will override any oopMap setting for it. We must therefore force the layout
duke@435 112 // so that it agrees with the frame sender code.
duke@435 113 rbp_off, rbpH_off, // copy of rbp we will restore
duke@435 114 return_off, returnH_off, // slot for return address
duke@435 115 reg_save_size // size in compiler stack slots
duke@435 116 };
duke@435 117
duke@435 118 public:
duke@435 119 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
duke@435 120 static void restore_live_registers(MacroAssembler* masm);
duke@435 121
duke@435 122 // Offsets into the register save area
duke@435 123 // Used by deoptimization when it is managing result register
duke@435 124 // values on its own
duke@435 125
duke@435 126 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; }
never@739 127 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; }
duke@435 128 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; }
duke@435 129 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; }
duke@435 130 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
duke@435 131
duke@435 132 // During deoptimization only the result registers need to be restored,
duke@435 133 // all the other values have already been extracted.
duke@435 134 static void restore_result_registers(MacroAssembler* masm);
duke@435 135 };
duke@435 136
duke@435 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
duke@435 138
duke@435 139 // Always make the frame size 16-byte aligned
duke@435 140 int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
duke@435 141 reg_save_size*BytesPerInt, 16);
duke@435 142 // OopMap frame size is in compiler stack slots (jint's) not bytes or words
duke@435 143 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
duke@435 144 // The caller will allocate additional_frame_words
duke@435 145 int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
duke@435 146 // CodeBlob frame size is in words.
duke@435 147 int frame_size_in_words = frame_size_in_bytes / wordSize;
duke@435 148 *total_frame_words = frame_size_in_words;
duke@435 149
duke@435 150 // Save registers, fpu state, and flags.
duke@435 151 // We assume caller has already pushed the return address onto the
duke@435 152 // stack, so rsp is 8-byte aligned here.
duke@435 153 // We push rpb twice in this sequence because we want the real rbp
duke@435 154 // to be under the return like a normal enter.
duke@435 155
duke@435 156 __ enter(); // rsp becomes 16-byte aligned here
duke@435 157 __ push_CPU_state(); // Push a multiple of 16 bytes
duke@435 158 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 159 // Allocate argument register save area
never@739 160 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 161 }
duke@435 162
duke@435 163 // Set an oopmap for the call site. This oopmap will map all
duke@435 164 // oop-registers and debug-info registers as callee-saved. This
duke@435 165 // will allow deoptimization at this safepoint to find all possible
duke@435 166 // debug-info recordings, as well as let GC find all oops.
duke@435 167
duke@435 168 OopMapSet *oop_maps = new OopMapSet();
duke@435 169 OopMap* map = new OopMap(frame_size_in_slots, 0);
duke@435 170 map->set_callee_saved(VMRegImpl::stack2reg( rax_off + additional_frame_slots), rax->as_VMReg());
duke@435 171 map->set_callee_saved(VMRegImpl::stack2reg( rcx_off + additional_frame_slots), rcx->as_VMReg());
duke@435 172 map->set_callee_saved(VMRegImpl::stack2reg( rdx_off + additional_frame_slots), rdx->as_VMReg());
duke@435 173 map->set_callee_saved(VMRegImpl::stack2reg( rbx_off + additional_frame_slots), rbx->as_VMReg());
duke@435 174 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 175 // and the location where rbp was saved by is ignored
duke@435 176 map->set_callee_saved(VMRegImpl::stack2reg( rsi_off + additional_frame_slots), rsi->as_VMReg());
duke@435 177 map->set_callee_saved(VMRegImpl::stack2reg( rdi_off + additional_frame_slots), rdi->as_VMReg());
duke@435 178 map->set_callee_saved(VMRegImpl::stack2reg( r8_off + additional_frame_slots), r8->as_VMReg());
duke@435 179 map->set_callee_saved(VMRegImpl::stack2reg( r9_off + additional_frame_slots), r9->as_VMReg());
duke@435 180 map->set_callee_saved(VMRegImpl::stack2reg( r10_off + additional_frame_slots), r10->as_VMReg());
duke@435 181 map->set_callee_saved(VMRegImpl::stack2reg( r11_off + additional_frame_slots), r11->as_VMReg());
duke@435 182 map->set_callee_saved(VMRegImpl::stack2reg( r12_off + additional_frame_slots), r12->as_VMReg());
duke@435 183 map->set_callee_saved(VMRegImpl::stack2reg( r13_off + additional_frame_slots), r13->as_VMReg());
duke@435 184 map->set_callee_saved(VMRegImpl::stack2reg( r14_off + additional_frame_slots), r14->as_VMReg());
duke@435 185 map->set_callee_saved(VMRegImpl::stack2reg( r15_off + additional_frame_slots), r15->as_VMReg());
duke@435 186 map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off + additional_frame_slots), xmm0->as_VMReg());
duke@435 187 map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off + additional_frame_slots), xmm1->as_VMReg());
duke@435 188 map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off + additional_frame_slots), xmm2->as_VMReg());
duke@435 189 map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off + additional_frame_slots), xmm3->as_VMReg());
duke@435 190 map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off + additional_frame_slots), xmm4->as_VMReg());
duke@435 191 map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off + additional_frame_slots), xmm5->as_VMReg());
duke@435 192 map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off + additional_frame_slots), xmm6->as_VMReg());
duke@435 193 map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off + additional_frame_slots), xmm7->as_VMReg());
duke@435 194 map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off + additional_frame_slots), xmm8->as_VMReg());
duke@435 195 map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off + additional_frame_slots), xmm9->as_VMReg());
duke@435 196 map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
duke@435 197 map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
duke@435 198 map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
duke@435 199 map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
duke@435 200 map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
duke@435 201 map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
duke@435 202
duke@435 203 // %%% These should all be a waste but we'll keep things as they were for now
duke@435 204 if (true) {
duke@435 205 map->set_callee_saved(VMRegImpl::stack2reg( raxH_off + additional_frame_slots),
duke@435 206 rax->as_VMReg()->next());
duke@435 207 map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off + additional_frame_slots),
duke@435 208 rcx->as_VMReg()->next());
duke@435 209 map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off + additional_frame_slots),
duke@435 210 rdx->as_VMReg()->next());
duke@435 211 map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off + additional_frame_slots),
duke@435 212 rbx->as_VMReg()->next());
duke@435 213 // rbp location is known implicitly by the frame sender code, needs no oopmap
duke@435 214 map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off + additional_frame_slots),
duke@435 215 rsi->as_VMReg()->next());
duke@435 216 map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off + additional_frame_slots),
duke@435 217 rdi->as_VMReg()->next());
duke@435 218 map->set_callee_saved(VMRegImpl::stack2reg( r8H_off + additional_frame_slots),
duke@435 219 r8->as_VMReg()->next());
duke@435 220 map->set_callee_saved(VMRegImpl::stack2reg( r9H_off + additional_frame_slots),
duke@435 221 r9->as_VMReg()->next());
duke@435 222 map->set_callee_saved(VMRegImpl::stack2reg( r10H_off + additional_frame_slots),
duke@435 223 r10->as_VMReg()->next());
duke@435 224 map->set_callee_saved(VMRegImpl::stack2reg( r11H_off + additional_frame_slots),
duke@435 225 r11->as_VMReg()->next());
duke@435 226 map->set_callee_saved(VMRegImpl::stack2reg( r12H_off + additional_frame_slots),
duke@435 227 r12->as_VMReg()->next());
duke@435 228 map->set_callee_saved(VMRegImpl::stack2reg( r13H_off + additional_frame_slots),
duke@435 229 r13->as_VMReg()->next());
duke@435 230 map->set_callee_saved(VMRegImpl::stack2reg( r14H_off + additional_frame_slots),
duke@435 231 r14->as_VMReg()->next());
duke@435 232 map->set_callee_saved(VMRegImpl::stack2reg( r15H_off + additional_frame_slots),
duke@435 233 r15->as_VMReg()->next());
duke@435 234 map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off + additional_frame_slots),
duke@435 235 xmm0->as_VMReg()->next());
duke@435 236 map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off + additional_frame_slots),
duke@435 237 xmm1->as_VMReg()->next());
duke@435 238 map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off + additional_frame_slots),
duke@435 239 xmm2->as_VMReg()->next());
duke@435 240 map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off + additional_frame_slots),
duke@435 241 xmm3->as_VMReg()->next());
duke@435 242 map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off + additional_frame_slots),
duke@435 243 xmm4->as_VMReg()->next());
duke@435 244 map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off + additional_frame_slots),
duke@435 245 xmm5->as_VMReg()->next());
duke@435 246 map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off + additional_frame_slots),
duke@435 247 xmm6->as_VMReg()->next());
duke@435 248 map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off + additional_frame_slots),
duke@435 249 xmm7->as_VMReg()->next());
duke@435 250 map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off + additional_frame_slots),
duke@435 251 xmm8->as_VMReg()->next());
duke@435 252 map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off + additional_frame_slots),
duke@435 253 xmm9->as_VMReg()->next());
duke@435 254 map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
duke@435 255 xmm10->as_VMReg()->next());
duke@435 256 map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
duke@435 257 xmm11->as_VMReg()->next());
duke@435 258 map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
duke@435 259 xmm12->as_VMReg()->next());
duke@435 260 map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
duke@435 261 xmm13->as_VMReg()->next());
duke@435 262 map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
duke@435 263 xmm14->as_VMReg()->next());
duke@435 264 map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
duke@435 265 xmm15->as_VMReg()->next());
duke@435 266 }
duke@435 267
duke@435 268 return map;
duke@435 269 }
duke@435 270
duke@435 271 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 272 if (frame::arg_reg_save_area_bytes != 0) {
duke@435 273 // Pop arg register save area
never@739 274 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 275 }
duke@435 276 // Recover CPU state
duke@435 277 __ pop_CPU_state();
duke@435 278 // Get the rbp described implicitly by the calling convention (no oopMap)
never@739 279 __ pop(rbp);
duke@435 280 }
duke@435 281
duke@435 282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 283
duke@435 284 // Just restore result register. Only used by deoptimization. By
duke@435 285 // now any callee save register that needs to be restored to a c2
duke@435 286 // caller of the deoptee has been extracted into the vframeArray
duke@435 287 // and will be stuffed into the c2i adapter we create for later
duke@435 288 // restoration so only result registers need to be restored here.
duke@435 289
duke@435 290 // Restore fp result register
duke@435 291 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
duke@435 292 // Restore integer result register
never@739 293 __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
never@739 294 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
never@739 295
duke@435 296 // Pop all of the register save are off the stack except the return address
never@739 297 __ addptr(rsp, return_offset_in_bytes());
duke@435 298 }
duke@435 299
duke@435 300 // The java_calling_convention describes stack locations as ideal slots on
duke@435 301 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 302 // (like the placement of the register window) the slots must be biased by
duke@435 303 // the following value.
duke@435 304 static int reg2offset_in(VMReg r) {
duke@435 305 // Account for saved rbp and return address
duke@435 306 // This should really be in_preserve_stack_slots
duke@435 307 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
duke@435 308 }
duke@435 309
duke@435 310 static int reg2offset_out(VMReg r) {
duke@435 311 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 312 }
duke@435 313
duke@435 314 // ---------------------------------------------------------------------------
duke@435 315 // Read the array of BasicTypes from a signature, and compute where the
duke@435 316 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 317 // quantities. Values less than VMRegImpl::stack0 are registers, those above
duke@435 318 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 319 // as framesizes are fixed.
duke@435 320 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 321 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 322 // up to RegisterImpl::number_of_registers) are the 64-bit
duke@435 323 // integer registers.
duke@435 324
duke@435 325 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 326 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 327 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 328
duke@435 329 // The Java calling convention is a "shifted" version of the C ABI.
duke@435 330 // By skipping the first C ABI register we can call non-static jni methods
duke@435 331 // with small numbers of arguments without having to shuffle the arguments
duke@435 332 // at all. Since we control the java ABI we ought to at least get some
duke@435 333 // advantage out of it.
duke@435 334
duke@435 335 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 336 VMRegPair *regs,
duke@435 337 int total_args_passed,
duke@435 338 int is_outgoing) {
duke@435 339
duke@435 340 // Create the mapping between argument positions and
duke@435 341 // registers.
duke@435 342 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
duke@435 343 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
duke@435 344 };
duke@435 345 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
duke@435 346 j_farg0, j_farg1, j_farg2, j_farg3,
duke@435 347 j_farg4, j_farg5, j_farg6, j_farg7
duke@435 348 };
duke@435 349
duke@435 350
duke@435 351 uint int_args = 0;
duke@435 352 uint fp_args = 0;
duke@435 353 uint stk_args = 0; // inc by 2 each time
duke@435 354
duke@435 355 for (int i = 0; i < total_args_passed; i++) {
duke@435 356 switch (sig_bt[i]) {
duke@435 357 case T_BOOLEAN:
duke@435 358 case T_CHAR:
duke@435 359 case T_BYTE:
duke@435 360 case T_SHORT:
duke@435 361 case T_INT:
duke@435 362 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 363 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 364 } else {
duke@435 365 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 366 stk_args += 2;
duke@435 367 }
duke@435 368 break;
duke@435 369 case T_VOID:
duke@435 370 // halves of T_LONG or T_DOUBLE
duke@435 371 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 372 regs[i].set_bad();
duke@435 373 break;
duke@435 374 case T_LONG:
duke@435 375 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 376 // fall through
duke@435 377 case T_OBJECT:
duke@435 378 case T_ARRAY:
duke@435 379 case T_ADDRESS:
duke@435 380 if (int_args < Argument::n_int_register_parameters_j) {
duke@435 381 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 382 } else {
duke@435 383 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 384 stk_args += 2;
duke@435 385 }
duke@435 386 break;
duke@435 387 case T_FLOAT:
duke@435 388 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 389 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 390 } else {
duke@435 391 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 392 stk_args += 2;
duke@435 393 }
duke@435 394 break;
duke@435 395 case T_DOUBLE:
duke@435 396 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 397 if (fp_args < Argument::n_float_register_parameters_j) {
duke@435 398 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 399 } else {
duke@435 400 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 401 stk_args += 2;
duke@435 402 }
duke@435 403 break;
duke@435 404 default:
duke@435 405 ShouldNotReachHere();
duke@435 406 break;
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 return round_to(stk_args, 2);
duke@435 411 }
duke@435 412
duke@435 413 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 414 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 415 Label L;
duke@435 416 __ verify_oop(rbx);
never@739 417 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 418 __ jcc(Assembler::equal, L);
duke@435 419
duke@435 420 // Save the current stack pointer
never@739 421 __ mov(r13, rsp);
duke@435 422 // Schedule the branch target address early.
duke@435 423 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 424 // rax isn't live so capture return address while we easily can
never@739 425 __ movptr(rax, Address(rsp, 0));
duke@435 426
duke@435 427 // align stack so push_CPU_state doesn't fault
never@739 428 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 429 __ push_CPU_state();
duke@435 430
duke@435 431
duke@435 432 __ verify_oop(rbx);
duke@435 433 // VM needs caller's callsite
duke@435 434 // VM needs target method
duke@435 435 // This needs to be a long call since we will relocate this adapter to
duke@435 436 // the codeBuffer and it may not reach
duke@435 437
duke@435 438 // Allocate argument register save area
duke@435 439 if (frame::arg_reg_save_area_bytes != 0) {
never@739 440 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 441 }
never@739 442 __ mov(c_rarg0, rbx);
never@739 443 __ mov(c_rarg1, rax);
duke@435 444 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
duke@435 445
duke@435 446 // De-allocate argument register save area
duke@435 447 if (frame::arg_reg_save_area_bytes != 0) {
never@739 448 __ addptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 449 }
duke@435 450
duke@435 451 __ pop_CPU_state();
duke@435 452 // restore sp
never@739 453 __ mov(rsp, r13);
duke@435 454 __ bind(L);
duke@435 455 }
duke@435 456
duke@435 457
duke@435 458 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 459 int total_args_passed,
duke@435 460 int comp_args_on_stack,
duke@435 461 const BasicType *sig_bt,
duke@435 462 const VMRegPair *regs,
duke@435 463 Label& skip_fixup) {
duke@435 464 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 465 // at all. We've come from compiled code and are attempting to jump to the
duke@435 466 // interpreter, which means the caller made a static call to get here
duke@435 467 // (vcalls always get a compiled target if there is one). Check for a
duke@435 468 // compiled target. If there is one, we need to patch the caller's call.
duke@435 469 patch_callers_callsite(masm);
duke@435 470
duke@435 471 __ bind(skip_fixup);
duke@435 472
duke@435 473 // Since all args are passed on the stack, total_args_passed *
duke@435 474 // Interpreter::stackElementSize is the space we need. Plus 1 because
duke@435 475 // we also account for the return address location since
duke@435 476 // we store it first rather than hold it in rax across all the shuffling
duke@435 477
twisti@1861 478 int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
duke@435 479
duke@435 480 // stack is aligned, keep it that way
duke@435 481 extraspace = round_to(extraspace, 2*wordSize);
duke@435 482
duke@435 483 // Get return address
never@739 484 __ pop(rax);
duke@435 485
duke@435 486 // set senderSP value
never@739 487 __ mov(r13, rsp);
never@739 488
never@739 489 __ subptr(rsp, extraspace);
duke@435 490
duke@435 491 // Store the return address in the expected location
never@739 492 __ movptr(Address(rsp, 0), rax);
duke@435 493
duke@435 494 // Now write the args into the outgoing interpreter space
duke@435 495 for (int i = 0; i < total_args_passed; i++) {
duke@435 496 if (sig_bt[i] == T_VOID) {
duke@435 497 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 498 continue;
duke@435 499 }
duke@435 500
duke@435 501 // offset to start parameters
twisti@1861 502 int st_off = (total_args_passed - i) * Interpreter::stackElementSize;
twisti@1861 503 int next_off = st_off - Interpreter::stackElementSize;
duke@435 504
duke@435 505 // Say 4 args:
duke@435 506 // i st_off
duke@435 507 // 0 32 T_LONG
duke@435 508 // 1 24 T_VOID
duke@435 509 // 2 16 T_OBJECT
duke@435 510 // 3 8 T_BOOL
duke@435 511 // - 0 return address
duke@435 512 //
duke@435 513 // However to make thing extra confusing. Because we can fit a long/double in
duke@435 514 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
duke@435 515 // leaves one slot empty and only stores to a single slot. In this case the
duke@435 516 // slot that is occupied is the T_VOID slot. See I said it was confusing.
duke@435 517
duke@435 518 VMReg r_1 = regs[i].first();
duke@435 519 VMReg r_2 = regs[i].second();
duke@435 520 if (!r_1->is_valid()) {
duke@435 521 assert(!r_2->is_valid(), "");
duke@435 522 continue;
duke@435 523 }
duke@435 524 if (r_1->is_stack()) {
duke@435 525 // memory to memory use rax
duke@435 526 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 527 if (!r_2->is_valid()) {
duke@435 528 // sign extend??
duke@435 529 __ movl(rax, Address(rsp, ld_off));
never@739 530 __ movptr(Address(rsp, st_off), rax);
duke@435 531
duke@435 532 } else {
duke@435 533
duke@435 534 __ movq(rax, Address(rsp, ld_off));
duke@435 535
duke@435 536 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 537 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 538 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 539 // ld_off == LSW, ld_off+wordSize == MSW
duke@435 540 // st_off == MSW, next_off == LSW
duke@435 541 __ movq(Address(rsp, next_off), rax);
duke@435 542 #ifdef ASSERT
duke@435 543 // Overwrite the unused slot with known junk
duke@435 544 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 545 __ movptr(Address(rsp, st_off), rax);
duke@435 546 #endif /* ASSERT */
duke@435 547 } else {
duke@435 548 __ movq(Address(rsp, st_off), rax);
duke@435 549 }
duke@435 550 }
duke@435 551 } else if (r_1->is_Register()) {
duke@435 552 Register r = r_1->as_Register();
duke@435 553 if (!r_2->is_valid()) {
duke@435 554 // must be only an int (or less ) so move only 32bits to slot
duke@435 555 // why not sign extend??
