src/share/classes/com/sun/tools/javac/comp/Resolve.java

Tue, 08 Jan 2013 10:15:30 +0100

author
mcimadamore
date
Tue, 08 Jan 2013 10:15:30 +0100
changeset 1479
38d3d1027f5a
parent 1460
92fcf299cd09
child 1480
db91d860156a
permissions
-rw-r--r--

8005243: Restructure method check code to allow pluggable checkers
Summary: Add interface to perform a method check - to be implemented by helper classes
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.jvm.*;
    41 import com.sun.tools.javac.tree.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    44 import com.sun.tools.javac.util.*;
    45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    47 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    49 import java.util.Arrays;
    50 import java.util.Collection;
    51 import java.util.EnumMap;
    52 import java.util.EnumSet;
    53 import java.util.Iterator;
    54 import java.util.LinkedHashMap;
    55 import java.util.LinkedHashSet;
    56 import java.util.Map;
    57 import java.util.Set;
    59 import javax.lang.model.element.ElementVisitor;
    61 import static com.sun.tools.javac.code.Flags.*;
    62 import static com.sun.tools.javac.code.Flags.BLOCK;
    63 import static com.sun.tools.javac.code.Kinds.*;
    64 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    65 import static com.sun.tools.javac.code.TypeTag.*;
    66 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    67 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    69 /** Helper class for name resolution, used mostly by the attribution phase.
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Resolve {
    77     protected static final Context.Key<Resolve> resolveKey =
    78         new Context.Key<Resolve>();
    80     Names names;
    81     Log log;
    82     Symtab syms;
    83     Attr attr;
    84     DeferredAttr deferredAttr;
    85     Check chk;
    86     Infer infer;
    87     ClassReader reader;
    88     TreeInfo treeinfo;
    89     Types types;
    90     JCDiagnostic.Factory diags;
    91     public final boolean boxingEnabled; // = source.allowBoxing();
    92     public final boolean varargsEnabled; // = source.allowVarargs();
    93     public final boolean allowMethodHandles;
    94     public final boolean allowDefaultMethods;
    95     private final boolean debugResolve;
    96     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    98     Scope polymorphicSignatureScope;
   100     protected Resolve(Context context) {
   101         context.put(resolveKey, this);
   102         syms = Symtab.instance(context);
   104         varNotFound = new
   105             SymbolNotFoundError(ABSENT_VAR);
   106         methodNotFound = new
   107             SymbolNotFoundError(ABSENT_MTH);
   108         typeNotFound = new
   109             SymbolNotFoundError(ABSENT_TYP);
   111         names = Names.instance(context);
   112         log = Log.instance(context);
   113         attr = Attr.instance(context);
   114         deferredAttr = DeferredAttr.instance(context);
   115         chk = Check.instance(context);
   116         infer = Infer.instance(context);
   117         reader = ClassReader.instance(context);
   118         treeinfo = TreeInfo.instance(context);
   119         types = Types.instance(context);
   120         diags = JCDiagnostic.Factory.instance(context);
   121         Source source = Source.instance(context);
   122         boxingEnabled = source.allowBoxing();
   123         varargsEnabled = source.allowVarargs();
   124         Options options = Options.instance(context);
   125         debugResolve = options.isSet("debugresolve");
   126         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   127         Target target = Target.instance(context);
   128         allowMethodHandles = target.hasMethodHandles();
   129         allowDefaultMethods = source.allowDefaultMethods();
   130         polymorphicSignatureScope = new Scope(syms.noSymbol);
   132         inapplicableMethodException = new InapplicableMethodException(diags);
   133     }
   135     /** error symbols, which are returned when resolution fails
   136      */
   137     private final SymbolNotFoundError varNotFound;
   138     private final SymbolNotFoundError methodNotFound;
   139     private final SymbolNotFoundError typeNotFound;
   141     public static Resolve instance(Context context) {
   142         Resolve instance = context.get(resolveKey);
   143         if (instance == null)
   144             instance = new Resolve(context);
   145         return instance;
   146     }
   148     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   149     enum VerboseResolutionMode {
   150         SUCCESS("success"),
   151         FAILURE("failure"),
   152         APPLICABLE("applicable"),
   153         INAPPLICABLE("inapplicable"),
   154         DEFERRED_INST("deferred-inference"),
   155         PREDEF("predef"),
   156         OBJECT_INIT("object-init"),
   157         INTERNAL("internal");
   159         final String opt;
   161         private VerboseResolutionMode(String opt) {
   162             this.opt = opt;
   163         }
   165         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   166             String s = opts.get("verboseResolution");
   167             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   168             if (s == null) return res;
   169             if (s.contains("all")) {
   170                 res = EnumSet.allOf(VerboseResolutionMode.class);
   171             }
   172             Collection<String> args = Arrays.asList(s.split(","));
   173             for (VerboseResolutionMode mode : values()) {
   174                 if (args.contains(mode.opt)) {
   175                     res.add(mode);
   176                 } else if (args.contains("-" + mode.opt)) {
   177                     res.remove(mode);
   178                 }
   179             }
   180             return res;
   181         }
   182     }
   184     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   185             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   186         boolean success = bestSoFar.kind < ERRONEOUS;
   188         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   189             return;
   190         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   191             return;
   192         }
   194         if (bestSoFar.name == names.init &&
   195                 bestSoFar.owner == syms.objectType.tsym &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   197             return; //skip diags for Object constructor resolution
   198         } else if (site == syms.predefClass.type &&
   199                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   200             return; //skip spurious diags for predef symbols (i.e. operators)
   201         } else if (currentResolutionContext.internalResolution &&
   202                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   203             return;
   204         }
   206         int pos = 0;
   207         int mostSpecificPos = -1;
   208         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   209         for (Candidate c : currentResolutionContext.candidates) {
   210             if (currentResolutionContext.step != c.step ||
   211                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   212                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   213                 continue;
   214             } else {
   215                 subDiags.append(c.isApplicable() ?
   216                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   217                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   218                 if (c.sym == bestSoFar)
   219                     mostSpecificPos = pos;
   220                 pos++;
   221             }
   222         }
   223         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   224         List<Type> argtypes2 = Type.map(argtypes,
   225                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   226         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   227                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   228                 methodArguments(argtypes2),
   229                 methodArguments(typeargtypes));
   230         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   231         log.report(d);
   232     }
   234     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   235         JCDiagnostic subDiag = null;
   236         if (sym.type.hasTag(FORALL)) {
   237             subDiag = diags.fragment("partial.inst.sig", inst);
   238         }
   240         String key = subDiag == null ?
   241                 "applicable.method.found" :
   242                 "applicable.method.found.1";
   244         return diags.fragment(key, pos, sym, subDiag);
   245     }
   247     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   248         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   249     }
   250     // </editor-fold>
   252 /* ************************************************************************
   253  * Identifier resolution
   254  *************************************************************************/
   256     /** An environment is "static" if its static level is greater than
   257      *  the one of its outer environment
   258      */
   259     protected static boolean isStatic(Env<AttrContext> env) {
   260         return env.info.staticLevel > env.outer.info.staticLevel;
   261     }
   263     /** An environment is an "initializer" if it is a constructor or
   264      *  an instance initializer.
   265      */
   266     static boolean isInitializer(Env<AttrContext> env) {
   267         Symbol owner = env.info.scope.owner;
   268         return owner.isConstructor() ||
   269             owner.owner.kind == TYP &&
   270             (owner.kind == VAR ||
   271              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   272             (owner.flags() & STATIC) == 0;
   273     }
   275     /** Is class accessible in given evironment?
   276      *  @param env    The current environment.
   277      *  @param c      The class whose accessibility is checked.
   278      */
   279     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   280         return isAccessible(env, c, false);
   281     }
   283     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   284         boolean isAccessible = false;
   285         switch ((short)(c.flags() & AccessFlags)) {
   286             case PRIVATE:
   287                 isAccessible =
   288                     env.enclClass.sym.outermostClass() ==
   289                     c.owner.outermostClass();
   290                 break;
   291             case 0:
   292                 isAccessible =
   293                     env.toplevel.packge == c.owner // fast special case
   294                     ||
   295                     env.toplevel.packge == c.packge()
   296                     ||
   297                     // Hack: this case is added since synthesized default constructors
   298                     // of anonymous classes should be allowed to access
   299                     // classes which would be inaccessible otherwise.
   300                     env.enclMethod != null &&
   301                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   302                 break;
   303             default: // error recovery
   304             case PUBLIC:
   305                 isAccessible = true;
   306                 break;
   307             case PROTECTED:
   308                 isAccessible =
   309                     env.toplevel.packge == c.owner // fast special case
   310                     ||
   311                     env.toplevel.packge == c.packge()
   312                     ||
   313                     isInnerSubClass(env.enclClass.sym, c.owner);
   314                 break;
   315         }
   316         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   317             isAccessible :
   318             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   319     }
   320     //where
   321         /** Is given class a subclass of given base class, or an inner class
   322          *  of a subclass?
   323          *  Return null if no such class exists.
   324          *  @param c     The class which is the subclass or is contained in it.
   325          *  @param base  The base class
   326          */
   327         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   328             while (c != null && !c.isSubClass(base, types)) {
   329                 c = c.owner.enclClass();
   330             }
   331             return c != null;
   332         }
   334     boolean isAccessible(Env<AttrContext> env, Type t) {
   335         return isAccessible(env, t, false);
   336     }
   338     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   339         return (t.hasTag(ARRAY))
   340             ? isAccessible(env, types.elemtype(t))
   341             : isAccessible(env, t.tsym, checkInner);
   342     }
   344     /** Is symbol accessible as a member of given type in given evironment?
   345      *  @param env    The current environment.
   346      *  @param site   The type of which the tested symbol is regarded
   347      *                as a member.
   348      *  @param sym    The symbol.
   349      */
   350     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   351         return isAccessible(env, site, sym, false);
   352     }
   353     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   354         if (sym.name == names.init && sym.owner != site.tsym) return false;
   355         switch ((short)(sym.flags() & AccessFlags)) {
   356         case PRIVATE:
   357             return
   358                 (env.enclClass.sym == sym.owner // fast special case
   359                  ||
   360                  env.enclClass.sym.outermostClass() ==
   361                  sym.owner.outermostClass())
   362                 &&
   363                 sym.isInheritedIn(site.tsym, types);
   364         case 0:
   365             return
   366                 (env.toplevel.packge == sym.owner.owner // fast special case
   367                  ||
   368                  env.toplevel.packge == sym.packge())
   369                 &&
   370                 isAccessible(env, site, checkInner)
   371                 &&
   372                 sym.isInheritedIn(site.tsym, types)
   373                 &&
   374                 notOverriddenIn(site, sym);
   375         case PROTECTED:
   376             return
   377                 (env.toplevel.packge == sym.owner.owner // fast special case
   378                  ||
   379                  env.toplevel.packge == sym.packge()
   380                  ||
   381                  isProtectedAccessible(sym, env.enclClass.sym, site)
   382                  ||
   383                  // OK to select instance method or field from 'super' or type name
   384                  // (but type names should be disallowed elsewhere!)
   385                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   386                 &&
   387                 isAccessible(env, site, checkInner)
   388                 &&
   389                 notOverriddenIn(site, sym);
   390         default: // this case includes erroneous combinations as well
   391             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   392         }
   393     }
   394     //where
   395     /* `sym' is accessible only if not overridden by
   396      * another symbol which is a member of `site'
   397      * (because, if it is overridden, `sym' is not strictly
   398      * speaking a member of `site'). A polymorphic signature method
   399      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   400      */
   401     private boolean notOverriddenIn(Type site, Symbol sym) {
   402         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   403             return true;
   404         else {
   405             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   406             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   407                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   408         }
   409     }
   410     //where
   411         /** Is given protected symbol accessible if it is selected from given site
   412          *  and the selection takes place in given class?
   413          *  @param sym     The symbol with protected access
   414          *  @param c       The class where the access takes place
   415          *  @site          The type of the qualifier
   416          */
   417         private
   418         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   419             while (c != null &&
   420                    !(c.isSubClass(sym.owner, types) &&
   421                      (c.flags() & INTERFACE) == 0 &&
   422                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   423                      // only to instance fields and methods -- types are excluded
   424                      // regardless of whether they are declared 'static' or not.
   425                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   426                 c = c.owner.enclClass();
   427             return c != null;
   428         }
   430     /**
   431      * Performs a recursive scan of a type looking for accessibility problems
   432      * from current attribution environment
   433      */
   434     void checkAccessibleType(Env<AttrContext> env, Type t) {
   435         accessibilityChecker.visit(t, env);
   436     }
   438     /**
   439      * Accessibility type-visitor
   440      */
   441     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   442             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   444         void visit(List<Type> ts, Env<AttrContext> env) {
   445             for (Type t : ts) {
   446                 visit(t, env);
   447             }
   448         }
   450         public Void visitType(Type t, Env<AttrContext> env) {
   451             return null;
   452         }
   454         @Override
   455         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   456             visit(t.elemtype, env);
   457             return null;
   458         }
   460         @Override
   461         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   462             visit(t.getTypeArguments(), env);
   463             if (!isAccessible(env, t, true)) {
   464                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   465             }
   466             return null;
   467         }
   469         @Override
   470         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   471             visit(t.type, env);
   472             return null;
   473         }
   475         @Override
   476         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   477             visit(t.getParameterTypes(), env);
   478             visit(t.getReturnType(), env);
   479             visit(t.getThrownTypes(), env);
   480             return null;
   481         }
   482     };
   484     /** Try to instantiate the type of a method so that it fits
   485      *  given type arguments and argument types. If succesful, return
   486      *  the method's instantiated type, else return null.
