src/share/classes/com/sun/tools/javac/comp/Check.java

Sat, 06 Oct 2012 10:35:38 +0100

author
mcimadamore
date
Sat, 06 Oct 2012 10:35:38 +0100
changeset 1352
d4b3cb1ece84
parent 1348
573ceb23beeb
child 1358
fc123bdeddb8
permissions
-rw-r--r--

7177386: Add attribution support for method references
Summary: Add type-checking/lookup routines for method references
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import static com.sun.tools.javac.code.Flags.*;
    48 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    49 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    50 import static com.sun.tools.javac.code.Kinds.*;
    51 import static com.sun.tools.javac.code.TypeTags.*;
    52 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    54 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    56 /** Type checking helper class for the attribution phase.
    57  *
    58  *  <p><b>This is NOT part of any supported API.
    59  *  If you write code that depends on this, you do so at your own risk.
    60  *  This code and its internal interfaces are subject to change or
    61  *  deletion without notice.</b>
    62  */
    63 public class Check {
    64     protected static final Context.Key<Check> checkKey =
    65         new Context.Key<Check>();
    67     private final Names names;
    68     private final Log log;
    69     private final Resolve rs;
    70     private final Symtab syms;
    71     private final Enter enter;
    72     private final DeferredAttr deferredAttr;
    73     private final Infer infer;
    74     private final Types types;
    75     private final JCDiagnostic.Factory diags;
    76     private boolean warnOnSyntheticConflicts;
    77     private boolean suppressAbortOnBadClassFile;
    78     private boolean enableSunApiLintControl;
    79     private final TreeInfo treeinfo;
    81     // The set of lint options currently in effect. It is initialized
    82     // from the context, and then is set/reset as needed by Attr as it
    83     // visits all the various parts of the trees during attribution.
    84     private Lint lint;
    86     // The method being analyzed in Attr - it is set/reset as needed by
    87     // Attr as it visits new method declarations.
    88     private MethodSymbol method;
    90     public static Check instance(Context context) {
    91         Check instance = context.get(checkKey);
    92         if (instance == null)
    93             instance = new Check(context);
    94         return instance;
    95     }
    97     protected Check(Context context) {
    98         context.put(checkKey, this);
   100         names = Names.instance(context);
   101         log = Log.instance(context);
   102         rs = Resolve.instance(context);
   103         syms = Symtab.instance(context);
   104         enter = Enter.instance(context);
   105         deferredAttr = DeferredAttr.instance(context);
   106         infer = Infer.instance(context);
   107         this.types = Types.instance(context);
   108         diags = JCDiagnostic.Factory.instance(context);
   109         Options options = Options.instance(context);
   110         lint = Lint.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   113         Source source = Source.instance(context);
   114         allowGenerics = source.allowGenerics();
   115         allowVarargs = source.allowVarargs();
   116         allowAnnotations = source.allowAnnotations();
   117         allowCovariantReturns = source.allowCovariantReturns();
   118         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   119         complexInference = options.isSet("complexinference");
   120         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   121         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   122         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   124         Target target = Target.instance(context);
   125         syntheticNameChar = target.syntheticNameChar();
   127         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   128         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   129         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   130         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   132         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   133                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   134         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   135                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   136         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   137                 enforceMandatoryWarnings, "sunapi", null);
   139         deferredLintHandler = DeferredLintHandler.immediateHandler;
   140     }
   142     /** Switch: generics enabled?
   143      */
   144     boolean allowGenerics;
   146     /** Switch: varargs enabled?
   147      */
   148     boolean allowVarargs;
   150     /** Switch: annotations enabled?
   151      */
   152     boolean allowAnnotations;
   154     /** Switch: covariant returns enabled?
   155      */
   156     boolean allowCovariantReturns;
   158     /** Switch: simplified varargs enabled?
   159      */
   160     boolean allowSimplifiedVarargs;
   162     /** Switch: -complexinference option set?
   163      */
   164     boolean complexInference;
   166     /** Character for synthetic names
   167      */
   168     char syntheticNameChar;
   170     /** A table mapping flat names of all compiled classes in this run to their
   171      *  symbols; maintained from outside.
   172      */
   173     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   175     /** A handler for messages about deprecated usage.
   176      */
   177     private MandatoryWarningHandler deprecationHandler;
   179     /** A handler for messages about unchecked or unsafe usage.
   180      */
   181     private MandatoryWarningHandler uncheckedHandler;
   183     /** A handler for messages about using proprietary API.
   184      */
   185     private MandatoryWarningHandler sunApiHandler;
   187     /** A handler for deferred lint warnings.
   188      */
   189     private DeferredLintHandler deferredLintHandler;
   191 /* *************************************************************************
   192  * Errors and Warnings
   193  **************************************************************************/
   195     Lint setLint(Lint newLint) {
   196         Lint prev = lint;
   197         lint = newLint;
   198         return prev;
   199     }
   201     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   202         DeferredLintHandler prev = deferredLintHandler;
   203         deferredLintHandler = newDeferredLintHandler;
   204         return prev;
   205     }
   207     MethodSymbol setMethod(MethodSymbol newMethod) {
   208         MethodSymbol prev = method;
   209         method = newMethod;
   210         return prev;
   211     }
   213     /** Warn about deprecated symbol.
   214      *  @param pos        Position to be used for error reporting.
   215      *  @param sym        The deprecated symbol.
   216      */
   217     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   218         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   219             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   220     }
   222     /** Warn about unchecked operation.
   223      *  @param pos        Position to be used for error reporting.
   224      *  @param msg        A string describing the problem.
   225      */
   226     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   227         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   228             uncheckedHandler.report(pos, msg, args);
   229     }
   231     /** Warn about unsafe vararg method decl.
   232      *  @param pos        Position to be used for error reporting.
   233      *  @param sym        The deprecated symbol.
   234      */
   235     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   236         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   237             log.warning(LintCategory.VARARGS, pos, key, args);
   238     }
   240     /** Warn about using proprietary API.
   241      *  @param pos        Position to be used for error reporting.
   242      *  @param msg        A string describing the problem.
   243      */
   244     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   245         if (!lint.isSuppressed(LintCategory.SUNAPI))
   246             sunApiHandler.report(pos, msg, args);
   247     }
   249     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   250         if (lint.isEnabled(LintCategory.STATIC))
   251             log.warning(LintCategory.STATIC, pos, msg, args);
   252     }
   254     /**
   255      * Report any deferred diagnostics.
   256      */
   257     public void reportDeferredDiagnostics() {
   258         deprecationHandler.reportDeferredDiagnostic();
   259         uncheckedHandler.reportDeferredDiagnostic();
   260         sunApiHandler.reportDeferredDiagnostic();
   261     }
   264     /** Report a failure to complete a class.
   265      *  @param pos        Position to be used for error reporting.
   266      *  @param ex         The failure to report.
   267      */
   268     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   269         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   270         if (ex instanceof ClassReader.BadClassFile
   271                 && !suppressAbortOnBadClassFile) throw new Abort();
   272         else return syms.errType;
   273     }
   275     /** Report an error that wrong type tag was found.
   276      *  @param pos        Position to be used for error reporting.
   277      *  @param required   An internationalized string describing the type tag
   278      *                    required.
   279      *  @param found      The type that was found.
   280      */
   281     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   282         // this error used to be raised by the parser,
   283         // but has been delayed to this point:
   284         if (found instanceof Type && ((Type)found).tag == VOID) {
   285             log.error(pos, "illegal.start.of.type");
   286             return syms.errType;
   287         }
   288         log.error(pos, "type.found.req", found, required);
   289         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   290     }
   292     /** Report an error that symbol cannot be referenced before super
   293      *  has been called.
   294      *  @param pos        Position to be used for error reporting.
   295      *  @param sym        The referenced symbol.
   296      */
   297     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   298         log.error(pos, "cant.ref.before.ctor.called", sym);
   299     }
   301     /** Report duplicate declaration error.
   302      */
   303     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   304         if (!sym.type.isErroneous()) {
   305             Symbol location = sym.location();
   306             if (location.kind == MTH &&
   307                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   308                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   309                         kindName(sym.location()), kindName(sym.location().enclClass()),
   310                         sym.location().enclClass());
   311             } else {
   312                 log.error(pos, "already.defined", kindName(sym), sym,
   313                         kindName(sym.location()), sym.location());
   314             }
   315         }
   316     }
   318     /** Report array/varargs duplicate declaration
   319      */
   320     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   321         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   322             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   323         }
   324     }
   326 /* ************************************************************************
   327  * duplicate declaration checking
   328  *************************************************************************/
   330     /** Check that variable does not hide variable with same name in
   331      *  immediately enclosing local scope.
   332      *  @param pos           Position for error reporting.
   333      *  @param v             The symbol.
   334      *  @param s             The scope.
   335      */
   336     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   337         if (s.next != null) {
   338             for (Scope.Entry e = s.next.lookup(v.name);
   339                  e.scope != null && e.sym.owner == v.owner;
   340                  e = e.next()) {
   341                 if (e.sym.kind == VAR &&
   342                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   343                     v.name != names.error) {
   344                     duplicateError(pos, e.sym);
   345                     return;
   346                 }
   347             }
   348         }
   349     }
   351     /** Check that a class or interface does not hide a class or
   352      *  interface with same name in immediately enclosing local scope.
   353      *  @param pos           Position for error reporting.
   354      *  @param c             The symbol.
   355      *  @param s             The scope.
   356      */
   357     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   358         if (s.next != null) {
   359             for (Scope.Entry e = s.next.lookup(c.name);
   360                  e.scope != null && e.sym.owner == c.owner;
   361                  e = e.next()) {
   362                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   363                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   364                     c.name != names.error) {
   365                     duplicateError(pos, e.sym);
   366                     return;
   367                 }
   368             }
   369         }
   370     }
   372     /** Check that class does not have the same name as one of
   373      *  its enclosing classes, or as a class defined in its enclosing scope.
   374      *  return true if class is unique in its enclosing scope.
   375      *  @param pos           Position for error reporting.
   376      *  @param name          The class name.
   377      *  @param s             The enclosing scope.
   378      */
   379     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   380         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   381             if (e.sym.kind == TYP && e.sym.name != names.error) {
   382                 duplicateError(pos, e.sym);
   383                 return false;
   384             }
   385         }
   386         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   387             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   388                 duplicateError(pos, sym);
   389                 return true;
   390             }
   391         }
   392         return true;
   393     }
   395 /* *************************************************************************
   396  * Class name generation
   397  **************************************************************************/
   399     /** Return name of local class.
   400      *  This is of the form    <enclClass> $ n <classname>
   401      *  where
   402      *    enclClass is the flat name of the enclosing class,
   403      *    classname is the simple name of the local class
   404      */
   405     Name localClassName(ClassSymbol c) {
   406         for (int i=1; ; i++) {
   407             Name flatname = names.
   408                 fromString("" + c.owner.enclClass().flatname +
   409                            syntheticNameChar + i +
   410                            c.name);
   411             if (compiled.get(flatname) == null) return flatname;
   412         }
   413     }
   415 /* *************************************************************************
   416  * Type Checking
   417  **************************************************************************/
   419     /**
   420      * A check context is an object that can be used to perform compatibility
   421      * checks - depending on the check context, meaning of 'compatibility' might
   422      * vary significantly.
   423      */
   424     public interface CheckContext {
   425         /**
   426          * Is type 'found' compatible with type 'req' in given context
   427          */
   428         boolean compatible(Type found, Type req, Warner warn);
   429         /**
   430          * Report a check error
   431          */
   432         void report(DiagnosticPosition pos, JCDiagnostic details);
   433         /**
   434          * Obtain a warner for this check context
   435          */
   436         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   438         public Infer.InferenceContext inferenceContext();
   440         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   442         public boolean allowBoxing();
   443     }
   445     /**
   446      * This class represent a check context that is nested within another check
   447      * context - useful to check sub-expressions. The default behavior simply
   448      * redirects all method calls to the enclosing check context leveraging
   449      * the forwarding pattern.
