src/cpu/sparc/vm/stubGenerator_sparc.cpp

Fri, 07 Nov 2008 11:03:32 -0500

author
coleenp
date
Fri, 07 Nov 2008 11:03:32 -0500
changeset 857
05db98ed59ba
parent 791
1ee8caae33af
child 1077
660978a2a31a
permissions
-rw-r--r--

6760773: UseCompressedOops is broken with UseParNewGC
Summary: sparc code for gen_subtype_check was doing an ld for a compressed oop with the sign bit set so not comparing, leading to a ClassCastException.
Reviewed-by: phh, never, acorn, kvn, xlu

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_sparc.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp.
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 43 // any other way within this module.
duke@435 44
duke@435 45
duke@435 46 static const Register& Lstub_temp = L2;
duke@435 47
duke@435 48 // -------------------------------------------------------------------------------------------------------------------------
duke@435 49 // Stub Code definitions
duke@435 50
duke@435 51 static address handle_unsafe_access() {
duke@435 52 JavaThread* thread = JavaThread::current();
duke@435 53 address pc = thread->saved_exception_pc();
duke@435 54 address npc = thread->saved_exception_npc();
duke@435 55 // pc is the instruction which we must emulate
duke@435 56 // doing a no-op is fine: return garbage from the load
duke@435 57
duke@435 58 // request an async exception
duke@435 59 thread->set_pending_unsafe_access_error();
duke@435 60
duke@435 61 // return address of next instruction to execute
duke@435 62 return npc;
duke@435 63 }
duke@435 64
duke@435 65 class StubGenerator: public StubCodeGenerator {
duke@435 66 private:
duke@435 67
duke@435 68 #ifdef PRODUCT
duke@435 69 #define inc_counter_np(a,b,c) (0)
duke@435 70 #else
duke@435 71 void inc_counter_np_(int& counter, Register t1, Register t2) {
duke@435 72 Address counter_addr(t2, (address) &counter);
duke@435 73 __ sethi(counter_addr);
duke@435 74 __ ld(counter_addr, t1);
duke@435 75 __ inc(t1);
duke@435 76 __ st(t1, counter_addr);
duke@435 77 }
duke@435 78 #define inc_counter_np(counter, t1, t2) \
duke@435 79 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 80 inc_counter_np_(counter, t1, t2);
duke@435 81 #endif
duke@435 82
duke@435 83 //----------------------------------------------------------------------------------------------------
duke@435 84 // Call stubs are used to call Java from C
duke@435 85
duke@435 86 address generate_call_stub(address& return_pc) {
duke@435 87 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 88 address start = __ pc();
duke@435 89
duke@435 90 // Incoming arguments:
duke@435 91 //
duke@435 92 // o0 : call wrapper address
duke@435 93 // o1 : result (address)
duke@435 94 // o2 : result type
duke@435 95 // o3 : method
duke@435 96 // o4 : (interpreter) entry point
duke@435 97 // o5 : parameters (address)
duke@435 98 // [sp + 0x5c]: parameter size (in words)
duke@435 99 // [sp + 0x60]: thread
duke@435 100 //
duke@435 101 // +---------------+ <--- sp + 0
duke@435 102 // | |
duke@435 103 // . reg save area .
duke@435 104 // | |
duke@435 105 // +---------------+ <--- sp + 0x40
duke@435 106 // | |
duke@435 107 // . extra 7 slots .
duke@435 108 // | |
duke@435 109 // +---------------+ <--- sp + 0x5c
duke@435 110 // | param. size |
duke@435 111 // +---------------+ <--- sp + 0x60
duke@435 112 // | thread |
duke@435 113 // +---------------+
duke@435 114 // | |
duke@435 115
duke@435 116 // note: if the link argument position changes, adjust
duke@435 117 // the code in frame::entry_frame_call_wrapper()
duke@435 118
duke@435 119 const Argument link = Argument(0, false); // used only for GC
duke@435 120 const Argument result = Argument(1, false);
duke@435 121 const Argument result_type = Argument(2, false);
duke@435 122 const Argument method = Argument(3, false);
duke@435 123 const Argument entry_point = Argument(4, false);
duke@435 124 const Argument parameters = Argument(5, false);
duke@435 125 const Argument parameter_size = Argument(6, false);
duke@435 126 const Argument thread = Argument(7, false);
duke@435 127
duke@435 128 // setup thread register
duke@435 129 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 130 __ reinit_heapbase();
duke@435 131
duke@435 132 #ifdef ASSERT
duke@435 133 // make sure we have no pending exceptions
duke@435 134 { const Register t = G3_scratch;
duke@435 135 Label L;
duke@435 136 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 137 __ br_null(t, false, Assembler::pt, L);
duke@435 138 __ delayed()->nop();
duke@435 139 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 140 __ bind(L);
duke@435 141 }
duke@435 142 #endif
duke@435 143
duke@435 144 // create activation frame & allocate space for parameters
duke@435 145 { const Register t = G3_scratch;
duke@435 146 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 147 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 148 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
duke@435 149 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 150 __ neg(t); // negate so it can be used with save
duke@435 151 __ save(SP, t, SP); // setup new frame
duke@435 152 }
duke@435 153
duke@435 154 // +---------------+ <--- sp + 0
duke@435 155 // | |
duke@435 156 // . reg save area .
duke@435 157 // | |
duke@435 158 // +---------------+ <--- sp + 0x40
duke@435 159 // | |
duke@435 160 // . extra 7 slots .
duke@435 161 // | |
duke@435 162 // +---------------+ <--- sp + 0x5c
duke@435 163 // | empty slot | (only if parameter size is even)
duke@435 164 // +---------------+
duke@435 165 // | |
duke@435 166 // . parameters .
duke@435 167 // | |
duke@435 168 // +---------------+ <--- fp + 0
duke@435 169 // | |
duke@435 170 // . reg save area .
duke@435 171 // | |
duke@435 172 // +---------------+ <--- fp + 0x40
duke@435 173 // | |
duke@435 174 // . extra 7 slots .
duke@435 175 // | |
duke@435 176 // +---------------+ <--- fp + 0x5c
duke@435 177 // | param. size |
duke@435 178 // +---------------+ <--- fp + 0x60
duke@435 179 // | thread |
duke@435 180 // +---------------+
duke@435 181 // | |
duke@435 182
duke@435 183 // pass parameters if any
duke@435 184 BLOCK_COMMENT("pass parameters if any");
duke@435 185 { const Register src = parameters.as_in().as_register();
duke@435 186 const Register dst = Lentry_args;
duke@435 187 const Register tmp = G3_scratch;
duke@435 188 const Register cnt = G4_scratch;
duke@435 189
duke@435 190 // test if any parameters & setup of Lentry_args
duke@435 191 Label exit;
duke@435 192 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 193 __ add( FP, STACK_BIAS, dst );
duke@435 194 __ tst(cnt);
duke@435 195 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 196 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 197
duke@435 198 // copy parameters if any
duke@435 199 Label loop;
duke@435 200 __ BIND(loop);
duke@435 201 // Store tag first.
duke@435 202 if (TaggedStackInterpreter) {
duke@435 203 __ ld_ptr(src, 0, tmp);
duke@435 204 __ add(src, BytesPerWord, src); // get next
duke@435 205 __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
duke@435 206 }
duke@435 207 // Store parameter value
duke@435 208 __ ld_ptr(src, 0, tmp);
duke@435 209 __ add(src, BytesPerWord, src);
duke@435 210 __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
duke@435 211 __ deccc(cnt);
duke@435 212 __ br(Assembler::greater, false, Assembler::pt, loop);
duke@435 213 __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
duke@435 214
duke@435 215 // done
duke@435 216 __ BIND(exit);
duke@435 217 }
duke@435 218
duke@435 219 // setup parameters, method & call Java function
duke@435 220 #ifdef ASSERT
duke@435 221 // layout_activation_impl checks it's notion of saved SP against
duke@435 222 // this register, so if this changes update it as well.
duke@435 223 const Register saved_SP = Lscratch;
duke@435 224 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 225 #endif
duke@435 226
duke@435 227 // setup parameters
duke@435 228 const Register t = G3_scratch;
duke@435 229 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
duke@435 230 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 231 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 232 #ifdef _LP64
duke@435 233 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 234 #endif
duke@435 235 __ mov(SP, O5_savedSP);
duke@435 236
duke@435 237
duke@435 238 // do the call
duke@435 239 //
duke@435 240 // the following register must be setup:
duke@435 241 //
duke@435 242 // G2_thread
duke@435 243 // G5_method
duke@435 244 // Gargs
duke@435 245 BLOCK_COMMENT("call Java function");
duke@435 246 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 247 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 248
duke@435 249 BLOCK_COMMENT("call_stub_return_address:");
duke@435 250 return_pc = __ pc();
duke@435 251
duke@435 252 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 253 // we can no longer assert of change of SP.
duke@435 254
duke@435 255 // store result depending on type
duke@435 256 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 257 // is treated as T_INT)
duke@435 258 { const Register addr = result .as_in().as_register();
duke@435 259 const Register type = result_type.as_in().as_register();
duke@435 260 Label is_long, is_float, is_double, is_object, exit;
duke@435 261 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 262 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 263 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 264 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 265 __ delayed()->nop();
duke@435 266
duke@435 267 // store int result
duke@435 268 __ st(O0, addr, G0);
duke@435 269
duke@435 270 __ BIND(exit);
duke@435 271 __ ret();
duke@435 272 __ delayed()->restore();
duke@435 273
duke@435 274 __ BIND(is_object);
duke@435 275 __ ba(false, exit);
duke@435 276 __ delayed()->st_ptr(O0, addr, G0);
duke@435 277
duke@435 278 __ BIND(is_float);
duke@435 279 __ ba(false, exit);
duke@435 280 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 281
duke@435 282 __ BIND(is_double);
duke@435 283 __ ba(false, exit);
duke@435 284 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 285
duke@435 286 __ BIND(is_long);
duke@435 287 #ifdef _LP64
duke@435 288 __ ba(false, exit);
duke@435 289 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 290 #else
duke@435 291 #if defined(COMPILER2)
duke@435 292 // All return values are where we want them, except for Longs. C2 returns
duke@435 293 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 294 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 295 // build we simply always use G1.
duke@435 296 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 297 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 298 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 299
duke@435 300 __ ba(false, exit);
duke@435 301 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 302 #else
duke@435 303 __ st(O1, addr, BytesPerInt);
duke@435 304 __ ba(false, exit);
duke@435 305 __ delayed()->st(O0, addr, G0);
duke@435 306 #endif /* COMPILER2 */
duke@435 307 #endif /* _LP64 */
duke@435 308 }
duke@435 309 return start;
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 //----------------------------------------------------------------------------------------------------
duke@435 314 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 315 // The exception is caught and transformed into a pending exception stored in
duke@435 316 // JavaThread that can be tested from within the VM.
duke@435 317 //
duke@435 318 // Oexception: exception oop
duke@435 319
duke@435 320 address generate_catch_exception() {
duke@435 321 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 322
duke@435 323 address start = __ pc();
duke@435 324 // verify that thread corresponds
duke@435 325 __ verify_thread();
duke@435 326
duke@435 327 const Register& temp_reg = Gtemp;
duke@435 328 Address pending_exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 329 Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset ()));
duke@435 330 Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset ()));
duke@435 331
duke@435 332 // set pending exception
duke@435 333 __ verify_oop(Oexception);
duke@435 334 __ st_ptr(Oexception, pending_exception_addr);
duke@435 335 __ set((intptr_t)__FILE__, temp_reg);
duke@435 336 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 337 __ set((intptr_t)__LINE__, temp_reg);
duke@435 338 __ st(temp_reg, exception_line_offset_addr);
duke@435 339
duke@435 340 // complete return to VM
duke@435 341 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 342
duke@435 343 Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
duke@435 344 __ jump_to(stub_ret);
duke@435 345 __ delayed()->nop();
duke@435 346
duke@435 347 return start;
duke@435 348 }
duke@435 349
duke@435 350
duke@435 351 //----------------------------------------------------------------------------------------------------
duke@435 352 // Continuation point for runtime calls returning with a pending exception
duke@435 353 // The pending exception check happened in the runtime or native call stub
duke@435 354 // The pending exception in Thread is converted into a Java-level exception
duke@435 355 //
duke@435 356 // Contract with Java-level exception handler: O0 = exception
duke@435 357 // O1 = throwing pc
duke@435 358
duke@435 359 address generate_forward_exception() {
duke@435 360 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 361 address start = __ pc();
duke@435 362
duke@435 363 // Upon entry, O7 has the return address returning into Java
duke@435 364 // (interpreted or compiled) code; i.e. the return address
duke@435 365 // becomes the throwing pc.
duke@435 366
duke@435 367 const Register& handler_reg = Gtemp;
duke@435 368
duke@435 369 Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 370
duke@435 371 #ifdef ASSERT
duke@435 372 // make sure that this code is only executed if there is a pending exception
duke@435 373 { Label L;
duke@435 374 __ ld_ptr(exception_addr, Gtemp);
duke@435 375 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 376 __ delayed()->nop();
duke@435 377 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 378 __ bind(L);
duke@435 379 }
duke@435 380 #endif
duke@435 381
duke@435 382 // compute exception handler into handler_reg
duke@435 383 __ get_thread();
duke@435 384 __ ld_ptr(exception_addr, Oexception);
duke@435 385 __ verify_oop(Oexception);
duke@435 386 __ save_frame(0); // compensates for compiler weakness
duke@435 387 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 388 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 389 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
duke@435 390 __ mov(O0, handler_reg);
duke@435 391 __ restore(); // compensates for compiler weakness
duke@435 392
duke@435 393 __ ld_ptr(exception_addr, Oexception);
duke@435 394 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 395
duke@435 396 #ifdef ASSERT
duke@435 397 // make sure exception is set
duke@435 398 { Label L;
duke@435 399 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 400 __ delayed()->nop();
duke@435 401 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 402 __ bind(L);
duke@435 403 }
duke@435 404 #endif
duke@435 405 // jump to exception handler
duke@435 406 __ jmp(handler_reg, 0);
duke@435 407 // clear pending exception
duke@435 408 __ delayed()->st_ptr(G0, exception_addr);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 //------------------------------------------------------------------------------------------------------------------------
duke@435 415 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 416 // the current activation. Fabricates an exception oop and initiates normal
duke@435 417 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 418 // (through the normal register window / RegisterMap handling).
