src/share/classes/com/sun/tools/javac/comp/Resolve.java

Tue, 08 Jan 2013 10:16:26 +0100

author
mcimadamore
date
Tue, 08 Jan 2013 10:16:26 +0100
changeset 1480
db91d860156a
parent 1479
38d3d1027f5a
child 1496
f785dcac17b7
permissions
-rw-r--r--

8005179: Cleanup Resolve.AmbiguityError
Summary: Linearize nested ambiguity errors
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.jvm.*;
    41 import com.sun.tools.javac.tree.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    44 import com.sun.tools.javac.util.*;
    45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    47 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    49 import java.util.Arrays;
    50 import java.util.Collection;
    51 import java.util.EnumMap;
    52 import java.util.EnumSet;
    53 import java.util.Iterator;
    54 import java.util.LinkedHashMap;
    55 import java.util.LinkedHashSet;
    56 import java.util.Map;
    57 import java.util.Set;
    59 import javax.lang.model.element.ElementVisitor;
    61 import static com.sun.tools.javac.code.Flags.*;
    62 import static com.sun.tools.javac.code.Flags.BLOCK;
    63 import static com.sun.tools.javac.code.Kinds.*;
    64 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    65 import static com.sun.tools.javac.code.TypeTag.*;
    66 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    67 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    69 /** Helper class for name resolution, used mostly by the attribution phase.
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Resolve {
    77     protected static final Context.Key<Resolve> resolveKey =
    78         new Context.Key<Resolve>();
    80     Names names;
    81     Log log;
    82     Symtab syms;
    83     Attr attr;
    84     DeferredAttr deferredAttr;
    85     Check chk;
    86     Infer infer;
    87     ClassReader reader;
    88     TreeInfo treeinfo;
    89     Types types;
    90     JCDiagnostic.Factory diags;
    91     public final boolean boxingEnabled; // = source.allowBoxing();
    92     public final boolean varargsEnabled; // = source.allowVarargs();
    93     public final boolean allowMethodHandles;
    94     public final boolean allowDefaultMethods;
    95     private final boolean debugResolve;
    96     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    98     Scope polymorphicSignatureScope;
   100     protected Resolve(Context context) {
   101         context.put(resolveKey, this);
   102         syms = Symtab.instance(context);
   104         varNotFound = new
   105             SymbolNotFoundError(ABSENT_VAR);
   106         methodNotFound = new
   107             SymbolNotFoundError(ABSENT_MTH);
   108         typeNotFound = new
   109             SymbolNotFoundError(ABSENT_TYP);
   111         names = Names.instance(context);
   112         log = Log.instance(context);
   113         attr = Attr.instance(context);
   114         deferredAttr = DeferredAttr.instance(context);
   115         chk = Check.instance(context);
   116         infer = Infer.instance(context);
   117         reader = ClassReader.instance(context);
   118         treeinfo = TreeInfo.instance(context);
   119         types = Types.instance(context);
   120         diags = JCDiagnostic.Factory.instance(context);
   121         Source source = Source.instance(context);
   122         boxingEnabled = source.allowBoxing();
   123         varargsEnabled = source.allowVarargs();
   124         Options options = Options.instance(context);
   125         debugResolve = options.isSet("debugresolve");
   126         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   127         Target target = Target.instance(context);
   128         allowMethodHandles = target.hasMethodHandles();
   129         allowDefaultMethods = source.allowDefaultMethods();
   130         polymorphicSignatureScope = new Scope(syms.noSymbol);
   132         inapplicableMethodException = new InapplicableMethodException(diags);
   133     }
   135     /** error symbols, which are returned when resolution fails
   136      */
   137     private final SymbolNotFoundError varNotFound;
   138     private final SymbolNotFoundError methodNotFound;
   139     private final SymbolNotFoundError typeNotFound;
   141     public static Resolve instance(Context context) {
   142         Resolve instance = context.get(resolveKey);
   143         if (instance == null)
   144             instance = new Resolve(context);
   145         return instance;
   146     }
   148     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   149     enum VerboseResolutionMode {
   150         SUCCESS("success"),
   151         FAILURE("failure"),
   152         APPLICABLE("applicable"),
   153         INAPPLICABLE("inapplicable"),
   154         DEFERRED_INST("deferred-inference"),
   155         PREDEF("predef"),
   156         OBJECT_INIT("object-init"),
   157         INTERNAL("internal");
   159         final String opt;
   161         private VerboseResolutionMode(String opt) {
   162             this.opt = opt;
   163         }
   165         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   166             String s = opts.get("verboseResolution");
   167             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   168             if (s == null) return res;
   169             if (s.contains("all")) {
   170                 res = EnumSet.allOf(VerboseResolutionMode.class);
   171             }
   172             Collection<String> args = Arrays.asList(s.split(","));
   173             for (VerboseResolutionMode mode : values()) {
   174                 if (args.contains(mode.opt)) {
   175                     res.add(mode);
   176                 } else if (args.contains("-" + mode.opt)) {
   177                     res.remove(mode);
   178                 }
   179             }
   180             return res;
   181         }
   182     }
   184     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   185             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   186         boolean success = bestSoFar.kind < ERRONEOUS;
   188         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   189             return;
   190         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   191             return;
   192         }
   194         if (bestSoFar.name == names.init &&
   195                 bestSoFar.owner == syms.objectType.tsym &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   197             return; //skip diags for Object constructor resolution
   198         } else if (site == syms.predefClass.type &&
   199                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   200             return; //skip spurious diags for predef symbols (i.e. operators)
   201         } else if (currentResolutionContext.internalResolution &&
   202                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   203             return;
   204         }
   206         int pos = 0;
   207         int mostSpecificPos = -1;
   208         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   209         for (Candidate c : currentResolutionContext.candidates) {
   210             if (currentResolutionContext.step != c.step ||
   211                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   212                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   213                 continue;
   214             } else {
   215                 subDiags.append(c.isApplicable() ?
   216                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   217                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   218                 if (c.sym == bestSoFar)
   219                     mostSpecificPos = pos;
   220                 pos++;
   221             }
   222         }
   223         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   224         List<Type> argtypes2 = Type.map(argtypes,
   225                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   226         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   227                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   228                 methodArguments(argtypes2),
   229                 methodArguments(typeargtypes));
   230         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   231         log.report(d);
   232     }
   234     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   235         JCDiagnostic subDiag = null;
   236         if (sym.type.hasTag(FORALL)) {
   237             subDiag = diags.fragment("partial.inst.sig", inst);
   238         }
   240         String key = subDiag == null ?
   241                 "applicable.method.found" :
   242                 "applicable.method.found.1";
   244         return diags.fragment(key, pos, sym, subDiag);
   245     }
   247     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   248         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   249     }
   250     // </editor-fold>
   252 /* ************************************************************************
   253  * Identifier resolution
   254  *************************************************************************/
   256     /** An environment is "static" if its static level is greater than
   257      *  the one of its outer environment
   258      */
   259     protected static boolean isStatic(Env<AttrContext> env) {
   260         return env.info.staticLevel > env.outer.info.staticLevel;
   261     }
   263     /** An environment is an "initializer" if it is a constructor or
   264      *  an instance initializer.
   265      */
   266     static boolean isInitializer(Env<AttrContext> env) {
   267         Symbol owner = env.info.scope.owner;
   268         return owner.isConstructor() ||
   269             owner.owner.kind == TYP &&
   270             (owner.kind == VAR ||
   271              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   272             (owner.flags() & STATIC) == 0;
   273     }
   275     /** Is class accessible in given evironment?
   276      *  @param env    The current environment.
   277      *  @param c      The class whose accessibility is checked.
   278      */
   279     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   280         return isAccessible(env, c, false);
   281     }
   283     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   284         boolean isAccessible = false;
   285         switch ((short)(c.flags() & AccessFlags)) {
   286             case PRIVATE:
   287                 isAccessible =
   288                     env.enclClass.sym.outermostClass() ==
   289                     c.owner.outermostClass();
   290                 break;
   291             case 0:
   292                 isAccessible =
   293                     env.toplevel.packge == c.owner // fast special case
   294                     ||
   295                     env.toplevel.packge == c.packge()
   296                     ||
   297                     // Hack: this case is added since synthesized default constructors
   298                     // of anonymous classes should be allowed to access
   299                     // classes which would be inaccessible otherwise.
   300                     env.enclMethod != null &&
   301                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   302                 break;
   303             default: // error recovery
   304             case PUBLIC:
   305                 isAccessible = true;
   306                 break;
   307             case PROTECTED:
   308                 isAccessible =
   309                     env.toplevel.packge == c.owner // fast special case
   310                     ||
   311                     env.toplevel.packge == c.packge()
   312                     ||
   313                     isInnerSubClass(env.enclClass.sym, c.owner);
   314                 break;
   315         }
   316         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   317             isAccessible :
   318             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   319     }
   320     //where
   321         /** Is given class a subclass of given base class, or an inner class
   322          *  of a subclass?
   323          *  Return null if no such class exists.
   324          *  @param c     The class which is the subclass or is contained in it.
   325          *  @param base  The base class
   326          */
   327         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   328             while (c != null && !c.isSubClass(base, types)) {
   329                 c = c.owner.enclClass();
   330             }
   331             return c != null;
   332         }
   334     boolean isAccessible(Env<AttrContext> env, Type t) {
   335         return isAccessible(env, t, false);
   336     }
   338     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   339         return (t.hasTag(ARRAY))
   340             ? isAccessible(env, types.elemtype(t))
   341             : isAccessible(env, t.tsym, checkInner);
   342     }
   344     /** Is symbol accessible as a member of given type in given evironment?
   345      *  @param env    The current environment.
   346      *  @param site   The type of which the tested symbol is regarded
   347      *                as a member.
   348      *  @param sym    The symbol.
   349      */
   350     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   351         return isAccessible(env, site, sym, false);
   352     }
   353     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   354         if (sym.name == names.init && sym.owner != site.tsym) return false;
   355         switch ((short)(sym.flags() & AccessFlags)) {
   356         case PRIVATE:
   357             return
   358                 (env.enclClass.sym == sym.owner // fast special case
   359                  ||
   360                  env.enclClass.sym.outermostClass() ==
   361                  sym.owner.outermostClass())
   362                 &&
   363                 sym.isInheritedIn(site.tsym, types);
   364         case 0:
   365             return
   366                 (env.toplevel.packge == sym.owner.owner // fast special case
   367                  ||
   368                  env.toplevel.packge == sym.packge())
   369                 &&
   370                 isAccessible(env, site, checkInner)
   371                 &&
   372                 sym.isInheritedIn(site.tsym, types)
   373                 &&
   374                 notOverriddenIn(site, sym);
   375         case PROTECTED:
   376             return
   377                 (env.toplevel.packge == sym.owner.owner // fast special case
   378                  ||
   379                  env.toplevel.packge == sym.packge()
   380                  ||
   381                  isProtectedAccessible(sym, env.enclClass.sym, site)
   382                  ||
   383                  // OK to select instance method or field from 'super' or type name
   384                  // (but type names should be disallowed elsewhere!)
   385                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   386                 &&
   387                 isAccessible(env, site, checkInner)
   388                 &&
   389                 notOverriddenIn(site, sym);
   390         default: // this case includes erroneous combinations as well
   391             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   392         }
   393     }
   394     //where
   395     /* `sym' is accessible only if not overridden by
   396      * another symbol which is a member of `site'
   397      * (because, if it is overridden, `sym' is not strictly
   398      * speaking a member of `site'). A polymorphic signature method
   399      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   400      */
   401     private boolean notOverriddenIn(Type site, Symbol sym) {
   402         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   403             return true;
   404         else {
   405             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   406             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   407                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   408         }
   409     }
   410     //where
   411         /** Is given protected symbol accessible if it is selected from given site
   412          *  and the selection takes place in given class?
   413          *  @param sym     The symbol with protected access
   414          *  @param c       The class where the access takes place
   415          *  @site          The type of the qualifier
   416          */
   417         private
   418         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   419             while (c != null &&
   420                    !(c.isSubClass(sym.owner, types) &&
   421                      (c.flags() & INTERFACE) == 0 &&
   422                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   423                      // only to instance fields and methods -- types are excluded
   424                      // regardless of whether they are declared 'static' or not.
   425                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   426                 c = c.owner.enclClass();
   427             return c != null;
   428         }
   430     /**
   431      * Performs a recursive scan of a type looking for accessibility problems
   432      * from current attribution environment
   433      */
   434     void checkAccessibleType(Env<AttrContext> env, Type t) {
   435         accessibilityChecker.visit(t, env);
   436     }
   438     /**
   439      * Accessibility type-visitor
   440      */
   441     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   442             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   444         void visit(List<Type> ts, Env<AttrContext> env) {
   445             for (Type t : ts) {
   446                 visit(t, env);
   447             }
   448         }
   450         public Void visitType(Type t, Env<AttrContext> env) {
   451             return null;
   452         }
   454         @Override
   455         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   456             visit(t.elemtype, env);
   457             return null;
   458         }
   460         @Override
   461         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   462             visit(t.getTypeArguments(), env);
   463             if (!isAccessible(env, t, true)) {
   464                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   465             }
   466             return null;
   467         }
   469         @Override
   470         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   471             visit(t.type, env);
   472             return null;
   473         }
   475         @Override
   476         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   477             visit(t.getParameterTypes(), env);
   478             visit(t.getReturnType(), env);
   479             visit(t.getThrownTypes(), env);
   480             return null;
   481         }
   482     };
   484     /** Try to instantiate the type of a method so that it fits
   485      *  given type arguments and argument types. If succesful, return
   486      *  the method's instantiated type, else return null.
