src/share/vm/opto/compile.cpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 6217
849eb7bfceac
child 6313
de95063c0e34
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

duke@435 1 /*
sla@5237 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
kvn@6217 28 #include "ci/ciReplay.hpp"
stefank@2314 29 #include "classfile/systemDictionary.hpp"
stefank@2314 30 #include "code/exceptionHandlerTable.hpp"
stefank@2314 31 #include "code/nmethod.hpp"
stefank@2314 32 #include "compiler/compileLog.hpp"
twisti@4318 33 #include "compiler/disassembler.hpp"
stefank@2314 34 #include "compiler/oopMap.hpp"
stefank@2314 35 #include "opto/addnode.hpp"
stefank@2314 36 #include "opto/block.hpp"
stefank@2314 37 #include "opto/c2compiler.hpp"
stefank@2314 38 #include "opto/callGenerator.hpp"
stefank@2314 39 #include "opto/callnode.hpp"
stefank@2314 40 #include "opto/cfgnode.hpp"
stefank@2314 41 #include "opto/chaitin.hpp"
stefank@2314 42 #include "opto/compile.hpp"
stefank@2314 43 #include "opto/connode.hpp"
stefank@2314 44 #include "opto/divnode.hpp"
stefank@2314 45 #include "opto/escape.hpp"
stefank@2314 46 #include "opto/idealGraphPrinter.hpp"
stefank@2314 47 #include "opto/loopnode.hpp"
stefank@2314 48 #include "opto/machnode.hpp"
stefank@2314 49 #include "opto/macro.hpp"
stefank@2314 50 #include "opto/matcher.hpp"
rbackman@5927 51 #include "opto/mathexactnode.hpp"
stefank@2314 52 #include "opto/memnode.hpp"
stefank@2314 53 #include "opto/mulnode.hpp"
stefank@2314 54 #include "opto/node.hpp"
stefank@2314 55 #include "opto/opcodes.hpp"
stefank@2314 56 #include "opto/output.hpp"
stefank@2314 57 #include "opto/parse.hpp"
stefank@2314 58 #include "opto/phaseX.hpp"
stefank@2314 59 #include "opto/rootnode.hpp"
stefank@2314 60 #include "opto/runtime.hpp"
stefank@2314 61 #include "opto/stringopts.hpp"
stefank@2314 62 #include "opto/type.hpp"
stefank@2314 63 #include "opto/vectornode.hpp"
stefank@2314 64 #include "runtime/arguments.hpp"
stefank@2314 65 #include "runtime/signature.hpp"
stefank@2314 66 #include "runtime/stubRoutines.hpp"
stefank@2314 67 #include "runtime/timer.hpp"
sla@5237 68 #include "trace/tracing.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 71 # include "adfiles/ad_x86_32.hpp"
stefank@2314 72 #endif
stefank@2314 73 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 74 # include "adfiles/ad_x86_64.hpp"
stefank@2314 75 #endif
stefank@2314 76 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 77 # include "adfiles/ad_sparc.hpp"
stefank@2314 78 #endif
stefank@2314 79 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 80 # include "adfiles/ad_zero.hpp"
stefank@2314 81 #endif
bobv@2508 82 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 83 # include "adfiles/ad_arm.hpp"
bobv@2508 84 #endif
bobv@2508 85 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 86 # include "adfiles/ad_ppc.hpp"
bobv@2508 87 #endif
duke@435 88
twisti@2350 89
twisti@2350 90 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 91 // Constant table base node singleton.
twisti@2350 92 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 93 if (_mach_constant_base_node == NULL) {
twisti@2350 94 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 95 _mach_constant_base_node->add_req(C->root());
twisti@2350 96 }
twisti@2350 97 return _mach_constant_base_node;
twisti@2350 98 }
twisti@2350 99
twisti@2350 100
duke@435 101 /// Support for intrinsics.
duke@435 102
duke@435 103 // Return the index at which m must be inserted (or already exists).
duke@435 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 105 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 106 #ifdef ASSERT
duke@435 107 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 108 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 109 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 110 assert(cg1->method() != cg2->method()
duke@435 111 ? cg1->method() < cg2->method()
duke@435 112 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 113 "compiler intrinsics list must stay sorted");
duke@435 114 }
duke@435 115 #endif
duke@435 116 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 117 int lo = 0, hi = _intrinsics->length()-1;
duke@435 118 while (lo <= hi) {
duke@435 119 int mid = (uint)(hi + lo) / 2;
duke@435 120 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 121 if (m < mid_m) {
duke@435 122 hi = mid-1;
duke@435 123 } else if (m > mid_m) {
duke@435 124 lo = mid+1;
duke@435 125 } else {
duke@435 126 // look at minor sort key
duke@435 127 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 128 if (is_virtual < mid_virt) {
duke@435 129 hi = mid-1;
duke@435 130 } else if (is_virtual > mid_virt) {
duke@435 131 lo = mid+1;
duke@435 132 } else {
duke@435 133 return mid; // exact match
duke@435 134 }
duke@435 135 }
duke@435 136 }
duke@435 137 return lo; // inexact match
duke@435 138 }
duke@435 139
duke@435 140 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 141 if (_intrinsics == NULL) {
roland@4409 142 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
duke@435 143 }
duke@435 144 // This code is stolen from ciObjectFactory::insert.
duke@435 145 // Really, GrowableArray should have methods for
duke@435 146 // insert_at, remove_at, and binary_search.
duke@435 147 int len = _intrinsics->length();
duke@435 148 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 149 if (index == len) {
duke@435 150 _intrinsics->append(cg);
duke@435 151 } else {
duke@435 152 #ifdef ASSERT
duke@435 153 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 154 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 155 #endif
duke@435 156 _intrinsics->append(_intrinsics->at(len-1));
duke@435 157 int pos;
duke@435 158 for (pos = len-2; pos >= index; pos--) {
duke@435 159 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 160 }
duke@435 161 _intrinsics->at_put(index, cg);
duke@435 162 }
duke@435 163 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 164 }
duke@435 165
duke@435 166 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 167 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 168 if (_intrinsics != NULL) {
duke@435 169 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 170 if (index < _intrinsics->length()
duke@435 171 && _intrinsics->at(index)->method() == m
duke@435 172 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 173 return _intrinsics->at(index);
duke@435 174 }
duke@435 175 }
duke@435 176 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 177 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 178 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 179 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 180 if (cg != NULL) {
duke@435 181 // Save it for next time:
duke@435 182 register_intrinsic(cg);
duke@435 183 return cg;
duke@435 184 } else {
duke@435 185 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 186 }
duke@435 187 }
duke@435 188 return NULL;
duke@435 189 }
duke@435 190
duke@435 191 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 192 // in library_call.cpp.
duke@435 193
duke@435 194
duke@435 195 #ifndef PRODUCT
duke@435 196 // statistics gathering...
duke@435 197
duke@435 198 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 199 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 200
duke@435 201 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 202 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 203 int oflags = _intrinsic_hist_flags[id];
duke@435 204 assert(flags != 0, "what happened?");
duke@435 205 if (is_virtual) {
duke@435 206 flags |= _intrinsic_virtual;
duke@435 207 }
duke@435 208 bool changed = (flags != oflags);
duke@435 209 if ((flags & _intrinsic_worked) != 0) {
duke@435 210 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 211 if (count == 1) {
duke@435 212 changed = true; // first time
duke@435 213 }
duke@435 214 // increment the overall count also:
duke@435 215 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 216 }
duke@435 217 if (changed) {
duke@435 218 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 219 // Something changed about the intrinsic's virtuality.
duke@435 220 if ((flags & _intrinsic_virtual) != 0) {
duke@435 221 // This is the first use of this intrinsic as a virtual call.
duke@435 222 if (oflags != 0) {
duke@435 223 // We already saw it as a non-virtual, so note both cases.
duke@435 224 flags |= _intrinsic_both;
duke@435 225 }
duke@435 226 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 227 // This is the first use of this intrinsic as a non-virtual
duke@435 228 flags |= _intrinsic_both;
duke@435 229 }
duke@435 230 }
duke@435 231 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 232 }
duke@435 233 // update the overall flags also:
duke@435 234 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 235 return changed;
duke@435 236 }
duke@435 237
duke@435 238 static char* format_flags(int flags, char* buf) {
duke@435 239 buf[0] = 0;
duke@435 240 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 241 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 242 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 243 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 244 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 245 if (buf[0] == 0) strcat(buf, ",");
duke@435 246 assert(buf[0] == ',', "must be");
duke@435 247 return &buf[1];
duke@435 248 }
duke@435 249
duke@435 250 void Compile::print_intrinsic_statistics() {
duke@435 251 char flagsbuf[100];
duke@435 252 ttyLocker ttyl;
duke@435 253 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 254 tty->print_cr("Compiler intrinsic usage:");
duke@435 255 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 256 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 257 #define PRINT_STAT_LINE(name, c, f) \
duke@435 258 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 259 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 260 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 261 int flags = _intrinsic_hist_flags[id];
duke@435 262 juint count = _intrinsic_hist_count[id];
duke@435 263 if ((flags | count) != 0) {
duke@435 264 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 265 }
duke@435 266 }
duke@435 267 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 268 if (xtty != NULL) xtty->tail("statistics");
duke@435 269 }
duke@435 270
duke@435 271 void Compile::print_statistics() {
duke@435 272 { ttyLocker ttyl;
duke@435 273 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 274 Parse::print_statistics();
duke@435 275 PhaseCCP::print_statistics();
duke@435 276 PhaseRegAlloc::print_statistics();
duke@435 277 Scheduling::print_statistics();
duke@435 278 PhasePeephole::print_statistics();
duke@435 279 PhaseIdealLoop::print_statistics();
duke@435 280 if (xtty != NULL) xtty->tail("statistics");
duke@435 281 }
duke@435 282 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 283 // put this under its own <statistics> element.
duke@435 284 print_intrinsic_statistics();
duke@435 285 }
duke@435 286 }
duke@435 287 #endif //PRODUCT
duke@435 288
duke@435 289 // Support for bundling info
duke@435 290 Bundle* Compile::node_bundling(const Node *n) {
duke@435 291 assert(valid_bundle_info(n), "oob");
duke@435 292 return &_node_bundling_base[n->_idx];
duke@435 293 }
duke@435 294
duke@435 295 bool Compile::valid_bundle_info(const Node *n) {
duke@435 296 return (_node_bundling_limit > n->_idx);
duke@435 297 }
duke@435 298
duke@435 299
never@1515 300 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 301 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 302 Node* use = n->last_out(i);
never@1515 303 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 304 uint uses_found = 0;
never@1515 305 for (uint j = 0; j < use->len(); j++) {
never@1515 306 if (use->in(j) == n) {
never@1515 307 if (j < use->req())
never@1515 308 use->set_req(j, nn);
never@1515 309 else
never@1515 310 use->set_prec(j, nn);
never@1515 311 uses_found++;
never@1515 312 }
never@1515 313 }
never@1515 314 if (is_in_table) {
never@1515 315 // reinsert into table
never@1515 316 initial_gvn()->hash_find_insert(use);
never@1515 317 }
never@1515 318 record_for_igvn(use);
never@1515 319 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 320 }
never@1515 321 }
never@1515 322
never@1515 323
bharadwaj@4315 324 static inline bool not_a_node(const Node* n) {
bharadwaj@4315 325 if (n == NULL) return true;
bharadwaj@4315 326 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
bharadwaj@4315 327 if (*(address*)n == badAddress) return true; // kill by Node::destruct
bharadwaj@4315 328 return false;
bharadwaj@4315 329 }
never@1515 330
duke@435 331 // Identify all nodes that are reachable from below, useful.
duke@435 332 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 333 // recursive traversal is slower.
duke@435 334 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 335 int estimated_worklist_size = unique();
duke@435 336 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 337
duke@435 338 // Initialize worklist
duke@435 339 if (root() != NULL) { useful.push(root()); }
duke@435 340 // If 'top' is cached, declare it useful to preserve cached node
duke@435 341 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 342
duke@435 343 // Push all useful nodes onto the list, breadthfirst
duke@435 344 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 345 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 346 Node *n = useful.at(next);
duke@435 347 uint max = n->len();
duke@435 348 for( uint i = 0; i < max; ++i ) {
duke@435 349 Node *m = n->in(i);
bharadwaj@4315 350 if (not_a_node(m)) continue;
duke@435 351 useful.push(m);
duke@435 352 }
duke@435 353 }
duke@435 354 }
duke@435 355
bharadwaj@4315 356 // Update dead_node_list with any missing dead nodes using useful
bharadwaj@4315 357 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
bharadwaj@4315 358 void Compile::update_dead_node_list(Unique_Node_List &useful) {
bharadwaj@4315 359 uint max_idx = unique();
bharadwaj@4315 360 VectorSet& useful_node_set = useful.member_set();
bharadwaj@4315 361
bharadwaj@4315 362 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
bharadwaj@4315 363 // If node with index node_idx is not in useful set,
bharadwaj@4315 364 // mark it as dead in dead node list.
bharadwaj@4315 365 if (! useful_node_set.test(node_idx) ) {
bharadwaj@4315 366 record_dead_node(node_idx);
bharadwaj@4315 367 }
bharadwaj@4315 368 }
bharadwaj@4315 369 }
bharadwaj@4315 370
roland@4409 371 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
roland@4409 372 int shift = 0;
roland@4409 373 for (int i = 0; i < inlines->length(); i++) {
roland@4409 374 CallGenerator* cg = inlines->at(i);
roland@4409 375 CallNode* call = cg->call_node();
roland@4409 376 if (shift > 0) {
roland@4409 377 inlines->at_put(i-shift, cg);
roland@4409 378 }
roland@4409 379 if (!useful.member(call)) {
roland@4409 380 shift++;
roland@4409 381 }
roland@4409 382 }
roland@4409 383 inlines->trunc_to(inlines->length()-shift);
roland@4409 384 }
roland@4409 385
duke@435 386 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 387 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 388 uint next = 0;
kvn@3260 389 while (next < useful.size()) {
duke@435 390 Node *n = useful.at(next++);
duke@435 391 // Use raw traversal of out edges since this code removes out edges
duke@435 392 int max = n->outcnt();
kvn@3260 393 for (int j = 0; j < max; ++j) {
duke@435 394 Node* child = n->raw_out(j);
kvn@3260 395 if (! useful.member(child)) {
kvn@3260 396 assert(!child->is_top() || child != top(),
kvn@3260 397 "If top is cached in Compile object it is in useful list");
duke@435 398 // Only need to remove this out-edge to the useless node
duke@435 399 n->raw_del_out(j);
duke@435 400 --j;
duke@435 401 --max;
duke@435 402 }
duke@435 403 }
duke@435 404 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 405 record_for_igvn(n->unique_out());
kvn@3260 406 }
kvn@3260 407 }
kvn@3260 408 // Remove useless macro and predicate opaq nodes
kvn@3260 409 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 410 Node* n = C->macro_node(i);
kvn@3260 411 if (!useful.member(n)) {
kvn@3260 412 remove_macro_node(n);
duke@435 413 }
duke@435 414 }
roland@4589 415 // Remove useless expensive node
roland@4589 416 for (int i = C->expensive_count()-1; i >= 0; i--) {
roland@4589 417 Node* n = C->expensive_node(i);
roland@4589 418 if (!useful.member(n)) {
roland@4589 419 remove_expensive_node(n);
roland@4589 420 }
roland@4589 421 }
roland@4409 422 // clean up the late inline lists
roland@4409 423 remove_useless_late_inlines(&_string_late_inlines, useful);
kvn@5110 424 remove_useless_late_inlines(&_boxing_late_inlines, useful);
roland@4409 425 remove_useless_late_inlines(&_late_inlines, useful);
duke@435 426 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 427 }
duke@435 428
duke@435 429 //------------------------------frame_size_in_words-----------------------------
duke@435 430 // frame_slots in units of words
duke@435 431 int Compile::frame_size_in_words() const {
duke@435 432 // shift is 0 in LP32 and 1 in LP64
duke@435 433 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 434 int words = _frame_slots >> shift;
duke@435 435 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 436 return words;
duke@435 437 }
duke@435 438
duke@435 439 // ============================================================================
duke@435 440 //------------------------------CompileWrapper---------------------------------
duke@435 441 class CompileWrapper : public StackObj {
duke@435 442 Compile *const _compile;
duke@435 443 public:
duke@435 444 CompileWrapper(Compile* compile);
duke@435 445
duke@435 446 ~CompileWrapper();
duke@435 447 };
duke@435 448
duke@435 449 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 450 // the Compile* pointer is stored in the current ciEnv:
duke@435 451 ciEnv* env = compile->env();
duke@435 452 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 453 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 454 env->set_compiler_data(compile);
duke@435 455 assert(compile == Compile::current(), "sanity");
duke@435 456
duke@435 457 compile->set_type_dict(NULL);
duke@435 458 compile->set_type_hwm(NULL);
duke@435 459 compile->set_type_last_size(0);
duke@435 460 compile->set_last_tf(NULL, NULL);
duke@435 461 compile->set_indexSet_arena(NULL);
duke@435 462 compile->set_indexSet_free_block_list(NULL);
duke@435 463 compile->init_type_arena();
duke@435 464 Type::Initialize(compile);
duke@435 465 _compile->set_scratch_buffer_blob(NULL);
duke@435 466 _compile->begin_method();
duke@435 467 }
duke@435 468 CompileWrapper::~CompileWrapper() {
duke@435 469 _compile->end_method();
duke@435 470 if (_compile->scratch_buffer_blob() != NULL)
duke@435 471 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 472 _compile->env()->set_compiler_data(NULL);
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 //----------------------------print_compile_messages---------------------------
duke@435 477 void Compile::print_compile_messages() {
duke@435 478 #ifndef PRODUCT
duke@435 479 // Check if recompiling
duke@435 480 if (_subsume_loads == false && PrintOpto) {
duke@435 481 // Recompiling without allowing machine instructions to subsume loads
duke@435 482 tty->print_cr("*********************************************************");
duke@435 483 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 484 tty->print_cr("*********************************************************");
duke@435 485 }
kvn@473 486 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 487 // Recompiling without escape analysis
kvn@473 488 tty->print_cr("*********************************************************");
kvn@473 489 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 490 tty->print_cr("*********************************************************");
kvn@473 491 }
kvn@5110 492 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
kvn@5110 493 // Recompiling without boxing elimination
kvn@5110 494 tty->print_cr("*********************************************************");
kvn@5110 495 tty->print_cr("** Bailout: Recompile without boxing elimination **");
kvn@5110 496 tty->print_cr("*********************************************************");
kvn@5110 497 }
duke@435 498 if (env()->break_at_compile()) {
twisti@1040 499 // Open the debugger when compiling this method.
duke@435 500 tty->print("### Breaking when compiling: ");
duke@435 501 method()->print_short_name();
duke@435 502 tty->cr();
duke@435 503 BREAKPOINT;
duke@435 504 }
duke@435 505
duke@435 506 if( PrintOpto ) {
duke@435 507 if (is_osr_compilation()) {
duke@435 508 tty->print("[OSR]%3d", _compile_id);
duke@435 509 } else {
duke@435 510 tty->print("%3d", _compile_id);
duke@435 511 }
duke@435 512 }
duke@435 513 #endif
duke@435 514 }
duke@435 515
duke@435 516
kvn@2414 517 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 518 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 519 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 520 // If there is already a scratch buffer blob allocated and the
kvn@2414 521 // constant section is big enough, use it. Otherwise free the
kvn@2414 522 // current and allocate a new one.
kvn@2414 523 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 524 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 525 // Use the current blob.
kvn@2414 526 } else {
kvn@2414 527 if (blob != NULL) {
kvn@2414 528 BufferBlob::free(blob);
kvn@2414 529 }
duke@435 530
kvn@2414 531 ResourceMark rm;
kvn@2414 532 _scratch_const_size = const_size;
kvn@2414 533 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 534 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 535 // Record the buffer blob for next time.
