src/cpu/sparc/vm/stubGenerator_sparc.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 548
ba764ed4b6f2
child 791
1ee8caae33af
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_sparc.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp.
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 43 // any other way within this module.
duke@435 44
duke@435 45
duke@435 46 static const Register& Lstub_temp = L2;
duke@435 47
duke@435 48 // -------------------------------------------------------------------------------------------------------------------------
duke@435 49 // Stub Code definitions
duke@435 50
duke@435 51 static address handle_unsafe_access() {
duke@435 52 JavaThread* thread = JavaThread::current();
duke@435 53 address pc = thread->saved_exception_pc();
duke@435 54 address npc = thread->saved_exception_npc();
duke@435 55 // pc is the instruction which we must emulate
duke@435 56 // doing a no-op is fine: return garbage from the load
duke@435 57
duke@435 58 // request an async exception
duke@435 59 thread->set_pending_unsafe_access_error();
duke@435 60
duke@435 61 // return address of next instruction to execute
duke@435 62 return npc;
duke@435 63 }
duke@435 64
duke@435 65 class StubGenerator: public StubCodeGenerator {
duke@435 66 private:
duke@435 67
duke@435 68 #ifdef PRODUCT
duke@435 69 #define inc_counter_np(a,b,c) (0)
duke@435 70 #else
duke@435 71 void inc_counter_np_(int& counter, Register t1, Register t2) {
duke@435 72 Address counter_addr(t2, (address) &counter);
duke@435 73 __ sethi(counter_addr);
duke@435 74 __ ld(counter_addr, t1);
duke@435 75 __ inc(t1);
duke@435 76 __ st(t1, counter_addr);
duke@435 77 }
duke@435 78 #define inc_counter_np(counter, t1, t2) \
duke@435 79 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 80 inc_counter_np_(counter, t1, t2);
duke@435 81 #endif
duke@435 82
duke@435 83 //----------------------------------------------------------------------------------------------------
duke@435 84 // Call stubs are used to call Java from C
duke@435 85
duke@435 86 address generate_call_stub(address& return_pc) {
duke@435 87 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 88 address start = __ pc();
duke@435 89
duke@435 90 // Incoming arguments:
duke@435 91 //
duke@435 92 // o0 : call wrapper address
duke@435 93 // o1 : result (address)
duke@435 94 // o2 : result type
duke@435 95 // o3 : method
duke@435 96 // o4 : (interpreter) entry point
duke@435 97 // o5 : parameters (address)
duke@435 98 // [sp + 0x5c]: parameter size (in words)
duke@435 99 // [sp + 0x60]: thread
duke@435 100 //
duke@435 101 // +---------------+ <--- sp + 0
duke@435 102 // | |
duke@435 103 // . reg save area .
duke@435 104 // | |
duke@435 105 // +---------------+ <--- sp + 0x40
duke@435 106 // | |
duke@435 107 // . extra 7 slots .
duke@435 108 // | |
duke@435 109 // +---------------+ <--- sp + 0x5c
duke@435 110 // | param. size |
duke@435 111 // +---------------+ <--- sp + 0x60
duke@435 112 // | thread |
duke@435 113 // +---------------+
duke@435 114 // | |
duke@435 115
duke@435 116 // note: if the link argument position changes, adjust
duke@435 117 // the code in frame::entry_frame_call_wrapper()
duke@435 118
duke@435 119 const Argument link = Argument(0, false); // used only for GC
duke@435 120 const Argument result = Argument(1, false);
duke@435 121 const Argument result_type = Argument(2, false);
duke@435 122 const Argument method = Argument(3, false);
duke@435 123 const Argument entry_point = Argument(4, false);
duke@435 124 const Argument parameters = Argument(5, false);
duke@435 125 const Argument parameter_size = Argument(6, false);
duke@435 126 const Argument thread = Argument(7, false);
duke@435 127
duke@435 128 // setup thread register
duke@435 129 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 130 __ reinit_heapbase();
duke@435 131
duke@435 132 #ifdef ASSERT
duke@435 133 // make sure we have no pending exceptions
duke@435 134 { const Register t = G3_scratch;
duke@435 135 Label L;
duke@435 136 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 137 __ br_null(t, false, Assembler::pt, L);
duke@435 138 __ delayed()->nop();
duke@435 139 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 140 __ bind(L);
duke@435 141 }
duke@435 142 #endif
duke@435 143
duke@435 144 // create activation frame & allocate space for parameters
duke@435 145 { const Register t = G3_scratch;
duke@435 146 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 147 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 148 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
duke@435 149 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 150 __ neg(t); // negate so it can be used with save
duke@435 151 __ save(SP, t, SP); // setup new frame
duke@435 152 }
duke@435 153
duke@435 154 // +---------------+ <--- sp + 0
duke@435 155 // | |
duke@435 156 // . reg save area .
duke@435 157 // | |
duke@435 158 // +---------------+ <--- sp + 0x40
duke@435 159 // | |
duke@435 160 // . extra 7 slots .
duke@435 161 // | |
duke@435 162 // +---------------+ <--- sp + 0x5c
duke@435 163 // | empty slot | (only if parameter size is even)
duke@435 164 // +---------------+
duke@435 165 // | |
duke@435 166 // . parameters .
duke@435 167 // | |
duke@435 168 // +---------------+ <--- fp + 0
duke@435 169 // | |
duke@435 170 // . reg save area .
duke@435 171 // | |
duke@435 172 // +---------------+ <--- fp + 0x40
duke@435 173 // | |
duke@435 174 // . extra 7 slots .
duke@435 175 // | |
duke@435 176 // +---------------+ <--- fp + 0x5c
duke@435 177 // | param. size |
duke@435 178 // +---------------+ <--- fp + 0x60
duke@435 179 // | thread |
duke@435 180 // +---------------+
duke@435 181 // | |
duke@435 182
duke@435 183 // pass parameters if any
duke@435 184 BLOCK_COMMENT("pass parameters if any");
duke@435 185 { const Register src = parameters.as_in().as_register();
duke@435 186 const Register dst = Lentry_args;
duke@435 187 const Register tmp = G3_scratch;
duke@435 188 const Register cnt = G4_scratch;
duke@435 189
duke@435 190 // test if any parameters & setup of Lentry_args
duke@435 191 Label exit;
duke@435 192 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 193 __ add( FP, STACK_BIAS, dst );
duke@435 194 __ tst(cnt);
duke@435 195 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 196 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 197
duke@435 198 // copy parameters if any
duke@435 199 Label loop;
duke@435 200 __ BIND(loop);
duke@435 201 // Store tag first.
duke@435 202 if (TaggedStackInterpreter) {
duke@435 203 __ ld_ptr(src, 0, tmp);
duke@435 204 __ add(src, BytesPerWord, src); // get next
duke@435 205 __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
duke@435 206 }
duke@435 207 // Store parameter value
duke@435 208 __ ld_ptr(src, 0, tmp);
duke@435 209 __ add(src, BytesPerWord, src);
duke@435 210 __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
duke@435 211 __ deccc(cnt);
duke@435 212 __ br(Assembler::greater, false, Assembler::pt, loop);
duke@435 213 __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
duke@435 214
duke@435 215 // done
duke@435 216 __ BIND(exit);
duke@435 217 }
duke@435 218
duke@435 219 // setup parameters, method & call Java function
duke@435 220 #ifdef ASSERT
duke@435 221 // layout_activation_impl checks it's notion of saved SP against
duke@435 222 // this register, so if this changes update it as well.
duke@435 223 const Register saved_SP = Lscratch;
duke@435 224 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 225 #endif
duke@435 226
duke@435 227 // setup parameters
duke@435 228 const Register t = G3_scratch;
duke@435 229 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
duke@435 230 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 231 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 232 #ifdef _LP64
duke@435 233 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 234 #endif
duke@435 235 __ mov(SP, O5_savedSP);
duke@435 236
duke@435 237
duke@435 238 // do the call
duke@435 239 //
duke@435 240 // the following register must be setup:
duke@435 241 //
duke@435 242 // G2_thread
duke@435 243 // G5_method
duke@435 244 // Gargs
duke@435 245 BLOCK_COMMENT("call Java function");
duke@435 246 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 247 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 248
duke@435 249 BLOCK_COMMENT("call_stub_return_address:");
duke@435 250 return_pc = __ pc();
duke@435 251
duke@435 252 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 253 // we can no longer assert of change of SP.
duke@435 254
duke@435 255 // store result depending on type
duke@435 256 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 257 // is treated as T_INT)
duke@435 258 { const Register addr = result .as_in().as_register();
duke@435 259 const Register type = result_type.as_in().as_register();
duke@435 260 Label is_long, is_float, is_double, is_object, exit;
duke@435 261 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 262 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 263 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 264 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 265 __ delayed()->nop();
duke@435 266
duke@435 267 // store int result
duke@435 268 __ st(O0, addr, G0);
duke@435 269
duke@435 270 __ BIND(exit);
duke@435 271 __ ret();
duke@435 272 __ delayed()->restore();
duke@435 273
duke@435 274 __ BIND(is_object);
duke@435 275 __ ba(false, exit);
duke@435 276 __ delayed()->st_ptr(O0, addr, G0);
duke@435 277
duke@435 278 __ BIND(is_float);
duke@435 279 __ ba(false, exit);
duke@435 280 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 281
duke@435 282 __ BIND(is_double);
duke@435 283 __ ba(false, exit);
duke@435 284 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 285
duke@435 286 __ BIND(is_long);
duke@435 287 #ifdef _LP64
duke@435 288 __ ba(false, exit);
duke@435 289 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 290 #else
duke@435 291 #if defined(COMPILER2)
duke@435 292 // All return values are where we want them, except for Longs. C2 returns
duke@435 293 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 294 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 295 // build we simply always use G1.
duke@435 296 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 297 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 298 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 299
duke@435 300 __ ba(false, exit);
duke@435 301 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 302 #else
duke@435 303 __ st(O1, addr, BytesPerInt);
duke@435 304 __ ba(false, exit);
duke@435 305 __ delayed()->st(O0, addr, G0);
duke@435 306 #endif /* COMPILER2 */
duke@435 307 #endif /* _LP64 */
duke@435 308 }
duke@435 309 return start;
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 //----------------------------------------------------------------------------------------------------
duke@435 314 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 315 // The exception is caught and transformed into a pending exception stored in
duke@435 316 // JavaThread that can be tested from within the VM.
duke@435 317 //
duke@435 318 // Oexception: exception oop
duke@435 319
duke@435 320 address generate_catch_exception() {
duke@435 321 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 322
duke@435 323 address start = __ pc();
duke@435 324 // verify that thread corresponds
duke@435 325 __ verify_thread();
duke@435 326
duke@435 327 const Register& temp_reg = Gtemp;
duke@435 328 Address pending_exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 329 Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset ()));
duke@435 330 Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset ()));
duke@435 331
duke@435 332 // set pending exception
duke@435 333 __ verify_oop(Oexception);
duke@435 334 __ st_ptr(Oexception, pending_exception_addr);
duke@435 335 __ set((intptr_t)__FILE__, temp_reg);
duke@435 336 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 337 __ set((intptr_t)__LINE__, temp_reg);
duke@435 338 __ st(temp_reg, exception_line_offset_addr);
duke@435 339
duke@435 340 // complete return to VM
duke@435 341 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 342
duke@435 343 Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
duke@435 344 __ jump_to(stub_ret);
duke@435 345 __ delayed()->nop();
duke@435 346
duke@435 347 return start;
duke@435 348 }
duke@435 349
duke@435 350
duke@435 351 //----------------------------------------------------------------------------------------------------
duke@435 352 // Continuation point for runtime calls returning with a pending exception
duke@435 353 // The pending exception check happened in the runtime or native call stub
duke@435 354 // The pending exception in Thread is converted into a Java-level exception
duke@435 355 //
duke@435 356 // Contract with Java-level exception handler: O0 = exception
duke@435 357 // O1 = throwing pc
duke@435 358
duke@435 359 address generate_forward_exception() {
duke@435 360 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 361 address start = __ pc();
duke@435 362
duke@435 363 // Upon entry, O7 has the return address returning into Java
duke@435 364 // (interpreted or compiled) code; i.e. the return address
duke@435 365 // becomes the throwing pc.
duke@435 366
duke@435 367 const Register& handler_reg = Gtemp;
duke@435 368
duke@435 369 Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 370
duke@435 371 #ifdef ASSERT
duke@435 372 // make sure that this code is only executed if there is a pending exception
duke@435 373 { Label L;
duke@435 374 __ ld_ptr(exception_addr, Gtemp);
duke@435 375 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 376 __ delayed()->nop();
duke@435 377 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 378 __ bind(L);
duke@435 379 }
duke@435 380 #endif
duke@435 381
duke@435 382 // compute exception handler into handler_reg
duke@435 383 __ get_thread();
duke@435 384 __ ld_ptr(exception_addr, Oexception);
duke@435 385 __ verify_oop(Oexception);
duke@435 386 __ save_frame(0); // compensates for compiler weakness
duke@435 387 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 388 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 389 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
duke@435 390 __ mov(O0, handler_reg);
duke@435 391 __ restore(); // compensates for compiler weakness
duke@435 392
duke@435 393 __ ld_ptr(exception_addr, Oexception);
duke@435 394 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 395
duke@435 396 #ifdef ASSERT
duke@435 397 // make sure exception is set
duke@435 398 { Label L;
duke@435 399 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 400 __ delayed()->nop();
duke@435 401 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 402 __ bind(L);
duke@435 403 }
duke@435 404 #endif
duke@435 405 // jump to exception handler
duke@435 406 __ jmp(handler_reg, 0);
duke@435 407 // clear pending exception
duke@435 408 __ delayed()->st_ptr(G0, exception_addr);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 //------------------------------------------------------------------------------------------------------------------------
duke@435 415 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 416 // the current activation. Fabricates an exception oop and initiates normal
duke@435 417 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 418 // (through the normal register window / RegisterMap handling).
