src/cpu/x86/vm/sharedRuntime_x86_64.cpp

Mon, 20 Aug 2012 09:58:58 -0700

author
kvn
date
Mon, 20 Aug 2012 09:58:58 -0700
changeset 4002
09aad8452938
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

7190310: Inlining WeakReference.get(), and hoisting $referent may lead to non-terminating loops
Summary: In C2 add software membar after load from Reference.referent field to prevent commoning of loads across safepoint since GC can change its value. In C1 always generate Reference.get() intrinsic.
Reviewed-by: roland, twisti, dholmes, johnc

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class SimpleRuntimeFrame {
    50   public:
    52   // Most of the runtime stubs have this simple frame layout.
    53   // This class exists to make the layout shared in one place.
    54   // Offsets are for compiler stack slots, which are jints.
    55   enum layout {
    56     // The frame sender code expects that rbp will be in the "natural" place and
    57     // will override any oopMap setting for it. We must therefore force the layout
    58     // so that it agrees with the frame sender code.
    59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    60     rbp_off2,
    61     return_off, return_off2,
    62     framesize
    63   };
    64 };
    66 class RegisterSaver {
    67   // Capture info about frame layout.  Layout offsets are in jint
    68   // units because compiler frame slots are jints.
    69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
    70   enum layout {
    71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    73     DEF_XMM_OFFS(0),
    74     DEF_XMM_OFFS(1),
    75     DEF_XMM_OFFS(2),
    76     DEF_XMM_OFFS(3),
    77     DEF_XMM_OFFS(4),
    78     DEF_XMM_OFFS(5),
    79     DEF_XMM_OFFS(6),
    80     DEF_XMM_OFFS(7),
    81     DEF_XMM_OFFS(8),
    82     DEF_XMM_OFFS(9),
    83     DEF_XMM_OFFS(10),
    84     DEF_XMM_OFFS(11),
    85     DEF_XMM_OFFS(12),
    86     DEF_XMM_OFFS(13),
    87     DEF_XMM_OFFS(14),
    88     DEF_XMM_OFFS(15),
    89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    90     fpu_stateH_end,
    91     r15_off, r15H_off,
    92     r14_off, r14H_off,
    93     r13_off, r13H_off,
    94     r12_off, r12H_off,
    95     r11_off, r11H_off,
    96     r10_off, r10H_off,
    97     r9_off,  r9H_off,
    98     r8_off,  r8H_off,
    99     rdi_off, rdiH_off,
   100     rsi_off, rsiH_off,
   101     ignore_off, ignoreH_off,  // extra copy of rbp
   102     rsp_off, rspH_off,
   103     rbx_off, rbxH_off,
   104     rdx_off, rdxH_off,
   105     rcx_off, rcxH_off,
   106     rax_off, raxH_off,
   107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
   108     align_off, alignH_off,
   109     flags_off, flagsH_off,
   110     // The frame sender code expects that rbp will be in the "natural" place and
   111     // will override any oopMap setting for it. We must therefore force the layout
   112     // so that it agrees with the frame sender code.
   113     rbp_off, rbpH_off,        // copy of rbp we will restore
   114     return_off, returnH_off,  // slot for return address
   115     reg_save_size             // size in compiler stack slots
   116   };
   118  public:
   119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   120   static void restore_live_registers(MacroAssembler* masm);
   122   // Offsets into the register save area
   123   // Used by deoptimization when it is managing result register
   124   // values on its own
   126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
   127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
   128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
   129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
   130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
   132   // During deoptimization only the result registers need to be restored,
   133   // all the other values have already been extracted.
   134   static void restore_result_registers(MacroAssembler* masm);
   135 };
   137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   139   // Always make the frame size 16-byte aligned
   140   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
   141                                      reg_save_size*BytesPerInt, 16);
   142   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
   143   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
   144   // The caller will allocate additional_frame_words
   145   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
   146   // CodeBlob frame size is in words.
   147   int frame_size_in_words = frame_size_in_bytes / wordSize;
   148   *total_frame_words = frame_size_in_words;
   150   // Save registers, fpu state, and flags.
   151   // We assume caller has already pushed the return address onto the
   152   // stack, so rsp is 8-byte aligned here.
   153   // We push rpb twice in this sequence because we want the real rbp
   154   // to be under the return like a normal enter.
   156   __ enter();          // rsp becomes 16-byte aligned here
   157   __ push_CPU_state(); // Push a multiple of 16 bytes
   158   if (frame::arg_reg_save_area_bytes != 0) {
   159     // Allocate argument register save area
   160     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   161   }
   163   // Set an oopmap for the call site.  This oopmap will map all
   164   // oop-registers and debug-info registers as callee-saved.  This
   165   // will allow deoptimization at this safepoint to find all possible
   166   // debug-info recordings, as well as let GC find all oops.
   168   OopMapSet *oop_maps = new OopMapSet();
   169   OopMap* map = new OopMap(frame_size_in_slots, 0);
   170   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
   171   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
   172   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
   173   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
   174   // rbp location is known implicitly by the frame sender code, needs no oopmap
   175   // and the location where rbp was saved by is ignored
   176   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
   177   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
   178   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
   179   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
   180   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
   181   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
   182   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
   183   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
   184   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
   185   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
   186   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
   187   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
   188   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
   189   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
   190   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
   191   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
   192   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
   193   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
   194   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
   195   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
   196   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
   197   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
   198   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
   199   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
   200   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
   201   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
   203   // %%% These should all be a waste but we'll keep things as they were for now
   204   if (true) {
   205     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
   206                           rax->as_VMReg()->next());
   207     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
   208                           rcx->as_VMReg()->next());
   209     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
   210                           rdx->as_VMReg()->next());
   211     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
   212                           rbx->as_VMReg()->next());
   213     // rbp location is known implicitly by the frame sender code, needs no oopmap
   214     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
   215                           rsi->as_VMReg()->next());
   216     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
   217                           rdi->as_VMReg()->next());
   218     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
   219                           r8->as_VMReg()->next());
   220     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
   221                           r9->as_VMReg()->next());
   222     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
   223                           r10->as_VMReg()->next());
   224     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
   225                           r11->as_VMReg()->next());
   226     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
   227                           r12->as_VMReg()->next());
   228     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
   229                           r13->as_VMReg()->next());
   230     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
   231                           r14->as_VMReg()->next());
   232     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
   233                           r15->as_VMReg()->next());
   234     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
   235                           xmm0->as_VMReg()->next());
   236     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
   237                           xmm1->as_VMReg()->next());
   238     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
   239                           xmm2->as_VMReg()->next());
   240     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
   241                           xmm3->as_VMReg()->next());
   242     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
   243                           xmm4->as_VMReg()->next());
   244     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
   245                           xmm5->as_VMReg()->next());
   246     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
   247                           xmm6->as_VMReg()->next());
   248     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
   249                           xmm7->as_VMReg()->next());
   250     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
   251                           xmm8->as_VMReg()->next());
   252     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
   253                           xmm9->as_VMReg()->next());
   254     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
   255                           xmm10->as_VMReg()->next());
   256     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
   257                           xmm11->as_VMReg()->next());
   258     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
   259                           xmm12->as_VMReg()->next());
   260     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
   261                           xmm13->as_VMReg()->next());
   262     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
   263                           xmm14->as_VMReg()->next());
   264     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
   265                           xmm15->as_VMReg()->next());
   266   }
   268   return map;
   269 }
   271 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   272   if (frame::arg_reg_save_area_bytes != 0) {
   273     // Pop arg register save area
   274     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   275   }
   276   // Recover CPU state
   277   __ pop_CPU_state();
   278   // Get the rbp described implicitly by the calling convention (no oopMap)
   279   __ pop(rbp);
   280 }
   282 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   284   // Just restore result register. Only used by deoptimization. By
   285   // now any callee save register that needs to be restored to a c2
   286   // caller of the deoptee has been extracted into the vframeArray
   287   // and will be stuffed into the c2i adapter we create for later
   288   // restoration so only result registers need to be restored here.
   290   // Restore fp result register
   291   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
   292   // Restore integer result register
   293   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
   294   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
   296   // Pop all of the register save are off the stack except the return address
   297   __ addptr(rsp, return_offset_in_bytes());
   298 }
   300 // The java_calling_convention describes stack locations as ideal slots on
   301 // a frame with no abi restrictions. Since we must observe abi restrictions
   302 // (like the placement of the register window) the slots must be biased by
   303 // the following value.
   304 static int reg2offset_in(VMReg r) {
   305   // Account for saved rbp and return address
   306   // This should really be in_preserve_stack_slots
   307   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
   308 }
   310 static int reg2offset_out(VMReg r) {
   311   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   312 }
   314 // ---------------------------------------------------------------------------
   315 // Read the array of BasicTypes from a signature, and compute where the
   316 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   317 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   318 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   319 // as framesizes are fixed.
   320 // VMRegImpl::stack0 refers to the first slot 0(sp).
   321 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   322 // up to RegisterImpl::number_of_registers) are the 64-bit
   323 // integer registers.
   325 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   326 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   327 // units regardless of build. Of course for i486 there is no 64 bit build
   329 // The Java calling convention is a "shifted" version of the C ABI.
   330 // By skipping the first C ABI register we can call non-static jni methods
   331 // with small numbers of arguments without having to shuffle the arguments
   332 // at all. Since we control the java ABI we ought to at least get some
   333 // advantage out of it.
   335 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   336                                            VMRegPair *regs,
   337                                            int total_args_passed,
   338                                            int is_outgoing) {
   340   // Create the mapping between argument positions and
   341   // registers.
   342   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
   343     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
   344   };
   345   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
   346     j_farg0, j_farg1, j_farg2, j_farg3,
   347     j_farg4, j_farg5, j_farg6, j_farg7
   348   };
   351   uint int_args = 0;
   352   uint fp_args = 0;
   353   uint stk_args = 0; // inc by 2 each time
   355   for (int i = 0; i < total_args_passed; i++) {
   356     switch (sig_bt[i]) {
   357     case T_BOOLEAN:
   358     case T_CHAR:
   359     case T_BYTE:
   360     case T_SHORT:
   361     case T_INT:
   362       if (int_args < Argument::n_int_register_parameters_j) {
   363         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   364       } else {
   365         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   366         stk_args += 2;
   367       }
   368       break;
   369     case T_VOID:
   370       // halves of T_LONG or T_DOUBLE
   371       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   372       regs[i].set_bad();
   373       break;
   374     case T_LONG:
   375       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   376       // fall through
   377     case T_OBJECT:
   378     case T_ARRAY:
   379     case T_ADDRESS:
   380       if (int_args < Argument::n_int_register_parameters_j) {
   381         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   382       } else {
   383         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   384         stk_args += 2;
   385       }
   386       break;
   387     case T_FLOAT:
   388       if (fp_args < Argument::n_float_register_parameters_j) {
   389         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   390       } else {
   391         regs[i].set1(VMRegImpl::stack2reg(stk_args));
   392         stk_args += 2;
   393       }
   394       break;
   395     case T_DOUBLE:
   396       assert(sig_bt[i + 1] == T_VOID, "expecting half");
   397       if (fp_args < Argument::n_float_register_parameters_j) {
   398         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   399       } else {
   400         regs[i].set2(VMRegImpl::stack2reg(stk_args));
   401         stk_args += 2;
   402       }
   403       break;
   404     default:
   405       ShouldNotReachHere();
   406       break;
   407     }
   408   }
   410   return round_to(stk_args, 2);
   411 }
   413 // Patch the callers callsite with entry to compiled code if it exists.
   414 static void patch_callers_callsite(MacroAssembler *masm) {
   415   Label L;
   416   __ verify_oop(rbx);
   417   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   418   __ jcc(Assembler::equal, L);
   420   // Save the current stack pointer
   421   __ mov(r13, rsp);
   422   // Schedule the branch target address early.
   423   // Call into the VM to patch the caller, then jump to compiled callee
   424   // rax isn't live so capture return address while we easily can
   425   __ movptr(rax, Address(rsp, 0));
   427   // align stack so push_CPU_state doesn't fault
   428   __ andptr(rsp, -(StackAlignmentInBytes));
   429   __ push_CPU_state();
   432   __ verify_oop(rbx);
   433   // VM needs caller's callsite
   434   // VM needs target method
   435   // This needs to be a long call since we will relocate this adapter to
   436   // the codeBuffer and it may not reach
   438   // Allocate argument register save area
   439   if (frame::arg_reg_save_area_bytes != 0) {
   440     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   441   }
   442   __ mov(c_rarg0, rbx);
   443   __ mov(c_rarg1, rax);
   444   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   446   // De-allocate argument register save area
   447   if (frame::arg_reg_save_area_bytes != 0) {
   448     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   449   }
   451   __ pop_CPU_state();
   452   // restore sp
   453   __ mov(rsp, r13);
   454   __ bind(L);
   455 }
   458 static void gen_c2i_adapter(MacroAssembler *masm,
   459                             int total_args_passed,
   460                             int comp_args_on_stack,
   461                             const BasicType *sig_bt,
   462                             const VMRegPair *regs,
   463                             Label& skip_fixup) {
   464   // Before we get into the guts of the C2I adapter, see if we should be here
   465   // at all.  We've come from compiled code and are attempting to jump to the
   466   // interpreter, which means the caller made a static call to get here
   467   // (vcalls always get a compiled target if there is one).  Check for a
   468   // compiled target.  If there is one, we need to patch the caller's call.
   469   patch_callers_callsite(masm);
   471   __ bind(skip_fixup);
   473   // Since all args are passed on the stack, total_args_passed *
   474   // Interpreter::stackElementSize is the space we need. Plus 1 because
   475   // we also account for the return address location since
   476   // we store it first rather than hold it in rax across all the shuffling
   478   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
   480   // stack is aligned, keep it that way
   481   extraspace = round_to(extraspace, 2*wordSize);
   483   // Get return address
   484   __ pop(rax);
   486   // set senderSP value
   487   __ mov(r13, rsp);
   489   __ subptr(rsp, extraspace);
   491   // Store the return address in the expected location
   492   __ movptr(Address(rsp, 0), rax);
   494   // Now write the args into the outgoing interpreter space
   495   for (int i = 0; i < total_args_passed; i++) {
   496     if (sig_bt[i] == T_VOID) {
   497       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   498       continue;
   499     }
   501     // offset to start parameters
   502     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
   503     int next_off = st_off - Interpreter::stackElementSize;
   505     // Say 4 args:
   506     // i   st_off
   507     // 0   32 T_LONG
   508     // 1   24 T_VOID
   509     // 2   16 T_OBJECT
   510     // 3    8 T_BOOL
   511     // -    0 return address
   512     //
   513     // However to make thing extra confusing. Because we can fit a long/double in
   514     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
   515     // leaves one slot empty and only stores to a single slot. In this case the
   516     // slot that is occupied is the T_VOID slot. See I said it was confusing.
   518     VMReg r_1 = regs[i].first();
   519     VMReg r_2 = regs[i].second();
   520     if (!r_1->is_valid()) {
   521       assert(!r_2->is_valid(), "");
   522       continue;
   523     }
   524     if (r_1->is_stack()) {
   525       // memory to memory use rax
   526       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   527       if (!r_2->is_valid()) {
   528         // sign extend??