duke@435 556 __ movl(Address(rsp, st_off), r);
duke@435 557 } else {
duke@435 558 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
duke@435 559 // T_DOUBLE and T_LONG use two slots in the interpreter
duke@435 560 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
duke@435 561 // long/double in gpr
duke@435 562 #ifdef ASSERT
duke@435 563 // Overwrite the unused slot with known junk
duke@435 564 __ mov64(rax, CONST64(0xdeadffffdeadaaab));
never@739 565 __ movptr(Address(rsp, st_off), rax);
duke@435 566 #endif /* ASSERT */
duke@435 567 __ movq(Address(rsp, next_off), r);
duke@435 568 } else {
never@739 569 __ movptr(Address(rsp, st_off), r);
duke@435 570 }
duke@435 571 }
duke@435 572 } else {
duke@435 573 assert(r_1->is_XMMRegister(), "");
duke@435 574 if (!r_2->is_valid()) {
duke@435 575 // only a float use just part of the slot
duke@435 576 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 577 } else {
duke@435 578 #ifdef ASSERT
duke@435 579 // Overwrite the unused slot with known junk
duke@435 580 __ mov64(rax, CONST64(0xdeadffffdeadaaac));
never@739 581 __ movptr(Address(rsp, st_off), rax);
duke@435 582 #endif /* ASSERT */
duke@435 583 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
duke@435 584 }
duke@435 585 }
duke@435 586 }
duke@435 587
duke@435 588 // Schedule the branch target address early.
never@739 589 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 590 __ jmp(rcx);
duke@435 591 }
duke@435 592
twisti@3969 593 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 594 address code_start, address code_end,
twisti@3969 595 Label& L_ok) {
twisti@3969 596 Label L_fail;
twisti@3969 597 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 598 __ cmpptr(pc_reg, temp_reg);
twisti@3969 599 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 600 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 601 __ cmpptr(pc_reg, temp_reg);
twisti@3969 602 __ jcc(Assembler::below, L_ok);
twisti@3969 603 __ bind(L_fail);
twisti@3969 604 }
twisti@3969 605
duke@435 606 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 607 int total_args_passed,
duke@435 608 int comp_args_on_stack,
duke@435 609 const BasicType *sig_bt,
duke@435 610 const VMRegPair *regs) {
duke@435 611
duke@435 612 // Note: r13 contains the senderSP on entry. We must preserve it since
duke@435 613 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 614 // code goes non-entrant while we get args ready.
duke@435 615 // In addition we use r13 to locate all the interpreter args as
duke@435 616 // we must align the stack to 16 bytes on an i2c entry else we
duke@435 617 // lose alignment we expect in all compiled code and register
duke@435 618 // save code can segv when fxsave instructions find improperly
duke@435 619 // aligned stack pointer.
duke@435 620
twisti@3969 621 // Adapters can be frameless because they do not require the caller
twisti@3969 622 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 623 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 624 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 625 // even if a callee has modified the stack pointer.
twisti@3969 626 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 627 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 628 // up via the senderSP register).
twisti@3969 629 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 630 // get the stack pointer repaired after a call.
twisti@3969 631 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 632 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 633 // both caller and callee would be compiled methods, and neither would
twisti@3969 634 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 635 // If this happens, control eventually transfers back to the compiled
twisti@3969 636 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 637
twisti@2552 638 // Pick up the return address
never@739 639 __ movptr(rax, Address(rsp, 0));
duke@435 640
twisti@3969 641 if (VerifyAdapterCalls &&
twisti@3969 642 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 643 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 644 // assert(Interpreter::contains($return_addr) ||
twisti@3969 645 // StubRoutines::contains($return_addr),
twisti@3969 646 // "i2c adapter must return to an interpreter frame");
twisti@3969 647 __ block_comment("verify_i2c { ");
twisti@3969 648 Label L_ok;
twisti@3969 649 if (Interpreter::code() != NULL)
twisti@3969 650 range_check(masm, rax, r11,
twisti@3969 651 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 652 L_ok);
twisti@3969 653 if (StubRoutines::code1() != NULL)
twisti@3969 654 range_check(masm, rax, r11,
twisti@3969 655 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 656 L_ok);
twisti@3969 657 if (StubRoutines::code2() != NULL)
twisti@3969 658 range_check(masm, rax, r11,
twisti@3969 659 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 660 L_ok);
twisti@3969 661 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 662 __ block_comment(msg);
twisti@3969 663 __ stop(msg);
twisti@3969 664 __ bind(L_ok);
twisti@3969 665 __ block_comment("} verify_i2ce ");
twisti@3969 666 }
twisti@3969 667
twisti@1570 668 // Must preserve original SP for loading incoming arguments because
twisti@1570 669 // we need to align the outgoing SP for compiled code.
twisti@1570 670 __ movptr(r11, rsp);
twisti@1570 671
duke@435 672 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 673 // in registers, we will occasionally have no stack args.
duke@435 674 int comp_words_on_stack = 0;
duke@435 675 if (comp_args_on_stack) {
duke@435 676 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 677 // registers are below. By subtracting stack0, we either get a negative
duke@435 678 // number (all values in registers) or the maximum stack slot accessed.
duke@435 679
duke@435 680 // Convert 4-byte c2 stack slots to words.
duke@435 681 comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
duke@435 682 // Round up to miminum stack alignment, in wordSize
duke@435 683 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 684 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 685 }
duke@435 686
duke@435 687
duke@435 688 // Ensure compiled code always sees stack at proper alignment
never@739 689 __ andptr(rsp, -16);
duke@435 690
duke@435 691 // push the return address and misalign the stack that youngest frame always sees
duke@435 692 // as far as the placement of the call instruction
never@739 693 __ push(rax);
duke@435 694
twisti@1570 695 // Put saved SP in another register
twisti@1570 696 const Register saved_sp = rax;
twisti@1570 697 __ movptr(saved_sp, r11);
twisti@1570 698
duke@435 699 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 700 // Pre-load the register-jump target early, to schedule it better.
never@739 701 __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 702
duke@435 703 // Now generate the shuffle code. Pick up all register args and move the
duke@435 704 // rest through the floating point stack top.
duke@435 705 for (int i = 0; i < total_args_passed; i++) {
duke@435 706 if (sig_bt[i] == T_VOID) {
duke@435 707 // Longs and doubles are passed in native word order, but misaligned
duke@435 708 // in the 32-bit build.
duke@435 709 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 710 continue;
duke@435 711 }
duke@435 712
duke@435 713 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 714
duke@435 715 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 716 "scrambled load targets?");
duke@435 717 // Load in argument order going down.
twisti@1861 718 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
duke@435 719 // Point to interpreter value (vs. tag)
twisti@1861 720 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 721 //
duke@435 722 //
duke@435 723 //
duke@435 724 VMReg r_1 = regs[i].first();
duke@435 725 VMReg r_2 = regs[i].second();
duke@435 726 if (!r_1->is_valid()) {
duke@435 727 assert(!r_2->is_valid(), "");
duke@435 728 continue;
duke@435 729 }
duke@435 730 if (r_1->is_stack()) {
duke@435 731 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 732 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
twisti@1570 733
twisti@1570 734 // We can use r13 as a temp here because compiled code doesn't need r13 as an input
twisti@1570 735 // and if we end up going thru a c2i because of a miss a reasonable value of r13
twisti@1570 736 // will be generated.
duke@435 737 if (!r_2->is_valid()) {
duke@435 738 // sign extend???
twisti@1570 739 __ movl(r13, Address(saved_sp, ld_off));
twisti@1570 740 __ movptr(Address(rsp, st_off), r13);
duke@435 741 } else {
duke@435 742 //
duke@435 743 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 744 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 745 // So we must adjust where to pick up the data to match the interpreter.
duke@435 746 //
duke@435 747 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 748 // are accessed as negative so LSW is at LOW address
duke@435 749
duke@435 750 // ld_off is MSW so get LSW
duke@435 751 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 752 next_off : ld_off;
twisti@1570 753 __ movq(r13, Address(saved_sp, offset));
duke@435 754 // st_off is LSW (i.e. reg.first())
twisti@1570 755 __ movq(Address(rsp, st_off), r13);
duke@435 756 }
duke@435 757 } else if (r_1->is_Register()) { // Register argument
duke@435 758 Register r = r_1->as_Register();
duke@435 759 assert(r != rax, "must be different");
duke@435 760 if (r_2->is_valid()) {
duke@435 761 //
duke@435 762 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
duke@435 763 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
duke@435 764 // So we must adjust where to pick up the data to match the interpreter.
duke@435 765
duke@435 766 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
duke@435 767 next_off : ld_off;
duke@435 768
duke@435 769 // this can be a misaligned move
twisti@1570 770 __ movq(r, Address(saved_sp, offset));
duke@435 771 } else {
duke@435 772 // sign extend and use a full word?
twisti@1570 773 __ movl(r, Address(saved_sp, ld_off));
duke@435 774 }
duke@435 775 } else {
duke@435 776 if (!r_2->is_valid()) {
twisti@1570 777 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 778 } else {
twisti@1570 779 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
duke@435 780 }
duke@435 781 }
duke@435 782 }
duke@435 783
duke@435 784 // 6243940 We might end up in handle_wrong_method if
duke@435 785 // the callee is deoptimized as we race thru here. If that
duke@435 786 // happens we don't want to take a safepoint because the
duke@435 787 // caller frame will look interpreted and arguments are now
duke@435 788 // "compiled" so it is much better to make this transition
duke@435 789 // invisible to the stack walking code. Unfortunately if
duke@435 790 // we try and find the callee by normal means a safepoint
duke@435 791 // is possible. So we stash the desired callee in the thread
duke@435 792 // and the vm will find there should this case occur.
duke@435 793
never@739 794 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
duke@435 795
duke@435 796 // put methodOop where a c2i would expect should we end up there
duke@435 797 // only needed becaus eof c2 resolve stubs return methodOop as a result in
duke@435 798 // rax
never@739 799 __ mov(rax, rbx);
duke@435 800 __ jmp(r11);
duke@435 801 }
duke@435 802
duke@435 803 // ---------------------------------------------------------------
duke@435 804 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 805 int total_args_passed,
duke@435 806 int comp_args_on_stack,
duke@435 807 const BasicType *sig_bt,
never@1622 808 const VMRegPair *regs,
never@1622 809 AdapterFingerPrint* fingerprint) {
duke@435 810 address i2c_entry = __ pc();
duke@435 811
duke@435 812 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 813
duke@435 814 // -------------------------------------------------------------------------
duke@435 815 // Generate a C2I adapter. On entry we know rbx holds the methodOop during calls
duke@435 816 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 817 // need to be unpacked into the interpreter layout. This will almost always
duke@435 818 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 819 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 820 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 821 // compiled code, which relys solely on SP and not RBP, get sick).
duke@435 822
duke@435 823 address c2i_unverified_entry = __ pc();
duke@435 824 Label skip_fixup;
duke@435 825 Label ok;
duke@435 826
duke@435 827 Register holder = rax;
duke@435 828 Register receiver = j_rarg0;
duke@435 829 Register temp = rbx;
duke@435 830
duke@435 831 {
duke@435 832 __ verify_oop(holder);
coleenp@548 833 __ load_klass(temp, receiver);
duke@435 834 __ verify_oop(temp);
duke@435 835
never@739 836 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 837 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 838 __ jcc(Assembler::equal, ok);
duke@435 839 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 840
duke@435 841 __ bind(ok);
duke@435 842 // Method might have been compiled since the call site was patched to
duke@435 843 // interpreted if that is the case treat it as a miss so we can get
duke@435 844 // the call site corrected.
never@739 845 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 846 __ jcc(Assembler::equal, skip_fixup);
duke@435 847 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 848 }
duke@435 849
duke@435 850 address c2i_entry = __ pc();
duke@435 851
duke@435 852 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 853
duke@435 854 __ flush();
never@1622 855 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 856 }
duke@435 857
duke@435 858 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 859 VMRegPair *regs,
duke@435 860 int total_args_passed) {
duke@435 861 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 862 // the arguments NOT counting out_preserve_stack_slots.
duke@435 863
duke@435 864 // NOTE: These arrays will have to change when c1 is ported
duke@435 865 #ifdef _WIN64
duke@435 866 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 867 c_rarg0, c_rarg1, c_rarg2, c_rarg3
duke@435 868 };
duke@435 869 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 870 c_farg0, c_farg1, c_farg2, c_farg3
duke@435 871 };
duke@435 872 #else
duke@435 873 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
duke@435 874 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
duke@435 875 };
duke@435 876 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
duke@435 877 c_farg0, c_farg1, c_farg2, c_farg3,
duke@435 878 c_farg4, c_farg5, c_farg6, c_farg7
duke@435 879 };
duke@435 880 #endif // _WIN64
duke@435 881
duke@435 882
duke@435 883 uint int_args = 0;
duke@435 884 uint fp_args = 0;
duke@435 885 uint stk_args = 0; // inc by 2 each time
duke@435 886
duke@435 887 for (int i = 0; i < total_args_passed; i++) {
duke@435 888 switch (sig_bt[i]) {
duke@435 889 case T_BOOLEAN:
duke@435 890 case T_CHAR:
duke@435 891 case T_BYTE:
duke@435 892 case T_SHORT:
duke@435 893 case T_INT:
duke@435 894 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 895 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
duke@435 896 #ifdef _WIN64
duke@435 897 fp_args++;
duke@435 898 // Allocate slots for callee to stuff register args the stack.
duke@435 899 stk_args += 2;
duke@435 900 #endif
duke@435 901 } else {
duke@435 902 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 903 stk_args += 2;
duke@435 904 }
duke@435 905 break;
duke@435 906 case T_LONG:
duke@435 907 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 908 // fall through
duke@435 909 case T_OBJECT:
duke@435 910 case T_ARRAY:
duke@435 911 case T_ADDRESS:
duke@435 912 if (int_args < Argument::n_int_register_parameters_c) {
duke@435 913 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
duke@435 914 #ifdef _WIN64
duke@435 915 fp_args++;
duke@435 916 stk_args += 2;
duke@435 917 #endif
duke@435 918 } else {
duke@435 919 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 920 stk_args += 2;
duke@435 921 }
duke@435 922 break;
duke@435 923 case T_FLOAT:
duke@435 924 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 925 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 926 #ifdef _WIN64
duke@435 927 int_args++;
duke@435 928 // Allocate slots for callee to stuff register args the stack.
duke@435 929 stk_args += 2;
duke@435 930 #endif
duke@435 931 } else {
duke@435 932 regs[i].set1(VMRegImpl::stack2reg(stk_args));
duke@435 933 stk_args += 2;
duke@435 934 }
duke@435 935 break;
duke@435 936 case T_DOUBLE:
duke@435 937 assert(sig_bt[i + 1] == T_VOID, "expecting half");
duke@435 938 if (fp_args < Argument::n_float_register_parameters_c) {
duke@435 939 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
duke@435 940 #ifdef _WIN64
duke@435 941 int_args++;
duke@435 942 // Allocate slots for callee to stuff register args the stack.
duke@435 943 stk_args += 2;
duke@435 944 #endif
duke@435 945 } else {
duke@435 946 regs[i].set2(VMRegImpl::stack2reg(stk_args));
duke@435 947 stk_args += 2;
duke@435 948 }
duke@435 949 break;
duke@435 950 case T_VOID: // Halves of longs and doubles
duke@435 951 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
duke@435 952 regs[i].set_bad();
duke@435 953 break;
duke@435 954 default:
duke@435 955 ShouldNotReachHere();
duke@435 956 break;
duke@435 957 }
duke@435 958 }
duke@435 959 #ifdef _WIN64
duke@435 960 // windows abi requires that we always allocate enough stack space
duke@435 961 // for 4 64bit registers to be stored down.
duke@435 962 if (stk_args < 8) {
duke@435 963 stk_args = 8;
duke@435 964 }
duke@435 965 #endif // _WIN64
duke@435 966
duke@435 967 return stk_args;
duke@435 968 }
duke@435 969
duke@435 970 // On 64 bit we will store integer like items to the stack as
duke@435 971 // 64 bits items (sparc abi) even though java would only store
duke@435 972 // 32bits for a parameter. On 32bit it will simply be 32 bits
duke@435 973 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
duke@435 974 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 975 if (src.first()->is_stack()) {
duke@435 976 if (dst.first()->is_stack()) {
duke@435 977 // stack to stack
duke@435 978 __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 979 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 980 } else {
duke@435 981 // stack to reg
duke@435 982 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 983 }
duke@435 984 } else if (dst.first()->is_stack()) {
duke@435 985 // reg to stack
duke@435 986 // Do we really have to sign extend???
duke@435 987 // __ movslq(src.first()->as_Register(), src.first()->as_Register());
duke@435 988 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 989 } else {
duke@435 990 // Do we really have to sign extend???
duke@435 991 // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 992 if (dst.first() != src.first()) {
duke@435 993 __ movq(dst.first()->as_Register(), src.first()->as_Register());
duke@435 994 }
duke@435 995 }
duke@435 996 }
duke@435 997
never@3500 998 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
never@3500 999 if (src.first()->is_stack()) {
never@3500 1000 if (dst.first()->is_stack()) {
never@3500 1001 // stack to stack
never@3500 1002 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
never@3500 1003 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
never@3500 1004 } else {
never@3500 1005 // stack to reg
never@3500 1006 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
never@3500 1007 }
never@3500 1008 } else if (dst.first()->is_stack()) {
never@3500 1009 // reg to stack
never@3500 1010 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
never@3500 1011 } else {
never@3500 1012 if (dst.first() != src.first()) {
never@3500 1013 __ movq(dst.first()->as_Register(), src.first()->as_Register());
never@3500 1014 }
never@3500 1015 }
never@3500 1016 }
duke@435 1017
duke@435 1018 // An oop arg. Must pass a handle not the oop itself
duke@435 1019 static void object_move(MacroAssembler* masm,
duke@435 1020 OopMap* map,
duke@435 1021 int oop_handle_offset,
duke@435 1022 int framesize_in_slots,
duke@435 1023 VMRegPair src,
duke@435 1024 VMRegPair dst,
duke@435 1025 bool is_receiver,
duke@435 1026 int* receiver_offset) {
duke@435 1027
duke@435 1028 // must pass a handle. First figure out the location we use as a handle
duke@435 1029
duke@435 1030 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
duke@435 1031
duke@435 1032 // See if oop is NULL if it is we need no handle
duke@435 1033
duke@435 1034 if (src.first()->is_stack()) {
duke@435 1035
duke@435 1036 // Oop is already on the stack as an argument
duke@435 1037 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1038 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1039 if (is_receiver) {
duke@435 1040 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1041 }
duke@435 1042
never@739 1043 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
never@739 1044 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1045 // conditionally move a NULL
never@739 1046 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1047 } else {
duke@435 1048
duke@435 1049 // Oop is in an a register we must store it to the space we reserve
duke@435 1050 // on the stack for oop_handles and pass a handle if oop is non-NULL
duke@435 1051
duke@435 1052 const Register rOop = src.first()->as_Register();
duke@435 1053 int oop_slot;
duke@435 1054 if (rOop == j_rarg0)
duke@435 1055 oop_slot = 0;
duke@435 1056 else if (rOop == j_rarg1)
duke@435 1057 oop_slot = 1;
duke@435 1058 else if (rOop == j_rarg2)
duke@435 1059 oop_slot = 2;
duke@435 1060 else if (rOop == j_rarg3)
duke@435 1061 oop_slot = 3;
duke@435 1062 else if (rOop == j_rarg4)
duke@435 1063 oop_slot = 4;
duke@435 1064 else {
duke@435 1065 assert(rOop == j_rarg5, "wrong register");
duke@435 1066 oop_slot = 5;
duke@435 1067 }
duke@435 1068
duke@435 1069 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1070 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1071
duke@435 1072 map->set_oop(VMRegImpl::stack2reg(oop_slot));
duke@435 1073 // Store oop in handle area, may be NULL
never@739 1074 __ movptr(Address(rsp, offset), rOop);
duke@435 1075 if (is_receiver) {
duke@435 1076 *receiver_offset = offset;
duke@435 1077 }
duke@435 1078
never@739 1079 __ cmpptr(rOop, (int32_t)NULL_WORD);
never@739 1080 __ lea(rHandle, Address(rsp, offset));
duke@435 1081 // conditionally move a NULL from the handle area where it was just stored
never@739 1082 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
duke@435 1083 }
duke@435 1084
duke@435 1085 // If arg is on the stack then place it otherwise it is already in correct reg.