duke@435 419 // If the compiler needs all registers to be preserved between the fault
duke@435 420 // point and the exception handler then it must assume responsibility for that in
duke@435 421 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 422 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 423 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 424 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 425 // so caller saved registers were assumed volatile in the compiler.
duke@435 426
duke@435 427 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 428 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 429 // macro within this method.
duke@435 430 #undef __
duke@435 431 #define __ masm->
duke@435 432
duke@435 433 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 434 #ifdef ASSERT
duke@435 435 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 436 #else
duke@435 437 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 438 #endif /* ASSERT */
duke@435 439 int locs_size = 32;
duke@435 440
duke@435 441 CodeBuffer code(name, insts_size, locs_size);
duke@435 442 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 443
duke@435 444 __ verify_thread();
duke@435 445
duke@435 446 // This is an inlined and slightly modified version of call_VM
duke@435 447 // which has the ability to fetch the return PC out of thread-local storage
duke@435 448 __ assert_not_delayed();
duke@435 449
duke@435 450 // Note that we always push a frame because on the SPARC
duke@435 451 // architecture, for all of our implicit exception kinds at call
duke@435 452 // sites, the implicit exception is taken before the callee frame
duke@435 453 // is pushed.
duke@435 454 __ save_frame(0);
duke@435 455
duke@435 456 int frame_complete = __ offset();
duke@435 457
duke@435 458 if (restore_saved_exception_pc) {
duke@435 459 Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
duke@435 460 __ ld_ptr(saved_exception_pc, I7);
duke@435 461 __ sub(I7, frame::pc_return_offset, I7);
duke@435 462 }
duke@435 463
duke@435 464 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 465 Register last_java_sp = SP;
duke@435 466 // 64-bit last_java_sp is biased!
duke@435 467 __ set_last_Java_frame(last_java_sp, G0);
duke@435 468 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 469 __ save_thread(noreg);
duke@435 470 // do the call
duke@435 471 BLOCK_COMMENT("call runtime_entry");
duke@435 472 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 473 if (!VerifyThread)
duke@435 474 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 475 else
duke@435 476 __ delayed()->nop(); // (thread already passed)
duke@435 477 __ restore_thread(noreg);
duke@435 478 __ reset_last_Java_frame();
duke@435 479
duke@435 480 // check for pending exceptions. use Gtemp as scratch register.
duke@435 481 #ifdef ASSERT
duke@435 482 Label L;
duke@435 483
duke@435 484 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 485 Register scratch_reg = Gtemp;
duke@435 486 __ ld_ptr(exception_addr, scratch_reg);
duke@435 487 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 488 __ delayed()->nop();
duke@435 489 __ should_not_reach_here();
duke@435 490 __ bind(L);
duke@435 491 #endif // ASSERT
duke@435 492 BLOCK_COMMENT("call forward_exception_entry");
duke@435 493 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 494 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 495 __ delayed()->restore();
duke@435 496
duke@435 497 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 498 return stub->entry_point();
duke@435 499 }
duke@435 500
duke@435 501 #undef __
duke@435 502 #define __ _masm->
duke@435 503
duke@435 504
duke@435 505 // Generate a routine that sets all the registers so we
duke@435 506 // can tell if the stop routine prints them correctly.
duke@435 507 address generate_test_stop() {
duke@435 508 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 509 address start = __ pc();
duke@435 510
duke@435 511 int i;
duke@435 512
duke@435 513 __ save_frame(0);
duke@435 514
duke@435 515 static jfloat zero = 0.0, one = 1.0;
duke@435 516
duke@435 517 // put addr in L0, then load through L0 to F0
duke@435 518 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 519 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 520
duke@435 521 // use add to put 2..18 in F2..F18
duke@435 522 for ( i = 2; i <= 18; ++i ) {
duke@435 523 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 524 }
duke@435 525
duke@435 526 // Now put double 2 in F16, double 18 in F18
duke@435 527 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 528 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 529
duke@435 530 // use add to put 20..32 in F20..F32
duke@435 531 for (i = 20; i < 32; i += 2) {
duke@435 532 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 533 }
duke@435 534
duke@435 535 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 536 for ( i = 0; i < 8; ++i ) {
duke@435 537 if (i < 6) {
duke@435 538 __ set( i, as_iRegister(i));
duke@435 539 __ set(16 + i, as_oRegister(i));
duke@435 540 __ set(24 + i, as_gRegister(i));
duke@435 541 }
duke@435 542 __ set( 8 + i, as_lRegister(i));
duke@435 543 }
duke@435 544
duke@435 545 __ stop("testing stop");
duke@435 546
duke@435 547
duke@435 548 __ ret();
duke@435 549 __ delayed()->restore();
duke@435 550
duke@435 551 return start;
duke@435 552 }
duke@435 553
duke@435 554
duke@435 555 address generate_stop_subroutine() {
duke@435 556 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 557 address start = __ pc();
duke@435 558
duke@435 559 __ stop_subroutine();
duke@435 560
duke@435 561 return start;
duke@435 562 }
duke@435 563
duke@435 564 address generate_flush_callers_register_windows() {
duke@435 565 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 566 address start = __ pc();
duke@435 567
duke@435 568 __ flush_windows();
duke@435 569 __ retl(false);
duke@435 570 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 571 // The returned value must be a stack pointer whose register save area
duke@435 572 // is flushed, and will stay flushed while the caller executes.
duke@435 573
duke@435 574 return start;
duke@435 575 }
duke@435 576
duke@435 577 // Helper functions for v8 atomic operations.
duke@435 578 //
duke@435 579 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 580 if (mark_oop_reg == noreg) {
duke@435 581 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 582 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 583 } else {
duke@435 584 assert(scratch_reg != noreg, "just checking");
duke@435 585 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 586 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 587 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 588 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 589 }
duke@435 590 }
duke@435 591
duke@435 592 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 593
duke@435 594 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 595 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 596 // Initialize yield counter
duke@435 597 __ mov(G0,yield_reg);
duke@435 598
duke@435 599 __ BIND(retry);
duke@435 600 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 601 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 602 __ delayed()->nop();
duke@435 603
duke@435 604 // This code can only be called from inside the VM, this
duke@435 605 // stub is only invoked from Atomic::add(). We do not
duke@435 606 // want to use call_VM, because _last_java_sp and such
duke@435 607 // must already be set.
duke@435 608 //
duke@435 609 // Save the regs and make space for a C call
duke@435 610 __ save(SP, -96, SP);
duke@435 611 __ save_all_globals_into_locals();
duke@435 612 BLOCK_COMMENT("call os::naked_sleep");
duke@435 613 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 614 __ delayed()->nop();
duke@435 615 __ restore_globals_from_locals();
duke@435 616 __ restore();
duke@435 617 // reset the counter
duke@435 618 __ mov(G0,yield_reg);
duke@435 619
duke@435 620 __ BIND(dontyield);
duke@435 621
duke@435 622 // try to get lock
duke@435 623 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 624
duke@435 625 // did we get the lock?
duke@435 626 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 627 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 628 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 629
duke@435 630 // yes, got lock. do the operation here.
duke@435 631 }
duke@435 632
duke@435 633 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 634 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 635 }
duke@435 636
duke@435 637 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 638 //
duke@435 639 // Arguments :
duke@435 640 //
duke@435 641 // exchange_value: O0
duke@435 642 // dest: O1
duke@435 643 //
duke@435 644 // Results:
duke@435 645 //
duke@435 646 // O0: the value previously stored in dest
duke@435 647 //
duke@435 648 address generate_atomic_xchg() {
duke@435 649 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 650 address start = __ pc();
duke@435 651
duke@435 652 if (UseCASForSwap) {
duke@435 653 // Use CAS instead of swap, just in case the MP hardware
duke@435 654 // prefers to work with just one kind of synch. instruction.
duke@435 655 Label retry;
duke@435 656 __ BIND(retry);
duke@435 657 __ mov(O0, O3); // scratch copy of exchange value
duke@435 658 __ ld(O1, 0, O2); // observe the previous value
duke@435 659 // try to replace O2 with O3
duke@435 660 __ cas_under_lock(O1, O2, O3,
duke@435 661 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 662 __ cmp(O2, O3);
duke@435 663 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 664 __ delayed()->nop();
duke@435 665
duke@435 666 __ retl(false);
duke@435 667 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 668
duke@435 669 } else {
duke@435 670 if (VM_Version::v9_instructions_work()) {
duke@435 671 __ retl(false);
duke@435 672 __ delayed()->swap(O1, 0, O0);
duke@435 673 } else {
duke@435 674 const Register& lock_reg = O2;
duke@435 675 const Register& lock_ptr_reg = O3;
duke@435 676 const Register& yield_reg = O4;
duke@435 677
duke@435 678 Label retry;
duke@435 679 Label dontyield;
duke@435 680
duke@435 681 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 682 // got the lock, do the swap
duke@435 683 __ swap(O1, 0, O0);
duke@435 684
duke@435 685 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 686 __ retl(false);
duke@435 687 __ delayed()->nop();
duke@435 688 }
duke@435 689 }
duke@435 690
duke@435 691 return start;
duke@435 692 }
duke@435 693
duke@435 694
duke@435 695 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 696 //
duke@435 697 // Arguments :
duke@435 698 //
duke@435 699 // exchange_value: O0
duke@435 700 // dest: O1
duke@435 701 // compare_value: O2
duke@435 702 //
duke@435 703 // Results:
duke@435 704 //
duke@435 705 // O0: the value previously stored in dest
duke@435 706 //
duke@435 707 // Overwrites (v8): O3,O4,O5
duke@435 708 //
duke@435 709 address generate_atomic_cmpxchg() {
duke@435 710 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 711 address start = __ pc();
duke@435 712
duke@435 713 // cmpxchg(dest, compare_value, exchange_value)
duke@435 714 __ cas_under_lock(O1, O2, O0,
duke@435 715 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 716 __ retl(false);
duke@435 717 __ delayed()->nop();
duke@435 718
duke@435 719 return start;
duke@435 720 }
duke@435 721
duke@435 722 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 723 //
duke@435 724 // Arguments :
duke@435 725 //
duke@435 726 // exchange_value: O1:O0
duke@435 727 // dest: O2
duke@435 728 // compare_value: O4:O3
duke@435 729 //
duke@435 730 // Results:
duke@435 731 //
duke@435 732 // O1:O0: the value previously stored in dest
duke@435 733 //
duke@435 734 // This only works on V9, on V8 we don't generate any
duke@435 735 // code and just return NULL.
duke@435 736 //
duke@435 737 // Overwrites: G1,G2,G3
duke@435 738 //
duke@435 739 address generate_atomic_cmpxchg_long() {
duke@435 740 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 741 address start = __ pc();
duke@435 742
duke@435 743 if (!VM_Version::supports_cx8())
duke@435 744 return NULL;;
duke@435 745 __ sllx(O0, 32, O0);
duke@435 746 __ srl(O1, 0, O1);
duke@435 747 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 748 __ sllx(O3, 32, O3);
duke@435 749 __ srl(O4, 0, O4);
duke@435 750 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 751 __ casx(O2, O3, O0);
duke@435 752 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 753 __ retl(false);
duke@435 754 __ delayed()->srlx(O0, 32, O0);
duke@435 755
duke@435 756 return start;
duke@435 757 }
duke@435 758
duke@435 759
duke@435 760 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 761 //
duke@435 762 // Arguments :
duke@435 763 //
duke@435 764 // add_value: O0 (e.g., +1 or -1)
duke@435 765 // dest: O1
duke@435 766 //
duke@435 767 // Results:
duke@435 768 //
duke@435 769 // O0: the new value stored in dest
duke@435 770 //
duke@435 771 // Overwrites (v9): O3
duke@435 772 // Overwrites (v8): O3,O4,O5
duke@435 773 //
duke@435 774 address generate_atomic_add() {
duke@435 775 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 776 address start = __ pc();
duke@435 777 __ BIND(_atomic_add_stub);
duke@435 778
duke@435 779 if (VM_Version::v9_instructions_work()) {
duke@435 780 Label(retry);
duke@435 781 __ BIND(retry);
duke@435 782
duke@435 783 __ lduw(O1, 0, O2);
duke@435 784 __ add(O0, O2, O3);
duke@435 785 __ cas(O1, O2, O3);
duke@435 786 __ cmp( O2, O3);
duke@435 787 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 788 __ delayed()->nop();
duke@435 789 __ retl(false);
duke@435 790 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 791 } else {
duke@435 792 const Register& lock_reg = O2;
duke@435 793 const Register& lock_ptr_reg = O3;
duke@435 794 const Register& value_reg = O4;
duke@435 795 const Register& yield_reg = O5;
duke@435 796
duke@435 797 Label(retry);
duke@435 798 Label(dontyield);
duke@435 799
duke@435 800 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 801 // got lock, do the increment
duke@435 802 __ ld(O1, 0, value_reg);
duke@435 803 __ add(O0, value_reg, value_reg);
duke@435 804 __ st(value_reg, O1, 0);
duke@435 805
duke@435 806 // %%% only for RMO and PSO
duke@435 807 __ membar(Assembler::StoreStore);
duke@435 808
duke@435 809 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 810
duke@435 811 __ retl(false);
duke@435 812 __ delayed()->mov(value_reg, O0);
duke@435 813 }
duke@435 814
duke@435 815 return start;
duke@435 816 }
duke@435 817 Label _atomic_add_stub; // called from other stubs
duke@435 818
duke@435 819
duke@435 820 // Support for void OrderAccess::fence().