   487      *  The instantiation will take into account an additional leading
   488      *  formal parameter if the method is an instance method seen as a member
   489      *  of un underdetermined site In this case, we treat site as an additional
   490      *  parameter and the parameters of the class containing the method as
   491      *  additional type variables that get instantiated.
   492      *
   493      *  @param env         The current environment
   494      *  @param site        The type of which the method is a member.
   495      *  @param m           The method symbol.
   496      *  @param argtypes    The invocation's given value arguments.
   497      *  @param typeargtypes    The invocation's given type arguments.
   498      *  @param allowBoxing Allow boxing conversions of arguments.
   499      *  @param useVarargs Box trailing arguments into an array for varargs.
   500      */
   501     Type rawInstantiate(Env<AttrContext> env,
   502                         Type site,
   503                         Symbol m,
   504                         ResultInfo resultInfo,
   505                         List<Type> argtypes,
   506                         List<Type> typeargtypes,
   507                         boolean allowBoxing,
   508                         boolean useVarargs,
   509                         MethodCheck methodCheck,
   510                         Warner warn) throws Infer.InferenceException {
   512         Type mt = types.memberType(site, m);
   513         // tvars is the list of formal type variables for which type arguments
   514         // need to inferred.
   515         List<Type> tvars = List.nil();
   516         if (typeargtypes == null) typeargtypes = List.nil();
   517         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   518             // This is not a polymorphic method, but typeargs are supplied
   519             // which is fine, see JLS 15.12.2.1
   520         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   521             ForAll pmt = (ForAll) mt;
   522             if (typeargtypes.length() != pmt.tvars.length())
   523                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   524             // Check type arguments are within bounds
   525             List<Type> formals = pmt.tvars;
   526             List<Type> actuals = typeargtypes;
   527             while (formals.nonEmpty() && actuals.nonEmpty()) {
   528                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   529                                                 pmt.tvars, typeargtypes);
   530                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   531                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   532                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   533                 formals = formals.tail;
   534                 actuals = actuals.tail;
   535             }
   536             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   537         } else if (mt.hasTag(FORALL)) {
   538             ForAll pmt = (ForAll) mt;
   539             List<Type> tvars1 = types.newInstances(pmt.tvars);
   540             tvars = tvars.appendList(tvars1);
   541             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   542         }
   544         // find out whether we need to go the slow route via infer
   545         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   546         for (List<Type> l = argtypes;
   547              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   548              l = l.tail) {
   549             if (l.head.hasTag(FORALL)) instNeeded = true;
   550         }
   552         if (instNeeded)
   553             return infer.instantiateMethod(env,
   554                                     tvars,
   555                                     (MethodType)mt,
   556                                     resultInfo,
   557                                     m,
   558                                     argtypes,
   559                                     allowBoxing,
   560                                     useVarargs,
   561                                     currentResolutionContext,
   562                                     methodCheck,
   563                                     warn);
   565         methodCheck.argumentsAcceptable(env, currentResolutionContext.deferredAttrContext(m, infer.emptyContext),
   566                                 argtypes, mt.getParameterTypes(), warn);
   567         return mt;
   568     }
   570     Type checkMethod(Env<AttrContext> env,
   571                      Type site,
   572                      Symbol m,
   573                      ResultInfo resultInfo,
   574                      List<Type> argtypes,
   575                      List<Type> typeargtypes,
   576                      Warner warn) {
   577         MethodResolutionContext prevContext = currentResolutionContext;
   578         try {
   579             currentResolutionContext = new MethodResolutionContext();
   580             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   581             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   582             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   583                     step.isBoxingRequired(), step.isVarargsRequired(), resolveMethodCheck, warn);
   584         }
   585         finally {
   586             currentResolutionContext = prevContext;
   587         }
   588     }
   590     /** Same but returns null instead throwing a NoInstanceException
   591      */
   592     Type instantiate(Env<AttrContext> env,
   593                      Type site,
   594                      Symbol m,
   595                      ResultInfo resultInfo,
   596                      List<Type> argtypes,
   597                      List<Type> typeargtypes,
   598                      boolean allowBoxing,
   599                      boolean useVarargs,
   600                      MethodCheck methodCheck,
   601                      Warner warn) {
   602         try {
   603             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   604                                   allowBoxing, useVarargs, methodCheck, warn);
   605         } catch (InapplicableMethodException ex) {
   606             return null;
   607         }
   608     }
   610     /**
   611      * This interface defines an entry point that should be used to perform a
   612      * method check. A method check usually consist in determining as to whether
   613      * a set of types (actuals) is compatible with another set of types (formals).
   614      * Since the notion of compatibility can vary depending on the circumstances,
   615      * this interfaces allows to easily add new pluggable method check routines.
   616      */
   617     interface MethodCheck {
   618         /**
   619          * Main method check routine. A method check usually consist in determining
   620          * as to whether a set of types (actuals) is compatible with another set of
   621          * types (formals). If an incompatibility is found, an unchecked exception
   622          * is assumed to be thrown.
   623          */
   624         void argumentsAcceptable(Env<AttrContext> env,
   625                                 DeferredAttrContext deferredAttrContext,
   626                                 List<Type> argtypes,
   627                                 List<Type> formals,
   628                                 Warner warn);
   629     }
   631     /**
   632      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   633      */
   634     enum MethodCheckDiag {
   635         /**
   636          * Actuals and formals differs in length.
   637          */
   638         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   639         /**
   640          * An actual is incompatible with a formal.
   641          */
   642         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   643         /**
   644          * An actual is incompatible with the varargs element type.
   645          */
   646         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   647         /**
   648          * The varargs element type is inaccessible.
   649          */
   650         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   652         final String basicKey;
   653         final String inferKey;
   655         MethodCheckDiag(String basicKey, String inferKey) {
   656             this.basicKey = basicKey;
   657             this.inferKey = inferKey;
   658         }
   659     }
   661     /**
   662      * Main method applicability routine. Given a list of actual types A,
   663      * a list of formal types F, determines whether the types in A are
   664      * compatible (by method invocation conversion) with the types in F.
   665      *
   666      * Since this routine is shared between overload resolution and method
   667      * type-inference, a (possibly empty) inference context is used to convert
   668      * formal types to the corresponding 'undet' form ahead of a compatibility
   669      * check so that constraints can be propagated and collected.
   670      *
   671      * Moreover, if one or more types in A is a deferred type, this routine uses
   672      * DeferredAttr in order to perform deferred attribution. If one or more actual
   673      * deferred types are stuck, they are placed in a queue and revisited later
   674      * after the remainder of the arguments have been seen. If this is not sufficient
   675      * to 'unstuck' the argument, a cyclic inference error is called out.
   676      *
   677      * A method check handler (see above) is used in order to report errors.
   678      */
   679     MethodCheck resolveMethodCheck = new MethodCheck() {
   680         @Override
   681         public void argumentsAcceptable(final Env<AttrContext> env,
   682                                     DeferredAttrContext deferredAttrContext,
   683                                     List<Type> argtypes,
   684                                     List<Type> formals,
   685                                     Warner warn) {
   686             //should we expand formals?
   687             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   689             //inference context used during this method check
   690             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   692             Type varargsFormal = useVarargs ? formals.last() : null;
   694             if (varargsFormal == null &&
   695                     argtypes.size() != formals.size()) {
   696                 report(MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   697             }
   699             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   700                 ResultInfo mresult = methodCheckResult(false, formals.head, deferredAttrContext, warn);
   701                 mresult.check(null, argtypes.head);
   702                 argtypes = argtypes.tail;
   703                 formals = formals.tail;
   704             }
   706             if (formals.head != varargsFormal) {
   707                 report(MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   708             }
   710             if (useVarargs) {
   711                 //note: if applicability check is triggered by most specific test,
   712                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   713                 final Type elt = types.elemtype(varargsFormal);
   714                 ResultInfo mresult = methodCheckResult(true, elt, deferredAttrContext, warn);
   715                 while (argtypes.nonEmpty()) {
   716                     mresult.check(null, argtypes.head);
   717                     argtypes = argtypes.tail;
   718                 }
   719                 //check varargs element type accessibility
   720                 varargsAccessible(env, elt, inferenceContext);
   721             }
   722         }
   724         private void report(MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   725             boolean inferDiag = inferenceContext != infer.emptyContext;
   726             InapplicableMethodException ex = inferDiag ?
   727                     infer.inferenceException : inapplicableMethodException;
   728             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   729                 Object[] args2 = new Object[args.length + 1];
   730                 System.arraycopy(args, 0, args2, 1, args.length);
   731                 args2[0] = inferenceContext.inferenceVars();
   732                 args = args2;
   733             }
   734             throw ex.setMessage(inferDiag ? diag.inferKey : diag.basicKey, args);
   735         }
   737         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   738             if (inferenceContext.free(t)) {
   739                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   740                     @Override
   741                     public void typesInferred(InferenceContext inferenceContext) {
   742                         varargsAccessible(env, inferenceContext.asInstType(t, types), inferenceContext);
   743                     }
   744                 });
   745             } else {
   746                 if (!isAccessible(env, t)) {
   747                     Symbol location = env.enclClass.sym;
   748                     report(MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   749                 }
   750             }
   751         }
   753         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   754                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   755             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   756                 MethodCheckDiag methodDiag = varargsCheck ?
   757                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   759                 @Override
   760                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   761                     report(methodDiag, deferredAttrContext.inferenceContext, details);
   762                 }
   763             };
   764             return new MethodResultInfo(to, checkContext);
   765         }
   766     };
   768     /**
   769      * Check context to be used during method applicability checks. A method check
   770      * context might contain inference variables.
   771      */
   772     abstract class MethodCheckContext implements CheckContext {
   774         boolean strict;
   775         DeferredAttrContext deferredAttrContext;
   776         Warner rsWarner;
   778         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   779            this.strict = strict;
   780            this.deferredAttrContext = deferredAttrContext;
   781            this.rsWarner = rsWarner;
   782         }
   784         public boolean compatible(Type found, Type req, Warner warn) {
   785             return strict ?
   786                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req, types), warn) :
   787                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req, types), warn);
   788         }
   790         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   791             throw inapplicableMethodException.setMessage(details);
   792         }
   794         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   795             return rsWarner;
   796         }
   798         public InferenceContext inferenceContext() {
   799             return deferredAttrContext.inferenceContext;
   800         }
   802         public DeferredAttrContext deferredAttrContext() {
   803             return deferredAttrContext;
   804         }
   805     }
   807     /**
   808      * ResultInfo class to be used during method applicability checks. Check
   809      * for deferred types goes through special path.
   810      */
   811     class MethodResultInfo extends ResultInfo {
   813         public MethodResultInfo(Type pt, CheckContext checkContext) {
   814             attr.super(VAL, pt, checkContext);
   815         }
   817         @Override
   818         protected Type check(DiagnosticPosition pos, Type found) {
   819             if (found.hasTag(DEFERRED)) {
   820                 DeferredType dt = (DeferredType)found;
   821                 return dt.check(this);
   822             } else {
   823                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   824             }
   825         }
   827         @Override
   828         protected MethodResultInfo dup(Type newPt) {
   829             return new MethodResultInfo(newPt, checkContext);
   830         }
   832         @Override
   833         protected ResultInfo dup(CheckContext newContext) {
   834             return new MethodResultInfo(pt, newContext);
   835         }
   836     }
   838     public static class InapplicableMethodException extends RuntimeException {
   839         private static final long serialVersionUID = 0;
   841         JCDiagnostic diagnostic;
   842         JCDiagnostic.Factory diags;
   844         InapplicableMethodException(JCDiagnostic.Factory diags) {
   845             this.diagnostic = null;
   846             this.diags = diags;
   847         }
   848         InapplicableMethodException setMessage() {
   849             return setMessage((JCDiagnostic)null);
   850         }
   851         InapplicableMethodException setMessage(String key) {
   852             return setMessage(key != null ? diags.fragment(key) : null);
   853         }
   854         InapplicableMethodException setMessage(String key, Object... args) {
   855             return setMessage(key != null ? diags.fragment(key, args) : null);
   856         }
   857         InapplicableMethodException setMessage(JCDiagnostic diag) {
   858             this.diagnostic = diag;
   859             return this;
   860         }
   862         public JCDiagnostic getDiagnostic() {
   863             return diagnostic;
   864         }
   865     }
   866     private final InapplicableMethodException inapplicableMethodException;
   868 /* ***************************************************************************
   869  *  Symbol lookup
   870  *  the following naming conventions for arguments are used
   871  *
   872  *       env      is the environment where the symbol was mentioned
   873  *       site     is the type of which the symbol is a member
   874  *       name     is the symbol's name
   875  *                if no arguments are given
   876  *       argtypes are the value arguments, if we search for a method
   877  *
   878  *  If no symbol was found, a ResolveError detailing the problem is returned.
   879  ****************************************************************************/
   881     /** Find field. Synthetic fields are always skipped.
   882      *  @param env     The current environment.
   883      *  @param site    The original type from where the selection takes place.
   884      *  @param name    The name of the field.
   885      *  @param c       The class to search for the field. This is always
   886      *                 a superclass or implemented interface of site's class.