   450      */
   451     static class NestedCheckContext implements CheckContext {
   452         CheckContext enclosingContext;
   454         NestedCheckContext(CheckContext enclosingContext) {
   455             this.enclosingContext = enclosingContext;
   456         }
   458         public boolean compatible(Type found, Type req, Warner warn) {
   459             return enclosingContext.compatible(found, req, warn);
   460         }
   462         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   463             enclosingContext.report(pos, details);
   464         }
   466         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   467             return enclosingContext.checkWarner(pos, found, req);
   468         }
   470         public Infer.InferenceContext inferenceContext() {
   471             return enclosingContext.inferenceContext();
   472         }
   474         public DeferredAttrContext deferredAttrContext() {
   475             return enclosingContext.deferredAttrContext();
   476         }
   478         public boolean allowBoxing() {
   479             return enclosingContext.allowBoxing();
   480         }
   481     }
   483     /**
   484      * Check context to be used when evaluating assignment/return statements
   485      */
   486     CheckContext basicHandler = new CheckContext() {
   487         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   488             log.error(pos, "prob.found.req", details);
   489         }
   490         public boolean compatible(Type found, Type req, Warner warn) {
   491             return types.isAssignable(found, req, warn);
   492         }
   494         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   495             return convertWarner(pos, found, req);
   496         }
   498         public InferenceContext inferenceContext() {
   499             return infer.emptyContext;
   500         }
   502         public DeferredAttrContext deferredAttrContext() {
   503             return deferredAttr.emptyDeferredAttrContext;
   504         }
   506         public boolean allowBoxing() {
   507             return true;
   508         }
   509     };
   511     /** Check that a given type is assignable to a given proto-type.
   512      *  If it is, return the type, otherwise return errType.
   513      *  @param pos        Position to be used for error reporting.
   514      *  @param found      The type that was found.
   515      *  @param req        The type that was required.
   516      */
   517     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   518         return checkType(pos, found, req, basicHandler);
   519     }
   521     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   522         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   523         if (inferenceContext.free(req)) {
   524             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   525                 @Override
   526                 public void typesInferred(InferenceContext inferenceContext) {
   527                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   528                 }
   529             });
   530         }
   531         if (req.tag == ERROR)
   532             return req;
   533         if (req.tag == NONE)
   534             return found;
   535         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   536             return found;
   537         } else {
   538             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   539                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   540                 return types.createErrorType(found);
   541             }
   542             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   543             return types.createErrorType(found);
   544         }
   545     }
   547     /** Check that a given type can be cast to a given target type.
   548      *  Return the result of the cast.
   549      *  @param pos        Position to be used for error reporting.
   550      *  @param found      The type that is being cast.
   551      *  @param req        The target type of the cast.
   552      */
   553     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   554         return checkCastable(pos, found, req, basicHandler);
   555     }
   556     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   557         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   558             return req;
   559         } else {
   560             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   561             return types.createErrorType(found);
   562         }
   563     }
   565     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   566      * The problem should only be reported for non-292 cast
   567      */
   568     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   569         if (!tree.type.isErroneous() &&
   570                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   571                 && types.isSameType(tree.expr.type, tree.clazz.type)
   572                 && !is292targetTypeCast(tree)) {
   573             log.warning(Lint.LintCategory.CAST,
   574                     tree.pos(), "redundant.cast", tree.expr.type);
   575         }
   576     }
   577     //where
   578             private boolean is292targetTypeCast(JCTypeCast tree) {
   579                 boolean is292targetTypeCast = false;
   580                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   581                 if (expr.hasTag(APPLY)) {
   582                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   583                     Symbol sym = TreeInfo.symbol(apply.meth);
   584                     is292targetTypeCast = sym != null &&
   585                         sym.kind == MTH &&
   586                         (sym.flags() & HYPOTHETICAL) != 0;
   587                 }
   588                 return is292targetTypeCast;
   589             }
   593 //where
   594         /** Is type a type variable, or a (possibly multi-dimensional) array of
   595          *  type variables?
   596          */
   597         boolean isTypeVar(Type t) {
   598             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   599         }
   601     /** Check that a type is within some bounds.
   602      *
   603      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   604      *  type argument.
   605      *  @param pos           Position to be used for error reporting.
   606      *  @param a             The type that should be bounded by bs.
   607      *  @param bs            The bound.
   608      */
   609     private boolean checkExtends(Type a, Type bound) {
   610          if (a.isUnbound()) {
   611              return true;
   612          } else if (a.tag != WILDCARD) {
   613              a = types.upperBound(a);
   614              return types.isSubtype(a, bound);
   615          } else if (a.isExtendsBound()) {
   616              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   617          } else if (a.isSuperBound()) {
   618              return !types.notSoftSubtype(types.lowerBound(a), bound);
   619          }
   620          return true;
   621      }
   623     /** Check that type is different from 'void'.
   624      *  @param pos           Position to be used for error reporting.
   625      *  @param t             The type to be checked.
   626      */
   627     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   628         if (t.tag == VOID) {
   629             log.error(pos, "void.not.allowed.here");
   630             return types.createErrorType(t);
   631         } else {
   632             return t;
   633         }
   634     }
   636     /** Check that type is a class or interface type.
   637      *  @param pos           Position to be used for error reporting.
   638      *  @param t             The type to be checked.
   639      */
   640     Type checkClassType(DiagnosticPosition pos, Type t) {
   641         if (t.tag != CLASS && t.tag != ERROR)
   642             return typeTagError(pos,
   643                                 diags.fragment("type.req.class"),
   644                                 (t.tag == TYPEVAR)
   645                                 ? diags.fragment("type.parameter", t)
   646                                 : t);
   647         else
   648             return t;
   649     }
   651     /** Check that type is a valid qualifier for a constructor reference expression
   652      */
   653     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   654         t = checkClassType(pos, t);
   655         if (t.tag == CLASS) {
   656             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   657                 log.error(pos, "abstract.cant.be.instantiated");
   658                 t = types.createErrorType(t);
   659             } else if ((t.tsym.flags() & ENUM) != 0) {
   660                 log.error(pos, "enum.cant.be.instantiated");
   661                 t = types.createErrorType(t);
   662             }
   663         }
   664         return t;
   665     }
   667     /** Check that type is a class or interface type.
   668      *  @param pos           Position to be used for error reporting.
   669      *  @param t             The type to be checked.
   670      *  @param noBounds    True if type bounds are illegal here.
   671      */
   672     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   673         t = checkClassType(pos, t);
   674         if (noBounds && t.isParameterized()) {
   675             List<Type> args = t.getTypeArguments();
   676             while (args.nonEmpty()) {
   677                 if (args.head.tag == WILDCARD)
   678                     return typeTagError(pos,
   679                                         diags.fragment("type.req.exact"),
   680                                         args.head);
   681                 args = args.tail;
   682             }
   683         }
   684         return t;
   685     }
   687     /** Check that type is a reifiable class, interface or array type.
   688      *  @param pos           Position to be used for error reporting.
   689      *  @param t             The type to be checked.
   690      */
   691     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   692         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   693             return typeTagError(pos,
   694                                 diags.fragment("type.req.class.array"),
   695                                 t);
   696         } else if (!types.isReifiable(t)) {
   697             log.error(pos, "illegal.generic.type.for.instof");
   698             return types.createErrorType(t);
   699         } else {
   700             return t;
   701         }
   702     }
   704     /** Check that type is a reference type, i.e. a class, interface or array type
   705      *  or a type variable.
   706      *  @param pos           Position to be used for error reporting.
   707      *  @param t             The type to be checked.
   708      */
   709     Type checkRefType(DiagnosticPosition pos, Type t) {
   710         switch (t.tag) {
   711         case CLASS:
   712         case ARRAY:
   713         case TYPEVAR:
   714         case WILDCARD:
   715         case ERROR:
   716             return t;
   717         default:
   718             return typeTagError(pos,
   719                                 diags.fragment("type.req.ref"),
   720                                 t);
   721         }
   722     }
   724     /** Check that each type is a reference type, i.e. a class, interface or array type
   725      *  or a type variable.
   726      *  @param trees         Original trees, used for error reporting.
   727      *  @param types         The types to be checked.
   728      */
   729     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   730         List<JCExpression> tl = trees;
   731         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   732             l.head = checkRefType(tl.head.pos(), l.head);
   733             tl = tl.tail;
   734         }
   735         return types;
   736     }
   738     /** Check that type is a null or reference type.
   739      *  @param pos           Position to be used for error reporting.
   740      *  @param t             The type to be checked.
   741      */
   742     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   743         switch (t.tag) {
   744         case CLASS:
   745         case ARRAY:
   746         case TYPEVAR:
   747         case WILDCARD:
   748         case BOT:
   749         case ERROR:
   750             return t;
   751         default:
   752             return typeTagError(pos,
   753                                 diags.fragment("type.req.ref"),
   754                                 t);
   755         }
   756     }
   758     /** Check that flag set does not contain elements of two conflicting sets. s
   759      *  Return true if it doesn't.
   760      *  @param pos           Position to be used for error reporting.
   761      *  @param flags         The set of flags to be checked.
   762      *  @param set1          Conflicting flags set #1.
   763      *  @param set2          Conflicting flags set #2.