duke@435 821 //
duke@435 822 address generate_fence() {
duke@435 823 StubCodeMark mark(this, "StubRoutines", "fence");
duke@435 824 address start = __ pc();
duke@435 825
duke@435 826 __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore |
duke@435 827 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 828 __ retl(false);
duke@435 829 __ delayed()->nop();
duke@435 830
duke@435 831 return start;
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 //------------------------------------------------------------------------------------------------------------------------
duke@435 836 // The following routine generates a subroutine to throw an asynchronous
duke@435 837 // UnknownError when an unsafe access gets a fault that could not be
duke@435 838 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 839 //
duke@435 840 // Arguments :
duke@435 841 //
duke@435 842 // trapping PC: O7
duke@435 843 //
duke@435 844 // Results:
duke@435 845 // posts an asynchronous exception, skips the trapping instruction
duke@435 846 //
duke@435 847
duke@435 848 address generate_handler_for_unsafe_access() {
duke@435 849 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 850 address start = __ pc();
duke@435 851
duke@435 852 const int preserve_register_words = (64 * 2);
duke@435 853 Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 854
duke@435 855 Register Lthread = L7_thread_cache;
duke@435 856 int i;
duke@435 857
duke@435 858 __ save_frame(0);
duke@435 859 __ mov(G1, L1);
duke@435 860 __ mov(G2, L2);
duke@435 861 __ mov(G3, L3);
duke@435 862 __ mov(G4, L4);
duke@435 863 __ mov(G5, L5);
duke@435 864 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 865 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 866 }
duke@435 867
duke@435 868 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 869 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 870 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 871 __ delayed()->nop();
duke@435 872
duke@435 873 __ mov(L1, G1);
duke@435 874 __ mov(L2, G2);
duke@435 875 __ mov(L3, G3);
duke@435 876 __ mov(L4, G4);
duke@435 877 __ mov(L5, G5);
duke@435 878 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 879 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 880 }
duke@435 881
duke@435 882 __ verify_thread();
duke@435 883
duke@435 884 __ jmp(O0, 0);
duke@435 885 __ delayed()->restore();
duke@435 886
duke@435 887 return start;
duke@435 888 }
duke@435 889
duke@435 890
duke@435 891 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 892 // Arguments :
duke@435 893 //
duke@435 894 // ret : O0, returned
duke@435 895 // icc/xcc: set as O0 (depending on wordSize)
duke@435 896 // sub : O1, argument, not changed
duke@435 897 // super: O2, argument, not changed
duke@435 898 // raddr: O7, blown by call
duke@435 899 address generate_partial_subtype_check() {
coleenp@548 900 __ align(CodeEntryAlignment);
duke@435 901 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 902 address start = __ pc();
duke@435 903 Label loop, miss;
duke@435 904
duke@435 905 // Compare super with sub directly, since super is not in its own SSA.
duke@435 906 // The compiler used to emit this test, but we fold it in here,
duke@435 907 // to increase overall code density, with no real loss of speed.
duke@435 908 { Label L;
duke@435 909 __ cmp(O1, O2);
duke@435 910 __ brx(Assembler::notEqual, false, Assembler::pt, L);
duke@435 911 __ delayed()->nop();
duke@435 912 __ retl();
duke@435 913 __ delayed()->addcc(G0,0,O0); // set Z flags, zero result
duke@435 914 __ bind(L);
duke@435 915 }
duke@435 916
duke@435 917 #if defined(COMPILER2) && !defined(_LP64)
duke@435 918 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 919 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 920 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 921 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 922 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 923 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 924 Register Rret = O0;
duke@435 925 Register Rsub = O1;
duke@435 926 Register Rsuper = O2;
duke@435 927 #else
duke@435 928 __ save_frame(0);
duke@435 929 Register Rret = I0;
duke@435 930 Register Rsub = I1;
duke@435 931 Register Rsuper = I2;
duke@435 932 #endif
duke@435 933
duke@435 934 Register L0_ary_len = L0;
duke@435 935 Register L1_ary_ptr = L1;
duke@435 936 Register L2_super = L2;
duke@435 937 Register L3_index = L3;
duke@435 938
coleenp@548 939 #ifdef _LP64
coleenp@548 940 Register L4_ooptmp = L4;
coleenp@548 941
coleenp@548 942 if (UseCompressedOops) {
coleenp@548 943 // this must be under UseCompressedOops check, as we rely upon fact
coleenp@548 944 // that L4 not clobbered in C2 on 32-bit platforms, where we do explicit save
coleenp@548 945 // on stack, see several lines above
coleenp@548 946 __ encode_heap_oop(Rsuper, L4_ooptmp);
coleenp@548 947 }
coleenp@548 948 #endif
coleenp@548 949
duke@435 950 inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
duke@435 951
duke@435 952 __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
duke@435 953 __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
duke@435 954 __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
duke@435 955 __ clr(L3_index); // zero index
duke@435 956 // Load a little early; will load 1 off the end of the array.
duke@435 957 // Ok for now; revisit if we have other uses of this routine.
coleenp@548 958 if (UseCompressedOops) {
coleenp@548 959 __ ld(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 960 } else {
coleenp@548 961 __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 962 }
coleenp@548 963
coleenp@548 964 assert(heapOopSize != 0, "heapOopSize should be initialized");
duke@435 965 // The scan loop
duke@435 966 __ BIND(loop);
coleenp@548 967 __ add(L1_ary_ptr, heapOopSize, L1_ary_ptr); // Bump by OOP size
duke@435 968 __ cmp(L3_index,L0_ary_len);
duke@435 969 __ br(Assembler::equal,false,Assembler::pn,miss);
duke@435 970 __ delayed()->inc(L3_index); // Bump index
coleenp@548 971
coleenp@548 972 if (UseCompressedOops) {
coleenp@548 973 #ifdef _LP64
coleenp@548 974 __ subcc(L2_super,L4_ooptmp,Rret); // Check for match; zero in Rret for a hit
coleenp@548 975 __ br( Assembler::notEqual, false, Assembler::pt, loop );
coleenp@548 976 __ delayed()->ld(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 977 #else
coleenp@548 978 ShouldNotReachHere();
coleenp@548 979 #endif
coleenp@548 980 } else {
coleenp@548 981 __ subcc(L2_super,Rsuper,Rret); // Check for match; zero in Rret for a hit
coleenp@548 982 __ brx( Assembler::notEqual, false, Assembler::pt, loop );
coleenp@548 983 __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
coleenp@548 984 }
duke@435 985
duke@435 986 // Got a hit; report success; set cache. Cache load doesn't
duke@435 987 // happen here; for speed it is directly emitted by the compiler.
duke@435 988 __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
duke@435 989
duke@435 990 #if defined(COMPILER2) && !defined(_LP64)
duke@435 991 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 992 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 993 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 994 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 995 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 996 __ delayed()->add(SP,4*wordSize,SP);
duke@435 997 #else
duke@435 998 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 999 __ delayed()->restore();
duke@435 1000 #endif
duke@435 1001
duke@435 1002 // Hit or miss falls through here
duke@435 1003 __ BIND(miss);
duke@435 1004 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 1005
duke@435 1006 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1007 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 1008 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 1009 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 1010 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 1011 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 1012 __ delayed()->add(SP,4*wordSize,SP);
duke@435 1013 #else
duke@435 1014 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 1015 __ delayed()->restore();
duke@435 1016 #endif
duke@435 1017
duke@435 1018 return start;
duke@435 1019 }
duke@435 1020
duke@435 1021
duke@435 1022 // Called from MacroAssembler::verify_oop
duke@435 1023 //
duke@435 1024 address generate_verify_oop_subroutine() {
duke@435 1025 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 1026
duke@435 1027 address start = __ pc();
duke@435 1028
duke@435 1029 __ verify_oop_subroutine();
duke@435 1030
duke@435 1031 return start;
duke@435 1032 }
duke@435 1033
duke@435 1034 static address disjoint_byte_copy_entry;
duke@435 1035 static address disjoint_short_copy_entry;
duke@435 1036 static address disjoint_int_copy_entry;
duke@435 1037 static address disjoint_long_copy_entry;
duke@435 1038 static address disjoint_oop_copy_entry;
duke@435 1039
duke@435 1040 static address byte_copy_entry;
duke@435 1041 static address short_copy_entry;
duke@435 1042 static address int_copy_entry;
duke@435 1043 static address long_copy_entry;
duke@435 1044 static address oop_copy_entry;
duke@435 1045
duke@435 1046 static address checkcast_copy_entry;
duke@435 1047
duke@435 1048 //
duke@435 1049 // Verify that a register contains clean 32-bits positive value
duke@435 1050 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 1051 //
duke@435 1052 // Input:
duke@435 1053 // Rint - 32-bits value
duke@435 1054 // Rtmp - scratch
duke@435 1055 //
duke@435 1056 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1057 #if defined(ASSERT) && defined(_LP64)
duke@435 1058 __ signx(Rint, Rtmp);
duke@435 1059 __ cmp(Rint, Rtmp);
duke@435 1060 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 1061 #endif
duke@435 1062 }
duke@435 1063
duke@435 1064 //
duke@435 1065 // Generate overlap test for array copy stubs
duke@435 1066 //
duke@435 1067 // Input:
duke@435 1068 // O0 - array1
duke@435 1069 // O1 - array2
duke@435 1070 // O2 - element count
duke@435 1071 //
duke@435 1072 // Kills temps: O3, O4
duke@435 1073 //
duke@435 1074 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 1075 assert(no_overlap_target != NULL, "must be generated");
duke@435 1076 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 1077 }
duke@435 1078 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 1079 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1080 }
duke@435 1081 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1082 const Register from = O0;
duke@435 1083 const Register to = O1;
duke@435 1084 const Register count = O2;
duke@435 1085 const Register to_from = O3; // to - from
duke@435 1086 const Register byte_count = O4; // count << log2_elem_size
duke@435 1087
duke@435 1088 __ subcc(to, from, to_from);
duke@435 1089 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1090 if (NOLp == NULL)
duke@435 1091 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1092 else
duke@435 1093 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1094 __ delayed()->cmp(to_from, byte_count);
duke@435 1095 if (NOLp == NULL)
duke@435 1096 __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
duke@435 1097 else
duke@435 1098 __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
duke@435 1099 __ delayed()->nop();
duke@435 1100 }
duke@435 1101
duke@435 1102 //
duke@435 1103 // Generate pre-write barrier for array.
duke@435 1104 //
duke@435 1105 // Input:
duke@435 1106 // addr - register containing starting address
duke@435 1107 // count - register containing element count
duke@435 1108 // tmp - scratch register
duke@435 1109 //
duke@435 1110 // The input registers are overwritten.
duke@435 1111 //
duke@435 1112 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1113 #if 0 // G1 only
duke@435 1114 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1115 if (bs->has_write_ref_pre_barrier()) {
duke@435 1116 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1117 "Else unsupported barrier set.");
duke@435 1118
duke@435 1119 assert(addr->is_global() && count->is_global(),
duke@435 1120 "If not, then we have to fix this code to handle more "
duke@435 1121 "general cases.");
duke@435 1122 // Get some new fresh output registers.
duke@435 1123 __ save_frame(0);
duke@435 1124 // Save the necessary global regs... will be used after.
duke@435 1125 __ mov(addr, L0);
duke@435 1126 __ mov(count, L1);
duke@435 1127
duke@435 1128 __ mov(addr, O0);
duke@435 1129 // Get the count into O1
duke@435 1130 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
duke@435 1131 __ delayed()->mov(count, O1);
duke@435 1132 __ mov(L0, addr);
duke@435 1133 __ mov(L1, count);
duke@435 1134 __ restore();
duke@435 1135 }
duke@435 1136 #endif // 0
duke@435 1137 }
duke@435 1138 //
duke@435 1139 // Generate post-write barrier for array.
duke@435 1140 //
duke@435 1141 // Input:
duke@435 1142 // addr - register containing starting address
duke@435 1143 // count - register containing element count
duke@435 1144 // tmp - scratch register
duke@435 1145 //
duke@435 1146 // The input registers are overwritten.
duke@435 1147 //
duke@435 1148 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1149 Register tmp) {
duke@435 1150 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1151
duke@435 1152 switch (bs->kind()) {
duke@435 1153 #if 0 // G1 - only
duke@435 1154 case BarrierSet::G1SATBCT:
duke@435 1155 case BarrierSet::G1SATBCTLogging:
duke@435 1156 {
duke@435 1157 assert(addr->is_global() && count->is_global(),
duke@435 1158 "If not, then we have to fix this code to handle more "
duke@435 1159 "general cases.");
duke@435 1160 // Get some new fresh output registers.