   887      */
   888     Symbol findField(Env<AttrContext> env,
   889                      Type site,
   890                      Name name,
   891                      TypeSymbol c) {
   892         while (c.type.hasTag(TYPEVAR))
   893             c = c.type.getUpperBound().tsym;
   894         Symbol bestSoFar = varNotFound;
   895         Symbol sym;
   896         Scope.Entry e = c.members().lookup(name);
   897         while (e.scope != null) {
   898             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   899                 return isAccessible(env, site, e.sym)
   900                     ? e.sym : new AccessError(env, site, e.sym);
   901             }
   902             e = e.next();
   903         }
   904         Type st = types.supertype(c.type);
   905         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
   906             sym = findField(env, site, name, st.tsym);
   907             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   908         }
   909         for (List<Type> l = types.interfaces(c.type);
   910              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   911              l = l.tail) {
   912             sym = findField(env, site, name, l.head.tsym);
   913             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   914                 sym.owner != bestSoFar.owner)
   915                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   916             else if (sym.kind < bestSoFar.kind)
   917                 bestSoFar = sym;
   918         }
   919         return bestSoFar;
   920     }
   922     /** Resolve a field identifier, throw a fatal error if not found.
   923      *  @param pos       The position to use for error reporting.
   924      *  @param env       The environment current at the method invocation.
   925      *  @param site      The type of the qualifying expression, in which
   926      *                   identifier is searched.
   927      *  @param name      The identifier's name.
   928      */
   929     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   930                                           Type site, Name name) {
   931         Symbol sym = findField(env, site, name, site.tsym);
   932         if (sym.kind == VAR) return (VarSymbol)sym;
   933         else throw new FatalError(
   934                  diags.fragment("fatal.err.cant.locate.field",
   935                                 name));
   936     }
   938     /** Find unqualified variable or field with given name.
   939      *  Synthetic fields always skipped.
   940      *  @param env     The current environment.
   941      *  @param name    The name of the variable or field.
   942      */
   943     Symbol findVar(Env<AttrContext> env, Name name) {
   944         Symbol bestSoFar = varNotFound;
   945         Symbol sym;
   946         Env<AttrContext> env1 = env;
   947         boolean staticOnly = false;
   948         while (env1.outer != null) {
   949             if (isStatic(env1)) staticOnly = true;
   950             Scope.Entry e = env1.info.scope.lookup(name);
   951             while (e.scope != null &&
   952                    (e.sym.kind != VAR ||
   953                     (e.sym.flags_field & SYNTHETIC) != 0))
   954                 e = e.next();
   955             sym = (e.scope != null)
   956                 ? e.sym
   957                 : findField(
   958                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   959             if (sym.exists()) {
   960                 if (staticOnly &&
   961                     sym.kind == VAR &&
   962                     sym.owner.kind == TYP &&
   963                     (sym.flags() & STATIC) == 0)
   964                     return new StaticError(sym);
   965                 else
   966                     return sym;
   967             } else if (sym.kind < bestSoFar.kind) {
   968                 bestSoFar = sym;
   969             }
   971             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   972             env1 = env1.outer;
   973         }
   975         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   976         if (sym.exists())
   977             return sym;
   978         if (bestSoFar.exists())
   979             return bestSoFar;
   981         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   982         for (; e.scope != null; e = e.next()) {
   983             sym = e.sym;
   984             Type origin = e.getOrigin().owner.type;
   985             if (sym.kind == VAR) {
   986                 if (e.sym.owner.type != origin)
   987                     sym = sym.clone(e.getOrigin().owner);
   988                 return isAccessible(env, origin, sym)
   989                     ? sym : new AccessError(env, origin, sym);
   990             }
   991         }
   993         Symbol origin = null;
   994         e = env.toplevel.starImportScope.lookup(name);
   995         for (; e.scope != null; e = e.next()) {
   996             sym = e.sym;
   997             if (sym.kind != VAR)
   998                 continue;
   999             // invariant: sym.kind == VAR
  1000             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1001                 return new AmbiguityError(bestSoFar, sym);
  1002             else if (bestSoFar.kind >= VAR) {
  1003                 origin = e.getOrigin().owner;
  1004                 bestSoFar = isAccessible(env, origin.type, sym)
  1005                     ? sym : new AccessError(env, origin.type, sym);
  1008         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1009             return bestSoFar.clone(origin);
  1010         else
  1011             return bestSoFar;
  1014     Warner noteWarner = new Warner();
  1016     /** Select the best method for a call site among two choices.
  1017      *  @param env              The current environment.
  1018      *  @param site             The original type from where the
  1019      *                          selection takes place.
  1020      *  @param argtypes         The invocation's value arguments,
  1021      *  @param typeargtypes     The invocation's type arguments,
  1022      *  @param sym              Proposed new best match.
  1023      *  @param bestSoFar        Previously found best match.
  1024      *  @param allowBoxing Allow boxing conversions of arguments.
  1025      *  @param useVarargs Box trailing arguments into an array for varargs.
  1026      */
  1027     @SuppressWarnings("fallthrough")
  1028     Symbol selectBest(Env<AttrContext> env,
  1029                       Type site,
  1030                       List<Type> argtypes,
  1031                       List<Type> typeargtypes,
  1032                       Symbol sym,
  1033                       Symbol bestSoFar,
  1034                       boolean allowBoxing,
  1035                       boolean useVarargs,
  1036                       boolean operator) {
  1037         if (sym.kind == ERR ||
  1038                 !sym.isInheritedIn(site.tsym, types) ||
  1039                 (useVarargs && (sym.flags() & VARARGS) == 0)) {
  1040             return bestSoFar;
  1042         Assert.check(sym.kind < AMBIGUOUS);
  1043         try {
  1044             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1045                                allowBoxing, useVarargs, resolveMethodCheck, types.noWarnings);
  1046             if (!operator)
  1047                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1048         } catch (InapplicableMethodException ex) {
  1049             if (!operator)
  1050                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1051             switch (bestSoFar.kind) {
  1052                 case ABSENT_MTH:
  1053                     return new InapplicableSymbolError(currentResolutionContext);
  1054                 case WRONG_MTH:
  1055                     if (operator) return bestSoFar;
  1056                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1057                 default:
  1058                     return bestSoFar;
  1061         if (!isAccessible(env, site, sym)) {
  1062             return (bestSoFar.kind == ABSENT_MTH)
  1063                 ? new AccessError(env, site, sym)
  1064                 : bestSoFar;
  1066         return (bestSoFar.kind > AMBIGUOUS)
  1067             ? sym
  1068             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1069                            allowBoxing && operator, useVarargs);
  1072     /* Return the most specific of the two methods for a call,
  1073      *  given that both are accessible and applicable.
  1074      *  @param m1               A new candidate for most specific.
  1075      *  @param m2               The previous most specific candidate.
  1076      *  @param env              The current environment.
  1077      *  @param site             The original type from where the selection
  1078      *                          takes place.
  1079      *  @param allowBoxing Allow boxing conversions of arguments.
  1080      *  @param useVarargs Box trailing arguments into an array for varargs.
  1081      */
  1082     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1083                         Symbol m2,
  1084                         Env<AttrContext> env,
  1085                         final Type site,
  1086                         boolean allowBoxing,
  1087                         boolean useVarargs) {
  1088         switch (m2.kind) {
  1089         case MTH:
  1090             if (m1 == m2) return m1;
  1091             boolean m1SignatureMoreSpecific =
  1092                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1093             boolean m2SignatureMoreSpecific =
  1094                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1095             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1096                 Type mt1 = types.memberType(site, m1);
  1097                 Type mt2 = types.memberType(site, m2);
  1098                 if (!types.overrideEquivalent(mt1, mt2))
  1099                     return ambiguityError(m1, m2);
  1101                 // same signature; select (a) the non-bridge method, or
  1102                 // (b) the one that overrides the other, or (c) the concrete
  1103                 // one, or (d) merge both abstract signatures
  1104                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1105                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1107                 // if one overrides or hides the other, use it
  1108                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1109                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1110                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1111                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1112                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1113                     m1.overrides(m2, m1Owner, types, false))
  1114                     return m1;
  1115                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1116                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1117                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1118                     m2.overrides(m1, m2Owner, types, false))
  1119                     return m2;
  1120                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1121                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1122                 if (m1Abstract && !m2Abstract) return m2;
  1123                 if (m2Abstract && !m1Abstract) return m1;
  1124                 // both abstract or both concrete
  1125                 return ambiguityError(m1, m2);
  1127             if (m1SignatureMoreSpecific) return m1;
  1128             if (m2SignatureMoreSpecific) return m2;
  1129             return ambiguityError(m1, m2);
  1130         case AMBIGUOUS:
  1131             //check if m1 is more specific than all ambiguous methods in m2
  1132             AmbiguityError e = (AmbiguityError)m2;
  1133             for (Symbol s : e.ambiguousSyms) {
  1134                 if (mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs) != m1) {
  1135                     return e.addAmbiguousSymbol(m1);
  1138             return m1;
  1139         default:
  1140             throw new AssertionError();
  1143     //where
  1144     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1145         Symbol m12 = adjustVarargs(m1, m2, useVarargs);
  1146         Symbol m22 = adjustVarargs(m2, m1, useVarargs);
  1147         Type mtype1 = types.memberType(site, m12);
  1148         Type mtype2 = types.memberType(site, m22);
  1150         //check if invocation is more specific
  1151         if (invocationMoreSpecific(env, site, m22, mtype1.getParameterTypes(), allowBoxing, useVarargs)) {
  1152             return true;
  1155         //perform structural check
  1157         List<Type> formals1 = mtype1.getParameterTypes();
  1158         Type lastFormal1 = formals1.last();
  1159         List<Type> formals2 = mtype2.getParameterTypes();
  1160         Type lastFormal2 = formals2.last();
  1161         ListBuffer<Type> newFormals = ListBuffer.lb();
  1163         boolean hasStructuralPoly = false;
  1164         for (Type actual : actuals) {
  1165             //perform formal argument adaptation in case actuals > formals (varargs)
  1166             Type f1 = formals1.isEmpty() ?
  1167                     lastFormal1 : formals1.head;
  1168             Type f2 = formals2.isEmpty() ?
  1169                     lastFormal2 : formals2.head;
  1171             //is this a structural actual argument?
  1172             boolean isStructuralPoly = actual.hasTag(DEFERRED) &&
  1173                     (((DeferredType)actual).tree.hasTag(LAMBDA) ||
  1174                     ((DeferredType)actual).tree.hasTag(REFERENCE));
  1176             Type newFormal = f1;
  1178             if (isStructuralPoly) {
  1179                 //for structural arguments only - check that corresponding formals
  1180                 //are related - if so replace formal with <null>
  1181                 hasStructuralPoly = true;
  1182                 DeferredType dt = (DeferredType)actual;
  1183                 Type t1 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m1, currentResolutionContext.step).apply(dt);
  1184                 Type t2 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m2, currentResolutionContext.step).apply(dt);
  1185                 if (t1.isErroneous() || t2.isErroneous() || !isStructuralSubtype(t1, t2)) {
  1186                     //not structural subtypes - simply fail
  1187                     return false;
  1188                 } else {
  1189                     newFormal = syms.botType;
  1193             newFormals.append(newFormal);
  1194             if (newFormals.length() > mtype2.getParameterTypes().length()) {
  1195                 //expand m2's type so as to fit the new formal arity (varargs)
  1196                 m22.type = types.createMethodTypeWithParameters(m22.type, m22.type.getParameterTypes().append(f2));
  1199             formals1 = formals1.isEmpty() ? formals1 : formals1.tail;
  1200             formals2 = formals2.isEmpty() ? formals2 : formals2.tail;
  1203         if (!hasStructuralPoly) {
  1204             //if no structural actual was found, we're done
  1205             return false;
  1207         //perform additional adaptation if actuals < formals (varargs)
  1208         for (Type t : formals1) {
  1209             newFormals.append(t);
  1211         //check if invocation (with tweaked args) is more specific
  1212         return invocationMoreSpecific(env, site, m22, newFormals.toList(), allowBoxing, useVarargs);
  1214     //where
  1215     private boolean invocationMoreSpecific(Env<AttrContext> env, Type site, Symbol m2, List<Type> argtypes1, boolean allowBoxing, boolean useVarargs) {
  1216         MethodResolutionContext prevContext = currentResolutionContext;
  1217         try {
  1218             currentResolutionContext = new MethodResolutionContext();
  1219             currentResolutionContext.step = allowBoxing ? BOX : BASIC;
  1220             noteWarner.clear();
  1221             Type mst = instantiate(env, site, m2, null,
  1222                     types.lowerBounds(argtypes1), null,
  1223                     allowBoxing, false, resolveMethodCheck, noteWarner);
  1224             return mst != null &&
  1225                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1226         } finally {
  1227             currentResolutionContext = prevContext;
  1230     //where
  1231     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1232         List<Type> fromArgs = from.type.getParameterTypes();
  1233         List<Type> toArgs = to.type.getParameterTypes();
  1234         if (useVarargs &&
  1235                 (from.flags() & VARARGS) != 0 &&
  1236                 (to.flags() & VARARGS) != 0) {
  1237             Type varargsTypeFrom = fromArgs.last();
  1238             Type varargsTypeTo = toArgs.last();
  1239             ListBuffer<Type> args = ListBuffer.lb();
  1240             if (toArgs.length() < fromArgs.length()) {
  1241                 //if we are checking a varargs method 'from' against another varargs
  1242                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1243                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1244                 //until 'to' signature has the same arity as 'from')
  1245                 while (fromArgs.head != varargsTypeFrom) {
  1246                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1247                     fromArgs = fromArgs.tail;
  1248                     toArgs = toArgs.head == varargsTypeTo ?