duke@435 1086 if (dst.first()->is_stack()) {
never@739 1087 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1088 }
duke@435 1089 }
duke@435 1090
duke@435 1091 // A float arg may have to do float reg int reg conversion
duke@435 1092 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1093 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1094
duke@435 1095 // The calling conventions assures us that each VMregpair is either
duke@435 1096 // all really one physical register or adjacent stack slots.
duke@435 1097 // This greatly simplifies the cases here compared to sparc.
duke@435 1098
duke@435 1099 if (src.first()->is_stack()) {
duke@435 1100 if (dst.first()->is_stack()) {
duke@435 1101 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1102 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1103 } else {
duke@435 1104 // stack to reg
duke@435 1105 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1106 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
duke@435 1107 }
duke@435 1108 } else if (dst.first()->is_stack()) {
duke@435 1109 // reg to stack
duke@435 1110 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
duke@435 1111 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1112 } else {
duke@435 1113 // reg to reg
duke@435 1114 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1115 if ( src.first() != dst.first()) {
duke@435 1116 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1117 }
duke@435 1118 }
duke@435 1119 }
duke@435 1120
duke@435 1121 // A long move
duke@435 1122 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1123
duke@435 1124 // The calling conventions assures us that each VMregpair is either
duke@435 1125 // all really one physical register or adjacent stack slots.
duke@435 1126 // This greatly simplifies the cases here compared to sparc.
duke@435 1127
duke@435 1128 if (src.is_single_phys_reg() ) {
duke@435 1129 if (dst.is_single_phys_reg()) {
duke@435 1130 if (dst.first() != src.first()) {
never@739 1131 __ mov(dst.first()->as_Register(), src.first()->as_Register());
duke@435 1132 }
duke@435 1133 } else {
duke@435 1134 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1135 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1136 }
duke@435 1137 } else if (dst.is_single_phys_reg()) {
duke@435 1138 assert(src.is_single_reg(), "not a stack pair");
duke@435 1139 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
duke@435 1140 } else {
duke@435 1141 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1142 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1143 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1144 }
duke@435 1145 }
duke@435 1146
duke@435 1147 // A double move
duke@435 1148 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1149
duke@435 1150 // The calling conventions assures us that each VMregpair is either
duke@435 1151 // all really one physical register or adjacent stack slots.
duke@435 1152 // This greatly simplifies the cases here compared to sparc.
duke@435 1153
duke@435 1154 if (src.is_single_phys_reg() ) {
duke@435 1155 if (dst.is_single_phys_reg()) {
duke@435 1156 // In theory these overlap but the ordering is such that this is likely a nop
duke@435 1157 if ( src.first() != dst.first()) {
duke@435 1158 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
duke@435 1159 }
duke@435 1160 } else {
duke@435 1161 assert(dst.is_single_reg(), "not a stack pair");
duke@435 1162 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1163 }
duke@435 1164 } else if (dst.is_single_phys_reg()) {
duke@435 1165 assert(src.is_single_reg(), "not a stack pair");
duke@435 1166 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
duke@435 1167 } else {
duke@435 1168 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
duke@435 1169 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
duke@435 1170 __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1171 }
duke@435 1172 }
duke@435 1173
duke@435 1174
duke@435 1175 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1176 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1177 // which by this time is free to use
duke@435 1178 switch (ret_type) {
duke@435 1179 case T_FLOAT:
duke@435 1180 __ movflt(Address(rbp, -wordSize), xmm0);
duke@435 1181 break;
duke@435 1182 case T_DOUBLE:
duke@435 1183 __ movdbl(Address(rbp, -wordSize), xmm0);
duke@435 1184 break;
duke@435 1185 case T_VOID: break;
duke@435 1186 default: {
never@739 1187 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1188 }
duke@435 1189 }
duke@435 1190 }
duke@435 1191
duke@435 1192 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1193 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1194 // which by this time is free to use
duke@435 1195 switch (ret_type) {
duke@435 1196 case T_FLOAT:
duke@435 1197 __ movflt(xmm0, Address(rbp, -wordSize));
duke@435 1198 break;
duke@435 1199 case T_DOUBLE:
duke@435 1200 __ movdbl(xmm0, Address(rbp, -wordSize));
duke@435 1201 break;
duke@435 1202 case T_VOID: break;
duke@435 1203 default: {
never@739 1204 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1205 }
duke@435 1206 }
duke@435 1207 }
duke@435 1208
duke@435 1209 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1210 for ( int i = first_arg ; i < arg_count ; i++ ) {
duke@435 1211 if (args[i].first()->is_Register()) {
never@739 1212 __ push(args[i].first()->as_Register());
duke@435 1213 } else if (args[i].first()->is_XMMRegister()) {
never@739 1214 __ subptr(rsp, 2*wordSize);
duke@435 1215 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
duke@435 1216 }
duke@435 1217 }
duke@435 1218 }
duke@435 1219
duke@435 1220 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
duke@435 1221 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
duke@435 1222 if (args[i].first()->is_Register()) {
never@739 1223 __ pop(args[i].first()->as_Register());
duke@435 1224 } else if (args[i].first()->is_XMMRegister()) {
duke@435 1225 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
never@739 1226 __ addptr(rsp, 2*wordSize);
duke@435 1227 }
duke@435 1228 }
duke@435 1229 }
duke@435 1230
never@3500 1231
never@3500 1232 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1233 const int stack_slots,
never@3500 1234 const int total_in_args,
never@3500 1235 const int arg_save_area,
never@3500 1236 OopMap* map,
never@3500 1237 VMRegPair* in_regs,
never@3500 1238 BasicType* in_sig_bt) {
never@3500 1239 // if map is non-NULL then the code should store the values,
never@3500 1240 // otherwise it should load them.
never@3608 1241 int slot = arg_save_area;
never@3500 1242 // Save down double word first
never@3500 1243 for ( int i = 0; i < total_in_args; i++) {
never@3500 1244 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1245 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1246 slot += VMRegImpl::slots_per_word;
never@3608 1247 assert(slot <= stack_slots, "overflow");
never@3500 1248 if (map != NULL) {
never@3500 1249 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1250 } else {
never@3500 1251 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1252 }
never@3500 1253 }
never@3500 1254 if (in_regs[i].first()->is_Register() &&
never@3500 1255 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
never@3500 1256 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1257 if (map != NULL) {
never@3500 1258 __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1259 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1260 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1261 }
never@3500 1262 } else {
never@3500 1263 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1264 }
never@3610 1265 slot += VMRegImpl::slots_per_word;
never@3500 1266 }
never@3500 1267 }
never@3500 1268 // Save or restore single word registers
never@3500 1269 for ( int i = 0; i < total_in_args; i++) {
never@3500 1270 if (in_regs[i].first()->is_Register()) {
never@3500 1271 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1272 slot++;
never@3608 1273 assert(slot <= stack_slots, "overflow");
never@3500 1274
never@3500 1275 // Value is in an input register pass we must flush it to the stack
never@3500 1276 const Register reg = in_regs[i].first()->as_Register();
never@3500 1277 switch (in_sig_bt[i]) {
never@3500 1278 case T_BOOLEAN:
never@3500 1279 case T_CHAR:
never@3500 1280 case T_BYTE:
never@3500 1281 case T_SHORT:
never@3500 1282 case T_INT:
never@3500 1283 if (map != NULL) {
never@3500 1284 __ movl(Address(rsp, offset), reg);
never@3500 1285 } else {
never@3500 1286 __ movl(reg, Address(rsp, offset));
never@3500 1287 }
never@3500 1288 break;
never@3500 1289 case T_ARRAY:
never@3500 1290 case T_LONG:
never@3500 1291 // handled above
never@3500 1292 break;
never@3500 1293 case T_OBJECT:
never@3500 1294 default: ShouldNotReachHere();
never@3500 1295 }
never@3500 1296 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1297 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1298 int offset = slot * VMRegImpl::stack_slot_size;
never@3608 1299 slot++;
never@3608 1300 assert(slot <= stack_slots, "overflow");
never@3500 1301 if (map != NULL) {
never@3500 1302 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1303 } else {
never@3500 1304 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1305 }
never@3500 1306 }
never@3500 1307 } else if (in_regs[i].first()->is_stack()) {
never@3500 1308 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1309 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1310 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1311 }
never@3500 1312 }
never@3500 1313 }
never@3500 1314 }
never@3500 1315
never@3500 1316
never@3500 1317 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1318 // keeps a new JNI critical region from starting until a GC has been
never@3500 1319 // forced. Save down any oops in registers and describe them in an
never@3500 1320 // OopMap.
never@3500 1321 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1322 int stack_slots,
never@3500 1323 int total_c_args,
never@3500 1324 int total_in_args,
never@3500 1325 int arg_save_area,
never@3500 1326 OopMapSet* oop_maps,
never@3500 1327 VMRegPair* in_regs,
never@3500 1328 BasicType* in_sig_bt) {
never@3500 1329 __ block_comment("check GC_locker::needs_gc");
never@3500 1330 Label cont;
never@3500 1331 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1332 __ jcc(Assembler::equal, cont);
never@3500 1333
never@3500 1334 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1335
never@3500 1336 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1337 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1338 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1339
never@3500 1340 address the_pc = __ pc();
never@3500 1341 oop_maps->add_gc_map( __ offset(), map);
never@3500 1342 __ set_last_Java_frame(rsp, noreg, the_pc);
never@3500 1343
never@3500 1344 __ block_comment("block_for_jni_critical");
never@3500 1345 __ movptr(c_rarg0, r15_thread);
never@3500 1346 __ mov(r12, rsp); // remember sp
never@3500 1347 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@3500 1348 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 1349 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1350 __ mov(rsp, r12); // restore sp
never@3500 1351 __ reinit_heapbase();
never@3500 1352
never@3500 1353 __ reset_last_Java_frame(false, true);
never@3500 1354
never@3500 1355 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1356 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1357
never@3500 1358 __ bind(cont);
never@3500 1359 #ifdef ASSERT
never@3500 1360 if (StressCriticalJNINatives) {
never@3500 1361 // Stress register saving
never@3500 1362 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1363 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1364 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1365 // Destroy argument registers
never@3500 1366 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1367 if (in_regs[i].first()->is_Register()) {
never@3500 1368 const Register reg = in_regs[i].first()->as_Register();
never@3500 1369 __ xorptr(reg, reg);
never@3500 1370 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1371 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1372 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1373 ShouldNotReachHere();
never@3500 1374 } else if (in_regs[i].first()->is_stack()) {
never@3500 1375 // Nothing to do
never@3500 1376 } else {
never@3500 1377 ShouldNotReachHere();
never@3500 1378 }
never@3500 1379 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1380 i++;
never@3500 1381 }
never@3500 1382 }
never@3500 1383
never@3500 1384 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1385 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1386 }
never@3500 1387 #endif
never@3500 1388 }
never@3500 1389
never@3500 1390 // Unpack an array argument into a pointer to the body and the length
never@3500 1391 // if the array is non-null, otherwise pass 0 for both.
never@3500 1392 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1393 Register tmp_reg = rax;
never@3500 1394 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1395 "possible collision");
never@3500 1396 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1397 "possible collision");
never@3500 1398
never@3500 1399 // Pass the length, ptr pair
never@3500 1400 Label is_null, done;
never@3500 1401 VMRegPair tmp;
never@3500 1402 tmp.set_ptr(tmp_reg->as_VMReg());
never@3500 1403 if (reg.first()->is_stack()) {
never@3500 1404 // Load the arg up from the stack
never@3500 1405 move_ptr(masm, reg, tmp);
never@3500 1406 reg = tmp;
never@3500 1407 }
never@3500 1408 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1409 __ jccb(Assembler::equal, is_null);
never@3500 1410 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1411 move_ptr(masm, tmp, body_arg);
never@3500 1412 // load the length relative to the body.
never@3500 1413 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1414 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1415 move32_64(masm, tmp, length_arg);
never@3500 1416 __ jmpb(done);
never@3500 1417 __ bind(is_null);
never@3500 1418 // Pass zeros
never@3500 1419 __ xorptr(tmp_reg, tmp_reg);
never@3500 1420 move_ptr(masm, tmp, body_arg);
never@3500 1421 move32_64(masm, tmp, length_arg);
never@3500 1422 __ bind(done);
never@3500 1423 }
never@3500 1424
never@3608 1425
twisti@3969 1426 // Different signatures may require very different orders for the move
twisti@3969 1427 // to avoid clobbering other arguments. There's no simple way to
twisti@3969 1428 // order them safely. Compute a safe order for issuing stores and
twisti@3969 1429 // break any cycles in those stores. This code is fairly general but
twisti@3969 1430 // it's not necessary on the other platforms so we keep it in the
twisti@3969 1431 // platform dependent code instead of moving it into a shared file.
twisti@3969 1432 // (See bugs 7013347 & 7145024.)
twisti@3969 1433 // Note that this code is specific to LP64.
never@3608 1434 class ComputeMoveOrder: public StackObj {
never@3608 1435 class MoveOperation: public ResourceObj {
never@3608 1436 friend class ComputeMoveOrder;
never@3608 1437 private:
never@3608 1438 VMRegPair _src;
never@3608 1439 VMRegPair _dst;
never@3608 1440 int _src_index;
never@3608 1441 int _dst_index;
never@3608 1442 bool _processed;
never@3608 1443 MoveOperation* _next;
never@3608 1444 MoveOperation* _prev;
never@3608 1445
never@3608 1446 static int get_id(VMRegPair r) {
never@3608 1447 return r.first()->value();
never@3608 1448 }
never@3608 1449
never@3608 1450 public:
never@3608 1451 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
never@3608 1452 _src(src)
never@3608 1453 , _src_index(src_index)
never@3608 1454 , _dst(dst)
never@3608 1455 , _dst_index(dst_index)
never@3608 1456 , _next(NULL)
never@3608 1457 , _prev(NULL)
never@3608 1458 , _processed(false) {
never@3608 1459 }
never@3608 1460
never@3608 1461 VMRegPair src() const { return _src; }
never@3608 1462 int src_id() const { return get_id(src()); }
never@3608 1463 int src_index() const { return _src_index; }
never@3608 1464 VMRegPair dst() const { return _dst; }
never@3608 1465 void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
never@3608 1466 int dst_index() const { return _dst_index; }
never@3608 1467 int dst_id() const { return get_id(dst()); }
never@3608 1468 MoveOperation* next() const { return _next; }
never@3608 1469 MoveOperation* prev() const { return _prev; }
never@3608 1470 void set_processed() { _processed = true; }
never@3608 1471 bool is_processed() const { return _processed; }
never@3608 1472
never@3608 1473 // insert
never@3608 1474 void break_cycle(VMRegPair temp_register) {
never@3608 1475 // create a new store following the last store
never@3608 1476 // to move from the temp_register to the original
never@3608 1477 MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
never@3608 1478
never@3608 1479 // break the cycle of links and insert new_store at the end
never@3608 1480 // break the reverse link.
never@3608 1481 MoveOperation* p = prev();
never@3608 1482 assert(p->next() == this, "must be");
never@3608 1483 _prev = NULL;
never@3608 1484 p->_next = new_store;
never@3608 1485 new_store->_prev = p;
never@3608 1486
never@3608 1487 // change the original store to save it's value in the temp.
never@3608 1488 set_dst(-1, temp_register);
never@3608 1489 }
never@3608 1490
never@3608 1491 void link(GrowableArray<MoveOperation*>& killer) {
never@3608 1492 // link this store in front the store that it depends on
never@3608 1493 MoveOperation* n = killer.at_grow(src_id(), NULL);
never@3608 1494 if (n != NULL) {
never@3608 1495 assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
never@3608 1496 _next = n;
never@3608 1497 n->_prev = this;
never@3608 1498 }
never@3608 1499 }
never@3608 1500 };
never@3608 1501
never@3608 1502 private:
never@3608 1503 GrowableArray<MoveOperation*> edges;
never@3608 1504
never@3608 1505 public:
never@3608 1506 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
never@3608 1507 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
never@3608 1508 // Move operations where the dest is the stack can all be
never@3608 1509 // scheduled first since they can't interfere with the other moves.
never@3608 1510 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 1511 if (in_sig_bt[i] == T_ARRAY) {
never@3608 1512 c_arg--;
never@3608 1513 if (out_regs[c_arg].first()->is_stack() &&
never@3608 1514 out_regs[c_arg + 1].first()->is_stack()) {
never@3608 1515 arg_order.push(i);
never@3608 1516 arg_order.push(c_arg);
never@3608 1517 } else {
never@3608 1518 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1519 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1520 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
never@3608 1521 } else {
never@3608 1522 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1523 }
never@3608 1524 }
never@3608 1525 } else if (in_sig_bt[i] == T_VOID) {
never@3608 1526 arg_order.push(i);
never@3608 1527 arg_order.push(c_arg);
never@3608 1528 } else {
never@3608 1529 if (out_regs[c_arg].first()->is_stack() ||
never@3608 1530 in_regs[i].first() == out_regs[c_arg].first()) {
never@3608 1531 arg_order.push(i);
never@3608 1532 arg_order.push(c_arg);
never@3608 1533 } else {
never@3608 1534 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
never@3608 1535 }
never@3608 1536 }
never@3608 1537 }
never@3608 1538 // Break any cycles in the register moves and emit the in the
never@3608 1539 // proper order.
never@3608 1540 GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
never@3608 1541 for (int i = 0; i < stores->length(); i++) {
never@3608 1542 arg_order.push(stores->at(i)->src_index());
never@3608 1543 arg_order.push(stores->at(i)->dst_index());
never@3608 1544 }
never@3608 1545 }
never@3608 1546
never@3608 1547 // Collected all the move operations
never@3608 1548 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
never@3608 1549 if (src.first() == dst.first()) return;
never@3608 1550 edges.append(new MoveOperation(src_index, src, dst_index, dst));
never@3608 1551 }
never@3608 1552
never@3608 1553 // Walk the edges breaking cycles between moves. The result list
never@3608 1554 // can be walked in order to produce the proper set of loads
never@3608 1555 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
never@3608 1556 // Record which moves kill which values
never@3608 1557 GrowableArray<MoveOperation*> killer;
never@3608 1558 for (int i = 0; i < edges.length(); i++) {
never@3608 1559 MoveOperation* s = edges.at(i);
never@3608 1560 assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
never@3608 1561 killer.at_put_grow(s->dst_id(), s, NULL);
never@3608 1562 }
never@3608 1563 assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
never@3608 1564 "make sure temp isn't in the registers that are killed");
never@3608 1565
never@3608 1566 // create links between loads and stores
never@3608 1567 for (int i = 0; i < edges.length(); i++) {
never@3608 1568 edges.at(i)->link(killer);
never@3608 1569 }
never@3608 1570
never@3608 1571 // at this point, all the move operations are chained together
never@3608 1572 // in a doubly linked list. Processing it backwards finds
never@3608 1573 // the beginning of the chain, forwards finds the end. If there's
never@3608 1574 // a cycle it can be broken at any point, so pick an edge and walk
never@3608 1575 // backward until the list ends or we end where we started.