duke@435 1161 __ save_frame(0);
duke@435 1162 __ mov(addr, O0);
duke@435 1163 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
duke@435 1164 __ delayed()->mov(count, O1);
duke@435 1165 __ restore();
duke@435 1166 }
duke@435 1167 break;
duke@435 1168 #endif // 0 G1 - only
duke@435 1169 case BarrierSet::CardTableModRef:
duke@435 1170 case BarrierSet::CardTableExtension:
duke@435 1171 {
duke@435 1172 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1173 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1174 assert_different_registers(addr, count, tmp);
duke@435 1175
duke@435 1176 Label L_loop;
duke@435 1177
coleenp@548 1178 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1179 __ sub(count, BytesPerHeapOop, count);
duke@435 1180 __ add(count, addr, count);
duke@435 1181 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1182 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1183 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1184 __ sub(count, addr, count);
duke@435 1185 Address rs(tmp, (address)ct->byte_map_base);
duke@435 1186 __ load_address(rs);
duke@435 1187 __ BIND(L_loop);
duke@435 1188 __ stb(G0, rs.base(), addr);
duke@435 1189 __ subcc(count, 1, count);
duke@435 1190 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1191 __ delayed()->add(addr, 1, addr);
duke@435 1192
duke@435 1193 }
duke@435 1194 break;
duke@435 1195 case BarrierSet::ModRef:
duke@435 1196 break;
duke@435 1197 default :
duke@435 1198 ShouldNotReachHere();
duke@435 1199
duke@435 1200 }
duke@435 1201 }
duke@435 1202
duke@435 1203
duke@435 1204 // Copy big chunks forward with shift
duke@435 1205 //
duke@435 1206 // Inputs:
duke@435 1207 // from - source arrays
duke@435 1208 // to - destination array aligned to 8-bytes
duke@435 1209 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1210 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1211 // L_copy_bytes - copy exit label
duke@435 1212 //
duke@435 1213 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1214 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1215 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1216
duke@435 1217 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1218 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1219 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1220 __ delayed()->nop();
duke@435 1221
duke@435 1222 const Register left_shift = G1; // left shift bit counter
duke@435 1223 const Register right_shift = G5; // right shift bit counter
duke@435 1224
duke@435 1225 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1226 __ mov(64, right_shift);
duke@435 1227 __ sub(right_shift, left_shift, right_shift);
duke@435 1228
duke@435 1229 //
duke@435 1230 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1231 // to form 2 aligned 8-bytes chunks to store.
duke@435 1232 //
duke@435 1233 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1234 __ andn(from, 7, from); // Align address
duke@435 1235 __ ldx(from, 0, O3);
duke@435 1236 __ inc(from, 8);
duke@435 1237 __ align(16);
duke@435 1238 __ BIND(L_loop);
duke@435 1239 __ ldx(from, 0, O4);
duke@435 1240 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1241 __ ldx(from, 8, G4);
duke@435 1242 __ inc(to, 16);
duke@435 1243 __ inc(from, 16);
duke@435 1244 __ sllx(O3, left_shift, O3);
duke@435 1245 __ srlx(O4, right_shift, G3);
duke@435 1246 __ bset(G3, O3);
duke@435 1247 __ stx(O3, to, -16);
duke@435 1248 __ sllx(O4, left_shift, O4);
duke@435 1249 __ srlx(G4, right_shift, G3);
duke@435 1250 __ bset(G3, O4);
duke@435 1251 __ stx(O4, to, -8);
duke@435 1252 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1253 __ delayed()->mov(G4, O3);
duke@435 1254
duke@435 1255 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1256 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1257 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1258
duke@435 1259 // copy 8 bytes, part of them already loaded in O3
duke@435 1260 __ ldx(from, 0, O4);
duke@435 1261 __ inc(to, 8);
duke@435 1262 __ inc(from, 8);
duke@435 1263 __ sllx(O3, left_shift, O3);
duke@435 1264 __ srlx(O4, right_shift, G3);
duke@435 1265 __ bset(O3, G3);
duke@435 1266 __ stx(G3, to, -8);
duke@435 1267
duke@435 1268 __ BIND(L_copy_last_bytes);
duke@435 1269 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1270 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1271 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1272
duke@435 1273 __ BIND(L_aligned_copy);
duke@435 1274 }
duke@435 1275
duke@435 1276 // Copy big chunks backward with shift
duke@435 1277 //
duke@435 1278 // Inputs:
duke@435 1279 // end_from - source arrays end address
duke@435 1280 // end_to - destination array end address aligned to 8-bytes
duke@435 1281 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1282 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1283 // L_aligned_copy - aligned copy exit label
duke@435 1284 // L_copy_bytes - copy exit label
duke@435 1285 //
duke@435 1286 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1287 Register count, int count_dec,
duke@435 1288 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1289 Label L_loop, L_copy_last_bytes;
duke@435 1290
duke@435 1291 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1292 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1293 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1294 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1295
duke@435 1296 const Register left_shift = G1; // left shift bit counter
duke@435 1297 const Register right_shift = G5; // right shift bit counter
duke@435 1298
duke@435 1299 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1300 __ mov(64, right_shift);
duke@435 1301 __ sub(right_shift, left_shift, right_shift);
duke@435 1302
duke@435 1303 //
duke@435 1304 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1305 // to form 2 aligned 8-bytes chunks to store.
duke@435 1306 //
duke@435 1307 __ andn(end_from, 7, end_from); // Align address
duke@435 1308 __ ldx(end_from, 0, O3);
duke@435 1309 __ align(16);
duke@435 1310 __ BIND(L_loop);
duke@435 1311 __ ldx(end_from, -8, O4);
duke@435 1312 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1313 __ ldx(end_from, -16, G4);
duke@435 1314 __ dec(end_to, 16);
duke@435 1315 __ dec(end_from, 16);
duke@435 1316 __ srlx(O3, right_shift, O3);
duke@435 1317 __ sllx(O4, left_shift, G3);
duke@435 1318 __ bset(G3, O3);
duke@435 1319 __ stx(O3, end_to, 8);
duke@435 1320 __ srlx(O4, right_shift, O4);
duke@435 1321 __ sllx(G4, left_shift, G3);
duke@435 1322 __ bset(G3, O4);
duke@435 1323 __ stx(O4, end_to, 0);
duke@435 1324 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1325 __ delayed()->mov(G4, O3);
duke@435 1326
duke@435 1327 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1328 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1329 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1330
duke@435 1331 // copy 8 bytes, part of them already loaded in O3
duke@435 1332 __ ldx(end_from, -8, O4);
duke@435 1333 __ dec(end_to, 8);
duke@435 1334 __ dec(end_from, 8);
duke@435 1335 __ srlx(O3, right_shift, O3);
duke@435 1336 __ sllx(O4, left_shift, G3);
duke@435 1337 __ bset(O3, G3);
duke@435 1338 __ stx(G3, end_to, 0);
duke@435 1339
duke@435 1340 __ BIND(L_copy_last_bytes);
duke@435 1341 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1342 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1343 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1344 }
duke@435 1345
duke@435 1346 //
duke@435 1347 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1348 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1349 //
duke@435 1350 // Arguments for generated stub:
duke@435 1351 // from: O0
duke@435 1352 // to: O1
duke@435 1353 // count: O2 treated as signed
duke@435 1354 //
duke@435 1355 address generate_disjoint_byte_copy(bool aligned, const char * name) {
duke@435 1356 __ align(CodeEntryAlignment);
duke@435 1357 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1358 address start = __ pc();
duke@435 1359
duke@435 1360 Label L_skip_alignment, L_align;
duke@435 1361 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1362
duke@435 1363 const Register from = O0; // source array address
duke@435 1364 const Register to = O1; // destination array address
duke@435 1365 const Register count = O2; // elements count
duke@435 1366 const Register offset = O5; // offset from start of arrays
duke@435 1367 // O3, O4, G3, G4 are used as temp registers
duke@435 1368
duke@435 1369 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1370
duke@435 1371 if (!aligned) disjoint_byte_copy_entry = __ pc();
duke@435 1372 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1373 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1374
duke@435 1375 // for short arrays, just do single element copy
duke@435 1376 __ cmp(count, 23); // 16 + 7
duke@435 1377 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1378 __ delayed()->mov(G0, offset);
duke@435 1379
duke@435 1380 if (aligned) {
duke@435 1381 // 'aligned' == true when it is known statically during compilation
duke@435 1382 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1383 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1384 //
duke@435 1385 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1386 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1387 //
duke@435 1388 #ifndef _LP64
duke@435 1389 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1390 __ andcc(to, 7, G0);
duke@435 1391 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1392 __ delayed()->ld(from, 0, O3);
duke@435 1393 __ inc(from, 4);
duke@435 1394 __ inc(to, 4);
duke@435 1395 __ dec(count, 4);
duke@435 1396 __ st(O3, to, -4);
duke@435 1397 __ BIND(L_skip_alignment);
duke@435 1398 #endif
duke@435 1399 } else {
duke@435 1400 // copy bytes to align 'to' on 8 byte boundary
duke@435 1401 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1402 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1403 __ delayed()->neg(G1);
duke@435 1404 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1405 __ sub(count, G1, count);
duke@435 1406 __ BIND(L_align);
duke@435 1407 __ ldub(from, 0, O3);
duke@435 1408 __ deccc(G1);
duke@435 1409 __ inc(from);
duke@435 1410 __ stb(O3, to, 0);
duke@435 1411 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1412 __ delayed()->inc(to);
duke@435 1413 __ BIND(L_skip_alignment);
duke@435 1414 }
duke@435 1415 #ifdef _LP64
duke@435 1416 if (!aligned)
duke@435 1417 #endif
duke@435 1418 {
duke@435 1419 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1420 // the same alignment mod 8, otherwise fall through to the next
duke@435 1421 // code for aligned copy.
duke@435 1422 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1423 // Also jump over aligned copy after the copy with shift completed.
duke@435 1424
duke@435 1425 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1426 }
duke@435 1427
duke@435 1428 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1429 __ and3(count, 7, G4); // Save count
duke@435 1430 __ srl(count, 3, count);
duke@435 1431 generate_disjoint_long_copy_core(aligned);
duke@435 1432 __ mov(G4, count); // Restore count
duke@435 1433
duke@435 1434 // copy tailing bytes
duke@435 1435 __ BIND(L_copy_byte);
duke@435 1436 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1437 __ delayed()->nop();
duke@435 1438 __ align(16);
duke@435 1439 __ BIND(L_copy_byte_loop);
duke@435 1440 __ ldub(from, offset, O3);
duke@435 1441 __ deccc(count);
duke@435 1442 __ stb(O3, to, offset);
duke@435 1443 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1444 __ delayed()->inc(offset);
duke@435 1445
duke@435 1446 __ BIND(L_exit);
duke@435 1447 // O3, O4 are used as temp registers
duke@435 1448 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1449 __ retl();
duke@435 1450 __ delayed()->mov(G0, O0); // return 0
duke@435 1451 return start;
duke@435 1452 }
duke@435 1453
duke@435 1454 //
duke@435 1455 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1456 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1457 //
duke@435 1458 // Arguments for generated stub:
duke@435 1459 // from: O0
duke@435 1460 // to: O1
duke@435 1461 // count: O2 treated as signed
duke@435 1462 //
duke@435 1463 address generate_conjoint_byte_copy(bool aligned, const char * name) {
duke@435 1464 // Do reverse copy.
duke@435 1465
duke@435 1466 __ align(CodeEntryAlignment);
duke@435 1467 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1468 address start = __ pc();
duke@435 1469 address nooverlap_target = aligned ?
duke@435 1470 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
duke@435 1471 disjoint_byte_copy_entry;
duke@435 1472
duke@435 1473 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1474 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1475
duke@435 1476 const Register from = O0; // source array address
duke@435 1477 const Register to = O1; // destination array address
duke@435 1478 const Register count = O2; // elements count
duke@435 1479 const Register end_from = from; // source array end address
duke@435 1480 const Register end_to = to; // destination array end address
duke@435 1481
duke@435 1482 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1483
duke@435 1484 if (!aligned) byte_copy_entry = __ pc();
duke@435 1485 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1486 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1487
duke@435 1488 array_overlap_test(nooverlap_target, 0);
duke@435 1489
duke@435 1490 __ add(to, count, end_to); // offset after last copied element
duke@435 1491
duke@435 1492 // for short arrays, just do single element copy
duke@435 1493 __ cmp(count, 23); // 16 + 7
duke@435 1494 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1495 __ delayed()->add(from, count, end_from);
duke@435 1496
duke@435 1497 {
duke@435 1498 // Align end of arrays since they could be not aligned even
duke@435 1499 // when arrays itself are aligned.
duke@435 1500
duke@435 1501 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1502 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1503 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1504 __ delayed()->nop();
duke@435 1505 __ sub(count, G1, count);
duke@435 1506 __ BIND(L_align);
duke@435 1507 __ dec(end_from);
duke@435 1508 __ dec(end_to);
duke@435 1509 __ ldub(end_from, 0, O3);
duke@435 1510 __ deccc(G1);
duke@435 1511 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1512 __ delayed()->stb(O3, end_to, 0);
duke@435 1513 __ BIND(L_skip_alignment);
duke@435 1514 }
duke@435 1515 #ifdef _LP64
duke@435 1516 if (aligned) {
duke@435 1517 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1518 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1519 // in unaligned case.
duke@435 1520 __ dec(count, 16);
duke@435 1521 } else
duke@435 1522 #endif
duke@435 1523 {
duke@435 1524 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1525 // the same alignment mod 8, otherwise jump to the next
duke@435 1526 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1527 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1528 // Also jump over aligned copy after the copy with shift completed.