   487      *  The instantiation will take into account an additional leading
   488      *  formal parameter if the method is an instance method seen as a member
   489      *  of un underdetermined site In this case, we treat site as an additional
   490      *  parameter and the parameters of the class containing the method as
   491      *  additional type variables that get instantiated.
   492      *
   493      *  @param env         The current environment
   494      *  @param site        The type of which the method is a member.
   495      *  @param m           The method symbol.
   496      *  @param argtypes    The invocation's given value arguments.
   497      *  @param typeargtypes    The invocation's given type arguments.
   498      *  @param allowBoxing Allow boxing conversions of arguments.
   499      *  @param useVarargs Box trailing arguments into an array for varargs.
   500      */
   501     Type rawInstantiate(Env<AttrContext> env,
   502                         Type site,
   503                         Symbol m,
   504                         ResultInfo resultInfo,
   505                         List<Type> argtypes,
   506                         List<Type> typeargtypes,
   507                         boolean allowBoxing,
   508                         boolean useVarargs,
   509                         MethodCheck methodCheck,
   510                         Warner warn) throws Infer.InferenceException {
   512         Type mt = types.memberType(site, m);
   513         // tvars is the list of formal type variables for which type arguments
   514         // need to inferred.
   515         List<Type> tvars = List.nil();
   516         if (typeargtypes == null) typeargtypes = List.nil();
   517         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   518             // This is not a polymorphic method, but typeargs are supplied
   519             // which is fine, see JLS 15.12.2.1
   520         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   521             ForAll pmt = (ForAll) mt;
   522             if (typeargtypes.length() != pmt.tvars.length())
   523                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   524             // Check type arguments are within bounds
   525             List<Type> formals = pmt.tvars;
   526             List<Type> actuals = typeargtypes;
   527             while (formals.nonEmpty() && actuals.nonEmpty()) {
   528                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   529                                                 pmt.tvars, typeargtypes);
   530                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   531                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   532                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   533                 formals = formals.tail;
   534                 actuals = actuals.tail;
   535             }
   536             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   537         } else if (mt.hasTag(FORALL)) {
   538             ForAll pmt = (ForAll) mt;
   539             List<Type> tvars1 = types.newInstances(pmt.tvars);
   540             tvars = tvars.appendList(tvars1);
   541             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   542         }
   544         // find out whether we need to go the slow route via infer
   545         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   546         for (List<Type> l = argtypes;
   547              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   548              l = l.tail) {
   549             if (l.head.hasTag(FORALL)) instNeeded = true;
   550         }
   552         if (instNeeded)
   553             return infer.instantiateMethod(env,
   554                                     tvars,
   555                                     (MethodType)mt,
   556                                     resultInfo,
   557                                     m,
   558                                     argtypes,
   559                                     allowBoxing,
   560                                     useVarargs,
   561                                     currentResolutionContext,
   562                                     methodCheck,
   563                                     warn);
   565         methodCheck.argumentsAcceptable(env, currentResolutionContext.deferredAttrContext(m, infer.emptyContext),
   566                                 argtypes, mt.getParameterTypes(), warn);
   567         return mt;
   568     }
   570     Type checkMethod(Env<AttrContext> env,
   571                      Type site,
   572                      Symbol m,
   573                      ResultInfo resultInfo,
   574                      List<Type> argtypes,
   575                      List<Type> typeargtypes,
   576                      Warner warn) {
   577         MethodResolutionContext prevContext = currentResolutionContext;
   578         try {
   579             currentResolutionContext = new MethodResolutionContext();
   580             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   581             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   582             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   583                     step.isBoxingRequired(), step.isVarargsRequired(), resolveMethodCheck, warn);
   584         }
   585         finally {
   586             currentResolutionContext = prevContext;
   587         }
   588     }
   590     /** Same but returns null instead throwing a NoInstanceException
   591      */
   592     Type instantiate(Env<AttrContext> env,
   593                      Type site,
   594                      Symbol m,
   595                      ResultInfo resultInfo,
   596                      List<Type> argtypes,
   597                      List<Type> typeargtypes,
   598                      boolean allowBoxing,
   599                      boolean useVarargs,
   600                      MethodCheck methodCheck,
   601                      Warner warn) {
   602         try {
   603             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   604                                   allowBoxing, useVarargs, methodCheck, warn);
   605         } catch (InapplicableMethodException ex) {
   606             return null;
   607         }
   608     }
   610     /**
   611      * This interface defines an entry point that should be used to perform a
   612      * method check. A method check usually consist in determining as to whether
   613      * a set of types (actuals) is compatible with another set of types (formals).
   614      * Since the notion of compatibility can vary depending on the circumstances,
   615      * this interfaces allows to easily add new pluggable method check routines.
   616      */
   617     interface MethodCheck {
   618         /**
   619          * Main method check routine. A method check usually consist in determining
   620          * as to whether a set of types (actuals) is compatible with another set of
   621          * types (formals). If an incompatibility is found, an unchecked exception
   622          * is assumed to be thrown.
   623          */
   624         void argumentsAcceptable(Env<AttrContext> env,
   625                                 DeferredAttrContext deferredAttrContext,
   626                                 List<Type> argtypes,
   627                                 List<Type> formals,
   628                                 Warner warn);
   629     }
   631     /**
   632      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   633      */
   634     enum MethodCheckDiag {
   635         /**
   636          * Actuals and formals differs in length.
   637          */
   638         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   639         /**
   640          * An actual is incompatible with a formal.
   641          */
   642         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   643         /**
   644          * An actual is incompatible with the varargs element type.
   645          */
   646         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   647         /**
   648          * The varargs element type is inaccessible.
   649          */
   650         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   652         final String basicKey;
   653         final String inferKey;
   655         MethodCheckDiag(String basicKey, String inferKey) {
   656             this.basicKey = basicKey;
   657             this.inferKey = inferKey;
   658         }
   659     }
   661     /**
   662      * Main method applicability routine. Given a list of actual types A,
   663      * a list of formal types F, determines whether the types in A are
   664      * compatible (by method invocation conversion) with the types in F.
   665      *
   666      * Since this routine is shared between overload resolution and method
   667      * type-inference, a (possibly empty) inference context is used to convert
   668      * formal types to the corresponding 'undet' form ahead of a compatibility
   669      * check so that constraints can be propagated and collected.
   670      *
   671      * Moreover, if one or more types in A is a deferred type, this routine uses
   672      * DeferredAttr in order to perform deferred attribution. If one or more actual
   673      * deferred types are stuck, they are placed in a queue and revisited later
   674      * after the remainder of the arguments have been seen. If this is not sufficient
   675      * to 'unstuck' the argument, a cyclic inference error is called out.
   676      *
   677      * A method check handler (see above) is used in order to report errors.
   678      */
   679     MethodCheck resolveMethodCheck = new MethodCheck() {
   680         @Override
   681         public void argumentsAcceptable(final Env<AttrContext> env,
   682                                     DeferredAttrContext deferredAttrContext,
   683                                     List<Type> argtypes,
   684                                     List<Type> formals,
   685                                     Warner warn) {
   686             //should we expand formals?
   687             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   689             //inference context used during this method check
   690             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   692             Type varargsFormal = useVarargs ? formals.last() : null;
   694             if (varargsFormal == null &&
   695                     argtypes.size() != formals.size()) {
   696                 report(MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   697             }
   699             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   700                 ResultInfo mresult = methodCheckResult(false, formals.head, deferredAttrContext, warn);
   701                 mresult.check(null, argtypes.head);
   702                 argtypes = argtypes.tail;
   703                 formals = formals.tail;
   704             }
   706             if (formals.head != varargsFormal) {
   707                 report(MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   708             }
   710             if (useVarargs) {
   711                 //note: if applicability check is triggered by most specific test,
   712                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   713                 final Type elt = types.elemtype(varargsFormal);
   714                 ResultInfo mresult = methodCheckResult(true, elt, deferredAttrContext, warn);
   715                 while (argtypes.nonEmpty()) {
   716                     mresult.check(null, argtypes.head);
   717                     argtypes = argtypes.tail;
   718                 }
   719                 //check varargs element type accessibility
   720                 varargsAccessible(env, elt, inferenceContext);
   721             }
   722         }
   724         private void report(MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   725             boolean inferDiag = inferenceContext != infer.emptyContext;
   726             InapplicableMethodException ex = inferDiag ?
   727                     infer.inferenceException : inapplicableMethodException;
   728             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   729                 Object[] args2 = new Object[args.length + 1];
   730                 System.arraycopy(args, 0, args2, 1, args.length);
   731                 args2[0] = inferenceContext.inferenceVars();
   732                 args = args2;
   733             }
   734             throw ex.setMessage(inferDiag ? diag.inferKey : diag.basicKey, args);
   735         }
   737         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   738             if (inferenceContext.free(t)) {
   739                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   740                     @Override
   741                     public void typesInferred(InferenceContext inferenceContext) {
   742                         varargsAccessible(env, inferenceContext.asInstType(t, types), inferenceContext);
   743                     }
   744                 });
   745             } else {
   746                 if (!isAccessible(env, t)) {
   747                     Symbol location = env.enclClass.sym;
   748                     report(MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   749                 }
   750             }
   751         }
   753         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   754                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   755             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   756                 MethodCheckDiag methodDiag = varargsCheck ?
   757                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   759                 @Override
   760                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   761                     report(methodDiag, deferredAttrContext.inferenceContext, details);
   762                 }
   763             };
   764             return new MethodResultInfo(to, checkContext);
   765         }
   766     };
   768     /**
   769      * Check context to be used during method applicability checks. A method check
   770      * context might contain inference variables.
   771      */
   772     abstract class MethodCheckContext implements CheckContext {
   774         boolean strict;
   775         DeferredAttrContext deferredAttrContext;
   776         Warner rsWarner;
   778         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   779            this.strict = strict;
   780            this.deferredAttrContext = deferredAttrContext;
   781            this.rsWarner = rsWarner;
   782         }
   784         public boolean compatible(Type found, Type req, Warner warn) {
   785             return strict ?
   786                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req, types), warn) :
   787                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req, types), warn);
   788         }
   790         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   791             throw inapplicableMethodException.setMessage(details);
   792         }
   794         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   795             return rsWarner;
   796         }
   798         public InferenceContext inferenceContext() {
   799             return deferredAttrContext.inferenceContext;
   800         }
   802         public DeferredAttrContext deferredAttrContext() {
   803             return deferredAttrContext;
   804         }
   805     }
   807     /**
   808      * ResultInfo class to be used during method applicability checks. Check
   809      * for deferred types goes through special path.
   810      */
   811     class MethodResultInfo extends ResultInfo {
   813         public MethodResultInfo(Type pt, CheckContext checkContext) {
   814             attr.super(VAL, pt, checkContext);
   815         }
   817         @Override
   818         protected Type check(DiagnosticPosition pos, Type found) {
   819             if (found.hasTag(DEFERRED)) {
   820                 DeferredType dt = (DeferredType)found;
   821                 return dt.check(this);
   822             } else {
   823                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   824             }
   825         }
   827         @Override
   828         protected MethodResultInfo dup(Type newPt) {
   829             return new MethodResultInfo(newPt, checkContext);
   830         }
   832         @Override
   833         protected ResultInfo dup(CheckContext newContext) {
   834             return new MethodResultInfo(pt, newContext);
   835         }
   836     }
   838     public static class InapplicableMethodException extends RuntimeException {
   839         private static final long serialVersionUID = 0;
   841         JCDiagnostic diagnostic;
   842         JCDiagnostic.Factory diags;
   844         InapplicableMethodException(JCDiagnostic.Factory diags) {
   845             this.diagnostic = null;
   846             this.diags = diags;
   847         }
   848         InapplicableMethodException setMessage() {
   849             return setMessage((JCDiagnostic)null);
   850         }
   851         InapplicableMethodException setMessage(String key) {
   852             return setMessage(key != null ? diags.fragment(key) : null);
   853         }
   854         InapplicableMethodException setMessage(String key, Object... args) {
   855             return setMessage(key != null ? diags.fragment(key, args) : null);
   856         }
   857         InapplicableMethodException setMessage(JCDiagnostic diag) {
   858             this.diagnostic = diag;
   859             return this;
   860         }
   862         public JCDiagnostic getDiagnostic() {
   863             return diagnostic;
   864         }
   865     }
   866     private final InapplicableMethodException inapplicableMethodException;
   868 /* ***************************************************************************
   869  *  Symbol lookup
   870  *  the following naming conventions for arguments are used
   871  *
   872  *       env      is the environment where the symbol was mentioned
   873  *       site     is the type of which the symbol is a member
   874  *       name     is the symbol's name
   875  *                if no arguments are given
   876  *       argtypes are the value arguments, if we search for a method
   877  *
   878  *  If no symbol was found, a ResolveError detailing the problem is returned.
   879  ****************************************************************************/
   881     /** Find field. Synthetic fields are always skipped.
   882      *  @param env     The current environment.
   883      *  @param site    The original type from where the selection takes place.
   884      *  @param name    The name of the field.
   885      *  @param c       The class to search for the field. This is always
   886      *                 a superclass or implemented interface of site's class.