never@3608 1576 GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
never@3608 1577 for (int e = 0; e < edges.length(); e++) {
never@3608 1578 MoveOperation* s = edges.at(e);
never@3608 1579 if (!s->is_processed()) {
never@3608 1580 MoveOperation* start = s;
never@3608 1581 // search for the beginning of the chain or cycle
never@3608 1582 while (start->prev() != NULL && start->prev() != s) {
never@3608 1583 start = start->prev();
never@3608 1584 }
never@3608 1585 if (start->prev() == s) {
never@3608 1586 start->break_cycle(temp_register);
never@3608 1587 }
never@3608 1588 // walk the chain forward inserting to store list
never@3608 1589 while (start != NULL) {
never@3608 1590 stores->append(start);
never@3608 1591 start->set_processed();
never@3608 1592 start = start->next();
never@3608 1593 }
never@3608 1594 }
never@3608 1595 }
never@3608 1596 return stores;
never@3608 1597 }
never@3608 1598 };
never@3608 1599
twisti@3969 1600 static void verify_oop_args(MacroAssembler* masm,
twisti@3969 1601 int total_args_passed,
twisti@3969 1602 const BasicType* sig_bt,
twisti@3969 1603 const VMRegPair* regs) {
twisti@3969 1604 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1605 if (VerifyOops) {
twisti@3969 1606 for (int i = 0; i < total_args_passed; i++) {
twisti@3969 1607 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1608 sig_bt[i] == T_ARRAY) {
twisti@3969 1609 VMReg r = regs[i].first();
twisti@3969 1610 assert(r->is_valid(), "bad oop arg");
twisti@3969 1611 if (r->is_stack()) {
twisti@3969 1612 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1613 __ verify_oop(temp_reg);
twisti@3969 1614 } else {
twisti@3969 1615 __ verify_oop(r->as_Register());
twisti@3969 1616 }
twisti@3969 1617 }
twisti@3969 1618 }
twisti@3969 1619 }
twisti@3969 1620 }
twisti@3969 1621
twisti@3969 1622 static void gen_special_dispatch(MacroAssembler* masm,
twisti@3969 1623 int total_args_passed,
twisti@3969 1624 int comp_args_on_stack,
twisti@3969 1625 vmIntrinsics::ID special_dispatch,
twisti@3969 1626 const BasicType* sig_bt,
twisti@3969 1627 const VMRegPair* regs) {
twisti@3969 1628 verify_oop_args(masm, total_args_passed, sig_bt, regs);
twisti@3969 1629
twisti@3969 1630 // Now write the args into the outgoing interpreter space
twisti@3969 1631 bool has_receiver = false;
twisti@3969 1632 Register receiver_reg = noreg;
twisti@3969 1633 int member_arg_pos = -1;
twisti@3969 1634 Register member_reg = noreg;
twisti@3969 1635 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
twisti@3969 1636 if (ref_kind != 0) {
twisti@3969 1637 member_arg_pos = total_args_passed - 1; // trailing MemberName argument
twisti@3969 1638 member_reg = rbx; // known to be free at this point
twisti@3969 1639 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@3969 1640 } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
twisti@3969 1641 has_receiver = true;
twisti@3969 1642 } else {
twisti@3969 1643 guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
twisti@3969 1644 }
twisti@3969 1645
twisti@3969 1646 if (member_reg != noreg) {
twisti@3969 1647 // Load the member_arg into register, if necessary.
twisti@3969 1648 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@3969 1649 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@3969 1650 VMReg r = regs[member_arg_pos].first();
twisti@3969 1651 assert(r->is_valid(), "bad member arg");
twisti@3969 1652 if (r->is_stack()) {
twisti@3969 1653 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1654 } else {
twisti@3969 1655 // no data motion is needed
twisti@3969 1656 member_reg = r->as_Register();
twisti@3969 1657 }
twisti@3969 1658 }
twisti@3969 1659
twisti@3969 1660 if (has_receiver) {
twisti@3969 1661 // Make sure the receiver is loaded into a register.
twisti@3969 1662 assert(total_args_passed > 0, "oob");
twisti@3969 1663 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1664 VMReg r = regs[0].first();
twisti@3969 1665 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1666 if (r->is_stack()) {
twisti@3969 1667 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1668 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1669 // platform, pick a temp and load the receiver from stack.
twisti@3969 1670 assert(false, "receiver always in a register");
twisti@3969 1671 receiver_reg = j_rarg0; // known to be free at this point
twisti@3969 1672 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1673 } else {
twisti@3969 1674 // no data motion is needed
twisti@3969 1675 receiver_reg = r->as_Register();
twisti@3969 1676 }
twisti@3969 1677 }
twisti@3969 1678
twisti@3969 1679 // Figure out which address we are really jumping to:
twisti@3969 1680 MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
twisti@3969 1681 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1682 }
never@3608 1683
duke@435 1684 // ---------------------------------------------------------------------------
duke@435 1685 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1686 // in the Java compiled code convention, marshals them to the native
duke@435 1687 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1688 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1689 // returns.
twisti@3969 1690 //
twisti@3969 1691 // Critical native functions are a shorthand for the use of
twisti@3969 1692 // GetPrimtiveArrayCritical and disallow the use of any other JNI
twisti@3969 1693 // functions. The wrapper is expected to unpack the arguments before
twisti@3969 1694 // passing them to the callee and perform checks before and after the
twisti@3969 1695 // native call to ensure that they GC_locker
twisti@3969 1696 // lock_critical/unlock_critical semantics are followed. Some other
twisti@3969 1697 // parts of JNI setup are skipped like the tear down of the JNI handle
twisti@3969 1698 // block and the check for pending exceptions it's impossible for them
twisti@3969 1699 // to be thrown.
twisti@3969 1700 //
twisti@3969 1701 // They are roughly structured like this:
twisti@3969 1702 // if (GC_locker::needs_gc())
twisti@3969 1703 // SharedRuntime::block_for_jni_critical();
twisti@3969 1704 // tranistion to thread_in_native
twisti@3969 1705 // unpack arrray arguments and call native entry point
twisti@3969 1706 // check for safepoint in progress
twisti@3969 1707 // check if any thread suspend flags are set
twisti@3969 1708 // call into JVM and possible unlock the JNI critical
twisti@3969 1709 // if a GC was suppressed while in the critical native.
twisti@3969 1710 // transition back to thread_in_Java
twisti@3969 1711 // return to caller
twisti@3969 1712 //
twisti@3969 1713 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1714 methodHandle method,
twisti@2687 1715 int compile_id,
duke@435 1716 int total_in_args,
duke@435 1717 int comp_args_on_stack,
twisti@3969 1718 BasicType* in_sig_bt,
twisti@3969 1719 VMRegPair* in_regs,
duke@435 1720 BasicType ret_type) {
twisti@3969 1721 if (method->is_method_handle_intrinsic()) {
twisti@3969 1722 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1723 intptr_t start = (intptr_t)__ pc();
twisti@3969 1724 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1725 gen_special_dispatch(masm,
twisti@3969 1726 total_in_args,
twisti@3969 1727 comp_args_on_stack,
twisti@3969 1728 method->intrinsic_id(),
twisti@3969 1729 in_sig_bt,
twisti@3969 1730 in_regs);
twisti@3969 1731 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1732 __ flush();
twisti@3969 1733 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1734 return nmethod::new_native_nmethod(method,
twisti@3969 1735 compile_id,
twisti@3969 1736 masm->code(),
twisti@3969 1737 vep_offset,
twisti@3969 1738 frame_complete,
twisti@3969 1739 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1740 in_ByteSize(-1),
twisti@3969 1741 in_ByteSize(-1),
twisti@3969 1742 (OopMapSet*)NULL);
twisti@3969 1743 }
never@3500 1744 bool is_critical_native = true;
never@3500 1745 address native_func = method->critical_native_function();
never@3500 1746 if (native_func == NULL) {
never@3500 1747 native_func = method->native_function();
never@3500 1748 is_critical_native = false;
never@3500 1749 }
never@3500 1750 assert(native_func != NULL, "must have function");
never@3500 1751
duke@435 1752 // An OopMap for lock (and class if static)
duke@435 1753 OopMapSet *oop_maps = new OopMapSet();
duke@435 1754 intptr_t start = (intptr_t)__ pc();
duke@435 1755
duke@435 1756 // We have received a description of where all the java arg are located
duke@435 1757 // on entry to the wrapper. We need to convert these args to where
duke@435 1758 // the jni function will expect them. To figure out where they go
duke@435 1759 // we convert the java signature to a C signature by inserting
duke@435 1760 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1761
never@3500 1762 int total_c_args = total_in_args;
never@3500 1763 if (!is_critical_native) {
never@3500 1764 total_c_args += 1;
never@3500 1765 if (method->is_static()) {
never@3500 1766 total_c_args++;
never@3500 1767 }
never@3500 1768 } else {
never@3500 1769 for (int i = 0; i < total_in_args; i++) {
never@3500 1770 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1771 total_c_args++;
never@3500 1772 }
never@3500 1773 }
duke@435 1774 }
duke@435 1775
duke@435 1776 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1777 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1778 BasicType* in_elem_bt = NULL;
duke@435 1779
duke@435 1780 int argc = 0;
never@3500 1781 if (!is_critical_native) {
never@3500 1782 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1783 if (method->is_static()) {
never@3500 1784 out_sig_bt[argc++] = T_OBJECT;
never@3500 1785 }
never@3500 1786
never@3500 1787 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1788 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1789 }
never@3500 1790 } else {
never@3500 1791 Thread* THREAD = Thread::current();
never@3500 1792 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1793 SignatureStream ss(method->signature());
never@3500 1794 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1795 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1796 // Arrays are passed as int, elem* pair
never@3500 1797 out_sig_bt[argc++] = T_INT;
never@3500 1798 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1799 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1800 const char* at = atype->as_C_string();
never@3500 1801 if (strlen(at) == 2) {
never@3500 1802 assert(at[0] == '[', "must be");
never@3500 1803 switch (at[1]) {
never@3500 1804 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1805 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1806 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1807 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1808 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1809 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1810 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1811 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1812 default: ShouldNotReachHere();
never@3500 1813 }
never@3500 1814 }
never@3500 1815 } else {
never@3500 1816 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1817 in_elem_bt[i] = T_VOID;
never@3500 1818 }
never@3500 1819 if (in_sig_bt[i] != T_VOID) {
never@3500 1820 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1821 ss.next();
never@3500 1822 }
never@3500 1823 }
duke@435 1824 }
duke@435 1825
duke@435 1826 // Now figure out where the args must be stored and how much stack space
duke@435 1827 // they require.
duke@435 1828 int out_arg_slots;
duke@435 1829 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1830
duke@435 1831 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1832 // incoming registers
duke@435 1833
duke@435 1834 // Calculate the total number of stack slots we will need.
duke@435 1835
duke@435 1836 // First count the abi requirement plus all of the outgoing args
duke@435 1837 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1838
duke@435 1839 // Now the space for the inbound oop handle area
never@3500 1840 int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers
never@3500 1841 if (is_critical_native) {
never@3500 1842 // Critical natives may have to call out so they need a save area
never@3500 1843 // for register arguments.
never@3500 1844 int double_slots = 0;
never@3500 1845 int single_slots = 0;
never@3500 1846 for ( int i = 0; i < total_in_args; i++) {
never@3500 1847 if (in_regs[i].first()->is_Register()) {
never@3500 1848 const Register reg = in_regs[i].first()->as_Register();
never@3500 1849 switch (in_sig_bt[i]) {
never@3500 1850 case T_BOOLEAN:
never@3500 1851 case T_BYTE:
never@3500 1852 case T_SHORT:
never@3500 1853 case T_CHAR:
never@3500 1854 case T_INT: single_slots++; break;
twisti@3969 1855 case T_ARRAY: // specific to LP64 (7145024)
never@3500 1856 case T_LONG: double_slots++; break;
never@3500 1857 default: ShouldNotReachHere();
never@3500 1858 }
never@3500 1859 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1860 switch (in_sig_bt[i]) {
never@3500 1861 case T_FLOAT: single_slots++; break;
never@3500 1862 case T_DOUBLE: double_slots++; break;
never@3500 1863 default: ShouldNotReachHere();
never@3500 1864 }
never@3500 1865 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1866 ShouldNotReachHere();
never@3500 1867 }
never@3500 1868 }
never@3500 1869 total_save_slots = double_slots * 2 + single_slots;
never@3500 1870 // align the save area
never@3500 1871 if (double_slots != 0) {
never@3500 1872 stack_slots = round_to(stack_slots, 2);
never@3500 1873 }
never@3500 1874 }
duke@435 1875
duke@435 1876 int oop_handle_offset = stack_slots;
never@3500 1877 stack_slots += total_save_slots;
duke@435 1878
duke@435 1879 // Now any space we need for handlizing a klass if static method
duke@435 1880
duke@435 1881 int klass_slot_offset = 0;
duke@435 1882 int klass_offset = -1;
duke@435 1883 int lock_slot_offset = 0;
duke@435 1884 bool is_static = false;
duke@435 1885
duke@435 1886 if (method->is_static()) {
duke@435 1887 klass_slot_offset = stack_slots;
duke@435 1888 stack_slots += VMRegImpl::slots_per_word;
duke@435 1889 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1890 is_static = true;
duke@435 1891 }
duke@435 1892
duke@435 1893 // Plus a lock if needed
duke@435 1894
duke@435 1895 if (method->is_synchronized()) {
duke@435 1896 lock_slot_offset = stack_slots;
duke@435 1897 stack_slots += VMRegImpl::slots_per_word;
duke@435 1898 }
duke@435 1899
duke@435 1900 // Now a place (+2) to save return values or temp during shuffling
duke@435 1901 // + 4 for return address (which we own) and saved rbp
duke@435 1902 stack_slots += 6;
duke@435 1903
duke@435 1904 // Ok The space we have allocated will look like:
duke@435 1905 //
duke@435 1906 //
duke@435 1907 // FP-> | |
duke@435 1908 // |---------------------|
duke@435 1909 // | 2 slots for moves |
duke@435 1910 // |---------------------|
duke@435 1911 // | lock box (if sync) |
duke@435 1912 // |---------------------| <- lock_slot_offset
duke@435 1913 // | klass (if static) |
duke@435 1914 // |---------------------| <- klass_slot_offset
duke@435 1915 // | oopHandle area |
duke@435 1916 // |---------------------| <- oop_handle_offset (6 java arg registers)
duke@435 1917 // | outbound memory |
duke@435 1918 // | based arguments |
duke@435 1919 // | |
duke@435 1920 // |---------------------|
duke@435 1921 // | |
duke@435 1922 // SP-> | out_preserved_slots |
duke@435 1923 //
duke@435 1924 //
duke@435 1925
duke@435 1926
duke@435 1927 // Now compute actual number of stack words we need rounding to make
duke@435 1928 // stack properly aligned.
xlu@959 1929 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1930
duke@435 1931 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1932
duke@435 1933 // First thing make an ic check to see if we should even be here
duke@435 1934
duke@435 1935 // We are free to use all registers as temps without saving them and
duke@435 1936 // restoring them except rbp. rbp is the only callee save register
duke@435 1937 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1938
duke@435 1939
duke@435 1940 const Register ic_reg = rax;
duke@435 1941 const Register receiver = j_rarg0;
duke@435 1942
never@3500 1943 Label hit;
duke@435 1944 Label exception_pending;
duke@435 1945
never@1283 1946 assert_different_registers(ic_reg, receiver, rscratch1);
duke@435 1947 __ verify_oop(receiver);
never@1283 1948 __ load_klass(rscratch1, receiver);
never@1283 1949 __ cmpq(ic_reg, rscratch1);
never@3500 1950 __ jcc(Assembler::equal, hit);
duke@435 1951
duke@435 1952 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1953
duke@435 1954 // Verified entry point must be aligned
duke@435 1955 __ align(8);
duke@435 1956
never@3500 1957 __ bind(hit);
never@3500 1958
duke@435 1959 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1960
duke@435 1961 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1962 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1963 // instruction fits that requirement.
duke@435 1964
duke@435 1965 // Generate stack overflow check
duke@435 1966
duke@435 1967 if (UseStackBanging) {
duke@435 1968 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1969 } else {
duke@435 1970 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1971 __ fat_nop();
duke@435 1972 }
duke@435 1973
duke@435 1974 // Generate a new frame for the wrapper.
duke@435 1975 __ enter();
duke@435 1976 // -2 because return address is already present and so is saved rbp
never@739 1977 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1978
never@3500 1979 // Frame is now completed as far as size and linkage.
never@3500 1980 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1981
duke@435 1982 #ifdef ASSERT
duke@435 1983 {
duke@435 1984 Label L;
never@739 1985 __ mov(rax, rsp);
twisti@1040 1986 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
never@739 1987 __ cmpptr(rax, rsp);
duke@435 1988 __ jcc(Assembler::equal, L);
duke@435 1989 __ stop("improperly aligned stack");
duke@435 1990 __ bind(L);
duke@435 1991 }
duke@435 1992 #endif /* ASSERT */
duke@435 1993
duke@435 1994
duke@435 1995 // We use r14 as the oop handle for the receiver/klass
duke@435 1996 // It is callee save so it survives the call to native
duke@435 1997
duke@435 1998 const Register oop_handle_reg = r14;
duke@435 1999
never@3500 2000 if (is_critical_native) {
never@3500 2001 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
never@3500 2002 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 2003 }
duke@435 2004
duke@435 2005 //
duke@435 2006 // We immediately shuffle the arguments so that any vm call we have to
duke@435 2007 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 2008 // captured the oops from our caller and have a valid oopMap for
duke@435 2009 // them.
duke@435 2010
duke@435 2011 // -----------------
duke@435 2012 // The Grand Shuffle
duke@435 2013
duke@435 2014 // The Java calling convention is either equal (linux) or denser (win64) than the
duke@435 2015 // c calling convention. However the because of the jni_env argument the c calling
duke@435 2016 // convention always has at least one more (and two for static) arguments than Java.
duke@435 2017 // Therefore if we move the args from java -> c backwards then we will never have
duke@435 2018 // a register->register conflict and we don't have to build a dependency graph
duke@435 2019 // and figure out how to break any cycles.
duke@435 2020 //
duke@435 2021
duke@435 2022 // Record esp-based slot for receiver on stack for non-static methods
duke@435 2023 int receiver_offset = -1;
duke@435 2024
duke@435 2025 // This is a trick. We double the stack slots so we can claim
duke@435 2026 // the oops in the caller's frame. Since we are sure to have
duke@435 2027 // more args than the caller doubling is enough to make
duke@435 2028 // sure we can capture all the incoming oop args from the
duke@435 2029 // caller.
duke@435 2030 //
duke@435 2031 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 2032
duke@435 2033 // Mark location of rbp (someday)
duke@435 2034 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
duke@435 2035
duke@435 2036 // Use eax, ebx as temporaries during any memory-memory moves we have to do
duke@435 2037 // All inbound args are referenced based on rbp and all outbound args via rsp.