   764      */
   765     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   766         if ((flags & set1) != 0 && (flags & set2) != 0) {
   767             log.error(pos,
   768                       "illegal.combination.of.modifiers",
   769                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   770                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   771             return false;
   772         } else
   773             return true;
   774     }
   776     /** Check that usage of diamond operator is correct (i.e. diamond should not
   777      * be used with non-generic classes or in anonymous class creation expressions)
   778      */
   779     Type checkDiamond(JCNewClass tree, Type t) {
   780         if (!TreeInfo.isDiamond(tree) ||
   781                 t.isErroneous()) {
   782             return checkClassType(tree.clazz.pos(), t, true);
   783         } else if (tree.def != null) {
   784             log.error(tree.clazz.pos(),
   785                     "cant.apply.diamond.1",
   786                     t, diags.fragment("diamond.and.anon.class", t));
   787             return types.createErrorType(t);
   788         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   789             log.error(tree.clazz.pos(),
   790                 "cant.apply.diamond.1",
   791                 t, diags.fragment("diamond.non.generic", t));
   792             return types.createErrorType(t);
   793         } else if (tree.typeargs != null &&
   794                 tree.typeargs.nonEmpty()) {
   795             log.error(tree.clazz.pos(),
   796                 "cant.apply.diamond.1",
   797                 t, diags.fragment("diamond.and.explicit.params", t));
   798             return types.createErrorType(t);
   799         } else {
   800             return t;
   801         }
   802     }
   804     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   805         MethodSymbol m = tree.sym;
   806         if (!allowSimplifiedVarargs) return;
   807         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   808         Type varargElemType = null;
   809         if (m.isVarArgs()) {
   810             varargElemType = types.elemtype(tree.params.last().type);
   811         }
   812         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   813             if (varargElemType != null) {
   814                 log.error(tree,
   815                         "varargs.invalid.trustme.anno",
   816                         syms.trustMeType.tsym,
   817                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   818             } else {
   819                 log.error(tree,
   820                             "varargs.invalid.trustme.anno",
   821                             syms.trustMeType.tsym,
   822                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   823             }
   824         } else if (hasTrustMeAnno && varargElemType != null &&
   825                             types.isReifiable(varargElemType)) {
   826             warnUnsafeVararg(tree,
   827                             "varargs.redundant.trustme.anno",
   828                             syms.trustMeType.tsym,
   829                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   830         }
   831         else if (!hasTrustMeAnno && varargElemType != null &&
   832                 !types.isReifiable(varargElemType)) {
   833             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   834         }
   835     }
   836     //where
   837         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   838             return (s.flags() & VARARGS) != 0 &&
   839                 (s.isConstructor() ||
   840                     (s.flags() & (STATIC | FINAL)) != 0);
   841         }
   843     Type checkMethod(Type owntype,
   844                             Symbol sym,
   845                             Env<AttrContext> env,
   846                             final List<JCExpression> argtrees,
   847                             List<Type> argtypes,
   848                             boolean useVarargs,
   849                             boolean unchecked) {
   850         // System.out.println("call   : " + env.tree);
   851         // System.out.println("method : " + owntype);
   852         // System.out.println("actuals: " + argtypes);
   853         List<Type> formals = owntype.getParameterTypes();
   854         Type last = useVarargs ? formals.last() : null;
   855         if (sym.name==names.init &&
   856                 sym.owner == syms.enumSym)
   857                 formals = formals.tail.tail;
   858         List<JCExpression> args = argtrees;
   859         DeferredAttr.DeferredTypeMap checkDeferredMap =
   860                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   861         if (args != null) {
   862             //this is null when type-checking a method reference
   863             while (formals.head != last) {
   864                 JCTree arg = args.head;
   865                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   866                 assertConvertible(arg, arg.type, formals.head, warn);
   867                 args = args.tail;
   868                 formals = formals.tail;
   869             }
   870             if (useVarargs) {
   871                 Type varArg = types.elemtype(last);
   872                 while (args.tail != null) {
   873                     JCTree arg = args.head;
   874                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   875                     assertConvertible(arg, arg.type, varArg, warn);
   876                     args = args.tail;
   877                 }
   878             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   879                 // non-varargs call to varargs method
   880                 Type varParam = owntype.getParameterTypes().last();
   881                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   882                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   883                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   884                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   885                             types.elemtype(varParam), varParam);
   886             }
   887         }
   888         if (unchecked) {
   889             warnUnchecked(env.tree.pos(),
   890                     "unchecked.meth.invocation.applied",
   891                     kindName(sym),
   892                     sym.name,
   893                     rs.methodArguments(sym.type.getParameterTypes()),
   894                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   895                     kindName(sym.location()),
   896                     sym.location());
   897            owntype = new MethodType(owntype.getParameterTypes(),
   898                    types.erasure(owntype.getReturnType()),
   899                    types.erasure(owntype.getThrownTypes()),
   900                    syms.methodClass);
   901         }
   902         if (useVarargs) {
   903             JCTree tree = env.tree;
   904             Type argtype = owntype.getParameterTypes().last();
   905             if (!types.isReifiable(argtype) &&
   906                     (!allowSimplifiedVarargs ||
   907                     sym.attribute(syms.trustMeType.tsym) == null ||
   908                     !isTrustMeAllowedOnMethod(sym))) {
   909                 warnUnchecked(env.tree.pos(),
   910                                   "unchecked.generic.array.creation",
   911                                   argtype);
   912             }
   913             Type elemtype = types.elemtype(argtype);
   914             switch (tree.getTag()) {
   915                 case APPLY:
   916                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   917                     break;
   918                 case NEWCLASS:
   919                     ((JCNewClass) tree).varargsElement = elemtype;
   920                     break;
   921                 case REFERENCE:
   922                     ((JCMemberReference) tree).varargsElement = elemtype;
   923                     break;
   924                 default:
   925                     throw new AssertionError(""+tree);
   926             }
   927          }
   928          return owntype;
   929     }
   930     //where
   931         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   932             if (types.isConvertible(actual, formal, warn))
   933                 return;
   935             if (formal.isCompound()
   936                 && types.isSubtype(actual, types.supertype(formal))
   937                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   938                 return;
   939         }
   941         void checkAccessibleFunctionalDescriptor(DiagnosticPosition pos, Env<AttrContext> env, Type desc) {
   942             AccessChecker accessChecker = new AccessChecker(env);
   943             //check args accessibility (only if implicit parameter types)
   944             for (Type arg : desc.getParameterTypes()) {
   945                 if (!accessChecker.visit(arg)) {
   946                     log.error(pos, "cant.access.arg.type.in.functional.desc", arg);
   947                     return;
   948                 }
   949             }
   950             //check return type accessibility
   951             if (!accessChecker.visit(desc.getReturnType())) {
   952                 log.error(pos, "cant.access.return.in.functional.desc", desc.getReturnType());
   953                 return;
   954             }
   955             //check thrown types accessibility
   956             for (Type thrown : desc.getThrownTypes()) {
   957                 if (!accessChecker.visit(thrown)) {
   958                     log.error(pos, "cant.access.thrown.in.functional.desc", thrown);
   959                     return;
   960                 }
   961             }
   962         }
   964         class AccessChecker extends Types.UnaryVisitor<Boolean> {
   966             Env<AttrContext> env;
   968             AccessChecker(Env<AttrContext> env) {
   969                 this.env = env;
   970             }
   972             Boolean visit(List<Type> ts) {
   973                 for (Type t : ts) {
   974                     if (!visit(t))
   975                         return false;
   976                 }
   977                 return true;
   978             }
   980             public Boolean visitType(Type t, Void s) {
   981                 return true;
   982             }
   984             @Override
   985             public Boolean visitArrayType(ArrayType t, Void s) {
   986                 return visit(t.elemtype);
   987             }
   989             @Override
   990             public Boolean visitClassType(ClassType t, Void s) {
   991                 return rs.isAccessible(env, t, true) &&
   992                         visit(t.getTypeArguments());
   993             }
   995             @Override
   996             public Boolean visitWildcardType(WildcardType t, Void s) {
   997                 return visit(t.type);
   998             }
   999         };
  1000     /**
  1001      * Check that type 't' is a valid instantiation of a generic class
  1002      * (see JLS 4.5)
  1004      * @param t class type to be checked
  1005      * @return true if 't' is well-formed
  1006      */
  1007     public boolean checkValidGenericType(Type t) {
  1008         return firstIncompatibleTypeArg(t) == null;
  1010     //WHERE
  1011         private Type firstIncompatibleTypeArg(Type type) {
  1012             List<Type> formals = type.tsym.type.allparams();
  1013             List<Type> actuals = type.allparams();
  1014             List<Type> args = type.getTypeArguments();
  1015             List<Type> forms = type.tsym.type.getTypeArguments();
  1016             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
  1018             // For matching pairs of actual argument types `a' and
  1019             // formal type parameters with declared bound `b' ...
  1020             while (args.nonEmpty() && forms.nonEmpty()) {
  1021                 // exact type arguments needs to know their
  1022                 // bounds (for upper and lower bound
  1023                 // calculations).  So we create new bounds where
  1024                 // type-parameters are replaced with actuals argument types.
  1025                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
  1026                 args = args.tail;
  1027                 forms = forms.tail;
  1030             args = type.getTypeArguments();
  1031             List<Type> tvars_cap = types.substBounds(formals,
  1032                                       formals,
  1033                                       types.capture(type).allparams());
  1034             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
  1035                 // Let the actual arguments know their bound
  1036                 args.head.withTypeVar((TypeVar)tvars_cap.head);
  1037                 args = args.tail;
  1038                 tvars_cap = tvars_cap.tail;
  1041             args = type.getTypeArguments();
  1042             List<Type> bounds = bounds_buf.toList();
  1044             while (args.nonEmpty() && bounds.nonEmpty()) {
  1045                 Type actual = args.head;
  1046                 if (!isTypeArgErroneous(actual) &&
  1047                         !bounds.head.isErroneous() &&
  1048                         !checkExtends(actual, bounds.head)) {
  1049                     return args.head;
  1051                 args = args.tail;
  1052                 bounds = bounds.tail;
  1055             args = type.getTypeArguments();
  1056             bounds = bounds_buf.toList();
  1058             for (Type arg : types.capture(type).getTypeArguments()) {
  1059                 if (arg.tag == TYPEVAR &&
  1060                         arg.getUpperBound().isErroneous() &&
  1061                         !bounds.head.isErroneous() &&
  1062                         !isTypeArgErroneous(args.head)) {
  1063                     return args.head;
  1065                 bounds = bounds.tail;
  1066                 args = args.tail;
  1069             return null;
  1071         //where
  1072         boolean isTypeArgErroneous(Type t) {
  1073             return isTypeArgErroneous.visit(t);
  1076         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1077             public Boolean visitType(Type t, Void s) {
  1078                 return t.isErroneous();
  1080             @Override
  1081             public Boolean visitTypeVar(TypeVar t, Void s) {
  1082                 return visit(t.getUpperBound());
  1084             @Override
  1085             public Boolean visitCapturedType(CapturedType t, Void s) {
  1086                 return visit(t.getUpperBound()) ||
  1087                         visit(t.getLowerBound());
  1089             @Override
  1090             public Boolean visitWildcardType(WildcardType t, Void s) {
  1091                 return visit(t.type);
  1093         };
  1095     /** Check that given modifiers are legal for given symbol and
  1096      *  return modifiers together with any implicit modififiers for that symbol.
  1097      *  Warning: we can't use flags() here since this method
  1098      *  is called during class enter, when flags() would cause a premature
  1099      *  completion.
  1100      *  @param pos           Position to be used for error reporting.
  1101      *  @param flags         The set of modifiers given in a definition.
  1102      *  @param sym           The defined symbol.
  1103      */
  1104     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1105         long mask;
  1106         long implicit = 0;
  1107         switch (sym.kind) {
  1108         case VAR:
  1109             if (sym.owner.kind != TYP)
  1110                 mask = LocalVarFlags;
  1111             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1112                 mask = implicit = InterfaceVarFlags;
  1113             else
  1114                 mask = VarFlags;
  1115             break;
  1116         case MTH:
  1117             if (sym.name == names.init) {
  1118                 if ((sym.owner.flags_field & ENUM) != 0) {
  1119                     // enum constructors cannot be declared public or
  1120                     // protected and must be implicitly or explicitly
  1121                     // private
  1122                     implicit = PRIVATE;
  1123                     mask = PRIVATE;
  1124                 } else
  1125                     mask = ConstructorFlags;
  1126             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1127                 mask = implicit = InterfaceMethodFlags;
  1128             else {
  1129                 mask = MethodFlags;
  1131             // Imply STRICTFP if owner has STRICTFP set.
  1132             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1133               implicit |= sym.owner.flags_field & STRICTFP;
  1134             break;
  1135         case TYP:
  1136             if (sym.isLocal()) {
  1137                 mask = LocalClassFlags;
  1138                 if (sym.name.isEmpty()) { // Anonymous class
  1139                     // Anonymous classes in static methods are themselves static;
  1140                     // that's why we admit STATIC here.
  1141                     mask |= STATIC;
  1142                     // JLS: Anonymous classes are final.
  1143                     implicit |= FINAL;
  1145                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1146                     (flags & ENUM) != 0)
  1147                     log.error(pos, "enums.must.be.static");
  1148             } else if (sym.owner.kind == TYP) {
  1149                 mask = MemberClassFlags;
  1150                 if (sym.owner.owner.kind == PCK ||
  1151                     (sym.owner.flags_field & STATIC) != 0)
  1152                     mask |= STATIC;
  1153                 else if ((flags & ENUM) != 0)
  1154                     log.error(pos, "enums.must.be.static");
  1155                 // Nested interfaces and enums are always STATIC (Spec ???)
  1156                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1157             } else {
  1158                 mask = ClassFlags;
  1160             // Interfaces are always ABSTRACT
  1161             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1163             if ((flags & ENUM) != 0) {
  1164                 // enums can't be declared abstract or final
  1165                 mask &= ~(ABSTRACT | FINAL);
  1166                 implicit |= implicitEnumFinalFlag(tree);
  1168             // Imply STRICTFP if owner has STRICTFP set.
  1169             implicit |= sym.owner.flags_field & STRICTFP;
  1170             break;
  1171         default:
  1172             throw new AssertionError();
  1174         long illegal = flags & StandardFlags & ~mask;
  1175         if (illegal != 0) {
  1176             if ((illegal & INTERFACE) != 0) {
  1177                 log.error(pos, "intf.not.allowed.here");
  1178                 mask |= INTERFACE;
  1180             else {
  1181                 log.error(pos,
  1182                           "mod.not.allowed.here", asFlagSet(illegal));
  1185         else if ((sym.kind == TYP ||
  1186                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1187                   // in the presence of inner classes. Should it be deleted here?