   887      */
   888     Symbol findField(Env<AttrContext> env,
   889                      Type site,
   890                      Name name,
   891                      TypeSymbol c) {
   892         while (c.type.hasTag(TYPEVAR))
   893             c = c.type.getUpperBound().tsym;
   894         Symbol bestSoFar = varNotFound;
   895         Symbol sym;
   896         Scope.Entry e = c.members().lookup(name);
   897         while (e.scope != null) {
   898             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   899                 return isAccessible(env, site, e.sym)
   900                     ? e.sym : new AccessError(env, site, e.sym);
   901             }
   902             e = e.next();
   903         }
   904         Type st = types.supertype(c.type);
   905         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
   906             sym = findField(env, site, name, st.tsym);
   907             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   908         }
   909         for (List<Type> l = types.interfaces(c.type);
   910              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   911              l = l.tail) {
   912             sym = findField(env, site, name, l.head.tsym);
   913             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   914                 sym.owner != bestSoFar.owner)
   915                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   916             else if (sym.kind < bestSoFar.kind)
   917                 bestSoFar = sym;
   918         }
   919         return bestSoFar;
   920     }
   922     /** Resolve a field identifier, throw a fatal error if not found.
   923      *  @param pos       The position to use for error reporting.
   924      *  @param env       The environment current at the method invocation.
   925      *  @param site      The type of the qualifying expression, in which
   926      *                   identifier is searched.
   927      *  @param name      The identifier's name.
   928      */
   929     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   930                                           Type site, Name name) {
   931         Symbol sym = findField(env, site, name, site.tsym);
   932         if (sym.kind == VAR) return (VarSymbol)sym;
   933         else throw new FatalError(
   934                  diags.fragment("fatal.err.cant.locate.field",
   935                                 name));
   936     }
   938     /** Find unqualified variable or field with given name.
   939      *  Synthetic fields always skipped.
   940      *  @param env     The current environment.
   941      *  @param name    The name of the variable or field.
   942      */
   943     Symbol findVar(Env<AttrContext> env, Name name) {
   944         Symbol bestSoFar = varNotFound;
   945         Symbol sym;
   946         Env<AttrContext> env1 = env;
   947         boolean staticOnly = false;
   948         while (env1.outer != null) {
   949             if (isStatic(env1)) staticOnly = true;
   950             Scope.Entry e = env1.info.scope.lookup(name);
   951             while (e.scope != null &&
   952                    (e.sym.kind != VAR ||
   953                     (e.sym.flags_field & SYNTHETIC) != 0))
   954                 e = e.next();
   955             sym = (e.scope != null)
   956                 ? e.sym
   957                 : findField(
   958                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   959             if (sym.exists()) {
   960                 if (staticOnly &&
   961                     sym.kind == VAR &&
   962                     sym.owner.kind == TYP &&
   963                     (sym.flags() & STATIC) == 0)
   964                     return new StaticError(sym);
   965                 else
   966                     return sym;
   967             } else if (sym.kind < bestSoFar.kind) {
   968                 bestSoFar = sym;
   969             }
   971             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   972             env1 = env1.outer;
   973         }
   975         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   976         if (sym.exists())
   977             return sym;
   978         if (bestSoFar.exists())
   979             return bestSoFar;
   981         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   982         for (; e.scope != null; e = e.next()) {
   983             sym = e.sym;
   984             Type origin = e.getOrigin().owner.type;
   985             if (sym.kind == VAR) {
   986                 if (e.sym.owner.type != origin)
   987                     sym = sym.clone(e.getOrigin().owner);
   988                 return isAccessible(env, origin, sym)
   989                     ? sym : new AccessError(env, origin, sym);
   990             }
   991         }
   993         Symbol origin = null;
   994         e = env.toplevel.starImportScope.lookup(name);
   995         for (; e.scope != null; e = e.next()) {
   996             sym = e.sym;
   997             if (sym.kind != VAR)
   998                 continue;
   999             // invariant: sym.kind == VAR
  1000             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1001                 return new AmbiguityError(bestSoFar, sym);
  1002             else if (bestSoFar.kind >= VAR) {
  1003                 origin = e.getOrigin().owner;
  1004                 bestSoFar = isAccessible(env, origin.type, sym)
  1005                     ? sym : new AccessError(env, origin.type, sym);
  1008         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1009             return bestSoFar.clone(origin);
  1010         else
  1011             return bestSoFar;
  1014     Warner noteWarner = new Warner();
  1016     /** Select the best method for a call site among two choices.
  1017      *  @param env              The current environment.
  1018      *  @param site             The original type from where the
  1019      *                          selection takes place.
  1020      *  @param argtypes         The invocation's value arguments,
  1021      *  @param typeargtypes     The invocation's type arguments,
  1022      *  @param sym              Proposed new best match.
  1023      *  @param bestSoFar        Previously found best match.
  1024      *  @param allowBoxing Allow boxing conversions of arguments.
  1025      *  @param useVarargs Box trailing arguments into an array for varargs.
  1026      */
  1027     @SuppressWarnings("fallthrough")
  1028     Symbol selectBest(Env<AttrContext> env,
  1029                       Type site,
  1030                       List<Type> argtypes,
  1031                       List<Type> typeargtypes,
  1032                       Symbol sym,
  1033                       Symbol bestSoFar,
  1034                       boolean allowBoxing,
  1035                       boolean useVarargs,
  1036                       boolean operator) {
  1037         if (sym.kind == ERR ||
  1038                 !sym.isInheritedIn(site.tsym, types) ||
  1039                 (useVarargs && (sym.flags() & VARARGS) == 0)) {
  1040             return bestSoFar;
  1042         Assert.check(sym.kind < AMBIGUOUS);
  1043         try {
  1044             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1045                                allowBoxing, useVarargs, resolveMethodCheck, types.noWarnings);
  1046             if (!operator)
  1047                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1048         } catch (InapplicableMethodException ex) {
  1049             if (!operator)
  1050                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1051             switch (bestSoFar.kind) {
  1052                 case ABSENT_MTH:
  1053                     return new InapplicableSymbolError(currentResolutionContext);
  1054                 case WRONG_MTH:
  1055                     if (operator) return bestSoFar;
  1056                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1057                 default:
  1058                     return bestSoFar;
  1061         if (!isAccessible(env, site, sym)) {
  1062             return (bestSoFar.kind == ABSENT_MTH)
  1063                 ? new AccessError(env, site, sym)
  1064                 : bestSoFar;
  1066         return (bestSoFar.kind > AMBIGUOUS)
  1067             ? sym
  1068             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1069                            allowBoxing && operator, useVarargs);
  1072     /* Return the most specific of the two methods for a call,
  1073      *  given that both are accessible and applicable.
  1074      *  @param m1               A new candidate for most specific.
  1075      *  @param m2               The previous most specific candidate.
  1076      *  @param env              The current environment.
  1077      *  @param site             The original type from where the selection
  1078      *                          takes place.
  1079      *  @param allowBoxing Allow boxing conversions of arguments.
  1080      *  @param useVarargs Box trailing arguments into an array for varargs.
  1081      */
  1082     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1083                         Symbol m2,
  1084                         Env<AttrContext> env,
  1085                         final Type site,
  1086                         boolean allowBoxing,
  1087                         boolean useVarargs) {
  1088         switch (m2.kind) {
  1089         case MTH:
  1090             if (m1 == m2) return m1;
  1091             boolean m1SignatureMoreSpecific =
  1092                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1093             boolean m2SignatureMoreSpecific =
  1094                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1095             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1096                 Type mt1 = types.memberType(site, m1);
  1097                 Type mt2 = types.memberType(site, m2);
  1098                 if (!types.overrideEquivalent(mt1, mt2))
  1099                     return ambiguityError(m1, m2);
  1101                 // same signature; select (a) the non-bridge method, or
  1102                 // (b) the one that overrides the other, or (c) the concrete
  1103                 // one, or (d) merge both abstract signatures
  1104                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1105                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1107                 // if one overrides or hides the other, use it
  1108                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1109                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1110                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1111                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1112                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1113                     m1.overrides(m2, m1Owner, types, false))
  1114                     return m1;
  1115                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1116                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1117                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1118                     m2.overrides(m1, m2Owner, types, false))
  1119                     return m2;
  1120                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1121                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1122                 if (m1Abstract && !m2Abstract) return m2;
  1123                 if (m2Abstract && !m1Abstract) return m1;
  1124                 // both abstract or both concrete
  1125                 if (!m1Abstract && !m2Abstract)
  1126                     return ambiguityError(m1, m2);
  1127                 // check that both signatures have the same erasure
  1128                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1129                                        m2.erasure(types).getParameterTypes()))
  1130                     return ambiguityError(m1, m2);
  1131                 // both abstract, neither overridden; merge throws clause and result type
  1132                 Type mst = mostSpecificReturnType(mt1, mt2);
  1133                 if (mst == null) {
  1134                     // Theoretically, this can't happen, but it is possible
  1135                     // due to error recovery or mixing incompatible class files
  1136                     return ambiguityError(m1, m2);
  1138                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1139                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1140                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1141                 MethodSymbol result = new MethodSymbol(
  1142                         mostSpecific.flags(),
  1143                         mostSpecific.name,
  1144                         newSig,
  1145                         mostSpecific.owner) {
  1146                     @Override
  1147                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1148                         if (origin == site.tsym)
  1149                             return this;
  1150                         else
  1151                             return super.implementation(origin, types, checkResult);
  1153                     };
  1154                 return result;
  1156             if (m1SignatureMoreSpecific) return m1;
  1157             if (m2SignatureMoreSpecific) return m2;
  1158             return ambiguityError(m1, m2);
  1159         case AMBIGUOUS:
  1160             AmbiguityError e = (AmbiguityError)m2;
  1161             Symbol err1 = mostSpecific(argtypes, m1, e.sym, env, site, allowBoxing, useVarargs);
  1162             Symbol err2 = mostSpecific(argtypes, m1, e.sym2, env, site, allowBoxing, useVarargs);
  1163             if (err1 == err2) return err1;
  1164             if (err1 == e.sym && err2 == e.sym2) return m2;
  1165             if (err1 instanceof AmbiguityError &&
  1166                 err2 instanceof AmbiguityError &&
  1167                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1168                 return ambiguityError(m1, m2);
  1169             else
  1170                 return ambiguityError(err1, err2);
  1171         default:
  1172             throw new AssertionError();
  1175     //where
  1176     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1177         Symbol m12 = adjustVarargs(m1, m2, useVarargs);
  1178         Symbol m22 = adjustVarargs(m2, m1, useVarargs);
  1179         Type mtype1 = types.memberType(site, m12);
  1180         Type mtype2 = types.memberType(site, m22);
  1182         //check if invocation is more specific
  1183         if (invocationMoreSpecific(env, site, m22, mtype1.getParameterTypes(), allowBoxing, useVarargs)) {
  1184             return true;
  1187         //perform structural check
  1189         List<Type> formals1 = mtype1.getParameterTypes();
  1190         Type lastFormal1 = formals1.last();
  1191         List<Type> formals2 = mtype2.getParameterTypes();
  1192         Type lastFormal2 = formals2.last();
  1193         ListBuffer<Type> newFormals = ListBuffer.lb();
  1195         boolean hasStructuralPoly = false;
  1196         for (Type actual : actuals) {
  1197             //perform formal argument adaptation in case actuals > formals (varargs)
  1198             Type f1 = formals1.isEmpty() ?
  1199                     lastFormal1 : formals1.head;
  1200             Type f2 = formals2.isEmpty() ?
  1201                     lastFormal2 : formals2.head;
  1203             //is this a structural actual argument?
  1204             boolean isStructuralPoly = actual.hasTag(DEFERRED) &&
  1205                     (((DeferredType)actual).tree.hasTag(LAMBDA) ||
  1206                     ((DeferredType)actual).tree.hasTag(REFERENCE));
  1208             Type newFormal = f1;
  1210             if (isStructuralPoly) {
  1211                 //for structural arguments only - check that corresponding formals
  1212                 //are related - if so replace formal with <null>
  1213                 hasStructuralPoly = true;
  1214                 DeferredType dt = (DeferredType)actual;
  1215                 Type t1 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m1, currentResolutionContext.step).apply(dt);
  1216                 Type t2 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m2, currentResolutionContext.step).apply(dt);
  1217                 if (t1.isErroneous() || t2.isErroneous() || !isStructuralSubtype(t1, t2)) {
  1218                     //not structural subtypes - simply fail
  1219                     return false;
  1220                 } else {
  1221                     newFormal = syms.botType;
  1225             newFormals.append(newFormal);
  1226             if (newFormals.length() > mtype2.getParameterTypes().length()) {
  1227                 //expand m2's type so as to fit the new formal arity (varargs)
  1228                 m22.type = types.createMethodTypeWithParameters(m22.type, m22.type.getParameterTypes().append(f2));
  1231             formals1 = formals1.isEmpty() ? formals1 : formals1.tail;
  1232             formals2 = formals2.isEmpty() ? formals2 : formals2.tail;
  1235         if (!hasStructuralPoly) {
  1236             //if no structural actual was found, we're done
  1237             return false;
  1239         //perform additional adaptation if actuals < formals (varargs)
  1240         for (Type t : formals1) {
  1241             newFormals.append(t);
  1243         //check if invocation (with tweaked args) is more specific
  1244         return invocationMoreSpecific(env, site, m22, newFormals.toList(), allowBoxing, useVarargs);
  1246     //where
  1247     private boolean invocationMoreSpecific(Env<AttrContext> env, Type site, Symbol m2, List<Type> argtypes1, boolean allowBoxing, boolean useVarargs) {
  1248         MethodResolutionContext prevContext = currentResolutionContext;
  1249         try {
  1250             currentResolutionContext = new MethodResolutionContext();
  1251             currentResolutionContext.step = allowBoxing ? BOX : BASIC;
  1252             noteWarner.clear();
  1253             Type mst = instantiate(env, site, m2, null,
  1254                     types.lowerBounds(argtypes1), null,
  1255                     allowBoxing, false, resolveMethodCheck, noteWarner);
  1256             return mst != null &&
  1257                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1258         } finally {
  1259             currentResolutionContext = prevContext;
  1262     //where
  1263     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1264         List<Type> fromArgs = from.type.getParameterTypes();
  1265         List<Type> toArgs = to.type.getParameterTypes();
  1266         if (useVarargs &&
  1267                 (from.flags() & VARARGS) != 0 &&
  1268                 (to.flags() & VARARGS) != 0) {
  1269             Type varargsTypeFrom = fromArgs.last();
  1270             Type varargsTypeTo = toArgs.last();
  1271             ListBuffer<Type> args = ListBuffer.lb();
  1272             if (toArgs.length() < fromArgs.length()) {
  1273                 //if we are checking a varargs method 'from' against another varargs
  1274                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1275                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1276                 //until 'to' signature has the same arity as 'from')
  1277                 while (fromArgs.head != varargsTypeFrom) {
  1278                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1279                     fromArgs = fromArgs.tail;
  1280                     toArgs = toArgs.head == varargsTypeTo ?