  1249                         toArgs :
  1250                         toArgs.tail;
  1252             } else {
  1253                 //formal argument list is same as original list where last
  1254                 //argument (array type) is removed
  1255                 args.appendList(toArgs.reverse().tail.reverse());
  1257             //append varargs element type as last synthetic formal
  1258             args.append(types.elemtype(varargsTypeTo));
  1259             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1260             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1261         } else {
  1262             return to;
  1265     //where
  1266     boolean isStructuralSubtype(Type s, Type t) {
  1268         Type ret_s = types.findDescriptorType(s).getReturnType();
  1269         Type ret_t = types.findDescriptorType(t).getReturnType();
  1271         //covariant most specific check for function descriptor return type
  1272         if (!types.isSubtype(ret_s, ret_t)) {
  1273             return false;
  1276         List<Type> args_s = types.findDescriptorType(s).getParameterTypes();
  1277         List<Type> args_t = types.findDescriptorType(t).getParameterTypes();
  1279         //arity must be identical
  1280         if (args_s.length() != args_t.length()) {
  1281             return false;
  1284         //invariant most specific check for function descriptor parameter types
  1285         if (!types.isSameTypes(args_t, args_s)) {
  1286             return false;
  1289         return true;
  1291     //where
  1292     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1293         Type rt1 = mt1.getReturnType();
  1294         Type rt2 = mt2.getReturnType();
  1296         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1297             //if both are generic methods, adjust return type ahead of subtyping check
  1298             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1300         //first use subtyping, then return type substitutability
  1301         if (types.isSubtype(rt1, rt2)) {
  1302             return mt1;
  1303         } else if (types.isSubtype(rt2, rt1)) {
  1304             return mt2;
  1305         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1306             return mt1;
  1307         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1308             return mt2;
  1309         } else {
  1310             return null;
  1313     //where
  1314     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1315         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1316             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1317         } else {
  1318             return new AmbiguityError(m1, m2);
  1322     Symbol findMethodInScope(Env<AttrContext> env,
  1323             Type site,
  1324             Name name,
  1325             List<Type> argtypes,
  1326             List<Type> typeargtypes,
  1327             Scope sc,
  1328             Symbol bestSoFar,
  1329             boolean allowBoxing,
  1330             boolean useVarargs,
  1331             boolean operator,
  1332             boolean abstractok) {
  1333         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1334             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1335                     bestSoFar, allowBoxing, useVarargs, operator);
  1337         return bestSoFar;
  1339     //where
  1340         class LookupFilter implements Filter<Symbol> {
  1342             boolean abstractOk;
  1344             LookupFilter(boolean abstractOk) {
  1345                 this.abstractOk = abstractOk;
  1348             public boolean accepts(Symbol s) {
  1349                 long flags = s.flags();
  1350                 return s.kind == MTH &&
  1351                         (flags & SYNTHETIC) == 0 &&
  1352                         (abstractOk ||
  1353                         (flags & DEFAULT) != 0 ||
  1354                         (flags & ABSTRACT) == 0);
  1356         };
  1358     /** Find best qualified method matching given name, type and value
  1359      *  arguments.
  1360      *  @param env       The current environment.
  1361      *  @param site      The original type from where the selection
  1362      *                   takes place.
  1363      *  @param name      The method's name.
  1364      *  @param argtypes  The method's value arguments.
  1365      *  @param typeargtypes The method's type arguments
  1366      *  @param allowBoxing Allow boxing conversions of arguments.
  1367      *  @param useVarargs Box trailing arguments into an array for varargs.
  1368      */
  1369     Symbol findMethod(Env<AttrContext> env,
  1370                       Type site,
  1371                       Name name,
  1372                       List<Type> argtypes,
  1373                       List<Type> typeargtypes,
  1374                       boolean allowBoxing,
  1375                       boolean useVarargs,
  1376                       boolean operator) {
  1377         Symbol bestSoFar = methodNotFound;
  1378         bestSoFar = findMethod(env,
  1379                           site,
  1380                           name,
  1381                           argtypes,
  1382                           typeargtypes,
  1383                           site.tsym.type,
  1384                           bestSoFar,
  1385                           allowBoxing,
  1386                           useVarargs,
  1387                           operator);
  1388         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1389         return bestSoFar;
  1391     // where
  1392     private Symbol findMethod(Env<AttrContext> env,
  1393                               Type site,
  1394                               Name name,
  1395                               List<Type> argtypes,
  1396                               List<Type> typeargtypes,
  1397                               Type intype,
  1398                               Symbol bestSoFar,
  1399                               boolean allowBoxing,
  1400                               boolean useVarargs,
  1401                               boolean operator) {
  1402         @SuppressWarnings({"unchecked","rawtypes"})
  1403         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1404         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1405         for (TypeSymbol s : superclasses(intype)) {
  1406             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1407                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1408             if (name == names.init) return bestSoFar;
  1409             iphase = (iphase == null) ? null : iphase.update(s, this);
  1410             if (iphase != null) {
  1411                 for (Type itype : types.interfaces(s.type)) {
  1412                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1417         Symbol concrete = bestSoFar.kind < ERR &&
  1418                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1419                 bestSoFar : methodNotFound;
  1421         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1422             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1423             //keep searching for abstract methods
  1424             for (Type itype : itypes[iphase2.ordinal()]) {
  1425                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1426                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1427                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1428                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1429                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1430                 if (concrete != bestSoFar &&
  1431                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1432                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1433                     //this is an hack - as javac does not do full membership checks
  1434                     //most specific ends up comparing abstract methods that might have
  1435                     //been implemented by some concrete method in a subclass and,
  1436                     //because of raw override, it is possible for an abstract method
  1437                     //to be more specific than the concrete method - so we need
  1438                     //to explicitly call that out (see CR 6178365)
  1439                     bestSoFar = concrete;
  1443         return bestSoFar;
  1446     enum InterfaceLookupPhase {
  1447         ABSTRACT_OK() {
  1448             @Override
  1449             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1450                 //We should not look for abstract methods if receiver is a concrete class
  1451                 //(as concrete classes are expected to implement all abstracts coming
  1452                 //from superinterfaces)
  1453                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1454                     return this;
  1455                 } else if (rs.allowDefaultMethods) {
  1456                     return DEFAULT_OK;
  1457                 } else {
  1458                     return null;
  1461         },
  1462         DEFAULT_OK() {
  1463             @Override
  1464             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1465                 return this;
  1467         };
  1469         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1472     /**
  1473      * Return an Iterable object to scan the superclasses of a given type.
  1474      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1475      * access more supertypes than strictly needed (as this could trigger completion
  1476      * errors if some of the not-needed supertypes are missing/ill-formed).
  1477      */
  1478     Iterable<TypeSymbol> superclasses(final Type intype) {
  1479         return new Iterable<TypeSymbol>() {
  1480             public Iterator<TypeSymbol> iterator() {
  1481                 return new Iterator<TypeSymbol>() {
  1483                     List<TypeSymbol> seen = List.nil();
  1484                     TypeSymbol currentSym = symbolFor(intype);
  1485                     TypeSymbol prevSym = null;
  1487                     public boolean hasNext() {
  1488                         if (currentSym == syms.noSymbol) {
  1489                             currentSym = symbolFor(types.supertype(prevSym.type));
  1491                         return currentSym != null;
  1494                     public TypeSymbol next() {
  1495                         prevSym = currentSym;
  1496                         currentSym = syms.noSymbol;
  1497                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1498                         return prevSym;
  1501                     public void remove() {
  1502                         throw new UnsupportedOperationException();
  1505                     TypeSymbol symbolFor(Type t) {
  1506                         if (!t.hasTag(CLASS) &&
  1507                                 !t.hasTag(TYPEVAR)) {
  1508                             return null;
  1510                         while (t.hasTag(TYPEVAR))
  1511                             t = t.getUpperBound();
  1512                         if (seen.contains(t.tsym)) {
  1513                             //degenerate case in which we have a circular
  1514                             //class hierarchy - because of ill-formed classfiles
  1515                             return null;
  1517                         seen = seen.prepend(t.tsym);
  1518                         return t.tsym;
  1520                 };
  1522         };
  1525     /** Find unqualified method matching given name, type and value arguments.
  1526      *  @param env       The current environment.
  1527      *  @param name      The method's name.
  1528      *  @param argtypes  The method's value arguments.
  1529      *  @param typeargtypes  The method's type arguments.
  1530      *  @param allowBoxing Allow boxing conversions of arguments.
  1531      *  @param useVarargs Box trailing arguments into an array for varargs.
  1532      */
  1533     Symbol findFun(Env<AttrContext> env, Name name,
  1534                    List<Type> argtypes, List<Type> typeargtypes,
  1535                    boolean allowBoxing, boolean useVarargs) {
  1536         Symbol bestSoFar = methodNotFound;
  1537         Symbol sym;
  1538         Env<AttrContext> env1 = env;
  1539         boolean staticOnly = false;
  1540         while (env1.outer != null) {
  1541             if (isStatic(env1)) staticOnly = true;
  1542             sym = findMethod(
  1543                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1544                 allowBoxing, useVarargs, false);
  1545             if (sym.exists()) {
  1546                 if (staticOnly &&
  1547                     sym.kind == MTH &&
  1548                     sym.owner.kind == TYP &&
  1549                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1550                 else return sym;
  1551             } else if (sym.kind < bestSoFar.kind) {
  1552                 bestSoFar = sym;
  1554             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1555             env1 = env1.outer;
  1558         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1559                          typeargtypes, allowBoxing, useVarargs, false);
  1560         if (sym.exists())
  1561             return sym;
  1563         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1564         for (; e.scope != null; e = e.next()) {
  1565             sym = e.sym;
  1566             Type origin = e.getOrigin().owner.type;
  1567             if (sym.kind == MTH) {
  1568                 if (e.sym.owner.type != origin)
  1569                     sym = sym.clone(e.getOrigin().owner);
  1570                 if (!isAccessible(env, origin, sym))
  1571                     sym = new AccessError(env, origin, sym);
  1572                 bestSoFar = selectBest(env, origin,
  1573                                        argtypes, typeargtypes,
  1574                                        sym, bestSoFar,
  1575                                        allowBoxing, useVarargs, false);
  1578         if (bestSoFar.exists())
  1579             return bestSoFar;
  1581         e = env.toplevel.starImportScope.lookup(name);
  1582         for (; e.scope != null; e = e.next()) {
  1583             sym = e.sym;
  1584             Type origin = e.getOrigin().owner.type;
  1585             if (sym.kind == MTH) {
  1586                 if (e.sym.owner.type != origin)
  1587                     sym = sym.clone(e.getOrigin().owner);
  1588                 if (!isAccessible(env, origin, sym))
  1589                     sym = new AccessError(env, origin, sym);
  1590                 bestSoFar = selectBest(env, origin,
  1591                                        argtypes, typeargtypes,
  1592                                        sym, bestSoFar,
  1593                                        allowBoxing, useVarargs, false);
  1596         return bestSoFar;
  1599     /** Load toplevel or member class with given fully qualified name and
  1600      *  verify that it is accessible.
  1601      *  @param env       The current environment.
  1602      *  @param name      The fully qualified name of the class to be loaded.
  1603      */
  1604     Symbol loadClass(Env<AttrContext> env, Name name) {
  1605         try {
  1606             ClassSymbol c = reader.loadClass(name);
  1607             return isAccessible(env, c) ? c : new AccessError(c);
  1608         } catch (ClassReader.BadClassFile err) {
  1609             throw err;
  1610         } catch (CompletionFailure ex) {
  1611             return typeNotFound;
  1615     /** Find qualified member type.
  1616      *  @param env       The current environment.
  1617      *  @param site      The original type from where the selection takes
  1618      *                   place.
  1619      *  @param name      The type's name.
  1620      *  @param c         The class to search for the member type. This is
  1621      *                   always a superclass or implemented interface of
  1622      *                   site's class.
  1623      */
  1624     Symbol findMemberType(Env<AttrContext> env,
  1625                           Type site,
  1626                           Name name,
  1627                           TypeSymbol c) {
  1628         Symbol bestSoFar = typeNotFound;
  1629         Symbol sym;
  1630         Scope.Entry e = c.members().lookup(name);
  1631         while (e.scope != null) {
  1632             if (e.sym.kind == TYP) {
  1633                 return isAccessible(env, site, e.sym)
  1634                     ? e.sym
  1635                     : new AccessError(env, site, e.sym);
  1637             e = e.next();
  1639         Type st = types.supertype(c.type);
  1640         if (st != null && st.hasTag(CLASS)) {
  1641             sym = findMemberType(env, site, name, st.tsym);
  1642             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1644         for (List<Type> l = types.interfaces(c.type);
  1645              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1646              l = l.tail) {
  1647             sym = findMemberType(env, site, name, l.head.tsym);
  1648             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1649                 sym.owner != bestSoFar.owner)
  1650                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1651             else if (sym.kind < bestSoFar.kind)
  1652                 bestSoFar = sym;
  1654         return bestSoFar;
  1657     /** Find a global type in given scope and load corresponding class.
  1658      *  @param env       The current environment.
  1659      *  @param scope     The scope in which to look for the type.
  1660      *  @param name      The type's name.
  1661      */
  1662     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1663         Symbol bestSoFar = typeNotFound;
  1664         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1665             Symbol sym = loadClass(env, e.sym.flatName());
  1666             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1667                 bestSoFar != sym)
  1668                 return new AmbiguityError(bestSoFar, sym);
  1669             else if (sym.kind < bestSoFar.kind)
  1670                 bestSoFar = sym;
  1672         return bestSoFar;
  1675     /** Find an unqualified type symbol.
  1676      *  @param env       The current environment.
  1677      *  @param name      The type's name.