  1188                   checkDisjoint(pos, flags,
  1189                                 ABSTRACT,
  1190                                 PRIVATE | STATIC))
  1191                  &&
  1192                  checkDisjoint(pos, flags,
  1193                                ABSTRACT | INTERFACE,
  1194                                FINAL | NATIVE | SYNCHRONIZED)
  1195                  &&
  1196                  checkDisjoint(pos, flags,
  1197                                PUBLIC,
  1198                                PRIVATE | PROTECTED)
  1199                  &&
  1200                  checkDisjoint(pos, flags,
  1201                                PRIVATE,
  1202                                PUBLIC | PROTECTED)
  1203                  &&
  1204                  checkDisjoint(pos, flags,
  1205                                FINAL,
  1206                                VOLATILE)
  1207                  &&
  1208                  (sym.kind == TYP ||
  1209                   checkDisjoint(pos, flags,
  1210                                 ABSTRACT | NATIVE,
  1211                                 STRICTFP))) {
  1212             // skip
  1214         return flags & (mask | ~StandardFlags) | implicit;
  1218     /** Determine if this enum should be implicitly final.
  1220      *  If the enum has no specialized enum contants, it is final.
  1222      *  If the enum does have specialized enum contants, it is
  1223      *  <i>not</i> final.
  1224      */
  1225     private long implicitEnumFinalFlag(JCTree tree) {
  1226         if (!tree.hasTag(CLASSDEF)) return 0;
  1227         class SpecialTreeVisitor extends JCTree.Visitor {
  1228             boolean specialized;
  1229             SpecialTreeVisitor() {
  1230                 this.specialized = false;
  1231             };
  1233             @Override
  1234             public void visitTree(JCTree tree) { /* no-op */ }
  1236             @Override
  1237             public void visitVarDef(JCVariableDecl tree) {
  1238                 if ((tree.mods.flags & ENUM) != 0) {
  1239                     if (tree.init instanceof JCNewClass &&
  1240                         ((JCNewClass) tree.init).def != null) {
  1241                         specialized = true;
  1247         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1248         JCClassDecl cdef = (JCClassDecl) tree;
  1249         for (JCTree defs: cdef.defs) {
  1250             defs.accept(sts);
  1251             if (sts.specialized) return 0;
  1253         return FINAL;
  1256 /* *************************************************************************
  1257  * Type Validation
  1258  **************************************************************************/
  1260     /** Validate a type expression. That is,
  1261      *  check that all type arguments of a parametric type are within
  1262      *  their bounds. This must be done in a second phase after type attributon
  1263      *  since a class might have a subclass as type parameter bound. E.g:
  1265      *  class B<A extends C> { ... }
  1266      *  class C extends B<C> { ... }
  1268      *  and we can't make sure that the bound is already attributed because
  1269      *  of possible cycles.
  1271      * Visitor method: Validate a type expression, if it is not null, catching
  1272      *  and reporting any completion failures.
  1273      */
  1274     void validate(JCTree tree, Env<AttrContext> env) {
  1275         validate(tree, env, true);
  1277     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1278         new Validator(env).validateTree(tree, checkRaw, true);
  1281     /** Visitor method: Validate a list of type expressions.
  1282      */
  1283     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1284         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1285             validate(l.head, env);
  1288     /** A visitor class for type validation.
  1289      */
  1290     class Validator extends JCTree.Visitor {
  1292         boolean isOuter;
  1293         Env<AttrContext> env;
  1295         Validator(Env<AttrContext> env) {
  1296             this.env = env;
  1299         @Override
  1300         public void visitTypeArray(JCArrayTypeTree tree) {
  1301             tree.elemtype.accept(this);
  1304         @Override
  1305         public void visitTypeApply(JCTypeApply tree) {
  1306             if (tree.type.tag == CLASS) {
  1307                 List<JCExpression> args = tree.arguments;
  1308                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1310                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1311                 if (incompatibleArg != null) {
  1312                     for (JCTree arg : tree.arguments) {
  1313                         if (arg.type == incompatibleArg) {
  1314                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1316                         forms = forms.tail;
  1320                 forms = tree.type.tsym.type.getTypeArguments();
  1322                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1324                 // For matching pairs of actual argument types `a' and
  1325                 // formal type parameters with declared bound `b' ...
  1326                 while (args.nonEmpty() && forms.nonEmpty()) {
  1327                     validateTree(args.head,
  1328                             !(isOuter && is_java_lang_Class),
  1329                             false);
  1330                     args = args.tail;
  1331                     forms = forms.tail;
  1334                 // Check that this type is either fully parameterized, or
  1335                 // not parameterized at all.
  1336                 if (tree.type.getEnclosingType().isRaw())
  1337                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1338                 if (tree.clazz.hasTag(SELECT))
  1339                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1343         @Override
  1344         public void visitTypeParameter(JCTypeParameter tree) {
  1345             validateTrees(tree.bounds, true, isOuter);
  1346             checkClassBounds(tree.pos(), tree.type);
  1349         @Override
  1350         public void visitWildcard(JCWildcard tree) {
  1351             if (tree.inner != null)
  1352                 validateTree(tree.inner, true, isOuter);
  1355         @Override
  1356         public void visitSelect(JCFieldAccess tree) {
  1357             if (tree.type.tag == CLASS) {
  1358                 visitSelectInternal(tree);
  1360                 // Check that this type is either fully parameterized, or
  1361                 // not parameterized at all.
  1362                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1363                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1367         public void visitSelectInternal(JCFieldAccess tree) {
  1368             if (tree.type.tsym.isStatic() &&
  1369                 tree.selected.type.isParameterized()) {
  1370                 // The enclosing type is not a class, so we are
  1371                 // looking at a static member type.  However, the
  1372                 // qualifying expression is parameterized.
  1373                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1374             } else {
  1375                 // otherwise validate the rest of the expression
  1376                 tree.selected.accept(this);
  1380         /** Default visitor method: do nothing.
  1381          */
  1382         @Override
  1383         public void visitTree(JCTree tree) {
  1386         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1387             try {
  1388                 if (tree != null) {
  1389                     this.isOuter = isOuter;
  1390                     tree.accept(this);
  1391                     if (checkRaw)
  1392                         checkRaw(tree, env);
  1394             } catch (CompletionFailure ex) {
  1395                 completionError(tree.pos(), ex);
  1399         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1400             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1401                 validateTree(l.head, checkRaw, isOuter);
  1404         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1405             if (lint.isEnabled(LintCategory.RAW) &&
  1406                 tree.type.tag == CLASS &&
  1407                 !TreeInfo.isDiamond(tree) &&
  1408                 !withinAnonConstr(env) &&
  1409                 tree.type.isRaw()) {
  1410                 log.warning(LintCategory.RAW,
  1411                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1415         boolean withinAnonConstr(Env<AttrContext> env) {
  1416             return env.enclClass.name.isEmpty() &&
  1417                     env.enclMethod != null && env.enclMethod.name == names.init;
  1421 /* *************************************************************************
  1422  * Exception checking
  1423  **************************************************************************/
  1425     /* The following methods treat classes as sets that contain
  1426      * the class itself and all their subclasses
  1427      */
  1429     /** Is given type a subtype of some of the types in given list?
  1430      */
  1431     boolean subset(Type t, List<Type> ts) {
  1432         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1433             if (types.isSubtype(t, l.head)) return true;
  1434         return false;
  1437     /** Is given type a subtype or supertype of
  1438      *  some of the types in given list?
  1439      */
  1440     boolean intersects(Type t, List<Type> ts) {
  1441         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1442             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1443         return false;
  1446     /** Add type set to given type list, unless it is a subclass of some class
  1447      *  in the list.
  1448      */
  1449     List<Type> incl(Type t, List<Type> ts) {
  1450         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1453     /** Remove type set from type set list.
  1454      */
  1455     List<Type> excl(Type t, List<Type> ts) {
  1456         if (ts.isEmpty()) {
  1457             return ts;
  1458         } else {
  1459             List<Type> ts1 = excl(t, ts.tail);
  1460             if (types.isSubtype(ts.head, t)) return ts1;
  1461             else if (ts1 == ts.tail) return ts;
  1462             else return ts1.prepend(ts.head);
  1466     /** Form the union of two type set lists.
  1467      */
  1468     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1469         List<Type> ts = ts1;
  1470         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1471             ts = incl(l.head, ts);
  1472         return ts;
  1475     /** Form the difference of two type lists.
  1476      */
  1477     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1478         List<Type> ts = ts1;
  1479         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1480             ts = excl(l.head, ts);
  1481         return ts;
  1484     /** Form the intersection of two type lists.
  1485      */
  1486     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1487         List<Type> ts = List.nil();
  1488         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1489             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1490         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1491             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1492         return ts;
  1495     /** Is exc an exception symbol that need not be declared?
  1496      */
  1497     boolean isUnchecked(ClassSymbol exc) {
  1498         return
  1499             exc.kind == ERR ||
  1500             exc.isSubClass(syms.errorType.tsym, types) ||
  1501             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1504     /** Is exc an exception type that need not be declared?
  1505      */
  1506     boolean isUnchecked(Type exc) {
  1507         return
  1508             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1509             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1510             exc.tag == BOT;
  1513     /** Same, but handling completion failures.
  1514      */
  1515     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1516         try {
  1517             return isUnchecked(exc);
  1518         } catch (CompletionFailure ex) {
  1519             completionError(pos, ex);
  1520             return true;
  1524     /** Is exc handled by given exception list?
  1525      */
  1526     boolean isHandled(Type exc, List<Type> handled) {
  1527         return isUnchecked(exc) || subset(exc, handled);
  1530     /** Return all exceptions in thrown list that are not in handled list.
  1531      *  @param thrown     The list of thrown exceptions.
  1532      *  @param handled    The list of handled exceptions.
  1533      */
  1534     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1535         List<Type> unhandled = List.nil();
  1536         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1537             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1538         return unhandled;
  1541 /* *************************************************************************
  1542  * Overriding/Implementation checking
  1543  **************************************************************************/
  1545     /** The level of access protection given by a flag set,
  1546      *  where PRIVATE is highest and PUBLIC is lowest.
  1547      */
  1548     static int protection(long flags) {
  1549         switch ((short)(flags & AccessFlags)) {
  1550         case PRIVATE: return 3;
  1551         case PROTECTED: return 1;
  1552         default:
  1553         case PUBLIC: return 0;
  1554         case 0: return 2;
  1558     /** A customized "cannot override" error message.
  1559      *  @param m      The overriding method.
  1560      *  @param other  The overridden method.
  1561      *  @return       An internationalized string.
  1562      */
  1563     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1564         String key;
  1565         if ((other.owner.flags() & INTERFACE) == 0)
  1566             key = "cant.override";
  1567         else if ((m.owner.flags() & INTERFACE) == 0)
  1568             key = "cant.implement";
  1569         else
  1570             key = "clashes.with";
  1571         return diags.fragment(key, m, m.location(), other, other.location());
  1574     /** A customized "override" warning message.
  1575      *  @param m      The overriding method.
  1576      *  @param other  The overridden method.
  1577      *  @return       An internationalized string.
  1578      */
  1579     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1580         String key;
  1581         if ((other.owner.flags() & INTERFACE) == 0)
  1582             key = "unchecked.override";
  1583         else if ((m.owner.flags() & INTERFACE) == 0)
  1584             key = "unchecked.implement";
  1585         else
  1586             key = "unchecked.clash.with";
  1587         return diags.fragment(key, m, m.location(), other, other.location());
  1590     /** A customized "override" warning message.
  1591      *  @param m      The overriding method.
  1592      *  @param other  The overridden method.
  1593      *  @return       An internationalized string.
  1594      */
  1595     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1596         String key;
  1597         if ((other.owner.flags() & INTERFACE) == 0)
  1598             key = "varargs.override";
  1599         else  if ((m.owner.flags() & INTERFACE) == 0)
  1600             key = "varargs.implement";
  1601         else
  1602             key = "varargs.clash.with";
  1603         return diags.fragment(key, m, m.location(), other, other.location());
  1606     /** Check that this method conforms with overridden method 'other'.
  1607      *  where `origin' is the class where checking started.
  1608      *  Complications:
  1609      *  (1) Do not check overriding of synthetic methods
  1610      *      (reason: they might be final).
  1611      *      todo: check whether this is still necessary.
  1612      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1613      *      than the method it implements. Augment the proxy methods with the
  1614      *      undeclared exceptions in this case.