   529         __ movl(rax, Address(rsp, ld_off));
   530         __ movptr(Address(rsp, st_off), rax);
   532       } else {
   534         __ movq(rax, Address(rsp, ld_off));
   536         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   537         // T_DOUBLE and T_LONG use two slots in the interpreter
   538         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   539           // ld_off == LSW, ld_off+wordSize == MSW
   540           // st_off == MSW, next_off == LSW
   541           __ movq(Address(rsp, next_off), rax);
   542 #ifdef ASSERT
   543           // Overwrite the unused slot with known junk
   544           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   545           __ movptr(Address(rsp, st_off), rax);
   546 #endif /* ASSERT */
   547         } else {
   548           __ movq(Address(rsp, st_off), rax);
   549         }
   550       }
   551     } else if (r_1->is_Register()) {
   552       Register r = r_1->as_Register();
   553       if (!r_2->is_valid()) {
   554         // must be only an int (or less ) so move only 32bits to slot
   555         // why not sign extend??
   556         __ movl(Address(rsp, st_off), r);
   557       } else {
   558         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   559         // T_DOUBLE and T_LONG use two slots in the interpreter
   560         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   561           // long/double in gpr
   562 #ifdef ASSERT
   563           // Overwrite the unused slot with known junk
   564           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
   565           __ movptr(Address(rsp, st_off), rax);
   566 #endif /* ASSERT */
   567           __ movq(Address(rsp, next_off), r);
   568         } else {
   569           __ movptr(Address(rsp, st_off), r);
   570         }
   571       }
   572     } else {
   573       assert(r_1->is_XMMRegister(), "");
   574       if (!r_2->is_valid()) {
   575         // only a float use just part of the slot
   576         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   577       } else {
   578 #ifdef ASSERT
   579         // Overwrite the unused slot with known junk
   580         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
   581         __ movptr(Address(rsp, st_off), rax);
   582 #endif /* ASSERT */
   583         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
   584       }
   585     }
   586   }
   588   // Schedule the branch target address early.
   589   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   590   __ jmp(rcx);
   591 }
   593 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   594                         address code_start, address code_end,
   595                         Label& L_ok) {
   596   Label L_fail;
   597   __ lea(temp_reg, ExternalAddress(code_start));
   598   __ cmpptr(pc_reg, temp_reg);
   599   __ jcc(Assembler::belowEqual, L_fail);
   600   __ lea(temp_reg, ExternalAddress(code_end));
   601   __ cmpptr(pc_reg, temp_reg);
   602   __ jcc(Assembler::below, L_ok);
   603   __ bind(L_fail);
   604 }
   606 static void gen_i2c_adapter(MacroAssembler *masm,
   607                             int total_args_passed,
   608                             int comp_args_on_stack,
   609                             const BasicType *sig_bt,
   610                             const VMRegPair *regs) {
   612   // Note: r13 contains the senderSP on entry. We must preserve it since
   613   // we may do a i2c -> c2i transition if we lose a race where compiled
   614   // code goes non-entrant while we get args ready.
   615   // In addition we use r13 to locate all the interpreter args as
   616   // we must align the stack to 16 bytes on an i2c entry else we
   617   // lose alignment we expect in all compiled code and register
   618   // save code can segv when fxsave instructions find improperly
   619   // aligned stack pointer.
   621   // Adapters can be frameless because they do not require the caller
   622   // to perform additional cleanup work, such as correcting the stack pointer.
   623   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   624   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   625   // even if a callee has modified the stack pointer.
   626   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   627   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   628   // up via the senderSP register).
   629   // In other words, if *either* the caller or callee is interpreted, we can
   630   // get the stack pointer repaired after a call.
   631   // This is why c2i and i2c adapters cannot be indefinitely composed.
   632   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   633   // both caller and callee would be compiled methods, and neither would
   634   // clean up the stack pointer changes performed by the two adapters.
   635   // If this happens, control eventually transfers back to the compiled
   636   // caller, but with an uncorrected stack, causing delayed havoc.
   638   // Pick up the return address
   639   __ movptr(rax, Address(rsp, 0));
   641   if (VerifyAdapterCalls &&
   642       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   643     // So, let's test for cascading c2i/i2c adapters right now.
   644     //  assert(Interpreter::contains($return_addr) ||
   645     //         StubRoutines::contains($return_addr),
   646     //         "i2c adapter must return to an interpreter frame");
   647     __ block_comment("verify_i2c { ");
   648     Label L_ok;
   649     if (Interpreter::code() != NULL)
   650       range_check(masm, rax, r11,
   651                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   652                   L_ok);
   653     if (StubRoutines::code1() != NULL)
   654       range_check(masm, rax, r11,
   655                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   656                   L_ok);
   657     if (StubRoutines::code2() != NULL)
   658       range_check(masm, rax, r11,
   659                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   660                   L_ok);
   661     const char* msg = "i2c adapter must return to an interpreter frame";
   662     __ block_comment(msg);
   663     __ stop(msg);
   664     __ bind(L_ok);
   665     __ block_comment("} verify_i2ce ");
   666   }
   668   // Must preserve original SP for loading incoming arguments because
   669   // we need to align the outgoing SP for compiled code.
   670   __ movptr(r11, rsp);
   672   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   673   // in registers, we will occasionally have no stack args.
   674   int comp_words_on_stack = 0;
   675   if (comp_args_on_stack) {
   676     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   677     // registers are below.  By subtracting stack0, we either get a negative
   678     // number (all values in registers) or the maximum stack slot accessed.
   680     // Convert 4-byte c2 stack slots to words.
   681     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   682     // Round up to miminum stack alignment, in wordSize
   683     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   684     __ subptr(rsp, comp_words_on_stack * wordSize);
   685   }
   688   // Ensure compiled code always sees stack at proper alignment
   689   __ andptr(rsp, -16);
   691   // push the return address and misalign the stack that youngest frame always sees
   692   // as far as the placement of the call instruction
   693   __ push(rax);
   695   // Put saved SP in another register
   696   const Register saved_sp = rax;
   697   __ movptr(saved_sp, r11);
   699   // Will jump to the compiled code just as if compiled code was doing it.
   700   // Pre-load the register-jump target early, to schedule it better.
   701   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   703   // Now generate the shuffle code.  Pick up all register args and move the
   704   // rest through the floating point stack top.
   705   for (int i = 0; i < total_args_passed; i++) {
   706     if (sig_bt[i] == T_VOID) {
   707       // Longs and doubles are passed in native word order, but misaligned
   708       // in the 32-bit build.
   709       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   710       continue;
   711     }
   713     // Pick up 0, 1 or 2 words from SP+offset.
   715     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   716             "scrambled load targets?");
   717     // Load in argument order going down.
   718     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
   719     // Point to interpreter value (vs. tag)
   720     int next_off = ld_off - Interpreter::stackElementSize;
   721     //
   722     //
   723     //
   724     VMReg r_1 = regs[i].first();
   725     VMReg r_2 = regs[i].second();
   726     if (!r_1->is_valid()) {
   727       assert(!r_2->is_valid(), "");
   728       continue;
   729     }
   730     if (r_1->is_stack()) {
   731       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   732       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   734       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
   735       // and if we end up going thru a c2i because of a miss a reasonable value of r13
   736       // will be generated.
   737       if (!r_2->is_valid()) {
   738         // sign extend???
   739         __ movl(r13, Address(saved_sp, ld_off));
   740         __ movptr(Address(rsp, st_off), r13);
   741       } else {
   742         //
   743         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   744         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   745         // So we must adjust where to pick up the data to match the interpreter.
   746         //
   747         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   748         // are accessed as negative so LSW is at LOW address
   750         // ld_off is MSW so get LSW
   751         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   752                            next_off : ld_off;
   753         __ movq(r13, Address(saved_sp, offset));
   754         // st_off is LSW (i.e. reg.first())
   755         __ movq(Address(rsp, st_off), r13);
   756       }
   757     } else if (r_1->is_Register()) {  // Register argument
   758       Register r = r_1->as_Register();
   759       assert(r != rax, "must be different");
   760       if (r_2->is_valid()) {
   761         //
   762         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   763         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   764         // So we must adjust where to pick up the data to match the interpreter.
   766         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   767                            next_off : ld_off;
   769         // this can be a misaligned move
   770         __ movq(r, Address(saved_sp, offset));
   771       } else {
   772         // sign extend and use a full word?
   773         __ movl(r, Address(saved_sp, ld_off));
   774       }
   775     } else {
   776       if (!r_2->is_valid()) {
   777         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   778       } else {
   779         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
   780       }
   781     }
   782   }
   784   // 6243940 We might end up in handle_wrong_method if
   785   // the callee is deoptimized as we race thru here. If that
   786   // happens we don't want to take a safepoint because the
   787   // caller frame will look interpreted and arguments are now
   788   // "compiled" so it is much better to make this transition
   789   // invisible to the stack walking code. Unfortunately if
   790   // we try and find the callee by normal means a safepoint
   791   // is possible. So we stash the desired callee in the thread
   792   // and the vm will find there should this case occur.
   794   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
   796   // put methodOop where a c2i would expect should we end up there
   797   // only needed becaus eof c2 resolve stubs return methodOop as a result in
   798   // rax
   799   __ mov(rax, rbx);
   800   __ jmp(r11);
   801 }
   803 // ---------------------------------------------------------------
   804 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   805                                                             int total_args_passed,
   806                                                             int comp_args_on_stack,
   807                                                             const BasicType *sig_bt,
   808                                                             const VMRegPair *regs,
   809                                                             AdapterFingerPrint* fingerprint) {
   810   address i2c_entry = __ pc();
   812   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   814   // -------------------------------------------------------------------------
   815   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
   816   // to the interpreter.  The args start out packed in the compiled layout.  They
   817   // need to be unpacked into the interpreter layout.  This will almost always
   818   // require some stack space.  We grow the current (compiled) stack, then repack
   819   // the args.  We  finally end in a jump to the generic interpreter entry point.
   820   // On exit from the interpreter, the interpreter will restore our SP (lest the
   821   // compiled code, which relys solely on SP and not RBP, get sick).
   823   address c2i_unverified_entry = __ pc();
   824   Label skip_fixup;
   825   Label ok;
   827   Register holder = rax;
   828   Register receiver = j_rarg0;
   829   Register temp = rbx;
   831   {
   832     __ verify_oop(holder);
   833     __ load_klass(temp, receiver);
   834     __ verify_oop(temp);
   836     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   837     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   838     __ jcc(Assembler::equal, ok);
   839     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   841     __ bind(ok);
   842     // Method might have been compiled since the call site was patched to
   843     // interpreted if that is the case treat it as a miss so we can get
   844     // the call site corrected.
   845     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   846     __ jcc(Assembler::equal, skip_fixup);
   847     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   848   }
   850   address c2i_entry = __ pc();
   852   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   854   __ flush();
   855   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   856 }
   858 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   859                                          VMRegPair *regs,
   860                                          int total_args_passed) {
   861 // We return the amount of VMRegImpl stack slots we need to reserve for all
   862 // the arguments NOT counting out_preserve_stack_slots.
   864 // NOTE: These arrays will have to change when c1 is ported
   865 #ifdef _WIN64
   866     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   867       c_rarg0, c_rarg1, c_rarg2, c_rarg3
   868     };
   869     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   870       c_farg0, c_farg1, c_farg2, c_farg3
   871     };
   872 #else
   873     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
   874       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
   875     };
   876     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
   877       c_farg0, c_farg1, c_farg2, c_farg3,
   878       c_farg4, c_farg5, c_farg6, c_farg7
   879     };
   880 #endif // _WIN64
   883     uint int_args = 0;
   884     uint fp_args = 0;
   885     uint stk_args = 0; // inc by 2 each time
   887     for (int i = 0; i < total_args_passed; i++) {
   888       switch (sig_bt[i]) {
   889       case T_BOOLEAN:
   890       case T_CHAR:
   891       case T_BYTE:
   892       case T_SHORT:
   893       case T_INT:
   894         if (int_args < Argument::n_int_register_parameters_c) {
   895           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
   896 #ifdef _WIN64
   897           fp_args++;
   898           // Allocate slots for callee to stuff register args the stack.
   899           stk_args += 2;
   900 #endif
   901         } else {
   902           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   903           stk_args += 2;
   904         }
   905         break;
   906       case T_LONG:
   907         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   908         // fall through
   909       case T_OBJECT:
   910       case T_ARRAY:
   911       case T_ADDRESS:
   912         if (int_args < Argument::n_int_register_parameters_c) {
   913           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
   914 #ifdef _WIN64
   915           fp_args++;
   916           stk_args += 2;
   917 #endif
   918         } else {
   919           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   920           stk_args += 2;
   921         }
   922         break;
   923       case T_FLOAT:
   924         if (fp_args < Argument::n_float_register_parameters_c) {
   925           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
   926 #ifdef _WIN64
   927           int_args++;
   928           // Allocate slots for callee to stuff register args the stack.
   929           stk_args += 2;
   930 #endif
   931         } else {
   932           regs[i].set1(VMRegImpl::stack2reg(stk_args));
   933           stk_args += 2;
   934         }
   935         break;
   936       case T_DOUBLE:
   937         assert(sig_bt[i + 1] == T_VOID, "expecting half");
   938         if (fp_args < Argument::n_float_register_parameters_c) {
   939           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
   940 #ifdef _WIN64
   941           int_args++;
   942           // Allocate slots for callee to stuff register args the stack.
   943           stk_args += 2;
   944 #endif
   945         } else {
   946           regs[i].set2(VMRegImpl::stack2reg(stk_args));
   947           stk_args += 2;
   948         }
   949         break;
   950       case T_VOID: // Halves of longs and doubles
   951         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
   952         regs[i].set_bad();
   953         break;
   954       default:
   955         ShouldNotReachHere();
   956         break;
   957       }
   958     }
   959 #ifdef _WIN64
   960   // windows abi requires that we always allocate enough stack space
   961   // for 4 64bit registers to be stored down.
   962   if (stk_args < 8) {
   963     stk_args = 8;
   964   }
   965 #endif // _WIN64
   967   return stk_args;
   968 }
   970 // On 64 bit we will store integer like items to the stack as
   971 // 64 bits items (sparc abi) even though java would only store
   972 // 32bits for a parameter. On 32bit it will simply be 32 bits
   973 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
   974 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   975   if (src.first()->is_stack()) {
   976     if (dst.first()->is_stack()) {
   977       // stack to stack
   978       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
   979       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
   980     } else {
   981       // stack to reg
   982       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
   983     }
   984   } else if (dst.first()->is_stack()) {
   985     // reg to stack
   986     // Do we really have to sign extend???
   987     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
   988     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   989   } else {
   990     // Do we really have to sign extend???
   991     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
   992     if (dst.first() != src.first()) {
   993       __ movq(dst.first()->as_Register(), src.first()->as_Register());
   994     }
   995   }
   996 }
   998 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   999   if (src.first()->is_stack()) {
  1000     if (dst.first()->is_stack()) {
  1001       // stack to stack
  1002       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1003       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1004     } else {
  1005       // stack to reg
  1006       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
  1008   } else if (dst.first()->is_stack()) {
  1009     // reg to stack
  1010     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1011   } else {
  1012     if (dst.first() != src.first()) {
  1013       __ movq(dst.first()->as_Register(), src.first()->as_Register());
  1018 // An oop arg. Must pass a handle not the oop itself
  1019 static void object_move(MacroAssembler* masm,
  1020                         OopMap* map,
  1021                         int oop_handle_offset,
  1022                         int framesize_in_slots,
  1023                         VMRegPair src,
  1024                         VMRegPair dst,
  1025                         bool is_receiver,
  1026                         int* receiver_offset) {
  1028   // must pass a handle. First figure out the location we use as a handle
  1030   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
  1032   // See if oop is NULL if it is we need no handle
  1034   if (src.first()->is_stack()) {
  1036     // Oop is already on the stack as an argument
  1037     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1038     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1039     if (is_receiver) {
  1040       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1043     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1044     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1045     // conditionally move a NULL
  1046     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  1047   } else {
  1049     // Oop is in an a register we must store it to the space we reserve
  1050     // on the stack for oop_handles and pass a handle if oop is non-NULL
  1052     const Register rOop = src.first()->as_Register();
  1053     int oop_slot;
  1054     if (rOop == j_rarg0)
  1055       oop_slot = 0;
  1056     else if (rOop == j_rarg1)
  1057       oop_slot = 1;
  1058     else if (rOop == j_rarg2)
  1059       oop_slot = 2;
  1060     else if (rOop == j_rarg3)
  1061       oop_slot = 3;
  1062     else if (rOop == j_rarg4)
  1063       oop_slot = 4;
  1064     else {
  1065       assert(rOop == j_rarg5, "wrong register");
  1066       oop_slot = 5;
  1069     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
  1070     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1072     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1073     // Store oop in handle area, may be NULL
  1074     __ movptr(Address(rsp, offset), rOop);
  1075     if (is_receiver) {
  1076       *receiver_offset = offset;
  1079     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1080     __ lea(rHandle, Address(rsp, offset));
  1081     // conditionally move a NULL from the handle area where it was just stored
  1082     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  1085   // If arg is on the stack then place it otherwise it is already in correct reg.
  1086   if (dst.first()->is_stack()) {
  1087     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1091 // A float arg may have to do float reg int reg conversion
  1092 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1093   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1095   // The calling conventions assures us that each VMregpair is either
  1096   // all really one physical register or adjacent stack slots.
  1097   // This greatly simplifies the cases here compared to sparc.
  1099   if (src.first()->is_stack()) {
  1100     if (dst.first()->is_stack()) {
  1101       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1102       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1103     } else {
  1104       // stack to reg
  1105       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1106       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
  1108   } else if (dst.first()->is_stack()) {
  1109     // reg to stack
  1110     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
  1111     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1112   } else {
  1113     // reg to reg
  1114     // In theory these overlap but the ordering is such that this is likely a nop
  1115     if ( src.first() != dst.first()) {
  1116       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
  1121 // A long move
  1122 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1124   // The calling conventions assures us that each VMregpair is either
  1125   // all really one physical register or adjacent stack slots.
  1126   // This greatly simplifies the cases here compared to sparc.
  1128   if (src.is_single_phys_reg() ) {
  1129     if (dst.is_single_phys_reg()) {
  1130       if (dst.first() != src.first()) {
  1131         __ mov(dst.first()->as_Register(), src.first()->as_Register());
  1133     } else {
  1134       assert(dst.is_single_reg(), "not a stack pair");
  1135       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  1137   } else if (dst.is_single_phys_reg()) {
  1138     assert(src.is_single_reg(),  "not a stack pair");
  1139     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  1140   } else {
  1141     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1142     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1143     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1147 // A double move
  1148 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1150   // The calling conventions assures us that each VMregpair is either
  1151   // all really one physical register or adjacent stack slots.
  1152   // This greatly simplifies the cases here compared to sparc.
  1154   if (src.is_single_phys_reg() ) {
  1155     if (dst.is_single_phys_reg()) {
  1156       // In theory these overlap but the ordering is such that this is likely a nop
  1157       if ( src.first() != dst.first()) {
  1158         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
  1160     } else {
  1161       assert(dst.is_single_reg(), "not a stack pair");
  1162       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1164   } else if (dst.is_single_phys_reg()) {
  1165     assert(src.is_single_reg(),  "not a stack pair");
  1166     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  1167   } else {
  1168     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
  1169     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  1170     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  1175 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1176   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1177   // which by this time is free to use
  1178   switch (ret_type) {
  1179   case T_FLOAT:
  1180     __ movflt(Address(rbp, -wordSize), xmm0);
  1181     break;
  1182   case T_DOUBLE:
  1183     __ movdbl(Address(rbp, -wordSize), xmm0);
  1184     break;
  1185   case T_VOID:  break;
  1186   default: {
  1187     __ movptr(Address(rbp, -wordSize), rax);
  1192 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1193   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1194   // which by this time is free to use
  1195   switch (ret_type) {
  1196   case T_FLOAT:
  1197     __ movflt(xmm0, Address(rbp, -wordSize));
  1198     break;
  1199   case T_DOUBLE:
  1200     __ movdbl(xmm0, Address(rbp, -wordSize));
  1201     break;
  1202   case T_VOID:  break;
  1203   default: {
  1204     __ movptr(rax, Address(rbp, -wordSize));
  1209 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1210     for ( int i = first_arg ; i < arg_count ; i++ ) {
  1211       if (args[i].first()->is_Register()) {
  1212         __ push(args[i].first()->as_Register());
  1213       } else if (args[i].first()->is_XMMRegister()) {
  1214         __ subptr(rsp, 2*wordSize);
  1215         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
  1220 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
  1221     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
  1222       if (args[i].first()->is_Register()) {
  1223         __ pop(args[i].first()->as_Register());
  1224       } else if (args[i].first()->is_XMMRegister()) {
  1225         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
  1226         __ addptr(rsp, 2*wordSize);
  1232 static void save_or_restore_arguments(MacroAssembler* masm,
  1233                                       const int stack_slots,
  1234                                       const int total_in_args,
  1235                                       const int arg_save_area,
  1236                                       OopMap* map,
  1237                                       VMRegPair* in_regs,
  1238                                       BasicType* in_sig_bt) {
  1239   // if map is non-NULL then the code should store the values,
  1240   // otherwise it should load them.
  1241   int slot = arg_save_area;
  1242   // Save down double word first
  1243   for ( int i = 0; i < total_in_args; i++) {
  1244     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1245       int offset = slot * VMRegImpl::stack_slot_size;
  1246       slot += VMRegImpl::slots_per_word;
  1247       assert(slot <= stack_slots, "overflow");
  1248       if (map != NULL) {
  1249         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1250       } else {
  1251         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1254     if (in_regs[i].first()->is_Register() &&
  1255         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1256       int offset = slot * VMRegImpl::stack_slot_size;
  1257       if (map != NULL) {
  1258         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
  1259         if (in_sig_bt[i] == T_ARRAY) {
  1260           map->set_oop(VMRegImpl::stack2reg(slot));;
  1262       } else {
  1263         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1265       slot += VMRegImpl::slots_per_word;
  1268   // Save or restore single word registers
  1269   for ( int i = 0; i < total_in_args; i++) {
  1270     if (in_regs[i].first()->is_Register()) {
  1271       int offset = slot * VMRegImpl::stack_slot_size;
  1272       slot++;
  1273       assert(slot <= stack_slots, "overflow");
  1275       // Value is in an input register pass we must flush it to the stack
  1276       const Register reg = in_regs[i].first()->as_Register();
  1277       switch (in_sig_bt[i]) {
  1278         case T_BOOLEAN:
  1279         case T_CHAR:
  1280         case T_BYTE:
  1281         case T_SHORT:
  1282         case T_INT:
  1283           if (map != NULL) {
  1284             __ movl(Address(rsp, offset), reg);
  1285           } else {
  1286             __ movl(reg, Address(rsp, offset));
  1288           break;
  1289         case T_ARRAY:
  1290         case T_LONG:
  1291           // handled above
  1292           break;
  1293         case T_OBJECT:
  1294         default: ShouldNotReachHere();
  1296     } else if (in_regs[i].first()->is_XMMRegister()) {
  1297       if (in_sig_bt[i] == T_FLOAT) {
  1298         int offset = slot * VMRegImpl::stack_slot_size;
  1299         slot++;
  1300         assert(slot <= stack_slots, "overflow");
  1301         if (map != NULL) {
  1302           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1303         } else {
  1304           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1307     } else if (in_regs[i].first()->is_stack()) {
  1308       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1309         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1310         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1317 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1318 // keeps a new JNI critical region from starting until a GC has been
  1319 // forced.  Save down any oops in registers and describe them in an
  1320 // OopMap.
  1321 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1322                                                int stack_slots,
  1323                                                int total_c_args,
  1324                                                int total_in_args,
  1325                                                int arg_save_area,
  1326                                                OopMapSet* oop_maps,
  1327                                                VMRegPair* in_regs,
  1328                                                BasicType* in_sig_bt) {
  1329   __ block_comment("check GC_locker::needs_gc");
  1330   Label cont;
  1331   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1332   __ jcc(Assembler::equal, cont);
  1334   // Save down any incoming oops and call into the runtime to halt for a GC
  1336   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1337   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1338                             arg_save_area, map, in_regs, in_sig_bt);
  1340   address the_pc = __ pc();
  1341   oop_maps->add_gc_map( __ offset(), map);
  1342   __ set_last_Java_frame(rsp, noreg, the_pc);
  1344   __ block_comment("block_for_jni_critical");
  1345   __ movptr(c_rarg0, r15_thread);
  1346   __ mov(r12, rsp); // remember sp
  1347   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1348   __ andptr(rsp, -16); // align stack as required by ABI
  1349   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1350   __ mov(rsp, r12); // restore sp
  1351   __ reinit_heapbase();
  1353   __ reset_last_Java_frame(false, true);
  1355   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1356                             arg_save_area, NULL, in_regs, in_sig_bt);
  1358   __ bind(cont);
  1359 #ifdef ASSERT
  1360   if (StressCriticalJNINatives) {
  1361     // Stress register saving
  1362     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1363     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1364                               arg_save_area, map, in_regs, in_sig_bt);
  1365     // Destroy argument registers
  1366     for (int i = 0; i < total_in_args - 1; i++) {
  1367       if (in_regs[i].first()->is_Register()) {
  1368         const Register reg = in_regs[i].first()->as_Register();
  1369         __ xorptr(reg, reg);
  1370       } else if (in_regs[i].first()->is_XMMRegister()) {
  1371         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1372       } else if (in_regs[i].first()->is_FloatRegister()) {
  1373         ShouldNotReachHere();
  1374       } else if (in_regs[i].first()->is_stack()) {
  1375         // Nothing to do
  1376       } else {
  1377         ShouldNotReachHere();
  1379       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1380         i++;
  1384     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1385                               arg_save_area, NULL, in_regs, in_sig_bt);
  1387 #endif
  1390 // Unpack an array argument into a pointer to the body and the length
  1391 // if the array is non-null, otherwise pass 0 for both.
  1392 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1393   Register tmp_reg = rax;
  1394   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1395          "possible collision");
  1396   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1397          "possible collision");
  1399   // Pass the length, ptr pair
  1400   Label is_null, done;
  1401   VMRegPair tmp;
  1402   tmp.set_ptr(tmp_reg->as_VMReg());
  1403   if (reg.first()->is_stack()) {
  1404     // Load the arg up from the stack
  1405     move_ptr(masm, reg, tmp);
  1406     reg = tmp;
  1408   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1409   __ jccb(Assembler::equal, is_null);
  1410   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1411   move_ptr(masm, tmp, body_arg);
  1412   // load the length relative to the body.
  1413   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1414                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1415   move32_64(masm, tmp, length_arg);
  1416   __ jmpb(done);
  1417   __ bind(is_null);
  1418   // Pass zeros
  1419   __ xorptr(tmp_reg, tmp_reg);
  1420   move_ptr(masm, tmp, body_arg);
  1421   move32_64(masm, tmp, length_arg);
  1422   __ bind(done);
  1426 // Different signatures may require very different orders for the move
  1427 // to avoid clobbering other arguments.  There's no simple way to
  1428 // order them safely.  Compute a safe order for issuing stores and
  1429 // break any cycles in those stores.  This code is fairly general but
  1430 // it's not necessary on the other platforms so we keep it in the
  1431 // platform dependent code instead of moving it into a shared file.
  1432 // (See bugs 7013347 & 7145024.)
  1433 // Note that this code is specific to LP64.
  1434 class ComputeMoveOrder: public StackObj {
  1435   class MoveOperation: public ResourceObj {
  1436     friend class ComputeMoveOrder;
  1437    private:
  1438     VMRegPair        _src;
  1439     VMRegPair        _dst;
  1440     int              _src_index;
  1441     int              _dst_index;
  1442     bool             _processed;
  1443     MoveOperation*  _next;
  1444     MoveOperation*  _prev;
  1446     static int get_id(VMRegPair r) {
  1447       return r.first()->value();
  1450    public:
  1451     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
  1452       _src(src)
  1453     , _src_index(src_index)
  1454     , _dst(dst)
  1455     , _dst_index(dst_index)
  1456     , _next(NULL)
  1457     , _prev(NULL)
  1458     , _processed(false) {
  1461     VMRegPair src() const              { return _src; }
  1462     int src_id() const                 { return get_id(src()); }
  1463     int src_index() const              { return _src_index; }
  1464     VMRegPair dst() const              { return _dst; }
  1465     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
  1466     int dst_index() const              { return _dst_index; }
  1467     int dst_id() const                 { return get_id(dst()); }
  1468     MoveOperation* next() const       { return _next; }
  1469     MoveOperation* prev() const       { return _prev; }
  1470     void set_processed()               { _processed = true; }
  1471     bool is_processed() const          { return _processed; }
  1473     // insert
  1474     void break_cycle(VMRegPair temp_register) {
  1475       // create a new store following the last store
  1476       // to move from the temp_register to the original
  1477       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
  1479       // break the cycle of links and insert new_store at the end
  1480       // break the reverse link.
  1481       MoveOperation* p = prev();
  1482       assert(p->next() == this, "must be");
  1483       _prev = NULL;
  1484       p->_next = new_store;
  1485       new_store->_prev = p;
  1487       // change the original store to save it's value in the temp.
  1488       set_dst(-1, temp_register);
  1491     void link(GrowableArray<MoveOperation*>& killer) {
  1492       // link this store in front the store that it depends on
  1493       MoveOperation* n = killer.at_grow(src_id(), NULL);
  1494       if (n != NULL) {
  1495         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
  1496         _next = n;
  1497         n->_prev = this;
  1500   };
  1502  private:
  1503   GrowableArray<MoveOperation*> edges;
  1505  public:
  1506   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
  1507                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
  1508     // Move operations where the dest is the stack can all be
  1509     // scheduled first since they can't interfere with the other moves.
  1510     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  1511       if (in_sig_bt[i] == T_ARRAY) {
  1512         c_arg--;
  1513         if (out_regs[c_arg].first()->is_stack() &&
  1514             out_regs[c_arg + 1].first()->is_stack()) {
  1515           arg_order.push(i);
  1516           arg_order.push(c_arg);
  1517         } else {
  1518           if (out_regs[c_arg].first()->is_stack() ||
  1519               in_regs[i].first() == out_regs[c_arg].first()) {
  1520             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
  1521           } else {
  1522             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1525       } else if (in_sig_bt[i] == T_VOID) {
  1526         arg_order.push(i);
  1527         arg_order.push(c_arg);
  1528       } else {
  1529         if (out_regs[c_arg].first()->is_stack() ||
  1530             in_regs[i].first() == out_regs[c_arg].first()) {
  1531           arg_order.push(i);
  1532           arg_order.push(c_arg);
  1533         } else {
  1534           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
  1538     // Break any cycles in the register moves and emit the in the
  1539     // proper order.
  1540     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
  1541     for (int i = 0; i < stores->length(); i++) {
  1542       arg_order.push(stores->at(i)->src_index());
  1543       arg_order.push(stores->at(i)->dst_index());
  1547   // Collected all the move operations
  1548   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
  1549     if (src.first() == dst.first()) return;
  1550     edges.append(new MoveOperation(src_index, src, dst_index, dst));
  1553   // Walk the edges breaking cycles between moves.  The result list
  1554   // can be walked in order to produce the proper set of loads
  1555   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
  1556     // Record which moves kill which values
  1557     GrowableArray<MoveOperation*> killer;
  1558     for (int i = 0; i < edges.length(); i++) {
  1559       MoveOperation* s = edges.at(i);
  1560       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
  1561       killer.at_put_grow(s->dst_id(), s, NULL);
  1563     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
  1564            "make sure temp isn't in the registers that are killed");
  1566     // create links between loads and stores
  1567     for (int i = 0; i < edges.length(); i++) {
  1568       edges.at(i)->link(killer);
  1571     // at this point, all the move operations are chained together
  1572     // in a doubly linked list.  Processing it backwards finds
  1573     // the beginning of the chain, forwards finds the end.  If there's
  1574     // a cycle it can be broken at any point,  so pick an edge and walk
  1575     // backward until the list ends or we end where we started.
  1576     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
  1577     for (int e = 0; e < edges.length(); e++) {
  1578       MoveOperation* s = edges.at(e);
  1579       if (!s->is_processed()) {
  1580         MoveOperation* start = s;
  1581         // search for the beginning of the chain or cycle
  1582         while (start->prev() != NULL && start->prev() != s) {
  1583           start = start->prev();
  1585         if (start->prev() == s) {
  1586           start->break_cycle(temp_register);
  1588         // walk the chain forward inserting to store list
  1589         while (start != NULL) {
  1590           stores->append(start);
  1591           start->set_processed();
  1592           start = start->next();
  1596     return stores;
  1598 };
  1600 static void verify_oop_args(MacroAssembler* masm,
  1601                             int total_args_passed,
  1602                             const BasicType* sig_bt,
  1603                             const VMRegPair* regs) {
  1604   Register temp_reg = rbx;  // not part of any compiled calling seq
  1605   if (VerifyOops) {
  1606     for (int i = 0; i < total_args_passed; i++) {
  1607       if (sig_bt[i] == T_OBJECT ||
  1608           sig_bt[i] == T_ARRAY) {
  1609         VMReg r = regs[i].first();
  1610         assert(r->is_valid(), "bad oop arg");
  1611         if (r->is_stack()) {
  1612           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1613           __ verify_oop(temp_reg);
  1614         } else {
  1615           __ verify_oop(r->as_Register());
  1622 static void gen_special_dispatch(MacroAssembler* masm,
  1623                                  int total_args_passed,
  1624                                  int comp_args_on_stack,
  1625                                  vmIntrinsics::ID special_dispatch,
  1626                                  const BasicType* sig_bt,
  1627                                  const VMRegPair* regs) {
  1628   verify_oop_args(masm, total_args_passed, sig_bt, regs);
  1630   // Now write the args into the outgoing interpreter space
  1631   bool     has_receiver   = false;
  1632   Register receiver_reg   = noreg;
  1633   int      member_arg_pos = -1;
  1634   Register member_reg     = noreg;
  1635   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
  1636   if (ref_kind != 0) {
  1637     member_arg_pos = total_args_passed - 1;  // trailing MemberName argument
  1638     member_reg = rbx;  // known to be free at this point
  1639     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1640   } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
  1641     has_receiver = true;
  1642   } else {
  1643     guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
  1646   if (member_reg != noreg) {
  1647     // Load the member_arg into register, if necessary.
  1648     assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1649     assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1650     VMReg r = regs[member_arg_pos].first();
  1651     assert(r->is_valid(), "bad member arg");
  1652     if (r->is_stack()) {
  1653       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1654     } else {
  1655       // no data motion is needed
  1656       member_reg = r->as_Register();
  1660   if (has_receiver) {
  1661     // Make sure the receiver is loaded into a register.
  1662     assert(total_args_passed > 0, "oob");
  1663     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1664     VMReg r = regs[0].first();
  1665     assert(r->is_valid(), "bad receiver arg");
  1666     if (r->is_stack()) {
  1667       // Porting note:  This assumes that compiled calling conventions always
  1668       // pass the receiver oop in a register.  If this is not true on some
  1669       // platform, pick a temp and load the receiver from stack.
  1670       assert(false, "receiver always in a register");
  1671       receiver_reg = j_rarg0;  // known to be free at this point
  1672       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1673     } else {
  1674       // no data motion is needed
  1675       receiver_reg = r->as_Register();
  1679   // Figure out which address we are really jumping to:
  1680   MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
  1681                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1684 // ---------------------------------------------------------------------------
  1685 // Generate a native wrapper for a given method.  The method takes arguments
  1686 // in the Java compiled code convention, marshals them to the native
  1687 // convention (handlizes oops, etc), transitions to native, makes the call,
  1688 // returns to java state (possibly blocking), unhandlizes any result and
  1689 // returns.
  1690 //
  1691 // Critical native functions are a shorthand for the use of
  1692 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1693 // functions.  The wrapper is expected to unpack the arguments before
  1694 // passing them to the callee and perform checks before and after the
  1695 // native call to ensure that they GC_locker
  1696 // lock_critical/unlock_critical semantics are followed.  Some other
  1697 // parts of JNI setup are skipped like the tear down of the JNI handle
  1698 // block and the check for pending exceptions it's impossible for them
  1699 // to be thrown.
  1700 //
  1701 // They are roughly structured like this:
  1702 //    if (GC_locker::needs_gc())
  1703 //      SharedRuntime::block_for_jni_critical();
  1704 //    tranistion to thread_in_native
  1705 //    unpack arrray arguments and call native entry point
  1706 //    check for safepoint in progress
  1707 //    check if any thread suspend flags are set
  1708 //      call into JVM and possible unlock the JNI critical
  1709 //      if a GC was suppressed while in the critical native.
  1710 //    transition back to thread_in_Java
  1711 //    return to caller
  1712 //
  1713 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1714                                                 methodHandle method,
  1715                                                 int compile_id,
  1716                                                 int total_in_args,
  1717                                                 int comp_args_on_stack,
  1718                                                 BasicType* in_sig_bt,
  1719                                                 VMRegPair* in_regs,
  1720                                                 BasicType ret_type) {
  1721   if (method->is_method_handle_intrinsic()) {
  1722     vmIntrinsics::ID iid = method->intrinsic_id();
  1723     intptr_t start = (intptr_t)__ pc();
  1724     int vep_offset = ((intptr_t)__ pc()) - start;
  1725     gen_special_dispatch(masm,
  1726                          total_in_args,
  1727                          comp_args_on_stack,
  1728                          method->intrinsic_id(),
  1729                          in_sig_bt,
  1730                          in_regs);
  1731     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1732     __ flush();
  1733     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1734     return nmethod::new_native_nmethod(method,
  1735                                        compile_id,
  1736                                        masm->code(),
  1737                                        vep_offset,
  1738                                        frame_complete,
  1739                                        stack_slots / VMRegImpl::slots_per_word,
  1740                                        in_ByteSize(-1),
  1741                                        in_ByteSize(-1),
  1742                                        (OopMapSet*)NULL);
  1744   bool is_critical_native = true;
  1745   address native_func = method->critical_native_function();
  1746   if (native_func == NULL) {
  1747     native_func = method->native_function();
  1748     is_critical_native = false;
  1750   assert(native_func != NULL, "must have function");
  1752   // An OopMap for lock (and class if static)
  1753   OopMapSet *oop_maps = new OopMapSet();
  1754   intptr_t start = (intptr_t)__ pc();
  1756   // We have received a description of where all the java arg are located
  1757   // on entry to the wrapper. We need to convert these args to where
  1758   // the jni function will expect them. To figure out where they go
  1759   // we convert the java signature to a C signature by inserting
  1760   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1762   int total_c_args = total_in_args;
  1763   if (!is_critical_native) {
  1764     total_c_args += 1;
  1765     if (method->is_static()) {
  1766       total_c_args++;
  1768   } else {
  1769     for (int i = 0; i < total_in_args; i++) {
  1770       if (in_sig_bt[i] == T_ARRAY) {
  1771         total_c_args++;
  1776   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1777   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1778   BasicType* in_elem_bt = NULL;
  1780   int argc = 0;
  1781   if (!is_critical_native) {
  1782     out_sig_bt[argc++] = T_ADDRESS;
  1783     if (method->is_static()) {
  1784       out_sig_bt[argc++] = T_OBJECT;
  1787     for (int i = 0; i < total_in_args ; i++ ) {
  1788       out_sig_bt[argc++] = in_sig_bt[i];
  1790   } else {
  1791     Thread* THREAD = Thread::current();
  1792     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1793     SignatureStream ss(method->signature());
  1794     for (int i = 0; i < total_in_args ; i++ ) {
  1795       if (in_sig_bt[i] == T_ARRAY) {
  1796         // Arrays are passed as int, elem* pair
  1797         out_sig_bt[argc++] = T_INT;
  1798         out_sig_bt[argc++] = T_ADDRESS;
  1799         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1800         const char* at = atype->as_C_string();
  1801         if (strlen(at) == 2) {
  1802           assert(at[0] == '[', "must be");
  1803           switch (at[1]) {
  1804             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1805             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1806             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1807             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1808             case 'I': in_elem_bt[i]  = T_INT; break;
  1809             case 'J': in_elem_bt[i]  = T_LONG; break;
  1810             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1811             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1812             default: ShouldNotReachHere();
  1815       } else {
  1816         out_sig_bt[argc++] = in_sig_bt[i];
  1817         in_elem_bt[i] = T_VOID;
  1819       if (in_sig_bt[i] != T_VOID) {
  1820         assert(in_sig_bt[i] == ss.type(), "must match");
  1821         ss.next();
  1826   // Now figure out where the args must be stored and how much stack space
  1827   // they require.
  1828   int out_arg_slots;
  1829   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1831   // Compute framesize for the wrapper.  We need to handlize all oops in
  1832   // incoming registers
  1834   // Calculate the total number of stack slots we will need.
  1836   // First count the abi requirement plus all of the outgoing args
  1837   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1839   // Now the space for the inbound oop handle area
  1840   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  1841   if (is_critical_native) {
  1842     // Critical natives may have to call out so they need a save area
  1843     // for register arguments.
  1844     int double_slots = 0;
  1845     int single_slots = 0;
  1846     for ( int i = 0; i < total_in_args; i++) {
  1847       if (in_regs[i].first()->is_Register()) {
  1848         const Register reg = in_regs[i].first()->as_Register();
  1849         switch (in_sig_bt[i]) {
  1850           case T_BOOLEAN:
  1851           case T_BYTE:
  1852           case T_SHORT:
  1853           case T_CHAR:
  1854           case T_INT:  single_slots++; break;
  1855           case T_ARRAY:  // specific to LP64 (7145024)
  1856           case T_LONG: double_slots++; break;
  1857           default:  ShouldNotReachHere();
  1859       } else if (in_regs[i].first()->is_XMMRegister()) {
  1860         switch (in_sig_bt[i]) {
  1861           case T_FLOAT:  single_slots++; break;
  1862           case T_DOUBLE: double_slots++; break;
  1863           default:  ShouldNotReachHere();
  1865       } else if (in_regs[i].first()->is_FloatRegister()) {
  1866         ShouldNotReachHere();
  1869     total_save_slots = double_slots * 2 + single_slots;
  1870     // align the save area
  1871     if (double_slots != 0) {
  1872       stack_slots = round_to(stack_slots, 2);
  1876   int oop_handle_offset = stack_slots;
  1877   stack_slots += total_save_slots;
  1879   // Now any space we need for handlizing a klass if static method
  1881   int klass_slot_offset = 0;
  1882   int klass_offset = -1;
  1883   int lock_slot_offset = 0;
  1884   bool is_static = false;
  1886   if (method->is_static()) {
  1887     klass_slot_offset = stack_slots;
  1888     stack_slots += VMRegImpl::slots_per_word;
  1889     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1890     is_static = true;
  1893   // Plus a lock if needed
  1895   if (method->is_synchronized()) {
  1896     lock_slot_offset = stack_slots;
  1897     stack_slots += VMRegImpl::slots_per_word;
  1900   // Now a place (+2) to save return values or temp during shuffling
  1901   // + 4 for return address (which we own) and saved rbp
  1902   stack_slots += 6;
  1904   // Ok The space we have allocated will look like:
  1905   //
  1906   //
  1907   // FP-> |                     |
  1908   //      |---------------------|
  1909   //      | 2 slots for moves   |
  1910   //      |---------------------|
  1911   //      | lock box (if sync)  |
  1912   //      |---------------------| <- lock_slot_offset
  1913   //      | klass (if static)   |
  1914   //      |---------------------| <- klass_slot_offset
  1915   //      | oopHandle area      |
  1916   //      |---------------------| <- oop_handle_offset (6 java arg registers)
  1917   //      | outbound memory     |
  1918   //      | based arguments     |
  1919   //      |                     |
  1920   //      |---------------------|
  1921   //      |                     |
  1922   // SP-> | out_preserved_slots |
  1923   //
  1924   //
  1927   // Now compute actual number of stack words we need rounding to make
  1928   // stack properly aligned.
  1929   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1931   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1933   // First thing make an ic check to see if we should even be here
  1935   // We are free to use all registers as temps without saving them and
  1936   // restoring them except rbp. rbp is the only callee save register
  1937   // as far as the interpreter and the compiler(s) are concerned.
  1940   const Register ic_reg = rax;
  1941   const Register receiver = j_rarg0;
  1943   Label hit;
  1944   Label exception_pending;
  1946   assert_different_registers(ic_reg, receiver, rscratch1);
  1947   __ verify_oop(receiver);
  1948   __ load_klass(rscratch1, receiver);
  1949   __ cmpq(ic_reg, rscratch1);
  1950   __ jcc(Assembler::equal, hit);
  1952   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1954   // Verified entry point must be aligned
  1955   __ align(8);
  1957   __ bind(hit);
  1959   int vep_offset = ((intptr_t)__ pc()) - start;
  1961   // The instruction at the verified entry point must be 5 bytes or longer
  1962   // because it can be patched on the fly by make_non_entrant. The stack bang
  1963   // instruction fits that requirement.
  1965   // Generate stack overflow check
  1967   if (UseStackBanging) {
  1968     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1969   } else {
  1970     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1971     __ fat_nop();
  1974   // Generate a new frame for the wrapper.
  1975   __ enter();
  1976   // -2 because return address is already present and so is saved rbp
  1977   __ subptr(rsp, stack_size - 2*wordSize);
  1979   // Frame is now completed as far as size and linkage.
  1980   int frame_complete = ((intptr_t)__ pc()) - start;
  1982 #ifdef ASSERT
  1984       Label L;
  1985       __ mov(rax, rsp);
  1986       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1987       __ cmpptr(rax, rsp);
  1988       __ jcc(Assembler::equal, L);
  1989       __ stop("improperly aligned stack");
  1990       __ bind(L);
  1992 #endif /* ASSERT */
  1995   // We use r14 as the oop handle for the receiver/klass
  1996   // It is callee save so it survives the call to native
  1998   const Register oop_handle_reg = r14;
  2000   if (is_critical_native) {
  2001     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
  2002                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2005   //
  2006   // We immediately shuffle the arguments so that any vm call we have to
  2007   // make from here on out (sync slow path, jvmti, etc.) we will have
  2008   // captured the oops from our caller and have a valid oopMap for
  2009   // them.
  2011   // -----------------
  2012   // The Grand Shuffle
  2014   // The Java calling convention is either equal (linux) or denser (win64) than the
  2015   // c calling convention. However the because of the jni_env argument the c calling
  2016   // convention always has at least one more (and two for static) arguments than Java.
  2017   // Therefore if we move the args from java -> c backwards then we will never have
  2018   // a register->register conflict and we don't have to build a dependency graph
  2019   // and figure out how to break any cycles.
  2020   //
  2022   // Record esp-based slot for receiver on stack for non-static methods
  2023   int receiver_offset = -1;
  2025   // This is a trick. We double the stack slots so we can claim
  2026   // the oops in the caller's frame. Since we are sure to have
  2027   // more args than the caller doubling is enough to make
  2028   // sure we can capture all the incoming oop args from the
  2029   // caller.
  2030   //
  2031   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2033   // Mark location of rbp (someday)
  2034   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
  2036   // Use eax, ebx as temporaries during any memory-memory moves we have to do
  2037   // All inbound args are referenced based on rbp and all outbound args via rsp.
  2040 #ifdef ASSERT
  2041   bool reg_destroyed[RegisterImpl::number_of_registers];
  2042   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  2043   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2044     reg_destroyed[r] = false;
  2046   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
  2047     freg_destroyed[f] = false;
  2050 #endif /* ASSERT */
  2052   // This may iterate in two different directions depending on the
  2053   // kind of native it is.  The reason is that for regular JNI natives
  2054   // the incoming and outgoing registers are offset upwards and for
  2055   // critical natives they are offset down.
  2056   GrowableArray<int> arg_order(2 * total_in_args);
  2057   VMRegPair tmp_vmreg;
  2058   tmp_vmreg.set1(rbx->as_VMReg());
  2060   if (!is_critical_native) {
  2061     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
  2062       arg_order.push(i);
  2063       arg_order.push(c_arg);
  2065   } else {
  2066     // Compute a valid move order, using tmp_vmreg to break any cycles
  2067     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  2070   int temploc = -1;
  2071   for (int ai = 0; ai < arg_order.length(); ai += 2) {
  2072     int i = arg_order.at(ai);
  2073     int c_arg = arg_order.at(ai + 1);
  2074     __ block_comment(err_msg("move %d -> %d", i, c_arg));
  2075     if (c_arg == -1) {
  2076       assert(is_critical_native, "should only be required for critical natives");
  2077       // This arg needs to be moved to a temporary
  2078       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
  2079       in_regs[i] = tmp_vmreg;
  2080       temploc = i;
  2081       continue;
  2082     } else if (i == -1) {
  2083       assert(is_critical_native, "should only be required for critical natives");
  2084       // Read from the temporary location
  2085       assert(temploc != -1, "must be valid");
  2086       i = temploc;
  2087       temploc = -1;
  2089 #ifdef ASSERT
  2090     if (in_regs[i].first()->is_Register()) {
  2091       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
  2092     } else if (in_regs[i].first()->is_XMMRegister()) {
  2093       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
  2095     if (out_regs[c_arg].first()->is_Register()) {
  2096       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2097     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2098       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2100 #endif /* ASSERT */
  2101     switch (in_sig_bt[i]) {
  2102       case T_ARRAY:
  2103         if (is_critical_native) {
  2104           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  2105           c_arg++;
  2106 #ifdef ASSERT
  2107           if (out_regs[c_arg].first()->is_Register()) {
  2108             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2109           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
  2110             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
  2112 #endif
  2113           break;
  2115       case T_OBJECT:
  2116         assert(!is_critical_native, "no oop arguments");
  2117         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2118                     ((i == 0) && (!is_static)),
  2119                     &receiver_offset);
  2120         break;
  2121       case T_VOID:
  2122         break;
  2124       case T_FLOAT:
  2125         float_move(masm, in_regs[i], out_regs[c_arg]);
  2126           break;
  2128       case T_DOUBLE:
  2129         assert( i + 1 < total_in_args &&
  2130                 in_sig_bt[i + 1] == T_VOID &&
  2131                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2132         double_move(masm, in_regs[i], out_regs[c_arg]);
  2133         break;
  2135       case T_LONG :
  2136         long_move(masm, in_regs[i], out_regs[c_arg]);
  2137         break;
  2139       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2141       default:
  2142         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2146   // point c_arg at the first arg that is already loaded in case we
  2147   // need to spill before we call out
  2148   int c_arg = total_c_args - total_in_args;
  2150   // Pre-load a static method's oop into r14.  Used both by locking code and
  2151   // the normal JNI call code.
  2152   if (method->is_static() && !is_critical_native) {
  2154     //  load oop into a register
  2155     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  2157     // Now handlize the static class mirror it's known not-null.
  2158     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  2159     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2161     // Now get the handle
  2162     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  2163     // store the klass handle as second argument
  2164     __ movptr(c_rarg1, oop_handle_reg);
  2165     // and protect the arg if we must spill
  2166     c_arg--;
  2169   // Change state to native (we save the return address in the thread, since it might not
  2170   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  2171   // points into the right code segment. It does not have to be the correct return pc.
  2172   // We use the same pc/oopMap repeatedly when we call out
  2174   intptr_t the_pc = (intptr_t) __ pc();
  2175   oop_maps->add_gc_map(the_pc - start, map);
  2177   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
  2180   // We have all of the arguments setup at this point. We must not touch any register
  2181   // argument registers at this point (what if we save/restore them there are no oop?
  2184     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2185     // protect the args we've loaded
  2186     save_args(masm, total_c_args, c_arg, out_regs);
  2187     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  2188     __ call_VM_leaf(
  2189       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2190       r15_thread, c_rarg1);
  2191     restore_args(masm, total_c_args, c_arg, out_regs);
  2194   // RedefineClasses() tracing support for obsolete method entry
  2195   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2196     // protect the args we've loaded
  2197     save_args(masm, total_c_args, c_arg, out_regs);
  2198     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  2199     __ call_VM_leaf(
  2200       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2201       r15_thread, c_rarg1);
  2202     restore_args(masm, total_c_args, c_arg, out_regs);
  2205   // Lock a synchronized method
  2207   // Register definitions used by locking and unlocking
  2209   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  2210   const Register obj_reg  = rbx;  // Will contain the oop
  2211   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  2212   const Register old_hdr  = r13;  // value of old header at unlock time
  2214   Label slow_path_lock;
  2215   Label lock_done;
  2217   if (method->is_synchronized()) {
  2218     assert(!is_critical_native, "unhandled");
  2221     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  2223     // Get the handle (the 2nd argument)
  2224     __ mov(oop_handle_reg, c_rarg1);
  2226     // Get address of the box
  2228     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2230     // Load the oop from the handle
  2231     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2233     if (UseBiasedLocking) {
  2234       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
  2237     // Load immediate 1 into swap_reg %rax
  2238     __ movl(swap_reg, 1);
  2240     // Load (object->mark() | 1) into swap_reg %rax
  2241     __ orptr(swap_reg, Address(obj_reg, 0));
  2243     // Save (object->mark() | 1) into BasicLock's displaced header
  2244     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2246     if (os::is_MP()) {
  2247       __ lock();
  2250     // src -> dest iff dest == rax else rax <- dest
  2251     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  2252     __ jcc(Assembler::equal, lock_done);
  2254     // Hmm should this move to the slow path code area???
  2256     // Test if the oopMark is an obvious stack pointer, i.e.,
  2257     //  1) (mark & 3) == 0, and
  2258     //  2) rsp <= mark < mark + os::pagesize()
  2259     // These 3 tests can be done by evaluating the following
  2260     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  2261     // assuming both stack pointer and pagesize have their
  2262     // least significant 2 bits clear.
  2263     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
  2265     __ subptr(swap_reg, rsp);
  2266     __ andptr(swap_reg, 3 - os::vm_page_size());
  2268     // Save the test result, for recursive case, the result is zero
  2269     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  2270     __ jcc(Assembler::notEqual, slow_path_lock);
  2272     // Slow path will re-enter here
  2274     __ bind(lock_done);
  2278   // Finally just about ready to make the JNI call
  2281   // get JNIEnv* which is first argument to native
  2282   if (!is_critical_native) {
  2283     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  2286   // Now set thread in native
  2287   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
  2289   __ call(RuntimeAddress(native_func));
  2291     // Either restore the MXCSR register after returning from the JNI Call
  2292     // or verify that it wasn't changed.
  2293     if (RestoreMXCSROnJNICalls) {
  2294       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  2297     else if (CheckJNICalls ) {
  2298       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  2302   // Unpack native results.
  2303   switch (ret_type) {
  2304   case T_BOOLEAN: __ c2bool(rax);            break;
  2305   case T_CHAR   : __ movzwl(rax, rax);      break;
  2306   case T_BYTE   : __ sign_extend_byte (rax); break;
  2307   case T_SHORT  : __ sign_extend_short(rax); break;
  2308   case T_INT    : /* nothing to do */        break;
  2309   case T_DOUBLE :
  2310   case T_FLOAT  :
  2311     // Result is in xmm0 we'll save as needed
  2312     break;
  2313   case T_ARRAY:                 // Really a handle
  2314   case T_OBJECT:                // Really a handle
  2315       break; // can't de-handlize until after safepoint check
  2316   case T_VOID: break;
  2317   case T_LONG: break;
  2318   default       : ShouldNotReachHere();
  2321   // Switch thread to "native transition" state before reading the synchronization state.
  2322   // This additional state is necessary because reading and testing the synchronization
  2323   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2324   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2325   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2326   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2327   //     didn't see any synchronization is progress, and escapes.
  2328   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2330   if(os::is_MP()) {
  2331     if (UseMembar) {
  2332       // Force this write out before the read below
  2333       __ membar(Assembler::Membar_mask_bits(
  2334            Assembler::LoadLoad | Assembler::LoadStore |
  2335            Assembler::StoreLoad | Assembler::StoreStore));
  2336     } else {
  2337       // Write serialization page so VM thread can do a pseudo remote membar.
  2338       // We use the current thread pointer to calculate a thread specific
  2339       // offset to write to within the page. This minimizes bus traffic
  2340       // due to cache line collision.
  2341       __ serialize_memory(r15_thread, rcx);
  2345   Label after_transition;
  2347   // check for safepoint operation in progress and/or pending suspend requests
  2349     Label Continue;
  2351     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2352              SafepointSynchronize::_not_synchronized);
  2354     Label L;
  2355     __ jcc(Assembler::notEqual, L);
  2356     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  2357     __ jcc(Assembler::equal, Continue);
  2358     __ bind(L);
  2360     // Don't use call_VM as it will see a possible pending exception and forward it
  2361     // and never return here preventing us from clearing _last_native_pc down below.
  2362     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2363     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2364     // by hand.
  2365     //
  2366     save_native_result(masm, ret_type, stack_slots);
  2367     __ mov(c_rarg0, r15_thread);
  2368     __ mov(r12, rsp); // remember sp
  2369     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2370     __ andptr(rsp, -16); // align stack as required by ABI
  2371     if (!is_critical_native) {
  2372       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  2373     } else {
  2374       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
  2376     __ mov(rsp, r12); // restore sp
  2377     __ reinit_heapbase();
  2378     // Restore any method result value
  2379     restore_native_result(masm, ret_type, stack_slots);
  2381     if (is_critical_native) {
  2382       // The call above performed the transition to thread_in_Java so
  2383       // skip the transition logic below.
  2384       __ jmpb(after_transition);
  2387     __ bind(Continue);
  2390   // change thread state
  2391   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2392   __ bind(after_transition);
  2394   Label reguard;
  2395   Label reguard_done;
  2396   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2397   __ jcc(Assembler::equal, reguard);
  2398   __ bind(reguard_done);
  2400   // native result if any is live
  2402   // Unlock
  2403   Label unlock_done;
  2404   Label slow_path_unlock;
  2405   if (method->is_synchronized()) {
  2407     // Get locked oop from the handle we passed to jni
  2408     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2410     Label done;
  2412     if (UseBiasedLocking) {
  2413       __ biased_locking_exit(obj_reg, old_hdr, done);
  2416     // Simple recursive lock?
  2418     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
  2419     __ jcc(Assembler::equal, done);
  2421     // Must save rax if if it is live now because cmpxchg must use it
  2422     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2423       save_native_result(masm, ret_type, stack_slots);
  2427     // get address of the stack lock
  2428     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2429     //  get old displaced header
  2430     __ movptr(old_hdr, Address(rax, 0));
  2432     // Atomic swap old header if oop still contains the stack lock
  2433     if (os::is_MP()) {
  2434       __ lock();
  2436     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
  2437     __ jcc(Assembler::notEqual, slow_path_unlock);
  2439     // slow path re-enters here
  2440     __ bind(unlock_done);
  2441     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2442       restore_native_result(masm, ret_type, stack_slots);
  2445     __ bind(done);
  2449     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
  2450     save_native_result(masm, ret_type, stack_slots);
  2451     __ movoop(c_rarg1, JNIHandles::make_local(method()));
  2452     __ call_VM_leaf(
  2453          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2454          r15_thread, c_rarg1);
  2455     restore_native_result(masm, ret_type, stack_slots);
  2458   __ reset_last_Java_frame(false, true);
  2460   // Unpack oop result
  2461   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2462       Label L;
  2463       __ testptr(rax, rax);
  2464       __ jcc(Assembler::zero, L);
  2465       __ movptr(rax, Address(rax, 0));
  2466       __ bind(L);
  2467       __ verify_oop(rax);
  2470   if (!is_critical_native) {
  2471     // reset handle block
  2472     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  2473     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  2476   // pop our frame
  2478   __ leave();
  2480   if (!is_critical_native) {
  2481     // Any exception pending?
  2482     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2483     __ jcc(Assembler::notEqual, exception_pending);
  2486   // Return
  2488   __ ret(0);
  2490   // Unexpected paths are out of line and go here
  2492   if (!is_critical_native) {
  2493     // forward the exception
  2494     __ bind(exception_pending);
  2496     // and forward the exception
  2497     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2500   // Slow path locking & unlocking
  2501   if (method->is_synchronized()) {
  2503     // BEGIN Slow path lock
  2504     __ bind(slow_path_lock);
  2506     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2507     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2509     // protect the args we've loaded
  2510     save_args(masm, total_c_args, c_arg, out_regs);
  2512     __ mov(c_rarg0, obj_reg);
  2513     __ mov(c_rarg1, lock_reg);
  2514     __ mov(c_rarg2, r15_thread);
  2516     // Not a leaf but we have last_Java_frame setup as we want
  2517     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
  2518     restore_args(masm, total_c_args, c_arg, out_regs);
  2520 #ifdef ASSERT
  2521     { Label L;
  2522     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2523     __ jcc(Assembler::equal, L);
  2524     __ stop("no pending exception allowed on exit from monitorenter");
  2525     __ bind(L);
  2527 #endif
  2528     __ jmp(lock_done);
  2530     // END Slow path lock
  2532     // BEGIN Slow path unlock
  2533     __ bind(slow_path_unlock);
  2535     // If we haven't already saved the native result we must save it now as xmm registers
  2536     // are still exposed.
  2538     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2539       save_native_result(masm, ret_type, stack_slots);
  2542     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
  2544     __ mov(c_rarg0, obj_reg);
  2545     __ mov(r12, rsp); // remember sp
  2546     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2547     __ andptr(rsp, -16); // align stack as required by ABI
  2549     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2550     // NOTE that obj_reg == rbx currently
  2551     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
  2552     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2554     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2555     __ mov(rsp, r12); // restore sp
  2556     __ reinit_heapbase();
  2557 #ifdef ASSERT
  2559       Label L;
  2560       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2561       __ jcc(Assembler::equal, L);
  2562       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2563       __ bind(L);
  2565 #endif /* ASSERT */
  2567     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
  2569     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2570       restore_native_result(masm, ret_type, stack_slots);
  2572     __ jmp(unlock_done);
  2574     // END Slow path unlock
  2576   } // synchronized
  2578   // SLOW PATH Reguard the stack if needed
  2580   __ bind(reguard);
  2581   save_native_result(masm, ret_type, stack_slots);
  2582   __ mov(r12, rsp); // remember sp
  2583   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  2584   __ andptr(rsp, -16); // align stack as required by ABI
  2585   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2586   __ mov(rsp, r12); // restore sp
  2587   __ reinit_heapbase();
  2588   restore_native_result(masm, ret_type, stack_slots);
  2589   // and continue
  2590   __ jmp(reguard_done);
  2594   __ flush();
  2596   nmethod *nm = nmethod::new_native_nmethod(method,
  2597                                             compile_id,
  2598                                             masm->code(),
  2599                                             vep_offset,
  2600                                             frame_complete,
  2601                                             stack_slots / VMRegImpl::slots_per_word,
  2602                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2603                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2604                                             oop_maps);
  2606   if (is_critical_native) {
  2607     nm->set_lazy_critical_native(true);
  2610   return nm;
  2614 #ifdef HAVE_DTRACE_H
  2615 // ---------------------------------------------------------------------------
  2616 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2617 // in the Java compiled code convention, marshals them to the native
  2618 // abi and then leaves nops at the position you would expect to call a native
  2619 // function. When the probe is enabled the nops are replaced with a trap
  2620 // instruction that dtrace inserts and the trace will cause a notification
  2621 // to dtrace.
  2622 //
  2623 // The probes are only able to take primitive types and java/lang/String as
  2624 // arguments.  No other java types are allowed. Strings are converted to utf8
  2625 // strings so that from dtrace point of view java strings are converted to C
  2626 // strings. There is an arbitrary fixed limit on the total space that a method
  2627 // can use for converting the strings. (256 chars per string in the signature).
  2628 // So any java string larger then this is truncated.
  2630 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2631 static bool offsets_initialized = false;
  2634 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
  2635                                                 methodHandle method) {
  2638   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2639   // be single threaded in this method.
  2640   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2642   if (!offsets_initialized) {
  2643     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
  2644     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
  2645     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
  2646     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
  2647     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
  2648     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
  2650     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
  2651     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
  2652     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
  2653     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
  2654     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
  2655     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
  2656     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
  2657     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
  2659     offsets_initialized = true;
  2661   // Fill in the signature array, for the calling-convention call.
  2662   int total_args_passed = method->size_of_parameters();
  2664   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2665   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2667   // The signature we are going to use for the trap that dtrace will see
  2668   // java/lang/String is converted. We drop "this" and any other object
  2669   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2670   // is converted to a two-slot long, which is why we double the allocation).
  2671   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2672   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2674   int i=0;
  2675   int total_strings = 0;
  2676   int first_arg_to_pass = 0;
  2677   int total_c_args = 0;
  2679   // Skip the receiver as dtrace doesn't want to see it
  2680   if( !method->is_static() ) {
  2681     in_sig_bt[i++] = T_OBJECT;
  2682     first_arg_to_pass = 1;
  2685   // We need to convert the java args to where a native (non-jni) function
  2686   // would expect them. To figure out where they go we convert the java
  2687   // signature to a C signature.
  2689   SignatureStream ss(method->signature());
  2690   for ( ; !ss.at_return_type(); ss.next()) {
  2691     BasicType bt = ss.type();
  2692     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2693     out_sig_bt[total_c_args++] = bt;
  2694     if( bt == T_OBJECT) {
  2695       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2696       if (s == vmSymbols::java_lang_String()) {
  2697         total_strings++;
  2698         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2699       } else if (s == vmSymbols::java_lang_Boolean() ||
  2700                  s == vmSymbols::java_lang_Character() ||
  2701                  s == vmSymbols::java_lang_Byte() ||
  2702                  s == vmSymbols::java_lang_Short() ||
  2703                  s == vmSymbols::java_lang_Integer() ||
  2704                  s == vmSymbols::java_lang_Float()) {
  2705         out_sig_bt[total_c_args-1] = T_INT;
  2706       } else if (s == vmSymbols::java_lang_Long() ||
  2707                  s == vmSymbols::java_lang_Double()) {
  2708         out_sig_bt[total_c_args-1] = T_LONG;
  2709         out_sig_bt[total_c_args++] = T_VOID;
  2711     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2712       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2713       // We convert double to long
  2714       out_sig_bt[total_c_args-1] = T_LONG;
  2715       out_sig_bt[total_c_args++] = T_VOID;
  2716     } else if ( bt == T_FLOAT) {
  2717       // We convert float to int
  2718       out_sig_bt[total_c_args-1] = T_INT;
  2722   assert(i==total_args_passed, "validly parsed signature");
  2724   // Now get the compiled-Java layout as input arguments
  2725   int comp_args_on_stack;
  2726   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2727       in_sig_bt, in_regs, total_args_passed, false);
  2729   // Now figure out where the args must be stored and how much stack space
  2730   // they require (neglecting out_preserve_stack_slots but space for storing
  2731   // the 1st six register arguments). It's weird see int_stk_helper.
  2733   int out_arg_slots;
  2734   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2736   // Calculate the total number of stack slots we will need.
  2738   // First count the abi requirement plus all of the outgoing args
  2739   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2741   // Now space for the string(s) we must convert
  2742   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2743   for (i = 0; i < total_strings ; i++) {
  2744     string_locs[i] = stack_slots;
  2745     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2748   // Plus the temps we might need to juggle register args
  2749   // regs take two slots each
  2750   stack_slots += (Argument::n_int_register_parameters_c +
  2751                   Argument::n_float_register_parameters_c) * 2;
  2754   // + 4 for return address (which we own) and saved rbp,
  2756   stack_slots += 4;
  2758   // Ok The space we have allocated will look like:
  2759   //
  2760   //
  2761   // FP-> |                     |
  2762   //      |---------------------|
  2763   //      | string[n]           |
  2764   //      |---------------------| <- string_locs[n]
  2765   //      | string[n-1]         |
  2766   //      |---------------------| <- string_locs[n-1]
  2767   //      | ...                 |
  2768   //      | ...                 |
  2769   //      |---------------------| <- string_locs[1]
  2770   //      | string[0]           |
  2771   //      |---------------------| <- string_locs[0]
  2772   //      | outbound memory     |
  2773   //      | based arguments     |
  2774   //      |                     |
  2775   //      |---------------------|
  2776   //      |                     |
  2777   // SP-> | out_preserved_slots |
  2778   //
  2779   //
  2781   // Now compute actual number of stack words we need rounding to make
  2782   // stack properly aligned.
  2783   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2785   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2787   intptr_t start = (intptr_t)__ pc();
  2789   // First thing make an ic check to see if we should even be here
  2791   // We are free to use all registers as temps without saving them and
  2792   // restoring them except rbp. rbp, is the only callee save register
  2793   // as far as the interpreter and the compiler(s) are concerned.
  2795   const Register ic_reg = rax;
  2796   const Register receiver = rcx;
  2797   Label hit;
  2798   Label exception_pending;
  2801   __ verify_oop(receiver);
  2802   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2803   __ jcc(Assembler::equal, hit);
  2805   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2807   // verified entry must be aligned for code patching.
  2808   // and the first 5 bytes must be in the same cache line
  2809   // if we align at 8 then we will be sure 5 bytes are in the same line
  2810   __ align(8);
  2812   __ bind(hit);
  2814   int vep_offset = ((intptr_t)__ pc()) - start;
  2817   // The instruction at the verified entry point must be 5 bytes or longer
  2818   // because it can be patched on the fly by make_non_entrant. The stack bang
  2819   // instruction fits that requirement.
  2821   // Generate stack overflow check
  2823   if (UseStackBanging) {
  2824     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2825       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2826     } else {
  2827       __ movl(rax, stack_size);
  2828       __ bang_stack_size(rax, rbx);
  2830   } else {
  2831     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2832     __ fat_nop();
  2835   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
  2836          "valid size for make_non_entrant");
  2838   // Generate a new frame for the wrapper.
  2839   __ enter();
  2841   // -4 because return address is already present and so is saved rbp,
  2842   if (stack_size - 2*wordSize != 0) {
  2843     __ subq(rsp, stack_size - 2*wordSize);
  2846   // Frame is now completed as far a size and linkage.
  2848   int frame_complete = ((intptr_t)__ pc()) - start;
  2850   int c_arg, j_arg;
  2852   // State of input register args
  2854   bool  live[ConcreteRegisterImpl::number_of_registers];
  2856   live[j_rarg0->as_VMReg()->value()] = false;
  2857   live[j_rarg1->as_VMReg()->value()] = false;
  2858   live[j_rarg2->as_VMReg()->value()] = false;
  2859   live[j_rarg3->as_VMReg()->value()] = false;
  2860   live[j_rarg4->as_VMReg()->value()] = false;
  2861   live[j_rarg5->as_VMReg()->value()] = false;
  2863   live[j_farg0->as_VMReg()->value()] = false;
  2864   live[j_farg1->as_VMReg()->value()] = false;
  2865   live[j_farg2->as_VMReg()->value()] = false;
  2866   live[j_farg3->as_VMReg()->value()] = false;
  2867   live[j_farg4->as_VMReg()->value()] = false;
  2868   live[j_farg5->as_VMReg()->value()] = false;
  2869   live[j_farg6->as_VMReg()->value()] = false;
  2870   live[j_farg7->as_VMReg()->value()] = false;
  2873   bool rax_is_zero = false;
  2875   // All args (except strings) destined for the stack are moved first
  2876   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2877        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2878     VMRegPair src = in_regs[j_arg];
  2879     VMRegPair dst = out_regs[c_arg];
  2881     // Get the real reg value or a dummy (rsp)
  2883     int src_reg = src.first()->is_reg() ?
  2884                   src.first()->value() :
  2885                   rsp->as_VMReg()->value();
  2887     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  2888                     (in_sig_bt[j_arg] == T_OBJECT &&
  2889                      out_sig_bt[c_arg] != T_INT &&
  2890                      out_sig_bt[c_arg] != T_ADDRESS &&
  2891                      out_sig_bt[c_arg] != T_LONG);
  2893     live[src_reg] = !useless;
  2895     if (dst.first()->is_stack()) {
  2897       // Even though a string arg in a register is still live after this loop
  2898       // after the string conversion loop (next) it will be dead so we take
  2899       // advantage of that now for simpler code to manage live.
  2901       live[src_reg] = false;
  2902       switch (in_sig_bt[j_arg]) {
  2904         case T_ARRAY:
  2905         case T_OBJECT:
  2907             Address stack_dst(rsp, reg2offset_out(dst.first()));
  2909             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2910               // need to unbox a one-word value
  2911               Register in_reg = rax;
  2912               if ( src.first()->is_reg() ) {
  2913                 in_reg = src.first()->as_Register();
  2914               } else {
  2915                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
  2916                 rax_is_zero = false;
  2918               Label skipUnbox;
  2919               __ movptr(Address(rsp, reg2offset_out(dst.first())),
  2920                         (int32_t)NULL_WORD);
  2921               __ testq(in_reg, in_reg);
  2922               __ jcc(Assembler::zero, skipUnbox);
  2924               BasicType bt = out_sig_bt[c_arg];
  2925               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2926               Address src1(in_reg, box_offset);
  2927               if ( bt == T_LONG ) {
  2928                 __ movq(in_reg,  src1);
  2929                 __ movq(stack_dst, in_reg);
  2930                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2931                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
  2932               } else {
  2933                 __ movl(in_reg,  src1);
  2934                 __ movl(stack_dst, in_reg);
  2937               __ bind(skipUnbox);
  2938             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  2939               // Convert the arg to NULL
  2940               if (!rax_is_zero) {
  2941                 __ xorq(rax, rax);
  2942                 rax_is_zero = true;
  2944               __ movq(stack_dst, rax);
  2947           break;
  2949         case T_VOID:
  2950           break;
  2952         case T_FLOAT:
  2953           // This does the right thing since we know it is destined for the
  2954           // stack
  2955           float_move(masm, src, dst);
  2956           break;
  2958         case T_DOUBLE:
  2959           // This does the right thing since we know it is destined for the
  2960           // stack
  2961           double_move(masm, src, dst);
  2962           break;
  2964         case T_LONG :
  2965           long_move(masm, src, dst);
  2966           break;
  2968         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2970         default:
  2971           move32_64(masm, src, dst);
  2977   // If we have any strings we must store any register based arg to the stack
  2978   // This includes any still live xmm registers too.
  2980   int sid = 0;
  2982   if (total_strings > 0 ) {
  2983     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2984          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2985       VMRegPair src = in_regs[j_arg];
  2986       VMRegPair dst = out_regs[c_arg];
  2988       if (src.first()->is_reg()) {
  2989         Address src_tmp(rbp, fp_offset[src.first()->value()]);
  2991         // string oops were left untouched by the previous loop even if the
  2992         // eventual (converted) arg is destined for the stack so park them
  2993         // away now (except for first)
  2995         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2996           Address utf8_addr = Address(
  2997               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2998           if (sid != 1) {
  2999             // The first string arg won't be killed until after the utf8
  3000             // conversion
  3001             __ movq(utf8_addr, src.first()->as_Register());
  3003         } else if (dst.first()->is_reg()) {
  3004           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
  3006             // Convert the xmm register to an int and store it in the reserved
  3007             // location for the eventual c register arg
  3008             XMMRegister f = src.first()->as_XMMRegister();
  3009             if (in_sig_bt[j_arg] == T_FLOAT) {
  3010               __ movflt(src_tmp, f);
  3011             } else {
  3012               __ movdbl(src_tmp, f);
  3014           } else {
  3015             // If the arg is an oop type we don't support don't bother to store
  3016             // it remember string was handled above.
  3017             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3018                             (in_sig_bt[j_arg] == T_OBJECT &&
  3019                              out_sig_bt[c_arg] != T_INT &&
  3020                              out_sig_bt[c_arg] != T_LONG);
  3022             if (!useless) {
  3023               __ movq(src_tmp, src.first()->as_Register());
  3028       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3029         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3030         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3034     // Now that the volatile registers are safe, convert all the strings
  3035     sid = 0;
  3037     for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3038          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3039       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3040         // It's a string
  3041         Address utf8_addr = Address(
  3042             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  3043         // The first string we find might still be in the original java arg
  3044         // register
  3046         VMReg src = in_regs[j_arg].first();
  3048         // We will need to eventually save the final argument to the trap
  3049         // in the von-volatile location dedicated to src. This is the offset
  3050         // from fp we will use.
  3051         int src_off = src->is_reg() ?
  3052             fp_offset[src->value()] : reg2offset_in(src);
  3054         // This is where the argument will eventually reside
  3055         VMRegPair dst = out_regs[c_arg];
  3057         if (src->is_reg()) {
  3058           if (sid == 1) {
  3059             __ movq(c_rarg0, src->as_Register());
  3060           } else {
  3061             __ movq(c_rarg0, utf8_addr);
  3063         } else {
  3064           // arg is still in the original location
  3065           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
  3067         Label done, convert;
  3069         // see if the oop is NULL
  3070         __ testq(c_rarg0, c_rarg0);
  3071         __ jcc(Assembler::notEqual, convert);
  3073         if (dst.first()->is_reg()) {
  3074           // Save the ptr to utf string in the origina src loc or the tmp
  3075           // dedicated to it
  3076           __ movq(Address(rbp, src_off), c_rarg0);
  3077         } else {
  3078           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
  3080         __ jmp(done);
  3082         __ bind(convert);
  3084         __ lea(c_rarg1, utf8_addr);
  3085         if (dst.first()->is_reg()) {
  3086           __ movq(Address(rbp, src_off), c_rarg1);
  3087         } else {
  3088           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
  3090         // And do the conversion
  3091         __ call(RuntimeAddress(
  3092                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
  3094         __ bind(done);
  3096       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3097         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3098         ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3101     // The get_utf call killed all the c_arg registers
  3102     live[c_rarg0->as_VMReg()->value()] = false;
  3103     live[c_rarg1->as_VMReg()->value()] = false;
  3104     live[c_rarg2->as_VMReg()->value()] = false;
  3105     live[c_rarg3->as_VMReg()->value()] = false;
  3106     live[c_rarg4->as_VMReg()->value()] = false;
  3107     live[c_rarg5->as_VMReg()->value()] = false;
  3109     live[c_farg0->as_VMReg()->value()] = false;
  3110     live[c_farg1->as_VMReg()->value()] = false;
  3111     live[c_farg2->as_VMReg()->value()] = false;
  3112     live[c_farg3->as_VMReg()->value()] = false;
  3113     live[c_farg4->as_VMReg()->value()] = false;
  3114     live[c_farg5->as_VMReg()->value()] = false;
  3115     live[c_farg6->as_VMReg()->value()] = false;
  3116     live[c_farg7->as_VMReg()->value()] = false;
  3119   // Now we can finally move the register args to their desired locations
  3121   rax_is_zero = false;
  3123   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3124        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3126     VMRegPair src = in_regs[j_arg];
  3127     VMRegPair dst = out_regs[c_arg];
  3129     // Only need to look for args destined for the interger registers (since we
  3130     // convert float/double args to look like int/long outbound)
  3131     if (dst.first()->is_reg()) {
  3132       Register r =  dst.first()->as_Register();
  3134       // Check if the java arg is unsupported and thereofre useless
  3135       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
  3136                       (in_sig_bt[j_arg] == T_OBJECT &&
  3137                        out_sig_bt[c_arg] != T_INT &&
  3138                        out_sig_bt[c_arg] != T_ADDRESS &&
  3139                        out_sig_bt[c_arg] != T_LONG);
  3142       // If we're going to kill an existing arg save it first
  3143       if (live[dst.first()->value()]) {
  3144         // you can't kill yourself
  3145         if (src.first() != dst.first()) {
  3146           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
  3149       if (src.first()->is_reg()) {
  3150         if (live[src.first()->value()] ) {
  3151           if (in_sig_bt[j_arg] == T_FLOAT) {
  3152             __ movdl(r, src.first()->as_XMMRegister());
  3153           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
  3154             __ movdq(r, src.first()->as_XMMRegister());
  3155           } else if (r != src.first()->as_Register()) {
  3156             if (!useless) {
  3157               __ movq(r, src.first()->as_Register());
  3160         } else {
  3161           // If the arg is an oop type we don't support don't bother to store
  3162           // it
  3163           if (!useless) {
  3164             if (in_sig_bt[j_arg] == T_DOUBLE ||
  3165                 in_sig_bt[j_arg] == T_LONG  ||
  3166                 in_sig_bt[j_arg] == T_OBJECT ) {
  3167               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
  3168             } else {
  3169               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
  3173         live[src.first()->value()] = false;
  3174       } else if (!useless) {
  3175         // full sized move even for int should be ok
  3176         __ movq(r, Address(rbp, reg2offset_in(src.first())));
  3179       // At this point r has the original java arg in the final location
  3180       // (assuming it wasn't useless). If the java arg was an oop
  3181       // we have a bit more to do
  3183       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
  3184         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3185           // need to unbox a one-word value
  3186           Label skip;
  3187           __ testq(r, r);
  3188           __ jcc(Assembler::equal, skip);
  3189           BasicType bt = out_sig_bt[c_arg];
  3190           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3191           Address src1(r, box_offset);
  3192           if ( bt == T_LONG ) {
  3193             __ movq(r, src1);
  3194           } else {
  3195             __ movl(r, src1);
  3197           __ bind(skip);
  3199         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
  3200           // Convert the arg to NULL
  3201           __ xorq(r, r);
  3205       // dst can longer be holding an input value
  3206       live[dst.first()->value()] = false;
  3208     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  3209       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3210       ++c_arg; // skip over T_VOID to keep the loop indices in sync
  3215   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3216   // patch in the trap
  3217   int patch_offset = ((intptr_t)__ pc()) - start;
  3219   __ nop();
  3222   // Return
  3224   __ leave();
  3225   __ ret(0);
  3227   __ flush();
  3229   nmethod *nm = nmethod::new_dtrace_nmethod(
  3230       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3231       stack_slots / VMRegImpl::slots_per_word);
  3232   return nm;
  3236 #endif // HAVE_DTRACE_H
  3238 // this function returns the adjust size (in number of words) to a c2i adapter
  3239 // activation for use during deoptimization
  3240 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  3241   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3245 uint SharedRuntime::out_preserve_stack_slots() {
  3246   return 0;
  3250 //------------------------------generate_deopt_blob----------------------------
  3251 void SharedRuntime::generate_deopt_blob() {
  3252   // Allocate space for the code
  3253   ResourceMark rm;
  3254   // Setup code generation tools
  3255   CodeBuffer buffer("deopt_blob", 2048, 1024);
  3256   MacroAssembler* masm = new MacroAssembler(&buffer);
  3257   int frame_size_in_words;
  3258   OopMap* map = NULL;
  3259   OopMapSet *oop_maps = new OopMapSet();
  3261   // -------------
  3262   // This code enters when returning to a de-optimized nmethod.  A return
  3263   // address has been pushed on the the stack, and return values are in
  3264   // registers.
  3265   // If we are doing a normal deopt then we were called from the patched
  3266   // nmethod from the point we returned to the nmethod. So the return
  3267   // address on the stack is wrong by NativeCall::instruction_size
  3268   // We will adjust the value so it looks like we have the original return
  3269   // address on the stack (like when we eagerly deoptimized).
  3270   // In the case of an exception pending when deoptimizing, we enter
  3271   // with a return address on the stack that points after the call we patched
  3272   // into the exception handler. We have the following register state from,
  3273   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  3274   //    rax: exception oop
  3275   //    rbx: exception handler
  3276   //    rdx: throwing pc
  3277   // So in this case we simply jam rdx into the useless return address and
  3278   // the stack looks just like we want.
  3279   //
  3280   // At this point we need to de-opt.  We save the argument return
  3281   // registers.  We call the first C routine, fetch_unroll_info().  This
  3282   // routine captures the return values and returns a structure which
  3283   // describes the current frame size and the sizes of all replacement frames.
  3284   // The current frame is compiled code and may contain many inlined
  3285   // functions, each with their own JVM state.  We pop the current frame, then
  3286   // push all the new frames.  Then we call the C routine unpack_frames() to
  3287   // populate these frames.  Finally unpack_frames() returns us the new target
  3288   // address.  Notice that callee-save registers are BLOWN here; they have
  3289   // already been captured in the vframeArray at the time the return PC was
  3290   // patched.
  3291   address start = __ pc();
  3292   Label cont;
  3294   // Prolog for non exception case!
  3296   // Save everything in sight.
  3297   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3299   // Normal deoptimization.  Save exec mode for unpack_frames.
  3300   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  3301   __ jmp(cont);
  3303   int reexecute_offset = __ pc() - start;
  3305   // Reexecute case
  3306   // return address is the pc describes what bci to do re-execute at
  3308   // No need to update map as each call to save_live_registers will produce identical oopmap
  3309   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3311   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  3312   __ jmp(cont);
  3314   int exception_offset = __ pc() - start;
  3316   // Prolog for exception case
  3318   // all registers are dead at this entry point, except for rax, and
  3319   // rdx which contain the exception oop and exception pc
  3320   // respectively.  Set them in TLS and fall thru to the
  3321   // unpack_with_exception_in_tls entry point.
  3323   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3324   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
  3326   int exception_in_tls_offset = __ pc() - start;
  3328   // new implementation because exception oop is now passed in JavaThread
  3330   // Prolog for exception case
  3331   // All registers must be preserved because they might be used by LinearScan
  3332   // Exceptiop oop and throwing PC are passed in JavaThread
  3333   // tos: stack at point of call to method that threw the exception (i.e. only
  3334   // args are on the stack, no return address)
  3336   // make room on stack for the return address
  3337   // It will be patched later with the throwing pc. The correct value is not
  3338   // available now because loading it from memory would destroy registers.
  3339   __ push(0);
  3341   // Save everything in sight.
  3342   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3344   // Now it is safe to overwrite any register
  3346   // Deopt during an exception.  Save exec mode for unpack_frames.
  3347   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
  3349   // load throwing pc from JavaThread and patch it as the return address
  3350   // of the current frame. Then clear the field in JavaThread
  3352   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3353   __ movptr(Address(rbp, wordSize), rdx);
  3354   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3356 #ifdef ASSERT
  3357   // verify that there is really an exception oop in JavaThread
  3358   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3359   __ verify_oop(rax);
  3361   // verify that there is no pending exception
  3362   Label no_pending_exception;
  3363   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3364   __ testptr(rax, rax);
  3365   __ jcc(Assembler::zero, no_pending_exception);
  3366   __ stop("must not have pending exception here");
  3367   __ bind(no_pending_exception);
  3368 #endif
  3370   __ bind(cont);
  3372   // Call C code.  Need thread and this frame, but NOT official VM entry
  3373   // crud.  We cannot block on this call, no GC can happen.
  3374   //
  3375   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
  3377   // fetch_unroll_info needs to call last_java_frame().
  3379   __ set_last_Java_frame(noreg, noreg, NULL);
  3380 #ifdef ASSERT
  3381   { Label L;
  3382     __ cmpptr(Address(r15_thread,
  3383                     JavaThread::last_Java_fp_offset()),
  3384             (int32_t)0);
  3385     __ jcc(Assembler::equal, L);
  3386     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
  3387     __ bind(L);
  3389 #endif // ASSERT
  3390   __ mov(c_rarg0, r15_thread);
  3391   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  3393   // Need to have an oopmap that tells fetch_unroll_info where to
  3394   // find any register it might need.
  3395   oop_maps->add_gc_map(__ pc() - start, map);
  3397   __ reset_last_Java_frame(false, false);
  3399   // Load UnrollBlock* into rdi
  3400   __ mov(rdi, rax);
  3402    Label noException;
  3403   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  3404   __ jcc(Assembler::notEqual, noException);
  3405   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  3406   // QQQ this is useless it was NULL above
  3407   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  3408   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  3409   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
  3411   __ verify_oop(rax);
  3413   // Overwrite the result registers with the exception results.
  3414   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3415   // I think this is useless
  3416   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
  3418   __ bind(noException);
  3420   // Only register save data is on the stack.
  3421   // Now restore the result registers.  Everything else is either dead
  3422   // or captured in the vframeArray.
  3423   RegisterSaver::restore_result_registers(masm);
  3425   // All of the register save area has been popped of the stack. Only the
  3426   // return address remains.
  3428   // Pop all the frames we must move/replace.
  3429   //
  3430   // Frame picture (youngest to oldest)
  3431   // 1: self-frame (no frame link)
  3432   // 2: deopting frame  (no frame link)
  3433   // 3: caller of deopting frame (could be compiled/interpreted).
  3434   //
  3435   // Note: by leaving the return address of self-frame on the stack
  3436   // and using the size of frame 2 to adjust the stack
  3437   // when we are done the return to frame 3 will still be on the stack.
  3439   // Pop deoptimized frame
  3440   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3441   __ addptr(rsp, rcx);
  3443   // rsp should be pointing at the return address to the caller (3)
  3445   // Stack bang to make sure there's enough room for these interpreter frames.
  3446   if (UseStackBanging) {
  3447     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3448     __ bang_stack_size(rbx, rcx);
  3451   // Load address of array of frame pcs into rcx
  3452   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3454   // Trash the old pc
  3455   __ addptr(rsp, wordSize);
  3457   // Load address of array of frame sizes into rsi
  3458   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3460   // Load counter into rdx
  3461   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3463   // Pick up the initial fp we should save
  3464   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3466   // Now adjust the caller's stack to make up for the extra locals
  3467   // but record the original sp so that we can save it in the skeletal interpreter
  3468   // frame and the stack walking of interpreter_sender will get the unextended sp
  3469   // value and not the "real" sp value.
  3471   const Register sender_sp = r8;
  3473   __ mov(sender_sp, rsp);
  3474   __ movl(rbx, Address(rdi,
  3475                        Deoptimization::UnrollBlock::
  3476                        caller_adjustment_offset_in_bytes()));
  3477   __ subptr(rsp, rbx);
  3479   // Push interpreter frames in a loop
  3480   Label loop;
  3481   __ bind(loop);
  3482   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3483 #ifdef CC_INTERP
  3484   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3485 #ifdef ASSERT
  3486   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3487   __ push(0xDEADDEAD);
  3488 #else /* ASSERT */
  3489   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3490 #endif /* ASSERT */
  3491 #else
  3492   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
  3493 #endif // CC_INTERP
  3494   __ pushptr(Address(rcx, 0));          // Save return address
  3495   __ enter();                           // Save old & set new ebp
  3496   __ subptr(rsp, rbx);                  // Prolog
  3497 #ifdef CC_INTERP
  3498   __ movptr(Address(rbp,
  3499                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3500             sender_sp); // Make it walkable
  3501 #else /* CC_INTERP */
  3502   // This value is corrected by layout_activation_impl
  3503   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3504   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
  3505 #endif /* CC_INTERP */
  3506   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  3507   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3508   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3509   __ decrementl(rdx);                   // Decrement counter
  3510   __ jcc(Assembler::notZero, loop);
  3511   __ pushptr(Address(rcx, 0));          // Save final return address
  3513   // Re-push self-frame
  3514   __ enter();                           // Save old & set new ebp
  3516   // Allocate a full sized register save area.
  3517   // Return address and rbp are in place, so we allocate two less words.
  3518   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
  3520   // Restore frame locals after moving the frame
  3521   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  3522   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3524   // Call C code.  Need thread but NOT official VM entry
  3525   // crud.  We cannot block on this call, no GC can happen.  Call should
  3526   // restore return values to their stack-slots with the new SP.
  3527   //
  3528   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
  3530   // Use rbp because the frames look interpreted now
  3531   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3532   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3533   address the_pc = __ pc();
  3534   __ set_last_Java_frame(noreg, rbp, the_pc);
  3536   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  3537   __ mov(c_rarg0, r15_thread);
  3538   __ movl(c_rarg1, r14); // second arg: exec_mode
  3539   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3540   // Revert SP alignment after call since we're going to do some SP relative addressing below
  3541   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
  3543   // Set an oopmap for the call site
  3544   // Use the same PC we used for the last java frame
  3545   oop_maps->add_gc_map(the_pc - start,
  3546                        new OopMap( frame_size_in_words, 0 ));
  3548   // Clear fp AND pc
  3549   __ reset_last_Java_frame(true, true);
  3551   // Collect return values
  3552   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  3553   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  3554   // I think this is useless (throwing pc?)
  3555   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
  3557   // Pop self-frame.
  3558   __ leave();                           // Epilog
  3560   // Jump to interpreter
  3561   __ ret(0);
  3563   // Make sure all code is generated
  3564   masm->flush();
  3566   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3567   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3570 #ifdef COMPILER2
  3571 //------------------------------generate_uncommon_trap_blob--------------------
  3572 void SharedRuntime::generate_uncommon_trap_blob() {
  3573   // Allocate space for the code
  3574   ResourceMark rm;
  3575   // Setup code generation tools
  3576   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  3577   MacroAssembler* masm = new MacroAssembler(&buffer);
  3579   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3581   address start = __ pc();
  3583   // Push self-frame.  We get here with a return address on the
  3584   // stack, so rsp is 8-byte aligned until we allocate our frame.
  3585   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
  3587   // No callee saved registers. rbp is assumed implicitly saved
  3588   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3590   // compiler left unloaded_class_index in j_rarg0 move to where the
  3591   // runtime expects it.
  3592   __ movl(c_rarg1, j_rarg0);
  3594   __ set_last_Java_frame(noreg, noreg, NULL);
  3596   // Call C code.  Need thread but NOT official VM entry
  3597   // crud.  We cannot block on this call, no GC can happen.  Call should
  3598   // capture callee-saved registers as well as return values.
  3599   // Thread is in rdi already.
  3600   //
  3601   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
  3603   __ mov(c_rarg0, r15_thread);
  3604   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3606   // Set an oopmap for the call site
  3607   OopMapSet* oop_maps = new OopMapSet();
  3608   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
  3610   // location of rbp is known implicitly by the frame sender code
  3612   oop_maps->add_gc_map(__ pc() - start, map);
  3614   __ reset_last_Java_frame(false, false);
  3616   // Load UnrollBlock* into rdi
  3617   __ mov(rdi, rax);
  3619   // Pop all the frames we must move/replace.
  3620   //
  3621   // Frame picture (youngest to oldest)
  3622   // 1: self-frame (no frame link)
  3623   // 2: deopting frame  (no frame link)
  3624   // 3: caller of deopting frame (could be compiled/interpreted).
  3626   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  3627   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
  3629   // Pop deoptimized frame (int)
  3630   __ movl(rcx, Address(rdi,
  3631                        Deoptimization::UnrollBlock::
  3632                        size_of_deoptimized_frame_offset_in_bytes()));
  3633   __ addptr(rsp, rcx);
  3635   // rsp should be pointing at the return address to the caller (3)
  3637   // Stack bang to make sure there's enough room for these interpreter frames.
  3638   if (UseStackBanging) {
  3639     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3640     __ bang_stack_size(rbx, rcx);
  3643   // Load address of array of frame pcs into rcx (address*)
  3644   __ movptr(rcx,
  3645             Address(rdi,
  3646                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3648   // Trash the return pc
  3649   __ addptr(rsp, wordSize);
  3651   // Load address of array of frame sizes into rsi (intptr_t*)
  3652   __ movptr(rsi, Address(rdi,
  3653                          Deoptimization::UnrollBlock::
  3654                          frame_sizes_offset_in_bytes()));
  3656   // Counter
  3657   __ movl(rdx, Address(rdi,
  3658                        Deoptimization::UnrollBlock::
  3659                        number_of_frames_offset_in_bytes())); // (int)
  3661   // Pick up the initial fp we should save
  3662   __ movptr(rbp,
  3663             Address(rdi,
  3664                     Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3666   // Now adjust the caller's stack to make up for the extra locals but
  3667   // record the original sp so that we can save it in the skeletal
  3668   // interpreter frame and the stack walking of interpreter_sender
  3669   // will get the unextended sp value and not the "real" sp value.
  3671   const Register sender_sp = r8;
  3673   __ mov(sender_sp, rsp);
  3674   __ movl(rbx, Address(rdi,
  3675                        Deoptimization::UnrollBlock::
  3676                        caller_adjustment_offset_in_bytes())); // (int)
  3677   __ subptr(rsp, rbx);
  3679   // Push interpreter frames in a loop
  3680   Label loop;
  3681   __ bind(loop);
  3682   __ movptr(rbx, Address(rsi, 0)); // Load frame size
  3683   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  3684   __ pushptr(Address(rcx, 0));     // Save return address
  3685   __ enter();                      // Save old & set new rbp
  3686   __ subptr(rsp, rbx);             // Prolog
  3687 #ifdef CC_INTERP
  3688   __ movptr(Address(rbp,
  3689                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3690             sender_sp); // Make it walkable
  3691 #else // CC_INTERP
  3692   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
  3693             sender_sp);            // Make it walkable
  3694   // This value is corrected by layout_activation_impl
  3695   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  3696 #endif // CC_INTERP
  3697   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  3698   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  3699   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  3700   __ decrementl(rdx);              // Decrement counter
  3701   __ jcc(Assembler::notZero, loop);
  3702   __ pushptr(Address(rcx, 0));     // Save final return address
  3704   // Re-push self-frame
  3705   __ enter();                 // Save old & set new rbp
  3706   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
  3707                               // Prolog
  3709   // Use rbp because the frames look interpreted now
  3710   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  3711   // Don't need the precise return PC here, just precise enough to point into this code blob.
  3712   address the_pc = __ pc();
  3713   __ set_last_Java_frame(noreg, rbp, the_pc);
  3715   // Call C code.  Need thread but NOT official VM entry
  3716   // crud.  We cannot block on this call, no GC can happen.  Call should
  3717   // restore return values to their stack-slots with the new SP.
  3718   // Thread is in rdi already.
  3719   //
  3720   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
  3722   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  3723   __ mov(c_rarg0, r15_thread);
  3724   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  3725   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3727   // Set an oopmap for the call site
  3728   // Use the same PC we used for the last java frame
  3729   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  3731   // Clear fp AND pc
  3732   __ reset_last_Java_frame(true, true);
  3734   // Pop self-frame.
  3735   __ leave();                 // Epilog
  3737   // Jump to interpreter
  3738   __ ret(0);
  3740   // Make sure all code is generated
  3741   masm->flush();
  3743   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
  3744                                                  SimpleRuntimeFrame::framesize >> 1);
  3746 #endif // COMPILER2
  3749 //------------------------------generate_handler_blob------
  3750 //
  3751 // Generate a special Compile2Runtime blob that saves all registers,
  3752 // and setup oopmap.
  3753 //
  3754 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3755   assert(StubRoutines::forward_exception_entry() != NULL,
  3756          "must be generated before");
  3758   ResourceMark rm;
  3759   OopMapSet *oop_maps = new OopMapSet();
  3760   OopMap* map;
  3762   // Allocate space for the code.  Setup code generation tools.
  3763   CodeBuffer buffer("handler_blob", 2048, 1024);
  3764   MacroAssembler* masm = new MacroAssembler(&buffer);
  3766   address start   = __ pc();
  3767   address call_pc = NULL;
  3768   int frame_size_in_words;
  3770   // Make room for return address (or push it again)
  3771   if (!cause_return) {
  3772     __ push(rbx);
  3775   // Save registers, fpu state, and flags
  3776   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3778   // The following is basically a call_VM.  However, we need the precise
  3779   // address of the call in order to generate an oopmap. Hence, we do all the
  3780   // work outselves.
  3782   __ set_last_Java_frame(noreg, noreg, NULL);
  3784   // The return address must always be correct so that frame constructor never
  3785   // sees an invalid pc.
  3787   if (!cause_return) {
  3788     // overwrite the dummy value we pushed on entry
  3789     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
  3790     __ movptr(Address(rbp, wordSize), c_rarg0);
  3793   // Do the call
  3794   __ mov(c_rarg0, r15_thread);
  3795   __ call(RuntimeAddress(call_ptr));
  3797   // Set an oopmap for the call site.  This oopmap will map all
  3798   // oop-registers and debug-info registers as callee-saved.  This
  3799   // will allow deoptimization at this safepoint to find all possible
  3800   // debug-info recordings, as well as let GC find all oops.
  3802   oop_maps->add_gc_map( __ pc() - start, map);
  3804   Label noException;
  3806   __ reset_last_Java_frame(false, false);
  3808   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3809   __ jcc(Assembler::equal, noException);
  3811   // Exception pending
  3813   RegisterSaver::restore_live_registers(masm);
  3815   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3817   // No exception case
  3818   __ bind(noException);
  3820   // Normal exit, restore registers and exit.
  3821   RegisterSaver::restore_live_registers(masm);
  3823   __ ret(0);
  3825   // Make sure all code is generated
  3826   masm->flush();
  3828   // Fill-out other meta info
  3829   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3832 //
  3833 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3834 //
  3835 // Generate a stub that calls into vm to find out the proper destination
  3836 // of a java call. All the argument registers are live at this point
  3837 // but since this is generic code we don't know what they are and the caller
  3838 // must do any gc of the args.
  3839 //
  3840 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3841   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3843   // allocate space for the code
  3844   ResourceMark rm;
  3846   CodeBuffer buffer(name, 1000, 512);
  3847   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3849   int frame_size_in_words;
  3851   OopMapSet *oop_maps = new OopMapSet();
  3852   OopMap* map = NULL;
  3854   int start = __ offset();
  3856   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
  3858   int frame_complete = __ offset();
  3860   __ set_last_Java_frame(noreg, noreg, NULL);
  3862   __ mov(c_rarg0, r15_thread);
  3864   __ call(RuntimeAddress(destination));
  3867   // Set an oopmap for the call site.
  3868   // We need this not only for callee-saved registers, but also for volatile
  3869   // registers that the compiler might be keeping live across a safepoint.
  3871   oop_maps->add_gc_map( __ offset() - start, map);
  3873   // rax contains the address we are going to jump to assuming no exception got installed
  3875   // clear last_Java_sp
  3876   __ reset_last_Java_frame(false, false);
  3877   // check for pending exceptions
  3878   Label pending;
  3879   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3880   __ jcc(Assembler::notEqual, pending);
  3882   // get the returned methodOop
  3883   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  3884   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
  3886   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  3888   RegisterSaver::restore_live_registers(masm);
  3890   // We are back the the original state on entry and ready to go.
  3892   __ jmp(rax);
  3894   // Pending exception after the safepoint
  3896   __ bind(pending);
  3898   RegisterSaver::restore_live_registers(masm);
  3900   // exception pending => remove activation and forward to exception handler
  3902   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
  3904   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  3905   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3907   // -------------
  3908   // make sure all code is generated
  3909   masm->flush();
  3911   // return the  blob
  3912   // frame_size_words or bytes??
  3913   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
  3917 #ifdef COMPILER2
  3918 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
  3919 //
  3920 //------------------------------generate_exception_blob---------------------------
  3921 // creates exception blob at the end
  3922 // Using exception blob, this code is jumped from a compiled method.
  3923 // (see emit_exception_handler in x86_64.ad file)
  3924 //
  3925 // Given an exception pc at a call we call into the runtime for the
  3926 // handler in this method. This handler might merely restore state
  3927 // (i.e. callee save registers) unwind the frame and jump to the
  3928 // exception handler for the nmethod if there is no Java level handler
  3929 // for the nmethod.
  3930 //
  3931 // This code is entered with a jmp.
  3932 //
  3933 // Arguments:
  3934 //   rax: exception oop
  3935 //   rdx: exception pc
  3936 //
  3937 // Results:
  3938 //   rax: exception oop
  3939 //   rdx: exception pc in caller or ???
  3940 //   destination: exception handler of caller
  3941 //
  3942 // Note: the exception pc MUST be at a call (precise debug information)
  3943 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
  3944 //
  3946 void OptoRuntime::generate_exception_blob() {
  3947   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  3948   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  3949   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
  3951   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
  3953   // Allocate space for the code
  3954   ResourceMark rm;
  3955   // Setup code generation tools
  3956   CodeBuffer buffer("exception_blob", 2048, 1024);
  3957   MacroAssembler* masm = new MacroAssembler(&buffer);
  3960   address start = __ pc();
  3962   // Exception pc is 'return address' for stack walker
  3963   __ push(rdx);
  3964   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
  3966   // Save callee-saved registers.  See x86_64.ad.
  3968   // rbp is an implicitly saved callee saved register (i.e. the calling
  3969   // convention will save restore it in prolog/epilog) Other than that
  3970   // there are no callee save registers now that adapter frames are gone.
  3972   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
  3974   // Store exception in Thread object. We cannot pass any arguments to the
  3975   // handle_exception call, since we do not want to make any assumption
  3976   // about the size of the frame where the exception happened in.
  3977   // c_rarg0 is either rdi (Linux) or rcx (Windows).
  3978   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  3979   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  3981   // This call does all the hard work.  It checks if an exception handler
  3982   // exists in the method.
  3983   // If so, it returns the handler address.
  3984   // If not, it prepares for stack-unwinding, restoring the callee-save
  3985   // registers of the frame being removed.
  3986   //
  3987   // address OptoRuntime::handle_exception_C(JavaThread* thread)
  3989   // At a method handle call, the stack may not be properly aligned
  3990   // when returning with an exception.
  3991   address the_pc = __ pc();
  3992   __ set_last_Java_frame(noreg, noreg, the_pc);
  3993   __ mov(c_rarg0, r15_thread);
  3994   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  3995   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
  3997   // Set an oopmap for the call site.  This oopmap will only be used if we
  3998   // are unwinding the stack.  Hence, all locations will be dead.
  3999   // Callee-saved registers will be the same as the frame above (i.e.,
  4000   // handle_exception_stub), since they were restored when we got the
  4001   // exception.
  4003   OopMapSet* oop_maps = new OopMapSet();
  4005   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
  4007   __ reset_last_Java_frame(false, true);
  4009   // Restore callee-saved registers
  4011   // rbp is an implicitly saved callee saved register (i.e. the calling
  4012   // convention will save restore it in prolog/epilog) Other than that
  4013   // there are no callee save registers no that adapter frames are gone.
  4015   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
  4017   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  4018   __ pop(rdx);                  // No need for exception pc anymore
  4020   // rax: exception handler
  4022   // Restore SP from BP if the exception PC is a MethodHandle call site.
  4023   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  4024   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
  4026   // We have a handler in rax (could be deopt blob).
  4027   __ mov(r8, rax);
  4029   // Get the exception oop
  4030   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  4031   // Get the exception pc in case we are deoptimized
  4032   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  4033 #ifdef ASSERT
  4034   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  4035   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
  4036 #endif
  4037   // Clear the exception oop so GC no longer processes it as a root.
  4038   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
  4040   // rax: exception oop
  4041   // r8:  exception handler
  4042   // rdx: exception pc
  4043   // Jump to handler
  4045   __ jmp(r8);
  4047   // Make sure all code is generated
  4048   masm->flush();
  4050   // Set exception blob
  4051   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
  4053 #endif // COMPILER2

mercurial