  1678      */
  1679     Symbol findType(Env<AttrContext> env, Name name) {
  1680         Symbol bestSoFar = typeNotFound;
  1681         Symbol sym;
  1682         boolean staticOnly = false;
  1683         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1684             if (isStatic(env1)) staticOnly = true;
  1685             for (Scope.Entry e = env1.info.scope.lookup(name);
  1686                  e.scope != null;
  1687                  e = e.next()) {
  1688                 if (e.sym.kind == TYP) {
  1689                     if (staticOnly &&
  1690                         e.sym.type.hasTag(TYPEVAR) &&
  1691                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1692                     return e.sym;
  1696             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1697                                  env1.enclClass.sym);
  1698             if (staticOnly && sym.kind == TYP &&
  1699                 sym.type.hasTag(CLASS) &&
  1700                 sym.type.getEnclosingType().hasTag(CLASS) &&
  1701                 env1.enclClass.sym.type.isParameterized() &&
  1702                 sym.type.getEnclosingType().isParameterized())
  1703                 return new StaticError(sym);
  1704             else if (sym.exists()) return sym;
  1705             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1707             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1708             if ((encl.sym.flags() & STATIC) != 0)
  1709                 staticOnly = true;
  1712         if (!env.tree.hasTag(IMPORT)) {
  1713             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1714             if (sym.exists()) return sym;
  1715             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1717             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1718             if (sym.exists()) return sym;
  1719             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1721             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1722             if (sym.exists()) return sym;
  1723             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1726         return bestSoFar;
  1729     /** Find an unqualified identifier which matches a specified kind set.
  1730      *  @param env       The current environment.
  1731      *  @param name      The identifier's name.
  1732      *  @param kind      Indicates the possible symbol kinds
  1733      *                   (a subset of VAL, TYP, PCK).
  1734      */
  1735     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1736         Symbol bestSoFar = typeNotFound;
  1737         Symbol sym;
  1739         if ((kind & VAR) != 0) {
  1740             sym = findVar(env, name);
  1741             if (sym.exists()) return sym;
  1742             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1745         if ((kind & TYP) != 0) {
  1746             sym = findType(env, name);
  1747             if (sym.kind==TYP) {
  1748                  reportDependence(env.enclClass.sym, sym);
  1750             if (sym.exists()) return sym;
  1751             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1754         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1755         else return bestSoFar;
  1758     /** Report dependencies.
  1759      * @param from The enclosing class sym
  1760      * @param to   The found identifier that the class depends on.
  1761      */
  1762     public void reportDependence(Symbol from, Symbol to) {
  1763         // Override if you want to collect the reported dependencies.
  1766     /** Find an identifier in a package which matches a specified kind set.
  1767      *  @param env       The current environment.
  1768      *  @param name      The identifier's name.
  1769      *  @param kind      Indicates the possible symbol kinds
  1770      *                   (a nonempty subset of TYP, PCK).
  1771      */
  1772     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1773                               Name name, int kind) {
  1774         Name fullname = TypeSymbol.formFullName(name, pck);
  1775         Symbol bestSoFar = typeNotFound;
  1776         PackageSymbol pack = null;
  1777         if ((kind & PCK) != 0) {
  1778             pack = reader.enterPackage(fullname);
  1779             if (pack.exists()) return pack;
  1781         if ((kind & TYP) != 0) {
  1782             Symbol sym = loadClass(env, fullname);
  1783             if (sym.exists()) {
  1784                 // don't allow programs to use flatnames
  1785                 if (name == sym.name) return sym;
  1787             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1789         return (pack != null) ? pack : bestSoFar;
  1792     /** Find an identifier among the members of a given type `site'.
  1793      *  @param env       The current environment.
  1794      *  @param site      The type containing the symbol to be found.
  1795      *  @param name      The identifier's name.
  1796      *  @param kind      Indicates the possible symbol kinds
  1797      *                   (a subset of VAL, TYP).
  1798      */
  1799     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1800                            Name name, int kind) {
  1801         Symbol bestSoFar = typeNotFound;
  1802         Symbol sym;
  1803         if ((kind & VAR) != 0) {
  1804             sym = findField(env, site, name, site.tsym);
  1805             if (sym.exists()) return sym;
  1806             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1809         if ((kind & TYP) != 0) {
  1810             sym = findMemberType(env, site, name, site.tsym);
  1811             if (sym.exists()) return sym;
  1812             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1814         return bestSoFar;
  1817 /* ***************************************************************************
  1818  *  Access checking
  1819  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1820  *  an error message in the process
  1821  ****************************************************************************/
  1823     /** If `sym' is a bad symbol: report error and return errSymbol
  1824      *  else pass through unchanged,
  1825      *  additional arguments duplicate what has been used in trying to find the
  1826      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1827      *  expect misses to happen frequently.
  1829      *  @param sym       The symbol that was found, or a ResolveError.
  1830      *  @param pos       The position to use for error reporting.
  1831      *  @param location  The symbol the served as a context for this lookup
  1832      *  @param site      The original type from where the selection took place.
  1833      *  @param name      The symbol's name.
  1834      *  @param qualified Did we get here through a qualified expression resolution?
  1835      *  @param argtypes  The invocation's value arguments,
  1836      *                   if we looked for a method.
  1837      *  @param typeargtypes  The invocation's type arguments,
  1838      *                   if we looked for a method.
  1839      *  @param logResolveHelper helper class used to log resolve errors
  1840      */
  1841     Symbol accessInternal(Symbol sym,
  1842                   DiagnosticPosition pos,
  1843                   Symbol location,
  1844                   Type site,
  1845                   Name name,
  1846                   boolean qualified,
  1847                   List<Type> argtypes,
  1848                   List<Type> typeargtypes,
  1849                   LogResolveHelper logResolveHelper) {
  1850         if (sym.kind >= AMBIGUOUS) {
  1851             ResolveError errSym = (ResolveError)sym;
  1852             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1853             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  1854             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  1855                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1858         return sym;
  1861     /**
  1862      * Variant of the generalized access routine, to be used for generating method
  1863      * resolution diagnostics
  1864      */
  1865     Symbol accessMethod(Symbol sym,
  1866                   DiagnosticPosition pos,
  1867                   Symbol location,
  1868                   Type site,
  1869                   Name name,
  1870                   boolean qualified,
  1871                   List<Type> argtypes,
  1872                   List<Type> typeargtypes) {
  1873         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  1876     /** Same as original accessMethod(), but without location.
  1877      */
  1878     Symbol accessMethod(Symbol sym,
  1879                   DiagnosticPosition pos,
  1880                   Type site,
  1881                   Name name,
  1882                   boolean qualified,
  1883                   List<Type> argtypes,
  1884                   List<Type> typeargtypes) {
  1885         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1888     /**
  1889      * Variant of the generalized access routine, to be used for generating variable,
  1890      * type resolution diagnostics
  1891      */
  1892     Symbol accessBase(Symbol sym,
  1893                   DiagnosticPosition pos,
  1894                   Symbol location,
  1895                   Type site,
  1896                   Name name,
  1897                   boolean qualified) {
  1898         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  1901     /** Same as original accessBase(), but without location.
  1902      */
  1903     Symbol accessBase(Symbol sym,
  1904                   DiagnosticPosition pos,
  1905                   Type site,
  1906                   Name name,
  1907                   boolean qualified) {
  1908         return accessBase(sym, pos, site.tsym, site, name, qualified);
  1911     interface LogResolveHelper {
  1912         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  1913         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  1916     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  1917         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1918             return !site.isErroneous();
  1920         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1921             return argtypes;
  1923     };
  1925     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  1926         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1927             return !site.isErroneous() &&
  1928                         !Type.isErroneous(argtypes) &&
  1929                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  1931         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1932             return (syms.operatorNames.contains(name)) ?
  1933                     argtypes :
  1934                     Type.map(argtypes, new ResolveDeferredRecoveryMap(accessedSym));
  1937         class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  1939             public ResolveDeferredRecoveryMap(Symbol msym) {
  1940                 deferredAttr.super(AttrMode.SPECULATIVE, msym, currentResolutionContext.step);
  1943             @Override
  1944             protected Type typeOf(DeferredType dt) {
  1945                 Type res = super.typeOf(dt);
  1946                 if (!res.isErroneous()) {
  1947                     switch (TreeInfo.skipParens(dt.tree).getTag()) {
  1948                         case LAMBDA:
  1949                         case REFERENCE:
  1950                             return dt;
  1951                         case CONDEXPR:
  1952                             return res == Type.recoveryType ?
  1953                                     dt : res;
  1956                 return res;
  1959     };
  1961     /** Check that sym is not an abstract method.
  1962      */
  1963     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1964         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  1965             log.error(pos, "abstract.cant.be.accessed.directly",
  1966                       kindName(sym), sym, sym.location());
  1969 /* ***************************************************************************
  1970  *  Debugging
  1971  ****************************************************************************/
  1973     /** print all scopes starting with scope s and proceeding outwards.
  1974      *  used for debugging.
  1975      */
  1976     public void printscopes(Scope s) {
  1977         while (s != null) {
  1978             if (s.owner != null)
  1979                 System.err.print(s.owner + ": ");
  1980             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1981                 if ((e.sym.flags() & ABSTRACT) != 0)
  1982                     System.err.print("abstract ");
  1983                 System.err.print(e.sym + " ");
  1985             System.err.println();
  1986             s = s.next;
  1990     void printscopes(Env<AttrContext> env) {
  1991         while (env.outer != null) {
  1992             System.err.println("------------------------------");
  1993             printscopes(env.info.scope);
  1994             env = env.outer;
  1998     public void printscopes(Type t) {
  1999         while (t.hasTag(CLASS)) {
  2000             printscopes(t.tsym.members());
  2001             t = types.supertype(t);
  2005 /* ***************************************************************************
  2006  *  Name resolution
  2007  *  Naming conventions are as for symbol lookup
  2008  *  Unlike the find... methods these methods will report access errors
  2009  ****************************************************************************/
  2011     /** Resolve an unqualified (non-method) identifier.
  2012      *  @param pos       The position to use for error reporting.
  2013      *  @param env       The environment current at the identifier use.
  2014      *  @param name      The identifier's name.
  2015      *  @param kind      The set of admissible symbol kinds for the identifier.
  2016      */
  2017     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2018                         Name name, int kind) {
  2019         return accessBase(
  2020             findIdent(env, name, kind),
  2021             pos, env.enclClass.sym.type, name, false);
  2024     /** Resolve an unqualified method identifier.
  2025      *  @param pos       The position to use for error reporting.
  2026      *  @param env       The environment current at the method invocation.
  2027      *  @param name      The identifier's name.
  2028      *  @param argtypes  The types of the invocation's value arguments.
  2029      *  @param typeargtypes  The types of the invocation's type arguments.
  2030      */
  2031     Symbol resolveMethod(DiagnosticPosition pos,
  2032                          Env<AttrContext> env,
  2033                          Name name,
  2034                          List<Type> argtypes,
  2035                          List<Type> typeargtypes) {
  2036         return lookupMethod(env, pos, env.enclClass.sym, new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2037             @Override
  2038             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2039                 return findFun(env, name, argtypes, typeargtypes,
  2040                         phase.isBoxingRequired(),
  2041                         phase.isVarargsRequired());
  2043         });
  2046     /** Resolve a qualified method identifier
  2047      *  @param pos       The position to use for error reporting.
  2048      *  @param env       The environment current at the method invocation.
  2049      *  @param site      The type of the qualifying expression, in which
  2050      *                   identifier is searched.
  2051      *  @param name      The identifier's name.
  2052      *  @param argtypes  The types of the invocation's value arguments.
  2053      *  @param typeargtypes  The types of the invocation's type arguments.
  2054      */
  2055     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2056                                   Type site, Name name, List<Type> argtypes,
  2057                                   List<Type> typeargtypes) {
  2058         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2060     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2061                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2062                                   List<Type> typeargtypes) {
  2063         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2065     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2066                                   DiagnosticPosition pos, Env<AttrContext> env,
  2067                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2068                                   List<Type> typeargtypes) {
  2069         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2070             @Override
  2071             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2072                 return findMethod(env, site, name, argtypes, typeargtypes,
  2073                         phase.isBoxingRequired(),
  2074                         phase.isVarargsRequired(), false);
  2076             @Override
  2077             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2078                 if (sym.kind >= AMBIGUOUS) {
  2079                     sym = super.access(env, pos, location, sym);
  2080                 } else if (allowMethodHandles) {
  2081                     MethodSymbol msym = (MethodSymbol)sym;
  2082                     if (msym.isSignaturePolymorphic(types)) {
  2083                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2086                 return sym;
  2088         });
  2091     /** Find or create an implicit method of exactly the given type (after erasure).
  2092      *  Searches in a side table, not the main scope of the site.
  2093      *  This emulates the lookup process required by JSR 292 in JVM.
  2094      *  @param env       Attribution environment
  2095      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2096      *  @param argtypes  The required argument types
  2097      */
  2098     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2099                                             final Symbol spMethod,
  2100                                             List<Type> argtypes) {
  2101         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2102                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2103         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2104             if (types.isSameType(mtype, sym.type)) {
  2105                return sym;
  2109         // create the desired method
  2110         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2111         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2112             @Override
  2113             public Symbol baseSymbol() {
  2114                 return spMethod;
  2116         };
  2117         polymorphicSignatureScope.enter(msym);
  2118         return msym;
  2121     /** Resolve a qualified method identifier, throw a fatal error if not
  2122      *  found.
  2123      *  @param pos       The position to use for error reporting.
  2124      *  @param env       The environment current at the method invocation.