  1615      *  (3) When generics are enabled, admit the case where an interface proxy
  1616      *      has a result type
  1617      *      extended by the result type of the method it implements.
  1618      *      Change the proxies result type to the smaller type in this case.
  1620      *  @param tree         The tree from which positions
  1621      *                      are extracted for errors.
  1622      *  @param m            The overriding method.
  1623      *  @param other        The overridden method.
  1624      *  @param origin       The class of which the overriding method
  1625      *                      is a member.
  1626      */
  1627     void checkOverride(JCTree tree,
  1628                        MethodSymbol m,
  1629                        MethodSymbol other,
  1630                        ClassSymbol origin) {
  1631         // Don't check overriding of synthetic methods or by bridge methods.
  1632         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1633             return;
  1636         // Error if static method overrides instance method (JLS 8.4.6.2).
  1637         if ((m.flags() & STATIC) != 0 &&
  1638                    (other.flags() & STATIC) == 0) {
  1639             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1640                       cannotOverride(m, other));
  1641             return;
  1644         // Error if instance method overrides static or final
  1645         // method (JLS 8.4.6.1).
  1646         if ((other.flags() & FINAL) != 0 ||
  1647                  (m.flags() & STATIC) == 0 &&
  1648                  (other.flags() & STATIC) != 0) {
  1649             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1650                       cannotOverride(m, other),
  1651                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1652             return;
  1655         if ((m.owner.flags() & ANNOTATION) != 0) {
  1656             // handled in validateAnnotationMethod
  1657             return;
  1660         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1661         if ((origin.flags() & INTERFACE) == 0 &&
  1662                  protection(m.flags()) > protection(other.flags())) {
  1663             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1664                       cannotOverride(m, other),
  1665                       other.flags() == 0 ?
  1666                           Flag.PACKAGE :
  1667                           asFlagSet(other.flags() & AccessFlags));
  1668             return;
  1671         Type mt = types.memberType(origin.type, m);
  1672         Type ot = types.memberType(origin.type, other);
  1673         // Error if overriding result type is different
  1674         // (or, in the case of generics mode, not a subtype) of
  1675         // overridden result type. We have to rename any type parameters
  1676         // before comparing types.
  1677         List<Type> mtvars = mt.getTypeArguments();
  1678         List<Type> otvars = ot.getTypeArguments();
  1679         Type mtres = mt.getReturnType();
  1680         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1682         overrideWarner.clear();
  1683         boolean resultTypesOK =
  1684             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1685         if (!resultTypesOK) {
  1686             if (!allowCovariantReturns &&
  1687                 m.owner != origin &&
  1688                 m.owner.isSubClass(other.owner, types)) {
  1689                 // allow limited interoperability with covariant returns
  1690             } else {
  1691                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1692                           "override.incompatible.ret",
  1693                           cannotOverride(m, other),
  1694                           mtres, otres);
  1695                 return;
  1697         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1698             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1699                     "override.unchecked.ret",
  1700                     uncheckedOverrides(m, other),
  1701                     mtres, otres);
  1704         // Error if overriding method throws an exception not reported
  1705         // by overridden method.
  1706         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1707         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1708         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1709         if (unhandledErased.nonEmpty()) {
  1710             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1711                       "override.meth.doesnt.throw",
  1712                       cannotOverride(m, other),
  1713                       unhandledUnerased.head);
  1714             return;
  1716         else if (unhandledUnerased.nonEmpty()) {
  1717             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1718                           "override.unchecked.thrown",
  1719                          cannotOverride(m, other),
  1720                          unhandledUnerased.head);
  1721             return;
  1724         // Optional warning if varargs don't agree
  1725         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1726             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1727             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1728                         ((m.flags() & Flags.VARARGS) != 0)
  1729                         ? "override.varargs.missing"
  1730                         : "override.varargs.extra",
  1731                         varargsOverrides(m, other));
  1734         // Warn if instance method overrides bridge method (compiler spec ??)
  1735         if ((other.flags() & BRIDGE) != 0) {
  1736             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1737                         uncheckedOverrides(m, other));
  1740         // Warn if a deprecated method overridden by a non-deprecated one.
  1741         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1742             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1745     // where
  1746         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1747             // If the method, m, is defined in an interface, then ignore the issue if the method
  1748             // is only inherited via a supertype and also implemented in the supertype,
  1749             // because in that case, we will rediscover the issue when examining the method
  1750             // in the supertype.
  1751             // If the method, m, is not defined in an interface, then the only time we need to
  1752             // address the issue is when the method is the supertype implemementation: any other
  1753             // case, we will have dealt with when examining the supertype classes
  1754             ClassSymbol mc = m.enclClass();
  1755             Type st = types.supertype(origin.type);
  1756             if (st.tag != CLASS)
  1757                 return true;
  1758             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1760             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1761                 List<Type> intfs = types.interfaces(origin.type);
  1762                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1764             else
  1765                 return (stimpl != m);
  1769     // used to check if there were any unchecked conversions
  1770     Warner overrideWarner = new Warner();
  1772     /** Check that a class does not inherit two concrete methods
  1773      *  with the same signature.
  1774      *  @param pos          Position to be used for error reporting.
  1775      *  @param site         The class type to be checked.
  1776      */
  1777     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1778         Type sup = types.supertype(site);
  1779         if (sup.tag != CLASS) return;
  1781         for (Type t1 = sup;
  1782              t1.tsym.type.isParameterized();
  1783              t1 = types.supertype(t1)) {
  1784             for (Scope.Entry e1 = t1.tsym.members().elems;
  1785                  e1 != null;
  1786                  e1 = e1.sibling) {
  1787                 Symbol s1 = e1.sym;
  1788                 if (s1.kind != MTH ||
  1789                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1790                     !s1.isInheritedIn(site.tsym, types) ||
  1791                     ((MethodSymbol)s1).implementation(site.tsym,
  1792                                                       types,
  1793                                                       true) != s1)
  1794                     continue;
  1795                 Type st1 = types.memberType(t1, s1);
  1796                 int s1ArgsLength = st1.getParameterTypes().length();
  1797                 if (st1 == s1.type) continue;
  1799                 for (Type t2 = sup;
  1800                      t2.tag == CLASS;
  1801                      t2 = types.supertype(t2)) {
  1802                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1803                          e2.scope != null;
  1804                          e2 = e2.next()) {
  1805                         Symbol s2 = e2.sym;
  1806                         if (s2 == s1 ||
  1807                             s2.kind != MTH ||
  1808                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1809                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1810                             !s2.isInheritedIn(site.tsym, types) ||
  1811                             ((MethodSymbol)s2).implementation(site.tsym,
  1812                                                               types,
  1813                                                               true) != s2)
  1814                             continue;
  1815                         Type st2 = types.memberType(t2, s2);
  1816                         if (types.overrideEquivalent(st1, st2))
  1817                             log.error(pos, "concrete.inheritance.conflict",
  1818                                       s1, t1, s2, t2, sup);
  1825     /** Check that classes (or interfaces) do not each define an abstract
  1826      *  method with same name and arguments but incompatible return types.
  1827      *  @param pos          Position to be used for error reporting.
  1828      *  @param t1           The first argument type.
  1829      *  @param t2           The second argument type.
  1830      */
  1831     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1832                                             Type t1,
  1833                                             Type t2) {
  1834         return checkCompatibleAbstracts(pos, t1, t2,
  1835                                         types.makeCompoundType(t1, t2));
  1838     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1839                                             Type t1,
  1840                                             Type t2,
  1841                                             Type site) {
  1842         return firstIncompatibility(pos, t1, t2, site) == null;
  1845     /** Return the first method which is defined with same args
  1846      *  but different return types in two given interfaces, or null if none
  1847      *  exists.
  1848      *  @param t1     The first type.
  1849      *  @param t2     The second type.
  1850      *  @param site   The most derived type.
  1851      *  @returns symbol from t2 that conflicts with one in t1.
  1852      */
  1853     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1854         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1855         closure(t1, interfaces1);
  1856         Map<TypeSymbol,Type> interfaces2;
  1857         if (t1 == t2)
  1858             interfaces2 = interfaces1;
  1859         else
  1860             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1862         for (Type t3 : interfaces1.values()) {
  1863             for (Type t4 : interfaces2.values()) {
  1864                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1865                 if (s != null) return s;
  1868         return null;
  1871     /** Compute all the supertypes of t, indexed by type symbol. */
  1872     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1873         if (t.tag != CLASS) return;
  1874         if (typeMap.put(t.tsym, t) == null) {
  1875             closure(types.supertype(t), typeMap);
  1876             for (Type i : types.interfaces(t))
  1877                 closure(i, typeMap);
  1881     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1882     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1883         if (t.tag != CLASS) return;
  1884         if (typesSkip.get(t.tsym) != null) return;
  1885         if (typeMap.put(t.tsym, t) == null) {
  1886             closure(types.supertype(t), typesSkip, typeMap);
  1887             for (Type i : types.interfaces(t))
  1888                 closure(i, typesSkip, typeMap);
  1892     /** Return the first method in t2 that conflicts with a method from t1. */
  1893     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1894         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1895             Symbol s1 = e1.sym;
  1896             Type st1 = null;
  1897             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1898             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1899             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1900             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1901                 Symbol s2 = e2.sym;
  1902                 if (s1 == s2) continue;
  1903                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1904                 if (st1 == null) st1 = types.memberType(t1, s1);
  1905                 Type st2 = types.memberType(t2, s2);
  1906                 if (types.overrideEquivalent(st1, st2)) {
  1907                     List<Type> tvars1 = st1.getTypeArguments();
  1908                     List<Type> tvars2 = st2.getTypeArguments();
  1909                     Type rt1 = st1.getReturnType();
  1910                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1911                     boolean compat =
  1912                         types.isSameType(rt1, rt2) ||
  1913                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1914                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1915                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1916                          checkCommonOverriderIn(s1,s2,site);
  1917                     if (!compat) {
  1918                         log.error(pos, "types.incompatible.diff.ret",
  1919                             t1, t2, s2.name +
  1920                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1921                         return s2;
  1923                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1924                         !checkCommonOverriderIn(s1, s2, site)) {
  1925                     log.error(pos,
  1926                             "name.clash.same.erasure.no.override",
  1927                             s1, s1.location(),
  1928                             s2, s2.location());
  1929                     return s2;
  1933         return null;
  1935     //WHERE
  1936     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1937         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1938         Type st1 = types.memberType(site, s1);
  1939         Type st2 = types.memberType(site, s2);
  1940         closure(site, supertypes);
  1941         for (Type t : supertypes.values()) {
  1942             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1943                 Symbol s3 = e.sym;
  1944                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1945                 Type st3 = types.memberType(site,s3);
  1946                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1947                     if (s3.owner == site.tsym) {
  1948                         return true;
  1950                     List<Type> tvars1 = st1.getTypeArguments();
  1951                     List<Type> tvars2 = st2.getTypeArguments();
  1952                     List<Type> tvars3 = st3.getTypeArguments();
  1953                     Type rt1 = st1.getReturnType();
  1954                     Type rt2 = st2.getReturnType();
  1955                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1956                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1957                     boolean compat =
  1958                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1959                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1960                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1961                     if (compat)
  1962                         return true;
  1966         return false;
  1969     /** Check that a given method conforms with any method it overrides.
  1970      *  @param tree         The tree from which positions are extracted
  1971      *                      for errors.
  1972      *  @param m            The overriding method.
  1973      */
  1974     void checkOverride(JCTree tree, MethodSymbol m) {
  1975         ClassSymbol origin = (ClassSymbol)m.owner;
  1976         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1977             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1978                 log.error(tree.pos(), "enum.no.finalize");
  1979                 return;
  1981         for (Type t = origin.type; t.tag == CLASS;
  1982              t = types.supertype(t)) {
  1983             if (t != origin.type) {
  1984                 checkOverride(tree, t, origin, m);
  1986             for (Type t2 : types.interfaces(t)) {
  1987                 checkOverride(tree, t2, origin, m);
  1992     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1993         TypeSymbol c = site.tsym;
  1994         Scope.Entry e = c.members().lookup(m.name);
  1995         while (e.scope != null) {
  1996             if (m.overrides(e.sym, origin, types, false)) {
  1997                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1998                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  2001             e = e.next();
  2005     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2006         ClashFilter cf = new ClashFilter(origin.type);
  2007         return (cf.accepts(s1) &&
  2008                 cf.accepts(s2) &&
  2009                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2013     /** Check that all abstract members of given class have definitions.