duke@435 419 // If the compiler needs all registers to be preserved between the fault
duke@435 420 // point and the exception handler then it must assume responsibility for that in
duke@435 421 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 422 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 423 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 424 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 425 // so caller saved registers were assumed volatile in the compiler.
duke@435 426
duke@435 427 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 428 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 429 // macro within this method.
duke@435 430 #undef __
duke@435 431 #define __ masm->
duke@435 432
duke@435 433 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 434 #ifdef ASSERT
duke@435 435 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 436 #else
duke@435 437 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 438 #endif /* ASSERT */
duke@435 439 int locs_size = 32;
duke@435 440
duke@435 441 CodeBuffer code(name, insts_size, locs_size);
duke@435 442 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 443
duke@435 444 __ verify_thread();
duke@435 445
duke@435 446 // This is an inlined and slightly modified version of call_VM
duke@435 447 // which has the ability to fetch the return PC out of thread-local storage
duke@435 448 __ assert_not_delayed();
duke@435 449
duke@435 450 // Note that we always push a frame because on the SPARC
duke@435 451 // architecture, for all of our implicit exception kinds at call
duke@435 452 // sites, the implicit exception is taken before the callee frame
duke@435 453 // is pushed.
duke@435 454 __ save_frame(0);
duke@435 455
duke@435 456 int frame_complete = __ offset();
duke@435 457
duke@435 458 if (restore_saved_exception_pc) {
duke@435 459 Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
duke@435 460 __ ld_ptr(saved_exception_pc, I7);
duke@435 461 __ sub(I7, frame::pc_return_offset, I7);
duke@435 462 }
duke@435 463
duke@435 464 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 465 Register last_java_sp = SP;
duke@435 466 // 64-bit last_java_sp is biased!
duke@435 467 __ set_last_Java_frame(last_java_sp, G0);
duke@435 468 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 469 __ save_thread(noreg);
duke@435 470 // do the call
duke@435 471 BLOCK_COMMENT("call runtime_entry");
duke@435 472 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 473 if (!VerifyThread)
duke@435 474 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 475 else
duke@435 476 __ delayed()->nop(); // (thread already passed)
duke@435 477 __ restore_thread(noreg);
duke@435 478 __ reset_last_Java_frame();
duke@435 479
duke@435 480 // check for pending exceptions. use Gtemp as scratch register.
duke@435 481 #ifdef ASSERT
duke@435 482 Label L;
duke@435 483
duke@435 484 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 485 Register scratch_reg = Gtemp;
duke@435 486 __ ld_ptr(exception_addr, scratch_reg);
duke@435 487 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 488 __ delayed()->nop();
duke@435 489 __ should_not_reach_here();
duke@435 490 __ bind(L);
duke@435 491 #endif // ASSERT
duke@435 492 BLOCK_COMMENT("call forward_exception_entry");
duke@435 493 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 494 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 495 __ delayed()->restore();
duke@435 496
duke@435 497 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 498 return stub->entry_point();
duke@435 499 }
duke@435 500
duke@435 501 #undef __
duke@435 502 #define __ _masm->
duke@435 503
duke@435 504
duke@435 505 // Generate a routine that sets all the registers so we
duke@435 506 // can tell if the stop routine prints them correctly.
duke@435 507 address generate_test_stop() {
duke@435 508 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 509 address start = __ pc();
duke@435 510
duke@435 511 int i;
duke@435 512
duke@435 513 __ save_frame(0);
duke@435 514
duke@435 515 static jfloat zero = 0.0, one = 1.0;
duke@435 516
duke@435 517 // put addr in L0, then load through L0 to F0
duke@435 518 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 519 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 520
duke@435 521 // use add to put 2..18 in F2..F18
duke@435 522 for ( i = 2; i <= 18; ++i ) {
duke@435 523 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 524 }
duke@435 525
duke@435 526 // Now put double 2 in F16, double 18 in F18
duke@435 527 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 528 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 529
duke@435 530 // use add to put 20..32 in F20..F32
duke@435 531 for (i = 20; i < 32; i += 2) {
duke@435 532 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 533 }
duke@435 534
duke@435 535 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 536 for ( i = 0; i < 8; ++i ) {
duke@435 537 if (i < 6) {
duke@435 538 __ set( i, as_iRegister(i));
duke@435 539 __ set(16 + i, as_oRegister(i));
duke@435 540 __ set(24 + i, as_gRegister(i));
duke@435 541 }
duke@435 542 __ set( 8 + i, as_lRegister(i));
duke@435 543 }
duke@435 544
duke@435 545 __ stop("testing stop");
duke@435 546
duke@435 547
duke@435 548 __ ret();
duke@435 549 __ delayed()->restore();
duke@435 550
duke@435 551 return start;
duke@435 552 }
duke@435 553
duke@435 554
duke@435 555 address generate_stop_subroutine() {
duke@435 556 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 557 address start = __ pc();
duke@435 558
duke@435 559 __ stop_subroutine();
duke@435 560
duke@435 561 return start;
duke@435 562 }
duke@435 563
duke@435 564 address generate_flush_callers_register_windows() {
duke@435 565 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 566 address start = __ pc();
duke@435 567
duke@435 568 __ flush_windows();
duke@435 569 __ retl(false);
duke@435 570 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 571 // The returned value must be a stack pointer whose register save area
duke@435 572 // is flushed, and will stay flushed while the caller executes.
duke@435 573
duke@435 574 return start;
duke@435 575 }
duke@435 576
duke@435 577 // Helper functions for v8 atomic operations.
duke@435 578 //
duke@435 579 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 580 if (mark_oop_reg == noreg) {
duke@435 581 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 582 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 583 } else {
duke@435 584 assert(scratch_reg != noreg, "just checking");
duke@435 585 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 586 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 587 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 588 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 589 }
duke@435 590 }
duke@435 591
duke@435 592 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 593
duke@435 594 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 595 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 596 // Initialize yield counter
duke@435 597 __ mov(G0,yield_reg);
duke@435 598
duke@435 599 __ BIND(retry);
duke@435 600 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 601 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 602 __ delayed()->nop();
duke@435 603
duke@435 604 // This code can only be called from inside the VM, this
duke@435 605 // stub is only invoked from Atomic::add(). We do not
duke@435 606 // want to use call_VM, because _last_java_sp and such
duke@435 607 // must already be set.
duke@435 608 //
duke@435 609 // Save the regs and make space for a C call
duke@435 610 __ save(SP, -96, SP);
duke@435 611 __ save_all_globals_into_locals();
duke@435 612 BLOCK_COMMENT("call os::naked_sleep");
duke@435 613 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 614 __ delayed()->nop();
duke@435 615 __ restore_globals_from_locals();
duke@435 616 __ restore();
duke@435 617 // reset the counter
duke@435 618 __ mov(G0,yield_reg);
duke@435 619
duke@435 620 __ BIND(dontyield);
duke@435 621
duke@435 622 // try to get lock
duke@435 623 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 624
duke@435 625 // did we get the lock?
duke@435 626 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 627 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 628 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 629
duke@435 630 // yes, got lock. do the operation here.
duke@435 631 }
duke@435 632
duke@435 633 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 634 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 635 }
duke@435 636
duke@435 637 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 638 //
duke@435 639 // Arguments :
duke@435 640 //
duke@435 641 // exchange_value: O0
duke@435 642 // dest: O1
duke@435 643 //
duke@435 644 // Results:
duke@435 645 //
duke@435 646 // O0: the value previously stored in dest
duke@435 647 //
duke@435 648 address generate_atomic_xchg() {
duke@435 649 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 650 address start = __ pc();
duke@435 651
duke@435 652 if (UseCASForSwap) {
duke@435 653 // Use CAS instead of swap, just in case the MP hardware
duke@435 654 // prefers to work with just one kind of synch. instruction.
duke@435 655 Label retry;
duke@435 656 __ BIND(retry);
duke@435 657 __ mov(O0, O3); // scratch copy of exchange value
duke@435 658 __ ld(O1, 0, O2); // observe the previous value
duke@435 659 // try to replace O2 with O3
duke@435 660 __ cas_under_lock(O1, O2, O3,
duke@435 661 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 662 __ cmp(O2, O3);
duke@435 663 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 664 __ delayed()->nop();
duke@435 665
duke@435 666 __ retl(false);
duke@435 667 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 668
duke@435 669 } else {
duke@435 670 if (VM_Version::v9_instructions_work()) {
duke@435 671 __ retl(false);
duke@435 672 __ delayed()->swap(O1, 0, O0);
duke@435 673 } else {
duke@435 674 const Register& lock_reg = O2;
duke@435 675 const Register& lock_ptr_reg = O3;
duke@435 676 const Register& yield_reg = O4;
duke@435 677
duke@435 678 Label retry;
duke@435 679 Label dontyield;
duke@435 680
duke@435 681 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 682 // got the lock, do the swap
duke@435 683 __ swap(O1, 0, O0);
duke@435 684
duke@435 685 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 686 __ retl(false);
duke@435 687 __ delayed()->nop();
duke@435 688 }
duke@435 689 }
duke@435 690
duke@435 691 return start;
duke@435 692 }
duke@435 693
duke@435 694
duke@435 695 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 696 //
duke@435 697 // Arguments :
duke@435 698 //
duke@435 699 // exchange_value: O0
duke@435 700 // dest: O1
duke@435 701 // compare_value: O2
duke@435 702 //
duke@435 703 // Results:
duke@435 704 //
duke@435 705 // O0: the value previously stored in dest
duke@435 706 //
duke@435 707 // Overwrites (v8): O3,O4,O5
duke@435 708 //
duke@435 709 address generate_atomic_cmpxchg() {
duke@435 710 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 711 address start = __ pc();
duke@435 712
duke@435 713 // cmpxchg(dest, compare_value, exchange_value)
duke@435 714 __ cas_under_lock(O1, O2, O0,
duke@435 715 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 716 __ retl(false);
duke@435 717 __ delayed()->nop();
duke@435 718
duke@435 719 return start;
duke@435 720 }
duke@435 721
duke@435 722 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 723 //
duke@435 724 // Arguments :
duke@435 725 //
duke@435 726 // exchange_value: O1:O0
duke@435 727 // dest: O2
duke@435 728 // compare_value: O4:O3
duke@435 729 //
duke@435 730 // Results:
duke@435 731 //
duke@435 732 // O1:O0: the value previously stored in dest
duke@435 733 //
duke@435 734 // This only works on V9, on V8 we don't generate any
duke@435 735 // code and just return NULL.
duke@435 736 //
duke@435 737 // Overwrites: G1,G2,G3
duke@435 738 //
duke@435 739 address generate_atomic_cmpxchg_long() {
duke@435 740 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 741 address start = __ pc();
duke@435 742
duke@435 743 if (!VM_Version::supports_cx8())
duke@435 744 return NULL;;
duke@435 745 __ sllx(O0, 32, O0);
duke@435 746 __ srl(O1, 0, O1);
duke@435 747 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 748 __ sllx(O3, 32, O3);
duke@435 749 __ srl(O4, 0, O4);
duke@435 750 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 751 __ casx(O2, O3, O0);
duke@435 752 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 753 __ retl(false);
duke@435 754 __ delayed()->srlx(O0, 32, O0);
duke@435 755
duke@435 756 return start;
duke@435 757 }
duke@435 758
duke@435 759
duke@435 760 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 761 //
duke@435 762 // Arguments :
duke@435 763 //
duke@435 764 // add_value: O0 (e.g., +1 or -1)
duke@435 765 // dest: O1
duke@435 766 //
duke@435 767 // Results:
duke@435 768 //
duke@435 769 // O0: the new value stored in dest
duke@435 770 //
duke@435 771 // Overwrites (v9): O3
duke@435 772 // Overwrites (v8): O3,O4,O5
duke@435 773 //
duke@435 774 address generate_atomic_add() {
duke@435 775 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 776 address start = __ pc();
duke@435 777 __ BIND(_atomic_add_stub);
duke@435 778
duke@435 779 if (VM_Version::v9_instructions_work()) {
duke@435 780 Label(retry);
duke@435 781 __ BIND(retry);
duke@435 782
duke@435 783 __ lduw(O1, 0, O2);
duke@435 784 __ add(O0, O2, O3);
duke@435 785 __ cas(O1, O2, O3);
duke@435 786 __ cmp( O2, O3);
duke@435 787 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 788 __ delayed()->nop();
duke@435 789 __ retl(false);
duke@435 790 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 791 } else {
duke@435 792 const Register& lock_reg = O2;
duke@435 793 const Register& lock_ptr_reg = O3;
duke@435 794 const Register& value_reg = O4;
duke@435 795 const Register& yield_reg = O5;
duke@435 796
duke@435 797 Label(retry);
duke@435 798 Label(dontyield);
duke@435 799
duke@435 800 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 801 // got lock, do the increment
duke@435 802 __ ld(O1, 0, value_reg);
duke@435 803 __ add(O0, value_reg, value_reg);
duke@435 804 __ st(value_reg, O1, 0);
duke@435 805
duke@435 806 // %%% only for RMO and PSO
duke@435 807 __ membar(Assembler::StoreStore);
duke@435 808
duke@435 809 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 810
duke@435 811 __ retl(false);
duke@435 812 __ delayed()->mov(value_reg, O0);
duke@435 813 }
duke@435 814
duke@435 815 return start;
duke@435 816 }
duke@435 817 Label _atomic_add_stub; // called from other stubs
duke@435 818
duke@435 819
duke@435 820 // Support for void OrderAccess::fence().