  2125      *  @param site      The type of the qualifying expression, in which
  2126      *                   identifier is searched.
  2127      *  @param name      The identifier's name.
  2128      *  @param argtypes  The types of the invocation's value arguments.
  2129      *  @param typeargtypes  The types of the invocation's type arguments.
  2130      */
  2131     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2132                                         Type site, Name name,
  2133                                         List<Type> argtypes,
  2134                                         List<Type> typeargtypes) {
  2135         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2136         resolveContext.internalResolution = true;
  2137         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2138                 site, name, argtypes, typeargtypes);
  2139         if (sym.kind == MTH) return (MethodSymbol)sym;
  2140         else throw new FatalError(
  2141                  diags.fragment("fatal.err.cant.locate.meth",
  2142                                 name));
  2145     /** Resolve constructor.
  2146      *  @param pos       The position to use for error reporting.
  2147      *  @param env       The environment current at the constructor invocation.
  2148      *  @param site      The type of class for which a constructor is searched.
  2149      *  @param argtypes  The types of the constructor invocation's value
  2150      *                   arguments.
  2151      *  @param typeargtypes  The types of the constructor invocation's type
  2152      *                   arguments.
  2153      */
  2154     Symbol resolveConstructor(DiagnosticPosition pos,
  2155                               Env<AttrContext> env,
  2156                               Type site,
  2157                               List<Type> argtypes,
  2158                               List<Type> typeargtypes) {
  2159         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2162     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2163                               final DiagnosticPosition pos,
  2164                               Env<AttrContext> env,
  2165                               Type site,
  2166                               List<Type> argtypes,
  2167                               List<Type> typeargtypes) {
  2168         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2169             @Override
  2170             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2171                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2172                         phase.isBoxingRequired(),
  2173                         phase.isVarargsRequired());
  2175         });
  2178     /** Resolve a constructor, throw a fatal error if not found.
  2179      *  @param pos       The position to use for error reporting.
  2180      *  @param env       The environment current at the method invocation.
  2181      *  @param site      The type to be constructed.
  2182      *  @param argtypes  The types of the invocation's value arguments.
  2183      *  @param typeargtypes  The types of the invocation's type arguments.
  2184      */
  2185     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2186                                         Type site,
  2187                                         List<Type> argtypes,
  2188                                         List<Type> typeargtypes) {
  2189         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2190         resolveContext.internalResolution = true;
  2191         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2192         if (sym.kind == MTH) return (MethodSymbol)sym;
  2193         else throw new FatalError(
  2194                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2197     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2198                               Type site, List<Type> argtypes,
  2199                               List<Type> typeargtypes,
  2200                               boolean allowBoxing,
  2201                               boolean useVarargs) {
  2202         Symbol sym = findMethod(env, site,
  2203                                     names.init, argtypes,
  2204                                     typeargtypes, allowBoxing,
  2205                                     useVarargs, false);
  2206         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2207         return sym;
  2210     /** Resolve constructor using diamond inference.
  2211      *  @param pos       The position to use for error reporting.
  2212      *  @param env       The environment current at the constructor invocation.
  2213      *  @param site      The type of class for which a constructor is searched.
  2214      *                   The scope of this class has been touched in attribution.
  2215      *  @param argtypes  The types of the constructor invocation's value
  2216      *                   arguments.
  2217      *  @param typeargtypes  The types of the constructor invocation's type
  2218      *                   arguments.
  2219      */
  2220     Symbol resolveDiamond(DiagnosticPosition pos,
  2221                               Env<AttrContext> env,
  2222                               Type site,
  2223                               List<Type> argtypes,
  2224                               List<Type> typeargtypes) {
  2225         return lookupMethod(env, pos, site.tsym, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2226             @Override
  2227             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2228                 return findDiamond(env, site, argtypes, typeargtypes,
  2229                         phase.isBoxingRequired(),
  2230                         phase.isVarargsRequired());
  2232             @Override
  2233             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2234                 if (sym.kind >= AMBIGUOUS) {
  2235                     final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2236                                     ((InapplicableSymbolError)sym).errCandidate().details :
  2237                                     null;
  2238                     sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2239                         @Override
  2240                         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2241                                 Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2242                             String key = details == null ?
  2243                                 "cant.apply.diamond" :
  2244                                 "cant.apply.diamond.1";
  2245                             return diags.create(dkind, log.currentSource(), pos, key,
  2246                                     diags.fragment("diamond", site.tsym), details);
  2248                     };
  2249                     sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2250                     env.info.pendingResolutionPhase = currentResolutionContext.step;
  2252                 return sym;
  2254         });
  2257     /** This method scans all the constructor symbol in a given class scope -
  2258      *  assuming that the original scope contains a constructor of the kind:
  2259      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2260      *  a method check is executed against the modified constructor type:
  2261      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2262      *  inference. The inferred return type of the synthetic constructor IS
  2263      *  the inferred type for the diamond operator.
  2264      */
  2265     private Symbol findDiamond(Env<AttrContext> env,
  2266                               Type site,
  2267                               List<Type> argtypes,
  2268                               List<Type> typeargtypes,
  2269                               boolean allowBoxing,
  2270                               boolean useVarargs) {
  2271         Symbol bestSoFar = methodNotFound;
  2272         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2273              e.scope != null;
  2274              e = e.next()) {
  2275             final Symbol sym = e.sym;
  2276             //- System.out.println(" e " + e.sym);
  2277             if (sym.kind == MTH &&
  2278                 (sym.flags_field & SYNTHETIC) == 0) {
  2279                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2280                             ((ForAll)sym.type).tvars :
  2281                             List.<Type>nil();
  2282                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2283                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2284                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2285                         @Override
  2286                         public Symbol baseSymbol() {
  2287                             return sym;
  2289                     };
  2290                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2291                             newConstr,
  2292                             bestSoFar,
  2293                             allowBoxing,
  2294                             useVarargs,
  2295                             false);
  2298         return bestSoFar;
  2303     /** Resolve operator.
  2304      *  @param pos       The position to use for error reporting.
  2305      *  @param optag     The tag of the operation tree.
  2306      *  @param env       The environment current at the operation.
  2307      *  @param argtypes  The types of the operands.
  2308      */
  2309     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2310                            Env<AttrContext> env, List<Type> argtypes) {
  2311         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2312         try {
  2313             currentResolutionContext = new MethodResolutionContext();
  2314             Name name = treeinfo.operatorName(optag);
  2315             env.info.pendingResolutionPhase = currentResolutionContext.step = BASIC;
  2316             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2317                                     null, false, false, true);
  2318             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2319                 env.info.pendingResolutionPhase = currentResolutionContext.step = BOX;
  2320                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2321                                  null, true, false, true);
  2322             return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2323                           false, argtypes, null);
  2325         finally {
  2326             currentResolutionContext = prevResolutionContext;
  2330     /** Resolve operator.
  2331      *  @param pos       The position to use for error reporting.
  2332      *  @param optag     The tag of the operation tree.
  2333      *  @param env       The environment current at the operation.
  2334      *  @param arg       The type of the operand.
  2335      */
  2336     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2337         return resolveOperator(pos, optag, env, List.of(arg));
  2340     /** Resolve binary operator.
  2341      *  @param pos       The position to use for error reporting.
  2342      *  @param optag     The tag of the operation tree.
  2343      *  @param env       The environment current at the operation.
  2344      *  @param left      The types of the left operand.
  2345      *  @param right     The types of the right operand.
  2346      */
  2347     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2348                                  JCTree.Tag optag,
  2349                                  Env<AttrContext> env,
  2350                                  Type left,
  2351                                  Type right) {
  2352         return resolveOperator(pos, optag, env, List.of(left, right));
  2355     /**
  2356      * Resolution of member references is typically done as a single
  2357      * overload resolution step, where the argument types A are inferred from
  2358      * the target functional descriptor.
  2360      * If the member reference is a method reference with a type qualifier,
  2361      * a two-step lookup process is performed. The first step uses the
  2362      * expected argument list A, while the second step discards the first
  2363      * type from A (which is treated as a receiver type).
  2365      * There are two cases in which inference is performed: (i) if the member
  2366      * reference is a constructor reference and the qualifier type is raw - in
  2367      * which case diamond inference is used to infer a parameterization for the
  2368      * type qualifier; (ii) if the member reference is an unbound reference
  2369      * where the type qualifier is raw - in that case, during the unbound lookup
  2370      * the receiver argument type is used to infer an instantiation for the raw
  2371      * qualifier type.
  2373      * When a multi-step resolution process is exploited, it is an error
  2374      * if two candidates are found (ambiguity).
  2376      * This routine returns a pair (T,S), where S is the member reference symbol,
  2377      * and T is the type of the class in which S is defined. This is necessary as
  2378      * the type T might be dynamically inferred (i.e. if constructor reference
  2379      * has a raw qualifier).
  2380      */
  2381     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2382                                   Env<AttrContext> env,
  2383                                   JCMemberReference referenceTree,
  2384                                   Type site,
  2385                                   Name name, List<Type> argtypes,
  2386                                   List<Type> typeargtypes,
  2387                                   boolean boxingAllowed) {
  2388         MethodResolutionPhase maxPhase = boxingAllowed ? VARARITY : BASIC;
  2389         //step 1 - bound lookup
  2390         ReferenceLookupHelper boundLookupHelper = name.equals(names.init) ?
  2391                 new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase) :
  2392                 new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2393         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2394         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym, boundLookupHelper);
  2396         //step 2 - unbound lookup
  2397         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup();
  2398         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2399         Symbol unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym, unboundLookupHelper);
  2401         //merge results
  2402         Pair<Symbol, ReferenceLookupHelper> res;
  2403         if (unboundSym.kind != MTH) {
  2404             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2405             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2406         } else if (boundSym.kind == MTH) {
  2407             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2408             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2409         } else {
  2410             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2411             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2414         return res;
  2417     /**
  2418      * Helper for defining custom method-like lookup logic; a lookup helper
  2419      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2420      * lookup result (this step might result in compiler diagnostics to be generated)
  2421      */
  2422     abstract class LookupHelper {
  2424         /** name of the symbol to lookup */
  2425         Name name;
  2427         /** location in which the lookup takes place */
  2428         Type site;
  2430         /** actual types used during the lookup */
  2431         List<Type> argtypes;
  2433         /** type arguments used during the lookup */
  2434         List<Type> typeargtypes;
  2436         /** Max overload resolution phase handled by this helper */
  2437         MethodResolutionPhase maxPhase;
  2439         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2440             this.name = name;
  2441             this.site = site;
  2442             this.argtypes = argtypes;
  2443             this.typeargtypes = typeargtypes;
  2444             this.maxPhase = maxPhase;
  2447         /**
  2448          * Should lookup stop at given phase with given result
  2449          */
  2450         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  2451             return phase.ordinal() > maxPhase.ordinal() ||
  2452                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  2455         /**
  2456          * Search for a symbol under a given overload resolution phase - this method
  2457          * is usually called several times, once per each overload resolution phase
  2458          */
  2459         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2461         /**
  2462          * Validate the result of the lookup
  2463          */
  2464         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  2467     abstract class BasicLookupHelper extends LookupHelper {
  2469         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2470             super(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  2473         @Override
  2474         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2475             if (sym.kind == AMBIGUOUS) {
  2476                 AmbiguityError a_err = (AmbiguityError)sym;
  2477                 sym = a_err.mergeAbstracts(site);
  2479             if (sym.kind >= AMBIGUOUS) {
  2480                 //if nothing is found return the 'first' error
  2481                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  2483             return sym;
  2487     /**
  2488      * Helper class for member reference lookup. A reference lookup helper
  2489      * defines the basic logic for member reference lookup; a method gives
  2490      * access to an 'unbound' helper used to perform an unbound member
  2491      * reference lookup.
  2492      */
  2493     abstract class ReferenceLookupHelper extends LookupHelper {
  2495         /** The member reference tree */
  2496         JCMemberReference referenceTree;
  2498         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2499                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2500             super(name, site, argtypes, typeargtypes, maxPhase);
  2501             this.referenceTree = referenceTree;
  2505         /**
  2506          * Returns an unbound version of this lookup helper. By default, this
  2507          * method returns an dummy lookup helper.
  2508          */
  2509         ReferenceLookupHelper unboundLookup() {
  2510             //dummy loopkup helper that always return 'methodNotFound'
  2511             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  2512                 @Override
  2513                 ReferenceLookupHelper unboundLookup() {
  2514                     return this;
  2516                 @Override
  2517                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2518                     return methodNotFound;
  2520                 @Override
  2521                 ReferenceKind referenceKind(Symbol sym) {
  2522                     Assert.error();
  2523                     return null;
  2525             };
  2528         /**
  2529          * Get the kind of the member reference
  2530          */
  2531         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2533         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2534             if (sym.kind == AMBIGUOUS) {
  2535                 AmbiguityError a_err = (AmbiguityError)sym;
  2536                 sym = a_err.mergeAbstracts(site);
  2538             //skip error reporting
  2539             return sym;
  2543     /**
  2544      * Helper class for method reference lookup. The lookup logic is based
  2545      * upon Resolve.findMethod; in certain cases, this helper class has a
  2546      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2547      * In such cases, non-static lookup results are thrown away.