  1281                         toArgs :
  1282                         toArgs.tail;
  1284             } else {
  1285                 //formal argument list is same as original list where last
  1286                 //argument (array type) is removed
  1287                 args.appendList(toArgs.reverse().tail.reverse());
  1289             //append varargs element type as last synthetic formal
  1290             args.append(types.elemtype(varargsTypeTo));
  1291             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1292             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1293         } else {
  1294             return to;
  1297     //where
  1298     boolean isStructuralSubtype(Type s, Type t) {
  1300         Type ret_s = types.findDescriptorType(s).getReturnType();
  1301         Type ret_t = types.findDescriptorType(t).getReturnType();
  1303         //covariant most specific check for function descriptor return type
  1304         if (!types.isSubtype(ret_s, ret_t)) {
  1305             return false;
  1308         List<Type> args_s = types.findDescriptorType(s).getParameterTypes();
  1309         List<Type> args_t = types.findDescriptorType(t).getParameterTypes();
  1311         //arity must be identical
  1312         if (args_s.length() != args_t.length()) {
  1313             return false;
  1316         //invariant most specific check for function descriptor parameter types
  1317         if (!types.isSameTypes(args_t, args_s)) {
  1318             return false;
  1321         return true;
  1323     //where
  1324     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1325         Type rt1 = mt1.getReturnType();
  1326         Type rt2 = mt2.getReturnType();
  1328         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1329             //if both are generic methods, adjust return type ahead of subtyping check
  1330             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1332         //first use subtyping, then return type substitutability
  1333         if (types.isSubtype(rt1, rt2)) {
  1334             return mt1;
  1335         } else if (types.isSubtype(rt2, rt1)) {
  1336             return mt2;
  1337         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1338             return mt1;
  1339         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1340             return mt2;
  1341         } else {
  1342             return null;
  1345     //where
  1346     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1347         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1348             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1349         } else {
  1350             return new AmbiguityError(m1, m2);
  1354     Symbol findMethodInScope(Env<AttrContext> env,
  1355             Type site,
  1356             Name name,
  1357             List<Type> argtypes,
  1358             List<Type> typeargtypes,
  1359             Scope sc,
  1360             Symbol bestSoFar,
  1361             boolean allowBoxing,
  1362             boolean useVarargs,
  1363             boolean operator,
  1364             boolean abstractok) {
  1365         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1366             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1367                     bestSoFar, allowBoxing, useVarargs, operator);
  1369         return bestSoFar;
  1371     //where
  1372         class LookupFilter implements Filter<Symbol> {
  1374             boolean abstractOk;
  1376             LookupFilter(boolean abstractOk) {
  1377                 this.abstractOk = abstractOk;
  1380             public boolean accepts(Symbol s) {
  1381                 long flags = s.flags();
  1382                 return s.kind == MTH &&
  1383                         (flags & SYNTHETIC) == 0 &&
  1384                         (abstractOk ||
  1385                         (flags & DEFAULT) != 0 ||
  1386                         (flags & ABSTRACT) == 0);
  1388         };
  1390     /** Find best qualified method matching given name, type and value
  1391      *  arguments.
  1392      *  @param env       The current environment.
  1393      *  @param site      The original type from where the selection
  1394      *                   takes place.
  1395      *  @param name      The method's name.
  1396      *  @param argtypes  The method's value arguments.
  1397      *  @param typeargtypes The method's type arguments
  1398      *  @param allowBoxing Allow boxing conversions of arguments.
  1399      *  @param useVarargs Box trailing arguments into an array for varargs.
  1400      */
  1401     Symbol findMethod(Env<AttrContext> env,
  1402                       Type site,
  1403                       Name name,
  1404                       List<Type> argtypes,
  1405                       List<Type> typeargtypes,
  1406                       boolean allowBoxing,
  1407                       boolean useVarargs,
  1408                       boolean operator) {
  1409         Symbol bestSoFar = methodNotFound;
  1410         bestSoFar = findMethod(env,
  1411                           site,
  1412                           name,
  1413                           argtypes,
  1414                           typeargtypes,
  1415                           site.tsym.type,
  1416                           bestSoFar,
  1417                           allowBoxing,
  1418                           useVarargs,
  1419                           operator);
  1420         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1421         return bestSoFar;
  1423     // where
  1424     private Symbol findMethod(Env<AttrContext> env,
  1425                               Type site,
  1426                               Name name,
  1427                               List<Type> argtypes,
  1428                               List<Type> typeargtypes,
  1429                               Type intype,
  1430                               Symbol bestSoFar,
  1431                               boolean allowBoxing,
  1432                               boolean useVarargs,
  1433                               boolean operator) {
  1434         @SuppressWarnings({"unchecked","rawtypes"})
  1435         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1436         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1437         for (TypeSymbol s : superclasses(intype)) {
  1438             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1439                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1440             if (name == names.init) return bestSoFar;
  1441             iphase = (iphase == null) ? null : iphase.update(s, this);
  1442             if (iphase != null) {
  1443                 for (Type itype : types.interfaces(s.type)) {
  1444                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1449         Symbol concrete = bestSoFar.kind < ERR &&
  1450                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1451                 bestSoFar : methodNotFound;
  1453         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1454             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1455             //keep searching for abstract methods
  1456             for (Type itype : itypes[iphase2.ordinal()]) {
  1457                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1458                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1459                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1460                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1461                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1462                 if (concrete != bestSoFar &&
  1463                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1464                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1465                     //this is an hack - as javac does not do full membership checks
  1466                     //most specific ends up comparing abstract methods that might have
  1467                     //been implemented by some concrete method in a subclass and,
  1468                     //because of raw override, it is possible for an abstract method
  1469                     //to be more specific than the concrete method - so we need
  1470                     //to explicitly call that out (see CR 6178365)
  1471                     bestSoFar = concrete;
  1475         return bestSoFar;
  1478     enum InterfaceLookupPhase {
  1479         ABSTRACT_OK() {
  1480             @Override
  1481             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1482                 //We should not look for abstract methods if receiver is a concrete class
  1483                 //(as concrete classes are expected to implement all abstracts coming
  1484                 //from superinterfaces)
  1485                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1486                     return this;
  1487                 } else if (rs.allowDefaultMethods) {
  1488                     return DEFAULT_OK;
  1489                 } else {
  1490                     return null;
  1493         },
  1494         DEFAULT_OK() {
  1495             @Override
  1496             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1497                 return this;
  1499         };
  1501         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1504     /**
  1505      * Return an Iterable object to scan the superclasses of a given type.
  1506      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1507      * access more supertypes than strictly needed (as this could trigger completion
  1508      * errors if some of the not-needed supertypes are missing/ill-formed).
  1509      */
  1510     Iterable<TypeSymbol> superclasses(final Type intype) {
  1511         return new Iterable<TypeSymbol>() {
  1512             public Iterator<TypeSymbol> iterator() {
  1513                 return new Iterator<TypeSymbol>() {
  1515                     List<TypeSymbol> seen = List.nil();
  1516                     TypeSymbol currentSym = symbolFor(intype);
  1517                     TypeSymbol prevSym = null;
  1519                     public boolean hasNext() {
  1520                         if (currentSym == syms.noSymbol) {
  1521                             currentSym = symbolFor(types.supertype(prevSym.type));
  1523                         return currentSym != null;
  1526                     public TypeSymbol next() {
  1527                         prevSym = currentSym;
  1528                         currentSym = syms.noSymbol;
  1529                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1530                         return prevSym;
  1533                     public void remove() {
  1534                         throw new UnsupportedOperationException();
  1537                     TypeSymbol symbolFor(Type t) {
  1538                         if (!t.hasTag(CLASS) &&
  1539                                 !t.hasTag(TYPEVAR)) {
  1540                             return null;
  1542                         while (t.hasTag(TYPEVAR))
  1543                             t = t.getUpperBound();
  1544                         if (seen.contains(t.tsym)) {
  1545                             //degenerate case in which we have a circular
  1546                             //class hierarchy - because of ill-formed classfiles
  1547                             return null;
  1549                         seen = seen.prepend(t.tsym);
  1550                         return t.tsym;
  1552                 };
  1554         };
  1557     /** Find unqualified method matching given name, type and value arguments.
  1558      *  @param env       The current environment.
  1559      *  @param name      The method's name.
  1560      *  @param argtypes  The method's value arguments.
  1561      *  @param typeargtypes  The method's type arguments.
  1562      *  @param allowBoxing Allow boxing conversions of arguments.
  1563      *  @param useVarargs Box trailing arguments into an array for varargs.
  1564      */
  1565     Symbol findFun(Env<AttrContext> env, Name name,
  1566                    List<Type> argtypes, List<Type> typeargtypes,
  1567                    boolean allowBoxing, boolean useVarargs) {
  1568         Symbol bestSoFar = methodNotFound;
  1569         Symbol sym;
  1570         Env<AttrContext> env1 = env;
  1571         boolean staticOnly = false;
  1572         while (env1.outer != null) {
  1573             if (isStatic(env1)) staticOnly = true;
  1574             sym = findMethod(
  1575                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1576                 allowBoxing, useVarargs, false);
  1577             if (sym.exists()) {
  1578                 if (staticOnly &&
  1579                     sym.kind == MTH &&
  1580                     sym.owner.kind == TYP &&
  1581                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1582                 else return sym;
  1583             } else if (sym.kind < bestSoFar.kind) {
  1584                 bestSoFar = sym;
  1586             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1587             env1 = env1.outer;
  1590         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1591                          typeargtypes, allowBoxing, useVarargs, false);
  1592         if (sym.exists())
  1593             return sym;
  1595         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1596         for (; e.scope != null; e = e.next()) {
  1597             sym = e.sym;
  1598             Type origin = e.getOrigin().owner.type;
  1599             if (sym.kind == MTH) {
  1600                 if (e.sym.owner.type != origin)
  1601                     sym = sym.clone(e.getOrigin().owner);
  1602                 if (!isAccessible(env, origin, sym))
  1603                     sym = new AccessError(env, origin, sym);
  1604                 bestSoFar = selectBest(env, origin,
  1605                                        argtypes, typeargtypes,
  1606                                        sym, bestSoFar,
  1607                                        allowBoxing, useVarargs, false);
  1610         if (bestSoFar.exists())
  1611             return bestSoFar;
  1613         e = env.toplevel.starImportScope.lookup(name);
  1614         for (; e.scope != null; e = e.next()) {
  1615             sym = e.sym;
  1616             Type origin = e.getOrigin().owner.type;
  1617             if (sym.kind == MTH) {
  1618                 if (e.sym.owner.type != origin)
  1619                     sym = sym.clone(e.getOrigin().owner);
  1620                 if (!isAccessible(env, origin, sym))
  1621                     sym = new AccessError(env, origin, sym);
  1622                 bestSoFar = selectBest(env, origin,
  1623                                        argtypes, typeargtypes,
  1624                                        sym, bestSoFar,
  1625                                        allowBoxing, useVarargs, false);
  1628         return bestSoFar;
  1631     /** Load toplevel or member class with given fully qualified name and
  1632      *  verify that it is accessible.
  1633      *  @param env       The current environment.
  1634      *  @param name      The fully qualified name of the class to be loaded.
  1635      */
  1636     Symbol loadClass(Env<AttrContext> env, Name name) {
  1637         try {
  1638             ClassSymbol c = reader.loadClass(name);
  1639             return isAccessible(env, c) ? c : new AccessError(c);
  1640         } catch (ClassReader.BadClassFile err) {
  1641             throw err;
  1642         } catch (CompletionFailure ex) {
  1643             return typeNotFound;
  1647     /** Find qualified member type.
  1648      *  @param env       The current environment.
  1649      *  @param site      The original type from where the selection takes
  1650      *                   place.
  1651      *  @param name      The type's name.
  1652      *  @param c         The class to search for the member type. This is
  1653      *                   always a superclass or implemented interface of
  1654      *                   site's class.