kvn@2414 536 set_scratch_buffer_blob(blob);
kvn@2414 537 // Have we run out of code space?
kvn@2414 538 if (scratch_buffer_blob() == NULL) {
kvn@2414 539 // Let CompilerBroker disable further compilations.
kvn@2414 540 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 541 return;
kvn@2414 542 }
kvn@598 543 }
duke@435 544
duke@435 545 // Initialize the relocation buffers
twisti@2103 546 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 547 set_scratch_locs_memory(locs_buf);
duke@435 548 }
duke@435 549
duke@435 550
duke@435 551 //-----------------------scratch_emit_size-------------------------------------
duke@435 552 // Helper function that computes size by emitting code
duke@435 553 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 554 // Start scratch_emit_size section.
twisti@2350 555 set_in_scratch_emit_size(true);
twisti@2350 556
duke@435 557 // Emit into a trash buffer and count bytes emitted.
duke@435 558 // This is a pretty expensive way to compute a size,
duke@435 559 // but it works well enough if seldom used.
duke@435 560 // All common fixed-size instructions are given a size
duke@435 561 // method by the AD file.
duke@435 562 // Note that the scratch buffer blob and locs memory are
duke@435 563 // allocated at the beginning of the compile task, and
duke@435 564 // may be shared by several calls to scratch_emit_size.
duke@435 565 // The allocation of the scratch buffer blob is particularly
duke@435 566 // expensive, since it has to grab the code cache lock.
duke@435 567 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 568 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 569 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 570 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 571 address blob_begin = blob->content_begin();
duke@435 572 address blob_end = (address)locs_buf;
twisti@2103 573 assert(blob->content_contains(blob_end), "sanity");
duke@435 574 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 575 buf.initialize_consts_size(_scratch_const_size);
duke@435 576 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 577 assert(locs_buf != NULL, "sanity");
twisti@2350 578 int lsize = MAX_locs_size / 3;
twisti@2350 579 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 580 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 581 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 582
twisti@2350 583 // Do the emission.
kvn@3037 584
kvn@3037 585 Label fakeL; // Fake label for branch instructions.
kvn@3051 586 Label* saveL = NULL;
kvn@3051 587 uint save_bnum = 0;
kvn@3051 588 bool is_branch = n->is_MachBranch();
kvn@3037 589 if (is_branch) {
kvn@3037 590 MacroAssembler masm(&buf);
kvn@3037 591 masm.bind(fakeL);
kvn@3051 592 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 593 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 594 }
duke@435 595 n->emit(buf, this->regalloc());
kvn@3051 596 if (is_branch) // Restore label.
kvn@3051 597 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 598
twisti@2350 599 // End scratch_emit_size section.
twisti@2350 600 set_in_scratch_emit_size(false);
twisti@2350 601
twisti@2103 602 return buf.insts_size();
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 // ============================================================================
duke@435 607 //------------------------------Compile standard-------------------------------
duke@435 608 debug_only( int Compile::_debug_idx = 100000; )
duke@435 609
duke@435 610 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 611 // the continuation bci for on stack replacement.
duke@435 612
duke@435 613
kvn@5110 614 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
kvn@5110 615 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
duke@435 616 : Phase(Compiler),
duke@435 617 _env(ci_env),
duke@435 618 _log(ci_env->log()),
duke@435 619 _compile_id(ci_env->compile_id()),
duke@435 620 _save_argument_registers(false),
duke@435 621 _stub_name(NULL),
duke@435 622 _stub_function(NULL),
duke@435 623 _stub_entry_point(NULL),
duke@435 624 _method(target),
duke@435 625 _entry_bci(osr_bci),
duke@435 626 _initial_gvn(NULL),
duke@435 627 _for_igvn(NULL),
duke@435 628 _warm_calls(NULL),
duke@435 629 _subsume_loads(subsume_loads),
kvn@473 630 _do_escape_analysis(do_escape_analysis),
kvn@5110 631 _eliminate_boxing(eliminate_boxing),
duke@435 632 _failure_reason(NULL),
duke@435 633 _code_buffer("Compile::Fill_buffer"),
duke@435 634 _orig_pc_slot(0),
duke@435 635 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 636 _has_method_handle_invokes(false),
twisti@2350 637 _mach_constant_base_node(NULL),
duke@435 638 _node_bundling_limit(0),
duke@435 639 _node_bundling_base(NULL),
kvn@1294 640 _java_calls(0),
kvn@1294 641 _inner_loops(0),
twisti@2350 642 _scratch_const_size(-1),
twisti@2350 643 _in_scratch_emit_size(false),
bharadwaj@4315 644 _dead_node_list(comp_arena()),
bharadwaj@4315 645 _dead_node_count(0),
duke@435 646 #ifndef PRODUCT
duke@435 647 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 648 _printer(IdealGraphPrinter::printer()),
duke@435 649 #endif
roland@4357 650 _congraph(NULL),
kvn@6217 651 _replay_inline_data(NULL),
roland@4409 652 _late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 653 _string_late_inlines(comp_arena(), 2, 0, NULL),
kvn@5110 654 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
roland@4409 655 _late_inlines_pos(0),
roland@4409 656 _number_of_mh_late_inlines(0),
roland@4409 657 _inlining_progress(false),
roland@4409 658 _inlining_incrementally(false),
roland@4357 659 _print_inlining_list(NULL),
roland@5981 660 _print_inlining_idx(0),
roland@5981 661 _preserve_jvm_state(0) {
duke@435 662 C = this;
duke@435 663
duke@435 664 CompileWrapper cw(this);
duke@435 665 #ifndef PRODUCT
duke@435 666 if (TimeCompiler2) {
duke@435 667 tty->print(" ");
duke@435 668 target->holder()->name()->print();
duke@435 669 tty->print(".");
duke@435 670 target->print_short_name();
duke@435 671 tty->print(" ");
duke@435 672 }
duke@435 673 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 674 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 675 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 676 if (!print_opto_assembly) {
jrose@535 677 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 678 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 679 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 680 print_opto_assembly = true;
jrose@535 681 }
jrose@535 682 }
jrose@535 683 set_print_assembly(print_opto_assembly);
never@802 684 set_parsed_irreducible_loop(false);
kvn@6217 685
kvn@6217 686 if (method()->has_option("ReplayInline")) {
kvn@6217 687 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
kvn@6217 688 }
duke@435 689 #endif
kvn@5763 690 set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
kvn@5763 691 set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
duke@435 692
duke@435 693 if (ProfileTraps) {
duke@435 694 // Make sure the method being compiled gets its own MDO,
duke@435 695 // so we can at least track the decompile_count().
iveresov@2349 696 method()->ensure_method_data();
duke@435 697 }
duke@435 698
duke@435 699 Init(::AliasLevel);
duke@435 700
duke@435 701
duke@435 702 print_compile_messages();
duke@435 703
duke@435 704 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 705 _ilt = InlineTree::build_inline_tree_root();
duke@435 706 else
duke@435 707 _ilt = NULL;
duke@435 708
duke@435 709 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 710 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 711
duke@435 712 #define MINIMUM_NODE_HASH 1023
duke@435 713 // Node list that Iterative GVN will start with
duke@435 714 Unique_Node_List for_igvn(comp_arena());
duke@435 715 set_for_igvn(&for_igvn);
duke@435 716
duke@435 717 // GVN that will be run immediately on new nodes
duke@435 718 uint estimated_size = method()->code_size()*4+64;
duke@435 719 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 720 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 721 set_initial_gvn(&gvn);
duke@435 722
kvn@5763 723 if (print_inlining() || print_intrinsics()) {
roland@4357 724 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
roland@4357 725 }
duke@435 726 { // Scope for timing the parser
duke@435 727 TracePhase t3("parse", &_t_parser, true);
duke@435 728
duke@435 729 // Put top into the hash table ASAP.
duke@435 730 initial_gvn()->transform_no_reclaim(top());
duke@435 731
duke@435 732 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 733 CallGenerator* cg = NULL;
duke@435 734 if (is_osr_compilation()) {
duke@435 735 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 736 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 737 init_tf(TypeFunc::make(domain, range));
kvn@4115 738 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 739 initial_gvn()->set_type_bottom(s);
duke@435 740 init_start(s);
duke@435 741 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 742 } else {
duke@435 743 // Normal case.
duke@435 744 init_tf(TypeFunc::make(method()));
kvn@4115 745 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 746 initial_gvn()->set_type_bottom(s);
duke@435 747 init_start(s);
johnc@2781 748 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 749 // With java.lang.ref.reference.get() we must go through the
johnc@2781 750 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 751 // method of the compile - so that, if necessary, the value in
johnc@2781 752 // the referent field of the reference object gets recorded by
johnc@2781 753 // the pre-barrier code.
johnc@2781 754 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 755 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 756 // result in the referent being marked live and the reference
johnc@2781 757 // object removed from the list of discovered references during
johnc@2781 758 // reference processing.
johnc@2781 759 cg = find_intrinsic(method(), false);
johnc@2781 760 }
johnc@2781 761 if (cg == NULL) {
johnc@2781 762 float past_uses = method()->interpreter_invocation_count();
johnc@2781 763 float expected_uses = past_uses;
johnc@2781 764 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 765 }
duke@435 766 }
duke@435 767 if (failing()) return;
duke@435 768 if (cg == NULL) {
duke@435 769 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 770 return;
duke@435 771 }
duke@435 772 JVMState* jvms = build_start_state(start(), tf());
roland@5981 773 if ((jvms = cg->generate(jvms, NULL)) == NULL) {
duke@435 774 record_method_not_compilable("method parse failed");
duke@435 775 return;
duke@435 776 }
duke@435 777 GraphKit kit(jvms);
duke@435 778
duke@435 779 if (!kit.stopped()) {
duke@435 780 // Accept return values, and transfer control we know not where.
duke@435 781 // This is done by a special, unique ReturnNode bound to root.
duke@435 782 return_values(kit.jvms());
duke@435 783 }
duke@435 784
duke@435 785 if (kit.has_exceptions()) {
duke@435 786 // Any exceptions that escape from this call must be rethrown
duke@435 787 // to whatever caller is dynamically above us on the stack.
duke@435 788 // This is done by a special, unique RethrowNode bound to root.
duke@435 789 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 790 }
duke@435 791
roland@4409 792 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
roland@4409 793
roland@4409 794 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
roland@4409 795 inline_string_calls(true);
never@1515 796 }
roland@4409 797
roland@4409 798 if (failing()) return;
never@1515 799
sla@5237 800 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
never@802 801
duke@435 802 // Remove clutter produced by parsing.
duke@435 803 if (!failing()) {
duke@435 804 ResourceMark rm;
duke@435 805 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 806 }
duke@435 807 }
duke@435 808
duke@435 809 // Note: Large methods are capped off in do_one_bytecode().
duke@435 810 if (failing()) return;
duke@435 811
duke@435 812 // After parsing, node notes are no longer automagic.
duke@435 813 // They must be propagated by register_new_node_with_optimizer(),
duke@435 814 // clone(), or the like.
duke@435 815 set_default_node_notes(NULL);
duke@435 816
duke@435 817 for (;;) {
duke@435 818 int successes = Inline_Warm();
duke@435 819 if (failing()) return;
duke@435 820 if (successes == 0) break;
duke@435 821 }
duke@435 822
duke@435 823 // Drain the list.
duke@435 824 Finish_Warm();
duke@435 825 #ifndef PRODUCT
duke@435 826 if (_printer) {
duke@435 827 _printer->print_inlining(this);
duke@435 828 }
duke@435 829 #endif
duke@435 830
duke@435 831 if (failing()) return;
duke@435 832 NOT_PRODUCT( verify_graph_edges(); )
duke@435 833
duke@435 834 // Now optimize
duke@435 835 Optimize();
duke@435 836 if (failing()) return;
duke@435 837 NOT_PRODUCT( verify_graph_edges(); )
duke@435 838
duke@435 839 #ifndef PRODUCT
duke@435 840 if (PrintIdeal) {
duke@435 841 ttyLocker ttyl; // keep the following output all in one block
duke@435 842 // This output goes directly to the tty, not the compiler log.
duke@435 843 // To enable tools to match it up with the compilation activity,
duke@435 844 // be sure to tag this tty output with the compile ID.
duke@435 845 if (xtty != NULL) {
duke@435 846 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 847 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 848 "");
duke@435 849 }
duke@435 850 root()->dump(9999);
duke@435 851 if (xtty != NULL) {
duke@435 852 xtty->tail("ideal");
duke@435 853 }
duke@435 854 }
duke@435 855 #endif
duke@435 856
iveresov@6070 857 NOT_PRODUCT( verify_barriers(); )
kvn@6217 858
kvn@6217 859 // Dump compilation data to replay it.
kvn@6217 860 if (method()->has_option("DumpReplay")) {
kvn@6217 861 env()->dump_replay_data(_compile_id);
kvn@6217 862 }
kvn@6217 863 if (method()->has_option("DumpInline") && (ilt() != NULL)) {
kvn@6217 864 env()->dump_inline_data(_compile_id);
kvn@6217 865 }
kvn@6217 866
duke@435 867 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 868 // for the original deopt pc.
duke@435 869
duke@435 870 _orig_pc_slot = fixed_slots();
duke@435 871 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 872 set_fixed_slots(next_slot);
duke@435 873
duke@435 874 // Now generate code
duke@435 875 Code_Gen();
duke@435 876 if (failing()) return;
duke@435 877
duke@435 878 // Check if we want to skip execution of all compiled code.
duke@435 879 {
duke@435 880 #ifndef PRODUCT
duke@435 881 if (OptoNoExecute) {
duke@435 882 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 883 return;
duke@435 884 }
duke@435 885 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 886 #endif
duke@435 887
duke@435 888 if (is_osr_compilation()) {
duke@435 889 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 890 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 891 } else {
duke@435 892 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 893 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 894 }
duke@435 895
duke@435 896 env()->register_method(_method, _entry_bci,
duke@435 897 &_code_offsets,
duke@435 898 _orig_pc_slot_offset_in_bytes,
duke@435 899 code_buffer(),
duke@435 900 frame_size_in_words(), _oop_map_set,
duke@435 901 &_handler_table, &_inc_table,
duke@435 902 compiler,
duke@435 903 env()->comp_level(),
kvn@4103 904 has_unsafe_access(),
kvn@4103 905 SharedRuntime::is_wide_vector(max_vector_size())
duke@435 906 );
vlivanov@4154 907
vlivanov@4154 908 if (log() != NULL) // Print code cache state into compiler log
vlivanov@4154 909 log()->code_cache_state();
duke@435 910 }
duke@435 911 }
duke@435 912
duke@435 913 //------------------------------Compile----------------------------------------
duke@435 914 // Compile a runtime stub
duke@435 915 Compile::Compile( ciEnv* ci_env,
duke@435 916 TypeFunc_generator generator,
duke@435 917 address stub_function,
duke@435 918 const char *stub_name,
duke@435 919 int is_fancy_jump,
duke@435 920 bool pass_tls,
duke@435 921 bool save_arg_registers,
duke@435 922 bool return_pc )
duke@435 923 : Phase(Compiler),
duke@435 924 _env(ci_env),
duke@435 925 _log(ci_env->log()),
neliasso@4730 926 _compile_id(0),
duke@435 927 _save_argument_registers(save_arg_registers),
duke@435 928 _method(NULL),
duke@435 929 _stub_name(stub_name),
duke@435 930 _stub_function(stub_function),
duke@435 931 _stub_entry_point(NULL),
duke@435 932 _entry_bci(InvocationEntryBci),
duke@435 933 _initial_gvn(NULL),
duke@435 934 _for_igvn(NULL),
duke@435 935 _warm_calls(NULL),
duke@435 936 _orig_pc_slot(0),
duke@435 937 _orig_pc_slot_offset_in_bytes(0),
duke@435 938 _subsume_loads(true),
kvn@473 939 _do_escape_analysis(false),
kvn@5110 940 _eliminate_boxing(false),
duke@435 941 _failure_reason(NULL),
duke@435 942 _code_buffer("Compile::Fill_buffer"),
twisti@1700 943 _has_method_handle_invokes(false),
twisti@2350 944 _mach_constant_base_node(NULL),
duke@435 945 _node_bundling_limit(0),
duke@435 946 _node_bundling_base(NULL),
kvn@1294 947 _java_calls(0),
kvn@1294 948 _inner_loops(0),
duke@435 949 #ifndef PRODUCT
duke@435 950 _trace_opto_output(TraceOptoOutput),
duke@435 951 _printer(NULL),
duke@435 952 #endif
bharadwaj@4315 953 _dead_node_list(comp_arena()),
bharadwaj@4315 954 _dead_node_count(0),
roland@4357 955 _congraph(NULL),
kvn@6217 956 _replay_inline_data(NULL),
roland@4409 957 _number_of_mh_late_inlines(0),
roland@4409 958 _inlining_progress(false),
roland@4409 959 _inlining_incrementally(false),
roland@4357 960 _print_inlining_list(NULL),
roland@5981 961 _print_inlining_idx(0),
roland@5981 962 _preserve_jvm_state(0) {
duke@435 963 C = this;
duke@435 964
duke@435 965 #ifndef PRODUCT
duke@435 966 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 967 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 968 set_print_assembly(PrintFrameConverterAssembly);
never@802 969 set_parsed_irreducible_loop(false);
duke@435 970 #endif
duke@435 971 CompileWrapper cw(this);
duke@435 972 Init(/*AliasLevel=*/ 0);
duke@435 973 init_tf((*generator)());
duke@435 974
duke@435 975 {
duke@435 976 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 977 Unique_Node_List for_igvn(comp_arena());
duke@435 978 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 979 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 980 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 981 gvn.transform_no_reclaim(top());
duke@435 982
duke@435 983 GraphKit kit;
duke@435 984 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 985 }
duke@435 986
duke@435 987 NOT_PRODUCT( verify_graph_edges(); )
duke@435 988 Code_Gen();
duke@435 989 if (failing()) return;
duke@435 990
duke@435 991
duke@435 992 // Entry point will be accessed using compile->stub_entry_point();
duke@435 993 if (code_buffer() == NULL) {
duke@435 994 Matcher::soft_match_failure();
duke@435 995 } else {
duke@435 996 if (PrintAssembly && (WizardMode || Verbose))
duke@435 997 tty->print_cr("### Stub::%s", stub_name);
duke@435 998
duke@435 999 if (!failing()) {
duke@435 1000 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 1001
duke@435 1002 // Make the NMethod
duke@435 1003 // For now we mark the frame as never safe for profile stackwalking
duke@435 1004 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 1005 code_buffer(),
duke@435 1006 CodeOffsets::frame_never_safe,
duke@435 1007 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 1008 frame_size_in_words(),
duke@435 1009 _oop_map_set,
duke@435 1010 save_arg_registers);
duke@435 1011 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 1012
duke@435 1013 _stub_entry_point = rs->entry_point();
duke@435 1014 }
duke@435 1015 }
duke@435 1016 }
duke@435 1017
duke@435 1018 //------------------------------Init-------------------------------------------
duke@435 1019 // Prepare for a single compilation
duke@435 1020 void Compile::Init(int aliaslevel) {
duke@435 1021 _unique = 0;
duke@435 1022 _regalloc = NULL;
duke@435 1023
duke@435 1024 _tf = NULL; // filled in later
duke@435 1025 _top = NULL; // cached later
duke@435 1026 _matcher = NULL; // filled in later
duke@435 1027 _cfg = NULL; // filled in later
duke@435 1028
duke@435 1029 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 1030
duke@435 1031 _node_note_array = NULL;
duke@435 1032 _default_node_notes = NULL;
duke@435 1033
duke@435 1034 _immutable_memory = NULL; // filled in at first inquiry
duke@435 1035
duke@435 1036 // Globally visible Nodes
duke@435 1037 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 1038 set_cached_top_node(NULL);
kvn@4115 1039 set_root(new (this) RootNode());
duke@435 1040 // Now that you have a Root to point to, create the real TOP
kvn@4115 1041 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 1042 set_recent_alloc(NULL, NULL);
duke@435 1043
duke@435 1044 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 1045 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 1046 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 1047 env()->set_dependencies(new Dependencies(env()));
duke@435 1048
duke@435 1049 _fixed_slots = 0;
duke@435 1050 set_has_split_ifs(false);
duke@435 1051 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 1052 set_has_stringbuilder(false);
kvn@5110 1053 set_has_boxed_value(false);
duke@435 1054 _trap_can_recompile = false; // no traps emitted yet
duke@435 1055 _major_progress = true; // start out assuming good things will happen
duke@435 1056 set_has_unsafe_access(false);
kvn@4103 1057 set_max_vector_size(0);
duke@435 1058 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 1059 set_decompile_count(0);
duke@435 1060
rasbold@853 1061 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 1062 set_num_loop_opts(LoopOptsCount);
iveresov@2138 1063 set_do_inlining(Inline);
iveresov@2138 1064 set_max_inline_size(MaxInlineSize);
iveresov@2138 1065 set_freq_inline_size(FreqInlineSize);
iveresov@2138 1066 set_do_scheduling(OptoScheduling);
iveresov@2138 1067 set_do_count_invocations(false);
iveresov@2138 1068 set_do_method_data_update(false);
duke@435 1069
duke@435 1070 if (debug_info()->recording_non_safepoints()) {
duke@435 1071 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 1072 (comp_arena(), 8, 0, NULL));
duke@435 1073 set_default_node_notes(Node_Notes::make(this));
duke@435 1074 }
duke@435 1075
duke@435 1076 // // -- Initialize types before each compile --
duke@435 1077 // // Update cached type information
duke@435 1078 // if( _method && _method->constants() )
duke@435 1079 // Type::update_loaded_types(_method, _method->constants());
duke@435 1080
duke@435 1081 // Init alias_type map.
kvn@473 1082 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 1083 aliaslevel = 2; // No unique types without escape analysis
duke@435 1084 _AliasLevel = aliaslevel;
duke@435 1085 const int grow_ats = 16;
duke@435 1086 _max_alias_types = grow_ats;
duke@435 1087 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 1088 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 1089 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1090 {
duke@435 1091 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1092 }
duke@435 1093 // Initialize the first few types.
duke@435 1094 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1095 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1096 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1097 _num_alias_types = AliasIdxRaw+1;
duke@435 1098 // Zero out the alias type cache.
duke@435 1099 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1100 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1101 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1102
duke@435 1103 _intrinsics = NULL;
kvn@2040 1104 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1105 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
roland@4589 1106 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1107 register_library_intrinsics();
duke@435 1108 }
duke@435 1109
duke@435 1110 //---------------------------init_start----------------------------------------
duke@435 1111 // Install the StartNode on this compile object.
duke@435 1112 void Compile::init_start(StartNode* s) {
duke@435 1113 if (failing())
duke@435 1114 return; // already failing
duke@435 1115 assert(s == start(), "");
duke@435 1116 }
duke@435 1117
duke@435 1118 StartNode* Compile::start() const {
duke@435 1119 assert(!failing(), "");
duke@435 1120 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1121 Node* start = root()->fast_out(i);
duke@435 1122 if( start->is_Start() )
duke@435 1123 return start->as_Start();
duke@435 1124 }
duke@435 1125 ShouldNotReachHere();
duke@435 1126 return NULL;
duke@435 1127 }
duke@435 1128
duke@435 1129 //-------------------------------immutable_memory-------------------------------------
duke@435 1130 // Access immutable memory
duke@435 1131 Node* Compile::immutable_memory() {
duke@435 1132 if (_immutable_memory != NULL) {
duke@435 1133 return _immutable_memory;
duke@435 1134 }
duke@435 1135 StartNode* s = start();
duke@435 1136 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1137 Node *p = s->fast_out(i);
duke@435 1138 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1139 _immutable_memory = p;
duke@435 1140 return _immutable_memory;
duke@435 1141 }
duke@435 1142 }
duke@435 1143 ShouldNotReachHere();
duke@435 1144 return NULL;
duke@435 1145 }
duke@435 1146
duke@435 1147 //----------------------set_cached_top_node------------------------------------
duke@435 1148 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1149 void Compile::set_cached_top_node(Node* tn) {
duke@435 1150 if (tn != NULL) verify_top(tn);
duke@435 1151 Node* old_top = _top;
duke@435 1152 _top = tn;
duke@435 1153 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1154 // their _out arrays.
duke@435 1155 if (_top != NULL) _top->setup_is_top();
duke@435 1156 if (old_top != NULL) old_top->setup_is_top();
duke@435 1157 assert(_top == NULL || top()->is_top(), "");
duke@435 1158 }
duke@435 1159
bharadwaj@4315 1160 #ifdef ASSERT
bharadwaj@4315 1161 uint Compile::count_live_nodes_by_graph_walk() {
bharadwaj@4315 1162 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1163 // Get useful node list by walking the graph.
bharadwaj@4315 1164 identify_useful_nodes(useful);
bharadwaj@4315 1165 return useful.size();
bharadwaj@4315 1166 }
bharadwaj@4315 1167
bharadwaj@4315 1168 void Compile::print_missing_nodes() {
bharadwaj@4315 1169
bharadwaj@4315 1170 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
bharadwaj@4315 1171 if ((_log == NULL) && (! PrintIdealNodeCount)) {
bharadwaj@4315 1172 return;
bharadwaj@4315 1173 }
bharadwaj@4315 1174
bharadwaj@4315 1175 // This is an expensive function. It is executed only when the user
bharadwaj@4315 1176 // specifies VerifyIdealNodeCount option or otherwise knows the
bharadwaj@4315 1177 // additional work that needs to be done to identify reachable nodes
bharadwaj@4315 1178 // by walking the flow graph and find the missing ones using
bharadwaj@4315 1179 // _dead_node_list.
bharadwaj@4315 1180
bharadwaj@4315 1181 Unique_Node_List useful(comp_arena());
bharadwaj@4315 1182 // Get useful node list by walking the graph.
bharadwaj@4315 1183 identify_useful_nodes(useful);
bharadwaj@4315 1184
bharadwaj@4315 1185 uint l_nodes = C->live_nodes();
bharadwaj@4315 1186 uint l_nodes_by_walk = useful.size();
bharadwaj@4315 1187
bharadwaj@4315 1188 if (l_nodes != l_nodes_by_walk) {
bharadwaj@4315 1189 if (_log != NULL) {
bharadwaj@4315 1190 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
bharadwaj@4315 1191 _log->stamp();
bharadwaj@4315 1192 _log->end_head();
bharadwaj@4315 1193 }
bharadwaj@4315 1194 VectorSet& useful_member_set = useful.member_set();
bharadwaj@4315 1195 int last_idx = l_nodes_by_walk;
bharadwaj@4315 1196 for (int i = 0; i < last_idx; i++) {
bharadwaj@4315 1197 if (useful_member_set.test(i)) {
bharadwaj@4315 1198 if (_dead_node_list.test(i)) {
bharadwaj@4315 1199 if (_log != NULL) {
bharadwaj@4315 1200 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
bharadwaj@4315 1201 }
bharadwaj@4315 1202 if (PrintIdealNodeCount) {
bharadwaj@4315 1203 // Print the log message to tty
bharadwaj@4315 1204 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
bharadwaj@4315 1205 useful.at(i)->dump();
bharadwaj@4315 1206 }
bharadwaj@4315 1207 }
bharadwaj@4315 1208 }
bharadwaj@4315 1209 else if (! _dead_node_list.test(i)) {
bharadwaj@4315 1210 if (_log != NULL) {
bharadwaj@4315 1211 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1212 }
bharadwaj@4315 1213 if (PrintIdealNodeCount) {
bharadwaj@4315 1214 // Print the log message to tty
bharadwaj@4315 1215 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
bharadwaj@4315 1216 }
bharadwaj@4315 1217 }
bharadwaj@4315 1218 }
bharadwaj@4315 1219 if (_log != NULL) {
bharadwaj@4315 1220 _log->tail("mismatched_nodes");
bharadwaj@4315 1221 }
bharadwaj@4315 1222 }
bharadwaj@4315 1223 }
bharadwaj@4315 1224 #endif
bharadwaj@4315 1225
duke@435 1226 #ifndef PRODUCT
duke@435 1227 void Compile::verify_top(Node* tn) const {
duke@435 1228 if (tn != NULL) {
duke@435 1229 assert(tn->is_Con(), "top node must be a constant");
duke@435 1230 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1231 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1232 }
duke@435 1233 }
duke@435 1234 #endif
duke@435 1235
duke@435 1236
duke@435 1237 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1238
duke@435 1239 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1240 guarantee(arr != NULL, "");
duke@435 1241 int num_blocks = arr->length();
duke@435 1242 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1243 int num_notes = grow_by * _node_notes_block_size;
duke@435 1244 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1245 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1246 while (num_notes > 0) {
duke@435 1247 arr->append(notes);
duke@435 1248 notes += _node_notes_block_size;
duke@435 1249 num_notes -= _node_notes_block_size;
duke@435 1250 }
duke@435 1251 assert(num_notes == 0, "exact multiple, please");
duke@435 1252 }
duke@435 1253
duke@435 1254 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1255 if (source == NULL || dest == NULL) return false;
duke@435 1256
duke@435 1257 if (dest->is_Con())
duke@435 1258 return false; // Do not push debug info onto constants.
duke@435 1259
duke@435 1260 #ifdef ASSERT
duke@435 1261 // Leave a bread crumb trail pointing to the original node:
duke@435 1262 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1263 dest->set_debug_orig(source);
duke@435 1264 }
duke@435 1265 #endif
duke@435 1266
duke@435 1267 if (node_note_array() == NULL)
duke@435 1268 return false; // Not collecting any notes now.
duke@435 1269
duke@435 1270 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1271 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1272 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1273 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1274 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1275 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1276 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1277 }
duke@435 1278
duke@435 1279 Node_Notes merged_notes = (*source_notes);
duke@435 1280 // The order of operations here ensures that dest notes will win...
duke@435 1281 merged_notes.update_from(dest_notes);
duke@435 1282 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1283 }
duke@435 1284
duke@435 1285
duke@435 1286 //--------------------------allow_range_check_smearing-------------------------
duke@435 1287 // Gating condition for coalescing similar range checks.
duke@435 1288 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1289 // single covering check that is at least as strong as any of them.
duke@435 1290 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1291 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1292 // on the optimization.
duke@435 1293 bool Compile::allow_range_check_smearing() const {
duke@435 1294 // If this method has already thrown a range-check,
duke@435 1295 // assume it was because we already tried range smearing
duke@435 1296 // and it failed.
duke@435 1297 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1298 return !already_trapped;
duke@435 1299 }
duke@435 1300
duke@435 1301
duke@435 1302 //------------------------------flatten_alias_type-----------------------------
duke@435 1303 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1304 int offset = tj->offset();
duke@435 1305 TypePtr::PTR ptr = tj->ptr();
duke@435 1306
kvn@682 1307 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1308 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1309 tj->is_oopptr()->is_known_instance();
kvn@682 1310
duke@435 1311 // Process weird unsafe references.
duke@435 1312 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1313 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1314 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1315 tj = TypeOopPtr::BOTTOM;
duke@435 1316 ptr = tj->ptr();
duke@435 1317 offset = tj->offset();
duke@435 1318 }
duke@435 1319
duke@435 1320 // Array pointers need some flattening
duke@435 1321 const TypeAryPtr *ta = tj->isa_aryptr();
vlivanov@5658 1322 if (ta && ta->is_stable()) {
vlivanov@5658 1323 // Erase stability property for alias analysis.
vlivanov@5658 1324 tj = ta = ta->cast_to_stable(false);
vlivanov@5658 1325 }
kvn@682 1326 if( ta && is_known_inst ) {
kvn@682 1327 if ( offset != Type::OffsetBot &&
kvn@682 1328 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1329 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1330 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1331 }
kvn@682 1332 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1333 // For arrays indexed by constant indices, we flatten the alias
duke@435 1334 // space to include all of the array body. Only the header, klass
duke@435 1335 // and array length can be accessed un-aliased.
duke@435 1336 if( offset != Type::OffsetBot ) {
coleenp@4037 1337 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1338 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1339 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1340 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1341 // range is OK as-is.
duke@435 1342 tj = ta = TypeAryPtr::RANGE;
duke@435 1343 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1344 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1345 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1346 ptr = TypePtr::BotPTR;
duke@435 1347 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1348 tj = TypeInstPtr::MARK;
duke@435 1349 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1350 ptr = TypePtr::BotPTR;
duke@435 1351 } else { // Random constant offset into array body
duke@435 1352 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1353 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1354 }
duke@435 1355 }
duke@435 1356 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1357 if (ta->size() != TypeInt::POS) {
duke@435 1358 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1359 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1360 }
duke@435 1361 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1362 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1363 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1364 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1365 }
duke@435 1366 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1367 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1368 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1369 }
duke@435 1370 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1371 // cannot be distinguished by bytecode alone.
duke@435 1372 if (ta->elem() == TypeInt::BOOL) {
duke@435 1373 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1374 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1375 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1376 }
duke@435 1377 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1378 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1379 // Also, make sure exact and non-exact variants alias the same.
roland@5991 1380 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
kvn@2986 1381 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1382 }
duke@435 1383 }
duke@435 1384
duke@435 1385 // Oop pointers need some flattening
duke@435 1386 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1387 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1388 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1389 if( ptr == TypePtr::Constant ) {
never@2658 1390 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1391 offset < k->size_helper() * wordSize) {
never@2658 1392 // No constant oop pointers (such as Strings); they alias with
never@2658 1393 // unknown strings.
never@2658 1394 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1395 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1396 }
kvn@682 1397 } else if( is_known_inst ) {
kvn@598 1398 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1399 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1400 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1401 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1402 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1403 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1404 }
roland@5991 1405 if (to->speculative() != NULL) {
roland@5991 1406 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
roland@5991 1407 }
duke@435 1408 // Canonicalize the holder of this field
coleenp@548 1409 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1410 // First handle header references such as a LoadKlassNode, even if the
duke@435 1411 // object's klass is unloaded at compile time (4965979).
kvn@682 1412 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1413 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1414 }
duke@435 1415 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1416 // Static fields are in the space above the normal instance
never@2658 1417 // fields in the java.lang.Class instance.
never@2658 1418 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1419 to = NULL;
never@2658 1420 tj = TypeOopPtr::BOTTOM;
never@2658 1421 offset = tj->offset();
never@2658 1422 }
duke@435 1423 } else {
duke@435 1424 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1425 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1426 if( is_known_inst ) {
kvn@682 1427 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1428 } else {
kvn@682 1429 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1430 }
duke@435 1431 }
duke@435 1432 }
duke@435 1433 }
duke@435 1434
duke@435 1435 // Klass pointers to object array klasses need some flattening
duke@435 1436 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1437 if( tk ) {
duke@435 1438 // If we are referencing a field within a Klass, we need
duke@435 1439 // to assume the worst case of an Object. Both exact and
never@3389 1440 // inexact types must flatten to the same alias class so
never@3389 1441 // use NotNull as the PTR.
duke@435 1442 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1443
never@3389 1444 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1445 TypeKlassPtr::OBJECT->klass(),
duke@435 1446 offset);
duke@435 1447 }
duke@435 1448
duke@435 1449 ciKlass* klass = tk->klass();
duke@435 1450 if( klass->is_obj_array_klass() ) {
duke@435 1451 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1452 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1453 k = TypeInstPtr::BOTTOM->klass();
duke@435 1454 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1455 }
duke@435 1456
duke@435 1457 // Check for precise loads from the primary supertype array and force them
duke@435 1458 // to the supertype cache alias index. Check for generic array loads from
duke@435 1459 // the primary supertype array and also force them to the supertype cache
duke@435 1460 // alias index. Since the same load can reach both, we need to merge
duke@435 1461 // these 2 disparate memories into the same alias class. Since the
duke@435 1462 // primary supertype array is read-only, there's no chance of confusion
duke@435 1463 // where we bypass an array load and an array store.
stefank@3391 1464 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1465 if (offset == Type::OffsetBot ||
never@3389 1466 (offset >= primary_supers_offset &&
never@3389 1467 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1468 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1469 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1470 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1471 }
duke@435 1472 }
duke@435 1473
duke@435 1474 // Flatten all Raw pointers together.
duke@435 1475 if (tj->base() == Type::RawPtr)
duke@435 1476 tj = TypeRawPtr::BOTTOM;
duke@435 1477
duke@435 1478 if (tj->base() == Type::AnyPtr)
duke@435 1479 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1480
duke@435 1481 // Flatten all to bottom for now
duke@435 1482 switch( _AliasLevel ) {
duke@435 1483 case 0:
duke@435 1484 tj = TypePtr::BOTTOM;
duke@435 1485 break;
duke@435 1486 case 1: // Flatten to: oop, static, field or array
duke@435 1487 switch (tj->base()) {
duke@435 1488 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1489 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1490 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1491 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1492 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1493 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1494 default: ShouldNotReachHere();
duke@435 1495 }
duke@435 1496 break;
twisti@1040 1497 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1498 case 3: // No collapsing at level 3; keep all splits
duke@435 1499 break;
duke@435 1500 default:
duke@435 1501 Unimplemented();
duke@435 1502 }
duke@435 1503
duke@435 1504 offset = tj->offset();
duke@435 1505 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1506
duke@435 1507 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1508 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1509 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1510 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1511 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1512 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1513 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1514 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1515 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1516 tj->ptr() != TypePtr::AnyNull &&
duke@435 1517 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1518 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1519 // tj->base() == Type::RawPtr ||
duke@435 1520 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1521
duke@435 1522 return tj;
duke@435 1523 }
duke@435 1524
duke@435 1525 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1526 _index = i;
duke@435 1527 _adr_type = at;
duke@435 1528 _field = NULL;
vlivanov@5658 1529 _element = NULL;
duke@435 1530 _is_rewritable = true; // default
duke@435 1531 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1532 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1533 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1534 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1535 } else {
duke@435 1536 _general_index = 0;
duke@435 1537 }
duke@435 1538 }
duke@435 1539
duke@435 1540 //---------------------------------print_on------------------------------------
duke@435 1541 #ifndef PRODUCT
duke@435 1542 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1543 if (index() < 10)
duke@435 1544 st->print("@ <%d> ", index());
duke@435 1545 else st->print("@ <%d>", index());
duke@435 1546 st->print(is_rewritable() ? " " : " RO");
duke@435 1547 int offset = adr_type()->offset();
duke@435 1548 if (offset == Type::OffsetBot)
duke@435 1549 st->print(" +any");
duke@435 1550 else st->print(" +%-3d", offset);
duke@435 1551 st->print(" in ");
duke@435 1552 adr_type()->dump_on(st);
duke@435 1553 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1554 if (field() != NULL && tjp) {
duke@435 1555 if (tjp->klass() != field()->holder() ||
duke@435 1556 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1557 st->print(" != ");
duke@435 1558 field()->print();
duke@435 1559 st->print(" ***");
duke@435 1560 }
duke@435 1561 }
duke@435 1562 }
duke@435 1563
duke@435 1564 void print_alias_types() {
duke@435 1565 Compile* C = Compile::current();
duke@435 1566 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1567 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1568 C->alias_type(idx)->print_on(tty);
duke@435 1569 tty->cr();
duke@435 1570 }
duke@435 1571 }
duke@435 1572 #endif
duke@435 1573
duke@435 1574
duke@435 1575 //----------------------------probe_alias_cache--------------------------------
duke@435 1576 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1577 intptr_t key = (intptr_t) adr_type;
duke@435 1578 key ^= key >> logAliasCacheSize;
duke@435 1579 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1580 }
duke@435 1581
duke@435 1582
duke@435 1583 //-----------------------------grow_alias_types--------------------------------
duke@435 1584 void Compile::grow_alias_types() {
duke@435 1585 const int old_ats = _max_alias_types; // how many before?
duke@435 1586 const int new_ats = old_ats; // how many more?
duke@435 1587 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1588 _max_alias_types = grow_ats;
duke@435 1589 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1590 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1591 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1592 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1593 }
duke@435 1594
duke@435 1595
duke@435 1596 //--------------------------------find_alias_type------------------------------
never@2658 1597 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1598 if (_AliasLevel == 0)
duke@435 1599 return alias_type(AliasIdxBot);
duke@435 1600
duke@435 1601 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1602 if (ace->_adr_type == adr_type) {
duke@435 1603 return alias_type(ace->_index);
duke@435 1604 }
duke@435 1605
duke@435 1606 // Handle special cases.
duke@435 1607 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1608 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1609
duke@435 1610 // Do it the slow way.
duke@435 1611 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1612
duke@435 1613 #ifdef ASSERT
duke@435 1614 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1615 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1616 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1617 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1618 // Scalarizable allocations have exact klass always.
kvn@682 1619 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1620 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1621 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1622 }
duke@435 1623 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1624 #endif
duke@435 1625
duke@435 1626 int idx = AliasIdxTop;
duke@435 1627 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1628 if (alias_type(i)->adr_type() == flat) {
duke@435 1629 idx = i;
duke@435 1630 break;
duke@435 1631 }
duke@435 1632 }
duke@435 1633
duke@435 1634 if (idx == AliasIdxTop) {
duke@435 1635 if (no_create) return NULL;
duke@435 1636 // Grow the array if necessary.
duke@435 1637 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1638 // Add a new alias type.
duke@435 1639 idx = _num_alias_types++;
duke@435 1640 _alias_types[idx]->Init(idx, flat);
duke@435 1641 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1642 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1643 if (flat->isa_instptr()) {
duke@435 1644 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1645 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1646 alias_type(idx)->set_rewritable(false);
duke@435 1647 }
vlivanov@5658 1648 if (flat->isa_aryptr()) {
vlivanov@5658 1649 #ifdef ASSERT
vlivanov@5658 1650 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
vlivanov@5658 1651 // (T_BYTE has the weakest alignment and size restrictions...)
vlivanov@5658 1652 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
vlivanov@5658 1653 #endif
vlivanov@5658 1654 if (flat->offset() == TypePtr::OffsetBot) {
vlivanov@5658 1655 alias_type(idx)->set_element(flat->is_aryptr()->elem());
vlivanov@5658 1656 }
vlivanov@5658 1657 }
duke@435 1658 if (flat->isa_klassptr()) {
stefank@3391 1659 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1660 alias_type(idx)->set_rewritable(false);
stefank@3391 1661 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1662 alias_type(idx)->set_rewritable(false);
stefank@3391 1663 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1664 alias_type(idx)->set_rewritable(false);
stefank@3391 1665 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1666 alias_type(idx)->set_rewritable(false);
duke@435 1667 }
duke@435 1668 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1669 // but the base pointer type is not distinctive enough to identify
duke@435 1670 // references into JavaThread.)
duke@435 1671
never@2658 1672 // Check for final fields.
duke@435 1673 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1674 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1675 ciField* field;
never@2658 1676 if (tinst->const_oop() != NULL &&
never@2658 1677 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1678 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1679 // static field
never@2658 1680 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1681 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1682 } else {
never@2658 1683 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1684 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1685 }
never@2658 1686 assert(field == NULL ||
never@2658 1687 original_field == NULL ||
never@2658 1688 (field->holder() == original_field->holder() &&
never@2658 1689 field->offset() == original_field->offset() &&
never@2658 1690 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1691 // Set field() and is_rewritable() attributes.
duke@435 1692 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1693 }
duke@435 1694 }
duke@435 1695
duke@435 1696 // Fill the cache for next time.
duke@435 1697 ace->_adr_type = adr_type;
duke@435 1698 ace->_index = idx;
duke@435 1699 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1700
duke@435 1701 // Might as well try to fill the cache for the flattened version, too.
duke@435 1702 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1703 if (face->_adr_type == NULL) {
duke@435 1704 face->_adr_type = flat;
duke@435 1705 face->_index = idx;
duke@435 1706 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1707 }
duke@435 1708
duke@435 1709 return alias_type(idx);
duke@435 1710 }
duke@435 1711
duke@435 1712
duke@435 1713 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1714 const TypeOopPtr* t;
duke@435 1715 if (field->is_static())
never@2658 1716 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1717 else
duke@435 1718 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1719 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
vlivanov@5658 1720 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1721 return atp;
duke@435 1722 }
duke@435 1723
duke@435 1724
duke@435 1725 //------------------------------have_alias_type--------------------------------
duke@435 1726 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1727 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1728 if (ace->_adr_type == adr_type) {
duke@435 1729 return true;
duke@435 1730 }
duke@435 1731
duke@435 1732 // Handle special cases.
duke@435 1733 if (adr_type == NULL) return true;
duke@435 1734 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1735
never@2658 1736 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1737 }
duke@435 1738
duke@435 1739 //-----------------------------must_alias--------------------------------------
duke@435 1740 // True if all values of the given address type are in the given alias category.
duke@435 1741 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1742 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1743 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1744 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1745 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1746
duke@435 1747 // the only remaining possible overlap is identity
duke@435 1748 int adr_idx = get_alias_index(adr_type);
duke@435 1749 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1750 assert(adr_idx == alias_idx ||
duke@435 1751 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1752 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1753 "should not be testing for overlap with an unsafe pointer");
duke@435 1754 return adr_idx == alias_idx;
duke@435 1755 }
duke@435 1756
duke@435 1757 //------------------------------can_alias--------------------------------------
duke@435 1758 // True if any values of the given address type are in the given alias category.
duke@435 1759 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1760 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1761 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1762 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1763 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1764
duke@435 1765 // the only remaining possible overlap is identity
duke@435 1766 int adr_idx = get_alias_index(adr_type);
duke@435 1767 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1768 return adr_idx == alias_idx;
duke@435 1769 }
duke@435 1770
duke@435 1771
duke@435 1772
duke@435 1773 //---------------------------pop_warm_call-------------------------------------
duke@435 1774 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1775 WarmCallInfo* wci = _warm_calls;
duke@435 1776 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1777 return wci;
duke@435 1778 }
duke@435 1779
duke@435 1780 //----------------------------Inline_Warm--------------------------------------
duke@435 1781 int Compile::Inline_Warm() {
duke@435 1782 // If there is room, try to inline some more warm call sites.
duke@435 1783 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1784 if (!InlineWarmCalls) return 0;
duke@435 1785
duke@435 1786 int calls_made_hot = 0;
duke@435 1787 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1788 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1789 int amount_grown = 0;
duke@435 1790 WarmCallInfo* call;
duke@435 1791 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1792 int est_size = (int)call->size();
duke@435 1793 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1794 // This one won't fit anyway. Get rid of it.
duke@435 1795 call->make_cold();
duke@435 1796 continue;
duke@435 1797 }
duke@435 1798 call->make_hot();
duke@435 1799 calls_made_hot++;
duke@435 1800 amount_grown += est_size;
duke@435 1801 amount_to_grow -= est_size;
duke@435 1802 }
duke@435 1803
duke@435 1804 if (calls_made_hot > 0) set_major_progress();
duke@435 1805 return calls_made_hot;
duke@435 1806 }
duke@435 1807
duke@435 1808
duke@435 1809 //----------------------------Finish_Warm--------------------------------------
duke@435 1810 void Compile::Finish_Warm() {
duke@435 1811 if (!InlineWarmCalls) return;
duke@435 1812 if (failing()) return;
duke@435 1813 if (warm_calls() == NULL) return;
duke@435 1814
duke@435 1815 // Clean up loose ends, if we are out of space for inlining.
duke@435 1816 WarmCallInfo* call;
duke@435 1817 while ((call = pop_warm_call()) != NULL) {
duke@435 1818 call->make_cold();
duke@435 1819 }
duke@435 1820 }
duke@435 1821
cfang@1607 1822 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1823 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1824 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1825 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1826 if (predicate_count()==0) return;
cfang@1607 1827 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1828 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1829 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1830 igvn.replace_node(n, n->in(1));
cfang@1607 1831 }
cfang@1607 1832 assert(predicate_count()==0, "should be clean!");
cfang@1607 1833 }
duke@435 1834
roland@4409 1835 // StringOpts and late inlining of string methods
roland@4409 1836 void Compile::inline_string_calls(bool parse_time) {
roland@4409 1837 {
roland@4409 1838 // remove useless nodes to make the usage analysis simpler
roland@4409 1839 ResourceMark rm;
roland@4409 1840 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1841 }
roland@4409 1842
roland@4409 1843 {
roland@4409 1844 ResourceMark rm;
sla@5237 1845 print_method(PHASE_BEFORE_STRINGOPTS, 3);
roland@4409 1846 PhaseStringOpts pso(initial_gvn(), for_igvn());
sla@5237 1847 print_method(PHASE_AFTER_STRINGOPTS, 3);
roland@4409 1848 }
roland@4409 1849
roland@4409 1850 // now inline anything that we skipped the first time around
roland@4409 1851 if (!parse_time) {
roland@4409 1852 _late_inlines_pos = _late_inlines.length();
roland@4409 1853 }
roland@4409 1854
roland@4409 1855 while (_string_late_inlines.length() > 0) {
roland@4409 1856 CallGenerator* cg = _string_late_inlines.pop();
roland@4409 1857 cg->do_late_inline();
roland@4409 1858 if (failing()) return;
roland@4409 1859 }
roland@4409 1860 _string_late_inlines.trunc_to(0);
roland@4409 1861 }
roland@4409 1862
kvn@5110 1863 // Late inlining of boxing methods
kvn@5110 1864 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
kvn@5110 1865 if (_boxing_late_inlines.length() > 0) {
kvn@5110 1866 assert(has_boxed_value(), "inconsistent");
kvn@5110 1867
kvn@5110 1868 PhaseGVN* gvn = initial_gvn();
kvn@5110 1869 set_inlining_incrementally(true);
kvn@5110 1870
kvn@5110 1871 assert( igvn._worklist.size() == 0, "should be done with igvn" );
kvn@5110 1872 for_igvn()->clear();
kvn@5110 1873 gvn->replace_with(&igvn);
kvn@5110 1874
kvn@5110 1875 while (_boxing_late_inlines.length() > 0) {
kvn@5110 1876 CallGenerator* cg = _boxing_late_inlines.pop();
kvn@5110 1877 cg->do_late_inline();
kvn@5110 1878 if (failing()) return;
kvn@5110 1879 }
kvn@5110 1880 _boxing_late_inlines.trunc_to(0);
kvn@5110 1881
kvn@5110 1882 {
kvn@5110 1883 ResourceMark rm;
kvn@5110 1884 PhaseRemoveUseless pru(gvn, for_igvn());
kvn@5110 1885 }
kvn@5110 1886
kvn@5110 1887 igvn = PhaseIterGVN(gvn);
kvn@5110 1888 igvn.optimize();
kvn@5110 1889
kvn@5110 1890 set_inlining_progress(false);
kvn@5110 1891 set_inlining_incrementally(false);
kvn@5110 1892 }
kvn@5110 1893 }
kvn@5110 1894
roland@4409 1895 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
roland@4409 1896 assert(IncrementalInline, "incremental inlining should be on");
roland@4409 1897 PhaseGVN* gvn = initial_gvn();
roland@4409 1898
roland@4409 1899 set_inlining_progress(false);
roland@4409 1900 for_igvn()->clear();
roland@4409 1901 gvn->replace_with(&igvn);
roland@4409 1902
roland@4409 1903 int i = 0;
roland@4409 1904
roland@4409 1905 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
roland@4409 1906 CallGenerator* cg = _late_inlines.at(i);
roland@4409 1907 _late_inlines_pos = i+1;
roland@4409 1908 cg->do_late_inline();
roland@4409 1909 if (failing()) return;
roland@4409 1910 }
roland@4409 1911 int j = 0;
roland@4409 1912 for (; i < _late_inlines.length(); i++, j++) {
roland@4409 1913 _late_inlines.at_put(j, _late_inlines.at(i));
roland@4409 1914 }
roland@4409 1915 _late_inlines.trunc_to(j);
roland@4409 1916
roland@4409 1917 {
roland@4409 1918 ResourceMark rm;
kvn@5110 1919 PhaseRemoveUseless pru(gvn, for_igvn());
roland@4409 1920 }
roland@4409 1921
roland@4409 1922 igvn = PhaseIterGVN(gvn);
roland@4409 1923 }
roland@4409 1924
roland@4409 1925 // Perform incremental inlining until bound on number of live nodes is reached
roland@4409 1926 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
roland@4409 1927 PhaseGVN* gvn = initial_gvn();
roland@4409 1928
roland@4409 1929 set_inlining_incrementally(true);
roland@4409 1930 set_inlining_progress(true);
roland@4409 1931 uint low_live_nodes = 0;
roland@4409 1932
roland@4409 1933 while(inlining_progress() && _late_inlines.length() > 0) {
roland@4409 1934
roland@4409 1935 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1936 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
roland@4409 1937 // PhaseIdealLoop is expensive so we only try it once we are
roland@4409 1938 // out of loop and we only try it again if the previous helped
roland@4409 1939 // got the number of nodes down significantly
roland@4409 1940 PhaseIdealLoop ideal_loop( igvn, false, true );
roland@4409 1941 if (failing()) return;
roland@4409 1942 low_live_nodes = live_nodes();
roland@4409 1943 _major_progress = true;
roland@4409 1944 }
roland@4409 1945
roland@4409 1946 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
roland@4409 1947 break;
roland@4409 1948 }
roland@4409 1949 }
roland@4409 1950
roland@4409 1951 inline_incrementally_one(igvn);
roland@4409 1952
roland@4409 1953 if (failing()) return;
roland@4409 1954
roland@4409 1955 igvn.optimize();
roland@4409 1956
roland@4409 1957 if (failing()) return;
roland@4409 1958 }
roland@4409 1959
roland@4409 1960 assert( igvn._worklist.size() == 0, "should be done with igvn" );
roland@4409 1961
roland@4409 1962 if (_string_late_inlines.length() > 0) {
roland@4409 1963 assert(has_stringbuilder(), "inconsistent");
roland@4409 1964 for_igvn()->clear();
roland@4409 1965 initial_gvn()->replace_with(&igvn);
roland@4409 1966
roland@4409 1967 inline_string_calls(false);
roland@4409 1968
roland@4409 1969 if (failing()) return;
roland@4409 1970
roland@4409 1971 {
roland@4409 1972 ResourceMark rm;
roland@4409 1973 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
roland@4409 1974 }
roland@4409 1975
roland@4409 1976 igvn = PhaseIterGVN(gvn);
roland@4409 1977
roland@4409 1978 igvn.optimize();
roland@4409 1979 }
roland@4409 1980
roland@4409 1981 set_inlining_incrementally(false);
roland@4409 1982 }
roland@4409 1983
roland@4409 1984
duke@435 1985 //------------------------------Optimize---------------------------------------
duke@435 1986 // Given a graph, optimize it.
duke@435 1987 void Compile::Optimize() {
duke@435 1988 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1989
duke@435 1990 #ifndef PRODUCT
duke@435 1991 if (env()->break_at_compile()) {
duke@435 1992 BREAKPOINT;
duke@435 1993 }
duke@435 1994
duke@435 1995 #endif
duke@435 1996
duke@435 1997 ResourceMark rm;
duke@435 1998 int loop_opts_cnt;
duke@435 1999
duke@435 2000 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2001
sla@5237 2002 print_method(PHASE_AFTER_PARSING);
duke@435 2003
duke@435 2004 {
duke@435 2005 // Iterative Global Value Numbering, including ideal transforms
duke@435 2006 // Initialize IterGVN with types and values from parse-time GVN
duke@435 2007 PhaseIterGVN igvn(initial_gvn());
duke@435 2008 {
duke@435 2009 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 2010 igvn.optimize();
duke@435 2011 }
duke@435 2012
sla@5237 2013 print_method(PHASE_ITER_GVN1, 2);
duke@435 2014
duke@435 2015 if (failing()) return;
duke@435 2016
kvn@5110 2017 {
kvn@5110 2018 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2019 inline_incrementally(igvn);
kvn@5110 2020 }
roland@4409 2021
sla@5237 2022 print_method(PHASE_INCREMENTAL_INLINE, 2);
roland@4409 2023
roland@4409 2024 if (failing()) return;
roland@4409 2025
kvn@5110 2026 if (eliminate_boxing()) {
kvn@5110 2027 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
kvn@5110 2028 // Inline valueOf() methods now.
kvn@5110 2029 inline_boxing_calls(igvn);
kvn@5110 2030
sla@5237 2031 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
kvn@5110 2032
kvn@5110 2033 if (failing()) return;
kvn@5110 2034 }
kvn@5110 2035
roland@5991 2036 // Remove the speculative part of types and clean up the graph from
roland@5991 2037 // the extra CastPP nodes whose only purpose is to carry them. Do
roland@5991 2038 // that early so that optimizations are not disrupted by the extra
roland@5991 2039 // CastPP nodes.
roland@5991 2040 remove_speculative_types(igvn);
roland@5991 2041
roland@4589 2042 // No more new expensive nodes will be added to the list from here
roland@4589 2043 // so keep only the actual candidates for optimizations.
roland@4589 2044 cleanup_expensive_nodes(igvn);
roland@4589 2045
kvn@1989 2046 // Perform escape analysis
kvn@1989 2047 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 2048 if (has_loops()) {
kvn@3260 2049 // Cleanup graph (remove dead nodes).
kvn@3260 2050 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 2051 PhaseIdealLoop ideal_loop( igvn, false, true );
sla@5237 2052 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
kvn@3260 2053 if (failing()) return;
kvn@3260 2054 }
kvn@1989 2055 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 2056
kvn@1989 2057 if (failing()) return;
kvn@1989 2058
kvn@3311 2059 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 2060 igvn.optimize();
sla@5237 2061 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
kvn@1989 2062
kvn@1989 2063 if (failing()) return;
kvn@1989 2064
kvn@3311 2065 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 2066 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 2067 PhaseMacroExpand mexp(igvn);
kvn@3311 2068 mexp.eliminate_macro_nodes();
kvn@3311 2069 igvn.set_delay_transform(false);
kvn@3311 2070
kvn@3311 2071 igvn.optimize();
sla@5237 2072 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
kvn@3311 2073
kvn@3311 2074 if (failing()) return;
kvn@3311 2075 }
kvn@1989 2076 }
kvn@1989 2077
duke@435 2078 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2079 // peeling, unrolling, etc.
duke@435 2080
duke@435 2081 // Set loop opts counter
duke@435 2082 loop_opts_cnt = num_loop_opts();
duke@435 2083 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 2084 {
duke@435 2085 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 2086 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 2087 loop_opts_cnt--;
sla@5237 2088 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
duke@435 2089 if (failing()) return;
duke@435 2090 }
duke@435 2091 // Loop opts pass if partial peeling occurred in previous pass
duke@435 2092 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 2093 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 2094 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2095 loop_opts_cnt--;
sla@5237 2096 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
duke@435 2097 if (failing()) return;
duke@435 2098 }
duke@435 2099 // Loop opts pass for loop-unrolling before CCP
duke@435 2100 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2101 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 2102 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 2103 loop_opts_cnt--;
sla@5237 2104 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
duke@435 2105 }
never@1356 2106 if (!failing()) {
never@1356 2107 // Verify that last round of loop opts produced a valid graph
never@1356 2108 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2109 PhaseIdealLoop::verify(igvn);
never@1356 2110 }
duke@435 2111 }
duke@435 2112 if (failing()) return;
duke@435 2113
duke@435 2114 // Conditional Constant Propagation;
duke@435 2115 PhaseCCP ccp( &igvn );
duke@435 2116 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 2117 {
duke@435 2118 TracePhase t2("ccp", &_t_ccp, true);
duke@435 2119 ccp.do_transform();
duke@435 2120 }
sla@5237 2121 print_method(PHASE_CPP1, 2);
duke@435 2122
duke@435 2123 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 2124
duke@435 2125 // Iterative Global Value Numbering, including ideal transforms
duke@435 2126 {
duke@435 2127 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 2128 igvn = ccp;
duke@435 2129 igvn.optimize();
duke@435 2130 }
duke@435 2131
sla@5237 2132 print_method(PHASE_ITER_GVN2, 2);
duke@435 2133
duke@435 2134 if (failing()) return;
duke@435 2135
duke@435 2136 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 2137 // peeling, unrolling, etc.
duke@435 2138 if(loop_opts_cnt > 0) {
duke@435 2139 debug_only( int cnt = 0; );
duke@435 2140 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 2141 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 2142 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 2143 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 2144 loop_opts_cnt--;
sla@5237 2145 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
duke@435 2146 if (failing()) return;
duke@435 2147 }
duke@435 2148 }
never@1356 2149
never@1356 2150 {
never@1356 2151 // Verify that all previous optimizations produced a valid graph
never@1356 2152 // at least to this point, even if no loop optimizations were done.
never@1356 2153 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 2154 PhaseIdealLoop::verify(igvn);
never@1356 2155 }
never@1356 2156
duke@435 2157 {
duke@435 2158 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 2159 PhaseMacroExpand mex(igvn);
duke@435 2160 if (mex.expand_macro_nodes()) {
duke@435 2161 assert(failing(), "must bail out w/ explicit message");
duke@435 2162 return;
duke@435 2163 }
duke@435 2164 }
duke@435 2165
duke@435 2166 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 2167
kvn@4448 2168 dump_inlining();
duke@435 2169 // A method with only infinite loops has no edges entering loops from root
duke@435 2170 {
duke@435 2171 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 2172 if (final_graph_reshaping()) {
duke@435 2173 assert(failing(), "must bail out w/ explicit message");
duke@435 2174 return;
duke@435 2175 }
duke@435 2176 }
duke@435 2177
sla@5237 2178 print_method(PHASE_OPTIMIZE_FINISHED, 2);
duke@435 2179 }
duke@435 2180
duke@435 2181
duke@435 2182 //------------------------------Code_Gen---------------------------------------
duke@435 2183 // Given a graph, generate code for it
duke@435 2184 void Compile::Code_Gen() {
adlertz@5539 2185 if (failing()) {
adlertz@5539 2186 return;
adlertz@5539 2187 }
duke@435 2188
duke@435 2189 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 2190 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 2191 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 2192 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 2193 // set a bit in reclaimed memory.
duke@435 2194
duke@435 2195 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2196 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2197 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2198
adlertz@5539 2199 Matcher matcher;
adlertz@5539 2200 _matcher = &matcher;
duke@435 2201 {
duke@435 2202 TracePhase t2("matcher", &_t_matcher, true);
adlertz@5539 2203 matcher.match();
duke@435 2204 }
duke@435 2205 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 2206 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 2207 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2208
duke@435 2209 // If you have too many nodes, or if matching has failed, bail out
duke@435 2210 check_node_count(0, "out of nodes matching instructions");
adlertz@5539 2211 if (failing()) {
adlertz@5539 2212 return;
adlertz@5539 2213 }
duke@435 2214
duke@435 2215 // Build a proper-looking CFG
adlertz@5539 2216 PhaseCFG cfg(node_arena(), root(), matcher);
duke@435 2217 _cfg = &cfg;
duke@435 2218 {
duke@435 2219 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
adlertz@5539 2220 bool success = cfg.do_global_code_motion();
adlertz@5539 2221 if (!success) {
adlertz@5539 2222 return;
adlertz@5539 2223 }
adlertz@5539 2224
adlertz@5539 2225 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
duke@435 2226 NOT_PRODUCT( verify_graph_edges(); )
duke@435 2227 debug_only( cfg.verify(); )
duke@435 2228 }
adlertz@5539 2229
adlertz@5539 2230 PhaseChaitin regalloc(unique(), cfg, matcher);
duke@435 2231 _regalloc = &regalloc;
duke@435 2232 {
duke@435 2233 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 2234 // Perform register allocation. After Chaitin, use-def chains are
duke@435 2235 // no longer accurate (at spill code) and so must be ignored.
duke@435 2236 // Node->LRG->reg mappings are still accurate.
duke@435 2237 _regalloc->Register_Allocate();
duke@435 2238
duke@435 2239 // Bail out if the allocator builds too many nodes
neliasso@4949 2240 if (failing()) {
neliasso@4949 2241 return;
neliasso@4949 2242 }
duke@435 2243 }
duke@435 2244
duke@435 2245 // Prior to register allocation we kept empty basic blocks in case the
duke@435 2246 // the allocator needed a place to spill. After register allocation we
duke@435 2247 // are not adding any new instructions. If any basic block is empty, we
duke@435 2248 // can now safely remove it.
duke@435 2249 {
rasbold@853 2250 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
adlertz@5539 2251 cfg.remove_empty_blocks();
rasbold@853 2252 if (do_freq_based_layout()) {
rasbold@853 2253 PhaseBlockLayout layout(cfg);
rasbold@853 2254 } else {
rasbold@853 2255 cfg.set_loop_alignment();
rasbold@853 2256 }
rasbold@853 2257 cfg.fixup_flow();
duke@435 2258 }
duke@435 2259
duke@435 2260 // Apply peephole optimizations
duke@435 2261 if( OptoPeephole ) {
duke@435 2262 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 2263 PhasePeephole peep( _regalloc, cfg);
duke@435 2264 peep.do_transform();
duke@435 2265 }
duke@435 2266
duke@435 2267 // Convert Nodes to instruction bits in a buffer
duke@435 2268 {
duke@435 2269 // %%%% workspace merge brought two timers together for one job
duke@435 2270 TracePhase t2a("output", &_t_output, true);
duke@435 2271 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 2272 Output();
duke@435 2273 }
duke@435 2274
sla@5237 2275 print_method(PHASE_FINAL_CODE);
duke@435 2276
duke@435 2277 // He's dead, Jim.
duke@435 2278 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 2279 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 2280 }
duke@435 2281
duke@435 2282
duke@435 2283 //------------------------------dump_asm---------------------------------------
duke@435 2284 // Dump formatted assembly
duke@435 2285 #ifndef PRODUCT
duke@435 2286 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 2287 bool cut_short = false;
duke@435 2288 tty->print_cr("#");
duke@435 2289 tty->print("# "); _tf->dump(); tty->cr();
duke@435 2290 tty->print_cr("#");
duke@435 2291
duke@435 2292 // For all blocks
duke@435 2293 int pc = 0x0; // Program counter
duke@435 2294 char starts_bundle = ' ';
duke@435 2295 _regalloc->dump_frame();
duke@435 2296
duke@435 2297 Node *n = NULL;
adlertz@5539 2298 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 2299 if (VMThread::should_terminate()) {
adlertz@5539 2300 cut_short = true;
adlertz@5539 2301 break;
adlertz@5539 2302 }
adlertz@5539 2303 Block* block = _cfg->get_block(i);
adlertz@5539 2304 if (block->is_connector() && !Verbose) {
adlertz@5539 2305 continue;
adlertz@5539 2306 }
adlertz@5635 2307 n = block->head();
adlertz@5539 2308 if (pcs && n->_idx < pc_limit) {
duke@435 2309 tty->print("%3.3x ", pcs[n->_idx]);
adlertz@5539 2310 } else {
duke@435 2311 tty->print(" ");
adlertz@5539 2312 }
adlertz@5539 2313 block->dump_head(_cfg);
adlertz@5539 2314 if (block->is_connector()) {
duke@435 2315 tty->print_cr(" # Empty connector block");
adlertz@5539 2316 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 2317 tty->print_cr(" # Block is sole successor of call");
duke@435 2318 }
duke@435 2319
duke@435 2320 // For all instructions
duke@435 2321 Node *delay = NULL;
adlertz@5635 2322 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5539 2323 if (VMThread::should_terminate()) {
adlertz@5539 2324 cut_short = true;
adlertz@5539 2325 break;
adlertz@5539 2326 }
adlertz@5635 2327 n = block->get_node(j);
duke@435 2328 if (valid_bundle_info(n)) {
adlertz@5539 2329 Bundle* bundle = node_bundling(n);
duke@435 2330 if (bundle->used_in_unconditional_delay()) {
duke@435 2331 delay = n;
duke@435 2332 continue;
duke@435 2333 }
adlertz@5539 2334 if (bundle->starts_bundle()) {
duke@435 2335 starts_bundle = '+';
adlertz@5539 2336 }
duke@435 2337 }
duke@435 2338
adlertz@5539 2339 if (WizardMode) {
adlertz@5539 2340 n->dump();
adlertz@5539 2341 }
coleenp@548 2342
duke@435 2343 if( !n->is_Region() && // Dont print in the Assembly
duke@435 2344 !n->is_Phi() && // a few noisely useless nodes
duke@435 2345 !n->is_Proj() &&
duke@435 2346 !n->is_MachTemp() &&
kvn@1535 2347 !n->is_SafePointScalarObject() &&
duke@435 2348 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 2349 !n->is_MergeMem() && // Not very interesting
duke@435 2350 !n->is_top() && // Debug info table constants
duke@435 2351 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 2352 ) {
duke@435 2353 if (pcs && n->_idx < pc_limit)
duke@435 2354 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2355 else
duke@435 2356 tty->print(" ");
duke@435 2357 tty->print(" %c ", starts_bundle);
duke@435 2358 starts_bundle = ' ';
duke@435 2359 tty->print("\t");
duke@435 2360 n->format(_regalloc, tty);
duke@435 2361 tty->cr();
duke@435 2362 }
duke@435 2363
duke@435 2364 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2365 // then back up and print it
duke@435 2366 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2367 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2368 if (WizardMode) delay->dump();
coleenp@548 2369
duke@435 2370 if (node_bundling(delay)->starts_bundle())
duke@435 2371 starts_bundle = '+';
duke@435 2372 if (pcs && n->_idx < pc_limit)
duke@435 2373 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2374 else
duke@435 2375 tty->print(" ");
duke@435 2376 tty->print(" %c ", starts_bundle);
duke@435 2377 starts_bundle = ' ';
duke@435 2378 tty->print("\t");
duke@435 2379 delay->format(_regalloc, tty);
duke@435 2380 tty->print_cr("");
duke@435 2381 delay = NULL;
duke@435 2382 }
duke@435 2383
duke@435 2384 // Dump the exception table as well
duke@435 2385 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2386 // Print the exception table for this offset
duke@435 2387 _handler_table.print_subtable_for(pc);
duke@435 2388 }
duke@435 2389 }
duke@435 2390
duke@435 2391 if (pcs && n->_idx < pc_limit)
duke@435 2392 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2393 else
duke@435 2394 tty->print_cr("");
duke@435 2395
duke@435 2396 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2397
duke@435 2398 } // End of per-block dump
duke@435 2399 tty->print_cr("");
duke@435 2400
duke@435 2401 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2402 }
duke@435 2403 #endif
duke@435 2404
duke@435 2405 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2406 // This class defines counters to help identify when a method
duke@435 2407 // may/must be executed using hardware with only 24-bit precision.
duke@435 2408 struct Final_Reshape_Counts : public StackObj {
duke@435 2409 int _call_count; // count non-inlined 'common' calls
duke@435 2410 int _float_count; // count float ops requiring 24-bit precision
duke@435 2411 int _double_count; // count double ops requiring more precision
duke@435 2412 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2413 int _inner_loop_count; // count loops which need alignment
duke@435 2414 VectorSet _visited; // Visitation flags
duke@435 2415 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2416
duke@435 2417 Final_Reshape_Counts() :
kvn@1294 2418 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2419 _java_call_count(0), _inner_loop_count(0),
duke@435 2420 _visited( Thread::current()->resource_area() ) { }
duke@435 2421
duke@435 2422 void inc_call_count () { _call_count ++; }
duke@435 2423 void inc_float_count () { _float_count ++; }
duke@435 2424 void inc_double_count() { _double_count++; }
duke@435 2425 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2426 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2427
duke@435 2428 int get_call_count () const { return _call_count ; }
duke@435 2429 int get_float_count () const { return _float_count ; }
duke@435 2430 int get_double_count() const { return _double_count; }
duke@435 2431 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2432 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2433 };
duke@435 2434
mikael@4889 2435 #ifdef ASSERT
duke@435 2436 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2437 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2438 // Make sure the offset goes inside the instance layout.
coleenp@548 2439 return k->contains_field_offset(tp->offset());
duke@435 2440 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2441 }
mikael@4889 2442 #endif
duke@435 2443
never@2780 2444 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2445 // precedence edges.
bharadwaj@4315 2446 void Compile::eliminate_redundant_card_marks(Node* n) {
never@2780 2447 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2448 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2449 // There are multiple users of the same address so it might be
never@2780 2450 // possible to eliminate some of the StoreCMs
never@2780 2451 Node* mem = n->in(MemNode::Memory);
never@2780 2452 Node* adr = n->in(MemNode::Address);
never@2780 2453 Node* val = n->in(MemNode::ValueIn);
never@2780 2454 Node* prev = n;
never@2780 2455 bool done = false;
never@2780 2456 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2457 // long as it's a chain of single users then the optimization is
never@2780 2458 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2459 // cloning copies down the other paths.
never@2780 2460 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2461 if (adr == mem->in(MemNode::Address) &&
never@2780 2462 val == mem->in(MemNode::ValueIn)) {
never@2780 2463 // redundant StoreCM
never@2780 2464 if (mem->req() > MemNode::OopStore) {
never@2780 2465 // Hasn't been processed by this code yet.
never@2780 2466 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2467 } else {
never@2780 2468 // Already converted to precedence edge
never@2780 2469 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2470 // Accumulate any precedence edges
never@2780 2471 if (mem->in(i) != NULL) {
never@2780 2472 n->add_prec(mem->in(i));
never@2780 2473 }
never@2780 2474 }
never@2780 2475 // Everything above this point has been processed.
never@2780 2476 done = true;
never@2780 2477 }
never@2780 2478 // Eliminate the previous StoreCM
never@2780 2479 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2480 assert(mem->outcnt() == 0, "should be dead");
bharadwaj@4315 2481 mem->disconnect_inputs(NULL, this);
never@2780 2482 } else {
never@2780 2483 prev = mem;
never@2780 2484 }
never@2780 2485 mem = prev->in(MemNode::Memory);
never@2780 2486 }
never@2780 2487 }
never@2780 2488 }
never@2780 2489
duke@435 2490 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2491 // Implement items 1-5 from final_graph_reshaping below.
bharadwaj@4315 2492 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
duke@435 2493
kvn@603 2494 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2495 uint nop = n->Opcode();
duke@435 2496
duke@435 2497 // Check for 2-input instruction with "last use" on right input.
duke@435 2498 // Swap to left input. Implements item (2).
duke@435 2499 if( n->req() == 3 && // two-input instruction
duke@435 2500 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2501 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2502 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2503 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2504 // Check for commutative opcode
duke@435 2505 switch( nop ) {
duke@435 2506 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2507 case Op_MaxI: case Op_MinI:
duke@435 2508 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2509 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2510 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2511 // Move "last use" input to left by swapping inputs
duke@435 2512 n->swap_edges(1, 2);
duke@435 2513 break;
duke@435 2514 }
duke@435 2515 default:
duke@435 2516 break;
duke@435 2517 }
duke@435 2518 }
duke@435 2519
kvn@1964 2520 #ifdef ASSERT
kvn@1964 2521 if( n->is_Mem() ) {
bharadwaj@4315 2522 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2523 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2524 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2525 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2526 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2527 "raw memory operations should have control edge");
kvn@1964 2528 }
kvn@1964 2529 #endif
duke@435 2530 // Count FPU ops and common calls, implements item (3)
duke@435 2531 switch( nop ) {
duke@435 2532 // Count all float operations that may use FPU
duke@435 2533 case Op_AddF:
duke@435 2534 case Op_SubF:
duke@435 2535 case Op_MulF:
duke@435 2536 case Op_DivF:
duke@435 2537 case Op_NegF:
duke@435 2538 case Op_ModF:
duke@435 2539 case Op_ConvI2F:
duke@435 2540 case Op_ConF:
duke@435 2541 case Op_CmpF:
duke@435 2542 case Op_CmpF3:
duke@435 2543 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2544 frc.inc_float_count();
duke@435 2545 break;
duke@435 2546
duke@435 2547 case Op_ConvF2D:
duke@435 2548 case Op_ConvD2F:
kvn@1294 2549 frc.inc_float_count();
kvn@1294 2550 frc.inc_double_count();
duke@435 2551 break;
duke@435 2552
duke@435 2553 // Count all double operations that may use FPU
duke@435 2554 case Op_AddD:
duke@435 2555 case Op_SubD:
duke@435 2556 case Op_MulD:
duke@435 2557 case Op_DivD:
duke@435 2558 case Op_NegD:
duke@435 2559 case Op_ModD:
duke@435 2560 case Op_ConvI2D:
duke@435 2561 case Op_ConvD2I:
duke@435 2562 // case Op_ConvL2D: // handled by leaf call
duke@435 2563 // case Op_ConvD2L: // handled by leaf call
duke@435 2564 case Op_ConD:
duke@435 2565 case Op_CmpD:
duke@435 2566 case Op_CmpD3:
kvn@1294 2567 frc.inc_double_count();
duke@435 2568 break;
duke@435 2569 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2570 case Op_Opaque2: // Remove Opaque Nodes before matching
bharadwaj@4315 2571 n->subsume_by(n->in(1), this);
duke@435 2572 break;
duke@435 2573 case Op_CallStaticJava:
duke@435 2574 case Op_CallJava:
duke@435 2575 case Op_CallDynamicJava:
kvn@1294 2576 frc.inc_java_call_count(); // Count java call site;
duke@435 2577 case Op_CallRuntime:
duke@435 2578 case Op_CallLeaf:
duke@435 2579 case Op_CallLeafNoFP: {
duke@435 2580 assert( n->is_Call(), "" );
duke@435 2581 CallNode *call = n->as_Call();
duke@435 2582 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2583 // Do not count uncommon runtime calls:
duke@435 2584 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2585 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2586 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2587 frc.inc_call_count(); // Count the call site
duke@435 2588 } else { // See if uncommon argument is shared
duke@435 2589 Node *n = call->in(TypeFunc::Parms);
duke@435 2590 int nop = n->Opcode();
duke@435 2591 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2592 if( n->outcnt() > 1 &&
duke@435 2593 !n->is_Proj() &&
duke@435 2594 nop != Op_CreateEx &&
duke@435 2595 nop != Op_CheckCastPP &&
kvn@766 2596 nop != Op_DecodeN &&
roland@4159 2597 nop != Op_DecodeNKlass &&
duke@435 2598 !n->is_Mem() ) {
duke@435 2599 Node *x = n->clone();
duke@435 2600 call->set_req( TypeFunc::Parms, x );
duke@435 2601 }
duke@435 2602 }
duke@435 2603 break;
duke@435 2604 }
duke@435 2605
duke@435 2606 case Op_StoreD:
duke@435 2607 case Op_LoadD:
duke@435 2608 case Op_LoadD_unaligned:
kvn@1294 2609 frc.inc_double_count();
duke@435 2610 goto handle_mem;
duke@435 2611 case Op_StoreF:
duke@435 2612 case Op_LoadF:
kvn@1294 2613 frc.inc_float_count();
duke@435 2614 goto handle_mem;
duke@435 2615
never@2780 2616 case Op_StoreCM:
never@2780 2617 {
never@2780 2618 // Convert OopStore dependence into precedence edge
never@2780 2619 Node* prec = n->in(MemNode::OopStore);
never@2780 2620 n->del_req(MemNode::OopStore);
never@2780 2621 n->add_prec(prec);
never@2780 2622 eliminate_redundant_card_marks(n);
never@2780 2623 }
never@2780 2624
never@2780 2625 // fall through
never@2780 2626
duke@435 2627 case Op_StoreB:
duke@435 2628 case Op_StoreC:
duke@435 2629 case Op_StorePConditional:
duke@435 2630 case Op_StoreI:
duke@435 2631 case Op_StoreL:
kvn@855 2632 case Op_StoreIConditional:
duke@435 2633 case Op_StoreLConditional:
duke@435 2634 case Op_CompareAndSwapI:
duke@435 2635 case Op_CompareAndSwapL:
duke@435 2636 case Op_CompareAndSwapP:
coleenp@548 2637 case Op_CompareAndSwapN:
roland@4106 2638 case Op_GetAndAddI:
roland@4106 2639 case Op_GetAndAddL:
roland@4106 2640 case Op_GetAndSetI:
roland@4106 2641 case Op_GetAndSetL:
roland@4106 2642 case Op_GetAndSetP:
roland@4106 2643 case Op_GetAndSetN:
duke@435 2644 case Op_StoreP:
coleenp@548 2645 case Op_StoreN:
roland@4159 2646 case Op_StoreNKlass:
duke@435 2647 case Op_LoadB:
twisti@1059 2648 case Op_LoadUB:
twisti@993 2649 case Op_LoadUS:
duke@435 2650 case Op_LoadI:
duke@435 2651 case Op_LoadKlass:
kvn@599 2652 case Op_LoadNKlass:
duke@435 2653 case Op_LoadL:
duke@435 2654 case Op_LoadL_unaligned:
duke@435 2655 case Op_LoadPLocked:
duke@435 2656 case Op_LoadP:
coleenp@548 2657 case Op_LoadN:
duke@435 2658 case Op_LoadRange:
duke@435 2659 case Op_LoadS: {
duke@435 2660 handle_mem:
duke@435 2661 #ifdef ASSERT
duke@435 2662 if( VerifyOptoOopOffsets ) {
duke@435 2663 assert( n->is_Mem(), "" );
duke@435 2664 MemNode *mem = (MemNode*)n;
duke@435 2665 // Check to see if address types have grounded out somehow.
duke@435 2666 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2667 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2668 }
duke@435 2669 #endif
duke@435 2670 break;
duke@435 2671 }
duke@435 2672
duke@435 2673 case Op_AddP: { // Assert sane base pointers
kvn@617 2674 Node *addp = n->in(AddPNode::Address);
duke@435 2675 assert( !addp->is_AddP() ||
duke@435 2676 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2677 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2678 "Base pointers must match" );
kvn@617 2679 #ifdef _LP64
ehelin@5694 2680 if ((UseCompressedOops || UseCompressedClassPointers) &&
kvn@617 2681 addp->Opcode() == Op_ConP &&
kvn@617 2682 addp == n->in(AddPNode::Base) &&
kvn@617 2683 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2684 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2685 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2686 // instructions (4) then load 64-bits constant (7).
kvn@617 2687 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2688 const Type* t = addp->bottom_type();
roland@4159 2689 if (t->isa_oopptr() || t->isa_klassptr()) {
kvn@617 2690 Node* nn = NULL;
kvn@617 2691
roland@4159 2692 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
roland@4159 2693
kvn@617 2694 // Look for existing ConN node of the same exact type.
bharadwaj@4315 2695 Node* r = root();
kvn@617 2696 uint cnt = r->outcnt();
kvn@617 2697 for (uint i = 0; i < cnt; i++) {
kvn@617 2698 Node* m = r->raw_out(i);
roland@4159 2699 if (m!= NULL && m->Opcode() == op &&
kvn@656 2700 m->bottom_type()->make_ptr() == t) {
kvn@617 2701 nn = m;
kvn@617 2702 break;
kvn@617 2703 }
kvn@617 2704 }
kvn@617 2705 if (nn != NULL) {
kvn@617 2706 // Decode a narrow oop to match address
kvn@617 2707 // [R12 + narrow_oop_reg<<3 + offset]
roland@4159 2708 if (t->isa_oopptr()) {
bharadwaj@4315 2709 nn = new (this) DecodeNNode(nn, t);
roland@4159 2710 } else {
bharadwaj@4315 2711 nn = new (this) DecodeNKlassNode(nn, t);
roland@4159 2712 }
kvn@617 2713 n->set_req(AddPNode::Base, nn);
kvn@617 2714 n->set_req(AddPNode::Address, nn);
kvn@617 2715 if (addp->outcnt() == 0) {
bharadwaj@4315 2716 addp->disconnect_inputs(NULL, this);
kvn@617 2717 }
kvn@617 2718 }
kvn@617 2719 }
kvn@617 2720 }
kvn@617 2721 #endif
duke@435 2722 break;
duke@435 2723 }
duke@435 2724
kvn@599 2725 #ifdef _LP64
kvn@803 2726 case Op_CastPP:
kvn@1930 2727 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2728 Node* in1 = n->in(1);
kvn@803 2729 const Type* t = n->bottom_type();
kvn@803 2730 Node* new_in1 = in1->clone();
kvn@803 2731 new_in1->as_DecodeN()->set_type(t);
kvn@803 2732
kvn@1930 2733 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2734 //
kvn@803 2735 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2736 // and Matcher can fold a DecodeN node into address by using
kvn@803 2737 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2738 //
kvn@803 2739 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2740 // NullCheck narrow_oop_reg
kvn@803 2741 //
kvn@803 2742 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2743 // use it to do implicit NULL check in address:
kvn@803 2744 //
kvn@803 2745 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2746 // [base_reg + offset]
kvn@803 2747 // NullCheck base_reg
kvn@803 2748 //
twisti@1040 2749 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2750 // to keep the information to which NULL check the new DecodeN node
kvn@803 2751 // corresponds to use it as value in implicit_null_check().
kvn@803 2752 //
kvn@803 2753 new_in1->set_req(0, n->in(0));
kvn@803 2754 }
kvn@803 2755
bharadwaj@4315 2756 n->subsume_by(new_in1, this);
kvn@803 2757 if (in1->outcnt() == 0) {
bharadwaj@4315 2758 in1->disconnect_inputs(NULL, this);
kvn@803 2759 }
kvn@803 2760 }
kvn@803 2761 break;
kvn@803 2762
kvn@599 2763 case Op_CmpP:
kvn@603 2764 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2765 // other TypePtr related Ideal optimizations (for example, ptr nullness).
roland@4159 2766 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
kvn@766 2767 Node* in1 = n->in(1);
kvn@766 2768 Node* in2 = n->in(2);
roland@4159 2769 if (!in1->is_DecodeNarrowPtr()) {
kvn@766 2770 in2 = in1;
kvn@766 2771 in1 = n->in(2);
kvn@766 2772 }
roland@4159 2773 assert(in1->is_DecodeNarrowPtr(), "sanity");
kvn@766 2774
kvn@766 2775 Node* new_in2 = NULL;
roland@4159 2776 if (in2->is_DecodeNarrowPtr()) {
roland@4159 2777 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
kvn@766 2778 new_in2 = in2->in(1);
kvn@766 2779 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2780 const Type* t = in2->bottom_type();
kvn@1930 2781 if (t == TypePtr::NULL_PTR) {
roland@4159 2782 assert(in1->is_DecodeN(), "compare klass to null?");
kvn@1930 2783 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2784 // oops implicit null check is not generated.
kvn@1930 2785 // This will allow to generate normal oop implicit null check.
kvn@1930 2786 if (Matcher::gen_narrow_oop_implicit_null_checks())
bharadwaj@4315 2787 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
kvn@803 2788 //
kvn@803 2789 // This transformation together with CastPP transformation above
kvn@803 2790 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2791 //
kvn@803 2792 // The original code after Optimize()
kvn@803 2793 //
kvn@803 2794 // LoadN memory, narrow_oop_reg
kvn@803 2795 // decode narrow_oop_reg, base_reg
kvn@803 2796 // CmpP base_reg, NULL
kvn@803 2797 // CastPP base_reg // NotNull
kvn@803 2798 // Load [base_reg + offset], val_reg
kvn@803 2799 //
kvn@803 2800 // after these transformations will be
kvn@803 2801 //
kvn@803 2802 // LoadN memory, narrow_oop_reg
kvn@803 2803 // CmpN narrow_oop_reg, NULL
kvn@803 2804 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2805 // Load [base_reg + offset], val_reg
kvn@803 2806 //
kvn@803 2807 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2808 // since narrow oops can be used in debug info now (see the code in
kvn@803 2809 // final_graph_reshaping_walk()).
kvn@803 2810 //
kvn@803 2811 // At the end the code will be matched to
kvn@803 2812 // on x86:
kvn@803 2813 //
kvn@803 2814 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2815 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2816 // NullCheck narrow_oop_reg
kvn@803 2817 //
kvn@803 2818 // and on sparc:
kvn@803 2819 //
kvn@803 2820 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2821 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2822 // Load [base_reg + offset], val_reg
kvn@803 2823 // NullCheck base_reg
kvn@803 2824 //
kvn@599 2825 } else if (t->isa_oopptr()) {
bharadwaj@4315 2826 new_in2 = ConNode::make(this, t->make_narrowoop());
roland@4159 2827 } else if (t->isa_klassptr()) {
bharadwaj@4315 2828 new_in2 = ConNode::make(this, t->make_narrowklass());
kvn@599 2829 }
kvn@599 2830 }
kvn@766 2831 if (new_in2 != NULL) {
bharadwaj@4315 2832 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
bharadwaj@4315 2833 n->subsume_by(cmpN, this);
kvn@766 2834 if (in1->outcnt() == 0) {
bharadwaj@4315 2835 in1->disconnect_inputs(NULL, this);
kvn@766 2836 }
kvn@766 2837 if (in2->outcnt() == 0) {
bharadwaj@4315 2838 in2->disconnect_inputs(NULL, this);
kvn@766 2839 }
kvn@599 2840 }
kvn@599 2841 }
kvn@728 2842 break;
kvn@803 2843
kvn@803 2844 case Op_DecodeN:
roland@4159 2845 case Op_DecodeNKlass:
roland@4159 2846 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
kvn@1930 2847 // DecodeN could be pinned when it can't be fold into
kvn@927 2848 // an address expression, see the code for Op_CastPP above.
roland@4159 2849 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
kvn@803 2850 break;
kvn@803 2851
roland@4159 2852 case Op_EncodeP:
roland@4159 2853 case Op_EncodePKlass: {
kvn@803 2854 Node* in1 = n->in(1);
roland@4159 2855 if (in1->is_DecodeNarrowPtr()) {
bharadwaj@4315 2856 n->subsume_by(in1->in(1), this);
kvn@803 2857 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2858 const Type* t = in1->bottom_type();
kvn@803 2859 if (t == TypePtr::NULL_PTR) {
roland@4159 2860 assert(t->isa_oopptr(), "null klass?");
bharadwaj@4315 2861 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
kvn@803 2862 } else if (t->isa_oopptr()) {
bharadwaj@4315 2863 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
roland@4159 2864 } else if (t->isa_klassptr()) {
bharadwaj@4315 2865 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
kvn@803 2866 }
kvn@803 2867 }
kvn@803 2868 if (in1->outcnt() == 0) {
bharadwaj@4315 2869 in1->disconnect_inputs(NULL, this);
kvn@803 2870 }
kvn@803 2871 break;
kvn@803 2872 }
kvn@803 2873
never@1515 2874 case Op_Proj: {
never@1515 2875 if (OptimizeStringConcat) {
never@1515 2876 ProjNode* p = n->as_Proj();
never@1515 2877 if (p->_is_io_use) {
never@1515 2878 // Separate projections were used for the exception path which
never@1515 2879 // are normally removed by a late inline. If it wasn't inlined
never@1515 2880 // then they will hang around and should just be replaced with
never@1515 2881 // the original one.
never@1515 2882 Node* proj = NULL;
never@1515 2883 // Replace with just one
never@1515 2884 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2885 Node *use = i.get();
never@1515 2886 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2887 proj = use;
never@1515 2888 break;
never@1515 2889 }
never@1515 2890 }
kvn@3396 2891 assert(proj != NULL, "must be found");
bharadwaj@4315 2892 p->subsume_by(proj, this);
never@1515 2893 }
never@1515 2894 }
never@1515 2895 break;
never@1515 2896 }
never@1515 2897
kvn@803 2898 case Op_Phi:
roland@4159 2899 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
kvn@803 2900 // The EncodeP optimization may create Phi with the same edges
kvn@803 2901 // for all paths. It is not handled well by Register Allocator.
kvn@803 2902 Node* unique_in = n->in(1);
kvn@803 2903 assert(unique_in != NULL, "");
kvn@803 2904 uint cnt = n->req();
kvn@803 2905 for (uint i = 2; i < cnt; i++) {
kvn@803 2906 Node* m = n->in(i);
kvn@803 2907 assert(m != NULL, "");
kvn@803 2908 if (unique_in != m)
kvn@803 2909 unique_in = NULL;
kvn@803 2910 }
kvn@803 2911 if (unique_in != NULL) {
bharadwaj@4315 2912 n->subsume_by(unique_in, this);
kvn@803 2913 }
kvn@803 2914 }
kvn@803 2915 break;
kvn@803 2916
kvn@599 2917 #endif
kvn@599 2918
duke@435 2919 case Op_ModI:
duke@435 2920 if (UseDivMod) {
duke@435 2921 // Check if a%b and a/b both exist
duke@435 2922 Node* d = n->find_similar(Op_DivI);
duke@435 2923 if (d) {
duke@435 2924 // Replace them with a fused divmod if supported
duke@435 2925 if (Matcher::has_match_rule(Op_DivModI)) {
bharadwaj@4315 2926 DivModINode* divmod = DivModINode::make(this, n);
bharadwaj@4315 2927 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2928 n->subsume_by(divmod->mod_proj(), this);
duke@435 2929 } else {
duke@435 2930 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2931 Node* mult = new (this) MulINode(d, d->in(2));
bharadwaj@4315 2932 Node* sub = new (this) SubINode(d->in(1), mult);
bharadwaj@4315 2933 n->subsume_by(sub, this);
duke@435 2934 }
duke@435 2935 }
duke@435 2936 }
duke@435 2937 break;
duke@435 2938
duke@435 2939 case Op_ModL:
duke@435 2940 if (UseDivMod) {
duke@435 2941 // Check if a%b and a/b both exist
duke@435 2942 Node* d = n->find_similar(Op_DivL);
duke@435 2943 if (d) {
duke@435 2944 // Replace them with a fused divmod if supported
duke@435 2945 if (Matcher::has_match_rule(Op_DivModL)) {
bharadwaj@4315 2946 DivModLNode* divmod = DivModLNode::make(this, n);
bharadwaj@4315 2947 d->subsume_by(divmod->div_proj(), this);
bharadwaj@4315 2948 n->subsume_by(divmod->mod_proj(), this);
duke@435 2949 } else {
duke@435 2950 // replace a%b with a-((a/b)*b)
bharadwaj@4315 2951 Node* mult = new (this) MulLNode(d, d->in(2));
bharadwaj@4315 2952 Node* sub = new (this) SubLNode(d->in(1), mult);
bharadwaj@4315 2953 n->subsume_by(sub, this);
duke@435 2954 }
duke@435 2955 }
duke@435 2956 }
duke@435 2957 break;
duke@435 2958
kvn@3882 2959 case Op_LoadVector:
kvn@3882 2960 case Op_StoreVector:
duke@435 2961 break;
duke@435 2962
duke@435 2963 case Op_PackB:
duke@435 2964 case Op_PackS:
duke@435 2965 case Op_PackI:
duke@435 2966 case Op_PackF:
duke@435 2967 case Op_PackL:
duke@435 2968 case Op_PackD:
duke@435 2969 if (n->req()-1 > 2) {
duke@435 2970 // Replace many operand PackNodes with a binary tree for matching
duke@435 2971 PackNode* p = (PackNode*) n;
bharadwaj@4315 2972 Node* btp = p->binary_tree_pack(this, 1, n->req());
bharadwaj@4315 2973 n->subsume_by(btp, this);
duke@435 2974 }
duke@435 2975 break;
kvn@1294 2976 case Op_Loop:
kvn@1294 2977 case Op_CountedLoop:
kvn@1294 2978 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2979 frc.inc_inner_loop_count();
kvn@1294 2980 }
kvn@1294 2981 break;
roland@2683 2982 case Op_LShiftI:
roland@2683 2983 case Op_RShiftI:
roland@2683 2984 case Op_URShiftI:
roland@2683 2985 case Op_LShiftL:
roland@2683 2986 case Op_RShiftL:
roland@2683 2987 case Op_URShiftL:
roland@2683 2988 if (Matcher::need_masked_shift_count) {
roland@2683 2989 // The cpu's shift instructions don't restrict the count to the
roland@2683 2990 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2991 Node* in2 = n->in(2);
roland@2683 2992 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2993 const TypeInt* t = in2->find_int_type();
roland@2683 2994 if (t != NULL && t->is_con()) {
roland@2683 2995 juint shift = t->get_con();
roland@2683 2996 if (shift > mask) { // Unsigned cmp
bharadwaj@4315 2997 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
roland@2683 2998 }
roland@2683 2999 } else {
roland@2683 3000 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
bharadwaj@4315 3001 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
roland@2683 3002 n->set_req(2, shift);
roland@2683 3003 }
roland@2683 3004 }
roland@2683 3005 if (in2->outcnt() == 0) { // Remove dead node
bharadwaj@4315 3006 in2->disconnect_inputs(NULL, this);
roland@2683 3007 }
roland@2683 3008 }
roland@2683 3009 break;
roland@4694 3010 case Op_MemBarStoreStore:
kvn@5110 3011 case Op_MemBarRelease:
roland@4694 3012 // Break the link with AllocateNode: it is no longer useful and
roland@4694 3013 // confuses register allocation.
roland@4694 3014 if (n->req() > MemBarNode::Precedent) {
roland@4694 3015 n->set_req(MemBarNode::Precedent, top());
roland@4694 3016 }
roland@4694 3017 break;
rbackman@5927 3018 // Must set a control edge on all nodes that produce a FlagsProj
rbackman@5927 3019 // so they can't escape the block that consumes the flags.
rbackman@5927 3020 // Must also set the non throwing branch as the control
rbackman@5927 3021 // for all nodes that depends on the result. Unless the node
rbackman@5927 3022 // already have a control that isn't the control of the
rbackman@5927 3023 // flag producer
rbackman@5927 3024 case Op_FlagsProj:
rbackman@5927 3025 {
rbackman@5927 3026 MathExactNode* math = (MathExactNode*) n->in(0);
rbackman@5927 3027 Node* ctrl = math->control_node();
rbackman@5927 3028 Node* non_throwing = math->non_throwing_branch();
rbackman@5927 3029 math->set_req(0, ctrl);
rbackman@5927 3030
rbackman@5927 3031 Node* result = math->result_node();
rbackman@5927 3032 if (result != NULL) {
rbackman@5927 3033 for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
rbackman@5927 3034 Node* out = result->fast_out(j);
rbackman@5988 3035 // Phi nodes shouldn't be moved. They would only match below if they
rbackman@5988 3036 // had the same control as the MathExactNode. The only time that
rbackman@5988 3037 // would happen is if the Phi is also an input to the MathExact
rbackman@6068 3038 //
rbackman@6068 3039 // Cmp nodes shouldn't have control set at all.
rbackman@6068 3040 if (out->is_Phi() ||
rbackman@6068 3041 out->is_Cmp()) {
rbackman@6068 3042 continue;
rbackman@6068 3043 }
rbackman@6068 3044
rbackman@6068 3045 if (out->in(0) == NULL) {
rbackman@6068 3046 out->set_req(0, non_throwing);
rbackman@6068 3047 } else if (out->in(0) == ctrl) {
rbackman@6068 3048 out->set_req(0, non_throwing);
rbackman@5927 3049 }
rbackman@5927 3050 }
rbackman@5927 3051 }
rbackman@5927 3052 }
rbackman@5927 3053 break;
duke@435 3054 default:
duke@435 3055 assert( !n->is_Call(), "" );
duke@435 3056 assert( !n->is_Mem(), "" );
duke@435 3057 break;
duke@435 3058 }
never@562 3059
never@562 3060 // Collect CFG split points
never@562 3061 if (n->is_MultiBranch())
kvn@1294 3062 frc._tests.push(n);
duke@435 3063 }
duke@435 3064
duke@435 3065 //------------------------------final_graph_reshaping_walk---------------------
duke@435 3066 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 3067 // requires that the walk visits a node's inputs before visiting the node.
bharadwaj@4315 3068 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 3069 ResourceArea *area = Thread::current()->resource_area();
kvn@766 3070 Unique_Node_List sfpt(area);
kvn@766 3071
kvn@1294 3072 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 3073 uint cnt = root->req();
duke@435 3074 Node *n = root;
duke@435 3075 uint i = 0;
duke@435 3076 while (true) {
duke@435 3077 if (i < cnt) {
duke@435 3078 // Place all non-visited non-null inputs onto stack
duke@435 3079 Node* m = n->in(i);
duke@435 3080 ++i;
kvn@1294 3081 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 3082 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 3083 sfpt.push(m);
duke@435 3084 cnt = m->req();
duke@435 3085 nstack.push(n, i); // put on stack parent and next input's index
duke@435 3086 n = m;
duke@435 3087 i = 0;
duke@435 3088 }
duke@435 3089 } else {
duke@435 3090 // Now do post-visit work
kvn@1294 3091 final_graph_reshaping_impl( n, frc );
duke@435 3092 if (nstack.is_empty())
duke@435 3093 break; // finished
duke@435 3094 n = nstack.node(); // Get node from stack
duke@435 3095 cnt = n->req();
duke@435 3096 i = nstack.index();
duke@435 3097 nstack.pop(); // Shift to the next node on stack
duke@435 3098 }
duke@435 3099 }
kvn@766 3100
kvn@1930 3101 // Skip next transformation if compressed oops are not used.
roland@4159 3102 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
ehelin@5694 3103 (!UseCompressedOops && !UseCompressedClassPointers))
kvn@1930 3104 return;
kvn@1930 3105
roland@4159 3106 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
kvn@766 3107 // It could be done for an uncommon traps or any safepoints/calls
roland@4159 3108 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
kvn@766 3109 while (sfpt.size() > 0) {
kvn@766 3110 n = sfpt.pop();
kvn@766 3111 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 3112 assert(jvms != NULL, "sanity");
kvn@766 3113 int start = jvms->debug_start();
kvn@766 3114 int end = n->req();
kvn@766 3115 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 3116 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 3117 for (int j = start; j < end; j++) {
kvn@766 3118 Node* in = n->in(j);
roland@4159 3119 if (in->is_DecodeNarrowPtr()) {
kvn@766 3120 bool safe_to_skip = true;
kvn@766 3121 if (!is_uncommon ) {
kvn@766 3122 // Is it safe to skip?
kvn@766 3123 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 3124 Node* u = in->raw_out(i);
kvn@766 3125 if (!u->is_SafePoint() ||
kvn@766 3126 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 3127 safe_to_skip = false;
kvn@766 3128 }
kvn@766 3129 }
kvn@766 3130 }
kvn@766 3131 if (safe_to_skip) {
kvn@766 3132 n->set_req(j, in->in(1));
kvn@766 3133 }
kvn@766 3134 if (in->outcnt() == 0) {
bharadwaj@4315 3135 in->disconnect_inputs(NULL, this);
kvn@766 3136 }
kvn@766 3137 }
kvn@766 3138 }
kvn@766 3139 }
duke@435 3140 }
duke@435 3141
duke@435 3142 //------------------------------final_graph_reshaping--------------------------
duke@435 3143 // Final Graph Reshaping.
duke@435 3144 //
duke@435 3145 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 3146 // and not commoned up and forced early. Must come after regular
duke@435 3147 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 3148 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 3149 // Remove Opaque nodes.
duke@435 3150 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 3151 // Intel update-in-place two-address operations and better register usage
duke@435 3152 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 3153 // calls canonicalizing them back.
duke@435 3154 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 3155 // and call sites. On Intel, we can get correct rounding either by
duke@435 3156 // forcing singles to memory (requires extra stores and loads after each
duke@435 3157 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 3158 // clearing the mode bit around call sites). The mode bit is only used
duke@435 3159 // if the relative frequency of single FP ops to calls is low enough.
duke@435 3160 // This is a key transform for SPEC mpeg_audio.
duke@435 3161 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 3162 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 3163 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 3164 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 3165 // Detection is by looking for IfNodes where only 1 projection is
duke@435 3166 // reachable from below or CatchNodes missing some targets.
duke@435 3167 // (5) Assert for insane oop offsets in debug mode.
duke@435 3168
duke@435 3169 bool Compile::final_graph_reshaping() {
duke@435 3170 // an infinite loop may have been eliminated by the optimizer,
duke@435 3171 // in which case the graph will be empty.
duke@435 3172 if (root()->req() == 1) {
duke@435 3173 record_method_not_compilable("trivial infinite loop");
duke@435 3174 return true;
duke@435 3175 }
duke@435 3176
roland@4589 3177 // Expensive nodes have their control input set to prevent the GVN
roland@4589 3178 // from freely commoning them. There's no GVN beyond this point so
roland@4589 3179 // no need to keep the control input. We want the expensive nodes to
roland@4589 3180 // be freely moved to the least frequent code path by gcm.
roland@4589 3181 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
roland@4589 3182 for (int i = 0; i < expensive_count(); i++) {
roland@4589 3183 _expensive_nodes->at(i)->set_req(0, NULL);
roland@4589 3184 }
roland@4589 3185
kvn@1294 3186 Final_Reshape_Counts frc;
duke@435 3187
duke@435 3188 // Visit everybody reachable!
duke@435 3189 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 3190 Node_Stack nstack(unique() >> 1);
kvn@1294 3191 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 3192
duke@435 3193 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 3194 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 3195 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 3196 // Get number of CFG targets.
duke@435 3197 // Note that PCTables include exception targets after calls.
never@562 3198 uint required_outcnt = n->required_outcnt();
never@562 3199 if (n->outcnt() != required_outcnt) {
duke@435 3200 // Check for a few special cases. Rethrow Nodes never take the
duke@435 3201 // 'fall-thru' path, so expected kids is 1 less.
duke@435 3202 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 3203 if (n->in(0)->in(0)->is_Call()) {
duke@435 3204 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 3205 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 3206 required_outcnt--; // Rethrow always has 1 less kid
duke@435 3207 } else if (call->req() > TypeFunc::Parms &&
duke@435 3208 call->is_CallDynamicJava()) {
duke@435 3209 // Check for null receiver. In such case, the optimizer has
duke@435 3210 // detected that the virtual call will always result in a null
duke@435 3211 // pointer exception. The fall-through projection of this CatchNode
duke@435 3212 // will not be populated.
duke@435 3213 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 3214 if (arg0->is_Type() &&
duke@435 3215 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 3216 required_outcnt--;
duke@435 3217 }
duke@435 3218 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 3219 call->req() > TypeFunc::Parms+1 &&
duke@435 3220 call->is_CallStaticJava()) {
duke@435 3221 // Check for negative array length. In such case, the optimizer has
duke@435 3222 // detected that the allocation attempt will always result in an
duke@435 3223 // exception. There is no fall-through projection of this CatchNode .
duke@435 3224 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 3225 if (arg1->is_Type() &&
duke@435 3226 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 3227 required_outcnt--;
duke@435 3228 }
duke@435 3229 }
duke@435 3230 }
duke@435 3231 }
never@562 3232 // Recheck with a better notion of 'required_outcnt'
never@562 3233 if (n->outcnt() != required_outcnt) {
duke@435 3234 record_method_not_compilable("malformed control flow");
duke@435 3235 return true; // Not all targets reachable!
duke@435 3236 }
duke@435 3237 }
duke@435 3238 // Check that I actually visited all kids. Unreached kids
duke@435 3239 // must be infinite loops.
duke@435 3240 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 3241 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 3242 record_method_not_compilable("infinite loop");
duke@435 3243 return true; // Found unvisited kid; must be unreach
duke@435 3244 }
duke@435 3245 }
duke@435 3246
duke@435 3247 // If original bytecodes contained a mixture of floats and doubles
duke@435 3248 // check if the optimizer has made it homogenous, item (3).
never@1364 3249 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 3250 frc.get_float_count() > 32 &&
kvn@1294 3251 frc.get_double_count() == 0 &&
kvn@1294 3252 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 3253 set_24_bit_selection_and_mode( false, true );
duke@435 3254 }
duke@435 3255
kvn@1294 3256 set_java_calls(frc.get_java_call_count());
kvn@1294 3257 set_inner_loops(frc.get_inner_loop_count());
duke@435 3258
duke@435 3259 // No infinite loops, no reason to bail out.
duke@435 3260 return false;
duke@435 3261 }
duke@435 3262
duke@435 3263 //-----------------------------too_many_traps----------------------------------
duke@435 3264 // Report if there are too many traps at the current method and bci.
duke@435 3265 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 3266 bool Compile::too_many_traps(ciMethod* method,
duke@435 3267 int bci,
duke@435 3268 Deoptimization::DeoptReason reason) {
duke@435 3269 ciMethodData* md = method->method_data();
duke@435 3270 if (md->is_empty()) {
duke@435 3271 // Assume the trap has not occurred, or that it occurred only
duke@435 3272 // because of a transient condition during start-up in the interpreter.
duke@435 3273 return false;
duke@435 3274 }
duke@435 3275 if (md->has_trap_at(bci, reason) != 0) {
duke@435 3276 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 3277 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3278 // assume the worst.
duke@435 3279 if (log())
duke@435 3280 log()->elem("observe trap='%s' count='%d'",
duke@435 3281 Deoptimization::trap_reason_name(reason),
duke@435 3282 md->trap_count(reason));
duke@435 3283 return true;
duke@435 3284 } else {
duke@435 3285 // Ignore method/bci and see if there have been too many globally.
duke@435 3286 return too_many_traps(reason, md);
duke@435 3287 }
duke@435 3288 }
duke@435 3289
duke@435 3290 // Less-accurate variant which does not require a method and bci.
duke@435 3291 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 3292 ciMethodData* logmd) {
duke@435 3293 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 3294 // Too many traps globally.
duke@435 3295 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 3296 if (log()) {
duke@435 3297 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 3298 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 3299 Deoptimization::trap_reason_name(reason),
duke@435 3300 mcount, trap_count(reason));
duke@435 3301 }
duke@435 3302 return true;
duke@435 3303 } else {
duke@435 3304 // The coast is clear.
duke@435 3305 return false;
duke@435 3306 }
duke@435 3307 }
duke@435 3308
duke@435 3309 //--------------------------too_many_recompiles--------------------------------
duke@435 3310 // Report if there are too many recompiles at the current method and bci.
duke@435 3311 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 3312 // Is not eager to return true, since this will cause the compiler to use
duke@435 3313 // Action_none for a trap point, to avoid too many recompilations.
duke@435 3314 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 3315 int bci,
duke@435 3316 Deoptimization::DeoptReason reason) {
duke@435 3317 ciMethodData* md = method->method_data();
duke@435 3318 if (md->is_empty()) {
duke@435 3319 // Assume the trap has not occurred, or that it occurred only
duke@435 3320 // because of a transient condition during start-up in the interpreter.
duke@435 3321 return false;
duke@435 3322 }
duke@435 3323 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 3324 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 3325 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 3326 Deoptimization::DeoptReason per_bc_reason
duke@435 3327 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 3328 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 3329 || md->has_trap_at(bci, reason) != 0)
duke@435 3330 // The trap frequency measure we care about is the recompile count:
duke@435 3331 && md->trap_recompiled_at(bci)
duke@435 3332 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 3333 // Do not emit a trap here if it has already caused recompilations.
duke@435 3334 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 3335 // assume the worst.
duke@435 3336 if (log())
duke@435 3337 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 3338 Deoptimization::trap_reason_name(reason),
duke@435 3339 md->trap_count(reason),
duke@435 3340 md->overflow_recompile_count());
duke@435 3341 return true;
duke@435 3342 } else if (trap_count(reason) != 0
duke@435 3343 && decompile_count() >= m_cutoff) {
duke@435 3344 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 3345 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 3346 if (log())
duke@435 3347 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 3348 Deoptimization::trap_reason_name(reason),
duke@435 3349 md->trap_count(reason), trap_count(reason),
duke@435 3350 md->decompile_count(), decompile_count());
duke@435 3351 return true;
duke@435 3352 } else {
duke@435 3353 // The coast is clear.
duke@435 3354 return false;
duke@435 3355 }
duke@435 3356 }
duke@435 3357
duke@435 3358
duke@435 3359 #ifndef PRODUCT
duke@435 3360 //------------------------------verify_graph_edges---------------------------
duke@435 3361 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 3362 // between Use-Def edges and Def-Use edges in the graph.
duke@435 3363 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 3364 if (VerifyGraphEdges) {
duke@435 3365 ResourceArea *area = Thread::current()->resource_area();
duke@435 3366 Unique_Node_List visited(area);
duke@435 3367 // Call recursive graph walk to check edges
duke@435 3368 _root->verify_edges(visited);
duke@435 3369 if (no_dead_code) {
duke@435 3370 // Now make sure that no visited node is used by an unvisited node.
duke@435 3371 bool dead_nodes = 0;
duke@435 3372 Unique_Node_List checked(area);
duke@435 3373 while (visited.size() > 0) {
duke@435 3374 Node* n = visited.pop();
duke@435 3375 checked.push(n);
duke@435 3376 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 3377 Node* use = n->raw_out(i);
duke@435 3378 if (checked.member(use)) continue; // already checked
duke@435 3379 if (visited.member(use)) continue; // already in the graph
duke@435 3380 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 3381 // At this point, we have found a dead node which is DU-reachable.
duke@435 3382 if (dead_nodes++ == 0)
duke@435 3383 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 3384 use->dump(2);
duke@435 3385 tty->print_cr("---");
duke@435 3386 checked.push(use); // No repeats; pretend it is now checked.
duke@435 3387 }
duke@435 3388 }
duke@435 3389 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 3390 }
duke@435 3391 }
duke@435 3392 }
iveresov@6070 3393
iveresov@6070 3394 // Verify GC barriers consistency
iveresov@6070 3395 // Currently supported:
iveresov@6070 3396 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
iveresov@6070 3397 void Compile::verify_barriers() {
iveresov@6070 3398 if (UseG1GC) {
iveresov@6070 3399 // Verify G1 pre-barriers
iveresov@6070 3400 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
iveresov@6070 3401
iveresov@6070 3402 ResourceArea *area = Thread::current()->resource_area();
iveresov@6070 3403 Unique_Node_List visited(area);
iveresov@6070 3404 Node_List worklist(area);
iveresov@6070 3405 // We're going to walk control flow backwards starting from the Root
iveresov@6070 3406 worklist.push(_root);
iveresov@6070 3407 while (worklist.size() > 0) {
iveresov@6070 3408 Node* x = worklist.pop();
iveresov@6070 3409 if (x == NULL || x == top()) continue;
iveresov@6070 3410 if (visited.member(x)) {
iveresov@6070 3411 continue;
iveresov@6070 3412 } else {
iveresov@6070 3413 visited.push(x);
iveresov@6070 3414 }
iveresov@6070 3415
iveresov@6070 3416 if (x->is_Region()) {
iveresov@6070 3417 for (uint i = 1; i < x->req(); i++) {
iveresov@6070 3418 worklist.push(x->in(i));
iveresov@6070 3419 }
iveresov@6070 3420 } else {
iveresov@6070 3421 worklist.push(x->in(0));
iveresov@6070 3422 // We are looking for the pattern:
iveresov@6070 3423 // /->ThreadLocal
iveresov@6070 3424 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
iveresov@6070 3425 // \->ConI(0)
iveresov@6070 3426 // We want to verify that the If and the LoadB have the same control
iveresov@6070 3427 // See GraphKit::g1_write_barrier_pre()
iveresov@6070 3428 if (x->is_If()) {
iveresov@6070 3429 IfNode *iff = x->as_If();
iveresov@6070 3430 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
iveresov@6070 3431 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
iveresov@6070 3432 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
iveresov@6070 3433 && cmp->in(1)->is_Load()) {
iveresov@6070 3434 LoadNode* load = cmp->in(1)->as_Load();
iveresov@6070 3435 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
iveresov@6070 3436 && load->in(2)->in(3)->is_Con()
iveresov@6070 3437 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
iveresov@6070 3438
iveresov@6070 3439 Node* if_ctrl = iff->in(0);
iveresov@6070 3440 Node* load_ctrl = load->in(0);
iveresov@6070 3441
iveresov@6070 3442 if (if_ctrl != load_ctrl) {
iveresov@6070 3443 // Skip possible CProj->NeverBranch in infinite loops
iveresov@6070 3444 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
iveresov@6070 3445 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
iveresov@6070 3446 if_ctrl = if_ctrl->in(0)->in(0);
iveresov@6070 3447 }
iveresov@6070 3448 }
iveresov@6070 3449 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
iveresov@6070 3450 }
iveresov@6070 3451 }
iveresov@6070 3452 }
iveresov@6070 3453 }
iveresov@6070 3454 }
iveresov@6070 3455 }
iveresov@6070 3456 }
iveresov@6070 3457 }
iveresov@6070 3458
duke@435 3459 #endif
duke@435 3460
duke@435 3461 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 3462 // This is required because there is not quite a 1-1 relation between the
duke@435 3463 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 3464 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 3465 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 3466 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 3467 // by the logic in C2Compiler.
duke@435 3468 void Compile::record_failure(const char* reason) {
duke@435 3469 if (log() != NULL) {
duke@435 3470 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 3471 }
duke@435 3472 if (_failure_reason == NULL) {
duke@435 3473 // Record the first failure reason.
duke@435 3474 _failure_reason = reason;
duke@435 3475 }
sla@5237 3476
sla@5237 3477 EventCompilerFailure event;
sla@5237 3478 if (event.should_commit()) {
sla@5237 3479 event.set_compileID(Compile::compile_id());
sla@5237 3480 event.set_failure(reason);
sla@5237 3481 event.commit();
sla@5237 3482 }
sla@5237 3483
never@657 3484 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
sla@5237 3485 C->print_method(PHASE_FAILURE);
never@657 3486 }
duke@435 3487 _root = NULL; // flush the graph, too
duke@435 3488 }
duke@435 3489
duke@435 3490 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
bharadwaj@4315 3491 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
bharadwaj@4315 3492 _phase_name(name), _dolog(dolog)
duke@435 3493 {
duke@435 3494 if (dolog) {
duke@435 3495 C = Compile::current();
duke@435 3496 _log = C->log();
duke@435 3497 } else {
duke@435 3498 C = NULL;
duke@435 3499 _log = NULL;
duke@435 3500 }
duke@435 3501 if (_log != NULL) {
bharadwaj@4315 3502 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3503 _log->stamp();
duke@435 3504 _log->end_head();
duke@435 3505 }
duke@435 3506 }
duke@435 3507
duke@435 3508 Compile::TracePhase::~TracePhase() {
bharadwaj@4315 3509
bharadwaj@4315 3510 C = Compile::current();
bharadwaj@4315 3511 if (_dolog) {
bharadwaj@4315 3512 _log = C->log();
bharadwaj@4315 3513 } else {
bharadwaj@4315 3514 _log = NULL;
bharadwaj@4315 3515 }
bharadwaj@4315 3516
bharadwaj@4315 3517 #ifdef ASSERT
bharadwaj@4315 3518 if (PrintIdealNodeCount) {
bharadwaj@4315 3519 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
bharadwaj@4315 3520 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
bharadwaj@4315 3521 }
bharadwaj@4315 3522
bharadwaj@4315 3523 if (VerifyIdealNodeCount) {
bharadwaj@4315 3524 Compile::current()->print_missing_nodes();
bharadwaj@4315 3525 }
bharadwaj@4315 3526 #endif
bharadwaj@4315 3527
duke@435 3528 if (_log != NULL) {
bharadwaj@4315 3529 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
duke@435 3530 }
duke@435 3531 }
twisti@2350 3532
twisti@2350 3533 //=============================================================================
twisti@2350 3534 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3535 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3536 if (type() != other.type() ) return false;
twisti@2350 3537 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3538 // For floating point values we compare the bit pattern.
twisti@2350 3539 switch (type()) {
coleenp@4037 3540 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3541 case T_LONG:
coleenp@4037 3542 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3543 case T_OBJECT:
coleenp@4037 3544 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3545 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
kvn@4199 3546 case T_METADATA: return (_v._metadata == other._v._metadata);
twisti@2350 3547 default: ShouldNotReachHere();
twisti@2350 3548 }
twisti@2350 3549 return false;
twisti@2350 3550 }
twisti@2350 3551
twisti@2350 3552 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3553 switch (t) {
twisti@2350 3554 case T_LONG: return sizeof(jlong );
twisti@2350 3555 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3556 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3557 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3558 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3559 // need an internal word relocation.
twisti@2350 3560 case T_VOID:
twisti@2350 3561 case T_ADDRESS:
twisti@2350 3562 case T_OBJECT: return sizeof(jobject);
twisti@2350 3563 }
twisti@2350 3564
twisti@2350 3565 ShouldNotReachHere();
twisti@2350 3566 return -1;
twisti@2350 3567 }
twisti@2350 3568
twisti@3310 3569 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3570 // sort descending
twisti@3310 3571 if (a->freq() > b->freq()) return -1;
twisti@3310 3572 if (a->freq() < b->freq()) return 1;
twisti@3310 3573 return 0;
twisti@3310 3574 }
twisti@3310 3575
twisti@2350 3576 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3577 // First, sort the array by frequencies.
twisti@3310 3578 _constants.sort(qsort_comparator);
twisti@3310 3579
twisti@3310 3580 #ifdef ASSERT
twisti@3310 3581 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3582 // array (they have a negative frequency).
twisti@3310 3583 bool found_void = false;
twisti@3310 3584 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3585 Constant con = _constants.at(i);
twisti@3310 3586 if (con.type() == T_VOID)
twisti@3310 3587 found_void = true; // jump-tables
twisti@3310 3588 else
twisti@3310 3589 assert(!found_void, "wrong sorting");
twisti@3310 3590 }
twisti@3310 3591 #endif
twisti@3310 3592
twisti@3310 3593 int offset = 0;
twisti@3310 3594 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3595 Constant* con = _constants.adr_at(i);
twisti@3310 3596
twisti@3310 3597 // Align offset for type.
twisti@3310 3598 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3599 offset = align_size_up(offset, typesize);
twisti@3310 3600 con->set_offset(offset); // set constant's offset
twisti@3310 3601
twisti@3310 3602 if (con->type() == T_VOID) {
twisti@3310 3603 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3604 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3605 } else {
twisti@3310 3606 offset = offset + typesize;
twisti@2350 3607 }
twisti@2350 3608 }
twisti@2350 3609
twisti@2350 3610 // Align size up to the next section start (which is insts; see
twisti@2350 3611 // CodeBuffer::align_at_start).
twisti@2350 3612 assert(_size == -1, "already set?");
twisti@3310 3613 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3614 }
twisti@2350 3615
twisti@2350 3616 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3617 MacroAssembler _masm(&cb);
twisti@3310 3618 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3619 Constant con = _constants.at(i);
twisti@3310 3620 address constant_addr;
twisti@3310 3621 switch (con.type()) {
twisti@3310 3622 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3623 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3624 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3625 case T_OBJECT: {
twisti@3310 3626 jobject obj = con.get_jobject();
twisti@3310 3627 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3628 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3629 break;
twisti@3310 3630 }
twisti@3310 3631 case T_ADDRESS: {
twisti@3310 3632 address addr = (address) con.get_jobject();
twisti@3310 3633 constant_addr = _masm.address_constant(addr);
twisti@3310 3634 break;
twisti@3310 3635 }
twisti@3310 3636 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3637 // need an internal word relocation.
twisti@3310 3638 case T_VOID: {
twisti@3310 3639 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3640 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3641 // filled in later in fill_jump_table.
twisti@3310 3642 address dummy = (address) n;
twisti@3310 3643 constant_addr = _masm.address_constant(dummy);
twisti@3310 3644 // Expand jump-table
twisti@3310 3645 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3646 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3647 assert(temp_addr, "consts section too small");
twisti@2350 3648 }
twisti@3310 3649 break;
twisti@2350 3650 }
coleenp@4037 3651 case T_METADATA: {
coleenp@4037 3652 Metadata* obj = con.get_metadata();
coleenp@4037 3653 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3654 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3655 break;
coleenp@4037 3656 }
twisti@3310 3657 default: ShouldNotReachHere();
twisti@3310 3658 }
twisti@3310 3659 assert(constant_addr, "consts section too small");
kvn@3971 3660 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3661 }
twisti@2350 3662 }
twisti@2350 3663
twisti@2350 3664 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3665 int idx = _constants.find(con);
twisti@2350 3666 assert(idx != -1, "constant must be in constant table");
twisti@2350 3667 int offset = _constants.at(idx).offset();
twisti@2350 3668 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3669 return offset;
twisti@2350 3670 }
twisti@2350 3671
twisti@2350 3672 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3673 if (con.can_be_reused()) {
twisti@2350 3674 int idx = _constants.find(con);
twisti@2350 3675 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3676 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3677 return;
twisti@2350 3678 }
twisti@2350 3679 }
twisti@2350 3680 (void) _constants.append(con);
twisti@2350 3681 }
twisti@2350 3682
twisti@3310 3683 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
adlertz@5509 3684 Block* b = Compile::current()->cfg()->get_block_for_node(n);
twisti@3310 3685 Constant con(type, value, b->_freq);
twisti@2350 3686 add(con);
twisti@2350 3687 return con;
twisti@2350 3688 }
twisti@2350 3689
coleenp@4037 3690 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3691 Constant con(metadata);
coleenp@4037 3692 add(con);
coleenp@4037 3693 return con;
coleenp@4037 3694 }
coleenp@4037 3695
twisti@3310 3696 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3697 jvalue value;
twisti@2350 3698 BasicType type = oper->type()->basic_type();
twisti@2350 3699 switch (type) {
twisti@2350 3700 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3701 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3702 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3703 case T_OBJECT:
twisti@2350 3704 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3705 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3706 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3707 }
twisti@3310 3708 return add(n, type, value);
twisti@2350 3709 }
twisti@2350 3710
twisti@3310 3711 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3712 jvalue value;
twisti@2350 3713 // We can use the node pointer here to identify the right jump-table
twisti@2350 3714 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3715 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3716 // MachNode pointers do not change anymore).
twisti@2350 3717 value.l = (jobject) n;
twisti@3310 3718 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3719 add(con);
twisti@2350 3720 return con;
twisti@2350 3721 }
twisti@2350 3722
twisti@2350 3723 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3724 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3725 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3726
twisti@2350 3727 assert(labels.is_nonempty(), "must be");
kvn@3971 3728 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3729
twisti@2350 3730 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3731 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3732 // to get the plain offset into the constant table.
twisti@2350 3733 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3734
twisti@2350 3735 MacroAssembler _masm(&cb);
twisti@2350 3736 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3737
twisti@3310 3738 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3739 address* constant_addr = &jump_table_base[i];
kvn@3971 3740 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3741 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3742 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3743 }
twisti@2350 3744 }
roland@4357 3745
roland@4357 3746 void Compile::dump_inlining() {
kvn@5763 3747 if (print_inlining() || print_intrinsics()) {
roland@4409 3748 // Print inlining message for candidates that we couldn't inline
roland@4409 3749 // for lack of space or non constant receiver
roland@4409 3750 for (int i = 0; i < _late_inlines.length(); i++) {
roland@4409 3751 CallGenerator* cg = _late_inlines.at(i);
roland@4409 3752 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
roland@4409 3753 }
roland@4409 3754 Unique_Node_List useful;
roland@4409 3755 useful.push(root());
roland@4409 3756 for (uint next = 0; next < useful.size(); ++next) {
roland@4409 3757 Node* n = useful.at(next);
roland@4409 3758 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
roland@4409 3759 CallNode* call = n->as_Call();
roland@4409 3760 CallGenerator* cg = call->generator();
roland@4409 3761 cg->print_inlining_late("receiver not constant");
roland@4409 3762 }
roland@4409 3763 uint max = n->len();
roland@4409 3764 for ( uint i = 0; i < max; ++i ) {
roland@4409 3765 Node *m = n->in(i);
roland@4409 3766 if ( m == NULL ) continue;
roland@4409 3767 useful.push(m);
roland@4409 3768 }
roland@4409 3769 }
roland@4357 3770 for (int i = 0; i < _print_inlining_list->length(); i++) {
kvn@5763 3771 tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
roland@4357 3772 }
roland@4357 3773 }
roland@4357 3774 }
roland@4589 3775
kvn@6217 3776 // Dump inlining replay data to the stream.
kvn@6217 3777 // Don't change thread state and acquire any locks.
kvn@6217 3778 void Compile::dump_inline_data(outputStream* out) {
kvn@6217 3779 InlineTree* inl_tree = ilt();
kvn@6217 3780 if (inl_tree != NULL) {
kvn@6217 3781 out->print(" inline %d", inl_tree->count());
kvn@6217 3782 inl_tree->dump_replay_data(out);
kvn@6217 3783 }
kvn@6217 3784 }
kvn@6217 3785
roland@4589 3786 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
roland@4589 3787 if (n1->Opcode() < n2->Opcode()) return -1;
roland@4589 3788 else if (n1->Opcode() > n2->Opcode()) return 1;
roland@4589 3789
roland@4589 3790 assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
roland@4589 3791 for (uint i = 1; i < n1->req(); i++) {
roland@4589 3792 if (n1->in(i) < n2->in(i)) return -1;
roland@4589 3793 else if (n1->in(i) > n2->in(i)) return 1;
roland@4589 3794 }
roland@4589 3795
roland@4589 3796 return 0;
roland@4589 3797 }
roland@4589 3798
roland@4589 3799 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
roland@4589 3800 Node* n1 = *n1p;
roland@4589 3801 Node* n2 = *n2p;
roland@4589 3802
roland@4589 3803 return cmp_expensive_nodes(n1, n2);
roland@4589 3804 }
roland@4589 3805
roland@4589 3806 void Compile::sort_expensive_nodes() {
roland@4589 3807 if (!expensive_nodes_sorted()) {
roland@4589 3808 _expensive_nodes->sort(cmp_expensive_nodes);
roland@4589 3809 }
roland@4589 3810 }
roland@4589 3811
roland@4589 3812 bool Compile::expensive_nodes_sorted() const {
roland@4589 3813 for (int i = 1; i < _expensive_nodes->length(); i++) {
roland@4589 3814 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
roland@4589 3815 return false;
roland@4589 3816 }
roland@4589 3817 }
roland@4589 3818 return true;
roland@4589 3819 }
roland@4589 3820
roland@4589 3821 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3822 if (_expensive_nodes->length() == 0) {
roland@4589 3823 return false;
roland@4589 3824 }
roland@4589 3825
roland@4589 3826 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3827
roland@4589 3828 // Take this opportunity to remove dead nodes from the list
roland@4589 3829 int j = 0;
roland@4589 3830 for (int i = 0; i < _expensive_nodes->length(); i++) {
roland@4589 3831 Node* n = _expensive_nodes->at(i);
roland@4589 3832 if (!n->is_unreachable(igvn)) {
roland@4589 3833 assert(n->is_expensive(), "should be expensive");
roland@4589 3834 _expensive_nodes->at_put(j, n);
roland@4589 3835 j++;
roland@4589 3836 }
roland@4589 3837 }
roland@4589 3838 _expensive_nodes->trunc_to(j);
roland@4589 3839
roland@4589 3840 // Then sort the list so that similar nodes are next to each other
roland@4589 3841 // and check for at least two nodes of identical kind with same data
roland@4589 3842 // inputs.
roland@4589 3843 sort_expensive_nodes();
roland@4589 3844
roland@4589 3845 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
roland@4589 3846 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
roland@4589 3847 return true;
roland@4589 3848 }
roland@4589 3849 }
roland@4589 3850
roland@4589 3851 return false;
roland@4589 3852 }
roland@4589 3853
roland@4589 3854 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
roland@4589 3855 if (_expensive_nodes->length() == 0) {
roland@4589 3856 return;
roland@4589 3857 }
roland@4589 3858
roland@4589 3859 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 3860
roland@4589 3861 // Sort to bring similar nodes next to each other and clear the
roland@4589 3862 // control input of nodes for which there's only a single copy.
roland@4589 3863 sort_expensive_nodes();
roland@4589 3864
roland@4589 3865 int j = 0;
roland@4589 3866 int identical = 0;
roland@4589 3867 int i = 0;
roland@4589 3868 for (; i < _expensive_nodes->length()-1; i++) {
roland@4589 3869 assert(j <= i, "can't write beyond current index");
roland@4589 3870 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
roland@4589 3871 identical++;
roland@4589 3872 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3873 continue;
roland@4589 3874 }
roland@4589 3875 if (identical > 0) {
roland@4589 3876 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3877 identical = 0;
roland@4589 3878 } else {
roland@4589 3879 Node* n = _expensive_nodes->at(i);
roland@4589 3880 igvn.hash_delete(n);
roland@4589 3881 n->set_req(0, NULL);
roland@4589 3882 igvn.hash_insert(n);
roland@4589 3883 }
roland@4589 3884 }
roland@4589 3885 if (identical > 0) {
roland@4589 3886 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
roland@4589 3887 } else if (_expensive_nodes->length() >= 1) {
roland@4589 3888 Node* n = _expensive_nodes->at(i);
roland@4589 3889 igvn.hash_delete(n);
roland@4589 3890 n->set_req(0, NULL);
roland@4589 3891 igvn.hash_insert(n);
roland@4589 3892 }
roland@4589 3893 _expensive_nodes->trunc_to(j);
roland@4589 3894 }
roland@4589 3895
roland@4589 3896 void Compile::add_expensive_node(Node * n) {
roland@4589 3897 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
roland@4589 3898 assert(n->is_expensive(), "expensive nodes with non-null control here only");
roland@4589 3899 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
roland@4589 3900 if (OptimizeExpensiveOps) {
roland@4589 3901 _expensive_nodes->append(n);
roland@4589 3902 } else {
roland@4589 3903 // Clear control input and let IGVN optimize expensive nodes if
roland@4589 3904 // OptimizeExpensiveOps is off.
roland@4589 3905 n->set_req(0, NULL);
roland@4589 3906 }
roland@4589 3907 }
shade@4691 3908
roland@5991 3909 /**
roland@5991 3910 * Remove the speculative part of types and clean up the graph
roland@5991 3911 */
roland@5991 3912 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
roland@5991 3913 if (UseTypeSpeculation) {
roland@5991 3914 Unique_Node_List worklist;
roland@5991 3915 worklist.push(root());
roland@5991 3916 int modified = 0;
roland@5991 3917 // Go over all type nodes that carry a speculative type, drop the
roland@5991 3918 // speculative part of the type and enqueue the node for an igvn
roland@5991 3919 // which may optimize it out.
roland@5991 3920 for (uint next = 0; next < worklist.size(); ++next) {
roland@5991 3921 Node *n = worklist.at(next);
roland@5991 3922 if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
roland@5991 3923 n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
roland@5991 3924 TypeNode* tn = n->as_Type();
roland@5991 3925 const TypeOopPtr* t = tn->type()->is_oopptr();
roland@5991 3926 bool in_hash = igvn.hash_delete(n);
roland@5991 3927 assert(in_hash, "node should be in igvn hash table");
roland@5991 3928 tn->set_type(t->remove_speculative());
roland@5991 3929 igvn.hash_insert(n);
roland@5991 3930 igvn._worklist.push(n); // give it a chance to go away
roland@5991 3931 modified++;
roland@5991 3932 }
roland@5991 3933 uint max = n->len();
roland@5991 3934 for( uint i = 0; i < max; ++i ) {
roland@5991 3935 Node *m = n->in(i);
roland@5991 3936 if (not_a_node(m)) continue;
roland@5991 3937 worklist.push(m);
roland@5991 3938 }
roland@5991 3939 }
roland@5991 3940 // Drop the speculative part of all types in the igvn's type table
roland@5991 3941 igvn.remove_speculative_types();
roland@5991 3942 if (modified > 0) {
roland@5991 3943 igvn.optimize();
roland@5991 3944 }
roland@5991 3945 }
roland@5991 3946 }
roland@5991 3947
shade@4691 3948 // Auxiliary method to support randomized stressing/fuzzing.
shade@4691 3949 //
shade@4691 3950 // This method can be called the arbitrary number of times, with current count
shade@4691 3951 // as the argument. The logic allows selecting a single candidate from the
shade@4691 3952 // running list of candidates as follows:
shade@4691 3953 // int count = 0;
shade@4691 3954 // Cand* selected = null;
shade@4691 3955 // while(cand = cand->next()) {
shade@4691 3956 // if (randomized_select(++count)) {
shade@4691 3957 // selected = cand;
shade@4691 3958 // }
shade@4691 3959 // }
shade@4691 3960 //
shade@4691 3961 // Including count equalizes the chances any candidate is "selected".
shade@4691 3962 // This is useful when we don't have the complete list of candidates to choose
shade@4691 3963 // from uniformly. In this case, we need to adjust the randomicity of the
shade@4691 3964 // selection, or else we will end up biasing the selection towards the latter
shade@4691 3965 // candidates.
shade@4691 3966 //
shade@4691 3967 // Quick back-envelope calculation shows that for the list of n candidates
shade@4691 3968 // the equal probability for the candidate to persist as "best" can be
shade@4691 3969 // achieved by replacing it with "next" k-th candidate with the probability
shade@4691 3970 // of 1/k. It can be easily shown that by the end of the run, the
shade@4691 3971 // probability for any candidate is converged to 1/n, thus giving the
shade@4691 3972 // uniform distribution among all the candidates.
shade@4691 3973 //
shade@4691 3974 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
shade@4691 3975 #define RANDOMIZED_DOMAIN_POW 29
shade@4691 3976 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
shade@4691 3977 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
shade@4691 3978 bool Compile::randomized_select(int count) {
shade@4691 3979 assert(count > 0, "only positive");
shade@4691 3980 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
shade@4691 3981 }

mercurial