  2014      *  @param pos          Position to be used for error reporting.
  2015      *  @param c            The class.
  2016      */
  2017     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2018         try {
  2019             MethodSymbol undef = firstUndef(c, c);
  2020             if (undef != null) {
  2021                 if ((c.flags() & ENUM) != 0 &&
  2022                     types.supertype(c.type).tsym == syms.enumSym &&
  2023                     (c.flags() & FINAL) == 0) {
  2024                     // add the ABSTRACT flag to an enum
  2025                     c.flags_field |= ABSTRACT;
  2026                 } else {
  2027                     MethodSymbol undef1 =
  2028                         new MethodSymbol(undef.flags(), undef.name,
  2029                                          types.memberType(c.type, undef), undef.owner);
  2030                     log.error(pos, "does.not.override.abstract",
  2031                               c, undef1, undef1.location());
  2034         } catch (CompletionFailure ex) {
  2035             completionError(pos, ex);
  2038 //where
  2039         /** Return first abstract member of class `c' that is not defined
  2040          *  in `impl', null if there is none.
  2041          */
  2042         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2043             MethodSymbol undef = null;
  2044             // Do not bother to search in classes that are not abstract,
  2045             // since they cannot have abstract members.
  2046             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2047                 Scope s = c.members();
  2048                 for (Scope.Entry e = s.elems;
  2049                      undef == null && e != null;
  2050                      e = e.sibling) {
  2051                     if (e.sym.kind == MTH &&
  2052                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  2053                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2054                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2055                         if (implmeth == null || implmeth == absmeth)
  2056                             undef = absmeth;
  2059                 if (undef == null) {
  2060                     Type st = types.supertype(c.type);
  2061                     if (st.tag == CLASS)
  2062                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2064                 for (List<Type> l = types.interfaces(c.type);
  2065                      undef == null && l.nonEmpty();
  2066                      l = l.tail) {
  2067                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2070             return undef;
  2073     void checkNonCyclicDecl(JCClassDecl tree) {
  2074         CycleChecker cc = new CycleChecker();
  2075         cc.scan(tree);
  2076         if (!cc.errorFound && !cc.partialCheck) {
  2077             tree.sym.flags_field |= ACYCLIC;
  2081     class CycleChecker extends TreeScanner {
  2083         List<Symbol> seenClasses = List.nil();
  2084         boolean errorFound = false;
  2085         boolean partialCheck = false;
  2087         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2088             if (sym != null && sym.kind == TYP) {
  2089                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2090                 if (classEnv != null) {
  2091                     DiagnosticSource prevSource = log.currentSource();
  2092                     try {
  2093                         log.useSource(classEnv.toplevel.sourcefile);
  2094                         scan(classEnv.tree);
  2096                     finally {
  2097                         log.useSource(prevSource.getFile());
  2099                 } else if (sym.kind == TYP) {
  2100                     checkClass(pos, sym, List.<JCTree>nil());
  2102             } else {
  2103                 //not completed yet
  2104                 partialCheck = true;
  2108         @Override
  2109         public void visitSelect(JCFieldAccess tree) {
  2110             super.visitSelect(tree);
  2111             checkSymbol(tree.pos(), tree.sym);
  2114         @Override
  2115         public void visitIdent(JCIdent tree) {
  2116             checkSymbol(tree.pos(), tree.sym);
  2119         @Override
  2120         public void visitTypeApply(JCTypeApply tree) {
  2121             scan(tree.clazz);
  2124         @Override
  2125         public void visitTypeArray(JCArrayTypeTree tree) {
  2126             scan(tree.elemtype);
  2129         @Override
  2130         public void visitClassDef(JCClassDecl tree) {
  2131             List<JCTree> supertypes = List.nil();
  2132             if (tree.getExtendsClause() != null) {
  2133                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2135             if (tree.getImplementsClause() != null) {
  2136                 for (JCTree intf : tree.getImplementsClause()) {
  2137                     supertypes = supertypes.prepend(intf);
  2140             checkClass(tree.pos(), tree.sym, supertypes);
  2143         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2144             if ((c.flags_field & ACYCLIC) != 0)
  2145                 return;
  2146             if (seenClasses.contains(c)) {
  2147                 errorFound = true;
  2148                 noteCyclic(pos, (ClassSymbol)c);
  2149             } else if (!c.type.isErroneous()) {
  2150                 try {
  2151                     seenClasses = seenClasses.prepend(c);
  2152                     if (c.type.tag == CLASS) {
  2153                         if (supertypes.nonEmpty()) {
  2154                             scan(supertypes);
  2156                         else {
  2157                             ClassType ct = (ClassType)c.type;
  2158                             if (ct.supertype_field == null ||
  2159                                     ct.interfaces_field == null) {
  2160                                 //not completed yet
  2161                                 partialCheck = true;
  2162                                 return;
  2164                             checkSymbol(pos, ct.supertype_field.tsym);
  2165                             for (Type intf : ct.interfaces_field) {
  2166                                 checkSymbol(pos, intf.tsym);
  2169                         if (c.owner.kind == TYP) {
  2170                             checkSymbol(pos, c.owner);
  2173                 } finally {
  2174                     seenClasses = seenClasses.tail;
  2180     /** Check for cyclic references. Issue an error if the
  2181      *  symbol of the type referred to has a LOCKED flag set.
  2183      *  @param pos      Position to be used for error reporting.
  2184      *  @param t        The type referred to.
  2185      */
  2186     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2187         checkNonCyclicInternal(pos, t);
  2191     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2192         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2195     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2196         final TypeVar tv;
  2197         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2198             return;
  2199         if (seen.contains(t)) {
  2200             tv = (TypeVar)t;
  2201             tv.bound = types.createErrorType(t);
  2202             log.error(pos, "cyclic.inheritance", t);
  2203         } else if (t.tag == TYPEVAR) {
  2204             tv = (TypeVar)t;
  2205             seen = seen.prepend(tv);
  2206             for (Type b : types.getBounds(tv))
  2207                 checkNonCyclic1(pos, b, seen);
  2211     /** Check for cyclic references. Issue an error if the
  2212      *  symbol of the type referred to has a LOCKED flag set.
  2214      *  @param pos      Position to be used for error reporting.
  2215      *  @param t        The type referred to.
  2216      *  @returns        True if the check completed on all attributed classes
  2217      */
  2218     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2219         boolean complete = true; // was the check complete?
  2220         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2221         Symbol c = t.tsym;
  2222         if ((c.flags_field & ACYCLIC) != 0) return true;
  2224         if ((c.flags_field & LOCKED) != 0) {
  2225             noteCyclic(pos, (ClassSymbol)c);
  2226         } else if (!c.type.isErroneous()) {
  2227             try {
  2228                 c.flags_field |= LOCKED;
  2229                 if (c.type.tag == CLASS) {
  2230                     ClassType clazz = (ClassType)c.type;
  2231                     if (clazz.interfaces_field != null)
  2232                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2233                             complete &= checkNonCyclicInternal(pos, l.head);
  2234                     if (clazz.supertype_field != null) {
  2235                         Type st = clazz.supertype_field;
  2236                         if (st != null && st.tag == CLASS)
  2237                             complete &= checkNonCyclicInternal(pos, st);
  2239                     if (c.owner.kind == TYP)
  2240                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2242             } finally {
  2243                 c.flags_field &= ~LOCKED;
  2246         if (complete)
  2247             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2248         if (complete) c.flags_field |= ACYCLIC;
  2249         return complete;
  2252     /** Note that we found an inheritance cycle. */
  2253     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2254         log.error(pos, "cyclic.inheritance", c);
  2255         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2256             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2257         Type st = types.supertype(c.type);
  2258         if (st.tag == CLASS)
  2259             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2260         c.type = types.createErrorType(c, c.type);
  2261         c.flags_field |= ACYCLIC;
  2264     /** Check that all methods which implement some
  2265      *  method conform to the method they implement.
  2266      *  @param tree         The class definition whose members are checked.
  2267      */
  2268     void checkImplementations(JCClassDecl tree) {
  2269         checkImplementations(tree, tree.sym);
  2271 //where
  2272         /** Check that all methods which implement some
  2273          *  method in `ic' conform to the method they implement.
  2274          */
  2275         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2276             ClassSymbol origin = tree.sym;
  2277             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2278                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2279                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2280                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2281                         if (e.sym.kind == MTH &&
  2282                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2283                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2284                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2285                             if (implmeth != null && implmeth != absmeth &&
  2286                                 (implmeth.owner.flags() & INTERFACE) ==
  2287                                 (origin.flags() & INTERFACE)) {
  2288                                 // don't check if implmeth is in a class, yet
  2289                                 // origin is an interface. This case arises only
  2290                                 // if implmeth is declared in Object. The reason is
  2291                                 // that interfaces really don't inherit from
  2292                                 // Object it's just that the compiler represents
  2293                                 // things that way.
  2294                                 checkOverride(tree, implmeth, absmeth, origin);
  2302     /** Check that all abstract methods implemented by a class are
  2303      *  mutually compatible.
  2304      *  @param pos          Position to be used for error reporting.
  2305      *  @param c            The class whose interfaces are checked.
  2306      */
  2307     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2308         List<Type> supertypes = types.interfaces(c);
  2309         Type supertype = types.supertype(c);
  2310         if (supertype.tag == CLASS &&
  2311             (supertype.tsym.flags() & ABSTRACT) != 0)
  2312             supertypes = supertypes.prepend(supertype);
  2313         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2314             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2315                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2316                 return;
  2317             for (List<Type> m = supertypes; m != l; m = m.tail)
  2318                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2319                     return;
  2321         checkCompatibleConcretes(pos, c);
  2324     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2325         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2326             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2327                 // VM allows methods and variables with differing types
  2328                 if (sym.kind == e.sym.kind &&
  2329                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2330                     sym != e.sym &&
  2331                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2332                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2333                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2334                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2335                     return;
  2341     /** Check that all non-override equivalent methods accessible from 'site'
  2342      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2344      *  @param pos  Position to be used for error reporting.
  2345      *  @param site The class whose methods are checked.
  2346      *  @param sym  The method symbol to be checked.
  2347      */
  2348     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2349          ClashFilter cf = new ClashFilter(site);
  2350         //for each method m1 that is overridden (directly or indirectly)
  2351         //by method 'sym' in 'site'...
  2352         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2353             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2354              //...check each method m2 that is a member of 'site'
  2355              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2356                 if (m2 == m1) continue;
  2357                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2358                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2359                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2360                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2361                     sym.flags_field |= CLASH;
  2362                     String key = m1 == sym ?
  2363                             "name.clash.same.erasure.no.override" :
  2364                             "name.clash.same.erasure.no.override.1";
  2365                     log.error(pos,
  2366                             key,
  2367                             sym, sym.location(),
  2368                             m2, m2.location(),
  2369                             m1, m1.location());
  2370                     return;
  2378     /** Check that all static methods accessible from 'site' are
  2379      *  mutually compatible (JLS 8.4.8).
  2381      *  @param pos  Position to be used for error reporting.
  2382      *  @param site The class whose methods are checked.
  2383      *  @param sym  The method symbol to be checked.
  2384      */
  2385     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2386         ClashFilter cf = new ClashFilter(site);
  2387         //for each method m1 that is a member of 'site'...