duke@435 1529
duke@435 1530 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1531 L_aligned_copy, L_copy_byte);
duke@435 1532 }
duke@435 1533 // copy 4 elements (16 bytes) at a time
duke@435 1534 __ align(16);
duke@435 1535 __ BIND(L_aligned_copy);
duke@435 1536 __ dec(end_from, 16);
duke@435 1537 __ ldx(end_from, 8, O3);
duke@435 1538 __ ldx(end_from, 0, O4);
duke@435 1539 __ dec(end_to, 16);
duke@435 1540 __ deccc(count, 16);
duke@435 1541 __ stx(O3, end_to, 8);
duke@435 1542 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1543 __ delayed()->stx(O4, end_to, 0);
duke@435 1544 __ inc(count, 16);
duke@435 1545
duke@435 1546 // copy 1 element (2 bytes) at a time
duke@435 1547 __ BIND(L_copy_byte);
duke@435 1548 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1549 __ delayed()->nop();
duke@435 1550 __ align(16);
duke@435 1551 __ BIND(L_copy_byte_loop);
duke@435 1552 __ dec(end_from);
duke@435 1553 __ dec(end_to);
duke@435 1554 __ ldub(end_from, 0, O4);
duke@435 1555 __ deccc(count);
duke@435 1556 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1557 __ delayed()->stb(O4, end_to, 0);
duke@435 1558
duke@435 1559 __ BIND(L_exit);
duke@435 1560 // O3, O4 are used as temp registers
duke@435 1561 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1562 __ retl();
duke@435 1563 __ delayed()->mov(G0, O0); // return 0
duke@435 1564 return start;
duke@435 1565 }
duke@435 1566
duke@435 1567 //
duke@435 1568 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1569 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1570 //
duke@435 1571 // Arguments for generated stub:
duke@435 1572 // from: O0
duke@435 1573 // to: O1
duke@435 1574 // count: O2 treated as signed
duke@435 1575 //
duke@435 1576 address generate_disjoint_short_copy(bool aligned, const char * name) {
duke@435 1577 __ align(CodeEntryAlignment);
duke@435 1578 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1579 address start = __ pc();
duke@435 1580
duke@435 1581 Label L_skip_alignment, L_skip_alignment2;
duke@435 1582 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1583
duke@435 1584 const Register from = O0; // source array address
duke@435 1585 const Register to = O1; // destination array address
duke@435 1586 const Register count = O2; // elements count
duke@435 1587 const Register offset = O5; // offset from start of arrays
duke@435 1588 // O3, O4, G3, G4 are used as temp registers
duke@435 1589
duke@435 1590 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1591
duke@435 1592 if (!aligned) disjoint_short_copy_entry = __ pc();
duke@435 1593 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1594 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1595
duke@435 1596 // for short arrays, just do single element copy
duke@435 1597 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1598 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1599 __ delayed()->mov(G0, offset);
duke@435 1600
duke@435 1601 if (aligned) {
duke@435 1602 // 'aligned' == true when it is known statically during compilation
duke@435 1603 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1604 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1605 //
duke@435 1606 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1607 // and 8 bytes - in 64-bits VM.
duke@435 1608 //
duke@435 1609 #ifndef _LP64
duke@435 1610 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1611 __ andcc(to, 7, G0);
duke@435 1612 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1613 __ delayed()->ld(from, 0, O3);
duke@435 1614 __ inc(from, 4);
duke@435 1615 __ inc(to, 4);
duke@435 1616 __ dec(count, 2);
duke@435 1617 __ st(O3, to, -4);
duke@435 1618 __ BIND(L_skip_alignment);
duke@435 1619 #endif
duke@435 1620 } else {
duke@435 1621 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1622 __ andcc(to, 3, G0);
duke@435 1623 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1624 __ delayed()->lduh(from, 0, O3);
duke@435 1625 __ inc(from, 2);
duke@435 1626 __ inc(to, 2);
duke@435 1627 __ dec(count);
duke@435 1628 __ sth(O3, to, -2);
duke@435 1629 __ BIND(L_skip_alignment);
duke@435 1630
duke@435 1631 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1632 __ andcc(to, 7, G0);
duke@435 1633 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1634 __ delayed()->lduh(from, 0, O3);
duke@435 1635 __ dec(count, 2);
duke@435 1636 __ lduh(from, 2, O4);
duke@435 1637 __ inc(from, 4);
duke@435 1638 __ inc(to, 4);
duke@435 1639 __ sth(O3, to, -4);
duke@435 1640 __ sth(O4, to, -2);
duke@435 1641 __ BIND(L_skip_alignment2);
duke@435 1642 }
duke@435 1643 #ifdef _LP64
duke@435 1644 if (!aligned)
duke@435 1645 #endif
duke@435 1646 {
duke@435 1647 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1648 // the same alignment mod 8, otherwise fall through to the next
duke@435 1649 // code for aligned copy.
duke@435 1650 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1651 // Also jump over aligned copy after the copy with shift completed.
duke@435 1652
duke@435 1653 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1654 }
duke@435 1655
duke@435 1656 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1657 __ and3(count, 3, G4); // Save
duke@435 1658 __ srl(count, 2, count);
duke@435 1659 generate_disjoint_long_copy_core(aligned);
duke@435 1660 __ mov(G4, count); // restore
duke@435 1661
duke@435 1662 // copy 1 element at a time
duke@435 1663 __ BIND(L_copy_2_bytes);
duke@435 1664 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1665 __ delayed()->nop();
duke@435 1666 __ align(16);
duke@435 1667 __ BIND(L_copy_2_bytes_loop);
duke@435 1668 __ lduh(from, offset, O3);
duke@435 1669 __ deccc(count);
duke@435 1670 __ sth(O3, to, offset);
duke@435 1671 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1672 __ delayed()->inc(offset, 2);
duke@435 1673
duke@435 1674 __ BIND(L_exit);
duke@435 1675 // O3, O4 are used as temp registers
duke@435 1676 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1677 __ retl();
duke@435 1678 __ delayed()->mov(G0, O0); // return 0
duke@435 1679 return start;
duke@435 1680 }
duke@435 1681
duke@435 1682 //
duke@435 1683 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1684 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1685 //
duke@435 1686 // Arguments for generated stub:
duke@435 1687 // from: O0
duke@435 1688 // to: O1
duke@435 1689 // count: O2 treated as signed
duke@435 1690 //
duke@435 1691 address generate_conjoint_short_copy(bool aligned, const char * name) {
duke@435 1692 // Do reverse copy.
duke@435 1693
duke@435 1694 __ align(CodeEntryAlignment);
duke@435 1695 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1696 address start = __ pc();
duke@435 1697 address nooverlap_target = aligned ?
duke@435 1698 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
duke@435 1699 disjoint_short_copy_entry;
duke@435 1700
duke@435 1701 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1702 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1703
duke@435 1704 const Register from = O0; // source array address
duke@435 1705 const Register to = O1; // destination array address
duke@435 1706 const Register count = O2; // elements count
duke@435 1707 const Register end_from = from; // source array end address
duke@435 1708 const Register end_to = to; // destination array end address
duke@435 1709
duke@435 1710 const Register byte_count = O3; // bytes count to copy
duke@435 1711
duke@435 1712 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1713
duke@435 1714 if (!aligned) short_copy_entry = __ pc();
duke@435 1715 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1716 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1717
duke@435 1718 array_overlap_test(nooverlap_target, 1);
duke@435 1719
duke@435 1720 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1721 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1722
duke@435 1723 // for short arrays, just do single element copy
duke@435 1724 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1725 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1726 __ delayed()->add(from, byte_count, end_from);
duke@435 1727
duke@435 1728 {
duke@435 1729 // Align end of arrays since they could be not aligned even
duke@435 1730 // when arrays itself are aligned.
duke@435 1731
duke@435 1732 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1733 __ andcc(end_to, 3, G0);
duke@435 1734 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1735 __ delayed()->lduh(end_from, -2, O3);
duke@435 1736 __ dec(end_from, 2);
duke@435 1737 __ dec(end_to, 2);
duke@435 1738 __ dec(count);
duke@435 1739 __ sth(O3, end_to, 0);
duke@435 1740 __ BIND(L_skip_alignment);
duke@435 1741
duke@435 1742 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1743 __ andcc(end_to, 7, G0);
duke@435 1744 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1745 __ delayed()->lduh(end_from, -2, O3);
duke@435 1746 __ dec(count, 2);
duke@435 1747 __ lduh(end_from, -4, O4);
duke@435 1748 __ dec(end_from, 4);
duke@435 1749 __ dec(end_to, 4);
duke@435 1750 __ sth(O3, end_to, 2);
duke@435 1751 __ sth(O4, end_to, 0);
duke@435 1752 __ BIND(L_skip_alignment2);
duke@435 1753 }
duke@435 1754 #ifdef _LP64
duke@435 1755 if (aligned) {
duke@435 1756 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1757 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1758 // in unaligned case.
duke@435 1759 __ dec(count, 8);
duke@435 1760 } else
duke@435 1761 #endif
duke@435 1762 {
duke@435 1763 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1764 // the same alignment mod 8, otherwise jump to the next
duke@435 1765 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1766 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1767 // Also jump over aligned copy after the copy with shift completed.
duke@435 1768
duke@435 1769 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1770 L_aligned_copy, L_copy_2_bytes);
duke@435 1771 }
duke@435 1772 // copy 4 elements (16 bytes) at a time
duke@435 1773 __ align(16);
duke@435 1774 __ BIND(L_aligned_copy);
duke@435 1775 __ dec(end_from, 16);
duke@435 1776 __ ldx(end_from, 8, O3);
duke@435 1777 __ ldx(end_from, 0, O4);
duke@435 1778 __ dec(end_to, 16);
duke@435 1779 __ deccc(count, 8);
duke@435 1780 __ stx(O3, end_to, 8);
duke@435 1781 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1782 __ delayed()->stx(O4, end_to, 0);
duke@435 1783 __ inc(count, 8);
duke@435 1784
duke@435 1785 // copy 1 element (2 bytes) at a time
duke@435 1786 __ BIND(L_copy_2_bytes);
duke@435 1787 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1788 __ delayed()->nop();
duke@435 1789 __ BIND(L_copy_2_bytes_loop);
duke@435 1790 __ dec(end_from, 2);
duke@435 1791 __ dec(end_to, 2);
duke@435 1792 __ lduh(end_from, 0, O4);
duke@435 1793 __ deccc(count);
duke@435 1794 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1795 __ delayed()->sth(O4, end_to, 0);
duke@435 1796
duke@435 1797 __ BIND(L_exit);
duke@435 1798 // O3, O4 are used as temp registers
duke@435 1799 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1800 __ retl();
duke@435 1801 __ delayed()->mov(G0, O0); // return 0
duke@435 1802 return start;
duke@435 1803 }
duke@435 1804
duke@435 1805 //
duke@435 1806 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1807 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1808 // to be heapword aligned.
duke@435 1809 //
duke@435 1810 // Arguments:
duke@435 1811 // from: O0
duke@435 1812 // to: O1
duke@435 1813 // count: O2 treated as signed
duke@435 1814 //
duke@435 1815 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1816
duke@435 1817 Label L_skip_alignment, L_aligned_copy;
duke@435 1818 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1819
duke@435 1820 const Register from = O0; // source array address
duke@435 1821 const Register to = O1; // destination array address
duke@435 1822 const Register count = O2; // elements count
duke@435 1823 const Register offset = O5; // offset from start of arrays
duke@435 1824 // O3, O4, G3, G4 are used as temp registers
duke@435 1825
duke@435 1826 // 'aligned' == true when it is known statically during compilation
duke@435 1827 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1828 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1829 //
duke@435 1830 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1831 // and 8 bytes - in 64-bits VM.
duke@435 1832 //
duke@435 1833 #ifdef _LP64
duke@435 1834 if (!aligned)
duke@435 1835 #endif
duke@435 1836 {
duke@435 1837 // The next check could be put under 'ifndef' since the code in
duke@435 1838 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1839
duke@435 1840 // for short arrays, just do single element copy
duke@435 1841 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1842 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1843 __ delayed()->mov(G0, offset);
duke@435 1844
duke@435 1845 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1846 __ andcc(to, 7, G0);
duke@435 1847 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1848 __ delayed()->ld(from, 0, O3);
duke@435 1849 __ inc(from, 4);
duke@435 1850 __ inc(to, 4);
duke@435 1851 __ dec(count);
duke@435 1852 __ st(O3, to, -4);
duke@435 1853 __ BIND(L_skip_alignment);
duke@435 1854
duke@435 1855 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 1856 __ andcc(from, 7, G0);
duke@435 1857 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1858 __ delayed()->ld(from, 0, O3);
duke@435 1859
duke@435 1860 //
duke@435 1861 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1862 // to form 2 aligned 8-bytes chunks to store.
duke@435 1863 //
duke@435 1864 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 1865 // code is more optimal.
duke@435 1866
duke@435 1867 // copy with shift 4 elements (16 bytes) at a time
duke@435 1868 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 1869
duke@435 1870 __ align(16);
duke@435 1871 __ BIND(L_copy_16_bytes);
duke@435 1872 __ ldx(from, 4, O4);
duke@435 1873 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 1874 __ ldx(from, 12, G4);
duke@435 1875 __ inc(to, 16);
duke@435 1876 __ inc(from, 16);
duke@435 1877 __ sllx(O3, 32, O3);
duke@435 1878 __ srlx(O4, 32, G3);
duke@435 1879 __ bset(G3, O3);
duke@435 1880 __ stx(O3, to, -16);
duke@435 1881 __ sllx(O4, 32, O4);
duke@435 1882 __ srlx(G4, 32, G3);
duke@435 1883 __ bset(G3, O4);
duke@435 1884 __ stx(O4, to, -8);
duke@435 1885 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1886 __ delayed()->mov(G4, O3);
duke@435 1887
duke@435 1888 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1889 __ delayed()->inc(count, 4); // restore 'count'
duke@435 1890
duke@435 1891 __ BIND(L_aligned_copy);
duke@435 1892 }
duke@435 1893 // copy 4 elements (16 bytes) at a time
duke@435 1894 __ and3(count, 1, G4); // Save
duke@435 1895 __ srl(count, 1, count);
duke@435 1896 generate_disjoint_long_copy_core(aligned);
duke@435 1897 __ mov(G4, count); // Restore
duke@435 1898
duke@435 1899 // copy 1 element at a time
duke@435 1900 __ BIND(L_copy_4_bytes);
duke@435 1901 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1902 __ delayed()->nop();
duke@435 1903 __ BIND(L_copy_4_bytes_loop);
duke@435 1904 __ ld(from, offset, O3);
duke@435 1905 __ deccc(count);
duke@435 1906 __ st(O3, to, offset);
duke@435 1907 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 1908 __ delayed()->inc(offset, 4);
duke@435 1909 __ BIND(L_exit);
duke@435 1910 }
duke@435 1911
duke@435 1912 //
duke@435 1913 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 1914 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1915 //
duke@435 1916 // Arguments for generated stub:
duke@435 1917 // from: O0
duke@435 1918 // to: O1
duke@435 1919 // count: O2 treated as signed
duke@435 1920 //
duke@435 1921 address generate_disjoint_int_copy(bool aligned, const char * name) {
duke@435 1922 __ align(CodeEntryAlignment);
duke@435 1923 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1924 address start = __ pc();
duke@435 1925
duke@435 1926 const Register count = O2;
duke@435 1927 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1928
duke@435 1929 if (!aligned) disjoint_int_copy_entry = __ pc();
duke@435 1930 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1931 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1932
duke@435 1933 generate_disjoint_int_copy_core(aligned);
duke@435 1934
duke@435 1935 // O3, O4 are used as temp registers
duke@435 1936 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 1937 __ retl();
duke@435 1938 __ delayed()->mov(G0, O0); // return 0
duke@435 1939 return start;
duke@435 1940 }
duke@435 1941
duke@435 1942 //
duke@435 1943 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 1944 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1945 // to be heapword aligned.