duke@435 2038
duke@435 2039
duke@435 2040 #ifdef ASSERT
duke@435 2041 bool reg_destroyed[RegisterImpl::number_of_registers];
duke@435 2042 bool freg_destroyed[XMMRegisterImpl::number_of_registers];
duke@435 2043 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
duke@435 2044 reg_destroyed[r] = false;
duke@435 2045 }
duke@435 2046 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
duke@435 2047 freg_destroyed[f] = false;
duke@435 2048 }
duke@435 2049
duke@435 2050 #endif /* ASSERT */
duke@435 2051
never@3500 2052 // This may iterate in two different directions depending on the
never@3500 2053 // kind of native it is. The reason is that for regular JNI natives
never@3500 2054 // the incoming and outgoing registers are offset upwards and for
never@3500 2055 // critical natives they are offset down.
never@3608 2056 GrowableArray<int> arg_order(2 * total_in_args);
never@3608 2057 VMRegPair tmp_vmreg;
never@3608 2058 tmp_vmreg.set1(rbx->as_VMReg());
never@3608 2059
never@3608 2060 if (!is_critical_native) {
never@3608 2061 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
never@3608 2062 arg_order.push(i);
never@3608 2063 arg_order.push(c_arg);
never@3608 2064 }
never@3608 2065 } else {
never@3608 2066 // Compute a valid move order, using tmp_vmreg to break any cycles
never@3608 2067 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
never@3500 2068 }
never@3608 2069
never@3608 2070 int temploc = -1;
never@3608 2071 for (int ai = 0; ai < arg_order.length(); ai += 2) {
never@3608 2072 int i = arg_order.at(ai);
never@3608 2073 int c_arg = arg_order.at(ai + 1);
never@3608 2074 __ block_comment(err_msg("move %d -> %d", i, c_arg));
never@3608 2075 if (c_arg == -1) {
never@3608 2076 assert(is_critical_native, "should only be required for critical natives");
never@3608 2077 // This arg needs to be moved to a temporary
never@3608 2078 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
never@3608 2079 in_regs[i] = tmp_vmreg;
never@3608 2080 temploc = i;
never@3608 2081 continue;
never@3608 2082 } else if (i == -1) {
never@3608 2083 assert(is_critical_native, "should only be required for critical natives");
never@3608 2084 // Read from the temporary location
never@3608 2085 assert(temploc != -1, "must be valid");
never@3608 2086 i = temploc;
never@3608 2087 temploc = -1;
never@3608 2088 }
duke@435 2089 #ifdef ASSERT
duke@435 2090 if (in_regs[i].first()->is_Register()) {
duke@435 2091 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
duke@435 2092 } else if (in_regs[i].first()->is_XMMRegister()) {
duke@435 2093 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
duke@435 2094 }
duke@435 2095 if (out_regs[c_arg].first()->is_Register()) {
duke@435 2096 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
duke@435 2097 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
duke@435 2098 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
duke@435 2099 }
duke@435 2100 #endif /* ASSERT */
duke@435 2101 switch (in_sig_bt[i]) {
duke@435 2102 case T_ARRAY:
never@3500 2103 if (is_critical_native) {
never@3500 2104 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 2105 c_arg++;
never@3500 2106 #ifdef ASSERT
never@3500 2107 if (out_regs[c_arg].first()->is_Register()) {
never@3500 2108 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
never@3500 2109 } else if (out_regs[c_arg].first()->is_XMMRegister()) {
never@3500 2110 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
never@3500 2111 }
never@3500 2112 #endif
never@3500 2113 break;
never@3500 2114 }
duke@435 2115 case T_OBJECT:
never@3500 2116 assert(!is_critical_native, "no oop arguments");
duke@435 2117 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 2118 ((i == 0) && (!is_static)),
duke@435 2119 &receiver_offset);
duke@435 2120 break;
duke@435 2121 case T_VOID:
duke@435 2122 break;
duke@435 2123
duke@435 2124 case T_FLOAT:
duke@435 2125 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2126 break;
duke@435 2127
duke@435 2128 case T_DOUBLE:
duke@435 2129 assert( i + 1 < total_in_args &&
duke@435 2130 in_sig_bt[i + 1] == T_VOID &&
duke@435 2131 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 2132 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2133 break;
duke@435 2134
duke@435 2135 case T_LONG :
duke@435 2136 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 2137 break;
duke@435 2138
duke@435 2139 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 2140
duke@435 2141 default:
duke@435 2142 move32_64(masm, in_regs[i], out_regs[c_arg]);
duke@435 2143 }
duke@435 2144 }
duke@435 2145
duke@435 2146 // point c_arg at the first arg that is already loaded in case we
duke@435 2147 // need to spill before we call out
never@3608 2148 int c_arg = total_c_args - total_in_args;
duke@435 2149
duke@435 2150 // Pre-load a static method's oop into r14. Used both by locking code and
duke@435 2151 // the normal JNI call code.
never@3500 2152 if (method->is_static() && !is_critical_native) {
duke@435 2153
duke@435 2154 // load oop into a register
duke@435 2155 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 2156
duke@435 2157 // Now handlize the static class mirror it's known not-null.
never@739 2158 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 2159 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 2160
duke@435 2161 // Now get the handle
never@739 2162 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 2163 // store the klass handle as second argument
never@739 2164 __ movptr(c_rarg1, oop_handle_reg);
duke@435 2165 // and protect the arg if we must spill
duke@435 2166 c_arg--;
duke@435 2167 }
duke@435 2168
duke@435 2169 // Change state to native (we save the return address in the thread, since it might not
duke@435 2170 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 2171 // points into the right code segment. It does not have to be the correct return pc.
duke@435 2172 // We use the same pc/oopMap repeatedly when we call out
duke@435 2173
duke@435 2174 intptr_t the_pc = (intptr_t) __ pc();
duke@435 2175 oop_maps->add_gc_map(the_pc - start, map);
duke@435 2176
duke@435 2177 __ set_last_Java_frame(rsp, noreg, (address)the_pc);
duke@435 2178
duke@435 2179
duke@435 2180 // We have all of the arguments setup at this point. We must not touch any register
duke@435 2181 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 2182
duke@435 2183 {
duke@435 2184 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2185 // protect the args we've loaded
duke@435 2186 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 2187 __ movoop(c_rarg1, JNIHandles::make_local(method()));
duke@435 2188 __ call_VM_leaf(
duke@435 2189 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2190 r15_thread, c_rarg1);
duke@435 2191 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2192 }
duke@435 2193
dcubed@1045 2194 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2195 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2196 // protect the args we've loaded
dcubed@1045 2197 save_args(masm, total_c_args, c_arg, out_regs);
dcubed@1045 2198 __ movoop(c_rarg1, JNIHandles::make_local(method()));
dcubed@1045 2199 __ call_VM_leaf(
dcubed@1045 2200 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2201 r15_thread, c_rarg1);
dcubed@1045 2202 restore_args(masm, total_c_args, c_arg, out_regs);
dcubed@1045 2203 }
dcubed@1045 2204
duke@435 2205 // Lock a synchronized method
duke@435 2206
duke@435 2207 // Register definitions used by locking and unlocking
duke@435 2208
duke@435 2209 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
duke@435 2210 const Register obj_reg = rbx; // Will contain the oop
duke@435 2211 const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
duke@435 2212 const Register old_hdr = r13; // value of old header at unlock time
duke@435 2213
duke@435 2214 Label slow_path_lock;
duke@435 2215 Label lock_done;
duke@435 2216
duke@435 2217 if (method->is_synchronized()) {
never@3500 2218 assert(!is_critical_native, "unhandled");
duke@435 2219
duke@435 2220
duke@435 2221 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 2222
duke@435 2223 // Get the handle (the 2nd argument)
never@739 2224 __ mov(oop_handle_reg, c_rarg1);
duke@435 2225
duke@435 2226 // Get address of the box
duke@435 2227
never@739 2228 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2229
duke@435 2230 // Load the oop from the handle
never@739 2231 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2232
duke@435 2233 if (UseBiasedLocking) {
duke@435 2234 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
duke@435 2235 }
duke@435 2236
duke@435 2237 // Load immediate 1 into swap_reg %rax
duke@435 2238 __ movl(swap_reg, 1);
duke@435 2239
duke@435 2240 // Load (object->mark() | 1) into swap_reg %rax
never@739 2241 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 2242
duke@435 2243 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 2244 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2245
duke@435 2246 if (os::is_MP()) {
duke@435 2247 __ lock();
duke@435 2248 }
duke@435 2249
duke@435 2250 // src -> dest iff dest == rax else rax <- dest
never@739 2251 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 2252 __ jcc(Assembler::equal, lock_done);
duke@435 2253
duke@435 2254 // Hmm should this move to the slow path code area???
duke@435 2255
duke@435 2256 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 2257 // 1) (mark & 3) == 0, and
duke@435 2258 // 2) rsp <= mark < mark + os::pagesize()
duke@435 2259 // These 3 tests can be done by evaluating the following
duke@435 2260 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 2261 // assuming both stack pointer and pagesize have their
duke@435 2262 // least significant 2 bits clear.
duke@435 2263 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
duke@435 2264
never@739 2265 __ subptr(swap_reg, rsp);
never@739 2266 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 2267
duke@435 2268 // Save the test result, for recursive case, the result is zero
never@739 2269 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2270 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 2271
duke@435 2272 // Slow path will re-enter here
duke@435 2273
duke@435 2274 __ bind(lock_done);
duke@435 2275 }
duke@435 2276
duke@435 2277
duke@435 2278 // Finally just about ready to make the JNI call
duke@435 2279
duke@435 2280
duke@435 2281 // get JNIEnv* which is first argument to native
never@3500 2282 if (!is_critical_native) {
never@3500 2283 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2284 }
duke@435 2285
duke@435 2286 // Now set thread in native
never@739 2287 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2288
never@3500 2289 __ call(RuntimeAddress(native_func));
duke@435 2290
duke@435 2291 // Either restore the MXCSR register after returning from the JNI Call
duke@435 2292 // or verify that it wasn't changed.
duke@435 2293 if (RestoreMXCSROnJNICalls) {
never@739 2294 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 2295
duke@435 2296 }
duke@435 2297 else if (CheckJNICalls ) {
never@739 2298 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
duke@435 2299 }
duke@435 2300
duke@435 2301
duke@435 2302 // Unpack native results.
duke@435 2303 switch (ret_type) {
duke@435 2304 case T_BOOLEAN: __ c2bool(rax); break;
duke@435 2305 case T_CHAR : __ movzwl(rax, rax); break;
duke@435 2306 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2307 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2308 case T_INT : /* nothing to do */ break;
duke@435 2309 case T_DOUBLE :
duke@435 2310 case T_FLOAT :
duke@435 2311 // Result is in xmm0 we'll save as needed
duke@435 2312 break;
duke@435 2313 case T_ARRAY: // Really a handle
duke@435 2314 case T_OBJECT: // Really a handle
duke@435 2315 break; // can't de-handlize until after safepoint check
duke@435 2316 case T_VOID: break;
duke@435 2317 case T_LONG: break;
duke@435 2318 default : ShouldNotReachHere();
duke@435 2319 }
duke@435 2320
duke@435 2321 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2322 // This additional state is necessary because reading and testing the synchronization
duke@435 2323 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2324 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2325 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2326 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2327 // didn't see any synchronization is progress, and escapes.
never@739 2328 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2329
duke@435 2330 if(os::is_MP()) {
duke@435 2331 if (UseMembar) {
duke@435 2332 // Force this write out before the read below
duke@435 2333 __ membar(Assembler::Membar_mask_bits(
duke@435 2334 Assembler::LoadLoad | Assembler::LoadStore |
duke@435 2335 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2336 } else {
duke@435 2337 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2338 // We use the current thread pointer to calculate a thread specific
duke@435 2339 // offset to write to within the page. This minimizes bus traffic
duke@435 2340 // due to cache line collision.
duke@435 2341 __ serialize_memory(r15_thread, rcx);
duke@435 2342 }
duke@435 2343 }
duke@435 2344
never@3500 2345 Label after_transition;
duke@435 2346
duke@435 2347 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2348 {
duke@435 2349 Label Continue;
duke@435 2350
duke@435 2351 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2352 SafepointSynchronize::_not_synchronized);
duke@435 2353
duke@435 2354 Label L;
duke@435 2355 __ jcc(Assembler::notEqual, L);
duke@435 2356 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2357 __ jcc(Assembler::equal, Continue);
duke@435 2358 __ bind(L);
duke@435 2359
duke@435 2360 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2361 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2362 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2363 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2364 // by hand.
duke@435 2365 //
duke@435 2366 save_native_result(masm, ret_type, stack_slots);
never@739 2367 __ mov(c_rarg0, r15_thread);
never@739 2368 __ mov(r12, rsp); // remember sp
never@739 2369 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2370 __ andptr(rsp, -16); // align stack as required by ABI
never@3500 2371 if (!is_critical_native) {
never@3500 2372 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
never@3500 2373 } else {
never@3500 2374 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2375 }
never@739 2376 __ mov(rsp, r12); // restore sp
coleenp@548 2377 __ reinit_heapbase();
duke@435 2378 // Restore any method result value
duke@435 2379 restore_native_result(masm, ret_type, stack_slots);
never@3500 2380
never@3500 2381 if (is_critical_native) {
never@3500 2382 // The call above performed the transition to thread_in_Java so
never@3500 2383 // skip the transition logic below.
never@3500 2384 __ jmpb(after_transition);
never@3500 2385 }
never@3500 2386
duke@435 2387 __ bind(Continue);
duke@435 2388 }
duke@435 2389
duke@435 2390 // change thread state
duke@435 2391 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2392 __ bind(after_transition);
duke@435 2393
duke@435 2394 Label reguard;
duke@435 2395 Label reguard_done;
duke@435 2396 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2397 __ jcc(Assembler::equal, reguard);
duke@435 2398 __ bind(reguard_done);
duke@435 2399
duke@435 2400 // native result if any is live
duke@435 2401
duke@435 2402 // Unlock
duke@435 2403 Label unlock_done;
duke@435 2404 Label slow_path_unlock;
duke@435 2405 if (method->is_synchronized()) {
duke@435 2406
duke@435 2407 // Get locked oop from the handle we passed to jni
never@739 2408 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2409
duke@435 2410 Label done;
duke@435 2411
duke@435 2412 if (UseBiasedLocking) {
duke@435 2413 __ biased_locking_exit(obj_reg, old_hdr, done);
duke@435 2414 }
duke@435 2415
duke@435 2416 // Simple recursive lock?
duke@435 2417
never@739 2418 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
duke@435 2419 __ jcc(Assembler::equal, done);
duke@435 2420
duke@435 2421 // Must save rax if if it is live now because cmpxchg must use it
duke@435 2422 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2423 save_native_result(masm, ret_type, stack_slots);
duke@435 2424 }
duke@435 2425
duke@435 2426
duke@435 2427 // get address of the stack lock
never@739 2428 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
duke@435 2429 // get old displaced header
never@739 2430 __ movptr(old_hdr, Address(rax, 0));
duke@435 2431
duke@435 2432 // Atomic swap old header if oop still contains the stack lock
duke@435 2433 if (os::is_MP()) {
duke@435 2434 __ lock();
duke@435 2435 }
never@739 2436 __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
duke@435 2437 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2438
duke@435 2439 // slow path re-enters here
duke@435 2440 __ bind(unlock_done);
duke@435 2441 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2442 restore_native_result(masm, ret_type, stack_slots);
duke@435 2443 }
duke@435 2444
duke@435 2445 __ bind(done);
duke@435 2446
duke@435 2447 }
duke@435 2448 {
duke@435 2449 SkipIfEqual skip(masm, &DTraceMethodProbes, false);
duke@435 2450 save_native_result(masm, ret_type, stack_slots);
duke@435 2451 __ movoop(c_rarg1, JNIHandles::make_local(method()));
duke@435 2452 __ call_VM_leaf(
duke@435 2453 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2454 r15_thread, c_rarg1);
duke@435 2455 restore_native_result(masm, ret_type, stack_slots);
duke@435 2456 }
duke@435 2457
duke@435 2458 __ reset_last_Java_frame(false, true);
duke@435 2459
duke@435 2460 // Unpack oop result
duke@435 2461 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2462 Label L;
never@739 2463 __ testptr(rax, rax);
duke@435 2464 __ jcc(Assembler::zero, L);
never@739 2465 __ movptr(rax, Address(rax, 0));
duke@435 2466 __ bind(L);
duke@435 2467 __ verify_oop(rax);
duke@435 2468 }
duke@435 2469
never@3500 2470 if (!is_critical_native) {
never@3500 2471 // reset handle block
never@3500 2472 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
never@3500 2473 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
never@3500 2474 }
duke@435 2475
duke@435 2476 // pop our frame
duke@435 2477
duke@435 2478 __ leave();
duke@435 2479
never@3500 2480 if (!is_critical_native) {
never@3500 2481 // Any exception pending?
never@3500 2482 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2483 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2484 }
duke@435 2485
duke@435 2486 // Return
duke@435 2487
duke@435 2488 __ ret(0);
duke@435 2489
duke@435 2490 // Unexpected paths are out of line and go here
duke@435 2491
never@3500 2492 if (!is_critical_native) {
never@3500 2493 // forward the exception
never@3500 2494 __ bind(exception_pending);
never@3500 2495
never@3500 2496 // and forward the exception
never@3500 2497 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2498 }
duke@435 2499
duke@435 2500 // Slow path locking & unlocking
duke@435 2501 if (method->is_synchronized()) {
duke@435 2502
duke@435 2503 // BEGIN Slow path lock
duke@435 2504 __ bind(slow_path_lock);
duke@435 2505
duke@435 2506 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2507 // args are (oop obj, BasicLock* lock, JavaThread* thread)
duke@435 2508
duke@435 2509 // protect the args we've loaded
duke@435 2510 save_args(masm, total_c_args, c_arg, out_regs);
duke@435 2511
never@739 2512 __ mov(c_rarg0, obj_reg);
never@739 2513 __ mov(c_rarg1, lock_reg);
never@739 2514 __ mov(c_rarg2, r15_thread);
duke@435 2515
duke@435 2516 // Not a leaf but we have last_Java_frame setup as we want
duke@435 2517 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
duke@435 2518 restore_args(masm, total_c_args, c_arg, out_regs);
duke@435 2519
duke@435 2520 #ifdef ASSERT
duke@435 2521 { Label L;
never@739 2522 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2523 __ jcc(Assembler::equal, L);
duke@435 2524 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2525 __ bind(L);
duke@435 2526 }
duke@435 2527 #endif
duke@435 2528 __ jmp(lock_done);
duke@435 2529
duke@435 2530 // END Slow path lock
duke@435 2531
duke@435 2532 // BEGIN Slow path unlock
duke@435 2533 __ bind(slow_path_unlock);
duke@435 2534
duke@435 2535 // If we haven't already saved the native result we must save it now as xmm registers
duke@435 2536 // are still exposed.
duke@435 2537
duke@435 2538 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2539 save_native_result(masm, ret_type, stack_slots);
duke@435 2540 }
duke@435 2541
never@739 2542 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
never@739 2543
never@739 2544 __ mov(c_rarg0, obj_reg);
never@739 2545 __ mov(r12, rsp); // remember sp
never@739 2546 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2547 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2548
duke@435 2549 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2550 // NOTE that obj_reg == rbx currently
never@739 2551 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
never@739 2552 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2553
duke@435 2554 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2555 __ mov(rsp, r12); // restore sp
coleenp@548 2556 __ reinit_heapbase();
duke@435 2557 #ifdef ASSERT
duke@435 2558 {
duke@435 2559 Label L;
never@739 2560 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2561 __ jcc(Assembler::equal, L);
duke@435 2562 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2563 __ bind(L);
duke@435 2564 }
duke@435 2565 #endif /* ASSERT */
duke@435 2566
never@739 2567 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
duke@435 2568
duke@435 2569 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2570 restore_native_result(masm, ret_type, stack_slots);
duke@435 2571 }
duke@435 2572 __ jmp(unlock_done);
duke@435 2573
duke@435 2574 // END Slow path unlock
duke@435 2575
duke@435 2576 } // synchronized
duke@435 2577
duke@435 2578 // SLOW PATH Reguard the stack if needed
duke@435 2579
duke@435 2580 __ bind(reguard);
duke@435 2581 save_native_result(masm, ret_type, stack_slots);
never@739 2582 __ mov(r12, rsp); // remember sp
never@739 2583 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 2584 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 2585 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
never@739 2586 __ mov(rsp, r12); // restore sp
coleenp@548 2587 __ reinit_heapbase();
duke@435 2588 restore_native_result(masm, ret_type, stack_slots);
duke@435 2589 // and continue
duke@435 2590 __ jmp(reguard_done);
duke@435 2591
duke@435 2592
duke@435 2593
duke@435 2594 __ flush();
duke@435 2595
duke@435 2596 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2597 compile_id,
duke@435 2598 masm->code(),
duke@435 2599 vep_offset,
duke@435 2600 frame_complete,
duke@435 2601 stack_slots / VMRegImpl::slots_per_word,
duke@435 2602 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2603 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2604 oop_maps);
never@3500 2605
never@3500 2606 if (is_critical_native) {
never@3500 2607 nm->set_lazy_critical_native(true);
never@3500 2608 }
never@3500 2609
duke@435 2610 return nm;
duke@435 2611
duke@435 2612 }
duke@435 2613
kamg@551 2614 #ifdef HAVE_DTRACE_H
kamg@551 2615 // ---------------------------------------------------------------------------
kamg@551 2616 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2617 // in the Java compiled code convention, marshals them to the native
kamg@551 2618 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2619 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2620 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2621 // to dtrace.
kamg@551 2622 //
kamg@551 2623 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2624 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2625 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2626 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2627 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2628 // So any java string larger then this is truncated.
kamg@551 2629
kamg@551 2630 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
kamg@551 2631 static bool offsets_initialized = false;
kamg@551 2632
kamg@551 2633
kamg@551 2634 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
kamg@551 2635 methodHandle method) {
kamg@551 2636
kamg@551 2637
kamg@551 2638 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2639 // be single threaded in this method.
kamg@551 2640 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2641
kamg@551 2642 if (!offsets_initialized) {
kamg@551 2643 fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
kamg@551 2644 fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
kamg@551 2645 fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
kamg@551 2646 fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
kamg@551 2647 fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
kamg@551 2648 fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
kamg@551 2649
kamg@551 2650 fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
kamg@551 2651 fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
kamg@551 2652 fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
kamg@551 2653 fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
kamg@551 2654 fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
kamg@551 2655 fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
kamg@551 2656 fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
kamg@551 2657 fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
kamg@551 2658
kamg@551 2659 offsets_initialized = true;
kamg@551 2660 }
kamg@551 2661 // Fill in the signature array, for the calling-convention call.
kamg@551 2662 int total_args_passed = method->size_of_parameters();
kamg@551 2663
kamg@551 2664 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2665 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2666
kamg@551 2667 // The signature we are going to use for the trap that dtrace will see
kamg@551 2668 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2669 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2670 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2671 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2672 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2673
kamg@551 2674 int i=0;
kamg@551 2675 int total_strings = 0;
kamg@551 2676 int first_arg_to_pass = 0;
kamg@551 2677 int total_c_args = 0;
kamg@551 2678
kamg@551 2679 // Skip the receiver as dtrace doesn't want to see it
kamg@551 2680 if( !method->is_static() ) {
kamg@551 2681 in_sig_bt[i++] = T_OBJECT;
kamg@551 2682 first_arg_to_pass = 1;
kamg@551 2683 }
kamg@551 2684
kamg@551 2685 // We need to convert the java args to where a native (non-jni) function
kamg@551 2686 // would expect them. To figure out where they go we convert the java
kamg@551 2687 // signature to a C signature.
kamg@551 2688
kamg@551 2689 SignatureStream ss(method->signature());
kamg@551 2690 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2691 BasicType bt = ss.type();
kamg@551 2692 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2693 out_sig_bt[total_c_args++] = bt;
kamg@551 2694 if( bt == T_OBJECT) {
coleenp@2497 2695 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2696 if (s == vmSymbols::java_lang_String()) {
kamg@551 2697 total_strings++;
kamg@551 2698 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2699 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2700 s == vmSymbols::java_lang_Character() ||
kamg@551 2701 s == vmSymbols::java_lang_Byte() ||
kamg@551 2702 s == vmSymbols::java_lang_Short() ||
kamg@551 2703 s == vmSymbols::java_lang_Integer() ||
kamg@551 2704 s == vmSymbols::java_lang_Float()) {
kamg@551 2705 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2706 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2707 s == vmSymbols::java_lang_Double()) {
kamg@551 2708 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2709 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2710 }
kamg@551 2711 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2712 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2713 // We convert double to long
kamg@551 2714 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2715 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2716 } else if ( bt == T_FLOAT) {
kamg@551 2717 // We convert float to int
kamg@551 2718 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2719 }
kamg@551 2720 }
kamg@551 2721
kamg@551 2722 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2723
kamg@551 2724 // Now get the compiled-Java layout as input arguments
kamg@551 2725 int comp_args_on_stack;
kamg@551 2726 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2727 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2728
kamg@551 2729 // Now figure out where the args must be stored and how much stack space
kamg@551 2730 // they require (neglecting out_preserve_stack_slots but space for storing
kamg@551 2731 // the 1st six register arguments). It's weird see int_stk_helper.
kamg@551 2732
kamg@551 2733 int out_arg_slots;
kamg@551 2734 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2735
kamg@551 2736 // Calculate the total number of stack slots we will need.
kamg@551 2737
kamg@551 2738 // First count the abi requirement plus all of the outgoing args
kamg@551 2739 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2740
kamg@551 2741 // Now space for the string(s) we must convert
kamg@551 2742 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2743 for (i = 0; i < total_strings ; i++) {
kamg@551 2744 string_locs[i] = stack_slots;
kamg@551 2745 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2746 }
kamg@551 2747
kamg@551 2748 // Plus the temps we might need to juggle register args
kamg@551 2749 // regs take two slots each
kamg@551 2750 stack_slots += (Argument::n_int_register_parameters_c +
kamg@551 2751 Argument::n_float_register_parameters_c) * 2;
kamg@551 2752
kamg@551 2753
kamg@551 2754 // + 4 for return address (which we own) and saved rbp,
kamg@551 2755
kamg@551 2756 stack_slots += 4;
kamg@551 2757
kamg@551 2758 // Ok The space we have allocated will look like:
kamg@551 2759 //
kamg@551 2760 //
kamg@551 2761 // FP-> | |
kamg@551 2762 // |---------------------|
kamg@551 2763 // | string[n] |
kamg@551 2764 // |---------------------| <- string_locs[n]
kamg@551 2765 // | string[n-1] |
kamg@551 2766 // |---------------------| <- string_locs[n-1]
kamg@551 2767 // | ... |
kamg@551 2768 // | ... |
kamg@551 2769 // |---------------------| <- string_locs[1]
kamg@551 2770 // | string[0] |
kamg@551 2771 // |---------------------| <- string_locs[0]
kamg@551 2772 // | outbound memory |
kamg@551 2773 // | based arguments |
kamg@551 2774 // | |
kamg@551 2775 // |---------------------|
kamg@551 2776 // | |
kamg@551 2777 // SP-> | out_preserved_slots |
kamg@551 2778 //
kamg@551 2779 //
kamg@551 2780
kamg@551 2781 // Now compute actual number of stack words we need rounding to make
kamg@551 2782 // stack properly aligned.
kamg@551 2783 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
kamg@551 2784
kamg@551 2785 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2786
kamg@551 2787 intptr_t start = (intptr_t)__ pc();
kamg@551 2788
kamg@551 2789 // First thing make an ic check to see if we should even be here
kamg@551 2790
kamg@551 2791 // We are free to use all registers as temps without saving them and
kamg@551 2792 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2793 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2794
kamg@551 2795 const Register ic_reg = rax;
kamg@551 2796 const Register receiver = rcx;
kamg@551 2797 Label hit;
kamg@551 2798 Label exception_pending;
kamg@551 2799
kamg@551 2800
kamg@551 2801 __ verify_oop(receiver);
kamg@551 2802 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2803 __ jcc(Assembler::equal, hit);
kamg@551 2804
kamg@551 2805 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2806
kamg@551 2807 // verified entry must be aligned for code patching.
kamg@551 2808 // and the first 5 bytes must be in the same cache line
kamg@551 2809 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2810 __ align(8);
kamg@551 2811
kamg@551 2812 __ bind(hit);
kamg@551 2813
kamg@551 2814 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2815
kamg@551 2816
kamg@551 2817 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2818 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2819 // instruction fits that requirement.
kamg@551 2820
kamg@551 2821 // Generate stack overflow check
kamg@551 2822
kamg@551 2823 if (UseStackBanging) {
kamg@551 2824 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2825 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2826 } else {
kamg@551 2827 __ movl(rax, stack_size);
kamg@551 2828 __ bang_stack_size(rax, rbx);
kamg@551 2829 }
kamg@551 2830 } else {
kamg@551 2831 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2832 __ fat_nop();
kamg@551 2833 }
kamg@551 2834
kamg@551 2835 assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
kamg@551 2836 "valid size for make_non_entrant");
kamg@551 2837
kamg@551 2838 // Generate a new frame for the wrapper.
kamg@551 2839 __ enter();
kamg@551 2840
kamg@551 2841 // -4 because return address is already present and so is saved rbp,
kamg@551 2842 if (stack_size - 2*wordSize != 0) {
kamg@551 2843 __ subq(rsp, stack_size - 2*wordSize);
kamg@551 2844 }
kamg@551 2845
kamg@551 2846 // Frame is now completed as far a size and linkage.
kamg@551 2847
kamg@551 2848 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2849
kamg@551 2850 int c_arg, j_arg;
kamg@551 2851
kamg@551 2852 // State of input register args
kamg@551 2853
kamg@551 2854 bool live[ConcreteRegisterImpl::number_of_registers];
kamg@551 2855
kamg@551 2856 live[j_rarg0->as_VMReg()->value()] = false;
kamg@551 2857 live[j_rarg1->as_VMReg()->value()] = false;
kamg@551 2858 live[j_rarg2->as_VMReg()->value()] = false;
kamg@551 2859 live[j_rarg3->as_VMReg()->value()] = false;
kamg@551 2860 live[j_rarg4->as_VMReg()->value()] = false;
kamg@551 2861 live[j_rarg5->as_VMReg()->value()] = false;
kamg@551 2862
kamg@551 2863 live[j_farg0->as_VMReg()->value()] = false;
kamg@551 2864 live[j_farg1->as_VMReg()->value()] = false;
kamg@551 2865 live[j_farg2->as_VMReg()->value()] = false;
kamg@551 2866 live[j_farg3->as_VMReg()->value()] = false;
kamg@551 2867 live[j_farg4->as_VMReg()->value()] = false;
kamg@551 2868 live[j_farg5->as_VMReg()->value()] = false;
kamg@551 2869 live[j_farg6->as_VMReg()->value()] = false;
kamg@551 2870 live[j_farg7->as_VMReg()->value()] = false;
kamg@551 2871
kamg@551 2872
kamg@551 2873 bool rax_is_zero = false;
kamg@551 2874
kamg@551 2875 // All args (except strings) destined for the stack are moved first
kamg@551 2876 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2877 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2878 VMRegPair src = in_regs[j_arg];
kamg@551 2879 VMRegPair dst = out_regs[c_arg];
kamg@551 2880
kamg@551 2881 // Get the real reg value or a dummy (rsp)
kamg@551 2882
kamg@551 2883 int src_reg = src.first()->is_reg() ?
kamg@551 2884 src.first()->value() :
kamg@551 2885 rsp->as_VMReg()->value();
kamg@551 2886
kamg@551 2887 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 2888 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 2889 out_sig_bt[c_arg] != T_INT &&
kamg@551 2890 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 2891 out_sig_bt[c_arg] != T_LONG);
kamg@551 2892
kamg@551 2893 live[src_reg] = !useless;
kamg@551 2894
kamg@551 2895 if (dst.first()->is_stack()) {
kamg@551 2896
kamg@551 2897 // Even though a string arg in a register is still live after this loop
kamg@551 2898 // after the string conversion loop (next) it will be dead so we take
kamg@551 2899 // advantage of that now for simpler code to manage live.
kamg@551 2900
kamg@551 2901 live[src_reg] = false;
kamg@551 2902 switch (in_sig_bt[j_arg]) {
kamg@551 2903
kamg@551 2904 case T_ARRAY:
kamg@551 2905 case T_OBJECT:
kamg@551 2906 {
kamg@551 2907 Address stack_dst(rsp, reg2offset_out(dst.first()));
kamg@551 2908
kamg@551 2909 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2910 // need to unbox a one-word value
kamg@551 2911 Register in_reg = rax;
kamg@551 2912 if ( src.first()->is_reg() ) {
kamg@551 2913 in_reg = src.first()->as_Register();
kamg@551 2914 } else {
kamg@551 2915 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
kamg@551 2916 rax_is_zero = false;
kamg@551 2917 }
kamg@551 2918 Label skipUnbox;
kamg@551 2919 __ movptr(Address(rsp, reg2offset_out(dst.first())),
kamg@551 2920 (int32_t)NULL_WORD);
kamg@551 2921 __ testq(in_reg, in_reg);
kamg@551 2922 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2923
kvn@600 2924 BasicType bt = out_sig_bt[c_arg];
kvn@600 2925 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 2926 Address src1(in_reg, box_offset);
kvn@600 2927 if ( bt == T_LONG ) {
kamg@551 2928 __ movq(in_reg, src1);
kamg@551 2929 __ movq(stack_dst, in_reg);
kamg@551 2930 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2931 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 2932 } else {
kamg@551 2933 __ movl(in_reg, src1);
kamg@551 2934 __ movl(stack_dst, in_reg);
kamg@551 2935 }
kamg@551 2936
kamg@551 2937 __ bind(skipUnbox);
kamg@551 2938 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 2939 // Convert the arg to NULL
kamg@551 2940 if (!rax_is_zero) {
kamg@551 2941 __ xorq(rax, rax);
kamg@551 2942 rax_is_zero = true;
kamg@551 2943 }
kamg@551 2944 __ movq(stack_dst, rax);
kamg@551 2945 }
kamg@551 2946 }
kamg@551 2947 break;
kamg@551 2948
kamg@551 2949 case T_VOID:
kamg@551 2950 break;
kamg@551 2951
kamg@551 2952 case T_FLOAT:
kamg@551 2953 // This does the right thing since we know it is destined for the
kamg@551 2954 // stack
kamg@551 2955 float_move(masm, src, dst);
kamg@551 2956 break;
kamg@551 2957
kamg@551 2958 case T_DOUBLE:
kamg@551 2959 // This does the right thing since we know it is destined for the
kamg@551 2960 // stack
kamg@551 2961 double_move(masm, src, dst);
kamg@551 2962 break;
kamg@551 2963
kamg@551 2964 case T_LONG :
kamg@551 2965 long_move(masm, src, dst);
kamg@551 2966 break;
kamg@551 2967
kamg@551 2968 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2969
kamg@551 2970 default:
kamg@551 2971 move32_64(masm, src, dst);
kamg@551 2972 }
kamg@551 2973 }
kamg@551 2974
kamg@551 2975 }
kamg@551 2976
kamg@551 2977 // If we have any strings we must store any register based arg to the stack
kamg@551 2978 // This includes any still live xmm registers too.
kamg@551 2979
kamg@551 2980 int sid = 0;
kamg@551 2981
kamg@551 2982 if (total_strings > 0 ) {
kamg@551 2983 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2984 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2985 VMRegPair src = in_regs[j_arg];
kamg@551 2986 VMRegPair dst = out_regs[c_arg];
kamg@551 2987
kamg@551 2988 if (src.first()->is_reg()) {
kamg@551 2989 Address src_tmp(rbp, fp_offset[src.first()->value()]);
kamg@551 2990
kamg@551 2991 // string oops were left untouched by the previous loop even if the
kamg@551 2992 // eventual (converted) arg is destined for the stack so park them
kamg@551 2993 // away now (except for first)
kamg@551 2994
kamg@551 2995 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2996 Address utf8_addr = Address(
kamg@551 2997 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2998 if (sid != 1) {
kamg@551 2999 // The first string arg won't be killed until after the utf8
kamg@551 3000 // conversion
kamg@551 3001 __ movq(utf8_addr, src.first()->as_Register());
kamg@551 3002 }
kamg@551 3003 } else if (dst.first()->is_reg()) {
kamg@551 3004 if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3005
kamg@551 3006 // Convert the xmm register to an int and store it in the reserved
kamg@551 3007 // location for the eventual c register arg
kamg@551 3008 XMMRegister f = src.first()->as_XMMRegister();
kamg@551 3009 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3010 __ movflt(src_tmp, f);
kamg@551 3011 } else {
kamg@551 3012 __ movdbl(src_tmp, f);
kamg@551 3013 }
kamg@551 3014 } else {
kamg@551 3015 // If the arg is an oop type we don't support don't bother to store
kamg@551 3016 // it remember string was handled above.
kamg@551 3017 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3018 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3019 out_sig_bt[c_arg] != T_INT &&
kamg@551 3020 out_sig_bt[c_arg] != T_LONG);
kamg@551 3021
kamg@551 3022 if (!useless) {
kamg@551 3023 __ movq(src_tmp, src.first()->as_Register());
kamg@551 3024 }
kamg@551 3025 }
kamg@551 3026 }
kamg@551 3027 }
kamg@551 3028 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3029 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3030 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3031 }
kamg@551 3032 }
kamg@551 3033
kamg@551 3034 // Now that the volatile registers are safe, convert all the strings
kamg@551 3035 sid = 0;
kamg@551 3036
kamg@551 3037 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3038 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3039 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 3040 // It's a string
kamg@551 3041 Address utf8_addr = Address(
kamg@551 3042 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 3043 // The first string we find might still be in the original java arg
kamg@551 3044 // register
kamg@551 3045
kamg@551 3046 VMReg src = in_regs[j_arg].first();
kamg@551 3047
kamg@551 3048 // We will need to eventually save the final argument to the trap
kamg@551 3049 // in the von-volatile location dedicated to src. This is the offset
kamg@551 3050 // from fp we will use.
kamg@551 3051 int src_off = src->is_reg() ?
kamg@551 3052 fp_offset[src->value()] : reg2offset_in(src);
kamg@551 3053
kamg@551 3054 // This is where the argument will eventually reside
kamg@551 3055 VMRegPair dst = out_regs[c_arg];
kamg@551 3056
kamg@551 3057 if (src->is_reg()) {
kamg@551 3058 if (sid == 1) {
kamg@551 3059 __ movq(c_rarg0, src->as_Register());
kamg@551 3060 } else {
kamg@551 3061 __ movq(c_rarg0, utf8_addr);
kamg@551 3062 }
kamg@551 3063 } else {
kamg@551 3064 // arg is still in the original location
kamg@551 3065 __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
kamg@551 3066 }
kamg@551 3067 Label done, convert;
kamg@551 3068
kamg@551 3069 // see if the oop is NULL
kamg@551 3070 __ testq(c_rarg0, c_rarg0);
kamg@551 3071 __ jcc(Assembler::notEqual, convert);
kamg@551 3072
kamg@551 3073 if (dst.first()->is_reg()) {
kamg@551 3074 // Save the ptr to utf string in the origina src loc or the tmp
kamg@551 3075 // dedicated to it
kamg@551 3076 __ movq(Address(rbp, src_off), c_rarg0);
kamg@551 3077 } else {
kamg@551 3078 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
kamg@551 3079 }
kamg@551 3080 __ jmp(done);
kamg@551 3081
kamg@551 3082 __ bind(convert);
kamg@551 3083
kamg@551 3084 __ lea(c_rarg1, utf8_addr);
kamg@551 3085 if (dst.first()->is_reg()) {
kamg@551 3086 __ movq(Address(rbp, src_off), c_rarg1);
kamg@551 3087 } else {
kamg@551 3088 __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
kamg@551 3089 }
kamg@551 3090 // And do the conversion
kamg@551 3091 __ call(RuntimeAddress(
kamg@551 3092 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
kamg@551 3093
kamg@551 3094 __ bind(done);
kamg@551 3095 }
kamg@551 3096 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3097 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3098 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3099 }
kamg@551 3100 }
kamg@551 3101 // The get_utf call killed all the c_arg registers
kamg@551 3102 live[c_rarg0->as_VMReg()->value()] = false;
kamg@551 3103 live[c_rarg1->as_VMReg()->value()] = false;
kamg@551 3104 live[c_rarg2->as_VMReg()->value()] = false;
kamg@551 3105 live[c_rarg3->as_VMReg()->value()] = false;
kamg@551 3106 live[c_rarg4->as_VMReg()->value()] = false;
kamg@551 3107 live[c_rarg5->as_VMReg()->value()] = false;
kamg@551 3108
kamg@551 3109 live[c_farg0->as_VMReg()->value()] = false;
kamg@551 3110 live[c_farg1->as_VMReg()->value()] = false;
kamg@551 3111 live[c_farg2->as_VMReg()->value()] = false;
kamg@551 3112 live[c_farg3->as_VMReg()->value()] = false;
kamg@551 3113 live[c_farg4->as_VMReg()->value()] = false;
kamg@551 3114 live[c_farg5->as_VMReg()->value()] = false;
kamg@551 3115 live[c_farg6->as_VMReg()->value()] = false;
kamg@551 3116 live[c_farg7->as_VMReg()->value()] = false;
kamg@551 3117 }
kamg@551 3118
kamg@551 3119 // Now we can finally move the register args to their desired locations
kamg@551 3120
kamg@551 3121 rax_is_zero = false;
kamg@551 3122
kamg@551 3123 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 3124 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 3125
kamg@551 3126 VMRegPair src = in_regs[j_arg];
kamg@551 3127 VMRegPair dst = out_regs[c_arg];
kamg@551 3128
kamg@551 3129 // Only need to look for args destined for the interger registers (since we
kamg@551 3130 // convert float/double args to look like int/long outbound)
kamg@551 3131 if (dst.first()->is_reg()) {
kamg@551 3132 Register r = dst.first()->as_Register();
kamg@551 3133
kamg@551 3134 // Check if the java arg is unsupported and thereofre useless
kamg@551 3135 bool useless = in_sig_bt[j_arg] == T_ARRAY ||
kamg@551 3136 (in_sig_bt[j_arg] == T_OBJECT &&
kamg@551 3137 out_sig_bt[c_arg] != T_INT &&
kamg@551 3138 out_sig_bt[c_arg] != T_ADDRESS &&
kamg@551 3139 out_sig_bt[c_arg] != T_LONG);
kamg@551 3140
kamg@551 3141
kamg@551 3142 // If we're going to kill an existing arg save it first
kamg@551 3143 if (live[dst.first()->value()]) {
kamg@551 3144 // you can't kill yourself
kamg@551 3145 if (src.first() != dst.first()) {
kamg@551 3146 __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
kamg@551 3147 }
kamg@551 3148 }
kamg@551 3149 if (src.first()->is_reg()) {
kamg@551 3150 if (live[src.first()->value()] ) {
kamg@551 3151 if (in_sig_bt[j_arg] == T_FLOAT) {
kamg@551 3152 __ movdl(r, src.first()->as_XMMRegister());
kamg@551 3153 } else if (in_sig_bt[j_arg] == T_DOUBLE) {
kamg@551 3154 __ movdq(r, src.first()->as_XMMRegister());
kamg@551 3155 } else if (r != src.first()->as_Register()) {
kamg@551 3156 if (!useless) {
kamg@551 3157 __ movq(r, src.first()->as_Register());
kamg@551 3158 }
kamg@551 3159 }
kamg@551 3160 } else {
kamg@551 3161 // If the arg is an oop type we don't support don't bother to store
kamg@551 3162 // it
kamg@551 3163 if (!useless) {
kamg@551 3164 if (in_sig_bt[j_arg] == T_DOUBLE ||
kamg@551 3165 in_sig_bt[j_arg] == T_LONG ||
kamg@551 3166 in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3167 __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3168 } else {
kamg@551 3169 __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
kamg@551 3170 }
kamg@551 3171 }
kamg@551 3172 }
kamg@551 3173 live[src.first()->value()] = false;
kamg@551 3174 } else if (!useless) {
kamg@551 3175 // full sized move even for int should be ok
kamg@551 3176 __ movq(r, Address(rbp, reg2offset_in(src.first())));
kamg@551 3177 }
kamg@551 3178
kamg@551 3179 // At this point r has the original java arg in the final location
kamg@551 3180 // (assuming it wasn't useless). If the java arg was an oop
kamg@551 3181 // we have a bit more to do
kamg@551 3182
kamg@551 3183 if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
kamg@551 3184 if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 3185 // need to unbox a one-word value
kamg@551 3186 Label skip;
kamg@551 3187 __ testq(r, r);
kamg@551 3188 __ jcc(Assembler::equal, skip);
kvn@600 3189 BasicType bt = out_sig_bt[c_arg];
kvn@600 3190 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kamg@551 3191 Address src1(r, box_offset);
kvn@600 3192 if ( bt == T_LONG ) {
kamg@551 3193 __ movq(r, src1);
kamg@551 3194 } else {
kamg@551 3195 __ movl(r, src1);
kamg@551 3196 }
kamg@551 3197 __ bind(skip);
kamg@551 3198
kamg@551 3199 } else if (out_sig_bt[c_arg] != T_ADDRESS) {
kamg@551 3200 // Convert the arg to NULL
kamg@551 3201 __ xorq(r, r);
kamg@551 3202 }
kamg@551 3203 }
kamg@551 3204
kamg@551 3205 // dst can longer be holding an input value
kamg@551 3206 live[dst.first()->value()] = false;
kamg@551 3207 }
kamg@551 3208 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 3209 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 3210 ++c_arg; // skip over T_VOID to keep the loop indices in sync
kamg@551 3211 }
kamg@551 3212 }
kamg@551 3213
kamg@551 3214
kamg@551 3215 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 3216 // patch in the trap
kamg@551 3217 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 3218
kamg@551 3219 __ nop();
kamg@551 3220
kamg@551 3221
kamg@551 3222 // Return
kamg@551 3223
kamg@551 3224 __ leave();
kamg@551 3225 __ ret(0);
kamg@551 3226
kamg@551 3227 __ flush();
kamg@551 3228
kamg@551 3229 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 3230 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 3231 stack_slots / VMRegImpl::slots_per_word);
kamg@551 3232 return nm;
kamg@551 3233
kamg@551 3234 }
kamg@551 3235
kamg@551 3236 #endif // HAVE_DTRACE_H
kamg@551 3237
duke@435 3238 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 3239 // activation for use during deoptimization
duke@435 3240 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 3241 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 3242 }
duke@435 3243
duke@435 3244
duke@435 3245 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 3246 return 0;
duke@435 3247 }
duke@435 3248
duke@435 3249
duke@435 3250 //------------------------------generate_deopt_blob----------------------------
duke@435 3251 void SharedRuntime::generate_deopt_blob() {
duke@435 3252 // Allocate space for the code
duke@435 3253 ResourceMark rm;
duke@435 3254 // Setup code generation tools
duke@435 3255 CodeBuffer buffer("deopt_blob", 2048, 1024);
duke@435 3256 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3257 int frame_size_in_words;
duke@435 3258 OopMap* map = NULL;
duke@435 3259 OopMapSet *oop_maps = new OopMapSet();
duke@435 3260
duke@435 3261 // -------------
duke@435 3262 // This code enters when returning to a de-optimized nmethod. A return
duke@435 3263 // address has been pushed on the the stack, and return values are in
duke@435 3264 // registers.
duke@435 3265 // If we are doing a normal deopt then we were called from the patched
duke@435 3266 // nmethod from the point we returned to the nmethod. So the return
duke@435 3267 // address on the stack is wrong by NativeCall::instruction_size
duke@435 3268 // We will adjust the value so it looks like we have the original return
duke@435 3269 // address on the stack (like when we eagerly deoptimized).
duke@435 3270 // In the case of an exception pending when deoptimizing, we enter
duke@435 3271 // with a return address on the stack that points after the call we patched
duke@435 3272 // into the exception handler. We have the following register state from,
duke@435 3273 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
duke@435 3274 // rax: exception oop
duke@435 3275 // rbx: exception handler
duke@435 3276 // rdx: throwing pc
duke@435 3277 // So in this case we simply jam rdx into the useless return address and
duke@435 3278 // the stack looks just like we want.
duke@435 3279 //
duke@435 3280 // At this point we need to de-opt. We save the argument return
duke@435 3281 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 3282 // routine captures the return values and returns a structure which
duke@435 3283 // describes the current frame size and the sizes of all replacement frames.
duke@435 3284 // The current frame is compiled code and may contain many inlined
duke@435 3285 // functions, each with their own JVM state. We pop the current frame, then
duke@435 3286 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 3287 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 3288 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 3289 // already been captured in the vframeArray at the time the return PC was
duke@435 3290 // patched.
duke@435 3291 address start = __ pc();
duke@435 3292 Label cont;
duke@435 3293
duke@435 3294 // Prolog for non exception case!
duke@435 3295
duke@435 3296 // Save everything in sight.
duke@435 3297 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3298
duke@435 3299 // Normal deoptimization. Save exec mode for unpack_frames.
coleenp@548 3300 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
duke@435 3301 __ jmp(cont);
never@739 3302
never@739 3303 int reexecute_offset = __ pc() - start;
never@739 3304
never@739 3305 // Reexecute case
never@739 3306 // return address is the pc describes what bci to do re-execute at
never@739 3307
never@739 3308 // No need to update map as each call to save_live_registers will produce identical oopmap
never@739 3309 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
never@739 3310
never@739 3311 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
never@739 3312 __ jmp(cont);
never@739 3313
duke@435 3314 int exception_offset = __ pc() - start;
duke@435 3315
duke@435 3316 // Prolog for exception case
duke@435 3317
never@739 3318 // all registers are dead at this entry point, except for rax, and
never@739 3319 // rdx which contain the exception oop and exception pc
never@739 3320 // respectively. Set them in TLS and fall thru to the
never@739 3321 // unpack_with_exception_in_tls entry point.
never@739 3322
never@739 3323 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
never@739 3324 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
never@739 3325
never@739 3326 int exception_in_tls_offset = __ pc() - start;
never@739 3327
never@739 3328 // new implementation because exception oop is now passed in JavaThread
never@739 3329
never@739 3330 // Prolog for exception case
never@739 3331 // All registers must be preserved because they might be used by LinearScan
never@739 3332 // Exceptiop oop and throwing PC are passed in JavaThread
never@739 3333 // tos: stack at point of call to method that threw the exception (i.e. only
never@739 3334 // args are on the stack, no return address)
never@739 3335
never@739 3336 // make room on stack for the return address
never@739 3337 // It will be patched later with the throwing pc. The correct value is not
never@739 3338 // available now because loading it from memory would destroy registers.
never@739 3339 __ push(0);
duke@435 3340
duke@435 3341 // Save everything in sight.
duke@435 3342 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3343
never@739 3344 // Now it is safe to overwrite any register
never@739 3345
duke@435 3346 // Deopt during an exception. Save exec mode for unpack_frames.
coleenp@548 3347 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
duke@435 3348
never@739 3349 // load throwing pc from JavaThread and patch it as the return address
never@739 3350 // of the current frame. Then clear the field in JavaThread
never@739 3351
never@739 3352 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3353 __ movptr(Address(rbp, wordSize), rdx);
never@739 3354 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3355
never@739 3356 #ifdef ASSERT
never@739 3357 // verify that there is really an exception oop in JavaThread
never@739 3358 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3359 __ verify_oop(rax);
never@739 3360
never@739 3361 // verify that there is no pending exception
never@739 3362 Label no_pending_exception;
never@739 3363 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
never@739 3364 __ testptr(rax, rax);
never@739 3365 __ jcc(Assembler::zero, no_pending_exception);
never@739 3366 __ stop("must not have pending exception here");
never@739 3367 __ bind(no_pending_exception);
never@739 3368 #endif
never@739 3369
duke@435 3370 __ bind(cont);
duke@435 3371
duke@435 3372 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 3373 // crud. We cannot block on this call, no GC can happen.
duke@435 3374 //
duke@435 3375 // UnrollBlock* fetch_unroll_info(JavaThread* thread)
duke@435 3376
duke@435 3377 // fetch_unroll_info needs to call last_java_frame().
duke@435 3378
duke@435 3379 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3380 #ifdef ASSERT
duke@435 3381 { Label L;
never@739 3382 __ cmpptr(Address(r15_thread,
duke@435 3383 JavaThread::last_Java_fp_offset()),
never@739 3384 (int32_t)0);
duke@435 3385 __ jcc(Assembler::equal, L);
duke@435 3386 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
duke@435 3387 __ bind(L);
duke@435 3388 }
duke@435 3389 #endif // ASSERT
never@739 3390 __ mov(c_rarg0, r15_thread);
duke@435 3391 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 3392
duke@435 3393 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 3394 // find any register it might need.
duke@435 3395 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3396
duke@435 3397 __ reset_last_Java_frame(false, false);
duke@435 3398
duke@435 3399 // Load UnrollBlock* into rdi
never@739 3400 __ mov(rdi, rax);
never@739 3401
never@739 3402 Label noException;
never@1117 3403 __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending?
never@739 3404 __ jcc(Assembler::notEqual, noException);
never@739 3405 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
never@739 3406 // QQQ this is useless it was NULL above
never@739 3407 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
never@739 3408 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@739 3409 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@739 3410
never@739 3411 __ verify_oop(rax);
never@739 3412
never@739 3413 // Overwrite the result registers with the exception results.
never@739 3414 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
never@739 3415 // I think this is useless
never@739 3416 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
never@739 3417
never@739 3418 __ bind(noException);
duke@435 3419
duke@435 3420 // Only register save data is on the stack.
duke@435 3421 // Now restore the result registers. Everything else is either dead
duke@435 3422 // or captured in the vframeArray.
duke@435 3423 RegisterSaver::restore_result_registers(masm);
duke@435 3424
duke@435 3425 // All of the register save area has been popped of the stack. Only the
duke@435 3426 // return address remains.
duke@435 3427
duke@435 3428 // Pop all the frames we must move/replace.
duke@435 3429 //
duke@435 3430 // Frame picture (youngest to oldest)
duke@435 3431 // 1: self-frame (no frame link)
duke@435 3432 // 2: deopting frame (no frame link)
duke@435 3433 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3434 //
duke@435 3435 // Note: by leaving the return address of self-frame on the stack
duke@435 3436 // and using the size of frame 2 to adjust the stack
duke@435 3437 // when we are done the return to frame 3 will still be on the stack.
duke@435 3438
duke@435 3439 // Pop deoptimized frame
duke@435 3440 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3441 __ addptr(rsp, rcx);
duke@435 3442
duke@435 3443 // rsp should be pointing at the return address to the caller (3)
duke@435 3444
duke@435 3445 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3446 if (UseStackBanging) {
duke@435 3447 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3448 __ bang_stack_size(rbx, rcx);
duke@435 3449 }
duke@435 3450
duke@435 3451 // Load address of array of frame pcs into rcx
never@739 3452 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3453
duke@435 3454 // Trash the old pc
never@739 3455 __ addptr(rsp, wordSize);
duke@435 3456
duke@435 3457 // Load address of array of frame sizes into rsi
never@739 3458 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3459
duke@435 3460 // Load counter into rdx
duke@435 3461 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3462
duke@435 3463 // Pick up the initial fp we should save
bdelsart@3130 3464 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3465
duke@435 3466 // Now adjust the caller's stack to make up for the extra locals
duke@435 3467 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3468 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3469 // value and not the "real" sp value.
duke@435 3470
duke@435 3471 const Register sender_sp = r8;
duke@435 3472
never@739 3473 __ mov(sender_sp, rsp);
duke@435 3474 __ movl(rbx, Address(rdi,
duke@435 3475 Deoptimization::UnrollBlock::
duke@435 3476 caller_adjustment_offset_in_bytes()));
never@739 3477 __ subptr(rsp, rbx);
duke@435 3478
duke@435 3479 // Push interpreter frames in a loop
duke@435 3480 Label loop;
duke@435 3481 __ bind(loop);
never@739 3482 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3483 #ifdef CC_INTERP
never@739 3484 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
never@739 3485 #ifdef ASSERT
never@739 3486 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3487 __ push(0xDEADDEAD);
never@739 3488 #else /* ASSERT */
never@739 3489 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
never@739 3490 #endif /* ASSERT */
never@739 3491 #else
never@739 3492 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand
never@739 3493 #endif // CC_INTERP
never@739 3494 __ pushptr(Address(rcx, 0)); // Save return address
duke@435 3495 __ enter(); // Save old & set new ebp
never@739 3496 __ subptr(rsp, rbx); // Prolog
never@739 3497 #ifdef CC_INTERP
never@739 3498 __ movptr(Address(rbp,
never@739 3499 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
never@739 3500 sender_sp); // Make it walkable
never@739 3501 #else /* CC_INTERP */
duke@435 3502 // This value is corrected by layout_activation_impl
never@739 3503 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
never@739 3504 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
never@739 3505 #endif /* CC_INTERP */
never@739 3506 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3507 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3508 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
duke@435 3509 __ decrementl(rdx); // Decrement counter
duke@435 3510 __ jcc(Assembler::notZero, loop);
never@739 3511 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3512
duke@435 3513 // Re-push self-frame
duke@435 3514 __ enter(); // Save old & set new ebp
duke@435 3515
duke@435 3516 // Allocate a full sized register save area.
duke@435 3517 // Return address and rbp are in place, so we allocate two less words.
never@739 3518 __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
duke@435 3519
duke@435 3520 // Restore frame locals after moving the frame
duke@435 3521 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
never@739 3522 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3523
duke@435 3524 // Call C code. Need thread but NOT official VM entry
duke@435 3525 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3526 // restore return values to their stack-slots with the new SP.
duke@435 3527 //
duke@435 3528 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
duke@435 3529
duke@435 3530 // Use rbp because the frames look interpreted now
never@3253 3531 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3532 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3533 address the_pc = __ pc();
never@3253 3534 __ set_last_Java_frame(noreg, rbp, the_pc);
never@3253 3535
never@3253 3536 __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI
never@739 3537 __ mov(c_rarg0, r15_thread);
coleenp@548 3538 __ movl(c_rarg1, r14); // second arg: exec_mode
duke@435 3539 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
never@3253 3540 // Revert SP alignment after call since we're going to do some SP relative addressing below
never@3253 3541 __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
duke@435 3542
duke@435 3543 // Set an oopmap for the call site
never@3253 3544 // Use the same PC we used for the last java frame
never@3253 3545 oop_maps->add_gc_map(the_pc - start,
duke@435 3546 new OopMap( frame_size_in_words, 0 ));
duke@435 3547
never@3253 3548 // Clear fp AND pc
never@3253 3549 __ reset_last_Java_frame(true, true);
duke@435 3550
duke@435 3551 // Collect return values
duke@435 3552 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
never@739 3553 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
never@739 3554 // I think this is useless (throwing pc?)
never@739 3555 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
duke@435 3556
duke@435 3557 // Pop self-frame.
duke@435 3558 __ leave(); // Epilog
duke@435 3559
duke@435 3560 // Jump to interpreter
duke@435 3561 __ ret(0);
duke@435 3562
duke@435 3563 // Make sure all code is generated
duke@435 3564 masm->flush();
duke@435 3565
never@739 3566 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
never@739 3567 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3568 }
duke@435 3569
duke@435 3570 #ifdef COMPILER2
duke@435 3571 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3572 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3573 // Allocate space for the code
duke@435 3574 ResourceMark rm;
duke@435 3575 // Setup code generation tools
duke@435 3576 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
duke@435 3577 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3578
duke@435 3579 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3580
duke@435 3581 address start = __ pc();
duke@435 3582
duke@435 3583 // Push self-frame. We get here with a return address on the
duke@435 3584 // stack, so rsp is 8-byte aligned until we allocate our frame.
never@739 3585 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
duke@435 3586
duke@435 3587 // No callee saved registers. rbp is assumed implicitly saved
never@739 3588 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3589
duke@435 3590 // compiler left unloaded_class_index in j_rarg0 move to where the
duke@435 3591 // runtime expects it.
duke@435 3592 __ movl(c_rarg1, j_rarg0);
duke@435 3593
duke@435 3594 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3595
duke@435 3596 // Call C code. Need thread but NOT official VM entry
duke@435 3597 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3598 // capture callee-saved registers as well as return values.
duke@435 3599 // Thread is in rdi already.
duke@435 3600 //
duke@435 3601 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
duke@435 3602
never@739 3603 __ mov(c_rarg0, r15_thread);
duke@435 3604 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3605
duke@435 3606 // Set an oopmap for the call site
duke@435 3607 OopMapSet* oop_maps = new OopMapSet();
duke@435 3608 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
duke@435 3609
duke@435 3610 // location of rbp is known implicitly by the frame sender code
duke@435 3611
duke@435 3612 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 3613
duke@435 3614 __ reset_last_Java_frame(false, false);
duke@435 3615
duke@435 3616 // Load UnrollBlock* into rdi
never@739 3617 __ mov(rdi, rax);
duke@435 3618
duke@435 3619 // Pop all the frames we must move/replace.
duke@435 3620 //
duke@435 3621 // Frame picture (youngest to oldest)
duke@435 3622 // 1: self-frame (no frame link)
duke@435 3623 // 2: deopting frame (no frame link)
duke@435 3624 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3625
duke@435 3626 // Pop self-frame. We have no frame, and must rely only on rax and rsp.
never@739 3627 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
duke@435 3628
duke@435 3629 // Pop deoptimized frame (int)
duke@435 3630 __ movl(rcx, Address(rdi,
duke@435 3631 Deoptimization::UnrollBlock::
duke@435 3632 size_of_deoptimized_frame_offset_in_bytes()));
never@739 3633 __ addptr(rsp, rcx);
duke@435 3634
duke@435 3635 // rsp should be pointing at the return address to the caller (3)
duke@435 3636
duke@435 3637 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3638 if (UseStackBanging) {
duke@435 3639 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3640 __ bang_stack_size(rbx, rcx);
duke@435 3641 }
duke@435 3642
duke@435 3643 // Load address of array of frame pcs into rcx (address*)
never@739 3644 __ movptr(rcx,
never@739 3645 Address(rdi,
never@739 3646 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3647
duke@435 3648 // Trash the return pc
never@739 3649 __ addptr(rsp, wordSize);
duke@435 3650
duke@435 3651 // Load address of array of frame sizes into rsi (intptr_t*)
never@739 3652 __ movptr(rsi, Address(rdi,
never@739 3653 Deoptimization::UnrollBlock::
never@739 3654 frame_sizes_offset_in_bytes()));
duke@435 3655
duke@435 3656 // Counter
duke@435 3657 __ movl(rdx, Address(rdi,
duke@435 3658 Deoptimization::UnrollBlock::
duke@435 3659 number_of_frames_offset_in_bytes())); // (int)
duke@435 3660
duke@435 3661 // Pick up the initial fp we should save
never@739 3662 __ movptr(rbp,
never@739 3663 Address(rdi,
bdelsart@3130 3664 Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3665
duke@435 3666 // Now adjust the caller's stack to make up for the extra locals but
duke@435 3667 // record the original sp so that we can save it in the skeletal
duke@435 3668 // interpreter frame and the stack walking of interpreter_sender
duke@435 3669 // will get the unextended sp value and not the "real" sp value.
duke@435 3670
duke@435 3671 const Register sender_sp = r8;
duke@435 3672
never@739 3673 __ mov(sender_sp, rsp);
duke@435 3674 __ movl(rbx, Address(rdi,
duke@435 3675 Deoptimization::UnrollBlock::
duke@435 3676 caller_adjustment_offset_in_bytes())); // (int)
never@739 3677 __ subptr(rsp, rbx);
duke@435 3678
duke@435 3679 // Push interpreter frames in a loop
duke@435 3680 Label loop;
duke@435 3681 __ bind(loop);
never@739 3682 __ movptr(rbx, Address(rsi, 0)); // Load frame size
never@739 3683 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand
never@739 3684 __ pushptr(Address(rcx, 0)); // Save return address
never@739 3685 __ enter(); // Save old & set new rbp
never@739 3686 __ subptr(rsp, rbx); // Prolog
coleenp@955 3687 #ifdef CC_INTERP
coleenp@955 3688 __ movptr(Address(rbp,
coleenp@955 3689 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
coleenp@955 3690 sender_sp); // Make it walkable
coleenp@955 3691 #else // CC_INTERP
never@739 3692 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
never@739 3693 sender_sp); // Make it walkable
duke@435 3694 // This value is corrected by layout_activation_impl
never@739 3695 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
coleenp@955 3696 #endif // CC_INTERP
never@739 3697 __ mov(sender_sp, rsp); // Pass sender_sp to next frame
never@739 3698 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3699 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3700 __ decrementl(rdx); // Decrement counter
duke@435 3701 __ jcc(Assembler::notZero, loop);
never@739 3702 __ pushptr(Address(rcx, 0)); // Save final return address
duke@435 3703
duke@435 3704 // Re-push self-frame
duke@435 3705 __ enter(); // Save old & set new rbp
never@739 3706 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
duke@435 3707 // Prolog
duke@435 3708
duke@435 3709 // Use rbp because the frames look interpreted now
never@3253 3710 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
never@3253 3711 // Don't need the precise return PC here, just precise enough to point into this code blob.
never@3253 3712 address the_pc = __ pc();
never@3253 3713 __ set_last_Java_frame(noreg, rbp, the_pc);
duke@435 3714
duke@435 3715 // Call C code. Need thread but NOT official VM entry
duke@435 3716 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3717 // restore return values to their stack-slots with the new SP.
duke@435 3718 // Thread is in rdi already.
duke@435 3719 //
duke@435 3720 // BasicType unpack_frames(JavaThread* thread, int exec_mode);
duke@435 3721
never@3253 3722 __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
never@739 3723 __ mov(c_rarg0, r15_thread);
duke@435 3724 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
duke@435 3725 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3726
duke@435 3727 // Set an oopmap for the call site
never@3253 3728 // Use the same PC we used for the last java frame
never@3253 3729 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
never@3253 3730
never@3253 3731 // Clear fp AND pc
never@3253 3732 __ reset_last_Java_frame(true, true);
duke@435 3733
duke@435 3734 // Pop self-frame.
duke@435 3735 __ leave(); // Epilog
duke@435 3736
duke@435 3737 // Jump to interpreter
duke@435 3738 __ ret(0);
duke@435 3739
duke@435 3740 // Make sure all code is generated
duke@435 3741 masm->flush();
duke@435 3742
duke@435 3743 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
duke@435 3744 SimpleRuntimeFrame::framesize >> 1);
duke@435 3745 }
duke@435 3746 #endif // COMPILER2
duke@435 3747
duke@435 3748
duke@435 3749 //------------------------------generate_handler_blob------
duke@435 3750 //
duke@435 3751 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3752 // and setup oopmap.
duke@435 3753 //
never@2950 3754 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 3755 assert(StubRoutines::forward_exception_entry() != NULL,
duke@435 3756 "must be generated before");
duke@435 3757
duke@435 3758 ResourceMark rm;
duke@435 3759 OopMapSet *oop_maps = new OopMapSet();
duke@435 3760 OopMap* map;
duke@435 3761
duke@435 3762 // Allocate space for the code. Setup code generation tools.
duke@435 3763 CodeBuffer buffer("handler_blob", 2048, 1024);
duke@435 3764 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3765
duke@435 3766 address start = __ pc();
duke@435 3767 address call_pc = NULL;
duke@435 3768 int frame_size_in_words;
duke@435 3769
duke@435 3770 // Make room for return address (or push it again)
duke@435 3771 if (!cause_return) {
never@739 3772 __ push(rbx);
duke@435 3773 }
duke@435 3774
duke@435 3775 // Save registers, fpu state, and flags
duke@435 3776 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3777
duke@435 3778 // The following is basically a call_VM. However, we need the precise
duke@435 3779 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3780 // work outselves.
duke@435 3781
duke@435 3782 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3783
duke@435 3784 // The return address must always be correct so that frame constructor never
duke@435 3785 // sees an invalid pc.
duke@435 3786
duke@435 3787 if (!cause_return) {
duke@435 3788 // overwrite the dummy value we pushed on entry
never@739 3789 __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
never@739 3790 __ movptr(Address(rbp, wordSize), c_rarg0);
duke@435 3791 }
duke@435 3792
duke@435 3793 // Do the call
never@739 3794 __ mov(c_rarg0, r15_thread);
duke@435 3795 __ call(RuntimeAddress(call_ptr));
duke@435 3796
duke@435 3797 // Set an oopmap for the call site. This oopmap will map all
duke@435 3798 // oop-registers and debug-info registers as callee-saved. This
duke@435 3799 // will allow deoptimization at this safepoint to find all possible
duke@435 3800 // debug-info recordings, as well as let GC find all oops.
duke@435 3801
duke@435 3802 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3803
duke@435 3804 Label noException;
duke@435 3805
duke@435 3806 __ reset_last_Java_frame(false, false);
duke@435 3807
never@739 3808 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3809 __ jcc(Assembler::equal, noException);
duke@435 3810
duke@435 3811 // Exception pending
duke@435 3812
duke@435 3813 RegisterSaver::restore_live_registers(masm);
duke@435 3814
duke@435 3815 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3816
duke@435 3817 // No exception case
duke@435 3818 __ bind(noException);
duke@435 3819
duke@435 3820 // Normal exit, restore registers and exit.
duke@435 3821 RegisterSaver::restore_live_registers(masm);
duke@435 3822
duke@435 3823 __ ret(0);
duke@435 3824
duke@435 3825 // Make sure all code is generated
duke@435 3826 masm->flush();
duke@435 3827
duke@435 3828 // Fill-out other meta info
duke@435 3829 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3830 }
duke@435 3831
duke@435 3832 //
duke@435 3833 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3834 //
duke@435 3835 // Generate a stub that calls into vm to find out the proper destination
duke@435 3836 // of a java call. All the argument registers are live at this point
duke@435 3837 // but since this is generic code we don't know what they are and the caller
duke@435 3838 // must do any gc of the args.
duke@435 3839 //
never@2950 3840 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3841 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3842
duke@435 3843 // allocate space for the code
duke@435 3844 ResourceMark rm;
duke@435 3845
duke@435 3846 CodeBuffer buffer(name, 1000, 512);
duke@435 3847 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3848
duke@435 3849 int frame_size_in_words;
duke@435 3850
duke@435 3851 OopMapSet *oop_maps = new OopMapSet();
duke@435 3852 OopMap* map = NULL;
duke@435 3853
duke@435 3854 int start = __ offset();
duke@435 3855
duke@435 3856 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
duke@435 3857
duke@435 3858 int frame_complete = __ offset();
duke@435 3859
duke@435 3860 __ set_last_Java_frame(noreg, noreg, NULL);
duke@435 3861
never@739 3862 __ mov(c_rarg0, r15_thread);
duke@435 3863
duke@435 3864 __ call(RuntimeAddress(destination));
duke@435 3865
duke@435 3866
duke@435 3867 // Set an oopmap for the call site.
duke@435 3868 // We need this not only for callee-saved registers, but also for volatile
duke@435 3869 // registers that the compiler might be keeping live across a safepoint.
duke@435 3870
duke@435 3871 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3872
duke@435 3873 // rax contains the address we are going to jump to assuming no exception got installed
duke@435 3874
duke@435 3875 // clear last_Java_sp
duke@435 3876 __ reset_last_Java_frame(false, false);
duke@435 3877 // check for pending exceptions
duke@435 3878 Label pending;
never@739 3879 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3880 __ jcc(Assembler::notEqual, pending);
duke@435 3881
duke@435 3882 // get the returned methodOop
never@739 3883 __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
never@739 3884 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
never@739 3885
never@739 3886 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
duke@435 3887
duke@435 3888 RegisterSaver::restore_live_registers(masm);
duke@435 3889
duke@435 3890 // We are back the the original state on entry and ready to go.
duke@435 3891
duke@435 3892 __ jmp(rax);
duke@435 3893
duke@435 3894 // Pending exception after the safepoint
duke@435 3895
duke@435 3896 __ bind(pending);
duke@435 3897
duke@435 3898 RegisterSaver::restore_live_registers(masm);
duke@435 3899
duke@435 3900 // exception pending => remove activation and forward to exception handler
duke@435 3901
duke@435 3902 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
duke@435 3903
never@739 3904 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
duke@435 3905 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3906
duke@435 3907 // -------------
duke@435 3908 // make sure all code is generated
duke@435 3909 masm->flush();
duke@435 3910
duke@435 3911 // return the blob
duke@435 3912 // frame_size_words or bytes??
duke@435 3913 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
duke@435 3914 }
duke@435 3915
duke@435 3916
duke@435 3917 #ifdef COMPILER2
duke@435 3918 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
duke@435 3919 //
duke@435 3920 //------------------------------generate_exception_blob---------------------------
duke@435 3921 // creates exception blob at the end
duke@435 3922 // Using exception blob, this code is jumped from a compiled method.
duke@435 3923 // (see emit_exception_handler in x86_64.ad file)
duke@435 3924 //
duke@435 3925 // Given an exception pc at a call we call into the runtime for the
duke@435 3926 // handler in this method. This handler might merely restore state
duke@435 3927 // (i.e. callee save registers) unwind the frame and jump to the
duke@435 3928 // exception handler for the nmethod if there is no Java level handler
duke@435 3929 // for the nmethod.
duke@435 3930 //
duke@435 3931 // This code is entered with a jmp.
duke@435 3932 //
duke@435 3933 // Arguments:
duke@435 3934 // rax: exception oop
duke@435 3935 // rdx: exception pc
duke@435 3936 //
duke@435 3937 // Results:
duke@435 3938 // rax: exception oop
duke@435 3939 // rdx: exception pc in caller or ???
duke@435 3940 // destination: exception handler of caller
duke@435 3941 //
duke@435 3942 // Note: the exception pc MUST be at a call (precise debug information)
duke@435 3943 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
duke@435 3944 //
duke@435 3945
duke@435 3946 void OptoRuntime::generate_exception_blob() {
duke@435 3947 assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
duke@435 3948 assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
duke@435 3949 assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
duke@435 3950
duke@435 3951 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
duke@435 3952
duke@435 3953 // Allocate space for the code
duke@435 3954 ResourceMark rm;
duke@435 3955 // Setup code generation tools
duke@435 3956 CodeBuffer buffer("exception_blob", 2048, 1024);
duke@435 3957 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3958
duke@435 3959
duke@435 3960 address start = __ pc();
duke@435 3961
duke@435 3962 // Exception pc is 'return address' for stack walker
never@739 3963 __ push(rdx);
never@739 3964 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
duke@435 3965
duke@435 3966 // Save callee-saved registers. See x86_64.ad.
duke@435 3967
duke@435 3968 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 3969 // convention will save restore it in prolog/epilog) Other than that
duke@435 3970 // there are no callee save registers now that adapter frames are gone.
duke@435 3971
never@739 3972 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
duke@435 3973
duke@435 3974 // Store exception in Thread object. We cannot pass any arguments to the
duke@435 3975 // handle_exception call, since we do not want to make any assumption
duke@435 3976 // about the size of the frame where the exception happened in.
duke@435 3977 // c_rarg0 is either rdi (Linux) or rcx (Windows).
never@739 3978 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
never@739 3979 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
duke@435 3980
duke@435 3981 // This call does all the hard work. It checks if an exception handler
duke@435 3982 // exists in the method.
duke@435 3983 // If so, it returns the handler address.
duke@435 3984 // If not, it prepares for stack-unwinding, restoring the callee-save
duke@435 3985 // registers of the frame being removed.
duke@435 3986 //
duke@435 3987 // address OptoRuntime::handle_exception_C(JavaThread* thread)
duke@435 3988
roland@3607 3989 // At a method handle call, the stack may not be properly aligned
roland@3607 3990 // when returning with an exception.
roland@3607 3991 address the_pc = __ pc();
roland@3607 3992 __ set_last_Java_frame(noreg, noreg, the_pc);
never@739 3993 __ mov(c_rarg0, r15_thread);
roland@3607 3994 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 3995 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
duke@435 3996
duke@435 3997 // Set an oopmap for the call site. This oopmap will only be used if we
duke@435 3998 // are unwinding the stack. Hence, all locations will be dead.
duke@435 3999 // Callee-saved registers will be the same as the frame above (i.e.,
duke@435 4000 // handle_exception_stub), since they were restored when we got the
duke@435 4001 // exception.
duke@435 4002
duke@435 4003 OopMapSet* oop_maps = new OopMapSet();
duke@435 4004
roland@3607 4005 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
roland@3607 4006
roland@3607 4007 __ reset_last_Java_frame(false, true);
duke@435 4008
duke@435 4009 // Restore callee-saved registers
duke@435 4010
duke@435 4011 // rbp is an implicitly saved callee saved register (i.e. the calling
duke@435 4012 // convention will save restore it in prolog/epilog) Other than that
duke@435 4013 // there are no callee save registers no that adapter frames are gone.
duke@435 4014
never@739 4015 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
never@739 4016
never@739 4017 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
never@739 4018 __ pop(rdx); // No need for exception pc anymore
duke@435 4019
duke@435 4020 // rax: exception handler
duke@435 4021
twisti@1803 4022 // Restore SP from BP if the exception PC is a MethodHandle call site.
twisti@1803 4023 __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
twisti@1922 4024 __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
twisti@1570 4025
duke@435 4026 // We have a handler in rax (could be deopt blob).
never@739 4027 __ mov(r8, rax);
duke@435 4028
duke@435 4029 // Get the exception oop
never@739 4030 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
duke@435 4031 // Get the exception pc in case we are deoptimized
never@739 4032 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
duke@435 4033 #ifdef ASSERT
duke@435 4034 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
duke@435 4035 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
duke@435 4036 #endif
duke@435 4037 // Clear the exception oop so GC no longer processes it as a root.
duke@435 4038 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
duke@435 4039
duke@435 4040 // rax: exception oop
duke@435 4041 // r8: exception handler
duke@435 4042 // rdx: exception pc
duke@435 4043 // Jump to handler
duke@435 4044
duke@435 4045 __ jmp(r8);
duke@435 4046
duke@435 4047 // Make sure all code is generated
duke@435 4048 masm->flush();
duke@435 4049
duke@435 4050 // Set exception blob
duke@435 4051 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
duke@435 4052 }
duke@435 4053 #endif // COMPILER2

mercurial