  2388         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2389             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2390             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2391             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2392                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2393                 log.error(pos,
  2394                         "name.clash.same.erasure.no.hide",
  2395                         sym, sym.location(),
  2396                         s, s.location());
  2397                 return;
  2402      //where
  2403      private class ClashFilter implements Filter<Symbol> {
  2405          Type site;
  2407          ClashFilter(Type site) {
  2408              this.site = site;
  2411          boolean shouldSkip(Symbol s) {
  2412              return (s.flags() & CLASH) != 0 &&
  2413                 s.owner == site.tsym;
  2416          public boolean accepts(Symbol s) {
  2417              return s.kind == MTH &&
  2418                      (s.flags() & SYNTHETIC) == 0 &&
  2419                      !shouldSkip(s) &&
  2420                      s.isInheritedIn(site.tsym, types) &&
  2421                      !s.isConstructor();
  2425     /** Report a conflict between a user symbol and a synthetic symbol.
  2426      */
  2427     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2428         if (!sym.type.isErroneous()) {
  2429             if (warnOnSyntheticConflicts) {
  2430                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2432             else {
  2433                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2438     /** Check that class c does not implement directly or indirectly
  2439      *  the same parameterized interface with two different argument lists.
  2440      *  @param pos          Position to be used for error reporting.
  2441      *  @param type         The type whose interfaces are checked.
  2442      */
  2443     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2444         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2446 //where
  2447         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2448          *  with their class symbol as key and their type as value. Make
  2449          *  sure no class is entered with two different types.
  2450          */
  2451         void checkClassBounds(DiagnosticPosition pos,
  2452                               Map<TypeSymbol,Type> seensofar,
  2453                               Type type) {
  2454             if (type.isErroneous()) return;
  2455             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2456                 Type it = l.head;
  2457                 Type oldit = seensofar.put(it.tsym, it);
  2458                 if (oldit != null) {
  2459                     List<Type> oldparams = oldit.allparams();
  2460                     List<Type> newparams = it.allparams();
  2461                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2462                         log.error(pos, "cant.inherit.diff.arg",
  2463                                   it.tsym, Type.toString(oldparams),
  2464                                   Type.toString(newparams));
  2466                 checkClassBounds(pos, seensofar, it);
  2468             Type st = types.supertype(type);
  2469             if (st != null) checkClassBounds(pos, seensofar, st);
  2472     /** Enter interface into into set.
  2473      *  If it existed already, issue a "repeated interface" error.
  2474      */
  2475     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2476         if (its.contains(it))
  2477             log.error(pos, "repeated.interface");
  2478         else {
  2479             its.add(it);
  2483 /* *************************************************************************
  2484  * Check annotations
  2485  **************************************************************************/
  2487     /**
  2488      * Recursively validate annotations values
  2489      */
  2490     void validateAnnotationTree(JCTree tree) {
  2491         class AnnotationValidator extends TreeScanner {
  2492             @Override
  2493             public void visitAnnotation(JCAnnotation tree) {
  2494                 if (!tree.type.isErroneous()) {
  2495                     super.visitAnnotation(tree);
  2496                     validateAnnotation(tree);
  2500         tree.accept(new AnnotationValidator());
  2503     /**
  2504      *  {@literal
  2505      *  Annotation types are restricted to primitives, String, an
  2506      *  enum, an annotation, Class, Class<?>, Class<? extends
  2507      *  Anything>, arrays of the preceding.
  2508      *  }
  2509      */
  2510     void validateAnnotationType(JCTree restype) {
  2511         // restype may be null if an error occurred, so don't bother validating it
  2512         if (restype != null) {
  2513             validateAnnotationType(restype.pos(), restype.type);
  2517     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2518         if (type.isPrimitive()) return;
  2519         if (types.isSameType(type, syms.stringType)) return;
  2520         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2521         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2522         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2523         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2524             validateAnnotationType(pos, types.elemtype(type));
  2525             return;
  2527         log.error(pos, "invalid.annotation.member.type");
  2530     /**
  2531      * "It is also a compile-time error if any method declared in an
  2532      * annotation type has a signature that is override-equivalent to
  2533      * that of any public or protected method declared in class Object
  2534      * or in the interface annotation.Annotation."
  2536      * @jls 9.6 Annotation Types
  2537      */
  2538     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2539         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2540             Scope s = sup.tsym.members();
  2541             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2542                 if (e.sym.kind == MTH &&
  2543                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2544                     types.overrideEquivalent(m.type, e.sym.type))
  2545                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2550     /** Check the annotations of a symbol.
  2551      */
  2552     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2553         for (JCAnnotation a : annotations)
  2554             validateAnnotation(a, s);
  2557     /** Check an annotation of a symbol.
  2558      */
  2559     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2560         validateAnnotationTree(a);
  2562         if (!annotationApplicable(a, s))
  2563             log.error(a.pos(), "annotation.type.not.applicable");
  2565         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2566             if (!isOverrider(s))
  2567                 log.error(a.pos(), "method.does.not.override.superclass");
  2571     /**
  2572      * Validate the proposed container 'containedBy' on the
  2573      * annotation type symbol 's'. Report errors at position
  2574      * 'pos'.
  2576      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2577      * @param containerAnno the @ContainedBy on 's'
  2578      * @param pos where to report errors
  2579      */
  2580     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2581         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2583         Type t = null;
  2584         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2585         if (!l.isEmpty()) {
  2586             Assert.check(l.head.fst.name == names.value);
  2587             t = ((Attribute.Class)l.head.snd).getValue();
  2590         if (t == null) {
  2591             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2592             return;
  2595         validateHasContainerFor(t.tsym, s, pos);
  2596         validateRetention(t.tsym, s, pos);
  2597         validateDocumented(t.tsym, s, pos);
  2598         validateInherited(t.tsym, s, pos);
  2599         validateTarget(t.tsym, s, pos);
  2600         validateDefault(t.tsym, s, pos);
  2603     /**
  2604      * Validate the proposed container 'containerFor' on the
  2605      * annotation type symbol 's'. Report errors at position
  2606      * 'pos'.
  2608      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2609      * @param containerFor the @ContainedFor on 's'
  2610      * @param pos where to report errors
  2611      */
  2612     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2613         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2615         Type t = null;
  2616         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2617         if (!l.isEmpty()) {
  2618             Assert.check(l.head.fst.name == names.value);
  2619             t = ((Attribute.Class)l.head.snd).getValue();
  2622         if (t == null) {
  2623             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2624             return;
  2627         validateHasContainedBy(t.tsym, s, pos);
  2630     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2631         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2633         if (containedBy == null) {
  2634             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2635             return;
  2638         Type t = null;
  2639         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2640         if (!l.isEmpty()) {
  2641             Assert.check(l.head.fst.name == names.value);
  2642             t = ((Attribute.Class)l.head.snd).getValue();
  2645         if (t == null) {
  2646             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2647             return;
  2650         if (!types.isSameType(t, contained.type))
  2651             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2654     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2655         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2657         if (containerFor == null) {
  2658             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2659             return;
  2662         Type t = null;
  2663         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2664         if (!l.isEmpty()) {
  2665             Assert.check(l.head.fst.name == names.value);
  2666             t = ((Attribute.Class)l.head.snd).getValue();
  2669         if (t == null) {
  2670             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2671             return;
  2674         if (!types.isSameType(t, contained.type))
  2675             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2678     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2679         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2680         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2682         boolean error = false;
  2683         switch (containedRetention) {
  2684         case RUNTIME:
  2685             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2686                 error = true;
  2688             break;
  2689         case CLASS:
  2690             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2691                 error = true;
  2694         if (error ) {
  2695             log.error(pos, "invalid.containedby.annotation.retention",
  2696                       container, containerRetention,
  2697                       contained, containedRetention);
  2701     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2702         if (contained.attribute(syms.documentedType.tsym) != null) {
  2703             if (container.attribute(syms.documentedType.tsym) == null) {
  2704                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2709     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2710         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2711             if (container.attribute(syms.inheritedType.tsym) == null) {
  2712                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2717     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2718         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2720         // If contained has no Target, we are done
  2721         if (containedTarget == null) {
  2722             return;
  2725         // If contained has Target m1, container must have a Target
  2726         // annotation, m2, and m2 must be a subset of m1. (This is
  2727         // trivially true if contained has no target as per above).
  2729         // contained has target, but container has not, error
  2730         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2731         if (containerTarget == null) {
  2732             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2733             return;
  2736         Set<Name> containerTargets = new HashSet<Name>();
  2737         for (Attribute app : containerTarget.values) {
  2738             if (!(app instanceof Attribute.Enum)) {
  2739                 continue; // recovery
  2741             Attribute.Enum e = (Attribute.Enum)app;
  2742             containerTargets.add(e.value.name);
  2745         Set<Name> containedTargets = new HashSet<Name>();
  2746         for (Attribute app : containedTarget.values) {
  2747             if (!(app instanceof Attribute.Enum)) {
  2748                 continue; // recovery
  2750             Attribute.Enum e = (Attribute.Enum)app;
  2751             containedTargets.add(e.value.name);
  2754         if (!isTargetSubset(containedTargets, containerTargets)) {
  2755             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2759     /** Checks that t is a subset of s, with respect to ElementType
  2760      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2761      */
  2762     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2763         // Check that all elements in t are present in s
  2764         for (Name n2 : t) {
  2765             boolean currentElementOk = false;
  2766             for (Name n1 : s) {
  2767                 if (n1 == n2) {
  2768                     currentElementOk = true;
  2769                     break;
  2770                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2771                     currentElementOk = true;
  2772                     break;
  2775             if (!currentElementOk)
  2776                 return false;
  2778         return true;
  2781     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2782         // validate that all other elements of containing type has defaults
  2783         Scope scope = container.members();
  2784         for(Symbol elm : scope.getElements()) {
  2785             if (elm.name != names.value &&
  2786                 elm.kind == Kinds.MTH &&
  2787                 ((MethodSymbol)elm).defaultValue == null) {
  2788                 log.error(pos,
  2789                           "invalid.containedby.annotation.elem.nondefault",
  2790                           container,
  2791                           elm);
  2796     /** Is s a method symbol that overrides a method in a superclass? */
  2797     boolean isOverrider(Symbol s) {
  2798         if (s.kind != MTH || s.isStatic())
  2799             return false;
  2800         MethodSymbol m = (MethodSymbol)s;
  2801         TypeSymbol owner = (TypeSymbol)m.owner;
  2802         for (Type sup : types.closure(owner.type)) {
  2803             if (sup == owner.type)
  2804                 continue; // skip "this"
  2805             Scope scope = sup.tsym.members();
  2806             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2807                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2808                     return true;
  2811         return false;
  2814     /** Is the annotation applicable to the symbol? */
  2815     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2816         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2817         if (arr == null) {
  2818             return true;
  2820         for (Attribute app : arr.values) {
  2821             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2822             Attribute.Enum e = (Attribute.Enum) app;
  2823             if (e.value.name == names.TYPE)
  2824                 { if (s.kind == TYP) return true; }
  2825             else if (e.value.name == names.FIELD)
  2826                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2827             else if (e.value.name == names.METHOD)
  2828                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2829             else if (e.value.name == names.PARAMETER)
  2830                 { if (s.kind == VAR &&
  2831                       s.owner.kind == MTH &&
  2832                       (s.flags() & PARAMETER) != 0)
  2833                     return true;
  2835             else if (e.value.name == names.CONSTRUCTOR)
  2836                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2837             else if (e.value.name == names.LOCAL_VARIABLE)
  2838                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2839                       (s.flags() & PARAMETER) == 0)
  2840                     return true;
  2842             else if (e.value.name == names.ANNOTATION_TYPE)
  2843                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2844                     return true;
  2846             else if (e.value.name == names.PACKAGE)
  2847                 { if (s.kind == PCK) return true; }
  2848             else if (e.value.name == names.TYPE_USE)
  2849                 { if (s.kind == TYP ||
  2850                       s.kind == VAR ||
  2851                       (s.kind == MTH && !s.isConstructor() &&
  2852                        s.type.getReturnType().tag != VOID))
  2853                     return true;
  2855             else
  2856                 return true; // recovery
  2858         return false;
  2862     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2863         Attribute.Compound atTarget =
  2864             s.attribute(syms.annotationTargetType.tsym);
  2865         if (atTarget == null) return null; // ok, is applicable
  2866         Attribute atValue = atTarget.member(names.value);
  2867         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2868         return (Attribute.Array) atValue;
  2871     /** Check an annotation value.