  2548      */
  2549     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2551         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2552                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2553             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2556         protected Symbol lookupReferenceInternal(Env<AttrContext> env, MethodResolutionPhase phase) {
  2557             return findMethod(env, site, name, argtypes, typeargtypes,
  2558                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2561         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2562             return !TreeInfo.isStaticSelector(referenceTree.expr, names) ||
  2563                         sym.kind != MTH ||
  2564                         sym.isStatic() ? sym : new StaticError(sym);
  2567         @Override
  2568         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2569             return adjustLookupResult(env, lookupReferenceInternal(env, phase));
  2572         @Override
  2573         ReferenceLookupHelper unboundLookup() {
  2574             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2575                     argtypes.nonEmpty() &&
  2576                     types.isSubtypeUnchecked(argtypes.head, site)) {
  2577                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2578                         site, argtypes, typeargtypes, maxPhase);
  2579             } else {
  2580                 return super.unboundLookup();
  2584         @Override
  2585         ReferenceKind referenceKind(Symbol sym) {
  2586             if (sym.isStatic()) {
  2587                 return ReferenceKind.STATIC;
  2588             } else {
  2589                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2590                 return selName != null && selName == names._super ?
  2591                         ReferenceKind.SUPER :
  2592                         ReferenceKind.BOUND;
  2597     /**
  2598      * Helper class for unbound method reference lookup. Essentially the same
  2599      * as the basic method reference lookup helper; main difference is that static
  2600      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2601      * infer a parameterized type is made using the first actual argument (that
  2602      * would otherwise be ignored during the lookup).
  2603      */
  2604     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2606         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2607                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2608             super(referenceTree, name,
  2609                     site.isRaw() ? types.asSuper(argtypes.head, site.tsym) : site,
  2610                     argtypes.tail, typeargtypes, maxPhase);
  2613         @Override
  2614         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2615             return sym.kind != MTH || !sym.isStatic() ? sym : new StaticError(sym);
  2618         @Override
  2619         ReferenceLookupHelper unboundLookup() {
  2620             return this;
  2623         @Override
  2624         ReferenceKind referenceKind(Symbol sym) {
  2625             return ReferenceKind.UNBOUND;
  2629     /**
  2630      * Helper class for constructor reference lookup. The lookup logic is based
  2631      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2632      * whether the constructor reference needs diamond inference (this is the case
  2633      * if the qualifier type is raw). A special erroneous symbol is returned
  2634      * if the lookup returns the constructor of an inner class and there's no
  2635      * enclosing instance in scope.
  2636      */
  2637     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2639         boolean needsInference;
  2641         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2642                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2643             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2644             if (site.isRaw()) {
  2645                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2646                 needsInference = true;
  2650         @Override
  2651         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2652             Symbol sym = needsInference ?
  2653                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2654                 findMethod(env, site, name, argtypes, typeargtypes,
  2655                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2656             return sym.kind != MTH ||
  2657                           site.getEnclosingType().hasTag(NONE) ||
  2658                           hasEnclosingInstance(env, site) ?
  2659                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2660                     @Override
  2661                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2662                        return diags.create(dkind, log.currentSource(), pos,
  2663                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2665                 };
  2668         @Override
  2669         ReferenceKind referenceKind(Symbol sym) {
  2670             return site.getEnclosingType().hasTag(NONE) ?
  2671                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2675     /**
  2676      * Main overload resolution routine. On each overload resolution step, a
  2677      * lookup helper class is used to perform the method/constructor lookup;
  2678      * at the end of the lookup, the helper is used to validate the results
  2679      * (this last step might trigger overload resolution diagnostics).
  2680      */
  2681     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, LookupHelper lookupHelper) {
  2682         return lookupMethod(env, pos, location, new MethodResolutionContext(), lookupHelper);
  2685     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  2686             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  2687         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2688         try {
  2689             Symbol bestSoFar = methodNotFound;
  2690             currentResolutionContext = resolveContext;
  2691             for (MethodResolutionPhase phase : methodResolutionSteps) {
  2692                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  2693                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  2694                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  2695                 Symbol prevBest = bestSoFar;
  2696                 currentResolutionContext.step = phase;
  2697                 bestSoFar = phase.mergeResults(bestSoFar, lookupHelper.lookup(env, phase));
  2698                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  2700             return lookupHelper.access(env, pos, location, bestSoFar);
  2701         } finally {
  2702             currentResolutionContext = prevResolutionContext;
  2706     /**
  2707      * Resolve `c.name' where name == this or name == super.
  2708      * @param pos           The position to use for error reporting.
  2709      * @param env           The environment current at the expression.
  2710      * @param c             The qualifier.
  2711      * @param name          The identifier's name.
  2712      */
  2713     Symbol resolveSelf(DiagnosticPosition pos,
  2714                        Env<AttrContext> env,
  2715                        TypeSymbol c,
  2716                        Name name) {
  2717         Env<AttrContext> env1 = env;
  2718         boolean staticOnly = false;
  2719         while (env1.outer != null) {
  2720             if (isStatic(env1)) staticOnly = true;
  2721             if (env1.enclClass.sym == c) {
  2722                 Symbol sym = env1.info.scope.lookup(name).sym;
  2723                 if (sym != null) {
  2724                     if (staticOnly) sym = new StaticError(sym);
  2725                     return accessBase(sym, pos, env.enclClass.sym.type,
  2726                                   name, true);
  2729             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2730             env1 = env1.outer;
  2732         if (allowDefaultMethods && c.isInterface() &&
  2733                 name == names._super && !isStatic(env) &&
  2734                 types.isDirectSuperInterface(c, env.enclClass.sym)) {
  2735             //this might be a default super call if one of the superinterfaces is 'c'
  2736             for (Type t : pruneInterfaces(env.enclClass.type)) {
  2737                 if (t.tsym == c) {
  2738                     env.info.defaultSuperCallSite = t;
  2739                     return new VarSymbol(0, names._super,
  2740                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  2743             //find a direct superinterface that is a subtype of 'c'
  2744             for (Type i : types.interfaces(env.enclClass.type)) {
  2745                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  2746                     log.error(pos, "illegal.default.super.call", c,
  2747                             diags.fragment("redundant.supertype", c, i));
  2748                     return syms.errSymbol;
  2751             Assert.error();
  2753         log.error(pos, "not.encl.class", c);
  2754         return syms.errSymbol;
  2756     //where
  2757     private List<Type> pruneInterfaces(Type t) {
  2758         ListBuffer<Type> result = ListBuffer.lb();
  2759         for (Type t1 : types.interfaces(t)) {
  2760             boolean shouldAdd = true;
  2761             for (Type t2 : types.interfaces(t)) {
  2762                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  2763                     shouldAdd = false;
  2766             if (shouldAdd) {
  2767                 result.append(t1);
  2770         return result.toList();
  2774     /**
  2775      * Resolve `c.this' for an enclosing class c that contains the
  2776      * named member.
  2777      * @param pos           The position to use for error reporting.
  2778      * @param env           The environment current at the expression.
  2779      * @param member        The member that must be contained in the result.
  2780      */
  2781     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2782                                  Env<AttrContext> env,
  2783                                  Symbol member,
  2784                                  boolean isSuperCall) {
  2785         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  2786         if (sym == null) {
  2787             log.error(pos, "encl.class.required", member);
  2788             return syms.errSymbol;
  2789         } else {
  2790             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  2794     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  2795         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  2796         return encl != null && encl.kind < ERRONEOUS;
  2799     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  2800                                  Symbol member,
  2801                                  boolean isSuperCall) {
  2802         Name name = names._this;
  2803         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2804         boolean staticOnly = false;
  2805         if (env1 != null) {
  2806             while (env1 != null && env1.outer != null) {
  2807                 if (isStatic(env1)) staticOnly = true;
  2808                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2809                     Symbol sym = env1.info.scope.lookup(name).sym;
  2810                     if (sym != null) {
  2811                         if (staticOnly) sym = new StaticError(sym);
  2812                         return sym;
  2815                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2816                     staticOnly = true;
  2817                 env1 = env1.outer;
  2820         return null;
  2823     /**
  2824      * Resolve an appropriate implicit this instance for t's container.
  2825      * JLS 8.8.5.1 and 15.9.2
  2826      */
  2827     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2828         return resolveImplicitThis(pos, env, t, false);
  2831     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2832         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2833                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2834                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2835         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2836             log.error(pos, "cant.ref.before.ctor.called", "this");
  2837         return thisType;
  2840 /* ***************************************************************************
  2841  *  ResolveError classes, indicating error situations when accessing symbols
  2842  ****************************************************************************/
  2844     //used by TransTypes when checking target type of synthetic cast
  2845     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2846         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2847         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2849     //where
  2850     private void logResolveError(ResolveError error,
  2851             DiagnosticPosition pos,
  2852             Symbol location,
  2853             Type site,
  2854             Name name,
  2855             List<Type> argtypes,
  2856             List<Type> typeargtypes) {
  2857         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2858                 pos, location, site, name, argtypes, typeargtypes);
  2859         if (d != null) {
  2860             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2861             log.report(d);
  2865     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2867     public Object methodArguments(List<Type> argtypes) {
  2868         if (argtypes == null || argtypes.isEmpty()) {
  2869             return noArgs;
  2870         } else {
  2871             ListBuffer<Object> diagArgs = ListBuffer.lb();
  2872             for (Type t : argtypes) {
  2873                 if (t.hasTag(DEFERRED)) {
  2874                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  2875                 } else {
  2876                     diagArgs.append(t);
  2879             return diagArgs;
  2883     /**
  2884      * Root class for resolution errors. Subclass of ResolveError
  2885      * represent a different kinds of resolution error - as such they must
  2886      * specify how they map into concrete compiler diagnostics.
  2887      */
  2888     abstract class ResolveError extends Symbol {
  2890         /** The name of the kind of error, for debugging only. */
  2891         final String debugName;
  2893         ResolveError(int kind, String debugName) {
  2894             super(kind, 0, null, null, null);
  2895             this.debugName = debugName;
  2898         @Override
  2899         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2900             throw new AssertionError();
  2903         @Override
  2904         public String toString() {
  2905             return debugName;
  2908         @Override
  2909         public boolean exists() {
  2910             return false;
  2913         /**
  2914          * Create an external representation for this erroneous symbol to be
  2915          * used during attribution - by default this returns the symbol of a
  2916          * brand new error type which stores the original type found
  2917          * during resolution.
  2919          * @param name     the name used during resolution
  2920          * @param location the location from which the symbol is accessed
  2921          */
  2922         protected Symbol access(Name name, TypeSymbol location) {
  2923             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2926         /**
  2927          * Create a diagnostic representing this resolution error.
  2929          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2930          * @param pos       The position to be used for error reporting.
  2931          * @param site      The original type from where the selection took place.
  2932          * @param name      The name of the symbol to be resolved.
  2933          * @param argtypes  The invocation's value arguments,
  2934          *                  if we looked for a method.
  2935          * @param typeargtypes  The invocation's type arguments,
  2936          *                      if we looked for a method.
  2937          */
  2938         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2939                 DiagnosticPosition pos,
  2940                 Symbol location,
  2941                 Type site,
  2942                 Name name,
  2943                 List<Type> argtypes,
  2944                 List<Type> typeargtypes);
  2947     /**
  2948      * This class is the root class of all resolution errors caused by
  2949      * an invalid symbol being found during resolution.
  2950      */
  2951     abstract class InvalidSymbolError extends ResolveError {
  2953         /** The invalid symbol found during resolution */
  2954         Symbol sym;
  2956         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2957             super(kind, debugName);
  2958             this.sym = sym;
  2961         @Override
  2962         public boolean exists() {
  2963             return true;
  2966         @Override
  2967         public String toString() {
  2968              return super.toString() + " wrongSym=" + sym;
  2971         @Override
  2972         public Symbol access(Name name, TypeSymbol location) {
  2973             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2974                 return types.createErrorType(name, location, sym.type).tsym;
  2975             else
  2976                 return sym;
  2980     /**
  2981      * InvalidSymbolError error class indicating that a symbol matching a
  2982      * given name does not exists in a given site.
  2983      */
  2984     class SymbolNotFoundError extends ResolveError {
  2986         SymbolNotFoundError(int kind) {
  2987             super(kind, "symbol not found error");
  2990         @Override
  2991         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2992                 DiagnosticPosition pos,
  2993                 Symbol location,
  2994                 Type site,
  2995                 Name name,
  2996                 List<Type> argtypes,
  2997                 List<Type> typeargtypes) {
  2998             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2999             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3000             if (name == names.error)
  3001                 return null;
  3003             if (syms.operatorNames.contains(name)) {
  3004                 boolean isUnaryOp = argtypes.size() == 1;
  3005                 String key = argtypes.size() == 1 ?
  3006                     "operator.cant.be.applied" :
  3007                     "operator.cant.be.applied.1";
  3008                 Type first = argtypes.head;
  3009                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3010                 return diags.create(dkind, log.currentSource(), pos,
  3011                         key, name, first, second);
  3013             boolean hasLocation = false;
  3014             if (location == null) {
  3015                 location = site.tsym;
  3017             if (!location.name.isEmpty()) {
  3018                 if (location.kind == PCK && !site.tsym.exists()) {
  3019                     return diags.create(dkind, log.currentSource(), pos,
  3020                         "doesnt.exist", location);
  3022                 hasLocation = !location.name.equals(names._this) &&
  3023                         !location.name.equals(names._super);
  3025             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3026             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3027             Name idname = isConstructor ? site.tsym.name : name;
  3028             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3029             if (hasLocation) {
  3030                 return diags.create(dkind, log.currentSource(), pos,
  3031                         errKey, kindname, idname, //symbol kindname, name
  3032                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3033                         getLocationDiag(location, site)); //location kindname, type
  3035             else {
  3036                 return diags.create(dkind, log.currentSource(), pos,
  3037                         errKey, kindname, idname, //symbol kindname, name
  3038                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3041         //where
  3042         private Object args(List<Type> args) {
  3043             return args.isEmpty() ? args : methodArguments(args);
  3046         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3047             String key = "cant.resolve";
  3048             String suffix = hasLocation ? ".location" : "";
  3049             switch (kindname) {
  3050                 case METHOD:
  3051                 case CONSTRUCTOR: {
  3052                     suffix += ".args";
  3053                     suffix += hasTypeArgs ? ".params" : "";
  3056             return key + suffix;
  3058         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3059             if (location.kind == VAR) {
  3060                 return diags.fragment("location.1",
  3061                     kindName(location),
  3062                     location,
  3063                     location.type);
  3064             } else {
  3065                 return diags.fragment("location",
  3066                     typeKindName(site),
  3067                     site,
  3068                     null);
  3073     /**
  3074      * InvalidSymbolError error class indicating that a given symbol
  3075      * (either a method, a constructor or an operand) is not applicable
  3076      * given an actual arguments/type argument list.
  3077      */
  3078     class InapplicableSymbolError extends ResolveError {
  3080         protected MethodResolutionContext resolveContext;
  3082         InapplicableSymbolError(MethodResolutionContext context) {
  3083             this(WRONG_MTH, "inapplicable symbol error", context);
  3086         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3087             super(kind, debugName);
  3088             this.resolveContext = context;
  3091         @Override
  3092         public String toString() {
  3093             return super.toString();
  3096         @Override
  3097         public boolean exists() {
  3098             return true;
  3101         @Override
  3102         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3103                 DiagnosticPosition pos,
  3104                 Symbol location,
  3105                 Type site,
  3106                 Name name,
  3107                 List<Type> argtypes,
  3108                 List<Type> typeargtypes) {
  3109             if (name == names.error)
  3110                 return null;
  3112             if (syms.operatorNames.contains(name)) {
  3113                 boolean isUnaryOp = argtypes.size() == 1;
  3114                 String key = argtypes.size() == 1 ?
  3115                     "operator.cant.be.applied" :
  3116                     "operator.cant.be.applied.1";
  3117                 Type first = argtypes.head;
  3118                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3119                 return diags.create(dkind, log.currentSource(), pos,
  3120                         key, name, first, second);
  3122             else {
  3123                 Candidate c = errCandidate();
  3124                 Symbol ws = c.sym.asMemberOf(site, types);
  3125                 return diags.create(dkind, log.currentSource(), pos,
  3126                           "cant.apply.symbol",
  3127                           kindName(ws),
  3128                           ws.name == names.init ? ws.owner.name : ws.name,
  3129                           methodArguments(ws.type.getParameterTypes()),
  3130                           methodArguments(argtypes),
  3131                           kindName(ws.owner),
  3132                           ws.owner.type,
  3133                           c.details);
  3137         @Override
  3138         public Symbol access(Name name, TypeSymbol location) {
  3139             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3142         private Candidate errCandidate() {
  3143             Candidate bestSoFar = null;
  3144             for (Candidate c : resolveContext.candidates) {
  3145                 if (c.isApplicable()) continue;
  3146                 bestSoFar = c;
  3148             Assert.checkNonNull(bestSoFar);
  3149             return bestSoFar;
  3153     /**
  3154      * ResolveError error class indicating that a set of symbols
  3155      * (either methods, constructors or operands) is not applicable
  3156      * given an actual arguments/type argument list.
  3157      */
  3158     class InapplicableSymbolsError extends InapplicableSymbolError {
  3160         InapplicableSymbolsError(MethodResolutionContext context) {
  3161             super(WRONG_MTHS, "inapplicable symbols", context);
  3164         @Override
  3165         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3166                 DiagnosticPosition pos,
  3167                 Symbol location,
  3168                 Type site,
  3169                 Name name,
  3170                 List<Type> argtypes,
  3171                 List<Type> typeargtypes) {
  3172             if (!resolveContext.candidates.isEmpty()) {
  3173                 JCDiagnostic err = diags.create(dkind,
  3174                         log.currentSource(),
  3175                         pos,
  3176                         "cant.apply.symbols",
  3177                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3178                         name == names.init ? site.tsym.name : name,
  3179                         methodArguments(argtypes));
  3180                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  3181             } else {
  3182                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3183                     location, site, name, argtypes, typeargtypes);
  3187         //where
  3188         List<JCDiagnostic> candidateDetails(Type site) {
  3189             Map<Symbol, JCDiagnostic> details = new LinkedHashMap<Symbol, JCDiagnostic>();
  3190             for (Candidate c : resolveContext.candidates) {
  3191                 if (c.isApplicable()) continue;
  3192                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3193                         Kinds.kindName(c.sym),
  3194                         c.sym.location(site, types),
  3195                         c.sym.asMemberOf(site, types),
  3196                         c.details);
  3197                 details.put(c.sym, detailDiag);
  3199             return List.from(details.values());
  3203     /**
  3204      * An InvalidSymbolError error class indicating that a symbol is not
  3205      * accessible from a given site
  3206      */
  3207     class AccessError extends InvalidSymbolError {
  3209         private Env<AttrContext> env;
  3210         private Type site;
  3212         AccessError(Symbol sym) {
  3213             this(null, null, sym);
  3216         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3217             super(HIDDEN, sym, "access error");
  3218             this.env = env;
  3219             this.site = site;
  3220             if (debugResolve)
  3221                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3224         @Override
  3225         public boolean exists() {
  3226             return false;
  3229         @Override
  3230         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3231                 DiagnosticPosition pos,
  3232                 Symbol location,
  3233                 Type site,
  3234                 Name name,
  3235                 List<Type> argtypes,
  3236                 List<Type> typeargtypes) {
  3237             if (sym.owner.type.hasTag(ERROR))
  3238                 return null;
  3240             if (sym.name == names.init && sym.owner != site.tsym) {
  3241                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3242                         pos, location, site, name, argtypes, typeargtypes);
  3244             else if ((sym.flags() & PUBLIC) != 0
  3245                 || (env != null && this.site != null
  3246                     && !isAccessible(env, this.site))) {
  3247                 return diags.create(dkind, log.currentSource(),
  3248                         pos, "not.def.access.class.intf.cant.access",
  3249                     sym, sym.location());
  3251             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3252                 return diags.create(dkind, log.currentSource(),
  3253                         pos, "report.access", sym,
  3254                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3255                         sym.location());
  3257             else {
  3258                 return diags.create(dkind, log.currentSource(),
  3259                         pos, "not.def.public.cant.access", sym, sym.location());
  3264     /**
  3265      * InvalidSymbolError error class indicating that an instance member
  3266      * has erroneously been accessed from a static context.
  3267      */
  3268     class StaticError extends InvalidSymbolError {
  3270         StaticError(Symbol sym) {
  3271             super(STATICERR, sym, "static error");
  3274         @Override
  3275         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3276                 DiagnosticPosition pos,
  3277                 Symbol location,
  3278                 Type site,
  3279                 Name name,
  3280                 List<Type> argtypes,
  3281                 List<Type> typeargtypes) {
  3282             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3283                 ? types.erasure(sym.type).tsym
  3284                 : sym);
  3285             return diags.create(dkind, log.currentSource(), pos,
  3286                     "non-static.cant.be.ref", kindName(sym), errSym);
  3290     /**
  3291      * InvalidSymbolError error class indicating that a pair of symbols
  3292      * (either methods, constructors or operands) are ambiguous
  3293      * given an actual arguments/type argument list.
  3294      */
  3295     class AmbiguityError extends ResolveError {
  3297         /** The other maximally specific symbol */
  3298         List<Symbol> ambiguousSyms = List.nil();
  3300         @Override
  3301         public boolean exists() {
  3302             return true;
  3305         AmbiguityError(Symbol sym1, Symbol sym2) {
  3306             super(AMBIGUOUS, "ambiguity error");
  3307             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  3310         private List<Symbol> flatten(Symbol sym) {
  3311             if (sym.kind == AMBIGUOUS) {
  3312                 return ((AmbiguityError)sym).ambiguousSyms;
  3313             } else {
  3314                 return List.of(sym);
  3318         AmbiguityError addAmbiguousSymbol(Symbol s) {
  3319             ambiguousSyms = ambiguousSyms.prepend(s);
  3320             return this;
  3323         @Override
  3324         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3325                 DiagnosticPosition pos,
  3326                 Symbol location,
  3327                 Type site,
  3328                 Name name,
  3329                 List<Type> argtypes,
  3330                 List<Type> typeargtypes) {
  3331             List<Symbol> diagSyms = ambiguousSyms.reverse();
  3332             Symbol s1 = diagSyms.head;
  3333             Symbol s2 = diagSyms.tail.head;
  3334             Name sname = s1.name;
  3335             if (sname == names.init) sname = s1.owner.name;
  3336             return diags.create(dkind, log.currentSource(),
  3337                       pos, "ref.ambiguous", sname,
  3338                       kindName(s1),
  3339                       s1,
  3340                       s1.location(site, types),
  3341                       kindName(s2),
  3342                       s2,
  3343                       s2.location(site, types));
  3346         /**
  3347          * If multiple applicable methods are found during overload and none of them
  3348          * is more specific than the others, attempt to merge their signatures.
  3349          */
  3350         Symbol mergeAbstracts(Type site) {
  3351             Symbol fst = ambiguousSyms.last();
  3352             Symbol res = fst;
  3353             for (Symbol s : ambiguousSyms.reverse()) {
  3354                 Type mt1 = types.memberType(site, res);
  3355                 Type mt2 = types.memberType(site, s);
  3356                 if ((s.flags() & ABSTRACT) == 0 ||
  3357                         !types.overrideEquivalent(mt1, mt2) ||
  3358                         !types.isSameTypes(fst.erasure(types).getParameterTypes(),
  3359                                        s.erasure(types).getParameterTypes())) {
  3360                     //ambiguity cannot be resolved
  3361                     return this;
  3362                 } else {
  3363                     Type mst = mostSpecificReturnType(mt1, mt2);
  3364                     if (mst == null) {
  3365                         // Theoretically, this can't happen, but it is possible
  3366                         // due to error recovery or mixing incompatible class files
  3367                         return this;
  3369                     Symbol mostSpecific = mst == mt1 ? res : s;
  3370                     List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  3371                     Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  3372                     res = new MethodSymbol(
  3373                             mostSpecific.flags(),
  3374                             mostSpecific.name,
  3375                             newSig,
  3376                             mostSpecific.owner);
  3379             return res;
  3382         @Override
  3383         protected Symbol access(Name name, TypeSymbol location) {
  3384             return ambiguousSyms.last();
  3388     enum MethodResolutionPhase {
  3389         BASIC(false, false),
  3390         BOX(true, false),
  3391         VARARITY(true, true) {
  3392             @Override
  3393             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  3394                 switch (sym.kind) {
  3395                     case WRONG_MTH:
  3396                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  3397                             bestSoFar :
  3398                             sym;
  3399                     case ABSENT_MTH:
  3400                         return bestSoFar;
  3401                     default:
  3402                         return sym;
  3405         };
  3407         final boolean isBoxingRequired;
  3408         final boolean isVarargsRequired;
  3410         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3411            this.isBoxingRequired = isBoxingRequired;
  3412            this.isVarargsRequired = isVarargsRequired;
  3415         public boolean isBoxingRequired() {
  3416             return isBoxingRequired;
  3419         public boolean isVarargsRequired() {
  3420             return isVarargsRequired;
  3423         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3424             return (varargsEnabled || !isVarargsRequired) &&
  3425                    (boxingEnabled || !isBoxingRequired);
  3428         public Symbol mergeResults(Symbol prev, Symbol sym) {
  3429             return sym;
  3433     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3435     /**
  3436      * A resolution context is used to keep track of intermediate results of
  3437      * overload resolution, such as list of method that are not applicable
  3438      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3439      * can be nested - this means that when each overload resolution routine should
  3440      * work within the resolution context it created.
  3441      */
  3442     class MethodResolutionContext {
  3444         private List<Candidate> candidates = List.nil();
  3446         MethodResolutionPhase step = null;
  3448         private boolean internalResolution = false;
  3449         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3451         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3452             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3453             candidates = candidates.append(c);
  3456         void addApplicableCandidate(Symbol sym, Type mtype) {
  3457             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3458             candidates = candidates.append(c);
  3461         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext) {
  3462             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext);
  3465         /**
  3466          * This class represents an overload resolution candidate. There are two
  3467          * kinds of candidates: applicable methods and inapplicable methods;
  3468          * applicable methods have a pointer to the instantiated method type,
  3469          * while inapplicable candidates contain further details about the
  3470          * reason why the method has been considered inapplicable.
  3471          */
  3472         class Candidate {
  3474             final MethodResolutionPhase step;
  3475             final Symbol sym;
  3476             final JCDiagnostic details;
  3477             final Type mtype;
  3479             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3480                 this.step = step;
  3481                 this.sym = sym;
  3482                 this.details = details;
  3483                 this.mtype = mtype;
  3486             @Override
  3487             public boolean equals(Object o) {
  3488                 if (o instanceof Candidate) {
  3489                     Symbol s1 = this.sym;
  3490                     Symbol s2 = ((Candidate)o).sym;
  3491                     if  ((s1 != s2 &&
  3492                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3493                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3494                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3495                         return true;
  3497                 return false;
  3500             boolean isApplicable() {
  3501                 return mtype != null;
  3505         DeferredAttr.AttrMode attrMode() {
  3506             return attrMode;
  3509         boolean internal() {
  3510             return internalResolution;
  3514     MethodResolutionContext currentResolutionContext = null;

mercurial