  1655      */
  1656     Symbol findMemberType(Env<AttrContext> env,
  1657                           Type site,
  1658                           Name name,
  1659                           TypeSymbol c) {
  1660         Symbol bestSoFar = typeNotFound;
  1661         Symbol sym;
  1662         Scope.Entry e = c.members().lookup(name);
  1663         while (e.scope != null) {
  1664             if (e.sym.kind == TYP) {
  1665                 return isAccessible(env, site, e.sym)
  1666                     ? e.sym
  1667                     : new AccessError(env, site, e.sym);
  1669             e = e.next();
  1671         Type st = types.supertype(c.type);
  1672         if (st != null && st.hasTag(CLASS)) {
  1673             sym = findMemberType(env, site, name, st.tsym);
  1674             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1676         for (List<Type> l = types.interfaces(c.type);
  1677              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1678              l = l.tail) {
  1679             sym = findMemberType(env, site, name, l.head.tsym);
  1680             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1681                 sym.owner != bestSoFar.owner)
  1682                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1683             else if (sym.kind < bestSoFar.kind)
  1684                 bestSoFar = sym;
  1686         return bestSoFar;
  1689     /** Find a global type in given scope and load corresponding class.
  1690      *  @param env       The current environment.
  1691      *  @param scope     The scope in which to look for the type.
  1692      *  @param name      The type's name.
  1693      */
  1694     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1695         Symbol bestSoFar = typeNotFound;
  1696         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1697             Symbol sym = loadClass(env, e.sym.flatName());
  1698             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1699                 bestSoFar != sym)
  1700                 return new AmbiguityError(bestSoFar, sym);
  1701             else if (sym.kind < bestSoFar.kind)
  1702                 bestSoFar = sym;
  1704         return bestSoFar;
  1707     /** Find an unqualified type symbol.
  1708      *  @param env       The current environment.
  1709      *  @param name      The type's name.
  1710      */
  1711     Symbol findType(Env<AttrContext> env, Name name) {
  1712         Symbol bestSoFar = typeNotFound;
  1713         Symbol sym;
  1714         boolean staticOnly = false;
  1715         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1716             if (isStatic(env1)) staticOnly = true;
  1717             for (Scope.Entry e = env1.info.scope.lookup(name);
  1718                  e.scope != null;
  1719                  e = e.next()) {
  1720                 if (e.sym.kind == TYP) {
  1721                     if (staticOnly &&
  1722                         e.sym.type.hasTag(TYPEVAR) &&
  1723                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1724                     return e.sym;
  1728             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1729                                  env1.enclClass.sym);
  1730             if (staticOnly && sym.kind == TYP &&
  1731                 sym.type.hasTag(CLASS) &&
  1732                 sym.type.getEnclosingType().hasTag(CLASS) &&
  1733                 env1.enclClass.sym.type.isParameterized() &&
  1734                 sym.type.getEnclosingType().isParameterized())
  1735                 return new StaticError(sym);
  1736             else if (sym.exists()) return sym;
  1737             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1739             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1740             if ((encl.sym.flags() & STATIC) != 0)
  1741                 staticOnly = true;
  1744         if (!env.tree.hasTag(IMPORT)) {
  1745             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1746             if (sym.exists()) return sym;
  1747             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1749             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1750             if (sym.exists()) return sym;
  1751             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1753             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1754             if (sym.exists()) return sym;
  1755             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1758         return bestSoFar;
  1761     /** Find an unqualified identifier which matches a specified kind set.
  1762      *  @param env       The current environment.
  1763      *  @param name      The identifier's name.
  1764      *  @param kind      Indicates the possible symbol kinds
  1765      *                   (a subset of VAL, TYP, PCK).
  1766      */
  1767     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1768         Symbol bestSoFar = typeNotFound;
  1769         Symbol sym;
  1771         if ((kind & VAR) != 0) {
  1772             sym = findVar(env, name);
  1773             if (sym.exists()) return sym;
  1774             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1777         if ((kind & TYP) != 0) {
  1778             sym = findType(env, name);
  1779             if (sym.kind==TYP) {
  1780                  reportDependence(env.enclClass.sym, sym);
  1782             if (sym.exists()) return sym;
  1783             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1786         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1787         else return bestSoFar;
  1790     /** Report dependencies.
  1791      * @param from The enclosing class sym
  1792      * @param to   The found identifier that the class depends on.
  1793      */
  1794     public void reportDependence(Symbol from, Symbol to) {
  1795         // Override if you want to collect the reported dependencies.
  1798     /** Find an identifier in a package which matches a specified kind set.
  1799      *  @param env       The current environment.
  1800      *  @param name      The identifier's name.
  1801      *  @param kind      Indicates the possible symbol kinds
  1802      *                   (a nonempty subset of TYP, PCK).
  1803      */
  1804     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1805                               Name name, int kind) {
  1806         Name fullname = TypeSymbol.formFullName(name, pck);
  1807         Symbol bestSoFar = typeNotFound;
  1808         PackageSymbol pack = null;
  1809         if ((kind & PCK) != 0) {
  1810             pack = reader.enterPackage(fullname);
  1811             if (pack.exists()) return pack;
  1813         if ((kind & TYP) != 0) {
  1814             Symbol sym = loadClass(env, fullname);
  1815             if (sym.exists()) {
  1816                 // don't allow programs to use flatnames
  1817                 if (name == sym.name) return sym;
  1819             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1821         return (pack != null) ? pack : bestSoFar;
  1824     /** Find an identifier among the members of a given type `site'.
  1825      *  @param env       The current environment.
  1826      *  @param site      The type containing the symbol to be found.
  1827      *  @param name      The identifier's name.
  1828      *  @param kind      Indicates the possible symbol kinds
  1829      *                   (a subset of VAL, TYP).
  1830      */
  1831     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1832                            Name name, int kind) {
  1833         Symbol bestSoFar = typeNotFound;
  1834         Symbol sym;
  1835         if ((kind & VAR) != 0) {
  1836             sym = findField(env, site, name, site.tsym);
  1837             if (sym.exists()) return sym;
  1838             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1841         if ((kind & TYP) != 0) {
  1842             sym = findMemberType(env, site, name, site.tsym);
  1843             if (sym.exists()) return sym;
  1844             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1846         return bestSoFar;
  1849 /* ***************************************************************************
  1850  *  Access checking
  1851  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1852  *  an error message in the process
  1853  ****************************************************************************/
  1855     /** If `sym' is a bad symbol: report error and return errSymbol
  1856      *  else pass through unchanged,
  1857      *  additional arguments duplicate what has been used in trying to find the
  1858      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1859      *  expect misses to happen frequently.
  1861      *  @param sym       The symbol that was found, or a ResolveError.
  1862      *  @param pos       The position to use for error reporting.
  1863      *  @param location  The symbol the served as a context for this lookup
  1864      *  @param site      The original type from where the selection took place.
  1865      *  @param name      The symbol's name.
  1866      *  @param qualified Did we get here through a qualified expression resolution?
  1867      *  @param argtypes  The invocation's value arguments,
  1868      *                   if we looked for a method.
  1869      *  @param typeargtypes  The invocation's type arguments,
  1870      *                   if we looked for a method.
  1871      *  @param logResolveHelper helper class used to log resolve errors
  1872      */
  1873     Symbol accessInternal(Symbol sym,
  1874                   DiagnosticPosition pos,
  1875                   Symbol location,
  1876                   Type site,
  1877                   Name name,
  1878                   boolean qualified,
  1879                   List<Type> argtypes,
  1880                   List<Type> typeargtypes,
  1881                   LogResolveHelper logResolveHelper) {
  1882         if (sym.kind >= AMBIGUOUS) {
  1883             ResolveError errSym = (ResolveError)sym;
  1884             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1885             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  1886             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  1887                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1890         return sym;
  1893     /**
  1894      * Variant of the generalized access routine, to be used for generating method
  1895      * resolution diagnostics
  1896      */
  1897     Symbol accessMethod(Symbol sym,
  1898                   DiagnosticPosition pos,
  1899                   Symbol location,
  1900                   Type site,
  1901                   Name name,
  1902                   boolean qualified,
  1903                   List<Type> argtypes,
  1904                   List<Type> typeargtypes) {
  1905         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  1908     /** Same as original accessMethod(), but without location.
  1909      */
  1910     Symbol accessMethod(Symbol sym,
  1911                   DiagnosticPosition pos,
  1912                   Type site,
  1913                   Name name,
  1914                   boolean qualified,
  1915                   List<Type> argtypes,
  1916                   List<Type> typeargtypes) {
  1917         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1920     /**
  1921      * Variant of the generalized access routine, to be used for generating variable,
  1922      * type resolution diagnostics
  1923      */
  1924     Symbol accessBase(Symbol sym,
  1925                   DiagnosticPosition pos,
  1926                   Symbol location,
  1927                   Type site,
  1928                   Name name,
  1929                   boolean qualified) {
  1930         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  1933     /** Same as original accessBase(), but without location.
  1934      */
  1935     Symbol accessBase(Symbol sym,
  1936                   DiagnosticPosition pos,
  1937                   Type site,
  1938                   Name name,
  1939                   boolean qualified) {
  1940         return accessBase(sym, pos, site.tsym, site, name, qualified);
  1943     interface LogResolveHelper {
  1944         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  1945         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  1948     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  1949         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1950             return !site.isErroneous();
  1952         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1953             return argtypes;
  1955     };
  1957     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  1958         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1959             return !site.isErroneous() &&
  1960                         !Type.isErroneous(argtypes) &&
  1961                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  1963         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1964             return (syms.operatorNames.contains(name)) ?
  1965                     argtypes :
  1966                     Type.map(argtypes, new ResolveDeferredRecoveryMap(accessedSym));
  1969         class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  1971             public ResolveDeferredRecoveryMap(Symbol msym) {
  1972                 deferredAttr.super(AttrMode.SPECULATIVE, msym, currentResolutionContext.step);
  1975             @Override
  1976             protected Type typeOf(DeferredType dt) {
  1977                 Type res = super.typeOf(dt);
  1978                 if (!res.isErroneous()) {
  1979                     switch (TreeInfo.skipParens(dt.tree).getTag()) {
  1980                         case LAMBDA:
  1981                         case REFERENCE:
  1982                             return dt;
  1983                         case CONDEXPR:
  1984                             return res == Type.recoveryType ?
  1985                                     dt : res;
  1988                 return res;
  1991     };
  1993     /** Check that sym is not an abstract method.
  1994      */
  1995     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1996         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  1997             log.error(pos, "abstract.cant.be.accessed.directly",
  1998                       kindName(sym), sym, sym.location());
  2001 /* ***************************************************************************
  2002  *  Debugging
  2003  ****************************************************************************/
  2005     /** print all scopes starting with scope s and proceeding outwards.
  2006      *  used for debugging.
  2007      */
  2008     public void printscopes(Scope s) {
  2009         while (s != null) {
  2010             if (s.owner != null)
  2011                 System.err.print(s.owner + ": ");
  2012             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2013                 if ((e.sym.flags() & ABSTRACT) != 0)
  2014                     System.err.print("abstract ");
  2015                 System.err.print(e.sym + " ");
  2017             System.err.println();
  2018             s = s.next;
  2022     void printscopes(Env<AttrContext> env) {
  2023         while (env.outer != null) {
  2024             System.err.println("------------------------------");
  2025             printscopes(env.info.scope);
  2026             env = env.outer;
  2030     public void printscopes(Type t) {
  2031         while (t.hasTag(CLASS)) {
  2032             printscopes(t.tsym.members());
  2033             t = types.supertype(t);
  2037 /* ***************************************************************************
  2038  *  Name resolution
  2039  *  Naming conventions are as for symbol lookup
  2040  *  Unlike the find... methods these methods will report access errors
  2041  ****************************************************************************/
  2043     /** Resolve an unqualified (non-method) identifier.
  2044      *  @param pos       The position to use for error reporting.
  2045      *  @param env       The environment current at the identifier use.
  2046      *  @param name      The identifier's name.
  2047      *  @param kind      The set of admissible symbol kinds for the identifier.
  2048      */
  2049     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2050                         Name name, int kind) {
  2051         return accessBase(
  2052             findIdent(env, name, kind),
  2053             pos, env.enclClass.sym.type, name, false);
  2056     /** Resolve an unqualified method identifier.
  2057      *  @param pos       The position to use for error reporting.
  2058      *  @param env       The environment current at the method invocation.
  2059      *  @param name      The identifier's name.
  2060      *  @param argtypes  The types of the invocation's value arguments.
  2061      *  @param typeargtypes  The types of the invocation's type arguments.
  2062      */
  2063     Symbol resolveMethod(DiagnosticPosition pos,
  2064                          Env<AttrContext> env,
  2065                          Name name,
  2066                          List<Type> argtypes,
  2067                          List<Type> typeargtypes) {
  2068         return lookupMethod(env, pos, env.enclClass.sym, new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2069             @Override
  2070             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2071                 return findFun(env, name, argtypes, typeargtypes,
  2072                         phase.isBoxingRequired(),
  2073                         phase.isVarargsRequired());
  2075         });
  2078     /** Resolve a qualified method identifier
  2079      *  @param pos       The position to use for error reporting.
  2080      *  @param env       The environment current at the method invocation.
  2081      *  @param site      The type of the qualifying expression, in which
  2082      *                   identifier is searched.
  2083      *  @param name      The identifier's name.
  2084      *  @param argtypes  The types of the invocation's value arguments.
  2085      *  @param typeargtypes  The types of the invocation's type arguments.
  2086      */
  2087     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2088                                   Type site, Name name, List<Type> argtypes,
  2089                                   List<Type> typeargtypes) {
  2090         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2092     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2093                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2094                                   List<Type> typeargtypes) {
  2095         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2097     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2098                                   DiagnosticPosition pos, Env<AttrContext> env,
  2099                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2100                                   List<Type> typeargtypes) {
  2101         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2102             @Override
  2103             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2104                 return findMethod(env, site, name, argtypes, typeargtypes,
  2105                         phase.isBoxingRequired(),
  2106                         phase.isVarargsRequired(), false);
  2108             @Override
  2109             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2110                 if (sym.kind >= AMBIGUOUS) {
  2111                     sym = super.access(env, pos, location, sym);
  2112                 } else if (allowMethodHandles) {
  2113                     MethodSymbol msym = (MethodSymbol)sym;
  2114                     if (msym.isSignaturePolymorphic(types)) {
  2115                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2118                 return sym;
  2120         });
  2123     /** Find or create an implicit method of exactly the given type (after erasure).
  2124      *  Searches in a side table, not the main scope of the site.
  2125      *  This emulates the lookup process required by JSR 292 in JVM.
  2126      *  @param env       Attribution environment
  2127      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2128      *  @param argtypes  The required argument types
  2129      */
  2130     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2131                                             final Symbol spMethod,
  2132                                             List<Type> argtypes) {
  2133         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2134                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2135         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2136             if (types.isSameType(mtype, sym.type)) {
  2137                return sym;
  2141         // create the desired method
  2142         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2143         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2144             @Override
  2145             public Symbol baseSymbol() {
  2146                 return spMethod;
  2148         };
  2149         polymorphicSignatureScope.enter(msym);
  2150         return msym;
  2153     /** Resolve a qualified method identifier, throw a fatal error if not
  2154      *  found.
  2155      *  @param pos       The position to use for error reporting.
  2156      *  @param env       The environment current at the method invocation.
  2157      *  @param site      The type of the qualifying expression, in which
  2158      *                   identifier is searched.
  2159      *  @param name      The identifier's name.
  2160      *  @param argtypes  The types of the invocation's value arguments.
  2161      *  @param typeargtypes  The types of the invocation's type arguments.
  2162      */
  2163     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2164                                         Type site, Name name,
  2165                                         List<Type> argtypes,
  2166                                         List<Type> typeargtypes) {
  2167         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2168         resolveContext.internalResolution = true;
  2169         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2170                 site, name, argtypes, typeargtypes);
  2171         if (sym.kind == MTH) return (MethodSymbol)sym;
  2172         else throw new FatalError(
  2173                  diags.fragment("fatal.err.cant.locate.meth",
  2174                                 name));
  2177     /** Resolve constructor.
  2178      *  @param pos       The position to use for error reporting.
  2179      *  @param env       The environment current at the constructor invocation.
  2180      *  @param site      The type of class for which a constructor is searched.
  2181      *  @param argtypes  The types of the constructor invocation's value
  2182      *                   arguments.
  2183      *  @param typeargtypes  The types of the constructor invocation's type
  2184      *                   arguments.
  2185      */
  2186     Symbol resolveConstructor(DiagnosticPosition pos,
  2187                               Env<AttrContext> env,
  2188                               Type site,
  2189                               List<Type> argtypes,
  2190                               List<Type> typeargtypes) {
  2191         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2194     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2195                               final DiagnosticPosition pos,
  2196                               Env<AttrContext> env,
  2197                               Type site,
  2198                               List<Type> argtypes,
  2199                               List<Type> typeargtypes) {
  2200         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2201             @Override
  2202             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2203                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2204                         phase.isBoxingRequired(),
  2205                         phase.isVarargsRequired());
  2207         });
  2210     /** Resolve a constructor, throw a fatal error if not found.
  2211      *  @param pos       The position to use for error reporting.
  2212      *  @param env       The environment current at the method invocation.
  2213      *  @param site      The type to be constructed.
  2214      *  @param argtypes  The types of the invocation's value arguments.
  2215      *  @param typeargtypes  The types of the invocation's type arguments.
  2216      */
  2217     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2218                                         Type site,
  2219                                         List<Type> argtypes,
  2220                                         List<Type> typeargtypes) {
  2221         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2222         resolveContext.internalResolution = true;
  2223         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2224         if (sym.kind == MTH) return (MethodSymbol)sym;
  2225         else throw new FatalError(
  2226                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2229     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2230                               Type site, List<Type> argtypes,
  2231                               List<Type> typeargtypes,
  2232                               boolean allowBoxing,
  2233                               boolean useVarargs) {
  2234         Symbol sym = findMethod(env, site,
  2235                                     names.init, argtypes,
  2236                                     typeargtypes, allowBoxing,
  2237                                     useVarargs, false);
  2238         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2239         return sym;
  2242     /** Resolve constructor using diamond inference.
  2243      *  @param pos       The position to use for error reporting.
  2244      *  @param env       The environment current at the constructor invocation.
  2245      *  @param site      The type of class for which a constructor is searched.
  2246      *                   The scope of this class has been touched in attribution.
  2247      *  @param argtypes  The types of the constructor invocation's value
  2248      *                   arguments.
  2249      *  @param typeargtypes  The types of the constructor invocation's type
  2250      *                   arguments.
  2251      */
  2252     Symbol resolveDiamond(DiagnosticPosition pos,
  2253                               Env<AttrContext> env,
  2254                               Type site,
  2255                               List<Type> argtypes,
  2256                               List<Type> typeargtypes) {
  2257         return lookupMethod(env, pos, site.tsym, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2258             @Override
  2259             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2260                 return findDiamond(env, site, argtypes, typeargtypes,
  2261                         phase.isBoxingRequired(),
  2262                         phase.isVarargsRequired());
  2264             @Override
  2265             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2266                 if (sym.kind >= AMBIGUOUS) {
  2267                     final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2268                                     ((InapplicableSymbolError)sym).errCandidate().details :
  2269                                     null;
  2270                     sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2271                         @Override
  2272                         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2273                                 Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2274                             String key = details == null ?
  2275                                 "cant.apply.diamond" :
  2276                                 "cant.apply.diamond.1";
  2277                             return diags.create(dkind, log.currentSource(), pos, key,
  2278                                     diags.fragment("diamond", site.tsym), details);
  2280                     };
  2281                     sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2282                     env.info.pendingResolutionPhase = currentResolutionContext.step;
  2284                 return sym;
  2286         });
  2289     /** This method scans all the constructor symbol in a given class scope -
  2290      *  assuming that the original scope contains a constructor of the kind:
  2291      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2292      *  a method check is executed against the modified constructor type:
  2293      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2294      *  inference. The inferred return type of the synthetic constructor IS
  2295      *  the inferred type for the diamond operator.
  2296      */
  2297     private Symbol findDiamond(Env<AttrContext> env,
  2298                               Type site,
  2299                               List<Type> argtypes,
  2300                               List<Type> typeargtypes,
  2301                               boolean allowBoxing,
  2302                               boolean useVarargs) {
  2303         Symbol bestSoFar = methodNotFound;
  2304         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2305              e.scope != null;
  2306              e = e.next()) {
  2307             final Symbol sym = e.sym;
  2308             //- System.out.println(" e " + e.sym);
  2309             if (sym.kind == MTH &&
  2310                 (sym.flags_field & SYNTHETIC) == 0) {
  2311                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2312                             ((ForAll)sym.type).tvars :
  2313                             List.<Type>nil();
  2314                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2315                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2316                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2317                         @Override
  2318                         public Symbol baseSymbol() {
  2319                             return sym;
  2321                     };
  2322                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2323                             newConstr,
  2324                             bestSoFar,
  2325                             allowBoxing,
  2326                             useVarargs,
  2327                             false);
  2330         return bestSoFar;
  2335     /** Resolve operator.
  2336      *  @param pos       The position to use for error reporting.
  2337      *  @param optag     The tag of the operation tree.
  2338      *  @param env       The environment current at the operation.
  2339      *  @param argtypes  The types of the operands.
  2340      */
  2341     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2342                            Env<AttrContext> env, List<Type> argtypes) {
  2343         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2344         try {
  2345             currentResolutionContext = new MethodResolutionContext();
  2346             Name name = treeinfo.operatorName(optag);
  2347             env.info.pendingResolutionPhase = currentResolutionContext.step = BASIC;
  2348             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2349                                     null, false, false, true);
  2350             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2351                 env.info.pendingResolutionPhase = currentResolutionContext.step = BOX;
  2352                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2353                                  null, true, false, true);
  2354             return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2355                           false, argtypes, null);
  2357         finally {
  2358             currentResolutionContext = prevResolutionContext;
  2362     /** Resolve operator.
  2363      *  @param pos       The position to use for error reporting.
  2364      *  @param optag     The tag of the operation tree.
  2365      *  @param env       The environment current at the operation.
  2366      *  @param arg       The type of the operand.
  2367      */
  2368     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2369         return resolveOperator(pos, optag, env, List.of(arg));
  2372     /** Resolve binary operator.
  2373      *  @param pos       The position to use for error reporting.
  2374      *  @param optag     The tag of the operation tree.
  2375      *  @param env       The environment current at the operation.
  2376      *  @param left      The types of the left operand.
  2377      *  @param right     The types of the right operand.
  2378      */
  2379     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2380                                  JCTree.Tag optag,
  2381                                  Env<AttrContext> env,
  2382                                  Type left,
  2383                                  Type right) {
  2384         return resolveOperator(pos, optag, env, List.of(left, right));
  2387     /**
  2388      * Resolution of member references is typically done as a single
  2389      * overload resolution step, where the argument types A are inferred from
  2390      * the target functional descriptor.
  2392      * If the member reference is a method reference with a type qualifier,
  2393      * a two-step lookup process is performed. The first step uses the
  2394      * expected argument list A, while the second step discards the first
  2395      * type from A (which is treated as a receiver type).
  2397      * There are two cases in which inference is performed: (i) if the member
  2398      * reference is a constructor reference and the qualifier type is raw - in
  2399      * which case diamond inference is used to infer a parameterization for the
  2400      * type qualifier; (ii) if the member reference is an unbound reference
  2401      * where the type qualifier is raw - in that case, during the unbound lookup
  2402      * the receiver argument type is used to infer an instantiation for the raw
  2403      * qualifier type.
  2405      * When a multi-step resolution process is exploited, it is an error
  2406      * if two candidates are found (ambiguity).
  2408      * This routine returns a pair (T,S), where S is the member reference symbol,
  2409      * and T is the type of the class in which S is defined. This is necessary as
  2410      * the type T might be dynamically inferred (i.e. if constructor reference
  2411      * has a raw qualifier).
  2412      */
  2413     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2414                                   Env<AttrContext> env,
  2415                                   JCMemberReference referenceTree,
  2416                                   Type site,
  2417                                   Name name, List<Type> argtypes,
  2418                                   List<Type> typeargtypes,
  2419                                   boolean boxingAllowed) {
  2420         MethodResolutionPhase maxPhase = boxingAllowed ? VARARITY : BASIC;
  2421         //step 1 - bound lookup
  2422         ReferenceLookupHelper boundLookupHelper = name.equals(names.init) ?
  2423                 new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase) :
  2424                 new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2425         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2426         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym, boundLookupHelper);
  2428         //step 2 - unbound lookup
  2429         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup();
  2430         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2431         Symbol unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym, unboundLookupHelper);
  2433         //merge results
  2434         Pair<Symbol, ReferenceLookupHelper> res;
  2435         if (unboundSym.kind != MTH) {
  2436             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2437             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2438         } else if (boundSym.kind == MTH) {
  2439             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2440             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2441         } else {
  2442             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2443             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2446         return res;
  2449     /**
  2450      * Helper for defining custom method-like lookup logic; a lookup helper
  2451      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2452      * lookup result (this step might result in compiler diagnostics to be generated)
  2453      */
  2454     abstract class LookupHelper {
  2456         /** name of the symbol to lookup */
  2457         Name name;
  2459         /** location in which the lookup takes place */
  2460         Type site;
  2462         /** actual types used during the lookup */
  2463         List<Type> argtypes;
  2465         /** type arguments used during the lookup */
  2466         List<Type> typeargtypes;
  2468         /** Max overload resolution phase handled by this helper */
  2469         MethodResolutionPhase maxPhase;
  2471         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2472             this.name = name;
  2473             this.site = site;
  2474             this.argtypes = argtypes;
  2475             this.typeargtypes = typeargtypes;
  2476             this.maxPhase = maxPhase;
  2479         /**
  2480          * Should lookup stop at given phase with given result
  2481          */
  2482         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  2483             return phase.ordinal() > maxPhase.ordinal() ||
  2484                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  2487         /**
  2488          * Search for a symbol under a given overload resolution phase - this method
  2489          * is usually called several times, once per each overload resolution phase
  2490          */
  2491         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2493         /**
  2494          * Validate the result of the lookup
  2495          */
  2496         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  2499     abstract class BasicLookupHelper extends LookupHelper {
  2501         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2502             super(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  2505         @Override
  2506         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2507             if (sym.kind >= AMBIGUOUS) {
  2508                 //if nothing is found return the 'first' error
  2509                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  2511             return sym;
  2515     /**
  2516      * Helper class for member reference lookup. A reference lookup helper
  2517      * defines the basic logic for member reference lookup; a method gives
  2518      * access to an 'unbound' helper used to perform an unbound member
  2519      * reference lookup.
  2520      */
  2521     abstract class ReferenceLookupHelper extends LookupHelper {
  2523         /** The member reference tree */
  2524         JCMemberReference referenceTree;
  2526         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2527                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2528             super(name, site, argtypes, typeargtypes, maxPhase);
  2529             this.referenceTree = referenceTree;
  2533         /**
  2534          * Returns an unbound version of this lookup helper. By default, this
  2535          * method returns an dummy lookup helper.
  2536          */
  2537         ReferenceLookupHelper unboundLookup() {
  2538             //dummy loopkup helper that always return 'methodNotFound'
  2539             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  2540                 @Override
  2541                 ReferenceLookupHelper unboundLookup() {
  2542                     return this;
  2544                 @Override
  2545                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2546                     return methodNotFound;
  2548                 @Override
  2549                 ReferenceKind referenceKind(Symbol sym) {
  2550                     Assert.error();
  2551                     return null;
  2553             };
  2556         /**
  2557          * Get the kind of the member reference
  2558          */
  2559         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2561         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2562             //skip error reporting
  2563             return sym;
  2567     /**
  2568      * Helper class for method reference lookup. The lookup logic is based
  2569      * upon Resolve.findMethod; in certain cases, this helper class has a
  2570      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2571      * In such cases, non-static lookup results are thrown away.
  2572      */
  2573     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2575         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2576                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2577             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2580         protected Symbol lookupReferenceInternal(Env<AttrContext> env, MethodResolutionPhase phase) {
  2581             return findMethod(env, site, name, argtypes, typeargtypes,
  2582                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2585         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2586             return !TreeInfo.isStaticSelector(referenceTree.expr, names) ||
  2587                         sym.kind != MTH ||
  2588                         sym.isStatic() ? sym : new StaticError(sym);
  2591         @Override
  2592         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2593             return adjustLookupResult(env, lookupReferenceInternal(env, phase));
  2596         @Override
  2597         ReferenceLookupHelper unboundLookup() {
  2598             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2599                     argtypes.nonEmpty() &&
  2600                     types.isSubtypeUnchecked(argtypes.head, site)) {
  2601                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2602                         site, argtypes, typeargtypes, maxPhase);
  2603             } else {
  2604                 return super.unboundLookup();
  2608         @Override
  2609         ReferenceKind referenceKind(Symbol sym) {
  2610             if (sym.isStatic()) {
  2611                 return ReferenceKind.STATIC;
  2612             } else {
  2613                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2614                 return selName != null && selName == names._super ?
  2615                         ReferenceKind.SUPER :
  2616                         ReferenceKind.BOUND;
  2621     /**
  2622      * Helper class for unbound method reference lookup. Essentially the same
  2623      * as the basic method reference lookup helper; main difference is that static
  2624      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2625      * infer a parameterized type is made using the first actual argument (that
  2626      * would otherwise be ignored during the lookup).
  2627      */
  2628     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2630         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2631                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2632             super(referenceTree, name,
  2633                     site.isRaw() ? types.asSuper(argtypes.head, site.tsym) : site,
  2634                     argtypes.tail, typeargtypes, maxPhase);
  2637         @Override
  2638         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2639             return sym.kind != MTH || !sym.isStatic() ? sym : new StaticError(sym);
  2642         @Override
  2643         ReferenceLookupHelper unboundLookup() {
  2644             return this;
  2647         @Override
  2648         ReferenceKind referenceKind(Symbol sym) {
  2649             return ReferenceKind.UNBOUND;
  2653     /**
  2654      * Helper class for constructor reference lookup. The lookup logic is based
  2655      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2656      * whether the constructor reference needs diamond inference (this is the case
  2657      * if the qualifier type is raw). A special erroneous symbol is returned
  2658      * if the lookup returns the constructor of an inner class and there's no
  2659      * enclosing instance in scope.
  2660      */
  2661     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2663         boolean needsInference;
  2665         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2666                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2667             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2668             if (site.isRaw()) {
  2669                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2670                 needsInference = true;
  2674         @Override
  2675         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2676             Symbol sym = needsInference ?
  2677                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2678                 findMethod(env, site, name, argtypes, typeargtypes,
  2679                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2680             return sym.kind != MTH ||
  2681                           site.getEnclosingType().hasTag(NONE) ||
  2682                           hasEnclosingInstance(env, site) ?
  2683                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2684                     @Override
  2685                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2686                        return diags.create(dkind, log.currentSource(), pos,
  2687                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2689                 };
  2692         @Override
  2693         ReferenceKind referenceKind(Symbol sym) {
  2694             return site.getEnclosingType().hasTag(NONE) ?
  2695                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2699     /**
  2700      * Main overload resolution routine. On each overload resolution step, a
  2701      * lookup helper class is used to perform the method/constructor lookup;
  2702      * at the end of the lookup, the helper is used to validate the results
  2703      * (this last step might trigger overload resolution diagnostics).
  2704      */
  2705     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, LookupHelper lookupHelper) {
  2706         return lookupMethod(env, pos, location, new MethodResolutionContext(), lookupHelper);
  2709     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  2710             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  2711         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2712         try {
  2713             Symbol bestSoFar = methodNotFound;
  2714             currentResolutionContext = resolveContext;
  2715             for (MethodResolutionPhase phase : methodResolutionSteps) {
  2716                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  2717                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  2718                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  2719                 Symbol prevBest = bestSoFar;
  2720                 currentResolutionContext.step = phase;
  2721                 bestSoFar = phase.mergeResults(bestSoFar, lookupHelper.lookup(env, phase));
  2722                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  2724             return lookupHelper.access(env, pos, location, bestSoFar);
  2725         } finally {
  2726             currentResolutionContext = prevResolutionContext;
  2730     /**
  2731      * Resolve `c.name' where name == this or name == super.
  2732      * @param pos           The position to use for error reporting.
  2733      * @param env           The environment current at the expression.
  2734      * @param c             The qualifier.
  2735      * @param name          The identifier's name.
  2736      */
  2737     Symbol resolveSelf(DiagnosticPosition pos,
  2738                        Env<AttrContext> env,
  2739                        TypeSymbol c,
  2740                        Name name) {
  2741         Env<AttrContext> env1 = env;
  2742         boolean staticOnly = false;
  2743         while (env1.outer != null) {
  2744             if (isStatic(env1)) staticOnly = true;
  2745             if (env1.enclClass.sym == c) {
  2746                 Symbol sym = env1.info.scope.lookup(name).sym;
  2747                 if (sym != null) {
  2748                     if (staticOnly) sym = new StaticError(sym);
  2749                     return accessBase(sym, pos, env.enclClass.sym.type,
  2750                                   name, true);
  2753             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2754             env1 = env1.outer;
  2756         if (allowDefaultMethods && c.isInterface() &&
  2757                 name == names._super && !isStatic(env) &&
  2758                 types.isDirectSuperInterface(c, env.enclClass.sym)) {
  2759             //this might be a default super call if one of the superinterfaces is 'c'
  2760             for (Type t : pruneInterfaces(env.enclClass.type)) {
  2761                 if (t.tsym == c) {
  2762                     env.info.defaultSuperCallSite = t;
  2763                     return new VarSymbol(0, names._super,
  2764                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  2767             //find a direct superinterface that is a subtype of 'c'
  2768             for (Type i : types.interfaces(env.enclClass.type)) {
  2769                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  2770                     log.error(pos, "illegal.default.super.call", c,
  2771                             diags.fragment("redundant.supertype", c, i));
  2772                     return syms.errSymbol;
  2775             Assert.error();
  2777         log.error(pos, "not.encl.class", c);
  2778         return syms.errSymbol;
  2780     //where
  2781     private List<Type> pruneInterfaces(Type t) {
  2782         ListBuffer<Type> result = ListBuffer.lb();
  2783         for (Type t1 : types.interfaces(t)) {
  2784             boolean shouldAdd = true;
  2785             for (Type t2 : types.interfaces(t)) {
  2786                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  2787                     shouldAdd = false;
  2790             if (shouldAdd) {
  2791                 result.append(t1);
  2794         return result.toList();
  2798     /**
  2799      * Resolve `c.this' for an enclosing class c that contains the
  2800      * named member.
  2801      * @param pos           The position to use for error reporting.
  2802      * @param env           The environment current at the expression.
  2803      * @param member        The member that must be contained in the result.
  2804      */
  2805     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2806                                  Env<AttrContext> env,
  2807                                  Symbol member,
  2808                                  boolean isSuperCall) {
  2809         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  2810         if (sym == null) {
  2811             log.error(pos, "encl.class.required", member);
  2812             return syms.errSymbol;
  2813         } else {
  2814             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  2818     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  2819         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  2820         return encl != null && encl.kind < ERRONEOUS;
  2823     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  2824                                  Symbol member,
  2825                                  boolean isSuperCall) {
  2826         Name name = names._this;
  2827         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2828         boolean staticOnly = false;
  2829         if (env1 != null) {
  2830             while (env1 != null && env1.outer != null) {
  2831                 if (isStatic(env1)) staticOnly = true;
  2832                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2833                     Symbol sym = env1.info.scope.lookup(name).sym;
  2834                     if (sym != null) {
  2835                         if (staticOnly) sym = new StaticError(sym);
  2836                         return sym;
  2839                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2840                     staticOnly = true;
  2841                 env1 = env1.outer;
  2844         return null;
  2847     /**
  2848      * Resolve an appropriate implicit this instance for t's container.
  2849      * JLS 8.8.5.1 and 15.9.2
  2850      */
  2851     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2852         return resolveImplicitThis(pos, env, t, false);
  2855     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2856         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2857                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2858                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2859         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2860             log.error(pos, "cant.ref.before.ctor.called", "this");
  2861         return thisType;
  2864 /* ***************************************************************************
  2865  *  ResolveError classes, indicating error situations when accessing symbols
  2866  ****************************************************************************/
  2868     //used by TransTypes when checking target type of synthetic cast
  2869     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2870         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2871         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2873     //where
  2874     private void logResolveError(ResolveError error,
  2875             DiagnosticPosition pos,
  2876             Symbol location,
  2877             Type site,
  2878             Name name,
  2879             List<Type> argtypes,
  2880             List<Type> typeargtypes) {
  2881         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2882                 pos, location, site, name, argtypes, typeargtypes);
  2883         if (d != null) {
  2884             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2885             log.report(d);
  2889     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2891     public Object methodArguments(List<Type> argtypes) {
  2892         if (argtypes == null || argtypes.isEmpty()) {
  2893             return noArgs;
  2894         } else {
  2895             ListBuffer<Object> diagArgs = ListBuffer.lb();
  2896             for (Type t : argtypes) {
  2897                 if (t.hasTag(DEFERRED)) {
  2898                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  2899                 } else {
  2900                     diagArgs.append(t);
  2903             return diagArgs;
  2907     /**
  2908      * Root class for resolution errors. Subclass of ResolveError
  2909      * represent a different kinds of resolution error - as such they must
  2910      * specify how they map into concrete compiler diagnostics.
  2911      */
  2912     abstract class ResolveError extends Symbol {
  2914         /** The name of the kind of error, for debugging only. */
  2915         final String debugName;
  2917         ResolveError(int kind, String debugName) {
  2918             super(kind, 0, null, null, null);
  2919             this.debugName = debugName;
  2922         @Override
  2923         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2924             throw new AssertionError();
  2927         @Override
  2928         public String toString() {
  2929             return debugName;
  2932         @Override
  2933         public boolean exists() {
  2934             return false;
  2937         /**
  2938          * Create an external representation for this erroneous symbol to be
  2939          * used during attribution - by default this returns the symbol of a
  2940          * brand new error type which stores the original type found
  2941          * during resolution.
  2943          * @param name     the name used during resolution
  2944          * @param location the location from which the symbol is accessed
  2945          */
  2946         protected Symbol access(Name name, TypeSymbol location) {
  2947             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2950         /**
  2951          * Create a diagnostic representing this resolution error.
  2953          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2954          * @param pos       The position to be used for error reporting.
  2955          * @param site      The original type from where the selection took place.
  2956          * @param name      The name of the symbol to be resolved.
  2957          * @param argtypes  The invocation's value arguments,
  2958          *                  if we looked for a method.
  2959          * @param typeargtypes  The invocation's type arguments,
  2960          *                      if we looked for a method.
  2961          */
  2962         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2963                 DiagnosticPosition pos,
  2964                 Symbol location,
  2965                 Type site,
  2966                 Name name,
  2967                 List<Type> argtypes,
  2968                 List<Type> typeargtypes);
  2971     /**
  2972      * This class is the root class of all resolution errors caused by
  2973      * an invalid symbol being found during resolution.
  2974      */
  2975     abstract class InvalidSymbolError extends ResolveError {
  2977         /** The invalid symbol found during resolution */
  2978         Symbol sym;
  2980         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2981             super(kind, debugName);
  2982             this.sym = sym;
  2985         @Override
  2986         public boolean exists() {
  2987             return true;
  2990         @Override
  2991         public String toString() {
  2992              return super.toString() + " wrongSym=" + sym;
  2995         @Override
  2996         public Symbol access(Name name, TypeSymbol location) {
  2997             if (sym.kind >= AMBIGUOUS)
  2998                 return ((ResolveError)sym).access(name, location);
  2999             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3000                 return types.createErrorType(name, location, sym.type).tsym;
  3001             else
  3002                 return sym;
  3006     /**
  3007      * InvalidSymbolError error class indicating that a symbol matching a
  3008      * given name does not exists in a given site.