duke@435 821 //
duke@435 822 address generate_fence() {
duke@435 823 StubCodeMark mark(this, "StubRoutines", "fence");
duke@435 824 address start = __ pc();
duke@435 825
duke@435 826 __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore |
duke@435 827 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 828 __ retl(false);
duke@435 829 __ delayed()->nop();
duke@435 830
duke@435 831 return start;
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 //------------------------------------------------------------------------------------------------------------------------
duke@435 836 // The following routine generates a subroutine to throw an asynchronous
duke@435 837 // UnknownError when an unsafe access gets a fault that could not be
duke@435 838 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 839 //
duke@435 840 // Arguments :
duke@435 841 //
duke@435 842 // trapping PC: O7
duke@435 843 //
duke@435 844 // Results:
duke@435 845 // posts an asynchronous exception, skips the trapping instruction
duke@435 846 //
duke@435 847
duke@435 848 address generate_handler_for_unsafe_access() {
duke@435 849 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 850 address start = __ pc();
duke@435 851
duke@435 852 const int preserve_register_words = (64 * 2);
duke@435 853 Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 854
duke@435 855 Register Lthread = L7_thread_cache;
duke@435 856 int i;
duke@435 857
duke@435 858 __ save_frame(0);
duke@435 859 __ mov(G1, L1);
duke@435 860 __ mov(G2, L2);
duke@435 861 __ mov(G3, L3);
duke@435 862 __ mov(G4, L4);
duke@435 863 __ mov(G5, L5);
duke@435 864 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 865 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 866 }
duke@435 867
duke@435 868 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 869 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 870 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 871 __ delayed()->nop();
duke@435 872
duke@435 873 __ mov(L1, G1);
duke@435 874 __ mov(L2, G2);
duke@435 875 __ mov(L3, G3);
duke@435 876 __ mov(L4, G4);
duke@435 877 __ mov(L5, G5);
duke@435 878 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 879 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 880 }
duke@435 881
duke@435 882 __ verify_thread();
duke@435 883
duke@435 884 __ jmp(O0, 0);
duke@435 885 __ delayed()->restore();
duke@435 886
duke@435 887 return start;
duke@435 888 }
duke@435 889
duke@435 890
duke@435 891 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 892 // Arguments :
duke@435 893 //
duke@435 894 // ret : O0, returned
duke@435 895 // icc/xcc: set as O0 (depending on wordSize)
duke@435 896 // sub : O1, argument, not changed
duke@435 897 // super: O2, argument, not changed
duke@435 898 // raddr: O7, blown by call
duke@435 899 address generate_partial_subtype_check() {
coleenp@548 900 __ align(CodeEntryAlignment);
duke@435 901 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 902 address start = __ pc();
duke@435 903 Label loop, miss;
duke@435 904
duke@435 905 // Compare super with sub directly, since super is not in its own SSA.
duke@435 906 // The compiler used to emit this test, but we fold it in here,
duke@435 907 // to increase overall code density, with no real loss of speed.
duke@435 908 { Label L;
duke@435 909 __ cmp(O1, O2);
duke@435 910 __ brx(Assembler::notEqual, false, Assembler::pt, L);
duke@435 911 __ delayed()->nop();
duke@435 912 __ retl();
duke@435 913 __ delayed()->addcc(G0,0,O0); // set Z flags, zero result
duke@435 914 __ bind(L);
duke@435 915 }
duke@435 916
duke@435 917 #if defined(COMPILER2) && !defined(_LP64)
duke@435 918 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 919 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 920 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 921 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 922 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 923 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 924 Register Rret = O0;
duke@435 925 Register Rsub = O1;
duke@435 926 Register Rsuper = O2;
duke@435 927 #else
duke@435 928 __ save_frame(0);
duke@435 929 Register Rret = I0;
duke@435 930 Register Rsub = I1;
duke@435 931 Register Rsuper = I2;
duke@435 932 #endif
duke@435 933
duke@435 934 Register L0_ary_len = L0;
duke@435 935 Register L1_ary_ptr = L1;
duke@435 936 Register L2_super = L2;
duke@435 937 Register L3_index = L3;
duke@435 938
coleenp@548 939 #ifdef _LP64
coleenp@548 940 Register L4_ooptmp = L4;
coleenp@548 941
coleenp@548 942 if (UseCompressedOops) {
coleenp@548 943 // this must be under UseCompressedOops check, as we rely upon fact
coleenp@548 944 // that L4 not clobbered in C2 on 32-bit platforms, where we do explicit save
coleenp@548 945 // on stack, see several lines above
coleenp@548 946 __ encode_heap_oop(Rsuper, L4_ooptmp);
coleenp@548 947 }
coleenp@548 948 #endif
coleenp@548 949
duke@435 950 inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
duke@435 951
duke@435 952 __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
duke@435 953 __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
duke@435 954 __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
duke@435 955 __ clr(L3_index); // zero index
duke@435 956 // Load a little early; will load 1 off the end of the array.
duke@435 957 // Ok for now; revisit if we have other uses of this routine.
coleenp@548 958 if (UseCompressedOops) {
coleenp@857 959 __ lduw(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 960 } else {
coleenp@548 961 __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 962 }
coleenp@548 963
coleenp@548 964 assert(heapOopSize != 0, "heapOopSize should be initialized");
duke@435 965 // The scan loop
duke@435 966 __ BIND(loop);
coleenp@548 967 __ add(L1_ary_ptr, heapOopSize, L1_ary_ptr); // Bump by OOP size
duke@435 968 __ cmp(L3_index,L0_ary_len);
duke@435 969 __ br(Assembler::equal,false,Assembler::pn,miss);
duke@435 970 __ delayed()->inc(L3_index); // Bump index
coleenp@548 971
coleenp@548 972 if (UseCompressedOops) {
coleenp@548 973 #ifdef _LP64
coleenp@548 974 __ subcc(L2_super,L4_ooptmp,Rret); // Check for match; zero in Rret for a hit
coleenp@548 975 __ br( Assembler::notEqual, false, Assembler::pt, loop );
coleenp@857 976 __ delayed()->lduw(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 977 #else
coleenp@548 978 ShouldNotReachHere();
coleenp@548 979 #endif
coleenp@548 980 } else {
coleenp@548 981 __ subcc(L2_super,Rsuper,Rret); // Check for match; zero in Rret for a hit
coleenp@548 982 __ brx( Assembler::notEqual, false, Assembler::pt, loop );
coleenp@548 983 __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 984 }
duke@435 985
duke@435 986 // Got a hit; report success; set cache. Cache load doesn't
duke@435 987 // happen here; for speed it is directly emitted by the compiler.
duke@435 988 __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
duke@435 989
duke@435 990 #if defined(COMPILER2) && !defined(_LP64)
duke@435 991 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 992 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 993 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 994 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 995 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 996 __ delayed()->add(SP,4*wordSize,SP);
duke@435 997 #else
duke@435 998 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 999 __ delayed()->restore();
duke@435 1000 #endif
duke@435 1001
duke@435 1002 // Hit or miss falls through here
duke@435 1003 __ BIND(miss);
duke@435 1004 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 1005
duke@435 1006 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1007 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 1008 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 1009 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 1010 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 1011 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 1012 __ delayed()->add(SP,4*wordSize,SP);
duke@435 1013 #else
duke@435 1014 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 1015 __ delayed()->restore();
duke@435 1016 #endif
duke@435 1017
duke@435 1018 return start;
duke@435 1019 }
duke@435 1020
duke@435 1021
duke@435 1022 // Called from MacroAssembler::verify_oop
duke@435 1023 //
duke@435 1024 address generate_verify_oop_subroutine() {
duke@435 1025 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 1026
duke@435 1027 address start = __ pc();
duke@435 1028
duke@435 1029 __ verify_oop_subroutine();
duke@435 1030
duke@435 1031 return start;
duke@435 1032 }
duke@435 1033
duke@435 1034 static address disjoint_byte_copy_entry;
duke@435 1035 static address disjoint_short_copy_entry;
duke@435 1036 static address disjoint_int_copy_entry;
duke@435 1037 static address disjoint_long_copy_entry;
duke@435 1038 static address disjoint_oop_copy_entry;
duke@435 1039
duke@435 1040 static address byte_copy_entry;
duke@435 1041 static address short_copy_entry;
duke@435 1042 static address int_copy_entry;
duke@435 1043 static address long_copy_entry;
duke@435 1044 static address oop_copy_entry;
duke@435 1045
duke@435 1046 static address checkcast_copy_entry;
duke@435 1047
duke@435 1048 //
duke@435 1049 // Verify that a register contains clean 32-bits positive value
duke@435 1050 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 1051 //
duke@435 1052 // Input:
duke@435 1053 // Rint - 32-bits value
duke@435 1054 // Rtmp - scratch
duke@435 1055 //
duke@435 1056 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1057 #if defined(ASSERT) && defined(_LP64)
duke@435 1058 __ signx(Rint, Rtmp);
duke@435 1059 __ cmp(Rint, Rtmp);
duke@435 1060 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 1061 #endif
duke@435 1062 }
duke@435 1063
duke@435 1064 //
duke@435 1065 // Generate overlap test for array copy stubs
duke@435 1066 //
duke@435 1067 // Input:
duke@435 1068 // O0 - array1
duke@435 1069 // O1 - array2
duke@435 1070 // O2 - element count
duke@435 1071 //
duke@435 1072 // Kills temps: O3, O4
duke@435 1073 //
duke@435 1074 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 1075 assert(no_overlap_target != NULL, "must be generated");
duke@435 1076 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 1077 }
duke@435 1078 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 1079 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1080 }
duke@435 1081 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1082 const Register from = O0;
duke@435 1083 const Register to = O1;
duke@435 1084 const Register count = O2;
duke@435 1085 const Register to_from = O3; // to - from
duke@435 1086 const Register byte_count = O4; // count << log2_elem_size
duke@435 1087
duke@435 1088 __ subcc(to, from, to_from);
duke@435 1089 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1090 if (NOLp == NULL)
duke@435 1091 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1092 else
duke@435 1093 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1094 __ delayed()->cmp(to_from, byte_count);
duke@435 1095 if (NOLp == NULL)
duke@435 1096 __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
duke@435 1097 else
duke@435 1098 __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
duke@435 1099 __ delayed()->nop();
duke@435 1100 }
duke@435 1101
duke@435 1102 //
duke@435 1103 // Generate pre-write barrier for array.
duke@435 1104 //
duke@435 1105 // Input:
duke@435 1106 // addr - register containing starting address
duke@435 1107 // count - register containing element count
duke@435 1108 // tmp - scratch register
duke@435 1109 //
duke@435 1110 // The input registers are overwritten.
duke@435 1111 //
duke@435 1112 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1113 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1114 if (bs->has_write_ref_pre_barrier()) {
duke@435 1115 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1116 "Else unsupported barrier set.");
duke@435 1117
duke@435 1118 __ save_frame(0);
duke@435 1119 // Save the necessary global regs... will be used after.
ysr@777 1120 if (addr->is_global()) {
ysr@777 1121 __ mov(addr, L0);
ysr@777 1122 }
ysr@777 1123 if (count->is_global()) {
ysr@777 1124 __ mov(count, L1);
ysr@777 1125 }
ysr@777 1126 __ mov(addr->after_save(), O0);
duke@435 1127 // Get the count into O1
duke@435 1128 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
ysr@777 1129 __ delayed()->mov(count->after_save(), O1);
ysr@777 1130 if (addr->is_global()) {
ysr@777 1131 __ mov(L0, addr);
ysr@777 1132 }
ysr@777 1133 if (count->is_global()) {
ysr@777 1134 __ mov(L1, count);
ysr@777 1135 }
duke@435 1136 __ restore();
duke@435 1137 }
duke@435 1138 }
duke@435 1139 //
duke@435 1140 // Generate post-write barrier for array.
duke@435 1141 //
duke@435 1142 // Input:
duke@435 1143 // addr - register containing starting address
duke@435 1144 // count - register containing element count
duke@435 1145 // tmp - scratch register
duke@435 1146 //
duke@435 1147 // The input registers are overwritten.
duke@435 1148 //
duke@435 1149 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1150 Register tmp) {
duke@435 1151 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1152
duke@435 1153 switch (bs->kind()) {
duke@435 1154 case BarrierSet::G1SATBCT:
duke@435 1155 case BarrierSet::G1SATBCTLogging:
duke@435 1156 {
duke@435 1157 // Get some new fresh output registers.
duke@435 1158 __ save_frame(0);
ysr@777 1159 __ mov(addr->after_save(), O0);
duke@435 1160 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1161 __ delayed()->mov(count->after_save(), O1);
duke@435 1162 __ restore();
duke@435 1163 }
duke@435 1164 break;
duke@435 1165 case BarrierSet::CardTableModRef:
duke@435 1166 case BarrierSet::CardTableExtension:
duke@435 1167 {
duke@435 1168 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1169 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1170 assert_different_registers(addr, count, tmp);
duke@435 1171
duke@435 1172 Label L_loop;
duke@435 1173
coleenp@548 1174 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1175 __ sub(count, BytesPerHeapOop, count);
duke@435 1176 __ add(count, addr, count);
duke@435 1177 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1178 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1179 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1180 __ sub(count, addr, count);
duke@435 1181 Address rs(tmp, (address)ct->byte_map_base);
duke@435 1182 __ load_address(rs);
duke@435 1183 __ BIND(L_loop);
duke@435 1184 __ stb(G0, rs.base(), addr);
duke@435 1185 __ subcc(count, 1, count);
duke@435 1186 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1187 __ delayed()->add(addr, 1, addr);
duke@435 1188
duke@435 1189 }
duke@435 1190 break;
duke@435 1191 case BarrierSet::ModRef:
duke@435 1192 break;
duke@435 1193 default :
duke@435 1194 ShouldNotReachHere();
duke@435 1195
duke@435 1196 }
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200 // Copy big chunks forward with shift
duke@435 1201 //
duke@435 1202 // Inputs:
duke@435 1203 // from - source arrays
duke@435 1204 // to - destination array aligned to 8-bytes
duke@435 1205 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1206 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1207 // L_copy_bytes - copy exit label
duke@435 1208 //
duke@435 1209 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1210 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1211 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1212
duke@435 1213 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1214 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1215 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1216 __ delayed()->nop();
duke@435 1217
duke@435 1218 const Register left_shift = G1; // left shift bit counter
duke@435 1219 const Register right_shift = G5; // right shift bit counter
duke@435 1220
duke@435 1221 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1222 __ mov(64, right_shift);
duke@435 1223 __ sub(right_shift, left_shift, right_shift);
duke@435 1224
duke@435 1225 //
duke@435 1226 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1227 // to form 2 aligned 8-bytes chunks to store.
duke@435 1228 //
duke@435 1229 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1230 __ andn(from, 7, from); // Align address
duke@435 1231 __ ldx(from, 0, O3);
duke@435 1232 __ inc(from, 8);
duke@435 1233 __ align(16);
duke@435 1234 __ BIND(L_loop);
duke@435 1235 __ ldx(from, 0, O4);
duke@435 1236 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1237 __ ldx(from, 8, G4);
duke@435 1238 __ inc(to, 16);
duke@435 1239 __ inc(from, 16);
duke@435 1240 __ sllx(O3, left_shift, O3);
duke@435 1241 __ srlx(O4, right_shift, G3);
duke@435 1242 __ bset(G3, O3);
duke@435 1243 __ stx(O3, to, -16);
duke@435 1244 __ sllx(O4, left_shift, O4);
duke@435 1245 __ srlx(G4, right_shift, G3);
duke@435 1246 __ bset(G3, O4);
duke@435 1247 __ stx(O4, to, -8);
duke@435 1248 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1249 __ delayed()->mov(G4, O3);
duke@435 1250
duke@435 1251 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1252 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1253 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1254
duke@435 1255 // copy 8 bytes, part of them already loaded in O3
duke@435 1256 __ ldx(from, 0, O4);
duke@435 1257 __ inc(to, 8);
duke@435 1258 __ inc(from, 8);
duke@435 1259 __ sllx(O3, left_shift, O3);
duke@435 1260 __ srlx(O4, right_shift, G3);
duke@435 1261 __ bset(O3, G3);
duke@435 1262 __ stx(G3, to, -8);
duke@435 1263
duke@435 1264 __ BIND(L_copy_last_bytes);
duke@435 1265 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1266 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1267 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1268
duke@435 1269 __ BIND(L_aligned_copy);
duke@435 1270 }
duke@435 1271
duke@435 1272 // Copy big chunks backward with shift
duke@435 1273 //
duke@435 1274 // Inputs:
duke@435 1275 // end_from - source arrays end address
duke@435 1276 // end_to - destination array end address aligned to 8-bytes
duke@435 1277 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1278 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1279 // L_aligned_copy - aligned copy exit label
duke@435 1280 // L_copy_bytes - copy exit label
duke@435 1281 //
duke@435 1282 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1283 Register count, int count_dec,
duke@435 1284 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1285 Label L_loop, L_copy_last_bytes;
duke@435 1286
duke@435 1287 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1288 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1289 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1290 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1291
duke@435 1292 const Register left_shift = G1; // left shift bit counter
duke@435 1293 const Register right_shift = G5; // right shift bit counter
duke@435 1294
duke@435 1295 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1296 __ mov(64, right_shift);
duke@435 1297 __ sub(right_shift, left_shift, right_shift);
duke@435 1298
duke@435 1299 //
duke@435 1300 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1301 // to form 2 aligned 8-bytes chunks to store.
duke@435 1302 //
duke@435 1303 __ andn(end_from, 7, end_from); // Align address
duke@435 1304 __ ldx(end_from, 0, O3);
duke@435 1305 __ align(16);
duke@435 1306 __ BIND(L_loop);
duke@435 1307 __ ldx(end_from, -8, O4);
duke@435 1308 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1309 __ ldx(end_from, -16, G4);
duke@435 1310 __ dec(end_to, 16);
duke@435 1311 __ dec(end_from, 16);
duke@435 1312 __ srlx(O3, right_shift, O3);
duke@435 1313 __ sllx(O4, left_shift, G3);
duke@435 1314 __ bset(G3, O3);
duke@435 1315 __ stx(O3, end_to, 8);
duke@435 1316 __ srlx(O4, right_shift, O4);
duke@435 1317 __ sllx(G4, left_shift, G3);
duke@435 1318 __ bset(G3, O4);
duke@435 1319 __ stx(O4, end_to, 0);
duke@435 1320 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1321 __ delayed()->mov(G4, O3);
duke@435 1322
duke@435 1323 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1324 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1325 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1326
duke@435 1327 // copy 8 bytes, part of them already loaded in O3
duke@435 1328 __ ldx(end_from, -8, O4);
duke@435 1329 __ dec(end_to, 8);
duke@435 1330 __ dec(end_from, 8);
duke@435 1331 __ srlx(O3, right_shift, O3);
duke@435 1332 __ sllx(O4, left_shift, G3);
duke@435 1333 __ bset(O3, G3);
duke@435 1334 __ stx(G3, end_to, 0);
duke@435 1335
duke@435 1336 __ BIND(L_copy_last_bytes);
duke@435 1337 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1338 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1339 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1340 }
duke@435 1341
duke@435 1342 //
duke@435 1343 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1344 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1345 //
duke@435 1346 // Arguments for generated stub:
duke@435 1347 // from: O0
duke@435 1348 // to: O1
duke@435 1349 // count: O2 treated as signed
duke@435 1350 //
duke@435 1351 address generate_disjoint_byte_copy(bool aligned, const char * name) {
duke@435 1352 __ align(CodeEntryAlignment);
duke@435 1353 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1354 address start = __ pc();
duke@435 1355
duke@435 1356 Label L_skip_alignment, L_align;
duke@435 1357 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1358
duke@435 1359 const Register from = O0; // source array address
duke@435 1360 const Register to = O1; // destination array address
duke@435 1361 const Register count = O2; // elements count
duke@435 1362 const Register offset = O5; // offset from start of arrays
duke@435 1363 // O3, O4, G3, G4 are used as temp registers
duke@435 1364
duke@435 1365 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1366
duke@435 1367 if (!aligned) disjoint_byte_copy_entry = __ pc();
duke@435 1368 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1369 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1370
duke@435 1371 // for short arrays, just do single element copy
duke@435 1372 __ cmp(count, 23); // 16 + 7
duke@435 1373 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1374 __ delayed()->mov(G0, offset);
duke@435 1375
duke@435 1376 if (aligned) {
duke@435 1377 // 'aligned' == true when it is known statically during compilation
duke@435 1378 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1379 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1380 //
duke@435 1381 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1382 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1383 //
duke@435 1384 #ifndef _LP64
duke@435 1385 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1386 __ andcc(to, 7, G0);
duke@435 1387 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1388 __ delayed()->ld(from, 0, O3);
duke@435 1389 __ inc(from, 4);
duke@435 1390 __ inc(to, 4);
duke@435 1391 __ dec(count, 4);
duke@435 1392 __ st(O3, to, -4);
duke@435 1393 __ BIND(L_skip_alignment);
duke@435 1394 #endif
duke@435 1395 } else {
duke@435 1396 // copy bytes to align 'to' on 8 byte boundary
duke@435 1397 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1398 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1399 __ delayed()->neg(G1);
duke@435 1400 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1401 __ sub(count, G1, count);
duke@435 1402 __ BIND(L_align);
duke@435 1403 __ ldub(from, 0, O3);
duke@435 1404 __ deccc(G1);
duke@435 1405 __ inc(from);
duke@435 1406 __ stb(O3, to, 0);
duke@435 1407 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1408 __ delayed()->inc(to);
duke@435 1409 __ BIND(L_skip_alignment);
duke@435 1410 }
duke@435 1411 #ifdef _LP64
duke@435 1412 if (!aligned)
duke@435 1413 #endif
duke@435 1414 {
duke@435 1415 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1416 // the same alignment mod 8, otherwise fall through to the next
duke@435 1417 // code for aligned copy.
duke@435 1418 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1419 // Also jump over aligned copy after the copy with shift completed.
duke@435 1420
duke@435 1421 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1422 }
duke@435 1423
duke@435 1424 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1425 __ and3(count, 7, G4); // Save count
duke@435 1426 __ srl(count, 3, count);
duke@435 1427 generate_disjoint_long_copy_core(aligned);
duke@435 1428 __ mov(G4, count); // Restore count
duke@435 1429
duke@435 1430 // copy tailing bytes
duke@435 1431 __ BIND(L_copy_byte);
duke@435 1432 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1433 __ delayed()->nop();
duke@435 1434 __ align(16);
duke@435 1435 __ BIND(L_copy_byte_loop);
duke@435 1436 __ ldub(from, offset, O3);
duke@435 1437 __ deccc(count);
duke@435 1438 __ stb(O3, to, offset);
duke@435 1439 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1440 __ delayed()->inc(offset);
duke@435 1441
duke@435 1442 __ BIND(L_exit);
duke@435 1443 // O3, O4 are used as temp registers
duke@435 1444 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1445 __ retl();
duke@435 1446 __ delayed()->mov(G0, O0); // return 0
duke@435 1447 return start;
duke@435 1448 }
duke@435 1449
duke@435 1450 //
duke@435 1451 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1452 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1453 //
duke@435 1454 // Arguments for generated stub:
duke@435 1455 // from: O0
duke@435 1456 // to: O1
duke@435 1457 // count: O2 treated as signed
duke@435 1458 //
duke@435 1459 address generate_conjoint_byte_copy(bool aligned, const char * name) {
duke@435 1460 // Do reverse copy.
duke@435 1461
duke@435 1462 __ align(CodeEntryAlignment);
duke@435 1463 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1464 address start = __ pc();
duke@435 1465 address nooverlap_target = aligned ?
duke@435 1466 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
duke@435 1467 disjoint_byte_copy_entry;
duke@435 1468
duke@435 1469 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1470 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1471
duke@435 1472 const Register from = O0; // source array address
duke@435 1473 const Register to = O1; // destination array address
duke@435 1474 const Register count = O2; // elements count
duke@435 1475 const Register end_from = from; // source array end address
duke@435 1476 const Register end_to = to; // destination array end address
duke@435 1477
duke@435 1478 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1479
duke@435 1480 if (!aligned) byte_copy_entry = __ pc();
duke@435 1481 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1482 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1483
duke@435 1484 array_overlap_test(nooverlap_target, 0);
duke@435 1485
duke@435 1486 __ add(to, count, end_to); // offset after last copied element
duke@435 1487
duke@435 1488 // for short arrays, just do single element copy
duke@435 1489 __ cmp(count, 23); // 16 + 7
duke@435 1490 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1491 __ delayed()->add(from, count, end_from);
duke@435 1492
duke@435 1493 {
duke@435 1494 // Align end of arrays since they could be not aligned even
duke@435 1495 // when arrays itself are aligned.
duke@435 1496
duke@435 1497 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1498 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1499 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1500 __ delayed()->nop();
duke@435 1501 __ sub(count, G1, count);
duke@435 1502 __ BIND(L_align);
duke@435 1503 __ dec(end_from);
duke@435 1504 __ dec(end_to);
duke@435 1505 __ ldub(end_from, 0, O3);
duke@435 1506 __ deccc(G1);
duke@435 1507 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1508 __ delayed()->stb(O3, end_to, 0);
duke@435 1509 __ BIND(L_skip_alignment);
duke@435 1510 }
duke@435 1511 #ifdef _LP64
duke@435 1512 if (aligned) {
duke@435 1513 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1514 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1515 // in unaligned case.
duke@435 1516 __ dec(count, 16);
duke@435 1517 } else
duke@435 1518 #endif
duke@435 1519 {
duke@435 1520 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1521 // the same alignment mod 8, otherwise jump to the next
duke@435 1522 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1523 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1524 // Also jump over aligned copy after the copy with shift completed.
duke@435 1525
duke@435 1526 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1527 L_aligned_copy, L_copy_byte);
duke@435 1528 }
duke@435 1529 // copy 4 elements (16 bytes) at a time
duke@435 1530 __ align(16);
duke@435 1531 __ BIND(L_aligned_copy);
duke@435 1532 __ dec(end_from, 16);
duke@435 1533 __ ldx(end_from, 8, O3);
duke@435 1534 __ ldx(end_from, 0, O4);
duke@435 1535 __ dec(end_to, 16);
duke@435 1536 __ deccc(count, 16);
duke@435 1537 __ stx(O3, end_to, 8);
duke@435 1538 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1539 __ delayed()->stx(O4, end_to, 0);
duke@435 1540 __ inc(count, 16);
duke@435 1541
duke@435 1542 // copy 1 element (2 bytes) at a time
duke@435 1543 __ BIND(L_copy_byte);
duke@435 1544 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1545 __ delayed()->nop();
duke@435 1546 __ align(16);
duke@435 1547 __ BIND(L_copy_byte_loop);
duke@435 1548 __ dec(end_from);
duke@435 1549 __ dec(end_to);
duke@435 1550 __ ldub(end_from, 0, O4);
duke@435 1551 __ deccc(count);
duke@435 1552 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1553 __ delayed()->stb(O4, end_to, 0);
duke@435 1554
duke@435 1555 __ BIND(L_exit);
duke@435 1556 // O3, O4 are used as temp registers
duke@435 1557 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1558 __ retl();
duke@435 1559 __ delayed()->mov(G0, O0); // return 0
duke@435 1560 return start;
duke@435 1561 }
duke@435 1562
duke@435 1563 //
duke@435 1564 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1565 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1566 //
duke@435 1567 // Arguments for generated stub:
duke@435 1568 // from: O0
duke@435 1569 // to: O1
duke@435 1570 // count: O2 treated as signed
duke@435 1571 //
duke@435 1572 address generate_disjoint_short_copy(bool aligned, const char * name) {
duke@435 1573 __ align(CodeEntryAlignment);
duke@435 1574 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1575 address start = __ pc();
duke@435 1576
duke@435 1577 Label L_skip_alignment, L_skip_alignment2;
duke@435 1578 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1579
duke@435 1580 const Register from = O0; // source array address
duke@435 1581 const Register to = O1; // destination array address
duke@435 1582 const Register count = O2; // elements count
duke@435 1583 const Register offset = O5; // offset from start of arrays
duke@435 1584 // O3, O4, G3, G4 are used as temp registers
duke@435 1585
duke@435 1586 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1587
duke@435 1588 if (!aligned) disjoint_short_copy_entry = __ pc();
duke@435 1589 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1590 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1591
duke@435 1592 // for short arrays, just do single element copy
duke@435 1593 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1594 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1595 __ delayed()->mov(G0, offset);
duke@435 1596
duke@435 1597 if (aligned) {
duke@435 1598 // 'aligned' == true when it is known statically during compilation
duke@435 1599 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1600 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1601 //
duke@435 1602 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1603 // and 8 bytes - in 64-bits VM.
duke@435 1604 //
duke@435 1605 #ifndef _LP64
duke@435 1606 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1607 __ andcc(to, 7, G0);
duke@435 1608 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1609 __ delayed()->ld(from, 0, O3);
duke@435 1610 __ inc(from, 4);
duke@435 1611 __ inc(to, 4);
duke@435 1612 __ dec(count, 2);
duke@435 1613 __ st(O3, to, -4);
duke@435 1614 __ BIND(L_skip_alignment);
duke@435 1615 #endif
duke@435 1616 } else {
duke@435 1617 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1618 __ andcc(to, 3, G0);
duke@435 1619 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1620 __ delayed()->lduh(from, 0, O3);
duke@435 1621 __ inc(from, 2);
duke@435 1622 __ inc(to, 2);
duke@435 1623 __ dec(count);
duke@435 1624 __ sth(O3, to, -2);
duke@435 1625 __ BIND(L_skip_alignment);
duke@435 1626
duke@435 1627 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1628 __ andcc(to, 7, G0);
duke@435 1629 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1630 __ delayed()->lduh(from, 0, O3);
duke@435 1631 __ dec(count, 2);
duke@435 1632 __ lduh(from, 2, O4);
duke@435 1633 __ inc(from, 4);
duke@435 1634 __ inc(to, 4);
duke@435 1635 __ sth(O3, to, -4);
duke@435 1636 __ sth(O4, to, -2);
duke@435 1637 __ BIND(L_skip_alignment2);
duke@435 1638 }
duke@435 1639 #ifdef _LP64
duke@435 1640 if (!aligned)
duke@435 1641 #endif
duke@435 1642 {
duke@435 1643 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1644 // the same alignment mod 8, otherwise fall through to the next
duke@435 1645 // code for aligned copy.
duke@435 1646 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1647 // Also jump over aligned copy after the copy with shift completed.
duke@435 1648
duke@435 1649 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1650 }
duke@435 1651
duke@435 1652 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1653 __ and3(count, 3, G4); // Save
duke@435 1654 __ srl(count, 2, count);
duke@435 1655 generate_disjoint_long_copy_core(aligned);
duke@435 1656 __ mov(G4, count); // restore
duke@435 1657
duke@435 1658 // copy 1 element at a time
duke@435 1659 __ BIND(L_copy_2_bytes);
duke@435 1660 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1661 __ delayed()->nop();
duke@435 1662 __ align(16);
duke@435 1663 __ BIND(L_copy_2_bytes_loop);
duke@435 1664 __ lduh(from, offset, O3);
duke@435 1665 __ deccc(count);
duke@435 1666 __ sth(O3, to, offset);
duke@435 1667 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1668 __ delayed()->inc(offset, 2);
duke@435 1669
duke@435 1670 __ BIND(L_exit);
duke@435 1671 // O3, O4 are used as temp registers
duke@435 1672 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1673 __ retl();
duke@435 1674 __ delayed()->mov(G0, O0); // return 0
duke@435 1675 return start;
duke@435 1676 }
duke@435 1677
duke@435 1678 //
duke@435 1679 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1680 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1681 //
duke@435 1682 // Arguments for generated stub:
duke@435 1683 // from: O0
duke@435 1684 // to: O1
duke@435 1685 // count: O2 treated as signed
duke@435 1686 //
duke@435 1687 address generate_conjoint_short_copy(bool aligned, const char * name) {
duke@435 1688 // Do reverse copy.
duke@435 1689
duke@435 1690 __ align(CodeEntryAlignment);
duke@435 1691 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1692 address start = __ pc();
duke@435 1693 address nooverlap_target = aligned ?
duke@435 1694 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
duke@435 1695 disjoint_short_copy_entry;
duke@435 1696
duke@435 1697 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1698 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1699
duke@435 1700 const Register from = O0; // source array address
duke@435 1701 const Register to = O1; // destination array address
duke@435 1702 const Register count = O2; // elements count
duke@435 1703 const Register end_from = from; // source array end address
duke@435 1704 const Register end_to = to; // destination array end address
duke@435 1705
duke@435 1706 const Register byte_count = O3; // bytes count to copy
duke@435 1707
duke@435 1708 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1709
duke@435 1710 if (!aligned) short_copy_entry = __ pc();
duke@435 1711 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1712 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1713
duke@435 1714 array_overlap_test(nooverlap_target, 1);
duke@435 1715
duke@435 1716 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1717 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1718
duke@435 1719 // for short arrays, just do single element copy
duke@435 1720 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1721 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1722 __ delayed()->add(from, byte_count, end_from);
duke@435 1723
duke@435 1724 {
duke@435 1725 // Align end of arrays since they could be not aligned even
duke@435 1726 // when arrays itself are aligned.
duke@435 1727
duke@435 1728 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1729 __ andcc(end_to, 3, G0);
duke@435 1730 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1731 __ delayed()->lduh(end_from, -2, O3);
duke@435 1732 __ dec(end_from, 2);
duke@435 1733 __ dec(end_to, 2);
duke@435 1734 __ dec(count);
duke@435 1735 __ sth(O3, end_to, 0);
duke@435 1736 __ BIND(L_skip_alignment);
duke@435 1737
duke@435 1738 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1739 __ andcc(end_to, 7, G0);
duke@435 1740 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1741 __ delayed()->lduh(end_from, -2, O3);
duke@435 1742 __ dec(count, 2);
duke@435 1743 __ lduh(end_from, -4, O4);
duke@435 1744 __ dec(end_from, 4);
duke@435 1745 __ dec(end_to, 4);
duke@435 1746 __ sth(O3, end_to, 2);
duke@435 1747 __ sth(O4, end_to, 0);
duke@435 1748 __ BIND(L_skip_alignment2);
duke@435 1749 }
duke@435 1750 #ifdef _LP64
duke@435 1751 if (aligned) {
duke@435 1752 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1753 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1754 // in unaligned case.
duke@435 1755 __ dec(count, 8);
duke@435 1756 } else
duke@435 1757 #endif
duke@435 1758 {
duke@435 1759 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1760 // the same alignment mod 8, otherwise jump to the next
duke@435 1761 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1762 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1763 // Also jump over aligned copy after the copy with shift completed.
duke@435 1764
duke@435 1765 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1766 L_aligned_copy, L_copy_2_bytes);
duke@435 1767 }
duke@435 1768 // copy 4 elements (16 bytes) at a time
duke@435 1769 __ align(16);
duke@435 1770 __ BIND(L_aligned_copy);
duke@435 1771 __ dec(end_from, 16);
duke@435 1772 __ ldx(end_from, 8, O3);
duke@435 1773 __ ldx(end_from, 0, O4);
duke@435 1774 __ dec(end_to, 16);
duke@435 1775 __ deccc(count, 8);
duke@435 1776 __ stx(O3, end_to, 8);
duke@435 1777 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1778 __ delayed()->stx(O4, end_to, 0);
duke@435 1779 __ inc(count, 8);
duke@435 1780
duke@435 1781 // copy 1 element (2 bytes) at a time
duke@435 1782 __ BIND(L_copy_2_bytes);
duke@435 1783 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1784 __ delayed()->nop();
duke@435 1785 __ BIND(L_copy_2_bytes_loop);
duke@435 1786 __ dec(end_from, 2);
duke@435 1787 __ dec(end_to, 2);
duke@435 1788 __ lduh(end_from, 0, O4);
duke@435 1789 __ deccc(count);
duke@435 1790 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1791 __ delayed()->sth(O4, end_to, 0);
duke@435 1792
duke@435 1793 __ BIND(L_exit);
duke@435 1794 // O3, O4 are used as temp registers
duke@435 1795 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1796 __ retl();
duke@435 1797 __ delayed()->mov(G0, O0); // return 0
duke@435 1798 return start;
duke@435 1799 }
duke@435 1800
duke@435 1801 //
duke@435 1802 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1803 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1804 // to be heapword aligned.
duke@435 1805 //
duke@435 1806 // Arguments:
duke@435 1807 // from: O0
duke@435 1808 // to: O1
duke@435 1809 // count: O2 treated as signed
duke@435 1810 //
duke@435 1811 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1812
duke@435 1813 Label L_skip_alignment, L_aligned_copy;
duke@435 1814 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1815
duke@435 1816 const Register from = O0; // source array address
duke@435 1817 const Register to = O1; // destination array address
duke@435 1818 const Register count = O2; // elements count
duke@435 1819 const Register offset = O5; // offset from start of arrays
duke@435 1820 // O3, O4, G3, G4 are used as temp registers
duke@435 1821
duke@435 1822 // 'aligned' == true when it is known statically during compilation
duke@435 1823 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1824 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1825 //
duke@435 1826 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1827 // and 8 bytes - in 64-bits VM.
duke@435 1828 //
duke@435 1829 #ifdef _LP64
duke@435 1830 if (!aligned)
duke@435 1831 #endif
duke@435 1832 {
duke@435 1833 // The next check could be put under 'ifndef' since the code in
duke@435 1834 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1835
duke@435 1836 // for short arrays, just do single element copy
duke@435 1837 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1838 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1839 __ delayed()->mov(G0, offset);
duke@435 1840
duke@435 1841 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1842 __ andcc(to, 7, G0);
duke@435 1843 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1844 __ delayed()->ld(from, 0, O3);
duke@435 1845 __ inc(from, 4);
duke@435 1846 __ inc(to, 4);
duke@435 1847 __ dec(count);
duke@435 1848 __ st(O3, to, -4);
duke@435 1849 __ BIND(L_skip_alignment);
duke@435 1850
duke@435 1851 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 1852 __ andcc(from, 7, G0);
duke@435 1853 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1854 __ delayed()->ld(from, 0, O3);
duke@435 1855
duke@435 1856 //
duke@435 1857 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1858 // to form 2 aligned 8-bytes chunks to store.
duke@435 1859 //
duke@435 1860 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 1861 // code is more optimal.
duke@435 1862
duke@435 1863 // copy with shift 4 elements (16 bytes) at a time
duke@435 1864 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 1865
duke@435 1866 __ align(16);
duke@435 1867 __ BIND(L_copy_16_bytes);
duke@435 1868 __ ldx(from, 4, O4);
duke@435 1869 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 1870 __ ldx(from, 12, G4);
duke@435 1871 __ inc(to, 16);
duke@435 1872 __ inc(from, 16);
duke@435 1873 __ sllx(O3, 32, O3);
duke@435 1874 __ srlx(O4, 32, G3);
duke@435 1875 __ bset(G3, O3);
duke@435 1876 __ stx(O3, to, -16);
duke@435 1877 __ sllx(O4, 32, O4);
duke@435 1878 __ srlx(G4, 32, G3);
duke@435 1879 __ bset(G3, O4);
duke@435 1880 __ stx(O4, to, -8);
duke@435 1881 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1882 __ delayed()->mov(G4, O3);
duke@435 1883
duke@435 1884 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1885 __ delayed()->inc(count, 4); // restore 'count'
duke@435 1886
duke@435 1887 __ BIND(L_aligned_copy);
duke@435 1888 }
duke@435 1889 // copy 4 elements (16 bytes) at a time
duke@435 1890 __ and3(count, 1, G4); // Save
duke@435 1891 __ srl(count, 1, count);
duke@435 1892 generate_disjoint_long_copy_core(aligned);
duke@435 1893 __ mov(G4, count); // Restore
duke@435 1894
duke@435 1895 // copy 1 element at a time
duke@435 1896 __ BIND(L_copy_4_bytes);
duke@435 1897 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1898 __ delayed()->nop();
duke@435 1899 __ BIND(L_copy_4_bytes_loop);
duke@435 1900 __ ld(from, offset, O3);
duke@435 1901 __ deccc(count);
duke@435 1902 __ st(O3, to, offset);
duke@435 1903 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 1904 __ delayed()->inc(offset, 4);
duke@435 1905 __ BIND(L_exit);
duke@435 1906 }
duke@435 1907
duke@435 1908 //
duke@435 1909 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 1910 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1911 //
duke@435 1912 // Arguments for generated stub:
duke@435 1913 // from: O0
duke@435 1914 // to: O1
duke@435 1915 // count: O2 treated as signed
duke@435 1916 //
duke@435 1917 address generate_disjoint_int_copy(bool aligned, const char * name) {
duke@435 1918 __ align(CodeEntryAlignment);
duke@435 1919 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1920 address start = __ pc();
duke@435 1921
duke@435 1922 const Register count = O2;
duke@435 1923 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1924
duke@435 1925 if (!aligned) disjoint_int_copy_entry = __ pc();
duke@435 1926 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1927 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1928
duke@435 1929 generate_disjoint_int_copy_core(aligned);
duke@435 1930
duke@435 1931 // O3, O4 are used as temp registers
duke@435 1932 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 1933 __ retl();
duke@435 1934 __ delayed()->mov(G0, O0); // return 0
duke@435 1935 return start;
duke@435 1936 }
duke@435 1937
duke@435 1938 //
duke@435 1939 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 1940 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1941 // to be heapword aligned.
duke@435 1942 //
duke@435 1943 // Arguments:
duke@435 1944 // from: O0
duke@435 1945 // to: O1
duke@435 1946 // count: O2 treated as signed
duke@435 1947 //
duke@435 1948 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 1949 // Do reverse copy.
duke@435 1950
duke@435 1951 Label L_skip_alignment, L_aligned_copy;
duke@435 1952 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1953
duke@435 1954 const Register from = O0; // source array address
duke@435 1955 const Register to = O1; // destination array address
duke@435 1956 const Register count = O2; // elements count
duke@435 1957 const Register end_from = from; // source array end address
duke@435 1958 const Register end_to = to; // destination array end address
duke@435 1959 // O3, O4, O5, G3 are used as temp registers
duke@435 1960
duke@435 1961 const Register byte_count = O3; // bytes count to copy
duke@435 1962
duke@435 1963 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 1964 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1965
duke@435 1966 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 1967 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1968 __ delayed()->add(from, byte_count, end_from);
duke@435 1969
duke@435 1970 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1971 __ andcc(end_to, 7, G0);
duke@435 1972 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1973 __ delayed()->nop();
duke@435 1974 __ dec(count);
duke@435 1975 __ dec(end_from, 4);
duke@435 1976 __ dec(end_to, 4);
duke@435 1977 __ ld(end_from, 0, O4);
duke@435 1978 __ st(O4, end_to, 0);
duke@435 1979 __ BIND(L_skip_alignment);
duke@435 1980
duke@435 1981 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 1982 __ andcc(end_from, 7, G0);
duke@435 1983 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1984 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 1985
duke@435 1986 // copy with shift 4 elements (16 bytes) at a time
duke@435 1987 //
duke@435 1988 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1989 // to form 2 aligned 8-bytes chunks to store.
duke@435 1990 //
duke@435 1991 __ ldx(end_from, -4, O3);
duke@435 1992 __ align(16);
duke@435 1993 __ BIND(L_copy_16_bytes);
duke@435 1994 __ ldx(end_from, -12, O4);
duke@435 1995 __ deccc(count, 4);
duke@435 1996 __ ldx(end_from, -20, O5);
duke@435 1997 __ dec(end_to, 16);
duke@435 1998 __ dec(end_from, 16);
duke@435 1999 __ srlx(O3, 32, O3);
duke@435 2000 __ sllx(O4, 32, G3);
duke@435 2001 __ bset(G3, O3);
duke@435 2002 __ stx(O3, end_to, 8);
duke@435 2003 __ srlx(O4, 32, O4);
duke@435 2004 __ sllx(O5, 32, G3);
duke@435 2005 __ bset(O4, G3);
duke@435 2006 __ stx(G3, end_to, 0);
duke@435 2007 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2008 __ delayed()->mov(O5, O3);
duke@435 2009
duke@435 2010 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2011 __ delayed()->inc(count, 4);
duke@435 2012
duke@435 2013 // copy 4 elements (16 bytes) at a time
duke@435 2014 __ align(16);
duke@435 2015 __ BIND(L_aligned_copy);
duke@435 2016 __ dec(end_from, 16);
duke@435 2017 __ ldx(end_from, 8, O3);
duke@435 2018 __ ldx(end_from, 0, O4);
duke@435 2019 __ dec(end_to, 16);
duke@435 2020 __ deccc(count, 4);
duke@435 2021 __ stx(O3, end_to, 8);
duke@435 2022 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2023 __ delayed()->stx(O4, end_to, 0);
duke@435 2024 __ inc(count, 4);
duke@435 2025
duke@435 2026 // copy 1 element (4 bytes) at a time
duke@435 2027 __ BIND(L_copy_4_bytes);
duke@435 2028 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2029 __ delayed()->nop();
duke@435 2030 __ BIND(L_copy_4_bytes_loop);
duke@435 2031 __ dec(end_from, 4);
duke@435 2032 __ dec(end_to, 4);
duke@435 2033 __ ld(end_from, 0, O4);
duke@435 2034 __ deccc(count);
duke@435 2035 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2036 __ delayed()->st(O4, end_to, 0);
duke@435 2037 __ BIND(L_exit);
duke@435 2038 }
duke@435 2039
duke@435 2040 //
duke@435 2041 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2042 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2043 //
duke@435 2044 // Arguments for generated stub:
duke@435 2045 // from: O0
duke@435 2046 // to: O1
duke@435 2047 // count: O2 treated as signed
duke@435 2048 //
duke@435 2049 address generate_conjoint_int_copy(bool aligned, const char * name) {
duke@435 2050 __ align(CodeEntryAlignment);
duke@435 2051 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2052 address start = __ pc();
duke@435 2053
duke@435 2054 address nooverlap_target = aligned ?
duke@435 2055 StubRoutines::arrayof_jint_disjoint_arraycopy() :
duke@435 2056 disjoint_int_copy_entry;
duke@435 2057
duke@435 2058 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2059
duke@435 2060 if (!aligned) int_copy_entry = __ pc();
duke@435 2061 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2062 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2063
duke@435 2064 array_overlap_test(nooverlap_target, 2);
duke@435 2065
duke@435 2066 generate_conjoint_int_copy_core(aligned);
duke@435 2067
duke@435 2068 // O3, O4 are used as temp registers
duke@435 2069 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2070 __ retl();
duke@435 2071 __ delayed()->mov(G0, O0); // return 0
duke@435 2072 return start;
duke@435 2073 }
duke@435 2074
duke@435 2075 //
duke@435 2076 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2077 // "aligned" is ignored, because we must make the stronger
duke@435 2078 // assumption that both addresses are always 64-bit aligned.
duke@435 2079 //
duke@435 2080 // Arguments:
duke@435 2081 // from: O0
duke@435 2082 // to: O1
duke@435 2083 // count: O2 treated as signed
duke@435 2084 //
duke@435 2085 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2086 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2087 const Register from = O0; // source array address
duke@435 2088 const Register to = O1; // destination array address
duke@435 2089 const Register count = O2; // elements count
duke@435 2090 const Register offset0 = O4; // element offset
duke@435 2091 const Register offset8 = O5; // next element offset
duke@435 2092
duke@435 2093 __ deccc(count, 2);
duke@435 2094 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2095 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2096 __ delayed()->add(offset0, 8, offset8);
duke@435 2097 __ align(16);
duke@435 2098 __ BIND(L_copy_16_bytes);
duke@435 2099 __ ldx(from, offset0, O3);
duke@435 2100 __ ldx(from, offset8, G3);
duke@435 2101 __ deccc(count, 2);
duke@435 2102 __ stx(O3, to, offset0);
duke@435 2103 __ inc(offset0, 16);
duke@435 2104 __ stx(G3, to, offset8);
duke@435 2105 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2106 __ delayed()->inc(offset8, 16);
duke@435 2107
duke@435 2108 __ BIND(L_copy_8_bytes);
duke@435 2109 __ inccc(count, 2);
duke@435 2110 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2111 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2112 __ ldx(from, offset0, O3);
duke@435 2113 __ stx(O3, to, offset0);
duke@435 2114 __ BIND(L_exit);
duke@435 2115 }
duke@435 2116
duke@435 2117 //
duke@435 2118 // Generate stub for disjoint long copy.
duke@435 2119 // "aligned" is ignored, because we must make the stronger
duke@435 2120 // assumption that both addresses are always 64-bit aligned.
duke@435 2121 //
duke@435 2122 // Arguments for generated stub:
duke@435 2123 // from: O0
duke@435 2124 // to: O1
duke@435 2125 // count: O2 treated as signed
duke@435 2126 //
duke@435 2127 address generate_disjoint_long_copy(bool aligned, const char * name) {
duke@435 2128 __ align(CodeEntryAlignment);
duke@435 2129 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2130 address start = __ pc();
duke@435 2131
duke@435 2132 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2133
duke@435 2134 if (!aligned) disjoint_long_copy_entry = __ pc();
duke@435 2135 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2136 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2137
duke@435 2138 generate_disjoint_long_copy_core(aligned);
duke@435 2139
duke@435 2140 // O3, O4 are used as temp registers
duke@435 2141 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2142 __ retl();
duke@435 2143 __ delayed()->mov(G0, O0); // return 0
duke@435 2144 return start;
duke@435 2145 }
duke@435 2146
duke@435 2147 //
duke@435 2148 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2149 // "aligned" is ignored, because we must make the stronger
duke@435 2150 // assumption that both addresses are always 64-bit aligned.
duke@435 2151 //
duke@435 2152 // Arguments:
duke@435 2153 // from: O0
duke@435 2154 // to: O1
duke@435 2155 // count: O2 treated as signed
duke@435 2156 //
duke@435 2157 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2158 // Do reverse copy.
duke@435 2159 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2160 const Register from = O0; // source array address
duke@435 2161 const Register to = O1; // destination array address
duke@435 2162 const Register count = O2; // elements count
duke@435 2163 const Register offset8 = O4; // element offset
duke@435 2164 const Register offset0 = O5; // previous element offset
duke@435 2165
duke@435 2166 __ subcc(count, 1, count);
duke@435 2167 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2168 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2169 __ sub(offset8, 8, offset0);
duke@435 2170 __ align(16);
duke@435 2171 __ BIND(L_copy_16_bytes);
duke@435 2172 __ ldx(from, offset8, O2);
duke@435 2173 __ ldx(from, offset0, O3);
duke@435 2174 __ stx(O2, to, offset8);
duke@435 2175 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2176 __ stx(O3, to, offset0);
duke@435 2177 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2178 __ delayed()->dec(offset0, 16);
duke@435 2179
duke@435 2180 __ BIND(L_copy_8_bytes);
duke@435 2181 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2182 __ delayed()->nop();
duke@435 2183 __ ldx(from, 0, O3);
duke@435 2184 __ stx(O3, to, 0);
duke@435 2185 __ BIND(L_exit);
duke@435 2186 }
duke@435 2187
duke@435 2188 // Generate stub for conjoint long copy.
duke@435 2189 // "aligned" is ignored, because we must make the stronger
duke@435 2190 // assumption that both addresses are always 64-bit aligned.
duke@435 2191 //
duke@435 2192 // Arguments for generated stub:
duke@435 2193 // from: O0
duke@435 2194 // to: O1
duke@435 2195 // count: O2 treated as signed
duke@435 2196 //
duke@435 2197 address generate_conjoint_long_copy(bool aligned, const char * name) {
duke@435 2198 __ align(CodeEntryAlignment);
duke@435 2199 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2200 address start = __ pc();
duke@435 2201
duke@435 2202 assert(!aligned, "usage");
duke@435 2203 address nooverlap_target = disjoint_long_copy_entry;
duke@435 2204
duke@435 2205 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2206
duke@435 2207 if (!aligned) long_copy_entry = __ pc();
duke@435 2208 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2209 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2210
duke@435 2211 array_overlap_test(nooverlap_target, 3);
duke@435 2212
duke@435 2213 generate_conjoint_long_copy_core(aligned);
duke@435 2214
duke@435 2215 // O3, O4 are used as temp registers
duke@435 2216 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2217 __ retl();
duke@435 2218 __ delayed()->mov(G0, O0); // return 0
duke@435 2219 return start;
duke@435 2220 }
duke@435 2221
duke@435 2222 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2223 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2224 //
duke@435 2225 // Arguments for generated stub:
duke@435 2226 // from: O0
duke@435 2227 // to: O1
duke@435 2228 // count: O2 treated as signed
duke@435 2229 //
duke@435 2230 address generate_disjoint_oop_copy(bool aligned, const char * name) {
duke@435 2231
duke@435 2232 const Register from = O0; // source array address
duke@435 2233 const Register to = O1; // destination array address
duke@435 2234 const Register count = O2; // elements count
duke@435 2235
duke@435 2236 __ align(CodeEntryAlignment);
duke@435 2237 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2238 address start = __ pc();
duke@435 2239
duke@435 2240 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2241
duke@435 2242 if (!aligned) disjoint_oop_copy_entry = __ pc();
duke@435 2243 // caller can pass a 64-bit byte count here
duke@435 2244 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2245
duke@435 2246 // save arguments for barrier generation
duke@435 2247 __ mov(to, G1);
duke@435 2248 __ mov(count, G5);
duke@435 2249 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2250 #ifdef _LP64
coleenp@548 2251 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2252 if (UseCompressedOops) {
coleenp@548 2253 generate_disjoint_int_copy_core(aligned);
coleenp@548 2254 } else {
coleenp@548 2255 generate_disjoint_long_copy_core(aligned);
coleenp@548 2256 }
duke@435 2257 #else
duke@435 2258 generate_disjoint_int_copy_core(aligned);
duke@435 2259 #endif
duke@435 2260 // O0 is used as temp register
duke@435 2261 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2262
duke@435 2263 // O3, O4 are used as temp registers
duke@435 2264 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2265 __ retl();
duke@435 2266 __ delayed()->mov(G0, O0); // return 0
duke@435 2267 return start;
duke@435 2268 }
duke@435 2269
duke@435 2270 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2271 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2272 //
duke@435 2273 // Arguments for generated stub:
duke@435 2274 // from: O0
duke@435 2275 // to: O1
duke@435 2276 // count: O2 treated as signed
duke@435 2277 //
duke@435 2278 address generate_conjoint_oop_copy(bool aligned, const char * name) {
duke@435 2279
duke@435 2280 const Register from = O0; // source array address
duke@435 2281 const Register to = O1; // destination array address
duke@435 2282 const Register count = O2; // elements count
duke@435 2283
duke@435 2284 __ align(CodeEntryAlignment);
duke@435 2285 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2286 address start = __ pc();
duke@435 2287
duke@435 2288 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2289
duke@435 2290 if (!aligned) oop_copy_entry = __ pc();
duke@435 2291 // caller can pass a 64-bit byte count here
duke@435 2292 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2293
duke@435 2294 // save arguments for barrier generation
duke@435 2295 __ mov(to, G1);
duke@435 2296 __ mov(count, G5);
duke@435 2297
duke@435 2298 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2299
duke@435 2300 address nooverlap_target = aligned ?
duke@435 2301 StubRoutines::arrayof_oop_disjoint_arraycopy() :
duke@435 2302 disjoint_oop_copy_entry;
duke@435 2303
coleenp@548 2304 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2305
duke@435 2306 #ifdef _LP64
coleenp@548 2307 if (UseCompressedOops) {
coleenp@548 2308 generate_conjoint_int_copy_core(aligned);
coleenp@548 2309 } else {
coleenp@548 2310 generate_conjoint_long_copy_core(aligned);
coleenp@548 2311 }
duke@435 2312 #else
duke@435 2313 generate_conjoint_int_copy_core(aligned);
duke@435 2314 #endif
duke@435 2315
duke@435 2316 // O0 is used as temp register
duke@435 2317 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2318
duke@435 2319 // O3, O4 are used as temp registers
duke@435 2320 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2321 __ retl();
duke@435 2322 __ delayed()->mov(G0, O0); // return 0
duke@435 2323 return start;
duke@435 2324 }
duke@435 2325
duke@435 2326
duke@435 2327 // Helper for generating a dynamic type check.
duke@435 2328 // Smashes only the given temp registers.
duke@435 2329 void generate_type_check(Register sub_klass,
duke@435 2330 Register super_check_offset,
duke@435 2331 Register super_klass,
duke@435 2332 Register temp,
duke@435 2333 Label& L_success,
duke@435 2334 Register deccc_hack = noreg) {
duke@435 2335 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2336
duke@435 2337 BLOCK_COMMENT("type_check:");
duke@435 2338
duke@435 2339 Label L_miss;
duke@435 2340
duke@435 2341 assert_clean_int(super_check_offset, temp);
duke@435 2342
duke@435 2343 // maybe decrement caller's trip count:
duke@435 2344 #define DELAY_SLOT delayed(); \
duke@435 2345 { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
duke@435 2346
duke@435 2347 // if the pointers are equal, we are done (e.g., String[] elements)
duke@435 2348 __ cmp(sub_klass, super_klass);
duke@435 2349 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2350 __ DELAY_SLOT;
duke@435 2351
duke@435 2352 // check the supertype display:
duke@435 2353 __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
duke@435 2354 __ cmp(super_klass, temp); // test the super type
duke@435 2355 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2356 __ DELAY_SLOT;
duke@435 2357
duke@435 2358 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2359 Klass::secondary_super_cache_offset_in_bytes());
duke@435 2360 __ cmp(super_klass, sc_offset);
duke@435 2361 __ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
duke@435 2362 __ delayed()->nop();
duke@435 2363
duke@435 2364 __ save_frame(0);
duke@435 2365 __ mov(sub_klass->after_save(), O1);
duke@435 2366 // mov(super_klass->after_save(), O2); //fill delay slot
duke@435 2367 assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
duke@435 2368 __ call(StubRoutines::Sparc::_partial_subtype_check);
duke@435 2369 __ delayed()->mov(super_klass->after_save(), O2);
duke@435 2370 __ restore();
duke@435 2371
duke@435 2372 // Upon return, the condition codes are already set.
duke@435 2373 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2374 __ DELAY_SLOT;
duke@435 2375
duke@435 2376 #undef DELAY_SLOT
duke@435 2377
duke@435 2378 // Fall through on failure!
duke@435 2379 __ BIND(L_miss);
duke@435 2380 }
duke@435 2381
duke@435 2382
duke@435 2383 // Generate stub for checked oop copy.
duke@435 2384 //
duke@435 2385 // Arguments for generated stub:
duke@435 2386 // from: O0
duke@435 2387 // to: O1
duke@435 2388 // count: O2 treated as signed
duke@435 2389 // ckoff: O3 (super_check_offset)
duke@435 2390 // ckval: O4 (super_klass)
duke@435 2391 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2392 //
duke@435 2393 address generate_checkcast_copy(const char* name) {
duke@435 2394
duke@435 2395 const Register O0_from = O0; // source array address
duke@435 2396 const Register O1_to = O1; // destination array address
duke@435 2397 const Register O2_count = O2; // elements count
duke@435 2398 const Register O3_ckoff = O3; // super_check_offset
duke@435 2399 const Register O4_ckval = O4; // super_klass
duke@435 2400
duke@435 2401 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2402 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2403 const Register G3_oop = G3; // actual oop copied
duke@435 2404 const Register G4_klass = G4; // oop._klass
duke@435 2405 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2406
duke@435 2407 __ align(CodeEntryAlignment);
duke@435 2408 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2409 address start = __ pc();
duke@435 2410
ysr@777 2411 gen_write_ref_array_pre_barrier(O1, O2);
duke@435 2412
duke@435 2413 #ifdef ASSERT
duke@435 2414 // We sometimes save a frame (see partial_subtype_check below).
duke@435 2415 // If this will cause trouble, let's fail now instead of later.
duke@435 2416 __ save_frame(0);
duke@435 2417 __ restore();
duke@435 2418 #endif
duke@435 2419
duke@435 2420 #ifdef ASSERT
duke@435 2421 // caller guarantees that the arrays really are different
duke@435 2422 // otherwise, we would have to make conjoint checks
duke@435 2423 { Label L;
duke@435 2424 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2425 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2426 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2427 __ stop("checkcast_copy within a single array");
duke@435 2428 __ bind(L);
duke@435 2429 __ mov(G1, O3);
duke@435 2430 __ mov(G4, O4);
duke@435 2431 }
duke@435 2432 #endif //ASSERT
duke@435 2433
duke@435 2434 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
duke@435 2435
duke@435 2436 checkcast_copy_entry = __ pc();
duke@435 2437 // caller can pass a 64-bit byte count here (from generic stub)
duke@435 2438 BLOCK_COMMENT("Entry:");
duke@435 2439
duke@435 2440 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2441 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2442 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2443 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2444
duke@435 2445 // Empty array: Nothing to do.
duke@435 2446 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2447 __ retl();
duke@435 2448 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2449
duke@435 2450 // ======== begin loop ========
duke@435 2451 // (Loop is rotated; its entry is load_element.)
duke@435 2452 // Loop variables:
duke@435 2453 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2454 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2455 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
duke@435 2456 __ align(16);
duke@435 2457
duke@435 2458 __ bind(store_element);
duke@435 2459 // deccc(G1_remain); // decrement the count (hoisted)
coleenp@548 2460 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2461 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2462 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2463 __ delayed()->set(0, O0); // return -1 on success
duke@435 2464
duke@435 2465 // ======== loop entry is here ========
duke@435 2466 __ bind(load_element);
coleenp@548 2467 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2468 __ br_null(G3_oop, true, Assembler::pt, store_element);
duke@435 2469 __ delayed()->deccc(G1_remain); // decrement the count
duke@435 2470
coleenp@548 2471 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2472
duke@435 2473 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2474 // branch to this on success:
duke@435 2475 store_element,
duke@435 2476 // decrement this on success:
duke@435 2477 G1_remain);
duke@435 2478 // ======== end loop ========
duke@435 2479
duke@435 2480 // It was a real error; we must depend on the caller to finish the job.
duke@435 2481 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2482 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2483 // and report their number to the caller.
duke@435 2484 __ bind(fail);
duke@435 2485 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2486 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2487 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2488
duke@435 2489 __ bind(do_card_marks);
duke@435 2490 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2491
duke@435 2492 __ bind(done);
duke@435 2493 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2494 __ retl();
duke@435 2495 __ delayed()->nop(); // return value in 00
duke@435 2496
duke@435 2497 return start;
duke@435 2498 }
duke@435 2499
duke@435 2500
duke@435 2501 // Generate 'unsafe' array copy stub
duke@435 2502 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2503 // size_t argument instead of an element count.
duke@435 2504 //
duke@435 2505 // Arguments for generated stub:
duke@435 2506 // from: O0
duke@435 2507 // to: O1
duke@435 2508 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2509 //
duke@435 2510 // Examines the alignment of the operands and dispatches
duke@435 2511 // to a long, int, short, or byte copy loop.
duke@435 2512 //
duke@435 2513 address generate_unsafe_copy(const char* name) {
duke@435 2514
duke@435 2515 const Register O0_from = O0; // source array address
duke@435 2516 const Register O1_to = O1; // destination array address
duke@435 2517 const Register O2_count = O2; // elements count
duke@435 2518
duke@435 2519 const Register G1_bits = G1; // test copy of low bits
duke@435 2520
duke@435 2521 __ align(CodeEntryAlignment);
duke@435 2522 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2523 address start = __ pc();
duke@435 2524
duke@435 2525 // bump this on entry, not on exit:
duke@435 2526 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2527
duke@435 2528 __ or3(O0_from, O1_to, G1_bits);
duke@435 2529 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2530
duke@435 2531 __ btst(BytesPerLong-1, G1_bits);
duke@435 2532 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2533 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2534 // scale the count on the way out:
duke@435 2535 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2536
duke@435 2537 __ btst(BytesPerInt-1, G1_bits);
duke@435 2538 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2539 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2540 // scale the count on the way out:
duke@435 2541 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2542
duke@435 2543 __ btst(BytesPerShort-1, G1_bits);
duke@435 2544 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2545 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2546 // scale the count on the way out:
duke@435 2547 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2548
duke@435 2549 __ br(Assembler::always, false, Assembler::pt,
duke@435 2550 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2551 __ delayed()->nop();
duke@435 2552
duke@435 2553 return start;
duke@435 2554 }
duke@435 2555
duke@435 2556
duke@435 2557 // Perform range checks on the proposed arraycopy.
duke@435 2558 // Kills the two temps, but nothing else.
duke@435 2559 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2560 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2561 Register src_pos, // source position (O1)
duke@435 2562 Register dst, // destination array oo (O2)
duke@435 2563 Register dst_pos, // destination position (O3)
duke@435 2564 Register length, // length of copy (O4)
duke@435 2565 Register temp1, Register temp2,
duke@435 2566 Label& L_failed) {
duke@435 2567 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2568
duke@435 2569 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2570
duke@435 2571 const Register array_length = temp1; // scratch
duke@435 2572 const Register end_pos = temp2; // scratch
duke@435 2573
duke@435 2574 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2575 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2576 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2577 __ cmp(end_pos, array_length);
duke@435 2578 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2579
duke@435 2580 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2581 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2582 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2583 __ cmp(end_pos, array_length);
duke@435 2584 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2585
duke@435 2586 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2587 // Move with sign extension can be used since they are positive.
duke@435 2588 __ delayed()->signx(src_pos, src_pos);
duke@435 2589 __ signx(dst_pos, dst_pos);
duke@435 2590
duke@435 2591 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2592 }
duke@435 2593
duke@435 2594
duke@435 2595 //
duke@435 2596 // Generate generic array copy stubs
duke@435 2597 //
duke@435 2598 // Input:
duke@435 2599 // O0 - src oop
duke@435 2600 // O1 - src_pos
duke@435 2601 // O2 - dst oop
duke@435 2602 // O3 - dst_pos
duke@435 2603 // O4 - element count
duke@435 2604 //
duke@435 2605 // Output:
duke@435 2606 // O0 == 0 - success
duke@435 2607 // O0 == -1 - need to call System.arraycopy
duke@435 2608 //
duke@435 2609 address generate_generic_copy(const char *name) {
duke@435 2610
duke@435 2611 Label L_failed, L_objArray;
duke@435 2612
duke@435 2613 // Input registers
duke@435 2614 const Register src = O0; // source array oop
duke@435 2615 const Register src_pos = O1; // source position
duke@435 2616 const Register dst = O2; // destination array oop
duke@435 2617 const Register dst_pos = O3; // destination position
duke@435 2618 const Register length = O4; // elements count
duke@435 2619
duke@435 2620 // registers used as temp
duke@435 2621 const Register G3_src_klass = G3; // source array klass
duke@435 2622 const Register G4_dst_klass = G4; // destination array klass
duke@435 2623 const Register G5_lh = G5; // layout handler
duke@435 2624 const Register O5_temp = O5;
duke@435 2625
duke@435 2626 __ align(CodeEntryAlignment);
duke@435 2627 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2628 address start = __ pc();
duke@435 2629
duke@435 2630 // bump this on entry, not on exit:
duke@435 2631 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2632
duke@435 2633 // In principle, the int arguments could be dirty.
duke@435 2634 //assert_clean_int(src_pos, G1);
duke@435 2635 //assert_clean_int(dst_pos, G1);
duke@435 2636 //assert_clean_int(length, G1);
duke@435 2637
duke@435 2638 //-----------------------------------------------------------------------
duke@435 2639 // Assembler stubs will be used for this call to arraycopy
duke@435 2640 // if the following conditions are met:
duke@435 2641 //
duke@435 2642 // (1) src and dst must not be null.
duke@435 2643 // (2) src_pos must not be negative.
duke@435 2644 // (3) dst_pos must not be negative.
duke@435 2645 // (4) length must not be negative.
duke@435 2646 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2647 // (6) src and dst should be arrays.
duke@435 2648 // (7) src_pos + length must not exceed length of src.
duke@435 2649 // (8) dst_pos + length must not exceed length of dst.
duke@435 2650 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2651
duke@435 2652 // if (src == NULL) return -1;
duke@435 2653 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2654
duke@435 2655 // if (src_pos < 0) return -1;
duke@435 2656 __ delayed()->tst(src_pos);
duke@435 2657 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2658 __ delayed()->nop();
duke@435 2659
duke@435 2660 // if (dst == NULL) return -1;
duke@435 2661 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2662
duke@435 2663 // if (dst_pos < 0) return -1;
duke@435 2664 __ delayed()->tst(dst_pos);
duke@435 2665 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2666
duke@435 2667 // if (length < 0) return -1;
duke@435 2668 __ delayed()->tst(length);
duke@435 2669 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2670
duke@435 2671 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2672 // get src->klass()
coleenp@548 2673 if (UseCompressedOops) {
coleenp@548 2674 __ delayed()->nop(); // ??? not good
coleenp@548 2675 __ load_klass(src, G3_src_klass);
coleenp@548 2676 } else {
coleenp@548 2677 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2678 }
duke@435 2679
duke@435 2680 #ifdef ASSERT
duke@435 2681 // assert(src->klass() != NULL);
duke@435 2682 BLOCK_COMMENT("assert klasses not null");
duke@435 2683 { Label L_a, L_b;
duke@435 2684 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
coleenp@548 2685 __ delayed()->nop();
duke@435 2686 __ bind(L_a);
duke@435 2687 __ stop("broken null klass");
duke@435 2688 __ bind(L_b);
coleenp@548 2689 __ load_klass(dst, G4_dst_klass);
duke@435 2690 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2691 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2692 BLOCK_COMMENT("assert done");
duke@435 2693 }
duke@435 2694 #endif
duke@435 2695
duke@435 2696 // Load layout helper
duke@435 2697 //
duke@435 2698 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2699 // 32 30 24 16 8 2 0
duke@435 2700 //
duke@435 2701 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2702 //
duke@435 2703
duke@435 2704 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2705 Klass::layout_helper_offset_in_bytes();
duke@435 2706
duke@435 2707 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2708 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2709
coleenp@548 2710 if (UseCompressedOops) {
coleenp@548 2711 __ load_klass(dst, G4_dst_klass);
coleenp@548 2712 }
duke@435 2713 // Handle objArrays completely differently...
duke@435 2714 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2715 __ set(objArray_lh, O5_temp);
duke@435 2716 __ cmp(G5_lh, O5_temp);
duke@435 2717 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2718 if (UseCompressedOops) {
coleenp@548 2719 __ delayed()->nop();
coleenp@548 2720 } else {
coleenp@548 2721 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2722 }
duke@435 2723
duke@435 2724 // if (src->klass() != dst->klass()) return -1;
duke@435 2725 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2726 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2727 __ delayed()->nop();
duke@435 2728
duke@435 2729 // if (!src->is_Array()) return -1;
duke@435 2730 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2731 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2732
duke@435 2733 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2734 #ifdef ASSERT
duke@435 2735 __ delayed()->nop();
duke@435 2736 { Label L;
duke@435 2737 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2738 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2739 __ cmp(G5_lh, O5_temp);
duke@435 2740 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2741 __ delayed()->nop();
duke@435 2742 __ stop("must be a primitive array");
duke@435 2743 __ bind(L);
duke@435 2744 }
duke@435 2745 #else
duke@435 2746 __ delayed(); // match next insn to prev branch
duke@435 2747 #endif
duke@435 2748
duke@435 2749 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2750 O5_temp, G4_dst_klass, L_failed);
duke@435 2751
duke@435 2752 // typeArrayKlass
duke@435 2753 //
duke@435 2754 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2755 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2756 //
duke@435 2757
duke@435 2758 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2759 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2760
duke@435 2761 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2762 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2763 __ add(src, G4_offset, src); // src array offset
duke@435 2764 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2765 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2766
duke@435 2767 // next registers should be set before the jump to corresponding stub
duke@435 2768 const Register from = O0; // source array address
duke@435 2769 const Register to = O1; // destination array address
duke@435 2770 const Register count = O2; // elements count
duke@435 2771
duke@435 2772 // 'from', 'to', 'count' registers should be set in this order
duke@435 2773 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2774
duke@435 2775 BLOCK_COMMENT("scale indexes to element size");
duke@435 2776 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2777 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2778 __ add(src, src_pos, from); // src_addr
duke@435 2779 __ add(dst, dst_pos, to); // dst_addr
duke@435 2780
duke@435 2781 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2782 __ cmp(G3_elsize, 0);
duke@435 2783 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
duke@435 2784 __ delayed()->signx(length, count); // length
duke@435 2785
duke@435 2786 __ cmp(G3_elsize, LogBytesPerShort);
duke@435 2787 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
duke@435 2788 __ delayed()->signx(length, count); // length
duke@435 2789
duke@435 2790 __ cmp(G3_elsize, LogBytesPerInt);
duke@435 2791 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
duke@435 2792 __ delayed()->signx(length, count); // length
duke@435 2793 #ifdef ASSERT
duke@435 2794 { Label L;
duke@435 2795 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2796 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2797 __ delayed()->nop();
duke@435 2798 __ stop("must be long copy, but elsize is wrong");
duke@435 2799 __ bind(L);
duke@435 2800 }
duke@435 2801 #endif
duke@435 2802 __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
duke@435 2803 __ delayed()->signx(length, count); // length
duke@435 2804
duke@435 2805 // objArrayKlass
duke@435 2806 __ BIND(L_objArray);
duke@435 2807 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 2808
duke@435 2809 Label L_plain_copy, L_checkcast_copy;
duke@435 2810 // test array classes for subtyping
duke@435 2811 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 2812 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 2813 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 2814
duke@435 2815 // Identically typed arrays can be copied without element-wise checks.
duke@435 2816 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2817 O5_temp, G5_lh, L_failed);
duke@435 2818
duke@435 2819 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2820 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2821 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2822 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2823 __ add(src, src_pos, from); // src_addr
duke@435 2824 __ add(dst, dst_pos, to); // dst_addr
duke@435 2825 __ BIND(L_plain_copy);
duke@435 2826 __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
duke@435 2827 __ delayed()->signx(length, count); // length
duke@435 2828
duke@435 2829 __ BIND(L_checkcast_copy);
duke@435 2830 // live at this point: G3_src_klass, G4_dst_klass
duke@435 2831 {
duke@435 2832 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2833 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 2834 __ cmp(G5_lh, O5_temp);
duke@435 2835 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2836
duke@435 2837 // It is safe to examine both src.length and dst.length.
duke@435 2838 __ delayed(); // match next insn to prev branch
duke@435 2839 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2840 O5_temp, G5_lh, L_failed);
duke@435 2841
duke@435 2842 // Marshal the base address arguments now, freeing registers.
duke@435 2843 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2844 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2845 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2846 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2847 __ add(src, src_pos, from); // src_addr
duke@435 2848 __ add(dst, dst_pos, to); // dst_addr
duke@435 2849 __ signx(length, count); // length (reloaded)
duke@435 2850
duke@435 2851 Register sco_temp = O3; // this register is free now
duke@435 2852 assert_different_registers(from, to, count, sco_temp,
duke@435 2853 G4_dst_klass, G3_src_klass);
duke@435 2854
duke@435 2855 // Generate the type check.
duke@435 2856 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2857 Klass::super_check_offset_offset_in_bytes());
duke@435 2858 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 2859 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 2860 O5_temp, L_plain_copy);
duke@435 2861
duke@435 2862 // Fetch destination element klass from the objArrayKlass header.
duke@435 2863 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2864 objArrayKlass::element_klass_offset_in_bytes());
duke@435 2865
duke@435 2866 // the checkcast_copy loop needs two extra arguments:
duke@435 2867 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 2868 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 2869
duke@435 2870 __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
duke@435 2871 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 2872 }
duke@435 2873
duke@435 2874 __ BIND(L_failed);
duke@435 2875 __ retl();
duke@435 2876 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 2877 return start;
duke@435 2878 }
duke@435 2879
duke@435 2880 void generate_arraycopy_stubs() {
duke@435 2881
duke@435 2882 // Note: the disjoint stubs must be generated first, some of
duke@435 2883 // the conjoint stubs use them.
duke@435 2884 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2885 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2886 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
duke@435 2887 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
duke@435 2888 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
duke@435 2889 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
duke@435 2890 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
duke@435 2891 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
duke@435 2892 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
duke@435 2893 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
duke@435 2894
duke@435 2895 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2896 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2897 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
duke@435 2898 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
duke@435 2899 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
duke@435 2900 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
duke@435 2901 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
duke@435 2902 #ifdef _LP64
duke@435 2903 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
duke@435 2904 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
duke@435 2905 #else
duke@435 2906 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2907 #endif
duke@435 2908 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2909 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2910
duke@435 2911 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2912 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2913 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2914 }
duke@435 2915
duke@435 2916 void generate_initial() {
duke@435 2917 // Generates all stubs and initializes the entry points
duke@435 2918
duke@435 2919 //------------------------------------------------------------------------------------------------------------------------
duke@435 2920 // entry points that exist in all platforms
duke@435 2921 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2922 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2923 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2924
duke@435 2925 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2926 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2927
duke@435 2928 //------------------------------------------------------------------------------------------------------------------------
duke@435 2929 // entry points that are platform specific
duke@435 2930 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 2931
duke@435 2932 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 2933 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 2934
duke@435 2935 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 2936 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2937 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2938 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2939 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 2940 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 2941 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2942 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 2943 StubRoutines::_fence_entry = generate_fence();
duke@435 2944 #endif // COMPILER2 !=> _LP64
duke@435 2945
duke@435 2946 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 2947 }
duke@435 2948
duke@435 2949
duke@435 2950 void generate_all() {
duke@435 2951 // Generates all stubs and initializes the entry points
duke@435 2952
duke@435 2953 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2954 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2955 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2956 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2957 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2958 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2959 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2960
duke@435 2961 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2962 generate_handler_for_unsafe_access();
duke@435 2963
duke@435 2964 // support for verify_oop (must happen after universe_init)
duke@435 2965 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 2966
duke@435 2967 // arraycopy stubs used by compilers
duke@435 2968 generate_arraycopy_stubs();
duke@435 2969 }
duke@435 2970
duke@435 2971
duke@435 2972 public:
duke@435 2973 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2974 // replace the standard masm with a special one:
duke@435 2975 _masm = new MacroAssembler(code);
duke@435 2976
duke@435 2977 _stub_count = !all ? 0x100 : 0x200;
duke@435 2978 if (all) {
duke@435 2979 generate_all();
duke@435 2980 } else {
duke@435 2981 generate_initial();
duke@435 2982 }
duke@435 2983
duke@435 2984 // make sure this stub is available for all local calls
duke@435 2985 if (_atomic_add_stub.is_unbound()) {
duke@435 2986 // generate a second time, if necessary
duke@435 2987 (void) generate_atomic_add();
duke@435 2988 }
duke@435 2989 }
duke@435 2990
duke@435 2991
duke@435 2992 private:
duke@435 2993 int _stub_count;
duke@435 2994 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 2995 # ifdef ASSERT
duke@435 2996 // put extra information in the stub code, to make it more readable
duke@435 2997 #ifdef _LP64
duke@435 2998 // Write the high part of the address
duke@435 2999 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3000 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3001 #endif
duke@435 3002 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3003 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3004 # endif
duke@435 3005 align(true);
duke@435 3006 }
duke@435 3007
duke@435 3008 void align(bool at_header = false) {
duke@435 3009 // %%%%% move this constant somewhere else
duke@435 3010 // UltraSPARC cache line size is 8 instructions:
duke@435 3011 const unsigned int icache_line_size = 32;
duke@435 3012 const unsigned int icache_half_line_size = 16;
duke@435 3013
duke@435 3014 if (at_header) {
duke@435 3015 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3016 __ emit_data(0, relocInfo::none);
duke@435 3017 }
duke@435 3018 } else {
duke@435 3019 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3020 __ nop();
duke@435 3021 }
duke@435 3022 }
duke@435 3023 }
duke@435 3024
duke@435 3025 }; // end class declaration
duke@435 3026
duke@435 3027
duke@435 3028 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3029 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3030 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3031 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3032 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3033
duke@435 3034 address StubGenerator::byte_copy_entry = NULL;
duke@435 3035 address StubGenerator::short_copy_entry = NULL;
duke@435 3036 address StubGenerator::int_copy_entry = NULL;
duke@435 3037 address StubGenerator::long_copy_entry = NULL;
duke@435 3038 address StubGenerator::oop_copy_entry = NULL;
duke@435 3039
duke@435 3040 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3041
duke@435 3042 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3043 StubGenerator g(code, all);
duke@435 3044 }

mercurial