duke@435 1946 //
duke@435 1947 // Arguments:
duke@435 1948 // from: O0
duke@435 1949 // to: O1
duke@435 1950 // count: O2 treated as signed
duke@435 1951 //
duke@435 1952 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 1953 // Do reverse copy.
duke@435 1954
duke@435 1955 Label L_skip_alignment, L_aligned_copy;
duke@435 1956 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1957
duke@435 1958 const Register from = O0; // source array address
duke@435 1959 const Register to = O1; // destination array address
duke@435 1960 const Register count = O2; // elements count
duke@435 1961 const Register end_from = from; // source array end address
duke@435 1962 const Register end_to = to; // destination array end address
duke@435 1963 // O3, O4, O5, G3 are used as temp registers
duke@435 1964
duke@435 1965 const Register byte_count = O3; // bytes count to copy
duke@435 1966
duke@435 1967 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 1968 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1969
duke@435 1970 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 1971 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1972 __ delayed()->add(from, byte_count, end_from);
duke@435 1973
duke@435 1974 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1975 __ andcc(end_to, 7, G0);
duke@435 1976 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1977 __ delayed()->nop();
duke@435 1978 __ dec(count);
duke@435 1979 __ dec(end_from, 4);
duke@435 1980 __ dec(end_to, 4);
duke@435 1981 __ ld(end_from, 0, O4);
duke@435 1982 __ st(O4, end_to, 0);
duke@435 1983 __ BIND(L_skip_alignment);
duke@435 1984
duke@435 1985 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 1986 __ andcc(end_from, 7, G0);
duke@435 1987 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1988 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 1989
duke@435 1990 // copy with shift 4 elements (16 bytes) at a time
duke@435 1991 //
duke@435 1992 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1993 // to form 2 aligned 8-bytes chunks to store.
duke@435 1994 //
duke@435 1995 __ ldx(end_from, -4, O3);
duke@435 1996 __ align(16);
duke@435 1997 __ BIND(L_copy_16_bytes);
duke@435 1998 __ ldx(end_from, -12, O4);
duke@435 1999 __ deccc(count, 4);
duke@435 2000 __ ldx(end_from, -20, O5);
duke@435 2001 __ dec(end_to, 16);
duke@435 2002 __ dec(end_from, 16);
duke@435 2003 __ srlx(O3, 32, O3);
duke@435 2004 __ sllx(O4, 32, G3);
duke@435 2005 __ bset(G3, O3);
duke@435 2006 __ stx(O3, end_to, 8);
duke@435 2007 __ srlx(O4, 32, O4);
duke@435 2008 __ sllx(O5, 32, G3);
duke@435 2009 __ bset(O4, G3);
duke@435 2010 __ stx(G3, end_to, 0);
duke@435 2011 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2012 __ delayed()->mov(O5, O3);
duke@435 2013
duke@435 2014 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2015 __ delayed()->inc(count, 4);
duke@435 2016
duke@435 2017 // copy 4 elements (16 bytes) at a time
duke@435 2018 __ align(16);
duke@435 2019 __ BIND(L_aligned_copy);
duke@435 2020 __ dec(end_from, 16);
duke@435 2021 __ ldx(end_from, 8, O3);
duke@435 2022 __ ldx(end_from, 0, O4);
duke@435 2023 __ dec(end_to, 16);
duke@435 2024 __ deccc(count, 4);
duke@435 2025 __ stx(O3, end_to, 8);
duke@435 2026 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2027 __ delayed()->stx(O4, end_to, 0);
duke@435 2028 __ inc(count, 4);
duke@435 2029
duke@435 2030 // copy 1 element (4 bytes) at a time
duke@435 2031 __ BIND(L_copy_4_bytes);
duke@435 2032 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2033 __ delayed()->nop();
duke@435 2034 __ BIND(L_copy_4_bytes_loop);
duke@435 2035 __ dec(end_from, 4);
duke@435 2036 __ dec(end_to, 4);
duke@435 2037 __ ld(end_from, 0, O4);
duke@435 2038 __ deccc(count);
duke@435 2039 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2040 __ delayed()->st(O4, end_to, 0);
duke@435 2041 __ BIND(L_exit);
duke@435 2042 }
duke@435 2043
duke@435 2044 //
duke@435 2045 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2046 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2047 //
duke@435 2048 // Arguments for generated stub:
duke@435 2049 // from: O0
duke@435 2050 // to: O1
duke@435 2051 // count: O2 treated as signed
duke@435 2052 //
duke@435 2053 address generate_conjoint_int_copy(bool aligned, const char * name) {
duke@435 2054 __ align(CodeEntryAlignment);
duke@435 2055 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2056 address start = __ pc();
duke@435 2057
duke@435 2058 address nooverlap_target = aligned ?
duke@435 2059 StubRoutines::arrayof_jint_disjoint_arraycopy() :
duke@435 2060 disjoint_int_copy_entry;
duke@435 2061
duke@435 2062 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2063
duke@435 2064 if (!aligned) int_copy_entry = __ pc();
duke@435 2065 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2066 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2067
duke@435 2068 array_overlap_test(nooverlap_target, 2);
duke@435 2069
duke@435 2070 generate_conjoint_int_copy_core(aligned);
duke@435 2071
duke@435 2072 // O3, O4 are used as temp registers
duke@435 2073 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2074 __ retl();
duke@435 2075 __ delayed()->mov(G0, O0); // return 0
duke@435 2076 return start;
duke@435 2077 }
duke@435 2078
duke@435 2079 //
duke@435 2080 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2081 // "aligned" is ignored, because we must make the stronger
duke@435 2082 // assumption that both addresses are always 64-bit aligned.
duke@435 2083 //
duke@435 2084 // Arguments:
duke@435 2085 // from: O0
duke@435 2086 // to: O1
duke@435 2087 // count: O2 treated as signed
duke@435 2088 //
duke@435 2089 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2090 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2091 const Register from = O0; // source array address
duke@435 2092 const Register to = O1; // destination array address
duke@435 2093 const Register count = O2; // elements count
duke@435 2094 const Register offset0 = O4; // element offset
duke@435 2095 const Register offset8 = O5; // next element offset
duke@435 2096
duke@435 2097 __ deccc(count, 2);
duke@435 2098 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2099 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2100 __ delayed()->add(offset0, 8, offset8);
duke@435 2101 __ align(16);
duke@435 2102 __ BIND(L_copy_16_bytes);
duke@435 2103 __ ldx(from, offset0, O3);
duke@435 2104 __ ldx(from, offset8, G3);
duke@435 2105 __ deccc(count, 2);
duke@435 2106 __ stx(O3, to, offset0);
duke@435 2107 __ inc(offset0, 16);
duke@435 2108 __ stx(G3, to, offset8);
duke@435 2109 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2110 __ delayed()->inc(offset8, 16);
duke@435 2111
duke@435 2112 __ BIND(L_copy_8_bytes);
duke@435 2113 __ inccc(count, 2);
duke@435 2114 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2115 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2116 __ ldx(from, offset0, O3);
duke@435 2117 __ stx(O3, to, offset0);
duke@435 2118 __ BIND(L_exit);
duke@435 2119 }
duke@435 2120
duke@435 2121 //
duke@435 2122 // Generate stub for disjoint long copy.
duke@435 2123 // "aligned" is ignored, because we must make the stronger
duke@435 2124 // assumption that both addresses are always 64-bit aligned.
duke@435 2125 //
duke@435 2126 // Arguments for generated stub:
duke@435 2127 // from: O0
duke@435 2128 // to: O1
duke@435 2129 // count: O2 treated as signed
duke@435 2130 //
duke@435 2131 address generate_disjoint_long_copy(bool aligned, const char * name) {
duke@435 2132 __ align(CodeEntryAlignment);
duke@435 2133 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2134 address start = __ pc();
duke@435 2135
duke@435 2136 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2137
duke@435 2138 if (!aligned) disjoint_long_copy_entry = __ pc();
duke@435 2139 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2140 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2141
duke@435 2142 generate_disjoint_long_copy_core(aligned);
duke@435 2143
duke@435 2144 // O3, O4 are used as temp registers
duke@435 2145 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2146 __ retl();
duke@435 2147 __ delayed()->mov(G0, O0); // return 0
duke@435 2148 return start;
duke@435 2149 }
duke@435 2150
duke@435 2151 //
duke@435 2152 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2153 // "aligned" is ignored, because we must make the stronger
duke@435 2154 // assumption that both addresses are always 64-bit aligned.
duke@435 2155 //
duke@435 2156 // Arguments:
duke@435 2157 // from: O0
duke@435 2158 // to: O1
duke@435 2159 // count: O2 treated as signed
duke@435 2160 //
duke@435 2161 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2162 // Do reverse copy.
duke@435 2163 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2164 const Register from = O0; // source array address
duke@435 2165 const Register to = O1; // destination array address
duke@435 2166 const Register count = O2; // elements count
duke@435 2167 const Register offset8 = O4; // element offset
duke@435 2168 const Register offset0 = O5; // previous element offset
duke@435 2169
duke@435 2170 __ subcc(count, 1, count);
duke@435 2171 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2172 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2173 __ sub(offset8, 8, offset0);
duke@435 2174 __ align(16);
duke@435 2175 __ BIND(L_copy_16_bytes);
duke@435 2176 __ ldx(from, offset8, O2);
duke@435 2177 __ ldx(from, offset0, O3);
duke@435 2178 __ stx(O2, to, offset8);
duke@435 2179 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2180 __ stx(O3, to, offset0);
duke@435 2181 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2182 __ delayed()->dec(offset0, 16);
duke@435 2183
duke@435 2184 __ BIND(L_copy_8_bytes);
duke@435 2185 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2186 __ delayed()->nop();
duke@435 2187 __ ldx(from, 0, O3);
duke@435 2188 __ stx(O3, to, 0);
duke@435 2189 __ BIND(L_exit);
duke@435 2190 }
duke@435 2191
duke@435 2192 // Generate stub for conjoint long copy.
duke@435 2193 // "aligned" is ignored, because we must make the stronger
duke@435 2194 // assumption that both addresses are always 64-bit aligned.
duke@435 2195 //
duke@435 2196 // Arguments for generated stub:
duke@435 2197 // from: O0
duke@435 2198 // to: O1
duke@435 2199 // count: O2 treated as signed
duke@435 2200 //
duke@435 2201 address generate_conjoint_long_copy(bool aligned, const char * name) {
duke@435 2202 __ align(CodeEntryAlignment);
duke@435 2203 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2204 address start = __ pc();
duke@435 2205
duke@435 2206 assert(!aligned, "usage");
duke@435 2207 address nooverlap_target = disjoint_long_copy_entry;
duke@435 2208
duke@435 2209 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2210
duke@435 2211 if (!aligned) long_copy_entry = __ pc();
duke@435 2212 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2213 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2214
duke@435 2215 array_overlap_test(nooverlap_target, 3);
duke@435 2216
duke@435 2217 generate_conjoint_long_copy_core(aligned);
duke@435 2218
duke@435 2219 // O3, O4 are used as temp registers
duke@435 2220 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2221 __ retl();
duke@435 2222 __ delayed()->mov(G0, O0); // return 0
duke@435 2223 return start;
duke@435 2224 }
duke@435 2225
duke@435 2226 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2227 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2228 //
duke@435 2229 // Arguments for generated stub:
duke@435 2230 // from: O0
duke@435 2231 // to: O1
duke@435 2232 // count: O2 treated as signed
duke@435 2233 //
duke@435 2234 address generate_disjoint_oop_copy(bool aligned, const char * name) {
duke@435 2235
duke@435 2236 const Register from = O0; // source array address
duke@435 2237 const Register to = O1; // destination array address
duke@435 2238 const Register count = O2; // elements count
duke@435 2239
duke@435 2240 __ align(CodeEntryAlignment);
duke@435 2241 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2242 address start = __ pc();
duke@435 2243
duke@435 2244 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2245
duke@435 2246 if (!aligned) disjoint_oop_copy_entry = __ pc();
duke@435 2247 // caller can pass a 64-bit byte count here
duke@435 2248 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2249
duke@435 2250 // save arguments for barrier generation
duke@435 2251 __ mov(to, G1);
duke@435 2252 __ mov(count, G5);
duke@435 2253 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2254 #ifdef _LP64
coleenp@548 2255 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2256 if (UseCompressedOops) {
coleenp@548 2257 generate_disjoint_int_copy_core(aligned);
coleenp@548 2258 } else {
coleenp@548 2259 generate_disjoint_long_copy_core(aligned);
coleenp@548 2260 }
duke@435 2261 #else
duke@435 2262 generate_disjoint_int_copy_core(aligned);
duke@435 2263 #endif
duke@435 2264 // O0 is used as temp register
duke@435 2265 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2266
duke@435 2267 // O3, O4 are used as temp registers
duke@435 2268 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2269 __ retl();
duke@435 2270 __ delayed()->mov(G0, O0); // return 0
duke@435 2271 return start;
duke@435 2272 }
duke@435 2273
duke@435 2274 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2275 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2276 //
duke@435 2277 // Arguments for generated stub:
duke@435 2278 // from: O0
duke@435 2279 // to: O1
duke@435 2280 // count: O2 treated as signed
duke@435 2281 //
duke@435 2282 address generate_conjoint_oop_copy(bool aligned, const char * name) {
duke@435 2283
duke@435 2284 const Register from = O0; // source array address
duke@435 2285 const Register to = O1; // destination array address
duke@435 2286 const Register count = O2; // elements count
duke@435 2287
duke@435 2288 __ align(CodeEntryAlignment);
duke@435 2289 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2290 address start = __ pc();
duke@435 2291
duke@435 2292 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2293
duke@435 2294 if (!aligned) oop_copy_entry = __ pc();
duke@435 2295 // caller can pass a 64-bit byte count here
duke@435 2296 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2297
duke@435 2298 // save arguments for barrier generation
duke@435 2299 __ mov(to, G1);
duke@435 2300 __ mov(count, G5);
duke@435 2301
duke@435 2302 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2303
duke@435 2304 address nooverlap_target = aligned ?
duke@435 2305 StubRoutines::arrayof_oop_disjoint_arraycopy() :
duke@435 2306 disjoint_oop_copy_entry;
duke@435 2307
coleenp@548 2308 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2309
duke@435 2310 #ifdef _LP64
coleenp@548 2311 if (UseCompressedOops) {
coleenp@548 2312 generate_conjoint_int_copy_core(aligned);
coleenp@548 2313 } else {
coleenp@548 2314 generate_conjoint_long_copy_core(aligned);
coleenp@548 2315 }
duke@435 2316 #else
duke@435 2317 generate_conjoint_int_copy_core(aligned);
duke@435 2318 #endif
duke@435 2319
duke@435 2320 // O0 is used as temp register
duke@435 2321 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2322
duke@435 2323 // O3, O4 are used as temp registers
duke@435 2324 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2325 __ retl();
duke@435 2326 __ delayed()->mov(G0, O0); // return 0
duke@435 2327 return start;
duke@435 2328 }
duke@435 2329
duke@435 2330
duke@435 2331 // Helper for generating a dynamic type check.
duke@435 2332 // Smashes only the given temp registers.
duke@435 2333 void generate_type_check(Register sub_klass,
duke@435 2334 Register super_check_offset,
duke@435 2335 Register super_klass,
duke@435 2336 Register temp,
duke@435 2337 Label& L_success,
duke@435 2338 Register deccc_hack = noreg) {
duke@435 2339 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2340
duke@435 2341 BLOCK_COMMENT("type_check:");
duke@435 2342
duke@435 2343 Label L_miss;
duke@435 2344
duke@435 2345 assert_clean_int(super_check_offset, temp);
duke@435 2346
duke@435 2347 // maybe decrement caller's trip count:
duke@435 2348 #define DELAY_SLOT delayed(); \
duke@435 2349 { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
duke@435 2350
duke@435 2351 // if the pointers are equal, we are done (e.g., String[] elements)
duke@435 2352 __ cmp(sub_klass, super_klass);
duke@435 2353 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2354 __ DELAY_SLOT;
duke@435 2355
duke@435 2356 // check the supertype display:
duke@435 2357 __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
duke@435 2358 __ cmp(super_klass, temp); // test the super type
duke@435 2359 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2360 __ DELAY_SLOT;
duke@435 2361
duke@435 2362 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2363 Klass::secondary_super_cache_offset_in_bytes());
duke@435 2364 __ cmp(super_klass, sc_offset);
duke@435 2365 __ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
duke@435 2366 __ delayed()->nop();
duke@435 2367
duke@435 2368 __ save_frame(0);
duke@435 2369 __ mov(sub_klass->after_save(), O1);
duke@435 2370 // mov(super_klass->after_save(), O2); //fill delay slot
duke@435 2371 assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
duke@435 2372 __ call(StubRoutines::Sparc::_partial_subtype_check);
duke@435 2373 __ delayed()->mov(super_klass->after_save(), O2);
duke@435 2374 __ restore();
duke@435 2375
duke@435 2376 // Upon return, the condition codes are already set.
duke@435 2377 __ brx(Assembler::equal, true, Assembler::pt, L_success);
duke@435 2378 __ DELAY_SLOT;
duke@435 2379
duke@435 2380 #undef DELAY_SLOT
duke@435 2381
duke@435 2382 // Fall through on failure!
duke@435 2383 __ BIND(L_miss);
duke@435 2384 }
duke@435 2385
duke@435 2386
duke@435 2387 // Generate stub for checked oop copy.
duke@435 2388 //
duke@435 2389 // Arguments for generated stub:
duke@435 2390 // from: O0
duke@435 2391 // to: O1
duke@435 2392 // count: O2 treated as signed
duke@435 2393 // ckoff: O3 (super_check_offset)
duke@435 2394 // ckval: O4 (super_klass)
duke@435 2395 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2396 //
duke@435 2397 address generate_checkcast_copy(const char* name) {
duke@435 2398
duke@435 2399 const Register O0_from = O0; // source array address
duke@435 2400 const Register O1_to = O1; // destination array address
duke@435 2401 const Register O2_count = O2; // elements count
duke@435 2402 const Register O3_ckoff = O3; // super_check_offset
duke@435 2403 const Register O4_ckval = O4; // super_klass
duke@435 2404
duke@435 2405 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2406 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2407 const Register G3_oop = G3; // actual oop copied
duke@435 2408 const Register G4_klass = G4; // oop._klass
duke@435 2409 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2410
duke@435 2411 __ align(CodeEntryAlignment);
duke@435 2412 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2413 address start = __ pc();
duke@435 2414
duke@435 2415 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2416
duke@435 2417
duke@435 2418 #ifdef ASSERT
duke@435 2419 // We sometimes save a frame (see partial_subtype_check below).
duke@435 2420 // If this will cause trouble, let's fail now instead of later.
duke@435 2421 __ save_frame(0);
duke@435 2422 __ restore();
duke@435 2423 #endif
duke@435 2424
duke@435 2425 #ifdef ASSERT
duke@435 2426 // caller guarantees that the arrays really are different
duke@435 2427 // otherwise, we would have to make conjoint checks
duke@435 2428 { Label L;
duke@435 2429 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2430 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2431 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2432 __ stop("checkcast_copy within a single array");
duke@435 2433 __ bind(L);
duke@435 2434 __ mov(G1, O3);
duke@435 2435 __ mov(G4, O4);
duke@435 2436 }
duke@435 2437 #endif //ASSERT
duke@435 2438
duke@435 2439 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
duke@435 2440
duke@435 2441 checkcast_copy_entry = __ pc();
duke@435 2442 // caller can pass a 64-bit byte count here (from generic stub)
duke@435 2443 BLOCK_COMMENT("Entry:");
duke@435 2444
duke@435 2445 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2446 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2447 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2448 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2449
duke@435 2450 // Empty array: Nothing to do.
duke@435 2451 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2452 __ retl();
duke@435 2453 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2454
duke@435 2455 // ======== begin loop ========
duke@435 2456 // (Loop is rotated; its entry is load_element.)
duke@435 2457 // Loop variables:
duke@435 2458 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2459 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2460 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
duke@435 2461 __ align(16);
duke@435 2462
duke@435 2463 __ bind(store_element);
duke@435 2464 // deccc(G1_remain); // decrement the count (hoisted)
coleenp@548 2465 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2466 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2467 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2468 __ delayed()->set(0, O0); // return -1 on success
duke@435 2469
duke@435 2470 // ======== loop entry is here ========
duke@435 2471 __ bind(load_element);
coleenp@548 2472 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2473 __ br_null(G3_oop, true, Assembler::pt, store_element);
duke@435 2474 __ delayed()->deccc(G1_remain); // decrement the count
duke@435 2475
coleenp@548 2476 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2477
duke@435 2478 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2479 // branch to this on success:
duke@435 2480 store_element,
duke@435 2481 // decrement this on success:
duke@435 2482 G1_remain);
duke@435 2483 // ======== end loop ========
duke@435 2484
duke@435 2485 // It was a real error; we must depend on the caller to finish the job.
duke@435 2486 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2487 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2488 // and report their number to the caller.
duke@435 2489 __ bind(fail);
duke@435 2490 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2491 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2492 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2493
duke@435 2494 __ bind(do_card_marks);
duke@435 2495 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2496
duke@435 2497 __ bind(done);
duke@435 2498 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2499 __ retl();
duke@435 2500 __ delayed()->nop(); // return value in 00
duke@435 2501
duke@435 2502 return start;
duke@435 2503 }
duke@435 2504
duke@435 2505
duke@435 2506 // Generate 'unsafe' array copy stub
duke@435 2507 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2508 // size_t argument instead of an element count.
duke@435 2509 //
duke@435 2510 // Arguments for generated stub:
duke@435 2511 // from: O0
duke@435 2512 // to: O1
duke@435 2513 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2514 //
duke@435 2515 // Examines the alignment of the operands and dispatches
duke@435 2516 // to a long, int, short, or byte copy loop.
duke@435 2517 //
duke@435 2518 address generate_unsafe_copy(const char* name) {
duke@435 2519
duke@435 2520 const Register O0_from = O0; // source array address
duke@435 2521 const Register O1_to = O1; // destination array address
duke@435 2522 const Register O2_count = O2; // elements count
duke@435 2523
duke@435 2524 const Register G1_bits = G1; // test copy of low bits
duke@435 2525
duke@435 2526 __ align(CodeEntryAlignment);
duke@435 2527 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2528 address start = __ pc();
duke@435 2529
duke@435 2530 // bump this on entry, not on exit:
duke@435 2531 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2532
duke@435 2533 __ or3(O0_from, O1_to, G1_bits);
duke@435 2534 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2535
duke@435 2536 __ btst(BytesPerLong-1, G1_bits);
duke@435 2537 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2538 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2539 // scale the count on the way out:
duke@435 2540 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2541
duke@435 2542 __ btst(BytesPerInt-1, G1_bits);
duke@435 2543 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2544 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2545 // scale the count on the way out:
duke@435 2546 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2547
duke@435 2548 __ btst(BytesPerShort-1, G1_bits);
duke@435 2549 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2550 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2551 // scale the count on the way out:
duke@435 2552 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2553
duke@435 2554 __ br(Assembler::always, false, Assembler::pt,
duke@435 2555 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2556 __ delayed()->nop();
duke@435 2557
duke@435 2558 return start;
duke@435 2559 }
duke@435 2560
duke@435 2561
duke@435 2562 // Perform range checks on the proposed arraycopy.
duke@435 2563 // Kills the two temps, but nothing else.
duke@435 2564 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2565 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2566 Register src_pos, // source position (O1)
duke@435 2567 Register dst, // destination array oo (O2)
duke@435 2568 Register dst_pos, // destination position (O3)
duke@435 2569 Register length, // length of copy (O4)
duke@435 2570 Register temp1, Register temp2,
duke@435 2571 Label& L_failed) {
duke@435 2572 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2573
duke@435 2574 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2575
duke@435 2576 const Register array_length = temp1; // scratch
duke@435 2577 const Register end_pos = temp2; // scratch
duke@435 2578
duke@435 2579 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2580 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2581 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2582 __ cmp(end_pos, array_length);
duke@435 2583 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2584
duke@435 2585 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2586 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2587 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2588 __ cmp(end_pos, array_length);
duke@435 2589 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2590
duke@435 2591 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2592 // Move with sign extension can be used since they are positive.
duke@435 2593 __ delayed()->signx(src_pos, src_pos);
duke@435 2594 __ signx(dst_pos, dst_pos);
duke@435 2595
duke@435 2596 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2597 }
duke@435 2598
duke@435 2599
duke@435 2600 //
duke@435 2601 // Generate generic array copy stubs
duke@435 2602 //
duke@435 2603 // Input:
duke@435 2604 // O0 - src oop
duke@435 2605 // O1 - src_pos
duke@435 2606 // O2 - dst oop
duke@435 2607 // O3 - dst_pos
duke@435 2608 // O4 - element count
duke@435 2609 //
duke@435 2610 // Output:
duke@435 2611 // O0 == 0 - success
duke@435 2612 // O0 == -1 - need to call System.arraycopy
duke@435 2613 //
duke@435 2614 address generate_generic_copy(const char *name) {
duke@435 2615
duke@435 2616 Label L_failed, L_objArray;
duke@435 2617
duke@435 2618 // Input registers
duke@435 2619 const Register src = O0; // source array oop
duke@435 2620 const Register src_pos = O1; // source position
duke@435 2621 const Register dst = O2; // destination array oop
duke@435 2622 const Register dst_pos = O3; // destination position
duke@435 2623 const Register length = O4; // elements count
duke@435 2624
duke@435 2625 // registers used as temp
duke@435 2626 const Register G3_src_klass = G3; // source array klass
duke@435 2627 const Register G4_dst_klass = G4; // destination array klass
duke@435 2628 const Register G5_lh = G5; // layout handler
duke@435 2629 const Register O5_temp = O5;
duke@435 2630
duke@435 2631 __ align(CodeEntryAlignment);
duke@435 2632 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2633 address start = __ pc();
duke@435 2634
duke@435 2635 // bump this on entry, not on exit:
duke@435 2636 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2637
duke@435 2638 // In principle, the int arguments could be dirty.
duke@435 2639 //assert_clean_int(src_pos, G1);
duke@435 2640 //assert_clean_int(dst_pos, G1);
duke@435 2641 //assert_clean_int(length, G1);
duke@435 2642
duke@435 2643 //-----------------------------------------------------------------------
duke@435 2644 // Assembler stubs will be used for this call to arraycopy
duke@435 2645 // if the following conditions are met:
duke@435 2646 //
duke@435 2647 // (1) src and dst must not be null.
duke@435 2648 // (2) src_pos must not be negative.
duke@435 2649 // (3) dst_pos must not be negative.
duke@435 2650 // (4) length must not be negative.
duke@435 2651 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2652 // (6) src and dst should be arrays.
duke@435 2653 // (7) src_pos + length must not exceed length of src.
duke@435 2654 // (8) dst_pos + length must not exceed length of dst.
duke@435 2655 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2656
duke@435 2657 // if (src == NULL) return -1;
duke@435 2658 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2659
duke@435 2660 // if (src_pos < 0) return -1;
duke@435 2661 __ delayed()->tst(src_pos);
duke@435 2662 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2663 __ delayed()->nop();
duke@435 2664
duke@435 2665 // if (dst == NULL) return -1;
duke@435 2666 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2667
duke@435 2668 // if (dst_pos < 0) return -1;
duke@435 2669 __ delayed()->tst(dst_pos);
duke@435 2670 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2671
duke@435 2672 // if (length < 0) return -1;
duke@435 2673 __ delayed()->tst(length);
duke@435 2674 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2675
duke@435 2676 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2677 // get src->klass()
coleenp@548 2678 if (UseCompressedOops) {
coleenp@548 2679 __ delayed()->nop(); // ??? not good
coleenp@548 2680 __ load_klass(src, G3_src_klass);
coleenp@548 2681 } else {
coleenp@548 2682 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2683 }
duke@435 2684
duke@435 2685 #ifdef ASSERT
duke@435 2686 // assert(src->klass() != NULL);
duke@435 2687 BLOCK_COMMENT("assert klasses not null");
duke@435 2688 { Label L_a, L_b;
duke@435 2689 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
coleenp@548 2690 __ delayed()->nop();
duke@435 2691 __ bind(L_a);
duke@435 2692 __ stop("broken null klass");
duke@435 2693 __ bind(L_b);
coleenp@548 2694 __ load_klass(dst, G4_dst_klass);
duke@435 2695 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2696 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2697 BLOCK_COMMENT("assert done");
duke@435 2698 }
duke@435 2699 #endif
duke@435 2700
duke@435 2701 // Load layout helper
duke@435 2702 //
duke@435 2703 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2704 // 32 30 24 16 8 2 0
duke@435 2705 //
duke@435 2706 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2707 //
duke@435 2708
duke@435 2709 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2710 Klass::layout_helper_offset_in_bytes();
duke@435 2711
duke@435 2712 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2713 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2714
coleenp@548 2715 if (UseCompressedOops) {
coleenp@548 2716 __ load_klass(dst, G4_dst_klass);
coleenp@548 2717 }
duke@435 2718 // Handle objArrays completely differently...
duke@435 2719 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2720 __ set(objArray_lh, O5_temp);
duke@435 2721 __ cmp(G5_lh, O5_temp);
duke@435 2722 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2723 if (UseCompressedOops) {
coleenp@548 2724 __ delayed()->nop();
coleenp@548 2725 } else {
coleenp@548 2726 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2727 }
duke@435 2728
duke@435 2729 // if (src->klass() != dst->klass()) return -1;
duke@435 2730 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2731 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2732 __ delayed()->nop();
duke@435 2733
duke@435 2734 // if (!src->is_Array()) return -1;
duke@435 2735 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2736 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2737
duke@435 2738 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2739 #ifdef ASSERT
duke@435 2740 __ delayed()->nop();
duke@435 2741 { Label L;
duke@435 2742 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2743 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2744 __ cmp(G5_lh, O5_temp);
duke@435 2745 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2746 __ delayed()->nop();
duke@435 2747 __ stop("must be a primitive array");
duke@435 2748 __ bind(L);
duke@435 2749 }
duke@435 2750 #else
duke@435 2751 __ delayed(); // match next insn to prev branch
duke@435 2752 #endif
duke@435 2753
duke@435 2754 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2755 O5_temp, G4_dst_klass, L_failed);
duke@435 2756
duke@435 2757 // typeArrayKlass
duke@435 2758 //
duke@435 2759 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2760 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2761 //
duke@435 2762
duke@435 2763 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2764 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2765
duke@435 2766 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2767 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2768 __ add(src, G4_offset, src); // src array offset
duke@435 2769 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2770 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2771
duke@435 2772 // next registers should be set before the jump to corresponding stub
duke@435 2773 const Register from = O0; // source array address
duke@435 2774 const Register to = O1; // destination array address
duke@435 2775 const Register count = O2; // elements count
duke@435 2776
duke@435 2777 // 'from', 'to', 'count' registers should be set in this order
duke@435 2778 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2779
duke@435 2780 BLOCK_COMMENT("scale indexes to element size");
duke@435 2781 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2782 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2783 __ add(src, src_pos, from); // src_addr
duke@435 2784 __ add(dst, dst_pos, to); // dst_addr
duke@435 2785
duke@435 2786 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2787 __ cmp(G3_elsize, 0);
duke@435 2788 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
duke@435 2789 __ delayed()->signx(length, count); // length
duke@435 2790
duke@435 2791 __ cmp(G3_elsize, LogBytesPerShort);
duke@435 2792 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
duke@435 2793 __ delayed()->signx(length, count); // length
duke@435 2794
duke@435 2795 __ cmp(G3_elsize, LogBytesPerInt);
duke@435 2796 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
duke@435 2797 __ delayed()->signx(length, count); // length
duke@435 2798 #ifdef ASSERT
duke@435 2799 { Label L;
duke@435 2800 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2801 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2802 __ delayed()->nop();
duke@435 2803 __ stop("must be long copy, but elsize is wrong");
duke@435 2804 __ bind(L);
duke@435 2805 }
duke@435 2806 #endif
duke@435 2807 __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
duke@435 2808 __ delayed()->signx(length, count); // length
duke@435 2809
duke@435 2810 // objArrayKlass
duke@435 2811 __ BIND(L_objArray);
duke@435 2812 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 2813
duke@435 2814 Label L_plain_copy, L_checkcast_copy;
duke@435 2815 // test array classes for subtyping
duke@435 2816 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 2817 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 2818 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 2819
duke@435 2820 // Identically typed arrays can be copied without element-wise checks.
duke@435 2821 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2822 O5_temp, G5_lh, L_failed);
duke@435 2823
duke@435 2824 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2825 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2826 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2827 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2828 __ add(src, src_pos, from); // src_addr
duke@435 2829 __ add(dst, dst_pos, to); // dst_addr
duke@435 2830 __ BIND(L_plain_copy);
duke@435 2831 __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
duke@435 2832 __ delayed()->signx(length, count); // length
duke@435 2833
duke@435 2834 __ BIND(L_checkcast_copy);
duke@435 2835 // live at this point: G3_src_klass, G4_dst_klass
duke@435 2836 {
duke@435 2837 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2838 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 2839 __ cmp(G5_lh, O5_temp);
duke@435 2840 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2841
duke@435 2842 // It is safe to examine both src.length and dst.length.
duke@435 2843 __ delayed(); // match next insn to prev branch
duke@435 2844 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2845 O5_temp, G5_lh, L_failed);
duke@435 2846
duke@435 2847 // Marshal the base address arguments now, freeing registers.
duke@435 2848 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2849 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2850 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2851 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2852 __ add(src, src_pos, from); // src_addr
duke@435 2853 __ add(dst, dst_pos, to); // dst_addr
duke@435 2854 __ signx(length, count); // length (reloaded)
duke@435 2855
duke@435 2856 Register sco_temp = O3; // this register is free now
duke@435 2857 assert_different_registers(from, to, count, sco_temp,
duke@435 2858 G4_dst_klass, G3_src_klass);
duke@435 2859
duke@435 2860 // Generate the type check.
duke@435 2861 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2862 Klass::super_check_offset_offset_in_bytes());
duke@435 2863 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 2864 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 2865 O5_temp, L_plain_copy);
duke@435 2866
duke@435 2867 // Fetch destination element klass from the objArrayKlass header.
duke@435 2868 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2869 objArrayKlass::element_klass_offset_in_bytes());
duke@435 2870
duke@435 2871 // the checkcast_copy loop needs two extra arguments:
duke@435 2872 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 2873 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 2874
duke@435 2875 __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
duke@435 2876 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 2877 }
duke@435 2878
duke@435 2879 __ BIND(L_failed);
duke@435 2880 __ retl();
duke@435 2881 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 2882 return start;
duke@435 2883 }
duke@435 2884
duke@435 2885 void generate_arraycopy_stubs() {
duke@435 2886
duke@435 2887 // Note: the disjoint stubs must be generated first, some of
duke@435 2888 // the conjoint stubs use them.
duke@435 2889 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2890 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2891 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
duke@435 2892 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
duke@435 2893 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
duke@435 2894 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
duke@435 2895 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
duke@435 2896 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
duke@435 2897 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
duke@435 2898 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
duke@435 2899
duke@435 2900 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2901 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2902 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
duke@435 2903 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
duke@435 2904 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
duke@435 2905 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
duke@435 2906 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
duke@435 2907 #ifdef _LP64
duke@435 2908 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
duke@435 2909 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
duke@435 2910 #else
duke@435 2911 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2912 #endif
duke@435 2913 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2914 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2915
duke@435 2916 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2917 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2918 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2919 }
duke@435 2920
duke@435 2921 void generate_initial() {
duke@435 2922 // Generates all stubs and initializes the entry points
duke@435 2923
duke@435 2924 //------------------------------------------------------------------------------------------------------------------------
duke@435 2925 // entry points that exist in all platforms
duke@435 2926 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2927 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2928 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2929
duke@435 2930 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2931 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2932
duke@435 2933 //------------------------------------------------------------------------------------------------------------------------
duke@435 2934 // entry points that are platform specific
duke@435 2935 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 2936
duke@435 2937 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 2938 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 2939
duke@435 2940 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 2941 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2942 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2943 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2944 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 2945 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 2946 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2947 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 2948 StubRoutines::_fence_entry = generate_fence();
duke@435 2949 #endif // COMPILER2 !=> _LP64
duke@435 2950
duke@435 2951 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 2952 }
duke@435 2953
duke@435 2954
duke@435 2955 void generate_all() {
duke@435 2956 // Generates all stubs and initializes the entry points
duke@435 2957
duke@435 2958 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2959 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2960 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2961 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2962 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2963 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2964 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2965
duke@435 2966 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2967 generate_handler_for_unsafe_access();
duke@435 2968
duke@435 2969 // support for verify_oop (must happen after universe_init)
duke@435 2970 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 2971
duke@435 2972 // arraycopy stubs used by compilers
duke@435 2973 generate_arraycopy_stubs();
duke@435 2974 }
duke@435 2975
duke@435 2976
duke@435 2977 public:
duke@435 2978 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2979 // replace the standard masm with a special one:
duke@435 2980 _masm = new MacroAssembler(code);
duke@435 2981
duke@435 2982 _stub_count = !all ? 0x100 : 0x200;
duke@435 2983 if (all) {
duke@435 2984 generate_all();
duke@435 2985 } else {
duke@435 2986 generate_initial();
duke@435 2987 }
duke@435 2988
duke@435 2989 // make sure this stub is available for all local calls
duke@435 2990 if (_atomic_add_stub.is_unbound()) {
duke@435 2991 // generate a second time, if necessary
duke@435 2992 (void) generate_atomic_add();
duke@435 2993 }
duke@435 2994 }
duke@435 2995
duke@435 2996
duke@435 2997 private:
duke@435 2998 int _stub_count;
duke@435 2999 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3000 # ifdef ASSERT
duke@435 3001 // put extra information in the stub code, to make it more readable
duke@435 3002 #ifdef _LP64
duke@435 3003 // Write the high part of the address
duke@435 3004 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3005 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3006 #endif
duke@435 3007 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3008 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3009 # endif
duke@435 3010 align(true);
duke@435 3011 }
duke@435 3012
duke@435 3013 void align(bool at_header = false) {
duke@435 3014 // %%%%% move this constant somewhere else
duke@435 3015 // UltraSPARC cache line size is 8 instructions:
duke@435 3016 const unsigned int icache_line_size = 32;
duke@435 3017 const unsigned int icache_half_line_size = 16;
duke@435 3018
duke@435 3019 if (at_header) {
duke@435 3020 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3021 __ emit_data(0, relocInfo::none);
duke@435 3022 }
duke@435 3023 } else {
duke@435 3024 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3025 __ nop();
duke@435 3026 }
duke@435 3027 }
duke@435 3028 }
duke@435 3029
duke@435 3030 }; // end class declaration
duke@435 3031
duke@435 3032
duke@435 3033 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3034 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3035 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3036 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3037 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3038
duke@435 3039 address StubGenerator::byte_copy_entry = NULL;
duke@435 3040 address StubGenerator::short_copy_entry = NULL;
duke@435 3041 address StubGenerator::int_copy_entry = NULL;
duke@435 3042 address StubGenerator::long_copy_entry = NULL;
duke@435 3043 address StubGenerator::oop_copy_entry = NULL;
duke@435 3044
duke@435 3045 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3046
duke@435 3047 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3048 StubGenerator g(code, all);
duke@435 3049 }

mercurial