  3009      */
  3010     class SymbolNotFoundError extends ResolveError {
  3012         SymbolNotFoundError(int kind) {
  3013             super(kind, "symbol not found error");
  3016         @Override
  3017         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3018                 DiagnosticPosition pos,
  3019                 Symbol location,
  3020                 Type site,
  3021                 Name name,
  3022                 List<Type> argtypes,
  3023                 List<Type> typeargtypes) {
  3024             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3025             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3026             if (name == names.error)
  3027                 return null;
  3029             if (syms.operatorNames.contains(name)) {
  3030                 boolean isUnaryOp = argtypes.size() == 1;
  3031                 String key = argtypes.size() == 1 ?
  3032                     "operator.cant.be.applied" :
  3033                     "operator.cant.be.applied.1";
  3034                 Type first = argtypes.head;
  3035                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3036                 return diags.create(dkind, log.currentSource(), pos,
  3037                         key, name, first, second);
  3039             boolean hasLocation = false;
  3040             if (location == null) {
  3041                 location = site.tsym;
  3043             if (!location.name.isEmpty()) {
  3044                 if (location.kind == PCK && !site.tsym.exists()) {
  3045                     return diags.create(dkind, log.currentSource(), pos,
  3046                         "doesnt.exist", location);
  3048                 hasLocation = !location.name.equals(names._this) &&
  3049                         !location.name.equals(names._super);
  3051             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3052             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3053             Name idname = isConstructor ? site.tsym.name : name;
  3054             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3055             if (hasLocation) {
  3056                 return diags.create(dkind, log.currentSource(), pos,
  3057                         errKey, kindname, idname, //symbol kindname, name
  3058                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3059                         getLocationDiag(location, site)); //location kindname, type
  3061             else {
  3062                 return diags.create(dkind, log.currentSource(), pos,
  3063                         errKey, kindname, idname, //symbol kindname, name
  3064                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3067         //where
  3068         private Object args(List<Type> args) {
  3069             return args.isEmpty() ? args : methodArguments(args);
  3072         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3073             String key = "cant.resolve";
  3074             String suffix = hasLocation ? ".location" : "";
  3075             switch (kindname) {
  3076                 case METHOD:
  3077                 case CONSTRUCTOR: {
  3078                     suffix += ".args";
  3079                     suffix += hasTypeArgs ? ".params" : "";
  3082             return key + suffix;
  3084         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3085             if (location.kind == VAR) {
  3086                 return diags.fragment("location.1",
  3087                     kindName(location),
  3088                     location,
  3089                     location.type);
  3090             } else {
  3091                 return diags.fragment("location",
  3092                     typeKindName(site),
  3093                     site,
  3094                     null);
  3099     /**
  3100      * InvalidSymbolError error class indicating that a given symbol
  3101      * (either a method, a constructor or an operand) is not applicable
  3102      * given an actual arguments/type argument list.
  3103      */
  3104     class InapplicableSymbolError extends ResolveError {
  3106         protected MethodResolutionContext resolveContext;
  3108         InapplicableSymbolError(MethodResolutionContext context) {
  3109             this(WRONG_MTH, "inapplicable symbol error", context);
  3112         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3113             super(kind, debugName);
  3114             this.resolveContext = context;
  3117         @Override
  3118         public String toString() {
  3119             return super.toString();
  3122         @Override
  3123         public boolean exists() {
  3124             return true;
  3127         @Override
  3128         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3129                 DiagnosticPosition pos,
  3130                 Symbol location,
  3131                 Type site,
  3132                 Name name,
  3133                 List<Type> argtypes,
  3134                 List<Type> typeargtypes) {
  3135             if (name == names.error)
  3136                 return null;
  3138             if (syms.operatorNames.contains(name)) {
  3139                 boolean isUnaryOp = argtypes.size() == 1;
  3140                 String key = argtypes.size() == 1 ?
  3141                     "operator.cant.be.applied" :
  3142                     "operator.cant.be.applied.1";
  3143                 Type first = argtypes.head;
  3144                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3145                 return diags.create(dkind, log.currentSource(), pos,
  3146                         key, name, first, second);
  3148             else {
  3149                 Candidate c = errCandidate();
  3150                 Symbol ws = c.sym.asMemberOf(site, types);
  3151                 return diags.create(dkind, log.currentSource(), pos,
  3152                           "cant.apply.symbol",
  3153                           kindName(ws),
  3154                           ws.name == names.init ? ws.owner.name : ws.name,
  3155                           methodArguments(ws.type.getParameterTypes()),
  3156                           methodArguments(argtypes),
  3157                           kindName(ws.owner),
  3158                           ws.owner.type,
  3159                           c.details);
  3163         @Override
  3164         public Symbol access(Name name, TypeSymbol location) {
  3165             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3168         private Candidate errCandidate() {
  3169             Candidate bestSoFar = null;
  3170             for (Candidate c : resolveContext.candidates) {
  3171                 if (c.isApplicable()) continue;
  3172                 bestSoFar = c;
  3174             Assert.checkNonNull(bestSoFar);
  3175             return bestSoFar;
  3179     /**
  3180      * ResolveError error class indicating that a set of symbols
  3181      * (either methods, constructors or operands) is not applicable
  3182      * given an actual arguments/type argument list.
  3183      */
  3184     class InapplicableSymbolsError extends InapplicableSymbolError {
  3186         InapplicableSymbolsError(MethodResolutionContext context) {
  3187             super(WRONG_MTHS, "inapplicable symbols", context);
  3190         @Override
  3191         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3192                 DiagnosticPosition pos,
  3193                 Symbol location,
  3194                 Type site,
  3195                 Name name,
  3196                 List<Type> argtypes,
  3197                 List<Type> typeargtypes) {
  3198             if (!resolveContext.candidates.isEmpty()) {
  3199                 JCDiagnostic err = diags.create(dkind,
  3200                         log.currentSource(),
  3201                         pos,
  3202                         "cant.apply.symbols",
  3203                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3204                         name == names.init ? site.tsym.name : name,
  3205                         methodArguments(argtypes));
  3206                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  3207             } else {
  3208                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3209                     location, site, name, argtypes, typeargtypes);
  3213         //where
  3214         List<JCDiagnostic> candidateDetails(Type site) {
  3215             Map<Symbol, JCDiagnostic> details = new LinkedHashMap<Symbol, JCDiagnostic>();
  3216             for (Candidate c : resolveContext.candidates) {
  3217                 if (c.isApplicable()) continue;
  3218                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3219                         Kinds.kindName(c.sym),
  3220                         c.sym.location(site, types),
  3221                         c.sym.asMemberOf(site, types),
  3222                         c.details);
  3223                 details.put(c.sym, detailDiag);
  3225             return List.from(details.values());
  3229     /**
  3230      * An InvalidSymbolError error class indicating that a symbol is not
  3231      * accessible from a given site
  3232      */
  3233     class AccessError extends InvalidSymbolError {
  3235         private Env<AttrContext> env;
  3236         private Type site;
  3238         AccessError(Symbol sym) {
  3239             this(null, null, sym);
  3242         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3243             super(HIDDEN, sym, "access error");
  3244             this.env = env;
  3245             this.site = site;
  3246             if (debugResolve)
  3247                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3250         @Override
  3251         public boolean exists() {
  3252             return false;
  3255         @Override
  3256         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3257                 DiagnosticPosition pos,
  3258                 Symbol location,
  3259                 Type site,
  3260                 Name name,
  3261                 List<Type> argtypes,
  3262                 List<Type> typeargtypes) {
  3263             if (sym.owner.type.hasTag(ERROR))
  3264                 return null;
  3266             if (sym.name == names.init && sym.owner != site.tsym) {
  3267                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3268                         pos, location, site, name, argtypes, typeargtypes);
  3270             else if ((sym.flags() & PUBLIC) != 0
  3271                 || (env != null && this.site != null
  3272                     && !isAccessible(env, this.site))) {
  3273                 return diags.create(dkind, log.currentSource(),
  3274                         pos, "not.def.access.class.intf.cant.access",
  3275                     sym, sym.location());
  3277             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3278                 return diags.create(dkind, log.currentSource(),
  3279                         pos, "report.access", sym,
  3280                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3281                         sym.location());
  3283             else {
  3284                 return diags.create(dkind, log.currentSource(),
  3285                         pos, "not.def.public.cant.access", sym, sym.location());
  3290     /**
  3291      * InvalidSymbolError error class indicating that an instance member
  3292      * has erroneously been accessed from a static context.
  3293      */
  3294     class StaticError extends InvalidSymbolError {
  3296         StaticError(Symbol sym) {
  3297             super(STATICERR, sym, "static error");
  3300         @Override
  3301         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3302                 DiagnosticPosition pos,
  3303                 Symbol location,
  3304                 Type site,
  3305                 Name name,
  3306                 List<Type> argtypes,
  3307                 List<Type> typeargtypes) {
  3308             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3309                 ? types.erasure(sym.type).tsym
  3310                 : sym);
  3311             return diags.create(dkind, log.currentSource(), pos,
  3312                     "non-static.cant.be.ref", kindName(sym), errSym);
  3316     /**
  3317      * InvalidSymbolError error class indicating that a pair of symbols
  3318      * (either methods, constructors or operands) are ambiguous
  3319      * given an actual arguments/type argument list.
  3320      */
  3321     class AmbiguityError extends InvalidSymbolError {
  3323         /** The other maximally specific symbol */
  3324         Symbol sym2;
  3326         AmbiguityError(Symbol sym1, Symbol sym2) {
  3327             super(AMBIGUOUS, sym1, "ambiguity error");
  3328             this.sym2 = sym2;
  3331         @Override
  3332         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3333                 DiagnosticPosition pos,
  3334                 Symbol location,
  3335                 Type site,
  3336                 Name name,
  3337                 List<Type> argtypes,
  3338                 List<Type> typeargtypes) {
  3339             AmbiguityError pair = this;
  3340             while (true) {
  3341                 if (pair.sym.kind == AMBIGUOUS)
  3342                     pair = (AmbiguityError)pair.sym;
  3343                 else if (pair.sym2.kind == AMBIGUOUS)
  3344                     pair = (AmbiguityError)pair.sym2;
  3345                 else break;
  3347             Name sname = pair.sym.name;
  3348             if (sname == names.init) sname = pair.sym.owner.name;
  3349             return diags.create(dkind, log.currentSource(),
  3350                       pos, "ref.ambiguous", sname,
  3351                       kindName(pair.sym),
  3352                       pair.sym,
  3353                       pair.sym.location(site, types),
  3354                       kindName(pair.sym2),
  3355                       pair.sym2,
  3356                       pair.sym2.location(site, types));
  3360     enum MethodResolutionPhase {
  3361         BASIC(false, false),
  3362         BOX(true, false),
  3363         VARARITY(true, true) {
  3364             @Override
  3365             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  3366                 switch (sym.kind) {
  3367                     case WRONG_MTH:
  3368                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  3369                             bestSoFar :
  3370                             sym;
  3371                     case ABSENT_MTH:
  3372                         return bestSoFar;
  3373                     default:
  3374                         return sym;
  3377         };
  3379         final boolean isBoxingRequired;
  3380         final boolean isVarargsRequired;
  3382         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3383            this.isBoxingRequired = isBoxingRequired;
  3384            this.isVarargsRequired = isVarargsRequired;
  3387         public boolean isBoxingRequired() {
  3388             return isBoxingRequired;
  3391         public boolean isVarargsRequired() {
  3392             return isVarargsRequired;
  3395         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3396             return (varargsEnabled || !isVarargsRequired) &&
  3397                    (boxingEnabled || !isBoxingRequired);
  3400         public Symbol mergeResults(Symbol prev, Symbol sym) {
  3401             return sym;
  3405     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3407     /**
  3408      * A resolution context is used to keep track of intermediate results of
  3409      * overload resolution, such as list of method that are not applicable
  3410      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3411      * can be nested - this means that when each overload resolution routine should
  3412      * work within the resolution context it created.
  3413      */
  3414     class MethodResolutionContext {
  3416         private List<Candidate> candidates = List.nil();
  3418         MethodResolutionPhase step = null;
  3420         private boolean internalResolution = false;
  3421         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3423         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3424             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3425             candidates = candidates.append(c);
  3428         void addApplicableCandidate(Symbol sym, Type mtype) {
  3429             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3430             candidates = candidates.append(c);
  3433         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext) {
  3434             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext);
  3437         /**
  3438          * This class represents an overload resolution candidate. There are two
  3439          * kinds of candidates: applicable methods and inapplicable methods;
  3440          * applicable methods have a pointer to the instantiated method type,
  3441          * while inapplicable candidates contain further details about the
  3442          * reason why the method has been considered inapplicable.
  3443          */
  3444         class Candidate {
  3446             final MethodResolutionPhase step;
  3447             final Symbol sym;
  3448             final JCDiagnostic details;
  3449             final Type mtype;
  3451             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3452                 this.step = step;
  3453                 this.sym = sym;
  3454                 this.details = details;
  3455                 this.mtype = mtype;
  3458             @Override
  3459             public boolean equals(Object o) {
  3460                 if (o instanceof Candidate) {
  3461                     Symbol s1 = this.sym;
  3462                     Symbol s2 = ((Candidate)o).sym;
  3463                     if  ((s1 != s2 &&
  3464                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3465                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3466                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3467                         return true;
  3469                 return false;
  3472             boolean isApplicable() {
  3473                 return mtype != null;
  3477         DeferredAttr.AttrMode attrMode() {
  3478             return attrMode;
  3481         boolean internal() {
  3482             return internalResolution;
  3486     MethodResolutionContext currentResolutionContext = null;

mercurial