  2872      */
  2873     public void validateAnnotation(JCAnnotation a) {
  2874         // collect an inventory of the members (sorted alphabetically)
  2875         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2876             public int compare(Symbol t, Symbol t1) {
  2877                 return t.name.compareTo(t1.name);
  2879         });
  2880         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2881              e != null;
  2882              e = e.sibling)
  2883             if (e.sym.kind == MTH)
  2884                 members.add((MethodSymbol) e.sym);
  2886         // count them off as they're annotated
  2887         for (JCTree arg : a.args) {
  2888             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2889             JCAssign assign = (JCAssign) arg;
  2890             Symbol m = TreeInfo.symbol(assign.lhs);
  2891             if (m == null || m.type.isErroneous()) continue;
  2892             if (!members.remove(m))
  2893                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2894                           m.name, a.type);
  2897         // all the remaining ones better have default values
  2898         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2899         for (MethodSymbol m : members) {
  2900             if (m.defaultValue == null && !m.type.isErroneous()) {
  2901                 missingDefaults.append(m.name);
  2904         if (missingDefaults.nonEmpty()) {
  2905             String key = (missingDefaults.size() > 1)
  2906                     ? "annotation.missing.default.value.1"
  2907                     : "annotation.missing.default.value";
  2908             log.error(a.pos(), key, a.type, missingDefaults);
  2911         // special case: java.lang.annotation.Target must not have
  2912         // repeated values in its value member
  2913         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2914             a.args.tail == null)
  2915             return;
  2917         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2918         JCAssign assign = (JCAssign) a.args.head;
  2919         Symbol m = TreeInfo.symbol(assign.lhs);
  2920         if (m.name != names.value) return;
  2921         JCTree rhs = assign.rhs;
  2922         if (!rhs.hasTag(NEWARRAY)) return;
  2923         JCNewArray na = (JCNewArray) rhs;
  2924         Set<Symbol> targets = new HashSet<Symbol>();
  2925         for (JCTree elem : na.elems) {
  2926             if (!targets.add(TreeInfo.symbol(elem))) {
  2927                 log.error(elem.pos(), "repeated.annotation.target");
  2932     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2933         if (allowAnnotations &&
  2934             lint.isEnabled(LintCategory.DEP_ANN) &&
  2935             (s.flags() & DEPRECATED) != 0 &&
  2936             !syms.deprecatedType.isErroneous() &&
  2937             s.attribute(syms.deprecatedType.tsym) == null) {
  2938             log.warning(LintCategory.DEP_ANN,
  2939                     pos, "missing.deprecated.annotation");
  2943     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2944         if ((s.flags() & DEPRECATED) != 0 &&
  2945                 (other.flags() & DEPRECATED) == 0 &&
  2946                 s.outermostClass() != other.outermostClass()) {
  2947             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2948                 @Override
  2949                 public void report() {
  2950                     warnDeprecated(pos, s);
  2952             });
  2956     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2957         if ((s.flags() & PROPRIETARY) != 0) {
  2958             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2959                 public void report() {
  2960                     if (enableSunApiLintControl)
  2961                       warnSunApi(pos, "sun.proprietary", s);
  2962                     else
  2963                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2965             });
  2969 /* *************************************************************************
  2970  * Check for recursive annotation elements.
  2971  **************************************************************************/
  2973     /** Check for cycles in the graph of annotation elements.
  2974      */
  2975     void checkNonCyclicElements(JCClassDecl tree) {
  2976         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2977         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2978         try {
  2979             tree.sym.flags_field |= LOCKED;
  2980             for (JCTree def : tree.defs) {
  2981                 if (!def.hasTag(METHODDEF)) continue;
  2982                 JCMethodDecl meth = (JCMethodDecl)def;
  2983                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2985         } finally {
  2986             tree.sym.flags_field &= ~LOCKED;
  2987             tree.sym.flags_field |= ACYCLIC_ANN;
  2991     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2992         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2993             return;
  2994         if ((tsym.flags_field & LOCKED) != 0) {
  2995             log.error(pos, "cyclic.annotation.element");
  2996             return;
  2998         try {
  2999             tsym.flags_field |= LOCKED;
  3000             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3001                 Symbol s = e.sym;
  3002                 if (s.kind != Kinds.MTH)
  3003                     continue;
  3004                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3006         } finally {
  3007             tsym.flags_field &= ~LOCKED;
  3008             tsym.flags_field |= ACYCLIC_ANN;
  3012     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3013         switch (type.tag) {
  3014         case TypeTags.CLASS:
  3015             if ((type.tsym.flags() & ANNOTATION) != 0)
  3016                 checkNonCyclicElementsInternal(pos, type.tsym);
  3017             break;
  3018         case TypeTags.ARRAY:
  3019             checkAnnotationResType(pos, types.elemtype(type));
  3020             break;
  3021         default:
  3022             break; // int etc
  3026 /* *************************************************************************
  3027  * Check for cycles in the constructor call graph.
  3028  **************************************************************************/
  3030     /** Check for cycles in the graph of constructors calling other
  3031      *  constructors.
  3032      */
  3033     void checkCyclicConstructors(JCClassDecl tree) {
  3034         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3036         // enter each constructor this-call into the map
  3037         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3038             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3039             if (app == null) continue;
  3040             JCMethodDecl meth = (JCMethodDecl) l.head;
  3041             if (TreeInfo.name(app.meth) == names._this) {
  3042                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3043             } else {
  3044                 meth.sym.flags_field |= ACYCLIC;
  3048         // Check for cycles in the map
  3049         Symbol[] ctors = new Symbol[0];
  3050         ctors = callMap.keySet().toArray(ctors);
  3051         for (Symbol caller : ctors) {
  3052             checkCyclicConstructor(tree, caller, callMap);
  3056     /** Look in the map to see if the given constructor is part of a
  3057      *  call cycle.
  3058      */
  3059     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3060                                         Map<Symbol,Symbol> callMap) {
  3061         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3062             if ((ctor.flags_field & LOCKED) != 0) {
  3063                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3064                           "recursive.ctor.invocation");
  3065             } else {
  3066                 ctor.flags_field |= LOCKED;
  3067                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3068                 ctor.flags_field &= ~LOCKED;
  3070             ctor.flags_field |= ACYCLIC;
  3074 /* *************************************************************************
  3075  * Miscellaneous
  3076  **************************************************************************/
  3078     /**
  3079      * Return the opcode of the operator but emit an error if it is an
  3080      * error.
  3081      * @param pos        position for error reporting.
  3082      * @param operator   an operator
  3083      * @param tag        a tree tag
  3084      * @param left       type of left hand side
  3085      * @param right      type of right hand side
  3086      */
  3087     int checkOperator(DiagnosticPosition pos,
  3088                        OperatorSymbol operator,
  3089                        JCTree.Tag tag,
  3090                        Type left,
  3091                        Type right) {
  3092         if (operator.opcode == ByteCodes.error) {
  3093             log.error(pos,
  3094                       "operator.cant.be.applied.1",
  3095                       treeinfo.operatorName(tag),
  3096                       left, right);
  3098         return operator.opcode;
  3102     /**
  3103      *  Check for division by integer constant zero
  3104      *  @param pos           Position for error reporting.
  3105      *  @param operator      The operator for the expression
  3106      *  @param operand       The right hand operand for the expression
  3107      */
  3108     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3109         if (operand.constValue() != null
  3110             && lint.isEnabled(LintCategory.DIVZERO)
  3111             && operand.tag <= LONG
  3112             && ((Number) (operand.constValue())).longValue() == 0) {
  3113             int opc = ((OperatorSymbol)operator).opcode;
  3114             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3115                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3116                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3121     /**
  3122      * Check for empty statements after if
  3123      */
  3124     void checkEmptyIf(JCIf tree) {
  3125         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3126                 lint.isEnabled(LintCategory.EMPTY))
  3127             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3130     /** Check that symbol is unique in given scope.
  3131      *  @param pos           Position for error reporting.
  3132      *  @param sym           The symbol.
  3133      *  @param s             The scope.
  3134      */
  3135     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3136         if (sym.type.isErroneous())
  3137             return true;
  3138         if (sym.owner.name == names.any) return false;
  3139         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3140             if (sym != e.sym &&
  3141                     (e.sym.flags() & CLASH) == 0 &&
  3142                     sym.kind == e.sym.kind &&
  3143                     sym.name != names.error &&
  3144                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3145                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3146                     varargsDuplicateError(pos, sym, e.sym);
  3147                     return true;
  3148                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3149                     duplicateErasureError(pos, sym, e.sym);
  3150                     sym.flags_field |= CLASH;
  3151                     return true;
  3152                 } else {
  3153                     duplicateError(pos, e.sym);
  3154                     return false;
  3158         return true;
  3161     /** Report duplicate declaration error.
  3162      */
  3163     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3164         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3165             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3169     /** Check that single-type import is not already imported or top-level defined,
  3170      *  but make an exception for two single-type imports which denote the same type.
  3171      *  @param pos           Position for error reporting.
  3172      *  @param sym           The symbol.
  3173      *  @param s             The scope
  3174      */
  3175     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3176         return checkUniqueImport(pos, sym, s, false);
  3179     /** Check that static single-type import is not already imported or top-level defined,
  3180      *  but make an exception for two single-type imports which denote the same type.
  3181      *  @param pos           Position for error reporting.
  3182      *  @param sym           The symbol.
  3183      *  @param s             The scope
  3184      *  @param staticImport  Whether or not this was a static import
  3185      */
  3186     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3187         return checkUniqueImport(pos, sym, s, true);
  3190     /** Check that single-type import is not already imported or top-level defined,
  3191      *  but make an exception for two single-type imports which denote the same type.
  3192      *  @param pos           Position for error reporting.
  3193      *  @param sym           The symbol.
  3194      *  @param s             The scope.
  3195      *  @param staticImport  Whether or not this was a static import
  3196      */
  3197     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3198         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3199             // is encountered class entered via a class declaration?
  3200             boolean isClassDecl = e.scope == s;
  3201             if ((isClassDecl || sym != e.sym) &&
  3202                 sym.kind == e.sym.kind &&
  3203                 sym.name != names.error) {
  3204                 if (!e.sym.type.isErroneous()) {
  3205                     String what = e.sym.toString();
  3206                     if (!isClassDecl) {
  3207                         if (staticImport)
  3208                             log.error(pos, "already.defined.static.single.import", what);
  3209                         else
  3210                             log.error(pos, "already.defined.single.import", what);
  3212                     else if (sym != e.sym)
  3213                         log.error(pos, "already.defined.this.unit", what);
  3215                 return false;
  3218         return true;
  3221     /** Check that a qualified name is in canonical form (for import decls).
  3222      */
  3223     public void checkCanonical(JCTree tree) {
  3224         if (!isCanonical(tree))
  3225             log.error(tree.pos(), "import.requires.canonical",
  3226                       TreeInfo.symbol(tree));
  3228         // where
  3229         private boolean isCanonical(JCTree tree) {
  3230             while (tree.hasTag(SELECT)) {
  3231                 JCFieldAccess s = (JCFieldAccess) tree;
  3232                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3233                     return false;
  3234                 tree = s.selected;
  3236             return true;
  3239     private class ConversionWarner extends Warner {
  3240         final String uncheckedKey;
  3241         final Type found;
  3242         final Type expected;
  3243         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3244             super(pos);
  3245             this.uncheckedKey = uncheckedKey;
  3246             this.found = found;
  3247             this.expected = expected;
  3250         @Override
  3251         public void warn(LintCategory lint) {
  3252             boolean warned = this.warned;
  3253             super.warn(lint);
  3254             if (warned) return; // suppress redundant diagnostics
  3255             switch (lint) {
  3256                 case UNCHECKED:
  3257                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3258                     break;
  3259                 case VARARGS:
  3260                     if (method != null &&
  3261                             method.attribute(syms.trustMeType.tsym) != null &&
  3262                             isTrustMeAllowedOnMethod(method) &&
  3263                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3264                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3266                     break;
  3267                 default:
  3268                     throw new AssertionError("Unexpected lint: " + lint);
  3273     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3274         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3277     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3278         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial