src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 05 Oct 2012 14:35:24 +0100

author
mcimadamore
date
Fri, 05 Oct 2012 14:35:24 +0100
changeset 1348
573ceb23beeb
parent 1347
1408af4cd8b0
child 1352
d4b3cb1ece84
permissions
-rw-r--r--

7177385: Add attribution support for lambda expressions
Summary: Add support for function descriptor lookup, functional interface inference and lambda expression type-checking
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import static com.sun.tools.javac.code.Flags.*;
    48 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    49 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    50 import static com.sun.tools.javac.code.Kinds.*;
    51 import static com.sun.tools.javac.code.TypeTags.*;
    52 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    54 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    56 /** Type checking helper class for the attribution phase.
    57  *
    58  *  <p><b>This is NOT part of any supported API.
    59  *  If you write code that depends on this, you do so at your own risk.
    60  *  This code and its internal interfaces are subject to change or
    61  *  deletion without notice.</b>
    62  */
    63 public class Check {
    64     protected static final Context.Key<Check> checkKey =
    65         new Context.Key<Check>();
    67     private final Names names;
    68     private final Log log;
    69     private final Resolve rs;
    70     private final Symtab syms;
    71     private final Enter enter;
    72     private final DeferredAttr deferredAttr;
    73     private final Infer infer;
    74     private final Types types;
    75     private final JCDiagnostic.Factory diags;
    76     private boolean warnOnSyntheticConflicts;
    77     private boolean suppressAbortOnBadClassFile;
    78     private boolean enableSunApiLintControl;
    79     private final TreeInfo treeinfo;
    81     // The set of lint options currently in effect. It is initialized
    82     // from the context, and then is set/reset as needed by Attr as it
    83     // visits all the various parts of the trees during attribution.
    84     private Lint lint;
    86     // The method being analyzed in Attr - it is set/reset as needed by
    87     // Attr as it visits new method declarations.
    88     private MethodSymbol method;
    90     public static Check instance(Context context) {
    91         Check instance = context.get(checkKey);
    92         if (instance == null)
    93             instance = new Check(context);
    94         return instance;
    95     }
    97     protected Check(Context context) {
    98         context.put(checkKey, this);
   100         names = Names.instance(context);
   101         log = Log.instance(context);
   102         rs = Resolve.instance(context);
   103         syms = Symtab.instance(context);
   104         enter = Enter.instance(context);
   105         deferredAttr = DeferredAttr.instance(context);
   106         infer = Infer.instance(context);
   107         this.types = Types.instance(context);
   108         diags = JCDiagnostic.Factory.instance(context);
   109         Options options = Options.instance(context);
   110         lint = Lint.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   113         Source source = Source.instance(context);
   114         allowGenerics = source.allowGenerics();
   115         allowVarargs = source.allowVarargs();
   116         allowAnnotations = source.allowAnnotations();
   117         allowCovariantReturns = source.allowCovariantReturns();
   118         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   119         complexInference = options.isSet("complexinference");
   120         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   121         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   122         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   124         Target target = Target.instance(context);
   125         syntheticNameChar = target.syntheticNameChar();
   127         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   128         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   129         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   130         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   132         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   133                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   134         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   135                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   136         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   137                 enforceMandatoryWarnings, "sunapi", null);
   139         deferredLintHandler = DeferredLintHandler.immediateHandler;
   140     }
   142     /** Switch: generics enabled?
   143      */
   144     boolean allowGenerics;
   146     /** Switch: varargs enabled?
   147      */
   148     boolean allowVarargs;
   150     /** Switch: annotations enabled?
   151      */
   152     boolean allowAnnotations;
   154     /** Switch: covariant returns enabled?
   155      */
   156     boolean allowCovariantReturns;
   158     /** Switch: simplified varargs enabled?
   159      */
   160     boolean allowSimplifiedVarargs;
   162     /** Switch: -complexinference option set?
   163      */
   164     boolean complexInference;
   166     /** Character for synthetic names
   167      */
   168     char syntheticNameChar;
   170     /** A table mapping flat names of all compiled classes in this run to their
   171      *  symbols; maintained from outside.
   172      */
   173     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   175     /** A handler for messages about deprecated usage.
   176      */
   177     private MandatoryWarningHandler deprecationHandler;
   179     /** A handler for messages about unchecked or unsafe usage.
   180      */
   181     private MandatoryWarningHandler uncheckedHandler;
   183     /** A handler for messages about using proprietary API.
   184      */
   185     private MandatoryWarningHandler sunApiHandler;
   187     /** A handler for deferred lint warnings.
   188      */
   189     private DeferredLintHandler deferredLintHandler;
   191 /* *************************************************************************
   192  * Errors and Warnings
   193  **************************************************************************/
   195     Lint setLint(Lint newLint) {
   196         Lint prev = lint;
   197         lint = newLint;
   198         return prev;
   199     }
   201     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   202         DeferredLintHandler prev = deferredLintHandler;
   203         deferredLintHandler = newDeferredLintHandler;
   204         return prev;
   205     }
   207     MethodSymbol setMethod(MethodSymbol newMethod) {
   208         MethodSymbol prev = method;
   209         method = newMethod;
   210         return prev;
   211     }
   213     /** Warn about deprecated symbol.
   214      *  @param pos        Position to be used for error reporting.
   215      *  @param sym        The deprecated symbol.
   216      */
   217     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   218         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   219             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   220     }
   222     /** Warn about unchecked operation.
   223      *  @param pos        Position to be used for error reporting.
   224      *  @param msg        A string describing the problem.
   225      */
   226     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   227         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   228             uncheckedHandler.report(pos, msg, args);
   229     }
   231     /** Warn about unsafe vararg method decl.
   232      *  @param pos        Position to be used for error reporting.
   233      *  @param sym        The deprecated symbol.
   234      */
   235     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   236         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   237             log.warning(LintCategory.VARARGS, pos, key, args);
   238     }
   240     /** Warn about using proprietary API.
   241      *  @param pos        Position to be used for error reporting.
   242      *  @param msg        A string describing the problem.
   243      */
   244     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   245         if (!lint.isSuppressed(LintCategory.SUNAPI))
   246             sunApiHandler.report(pos, msg, args);
   247     }
   249     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   250         if (lint.isEnabled(LintCategory.STATIC))
   251             log.warning(LintCategory.STATIC, pos, msg, args);
   252     }
   254     /**
   255      * Report any deferred diagnostics.
   256      */
   257     public void reportDeferredDiagnostics() {
   258         deprecationHandler.reportDeferredDiagnostic();
   259         uncheckedHandler.reportDeferredDiagnostic();
   260         sunApiHandler.reportDeferredDiagnostic();
   261     }
   264     /** Report a failure to complete a class.
   265      *  @param pos        Position to be used for error reporting.
   266      *  @param ex         The failure to report.
   267      */
   268     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   269         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   270         if (ex instanceof ClassReader.BadClassFile
   271                 && !suppressAbortOnBadClassFile) throw new Abort();
   272         else return syms.errType;
   273     }
   275     /** Report an error that wrong type tag was found.
   276      *  @param pos        Position to be used for error reporting.
   277      *  @param required   An internationalized string describing the type tag
   278      *                    required.
   279      *  @param found      The type that was found.
   280      */
   281     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   282         // this error used to be raised by the parser,
   283         // but has been delayed to this point:
   284         if (found instanceof Type && ((Type)found).tag == VOID) {
   285             log.error(pos, "illegal.start.of.type");
   286             return syms.errType;
   287         }
   288         log.error(pos, "type.found.req", found, required);
   289         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   290     }
   292     /** Report an error that symbol cannot be referenced before super
   293      *  has been called.
   294      *  @param pos        Position to be used for error reporting.
   295      *  @param sym        The referenced symbol.
   296      */
   297     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   298         log.error(pos, "cant.ref.before.ctor.called", sym);
   299     }
   301     /** Report duplicate declaration error.
   302      */
   303     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   304         if (!sym.type.isErroneous()) {
   305             Symbol location = sym.location();
   306             if (location.kind == MTH &&
   307                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   308                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   309                         kindName(sym.location()), kindName(sym.location().enclClass()),
   310                         sym.location().enclClass());
   311             } else {
   312                 log.error(pos, "already.defined", kindName(sym), sym,
   313                         kindName(sym.location()), sym.location());
   314             }
   315         }
   316     }
   318     /** Report array/varargs duplicate declaration
   319      */
   320     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   321         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   322             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   323         }
   324     }
   326 /* ************************************************************************
   327  * duplicate declaration checking
   328  *************************************************************************/
   330     /** Check that variable does not hide variable with same name in
   331      *  immediately enclosing local scope.
   332      *  @param pos           Position for error reporting.
   333      *  @param v             The symbol.
   334      *  @param s             The scope.
   335      */
   336     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   337         if (s.next != null) {
   338             for (Scope.Entry e = s.next.lookup(v.name);
   339                  e.scope != null && e.sym.owner == v.owner;
   340                  e = e.next()) {
   341                 if (e.sym.kind == VAR &&
   342                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   343                     v.name != names.error) {
   344                     duplicateError(pos, e.sym);
   345                     return;
   346                 }
   347             }
   348         }
   349     }
   351     /** Check that a class or interface does not hide a class or
   352      *  interface with same name in immediately enclosing local scope.
   353      *  @param pos           Position for error reporting.
   354      *  @param c             The symbol.
   355      *  @param s             The scope.
   356      */
   357     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   358         if (s.next != null) {
   359             for (Scope.Entry e = s.next.lookup(c.name);
   360                  e.scope != null && e.sym.owner == c.owner;
   361                  e = e.next()) {
   362                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   363                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   364                     c.name != names.error) {
   365                     duplicateError(pos, e.sym);
   366                     return;
   367                 }
   368             }
   369         }
   370     }
   372     /** Check that class does not have the same name as one of
   373      *  its enclosing classes, or as a class defined in its enclosing scope.
   374      *  return true if class is unique in its enclosing scope.
   375      *  @param pos           Position for error reporting.
   376      *  @param name          The class name.
   377      *  @param s             The enclosing scope.
   378      */
   379     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   380         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   381             if (e.sym.kind == TYP && e.sym.name != names.error) {
   382                 duplicateError(pos, e.sym);
   383                 return false;
   384             }
   385         }
   386         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   387             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   388                 duplicateError(pos, sym);
   389                 return true;
   390             }
   391         }
   392         return true;
   393     }
   395 /* *************************************************************************
   396  * Class name generation
   397  **************************************************************************/
   399     /** Return name of local class.
   400      *  This is of the form    <enclClass> $ n <classname>
   401      *  where
   402      *    enclClass is the flat name of the enclosing class,
   403      *    classname is the simple name of the local class
   404      */
   405     Name localClassName(ClassSymbol c) {
   406         for (int i=1; ; i++) {
   407             Name flatname = names.
   408                 fromString("" + c.owner.enclClass().flatname +
   409                            syntheticNameChar + i +
   410                            c.name);
   411             if (compiled.get(flatname) == null) return flatname;
   412         }
   413     }
   415 /* *************************************************************************
   416  * Type Checking
   417  **************************************************************************/
   419     /**
   420      * A check context is an object that can be used to perform compatibility
   421      * checks - depending on the check context, meaning of 'compatibility' might
   422      * vary significantly.
   423      */
   424     public interface CheckContext {
   425         /**
   426          * Is type 'found' compatible with type 'req' in given context
   427          */
   428         boolean compatible(Type found, Type req, Warner warn);
   429         /**
   430          * Report a check error
   431          */
   432         void report(DiagnosticPosition pos, JCDiagnostic details);
   433         /**
   434          * Obtain a warner for this check context
   435          */
   436         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   438         public Infer.InferenceContext inferenceContext();
   440         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   442         public boolean allowBoxing();
   443     }
   445     /**
   446      * This class represent a check context that is nested within another check
   447      * context - useful to check sub-expressions. The default behavior simply
   448      * redirects all method calls to the enclosing check context leveraging
   449      * the forwarding pattern.
   450      */
   451     static class NestedCheckContext implements CheckContext {
   452         CheckContext enclosingContext;
   454         NestedCheckContext(CheckContext enclosingContext) {
   455             this.enclosingContext = enclosingContext;
   456         }
   458         public boolean compatible(Type found, Type req, Warner warn) {
   459             return enclosingContext.compatible(found, req, warn);
   460         }
   462         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   463             enclosingContext.report(pos, details);
   464         }
   466         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   467             return enclosingContext.checkWarner(pos, found, req);
   468         }
   470         public Infer.InferenceContext inferenceContext() {
   471             return enclosingContext.inferenceContext();
   472         }
   474         public DeferredAttrContext deferredAttrContext() {
   475             return enclosingContext.deferredAttrContext();
   476         }
   478         public boolean allowBoxing() {
   479             return enclosingContext.allowBoxing();
   480         }
   481     }
   483     /**
   484      * Check context to be used when evaluating assignment/return statements
   485      */
   486     CheckContext basicHandler = new CheckContext() {
   487         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   488             log.error(pos, "prob.found.req", details);
   489         }
   490         public boolean compatible(Type found, Type req, Warner warn) {
   491             return types.isAssignable(found, req, warn);
   492         }
   494         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   495             return convertWarner(pos, found, req);
   496         }
   498         public InferenceContext inferenceContext() {
   499             return infer.emptyContext;
   500         }
   502         public DeferredAttrContext deferredAttrContext() {
   503             return deferredAttr.emptyDeferredAttrContext;
   504         }
   506         public boolean allowBoxing() {
   507             return true;
   508         }
   509     };
   511     /** Check that a given type is assignable to a given proto-type.
   512      *  If it is, return the type, otherwise return errType.
   513      *  @param pos        Position to be used for error reporting.
   514      *  @param found      The type that was found.
   515      *  @param req        The type that was required.
   516      */
   517     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   518         return checkType(pos, found, req, basicHandler);
   519     }
   521     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   522         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   523         if (inferenceContext.free(req)) {
   524             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   525                 @Override
   526                 public void typesInferred(InferenceContext inferenceContext) {
   527                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   528                 }
   529             });
   530         }
   531         if (req.tag == ERROR)
   532             return req;
   533         if (req.tag == NONE)
   534             return found;
   535         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   536             return found;
   537         } else {
   538             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   539                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   540                 return types.createErrorType(found);
   541             }
   542             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   543             return types.createErrorType(found);
   544         }
   545     }
   547     /** Check that a given type can be cast to a given target type.
   548      *  Return the result of the cast.
   549      *  @param pos        Position to be used for error reporting.
   550      *  @param found      The type that is being cast.
   551      *  @param req        The target type of the cast.
   552      */
   553     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   554         return checkCastable(pos, found, req, basicHandler);
   555     }
   556     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   557         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   558             return req;
   559         } else {
   560             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   561             return types.createErrorType(found);
   562         }
   563     }
   565     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   566      * The problem should only be reported for non-292 cast
   567      */
   568     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   569         if (!tree.type.isErroneous() &&
   570                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   571                 && types.isSameType(tree.expr.type, tree.clazz.type)
   572                 && !is292targetTypeCast(tree)) {
   573             log.warning(Lint.LintCategory.CAST,
   574                     tree.pos(), "redundant.cast", tree.expr.type);
   575         }
   576     }
   577     //where
   578             private boolean is292targetTypeCast(JCTypeCast tree) {
   579                 boolean is292targetTypeCast = false;
   580                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   581                 if (expr.hasTag(APPLY)) {
   582                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   583                     Symbol sym = TreeInfo.symbol(apply.meth);
   584                     is292targetTypeCast = sym != null &&
   585                         sym.kind == MTH &&
   586                         (sym.flags() & HYPOTHETICAL) != 0;
   587                 }
   588                 return is292targetTypeCast;
   589             }
   593 //where
   594         /** Is type a type variable, or a (possibly multi-dimensional) array of
   595          *  type variables?
   596          */
   597         boolean isTypeVar(Type t) {
   598             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   599         }
   601     /** Check that a type is within some bounds.
   602      *
   603      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   604      *  type argument.
   605      *  @param pos           Position to be used for error reporting.
   606      *  @param a             The type that should be bounded by bs.
   607      *  @param bs            The bound.
   608      */
   609     private boolean checkExtends(Type a, Type bound) {
   610          if (a.isUnbound()) {
   611              return true;
   612          } else if (a.tag != WILDCARD) {
   613              a = types.upperBound(a);
   614              return types.isSubtype(a, bound);
   615          } else if (a.isExtendsBound()) {
   616              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   617          } else if (a.isSuperBound()) {
   618              return !types.notSoftSubtype(types.lowerBound(a), bound);
   619          }
   620          return true;
   621      }
   623     /** Check that type is different from 'void'.
   624      *  @param pos           Position to be used for error reporting.
   625      *  @param t             The type to be checked.
   626      */
   627     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   628         if (t.tag == VOID) {
   629             log.error(pos, "void.not.allowed.here");
   630             return types.createErrorType(t);
   631         } else {
   632             return t;
   633         }
   634     }
   636     /** Check that type is a class or interface type.
   637      *  @param pos           Position to be used for error reporting.
   638      *  @param t             The type to be checked.
   639      */
   640     Type checkClassType(DiagnosticPosition pos, Type t) {
   641         if (t.tag != CLASS && t.tag != ERROR)
   642             return typeTagError(pos,
   643                                 diags.fragment("type.req.class"),
   644                                 (t.tag == TYPEVAR)
   645                                 ? diags.fragment("type.parameter", t)
   646                                 : t);
   647         else
   648             return t;
   649     }
   651     /** Check that type is a class or interface type.
   652      *  @param pos           Position to be used for error reporting.
   653      *  @param t             The type to be checked.
   654      *  @param noBounds    True if type bounds are illegal here.
   655      */
   656     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   657         t = checkClassType(pos, t);
   658         if (noBounds && t.isParameterized()) {
   659             List<Type> args = t.getTypeArguments();
   660             while (args.nonEmpty()) {
   661                 if (args.head.tag == WILDCARD)
   662                     return typeTagError(pos,
   663                                         diags.fragment("type.req.exact"),
   664                                         args.head);
   665                 args = args.tail;
   666             }
   667         }
   668         return t;
   669     }
   671     /** Check that type is a reifiable class, interface or array type.
   672      *  @param pos           Position to be used for error reporting.
   673      *  @param t             The type to be checked.
   674      */
   675     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   676         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   677             return typeTagError(pos,
   678                                 diags.fragment("type.req.class.array"),
   679                                 t);
   680         } else if (!types.isReifiable(t)) {
   681             log.error(pos, "illegal.generic.type.for.instof");
   682             return types.createErrorType(t);
   683         } else {
   684             return t;
   685         }
   686     }
   688     /** Check that type is a reference type, i.e. a class, interface or array type
   689      *  or a type variable.
   690      *  @param pos           Position to be used for error reporting.
   691      *  @param t             The type to be checked.
   692      */
   693     Type checkRefType(DiagnosticPosition pos, Type t) {
   694         switch (t.tag) {
   695         case CLASS:
   696         case ARRAY:
   697         case TYPEVAR:
   698         case WILDCARD:
   699         case ERROR:
   700             return t;
   701         default:
   702             return typeTagError(pos,
   703                                 diags.fragment("type.req.ref"),
   704                                 t);
   705         }
   706     }
   708     /** Check that each type is a reference type, i.e. a class, interface or array type
   709      *  or a type variable.
   710      *  @param trees         Original trees, used for error reporting.
   711      *  @param types         The types to be checked.
   712      */
   713     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   714         List<JCExpression> tl = trees;
   715         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   716             l.head = checkRefType(tl.head.pos(), l.head);
   717             tl = tl.tail;
   718         }
   719         return types;
   720     }
   722     /** Check that type is a null or reference type.
   723      *  @param pos           Position to be used for error reporting.
   724      *  @param t             The type to be checked.
   725      */
   726     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   727         switch (t.tag) {
   728         case CLASS:
   729         case ARRAY:
   730         case TYPEVAR:
   731         case WILDCARD:
   732         case BOT:
   733         case ERROR:
   734             return t;
   735         default:
   736             return typeTagError(pos,
   737                                 diags.fragment("type.req.ref"),
   738                                 t);
   739         }
   740     }
   742     /** Check that flag set does not contain elements of two conflicting sets. s
   743      *  Return true if it doesn't.
   744      *  @param pos           Position to be used for error reporting.
   745      *  @param flags         The set of flags to be checked.
   746      *  @param set1          Conflicting flags set #1.
   747      *  @param set2          Conflicting flags set #2.
   748      */
   749     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   750         if ((flags & set1) != 0 && (flags & set2) != 0) {
   751             log.error(pos,
   752                       "illegal.combination.of.modifiers",
   753                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   754                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   755             return false;
   756         } else
   757             return true;
   758     }
   760     /** Check that usage of diamond operator is correct (i.e. diamond should not
   761      * be used with non-generic classes or in anonymous class creation expressions)
   762      */
   763     Type checkDiamond(JCNewClass tree, Type t) {
   764         if (!TreeInfo.isDiamond(tree) ||
   765                 t.isErroneous()) {
   766             return checkClassType(tree.clazz.pos(), t, true);
   767         } else if (tree.def != null) {
   768             log.error(tree.clazz.pos(),
   769                     "cant.apply.diamond.1",
   770                     t, diags.fragment("diamond.and.anon.class", t));
   771             return types.createErrorType(t);
   772         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   773             log.error(tree.clazz.pos(),
   774                 "cant.apply.diamond.1",
   775                 t, diags.fragment("diamond.non.generic", t));
   776             return types.createErrorType(t);
   777         } else if (tree.typeargs != null &&
   778                 tree.typeargs.nonEmpty()) {
   779             log.error(tree.clazz.pos(),
   780                 "cant.apply.diamond.1",
   781                 t, diags.fragment("diamond.and.explicit.params", t));
   782             return types.createErrorType(t);
   783         } else {
   784             return t;
   785         }
   786     }
   788     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   789         MethodSymbol m = tree.sym;
   790         if (!allowSimplifiedVarargs) return;
   791         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   792         Type varargElemType = null;
   793         if (m.isVarArgs()) {
   794             varargElemType = types.elemtype(tree.params.last().type);
   795         }
   796         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   797             if (varargElemType != null) {
   798                 log.error(tree,
   799                         "varargs.invalid.trustme.anno",
   800                         syms.trustMeType.tsym,
   801                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   802             } else {
   803                 log.error(tree,
   804                             "varargs.invalid.trustme.anno",
   805                             syms.trustMeType.tsym,
   806                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   807             }
   808         } else if (hasTrustMeAnno && varargElemType != null &&
   809                             types.isReifiable(varargElemType)) {
   810             warnUnsafeVararg(tree,
   811                             "varargs.redundant.trustme.anno",
   812                             syms.trustMeType.tsym,
   813                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   814         }
   815         else if (!hasTrustMeAnno && varargElemType != null &&
   816                 !types.isReifiable(varargElemType)) {
   817             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   818         }
   819     }
   820     //where
   821         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   822             return (s.flags() & VARARGS) != 0 &&
   823                 (s.isConstructor() ||
   824                     (s.flags() & (STATIC | FINAL)) != 0);
   825         }
   827     Type checkMethod(Type owntype,
   828                             Symbol sym,
   829                             Env<AttrContext> env,
   830                             final List<JCExpression> argtrees,
   831                             List<Type> argtypes,
   832                             boolean useVarargs,
   833                             boolean unchecked) {
   834         // System.out.println("call   : " + env.tree);
   835         // System.out.println("method : " + owntype);
   836         // System.out.println("actuals: " + argtypes);
   837         List<Type> formals = owntype.getParameterTypes();
   838         Type last = useVarargs ? formals.last() : null;
   839         if (sym.name==names.init &&
   840                 sym.owner == syms.enumSym)
   841                 formals = formals.tail.tail;
   842         List<JCExpression> args = argtrees;
   843         DeferredAttr.DeferredTypeMap checkDeferredMap =
   844                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   845         while (formals.head != last) {
   846             JCTree arg = args.head;
   847             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   848             assertConvertible(arg, arg.type, formals.head, warn);
   849             args = args.tail;
   850             formals = formals.tail;
   851         }
   852         if (useVarargs) {
   853             Type varArg = types.elemtype(last);
   854             while (args.tail != null) {
   855                 JCTree arg = args.head;
   856                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   857                 assertConvertible(arg, arg.type, varArg, warn);
   858                 args = args.tail;
   859             }
   860         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   861             // non-varargs call to varargs method
   862             Type varParam = owntype.getParameterTypes().last();
   863             Type lastArg = checkDeferredMap.apply(argtypes.last());
   864             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   865                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   866                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   867                         types.elemtype(varParam), varParam);
   868         }
   869         if (unchecked) {
   870             warnUnchecked(env.tree.pos(),
   871                     "unchecked.meth.invocation.applied",
   872                     kindName(sym),
   873                     sym.name,
   874                     rs.methodArguments(sym.type.getParameterTypes()),
   875                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   876                     kindName(sym.location()),
   877                     sym.location());
   878            owntype = new MethodType(owntype.getParameterTypes(),
   879                    types.erasure(owntype.getReturnType()),
   880                    types.erasure(owntype.getThrownTypes()),
   881                    syms.methodClass);
   882         }
   883         if (useVarargs) {
   884             JCTree tree = env.tree;
   885             Type argtype = owntype.getParameterTypes().last();
   886             if (!types.isReifiable(argtype) &&
   887                     (!allowSimplifiedVarargs ||
   888                     sym.attribute(syms.trustMeType.tsym) == null ||
   889                     !isTrustMeAllowedOnMethod(sym))) {
   890                 warnUnchecked(env.tree.pos(),
   891                                   "unchecked.generic.array.creation",
   892                                   argtype);
   893             }
   894             Type elemtype = types.elemtype(argtype);
   895             switch (tree.getTag()) {
   896                 case APPLY:
   897                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   898                     break;
   899                 case NEWCLASS:
   900                     ((JCNewClass) tree).varargsElement = elemtype;
   901                     break;
   902                 default:
   903                     throw new AssertionError(""+tree);
   904             }
   905          }
   906          return owntype;
   907     }
   908     //where
   909         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   910             if (types.isConvertible(actual, formal, warn))
   911                 return;
   913             if (formal.isCompound()
   914                 && types.isSubtype(actual, types.supertype(formal))
   915                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   916                 return;
   917         }
   919         void checkAccessibleFunctionalDescriptor(DiagnosticPosition pos, Env<AttrContext> env, Type desc) {
   920             AccessChecker accessChecker = new AccessChecker(env);
   921             //check args accessibility (only if implicit parameter types)
   922             for (Type arg : desc.getParameterTypes()) {
   923                 if (!accessChecker.visit(arg)) {
   924                     log.error(pos, "cant.access.arg.type.in.functional.desc", arg);
   925                     return;
   926                 }
   927             }
   928             //check return type accessibility
   929             if (!accessChecker.visit(desc.getReturnType())) {
   930                 log.error(pos, "cant.access.return.in.functional.desc", desc.getReturnType());
   931                 return;
   932             }
   933             //check thrown types accessibility
   934             for (Type thrown : desc.getThrownTypes()) {
   935                 if (!accessChecker.visit(thrown)) {
   936                     log.error(pos, "cant.access.thrown.in.functional.desc", thrown);
   937                     return;
   938                 }
   939             }
   940         }
   942         class AccessChecker extends Types.UnaryVisitor<Boolean> {
   944             Env<AttrContext> env;
   946             AccessChecker(Env<AttrContext> env) {
   947                 this.env = env;
   948             }
   950             Boolean visit(List<Type> ts) {
   951                 for (Type t : ts) {
   952                     if (!visit(t))
   953                         return false;
   954                 }
   955                 return true;
   956             }
   958             public Boolean visitType(Type t, Void s) {
   959                 return true;
   960             }
   962             @Override
   963             public Boolean visitArrayType(ArrayType t, Void s) {
   964                 return visit(t.elemtype);
   965             }
   967             @Override
   968             public Boolean visitClassType(ClassType t, Void s) {
   969                 return rs.isAccessible(env, t, true) &&
   970                         visit(t.getTypeArguments());
   971             }
   973             @Override
   974             public Boolean visitWildcardType(WildcardType t, Void s) {
   975                 return visit(t.type);
   976             }
   977         };
   978     /**
   979      * Check that type 't' is a valid instantiation of a generic class
   980      * (see JLS 4.5)
   981      *
   982      * @param t class type to be checked
   983      * @return true if 't' is well-formed
   984      */
   985     public boolean checkValidGenericType(Type t) {
   986         return firstIncompatibleTypeArg(t) == null;
   987     }
   988     //WHERE
   989         private Type firstIncompatibleTypeArg(Type type) {
   990             List<Type> formals = type.tsym.type.allparams();
   991             List<Type> actuals = type.allparams();
   992             List<Type> args = type.getTypeArguments();
   993             List<Type> forms = type.tsym.type.getTypeArguments();
   994             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   996             // For matching pairs of actual argument types `a' and
   997             // formal type parameters with declared bound `b' ...
   998             while (args.nonEmpty() && forms.nonEmpty()) {
   999                 // exact type arguments needs to know their
  1000                 // bounds (for upper and lower bound
  1001                 // calculations).  So we create new bounds where
  1002                 // type-parameters are replaced with actuals argument types.
  1003                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
  1004                 args = args.tail;
  1005                 forms = forms.tail;
  1008             args = type.getTypeArguments();
  1009             List<Type> tvars_cap = types.substBounds(formals,
  1010                                       formals,
  1011                                       types.capture(type).allparams());
  1012             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
  1013                 // Let the actual arguments know their bound
  1014                 args.head.withTypeVar((TypeVar)tvars_cap.head);
  1015                 args = args.tail;
  1016                 tvars_cap = tvars_cap.tail;
  1019             args = type.getTypeArguments();
  1020             List<Type> bounds = bounds_buf.toList();
  1022             while (args.nonEmpty() && bounds.nonEmpty()) {
  1023                 Type actual = args.head;
  1024                 if (!isTypeArgErroneous(actual) &&
  1025                         !bounds.head.isErroneous() &&
  1026                         !checkExtends(actual, bounds.head)) {
  1027                     return args.head;
  1029                 args = args.tail;
  1030                 bounds = bounds.tail;
  1033             args = type.getTypeArguments();
  1034             bounds = bounds_buf.toList();
  1036             for (Type arg : types.capture(type).getTypeArguments()) {
  1037                 if (arg.tag == TYPEVAR &&
  1038                         arg.getUpperBound().isErroneous() &&
  1039                         !bounds.head.isErroneous() &&
  1040                         !isTypeArgErroneous(args.head)) {
  1041                     return args.head;
  1043                 bounds = bounds.tail;
  1044                 args = args.tail;
  1047             return null;
  1049         //where
  1050         boolean isTypeArgErroneous(Type t) {
  1051             return isTypeArgErroneous.visit(t);
  1054         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1055             public Boolean visitType(Type t, Void s) {
  1056                 return t.isErroneous();
  1058             @Override
  1059             public Boolean visitTypeVar(TypeVar t, Void s) {
  1060                 return visit(t.getUpperBound());
  1062             @Override
  1063             public Boolean visitCapturedType(CapturedType t, Void s) {
  1064                 return visit(t.getUpperBound()) ||
  1065                         visit(t.getLowerBound());
  1067             @Override
  1068             public Boolean visitWildcardType(WildcardType t, Void s) {
  1069                 return visit(t.type);
  1071         };
  1073     /** Check that given modifiers are legal for given symbol and
  1074      *  return modifiers together with any implicit modififiers for that symbol.
  1075      *  Warning: we can't use flags() here since this method
  1076      *  is called during class enter, when flags() would cause a premature
  1077      *  completion.
  1078      *  @param pos           Position to be used for error reporting.
  1079      *  @param flags         The set of modifiers given in a definition.
  1080      *  @param sym           The defined symbol.
  1081      */
  1082     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1083         long mask;
  1084         long implicit = 0;
  1085         switch (sym.kind) {
  1086         case VAR:
  1087             if (sym.owner.kind != TYP)
  1088                 mask = LocalVarFlags;
  1089             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1090                 mask = implicit = InterfaceVarFlags;
  1091             else
  1092                 mask = VarFlags;
  1093             break;
  1094         case MTH:
  1095             if (sym.name == names.init) {
  1096                 if ((sym.owner.flags_field & ENUM) != 0) {
  1097                     // enum constructors cannot be declared public or
  1098                     // protected and must be implicitly or explicitly
  1099                     // private
  1100                     implicit = PRIVATE;
  1101                     mask = PRIVATE;
  1102                 } else
  1103                     mask = ConstructorFlags;
  1104             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1105                 mask = implicit = InterfaceMethodFlags;
  1106             else {
  1107                 mask = MethodFlags;
  1109             // Imply STRICTFP if owner has STRICTFP set.
  1110             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1111               implicit |= sym.owner.flags_field & STRICTFP;
  1112             break;
  1113         case TYP:
  1114             if (sym.isLocal()) {
  1115                 mask = LocalClassFlags;
  1116                 if (sym.name.isEmpty()) { // Anonymous class
  1117                     // Anonymous classes in static methods are themselves static;
  1118                     // that's why we admit STATIC here.
  1119                     mask |= STATIC;
  1120                     // JLS: Anonymous classes are final.
  1121                     implicit |= FINAL;
  1123                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1124                     (flags & ENUM) != 0)
  1125                     log.error(pos, "enums.must.be.static");
  1126             } else if (sym.owner.kind == TYP) {
  1127                 mask = MemberClassFlags;
  1128                 if (sym.owner.owner.kind == PCK ||
  1129                     (sym.owner.flags_field & STATIC) != 0)
  1130                     mask |= STATIC;
  1131                 else if ((flags & ENUM) != 0)
  1132                     log.error(pos, "enums.must.be.static");
  1133                 // Nested interfaces and enums are always STATIC (Spec ???)
  1134                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1135             } else {
  1136                 mask = ClassFlags;
  1138             // Interfaces are always ABSTRACT
  1139             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1141             if ((flags & ENUM) != 0) {
  1142                 // enums can't be declared abstract or final
  1143                 mask &= ~(ABSTRACT | FINAL);
  1144                 implicit |= implicitEnumFinalFlag(tree);
  1146             // Imply STRICTFP if owner has STRICTFP set.
  1147             implicit |= sym.owner.flags_field & STRICTFP;
  1148             break;
  1149         default:
  1150             throw new AssertionError();
  1152         long illegal = flags & StandardFlags & ~mask;
  1153         if (illegal != 0) {
  1154             if ((illegal & INTERFACE) != 0) {
  1155                 log.error(pos, "intf.not.allowed.here");
  1156                 mask |= INTERFACE;
  1158             else {
  1159                 log.error(pos,
  1160                           "mod.not.allowed.here", asFlagSet(illegal));
  1163         else if ((sym.kind == TYP ||
  1164                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1165                   // in the presence of inner classes. Should it be deleted here?
  1166                   checkDisjoint(pos, flags,
  1167                                 ABSTRACT,
  1168                                 PRIVATE | STATIC))
  1169                  &&
  1170                  checkDisjoint(pos, flags,
  1171                                ABSTRACT | INTERFACE,
  1172                                FINAL | NATIVE | SYNCHRONIZED)
  1173                  &&
  1174                  checkDisjoint(pos, flags,
  1175                                PUBLIC,
  1176                                PRIVATE | PROTECTED)
  1177                  &&
  1178                  checkDisjoint(pos, flags,
  1179                                PRIVATE,
  1180                                PUBLIC | PROTECTED)
  1181                  &&
  1182                  checkDisjoint(pos, flags,
  1183                                FINAL,
  1184                                VOLATILE)
  1185                  &&
  1186                  (sym.kind == TYP ||
  1187                   checkDisjoint(pos, flags,
  1188                                 ABSTRACT | NATIVE,
  1189                                 STRICTFP))) {
  1190             // skip
  1192         return flags & (mask | ~StandardFlags) | implicit;
  1196     /** Determine if this enum should be implicitly final.
  1198      *  If the enum has no specialized enum contants, it is final.
  1200      *  If the enum does have specialized enum contants, it is
  1201      *  <i>not</i> final.
  1202      */
  1203     private long implicitEnumFinalFlag(JCTree tree) {
  1204         if (!tree.hasTag(CLASSDEF)) return 0;
  1205         class SpecialTreeVisitor extends JCTree.Visitor {
  1206             boolean specialized;
  1207             SpecialTreeVisitor() {
  1208                 this.specialized = false;
  1209             };
  1211             @Override
  1212             public void visitTree(JCTree tree) { /* no-op */ }
  1214             @Override
  1215             public void visitVarDef(JCVariableDecl tree) {
  1216                 if ((tree.mods.flags & ENUM) != 0) {
  1217                     if (tree.init instanceof JCNewClass &&
  1218                         ((JCNewClass) tree.init).def != null) {
  1219                         specialized = true;
  1225         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1226         JCClassDecl cdef = (JCClassDecl) tree;
  1227         for (JCTree defs: cdef.defs) {
  1228             defs.accept(sts);
  1229             if (sts.specialized) return 0;
  1231         return FINAL;
  1234 /* *************************************************************************
  1235  * Type Validation
  1236  **************************************************************************/
  1238     /** Validate a type expression. That is,
  1239      *  check that all type arguments of a parametric type are within
  1240      *  their bounds. This must be done in a second phase after type attributon
  1241      *  since a class might have a subclass as type parameter bound. E.g:
  1243      *  class B<A extends C> { ... }
  1244      *  class C extends B<C> { ... }
  1246      *  and we can't make sure that the bound is already attributed because
  1247      *  of possible cycles.
  1249      * Visitor method: Validate a type expression, if it is not null, catching
  1250      *  and reporting any completion failures.
  1251      */
  1252     void validate(JCTree tree, Env<AttrContext> env) {
  1253         validate(tree, env, true);
  1255     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1256         new Validator(env).validateTree(tree, checkRaw, true);
  1259     /** Visitor method: Validate a list of type expressions.
  1260      */
  1261     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1262         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1263             validate(l.head, env);
  1266     /** A visitor class for type validation.
  1267      */
  1268     class Validator extends JCTree.Visitor {
  1270         boolean isOuter;
  1271         Env<AttrContext> env;
  1273         Validator(Env<AttrContext> env) {
  1274             this.env = env;
  1277         @Override
  1278         public void visitTypeArray(JCArrayTypeTree tree) {
  1279             tree.elemtype.accept(this);
  1282         @Override
  1283         public void visitTypeApply(JCTypeApply tree) {
  1284             if (tree.type.tag == CLASS) {
  1285                 List<JCExpression> args = tree.arguments;
  1286                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1288                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1289                 if (incompatibleArg != null) {
  1290                     for (JCTree arg : tree.arguments) {
  1291                         if (arg.type == incompatibleArg) {
  1292                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1294                         forms = forms.tail;
  1298                 forms = tree.type.tsym.type.getTypeArguments();
  1300                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1302                 // For matching pairs of actual argument types `a' and
  1303                 // formal type parameters with declared bound `b' ...
  1304                 while (args.nonEmpty() && forms.nonEmpty()) {
  1305                     validateTree(args.head,
  1306                             !(isOuter && is_java_lang_Class),
  1307                             false);
  1308                     args = args.tail;
  1309                     forms = forms.tail;
  1312                 // Check that this type is either fully parameterized, or
  1313                 // not parameterized at all.
  1314                 if (tree.type.getEnclosingType().isRaw())
  1315                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1316                 if (tree.clazz.hasTag(SELECT))
  1317                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1321         @Override
  1322         public void visitTypeParameter(JCTypeParameter tree) {
  1323             validateTrees(tree.bounds, true, isOuter);
  1324             checkClassBounds(tree.pos(), tree.type);
  1327         @Override
  1328         public void visitWildcard(JCWildcard tree) {
  1329             if (tree.inner != null)
  1330                 validateTree(tree.inner, true, isOuter);
  1333         @Override
  1334         public void visitSelect(JCFieldAccess tree) {
  1335             if (tree.type.tag == CLASS) {
  1336                 visitSelectInternal(tree);
  1338                 // Check that this type is either fully parameterized, or
  1339                 // not parameterized at all.
  1340                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1341                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1345         public void visitSelectInternal(JCFieldAccess tree) {
  1346             if (tree.type.tsym.isStatic() &&
  1347                 tree.selected.type.isParameterized()) {
  1348                 // The enclosing type is not a class, so we are
  1349                 // looking at a static member type.  However, the
  1350                 // qualifying expression is parameterized.
  1351                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1352             } else {
  1353                 // otherwise validate the rest of the expression
  1354                 tree.selected.accept(this);
  1358         /** Default visitor method: do nothing.
  1359          */
  1360         @Override
  1361         public void visitTree(JCTree tree) {
  1364         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1365             try {
  1366                 if (tree != null) {
  1367                     this.isOuter = isOuter;
  1368                     tree.accept(this);
  1369                     if (checkRaw)
  1370                         checkRaw(tree, env);
  1372             } catch (CompletionFailure ex) {
  1373                 completionError(tree.pos(), ex);
  1377         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1378             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1379                 validateTree(l.head, checkRaw, isOuter);
  1382         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1383             if (lint.isEnabled(LintCategory.RAW) &&
  1384                 tree.type.tag == CLASS &&
  1385                 !TreeInfo.isDiamond(tree) &&
  1386                 !withinAnonConstr(env) &&
  1387                 tree.type.isRaw()) {
  1388                 log.warning(LintCategory.RAW,
  1389                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1393         boolean withinAnonConstr(Env<AttrContext> env) {
  1394             return env.enclClass.name.isEmpty() &&
  1395                     env.enclMethod != null && env.enclMethod.name == names.init;
  1399 /* *************************************************************************
  1400  * Exception checking
  1401  **************************************************************************/
  1403     /* The following methods treat classes as sets that contain
  1404      * the class itself and all their subclasses
  1405      */
  1407     /** Is given type a subtype of some of the types in given list?
  1408      */
  1409     boolean subset(Type t, List<Type> ts) {
  1410         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1411             if (types.isSubtype(t, l.head)) return true;
  1412         return false;
  1415     /** Is given type a subtype or supertype of
  1416      *  some of the types in given list?
  1417      */
  1418     boolean intersects(Type t, List<Type> ts) {
  1419         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1420             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1421         return false;
  1424     /** Add type set to given type list, unless it is a subclass of some class
  1425      *  in the list.
  1426      */
  1427     List<Type> incl(Type t, List<Type> ts) {
  1428         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1431     /** Remove type set from type set list.
  1432      */
  1433     List<Type> excl(Type t, List<Type> ts) {
  1434         if (ts.isEmpty()) {
  1435             return ts;
  1436         } else {
  1437             List<Type> ts1 = excl(t, ts.tail);
  1438             if (types.isSubtype(ts.head, t)) return ts1;
  1439             else if (ts1 == ts.tail) return ts;
  1440             else return ts1.prepend(ts.head);
  1444     /** Form the union of two type set lists.
  1445      */
  1446     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1447         List<Type> ts = ts1;
  1448         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1449             ts = incl(l.head, ts);
  1450         return ts;
  1453     /** Form the difference of two type lists.
  1454      */
  1455     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1456         List<Type> ts = ts1;
  1457         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1458             ts = excl(l.head, ts);
  1459         return ts;
  1462     /** Form the intersection of two type lists.
  1463      */
  1464     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1465         List<Type> ts = List.nil();
  1466         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1467             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1468         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1469             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1470         return ts;
  1473     /** Is exc an exception symbol that need not be declared?
  1474      */
  1475     boolean isUnchecked(ClassSymbol exc) {
  1476         return
  1477             exc.kind == ERR ||
  1478             exc.isSubClass(syms.errorType.tsym, types) ||
  1479             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1482     /** Is exc an exception type that need not be declared?
  1483      */
  1484     boolean isUnchecked(Type exc) {
  1485         return
  1486             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1487             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1488             exc.tag == BOT;
  1491     /** Same, but handling completion failures.
  1492      */
  1493     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1494         try {
  1495             return isUnchecked(exc);
  1496         } catch (CompletionFailure ex) {
  1497             completionError(pos, ex);
  1498             return true;
  1502     /** Is exc handled by given exception list?
  1503      */
  1504     boolean isHandled(Type exc, List<Type> handled) {
  1505         return isUnchecked(exc) || subset(exc, handled);
  1508     /** Return all exceptions in thrown list that are not in handled list.
  1509      *  @param thrown     The list of thrown exceptions.
  1510      *  @param handled    The list of handled exceptions.
  1511      */
  1512     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1513         List<Type> unhandled = List.nil();
  1514         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1515             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1516         return unhandled;
  1519 /* *************************************************************************
  1520  * Overriding/Implementation checking
  1521  **************************************************************************/
  1523     /** The level of access protection given by a flag set,
  1524      *  where PRIVATE is highest and PUBLIC is lowest.
  1525      */
  1526     static int protection(long flags) {
  1527         switch ((short)(flags & AccessFlags)) {
  1528         case PRIVATE: return 3;
  1529         case PROTECTED: return 1;
  1530         default:
  1531         case PUBLIC: return 0;
  1532         case 0: return 2;
  1536     /** A customized "cannot override" error message.
  1537      *  @param m      The overriding method.
  1538      *  @param other  The overridden method.
  1539      *  @return       An internationalized string.
  1540      */
  1541     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1542         String key;
  1543         if ((other.owner.flags() & INTERFACE) == 0)
  1544             key = "cant.override";
  1545         else if ((m.owner.flags() & INTERFACE) == 0)
  1546             key = "cant.implement";
  1547         else
  1548             key = "clashes.with";
  1549         return diags.fragment(key, m, m.location(), other, other.location());
  1552     /** A customized "override" warning message.
  1553      *  @param m      The overriding method.
  1554      *  @param other  The overridden method.
  1555      *  @return       An internationalized string.
  1556      */
  1557     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1558         String key;
  1559         if ((other.owner.flags() & INTERFACE) == 0)
  1560             key = "unchecked.override";
  1561         else if ((m.owner.flags() & INTERFACE) == 0)
  1562             key = "unchecked.implement";
  1563         else
  1564             key = "unchecked.clash.with";
  1565         return diags.fragment(key, m, m.location(), other, other.location());
  1568     /** A customized "override" warning message.
  1569      *  @param m      The overriding method.
  1570      *  @param other  The overridden method.
  1571      *  @return       An internationalized string.
  1572      */
  1573     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1574         String key;
  1575         if ((other.owner.flags() & INTERFACE) == 0)
  1576             key = "varargs.override";
  1577         else  if ((m.owner.flags() & INTERFACE) == 0)
  1578             key = "varargs.implement";
  1579         else
  1580             key = "varargs.clash.with";
  1581         return diags.fragment(key, m, m.location(), other, other.location());
  1584     /** Check that this method conforms with overridden method 'other'.
  1585      *  where `origin' is the class where checking started.
  1586      *  Complications:
  1587      *  (1) Do not check overriding of synthetic methods
  1588      *      (reason: they might be final).
  1589      *      todo: check whether this is still necessary.
  1590      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1591      *      than the method it implements. Augment the proxy methods with the
  1592      *      undeclared exceptions in this case.
  1593      *  (3) When generics are enabled, admit the case where an interface proxy
  1594      *      has a result type
  1595      *      extended by the result type of the method it implements.
  1596      *      Change the proxies result type to the smaller type in this case.
  1598      *  @param tree         The tree from which positions
  1599      *                      are extracted for errors.
  1600      *  @param m            The overriding method.
  1601      *  @param other        The overridden method.
  1602      *  @param origin       The class of which the overriding method
  1603      *                      is a member.
  1604      */
  1605     void checkOverride(JCTree tree,
  1606                        MethodSymbol m,
  1607                        MethodSymbol other,
  1608                        ClassSymbol origin) {
  1609         // Don't check overriding of synthetic methods or by bridge methods.
  1610         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1611             return;
  1614         // Error if static method overrides instance method (JLS 8.4.6.2).
  1615         if ((m.flags() & STATIC) != 0 &&
  1616                    (other.flags() & STATIC) == 0) {
  1617             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1618                       cannotOverride(m, other));
  1619             return;
  1622         // Error if instance method overrides static or final
  1623         // method (JLS 8.4.6.1).
  1624         if ((other.flags() & FINAL) != 0 ||
  1625                  (m.flags() & STATIC) == 0 &&
  1626                  (other.flags() & STATIC) != 0) {
  1627             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1628                       cannotOverride(m, other),
  1629                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1630             return;
  1633         if ((m.owner.flags() & ANNOTATION) != 0) {
  1634             // handled in validateAnnotationMethod
  1635             return;
  1638         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1639         if ((origin.flags() & INTERFACE) == 0 &&
  1640                  protection(m.flags()) > protection(other.flags())) {
  1641             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1642                       cannotOverride(m, other),
  1643                       other.flags() == 0 ?
  1644                           Flag.PACKAGE :
  1645                           asFlagSet(other.flags() & AccessFlags));
  1646             return;
  1649         Type mt = types.memberType(origin.type, m);
  1650         Type ot = types.memberType(origin.type, other);
  1651         // Error if overriding result type is different
  1652         // (or, in the case of generics mode, not a subtype) of
  1653         // overridden result type. We have to rename any type parameters
  1654         // before comparing types.
  1655         List<Type> mtvars = mt.getTypeArguments();
  1656         List<Type> otvars = ot.getTypeArguments();
  1657         Type mtres = mt.getReturnType();
  1658         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1660         overrideWarner.clear();
  1661         boolean resultTypesOK =
  1662             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1663         if (!resultTypesOK) {
  1664             if (!allowCovariantReturns &&
  1665                 m.owner != origin &&
  1666                 m.owner.isSubClass(other.owner, types)) {
  1667                 // allow limited interoperability with covariant returns
  1668             } else {
  1669                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1670                           "override.incompatible.ret",
  1671                           cannotOverride(m, other),
  1672                           mtres, otres);
  1673                 return;
  1675         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1676             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1677                     "override.unchecked.ret",
  1678                     uncheckedOverrides(m, other),
  1679                     mtres, otres);
  1682         // Error if overriding method throws an exception not reported
  1683         // by overridden method.
  1684         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1685         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1686         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1687         if (unhandledErased.nonEmpty()) {
  1688             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1689                       "override.meth.doesnt.throw",
  1690                       cannotOverride(m, other),
  1691                       unhandledUnerased.head);
  1692             return;
  1694         else if (unhandledUnerased.nonEmpty()) {
  1695             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1696                           "override.unchecked.thrown",
  1697                          cannotOverride(m, other),
  1698                          unhandledUnerased.head);
  1699             return;
  1702         // Optional warning if varargs don't agree
  1703         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1704             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1705             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1706                         ((m.flags() & Flags.VARARGS) != 0)
  1707                         ? "override.varargs.missing"
  1708                         : "override.varargs.extra",
  1709                         varargsOverrides(m, other));
  1712         // Warn if instance method overrides bridge method (compiler spec ??)
  1713         if ((other.flags() & BRIDGE) != 0) {
  1714             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1715                         uncheckedOverrides(m, other));
  1718         // Warn if a deprecated method overridden by a non-deprecated one.
  1719         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1720             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1723     // where
  1724         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1725             // If the method, m, is defined in an interface, then ignore the issue if the method
  1726             // is only inherited via a supertype and also implemented in the supertype,
  1727             // because in that case, we will rediscover the issue when examining the method
  1728             // in the supertype.
  1729             // If the method, m, is not defined in an interface, then the only time we need to
  1730             // address the issue is when the method is the supertype implemementation: any other
  1731             // case, we will have dealt with when examining the supertype classes
  1732             ClassSymbol mc = m.enclClass();
  1733             Type st = types.supertype(origin.type);
  1734             if (st.tag != CLASS)
  1735                 return true;
  1736             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1738             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1739                 List<Type> intfs = types.interfaces(origin.type);
  1740                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1742             else
  1743                 return (stimpl != m);
  1747     // used to check if there were any unchecked conversions
  1748     Warner overrideWarner = new Warner();
  1750     /** Check that a class does not inherit two concrete methods
  1751      *  with the same signature.
  1752      *  @param pos          Position to be used for error reporting.
  1753      *  @param site         The class type to be checked.
  1754      */
  1755     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1756         Type sup = types.supertype(site);
  1757         if (sup.tag != CLASS) return;
  1759         for (Type t1 = sup;
  1760              t1.tsym.type.isParameterized();
  1761              t1 = types.supertype(t1)) {
  1762             for (Scope.Entry e1 = t1.tsym.members().elems;
  1763                  e1 != null;
  1764                  e1 = e1.sibling) {
  1765                 Symbol s1 = e1.sym;
  1766                 if (s1.kind != MTH ||
  1767                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1768                     !s1.isInheritedIn(site.tsym, types) ||
  1769                     ((MethodSymbol)s1).implementation(site.tsym,
  1770                                                       types,
  1771                                                       true) != s1)
  1772                     continue;
  1773                 Type st1 = types.memberType(t1, s1);
  1774                 int s1ArgsLength = st1.getParameterTypes().length();
  1775                 if (st1 == s1.type) continue;
  1777                 for (Type t2 = sup;
  1778                      t2.tag == CLASS;
  1779                      t2 = types.supertype(t2)) {
  1780                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1781                          e2.scope != null;
  1782                          e2 = e2.next()) {
  1783                         Symbol s2 = e2.sym;
  1784                         if (s2 == s1 ||
  1785                             s2.kind != MTH ||
  1786                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1787                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1788                             !s2.isInheritedIn(site.tsym, types) ||
  1789                             ((MethodSymbol)s2).implementation(site.tsym,
  1790                                                               types,
  1791                                                               true) != s2)
  1792                             continue;
  1793                         Type st2 = types.memberType(t2, s2);
  1794                         if (types.overrideEquivalent(st1, st2))
  1795                             log.error(pos, "concrete.inheritance.conflict",
  1796                                       s1, t1, s2, t2, sup);
  1803     /** Check that classes (or interfaces) do not each define an abstract
  1804      *  method with same name and arguments but incompatible return types.
  1805      *  @param pos          Position to be used for error reporting.
  1806      *  @param t1           The first argument type.
  1807      *  @param t2           The second argument type.
  1808      */
  1809     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1810                                             Type t1,
  1811                                             Type t2) {
  1812         return checkCompatibleAbstracts(pos, t1, t2,
  1813                                         types.makeCompoundType(t1, t2));
  1816     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1817                                             Type t1,
  1818                                             Type t2,
  1819                                             Type site) {
  1820         return firstIncompatibility(pos, t1, t2, site) == null;
  1823     /** Return the first method which is defined with same args
  1824      *  but different return types in two given interfaces, or null if none
  1825      *  exists.
  1826      *  @param t1     The first type.
  1827      *  @param t2     The second type.
  1828      *  @param site   The most derived type.
  1829      *  @returns symbol from t2 that conflicts with one in t1.
  1830      */
  1831     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1832         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1833         closure(t1, interfaces1);
  1834         Map<TypeSymbol,Type> interfaces2;
  1835         if (t1 == t2)
  1836             interfaces2 = interfaces1;
  1837         else
  1838             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1840         for (Type t3 : interfaces1.values()) {
  1841             for (Type t4 : interfaces2.values()) {
  1842                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1843                 if (s != null) return s;
  1846         return null;
  1849     /** Compute all the supertypes of t, indexed by type symbol. */
  1850     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1851         if (t.tag != CLASS) return;
  1852         if (typeMap.put(t.tsym, t) == null) {
  1853             closure(types.supertype(t), typeMap);
  1854             for (Type i : types.interfaces(t))
  1855                 closure(i, typeMap);
  1859     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1860     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1861         if (t.tag != CLASS) return;
  1862         if (typesSkip.get(t.tsym) != null) return;
  1863         if (typeMap.put(t.tsym, t) == null) {
  1864             closure(types.supertype(t), typesSkip, typeMap);
  1865             for (Type i : types.interfaces(t))
  1866                 closure(i, typesSkip, typeMap);
  1870     /** Return the first method in t2 that conflicts with a method from t1. */
  1871     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1872         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1873             Symbol s1 = e1.sym;
  1874             Type st1 = null;
  1875             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1876             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1877             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1878             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1879                 Symbol s2 = e2.sym;
  1880                 if (s1 == s2) continue;
  1881                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1882                 if (st1 == null) st1 = types.memberType(t1, s1);
  1883                 Type st2 = types.memberType(t2, s2);
  1884                 if (types.overrideEquivalent(st1, st2)) {
  1885                     List<Type> tvars1 = st1.getTypeArguments();
  1886                     List<Type> tvars2 = st2.getTypeArguments();
  1887                     Type rt1 = st1.getReturnType();
  1888                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1889                     boolean compat =
  1890                         types.isSameType(rt1, rt2) ||
  1891                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1892                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1893                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1894                          checkCommonOverriderIn(s1,s2,site);
  1895                     if (!compat) {
  1896                         log.error(pos, "types.incompatible.diff.ret",
  1897                             t1, t2, s2.name +
  1898                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1899                         return s2;
  1901                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1902                         !checkCommonOverriderIn(s1, s2, site)) {
  1903                     log.error(pos,
  1904                             "name.clash.same.erasure.no.override",
  1905                             s1, s1.location(),
  1906                             s2, s2.location());
  1907                     return s2;
  1911         return null;
  1913     //WHERE
  1914     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1915         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1916         Type st1 = types.memberType(site, s1);
  1917         Type st2 = types.memberType(site, s2);
  1918         closure(site, supertypes);
  1919         for (Type t : supertypes.values()) {
  1920             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1921                 Symbol s3 = e.sym;
  1922                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1923                 Type st3 = types.memberType(site,s3);
  1924                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1925                     if (s3.owner == site.tsym) {
  1926                         return true;
  1928                     List<Type> tvars1 = st1.getTypeArguments();
  1929                     List<Type> tvars2 = st2.getTypeArguments();
  1930                     List<Type> tvars3 = st3.getTypeArguments();
  1931                     Type rt1 = st1.getReturnType();
  1932                     Type rt2 = st2.getReturnType();
  1933                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1934                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1935                     boolean compat =
  1936                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1937                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1938                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1939                     if (compat)
  1940                         return true;
  1944         return false;
  1947     /** Check that a given method conforms with any method it overrides.
  1948      *  @param tree         The tree from which positions are extracted
  1949      *                      for errors.
  1950      *  @param m            The overriding method.
  1951      */
  1952     void checkOverride(JCTree tree, MethodSymbol m) {
  1953         ClassSymbol origin = (ClassSymbol)m.owner;
  1954         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1955             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1956                 log.error(tree.pos(), "enum.no.finalize");
  1957                 return;
  1959         for (Type t = origin.type; t.tag == CLASS;
  1960              t = types.supertype(t)) {
  1961             if (t != origin.type) {
  1962                 checkOverride(tree, t, origin, m);
  1964             for (Type t2 : types.interfaces(t)) {
  1965                 checkOverride(tree, t2, origin, m);
  1970     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1971         TypeSymbol c = site.tsym;
  1972         Scope.Entry e = c.members().lookup(m.name);
  1973         while (e.scope != null) {
  1974             if (m.overrides(e.sym, origin, types, false)) {
  1975                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1976                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1979             e = e.next();
  1983     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1984         ClashFilter cf = new ClashFilter(origin.type);
  1985         return (cf.accepts(s1) &&
  1986                 cf.accepts(s2) &&
  1987                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1991     /** Check that all abstract members of given class have definitions.
  1992      *  @param pos          Position to be used for error reporting.
  1993      *  @param c            The class.
  1994      */
  1995     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1996         try {
  1997             MethodSymbol undef = firstUndef(c, c);
  1998             if (undef != null) {
  1999                 if ((c.flags() & ENUM) != 0 &&
  2000                     types.supertype(c.type).tsym == syms.enumSym &&
  2001                     (c.flags() & FINAL) == 0) {
  2002                     // add the ABSTRACT flag to an enum
  2003                     c.flags_field |= ABSTRACT;
  2004                 } else {
  2005                     MethodSymbol undef1 =
  2006                         new MethodSymbol(undef.flags(), undef.name,
  2007                                          types.memberType(c.type, undef), undef.owner);
  2008                     log.error(pos, "does.not.override.abstract",
  2009                               c, undef1, undef1.location());
  2012         } catch (CompletionFailure ex) {
  2013             completionError(pos, ex);
  2016 //where
  2017         /** Return first abstract member of class `c' that is not defined
  2018          *  in `impl', null if there is none.
  2019          */
  2020         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2021             MethodSymbol undef = null;
  2022             // Do not bother to search in classes that are not abstract,
  2023             // since they cannot have abstract members.
  2024             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2025                 Scope s = c.members();
  2026                 for (Scope.Entry e = s.elems;
  2027                      undef == null && e != null;
  2028                      e = e.sibling) {
  2029                     if (e.sym.kind == MTH &&
  2030                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  2031                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2032                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2033                         if (implmeth == null || implmeth == absmeth)
  2034                             undef = absmeth;
  2037                 if (undef == null) {
  2038                     Type st = types.supertype(c.type);
  2039                     if (st.tag == CLASS)
  2040                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2042                 for (List<Type> l = types.interfaces(c.type);
  2043                      undef == null && l.nonEmpty();
  2044                      l = l.tail) {
  2045                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2048             return undef;
  2051     void checkNonCyclicDecl(JCClassDecl tree) {
  2052         CycleChecker cc = new CycleChecker();
  2053         cc.scan(tree);
  2054         if (!cc.errorFound && !cc.partialCheck) {
  2055             tree.sym.flags_field |= ACYCLIC;
  2059     class CycleChecker extends TreeScanner {
  2061         List<Symbol> seenClasses = List.nil();
  2062         boolean errorFound = false;
  2063         boolean partialCheck = false;
  2065         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2066             if (sym != null && sym.kind == TYP) {
  2067                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2068                 if (classEnv != null) {
  2069                     DiagnosticSource prevSource = log.currentSource();
  2070                     try {
  2071                         log.useSource(classEnv.toplevel.sourcefile);
  2072                         scan(classEnv.tree);
  2074                     finally {
  2075                         log.useSource(prevSource.getFile());
  2077                 } else if (sym.kind == TYP) {
  2078                     checkClass(pos, sym, List.<JCTree>nil());
  2080             } else {
  2081                 //not completed yet
  2082                 partialCheck = true;
  2086         @Override
  2087         public void visitSelect(JCFieldAccess tree) {
  2088             super.visitSelect(tree);
  2089             checkSymbol(tree.pos(), tree.sym);
  2092         @Override
  2093         public void visitIdent(JCIdent tree) {
  2094             checkSymbol(tree.pos(), tree.sym);
  2097         @Override
  2098         public void visitTypeApply(JCTypeApply tree) {
  2099             scan(tree.clazz);
  2102         @Override
  2103         public void visitTypeArray(JCArrayTypeTree tree) {
  2104             scan(tree.elemtype);
  2107         @Override
  2108         public void visitClassDef(JCClassDecl tree) {
  2109             List<JCTree> supertypes = List.nil();
  2110             if (tree.getExtendsClause() != null) {
  2111                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2113             if (tree.getImplementsClause() != null) {
  2114                 for (JCTree intf : tree.getImplementsClause()) {
  2115                     supertypes = supertypes.prepend(intf);
  2118             checkClass(tree.pos(), tree.sym, supertypes);
  2121         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2122             if ((c.flags_field & ACYCLIC) != 0)
  2123                 return;
  2124             if (seenClasses.contains(c)) {
  2125                 errorFound = true;
  2126                 noteCyclic(pos, (ClassSymbol)c);
  2127             } else if (!c.type.isErroneous()) {
  2128                 try {
  2129                     seenClasses = seenClasses.prepend(c);
  2130                     if (c.type.tag == CLASS) {
  2131                         if (supertypes.nonEmpty()) {
  2132                             scan(supertypes);
  2134                         else {
  2135                             ClassType ct = (ClassType)c.type;
  2136                             if (ct.supertype_field == null ||
  2137                                     ct.interfaces_field == null) {
  2138                                 //not completed yet
  2139                                 partialCheck = true;
  2140                                 return;
  2142                             checkSymbol(pos, ct.supertype_field.tsym);
  2143                             for (Type intf : ct.interfaces_field) {
  2144                                 checkSymbol(pos, intf.tsym);
  2147                         if (c.owner.kind == TYP) {
  2148                             checkSymbol(pos, c.owner);
  2151                 } finally {
  2152                     seenClasses = seenClasses.tail;
  2158     /** Check for cyclic references. Issue an error if the
  2159      *  symbol of the type referred to has a LOCKED flag set.
  2161      *  @param pos      Position to be used for error reporting.
  2162      *  @param t        The type referred to.
  2163      */
  2164     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2165         checkNonCyclicInternal(pos, t);
  2169     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2170         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2173     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2174         final TypeVar tv;
  2175         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2176             return;
  2177         if (seen.contains(t)) {
  2178             tv = (TypeVar)t;
  2179             tv.bound = types.createErrorType(t);
  2180             log.error(pos, "cyclic.inheritance", t);
  2181         } else if (t.tag == TYPEVAR) {
  2182             tv = (TypeVar)t;
  2183             seen = seen.prepend(tv);
  2184             for (Type b : types.getBounds(tv))
  2185                 checkNonCyclic1(pos, b, seen);
  2189     /** Check for cyclic references. Issue an error if the
  2190      *  symbol of the type referred to has a LOCKED flag set.
  2192      *  @param pos      Position to be used for error reporting.
  2193      *  @param t        The type referred to.
  2194      *  @returns        True if the check completed on all attributed classes
  2195      */
  2196     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2197         boolean complete = true; // was the check complete?
  2198         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2199         Symbol c = t.tsym;
  2200         if ((c.flags_field & ACYCLIC) != 0) return true;
  2202         if ((c.flags_field & LOCKED) != 0) {
  2203             noteCyclic(pos, (ClassSymbol)c);
  2204         } else if (!c.type.isErroneous()) {
  2205             try {
  2206                 c.flags_field |= LOCKED;
  2207                 if (c.type.tag == CLASS) {
  2208                     ClassType clazz = (ClassType)c.type;
  2209                     if (clazz.interfaces_field != null)
  2210                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2211                             complete &= checkNonCyclicInternal(pos, l.head);
  2212                     if (clazz.supertype_field != null) {
  2213                         Type st = clazz.supertype_field;
  2214                         if (st != null && st.tag == CLASS)
  2215                             complete &= checkNonCyclicInternal(pos, st);
  2217                     if (c.owner.kind == TYP)
  2218                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2220             } finally {
  2221                 c.flags_field &= ~LOCKED;
  2224         if (complete)
  2225             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2226         if (complete) c.flags_field |= ACYCLIC;
  2227         return complete;
  2230     /** Note that we found an inheritance cycle. */
  2231     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2232         log.error(pos, "cyclic.inheritance", c);
  2233         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2234             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2235         Type st = types.supertype(c.type);
  2236         if (st.tag == CLASS)
  2237             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2238         c.type = types.createErrorType(c, c.type);
  2239         c.flags_field |= ACYCLIC;
  2242     /** Check that all methods which implement some
  2243      *  method conform to the method they implement.
  2244      *  @param tree         The class definition whose members are checked.
  2245      */
  2246     void checkImplementations(JCClassDecl tree) {
  2247         checkImplementations(tree, tree.sym);
  2249 //where
  2250         /** Check that all methods which implement some
  2251          *  method in `ic' conform to the method they implement.
  2252          */
  2253         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2254             ClassSymbol origin = tree.sym;
  2255             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2256                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2257                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2258                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2259                         if (e.sym.kind == MTH &&
  2260                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2261                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2262                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2263                             if (implmeth != null && implmeth != absmeth &&
  2264                                 (implmeth.owner.flags() & INTERFACE) ==
  2265                                 (origin.flags() & INTERFACE)) {
  2266                                 // don't check if implmeth is in a class, yet
  2267                                 // origin is an interface. This case arises only
  2268                                 // if implmeth is declared in Object. The reason is
  2269                                 // that interfaces really don't inherit from
  2270                                 // Object it's just that the compiler represents
  2271                                 // things that way.
  2272                                 checkOverride(tree, implmeth, absmeth, origin);
  2280     /** Check that all abstract methods implemented by a class are
  2281      *  mutually compatible.
  2282      *  @param pos          Position to be used for error reporting.
  2283      *  @param c            The class whose interfaces are checked.
  2284      */
  2285     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2286         List<Type> supertypes = types.interfaces(c);
  2287         Type supertype = types.supertype(c);
  2288         if (supertype.tag == CLASS &&
  2289             (supertype.tsym.flags() & ABSTRACT) != 0)
  2290             supertypes = supertypes.prepend(supertype);
  2291         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2292             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2293                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2294                 return;
  2295             for (List<Type> m = supertypes; m != l; m = m.tail)
  2296                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2297                     return;
  2299         checkCompatibleConcretes(pos, c);
  2302     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2303         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2304             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2305                 // VM allows methods and variables with differing types
  2306                 if (sym.kind == e.sym.kind &&
  2307                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2308                     sym != e.sym &&
  2309                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2310                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2311                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2312                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2313                     return;
  2319     /** Check that all non-override equivalent methods accessible from 'site'
  2320      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2322      *  @param pos  Position to be used for error reporting.
  2323      *  @param site The class whose methods are checked.
  2324      *  @param sym  The method symbol to be checked.
  2325      */
  2326     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2327          ClashFilter cf = new ClashFilter(site);
  2328         //for each method m1 that is overridden (directly or indirectly)
  2329         //by method 'sym' in 'site'...
  2330         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2331             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2332              //...check each method m2 that is a member of 'site'
  2333              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2334                 if (m2 == m1) continue;
  2335                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2336                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2337                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2338                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2339                     sym.flags_field |= CLASH;
  2340                     String key = m1 == sym ?
  2341                             "name.clash.same.erasure.no.override" :
  2342                             "name.clash.same.erasure.no.override.1";
  2343                     log.error(pos,
  2344                             key,
  2345                             sym, sym.location(),
  2346                             m2, m2.location(),
  2347                             m1, m1.location());
  2348                     return;
  2356     /** Check that all static methods accessible from 'site' are
  2357      *  mutually compatible (JLS 8.4.8).
  2359      *  @param pos  Position to be used for error reporting.
  2360      *  @param site The class whose methods are checked.
  2361      *  @param sym  The method symbol to be checked.
  2362      */
  2363     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2364         ClashFilter cf = new ClashFilter(site);
  2365         //for each method m1 that is a member of 'site'...
  2366         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2367             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2368             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2369             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2370                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2371                 log.error(pos,
  2372                         "name.clash.same.erasure.no.hide",
  2373                         sym, sym.location(),
  2374                         s, s.location());
  2375                 return;
  2380      //where
  2381      private class ClashFilter implements Filter<Symbol> {
  2383          Type site;
  2385          ClashFilter(Type site) {
  2386              this.site = site;
  2389          boolean shouldSkip(Symbol s) {
  2390              return (s.flags() & CLASH) != 0 &&
  2391                 s.owner == site.tsym;
  2394          public boolean accepts(Symbol s) {
  2395              return s.kind == MTH &&
  2396                      (s.flags() & SYNTHETIC) == 0 &&
  2397                      !shouldSkip(s) &&
  2398                      s.isInheritedIn(site.tsym, types) &&
  2399                      !s.isConstructor();
  2403     /** Report a conflict between a user symbol and a synthetic symbol.
  2404      */
  2405     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2406         if (!sym.type.isErroneous()) {
  2407             if (warnOnSyntheticConflicts) {
  2408                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2410             else {
  2411                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2416     /** Check that class c does not implement directly or indirectly
  2417      *  the same parameterized interface with two different argument lists.
  2418      *  @param pos          Position to be used for error reporting.
  2419      *  @param type         The type whose interfaces are checked.
  2420      */
  2421     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2422         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2424 //where
  2425         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2426          *  with their class symbol as key and their type as value. Make
  2427          *  sure no class is entered with two different types.
  2428          */
  2429         void checkClassBounds(DiagnosticPosition pos,
  2430                               Map<TypeSymbol,Type> seensofar,
  2431                               Type type) {
  2432             if (type.isErroneous()) return;
  2433             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2434                 Type it = l.head;
  2435                 Type oldit = seensofar.put(it.tsym, it);
  2436                 if (oldit != null) {
  2437                     List<Type> oldparams = oldit.allparams();
  2438                     List<Type> newparams = it.allparams();
  2439                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2440                         log.error(pos, "cant.inherit.diff.arg",
  2441                                   it.tsym, Type.toString(oldparams),
  2442                                   Type.toString(newparams));
  2444                 checkClassBounds(pos, seensofar, it);
  2446             Type st = types.supertype(type);
  2447             if (st != null) checkClassBounds(pos, seensofar, st);
  2450     /** Enter interface into into set.
  2451      *  If it existed already, issue a "repeated interface" error.
  2452      */
  2453     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2454         if (its.contains(it))
  2455             log.error(pos, "repeated.interface");
  2456         else {
  2457             its.add(it);
  2461 /* *************************************************************************
  2462  * Check annotations
  2463  **************************************************************************/
  2465     /**
  2466      * Recursively validate annotations values
  2467      */
  2468     void validateAnnotationTree(JCTree tree) {
  2469         class AnnotationValidator extends TreeScanner {
  2470             @Override
  2471             public void visitAnnotation(JCAnnotation tree) {
  2472                 if (!tree.type.isErroneous()) {
  2473                     super.visitAnnotation(tree);
  2474                     validateAnnotation(tree);
  2478         tree.accept(new AnnotationValidator());
  2481     /**
  2482      *  {@literal
  2483      *  Annotation types are restricted to primitives, String, an
  2484      *  enum, an annotation, Class, Class<?>, Class<? extends
  2485      *  Anything>, arrays of the preceding.
  2486      *  }
  2487      */
  2488     void validateAnnotationType(JCTree restype) {
  2489         // restype may be null if an error occurred, so don't bother validating it
  2490         if (restype != null) {
  2491             validateAnnotationType(restype.pos(), restype.type);
  2495     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2496         if (type.isPrimitive()) return;
  2497         if (types.isSameType(type, syms.stringType)) return;
  2498         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2499         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2500         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2501         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2502             validateAnnotationType(pos, types.elemtype(type));
  2503             return;
  2505         log.error(pos, "invalid.annotation.member.type");
  2508     /**
  2509      * "It is also a compile-time error if any method declared in an
  2510      * annotation type has a signature that is override-equivalent to
  2511      * that of any public or protected method declared in class Object
  2512      * or in the interface annotation.Annotation."
  2514      * @jls 9.6 Annotation Types
  2515      */
  2516     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2517         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2518             Scope s = sup.tsym.members();
  2519             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2520                 if (e.sym.kind == MTH &&
  2521                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2522                     types.overrideEquivalent(m.type, e.sym.type))
  2523                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2528     /** Check the annotations of a symbol.
  2529      */
  2530     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2531         for (JCAnnotation a : annotations)
  2532             validateAnnotation(a, s);
  2535     /** Check an annotation of a symbol.
  2536      */
  2537     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2538         validateAnnotationTree(a);
  2540         if (!annotationApplicable(a, s))
  2541             log.error(a.pos(), "annotation.type.not.applicable");
  2543         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2544             if (!isOverrider(s))
  2545                 log.error(a.pos(), "method.does.not.override.superclass");
  2549     /**
  2550      * Validate the proposed container 'containedBy' on the
  2551      * annotation type symbol 's'. Report errors at position
  2552      * 'pos'.
  2554      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2555      * @param containerAnno the @ContainedBy on 's'
  2556      * @param pos where to report errors
  2557      */
  2558     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2559         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2561         Type t = null;
  2562         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2563         if (!l.isEmpty()) {
  2564             Assert.check(l.head.fst.name == names.value);
  2565             t = ((Attribute.Class)l.head.snd).getValue();
  2568         if (t == null) {
  2569             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2570             return;
  2573         validateHasContainerFor(t.tsym, s, pos);
  2574         validateRetention(t.tsym, s, pos);
  2575         validateDocumented(t.tsym, s, pos);
  2576         validateInherited(t.tsym, s, pos);
  2577         validateTarget(t.tsym, s, pos);
  2578         validateDefault(t.tsym, s, pos);
  2581     /**
  2582      * Validate the proposed container 'containerFor' on the
  2583      * annotation type symbol 's'. Report errors at position
  2584      * 'pos'.
  2586      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2587      * @param containerFor the @ContainedFor on 's'
  2588      * @param pos where to report errors
  2589      */
  2590     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2591         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2593         Type t = null;
  2594         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2595         if (!l.isEmpty()) {
  2596             Assert.check(l.head.fst.name == names.value);
  2597             t = ((Attribute.Class)l.head.snd).getValue();
  2600         if (t == null) {
  2601             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2602             return;
  2605         validateHasContainedBy(t.tsym, s, pos);
  2608     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2609         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2611         if (containedBy == null) {
  2612             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2613             return;
  2616         Type t = null;
  2617         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2618         if (!l.isEmpty()) {
  2619             Assert.check(l.head.fst.name == names.value);
  2620             t = ((Attribute.Class)l.head.snd).getValue();
  2623         if (t == null) {
  2624             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2625             return;
  2628         if (!types.isSameType(t, contained.type))
  2629             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2632     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2633         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2635         if (containerFor == null) {
  2636             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2637             return;
  2640         Type t = null;
  2641         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2642         if (!l.isEmpty()) {
  2643             Assert.check(l.head.fst.name == names.value);
  2644             t = ((Attribute.Class)l.head.snd).getValue();
  2647         if (t == null) {
  2648             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2649             return;
  2652         if (!types.isSameType(t, contained.type))
  2653             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2656     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2657         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2658         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2660         boolean error = false;
  2661         switch (containedRetention) {
  2662         case RUNTIME:
  2663             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2664                 error = true;
  2666             break;
  2667         case CLASS:
  2668             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2669                 error = true;
  2672         if (error ) {
  2673             log.error(pos, "invalid.containedby.annotation.retention",
  2674                       container, containerRetention,
  2675                       contained, containedRetention);
  2679     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2680         if (contained.attribute(syms.documentedType.tsym) != null) {
  2681             if (container.attribute(syms.documentedType.tsym) == null) {
  2682                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2687     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2688         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2689             if (container.attribute(syms.inheritedType.tsym) == null) {
  2690                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2695     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2696         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2698         // If contained has no Target, we are done
  2699         if (containedTarget == null) {
  2700             return;
  2703         // If contained has Target m1, container must have a Target
  2704         // annotation, m2, and m2 must be a subset of m1. (This is
  2705         // trivially true if contained has no target as per above).
  2707         // contained has target, but container has not, error
  2708         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2709         if (containerTarget == null) {
  2710             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2711             return;
  2714         Set<Name> containerTargets = new HashSet<Name>();
  2715         for (Attribute app : containerTarget.values) {
  2716             if (!(app instanceof Attribute.Enum)) {
  2717                 continue; // recovery
  2719             Attribute.Enum e = (Attribute.Enum)app;
  2720             containerTargets.add(e.value.name);
  2723         Set<Name> containedTargets = new HashSet<Name>();
  2724         for (Attribute app : containedTarget.values) {
  2725             if (!(app instanceof Attribute.Enum)) {
  2726                 continue; // recovery
  2728             Attribute.Enum e = (Attribute.Enum)app;
  2729             containedTargets.add(e.value.name);
  2732         if (!isTargetSubset(containedTargets, containerTargets)) {
  2733             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2737     /** Checks that t is a subset of s, with respect to ElementType
  2738      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2739      */
  2740     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2741         // Check that all elements in t are present in s
  2742         for (Name n2 : t) {
  2743             boolean currentElementOk = false;
  2744             for (Name n1 : s) {
  2745                 if (n1 == n2) {
  2746                     currentElementOk = true;
  2747                     break;
  2748                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2749                     currentElementOk = true;
  2750                     break;
  2753             if (!currentElementOk)
  2754                 return false;
  2756         return true;
  2759     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2760         // validate that all other elements of containing type has defaults
  2761         Scope scope = container.members();
  2762         for(Symbol elm : scope.getElements()) {
  2763             if (elm.name != names.value &&
  2764                 elm.kind == Kinds.MTH &&
  2765                 ((MethodSymbol)elm).defaultValue == null) {
  2766                 log.error(pos,
  2767                           "invalid.containedby.annotation.elem.nondefault",
  2768                           container,
  2769                           elm);
  2774     /** Is s a method symbol that overrides a method in a superclass? */
  2775     boolean isOverrider(Symbol s) {
  2776         if (s.kind != MTH || s.isStatic())
  2777             return false;
  2778         MethodSymbol m = (MethodSymbol)s;
  2779         TypeSymbol owner = (TypeSymbol)m.owner;
  2780         for (Type sup : types.closure(owner.type)) {
  2781             if (sup == owner.type)
  2782                 continue; // skip "this"
  2783             Scope scope = sup.tsym.members();
  2784             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2785                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2786                     return true;
  2789         return false;
  2792     /** Is the annotation applicable to the symbol? */
  2793     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2794         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2795         if (arr == null) {
  2796             return true;
  2798         for (Attribute app : arr.values) {
  2799             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2800             Attribute.Enum e = (Attribute.Enum) app;
  2801             if (e.value.name == names.TYPE)
  2802                 { if (s.kind == TYP) return true; }
  2803             else if (e.value.name == names.FIELD)
  2804                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2805             else if (e.value.name == names.METHOD)
  2806                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2807             else if (e.value.name == names.PARAMETER)
  2808                 { if (s.kind == VAR &&
  2809                       s.owner.kind == MTH &&
  2810                       (s.flags() & PARAMETER) != 0)
  2811                     return true;
  2813             else if (e.value.name == names.CONSTRUCTOR)
  2814                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2815             else if (e.value.name == names.LOCAL_VARIABLE)
  2816                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2817                       (s.flags() & PARAMETER) == 0)
  2818                     return true;
  2820             else if (e.value.name == names.ANNOTATION_TYPE)
  2821                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2822                     return true;
  2824             else if (e.value.name == names.PACKAGE)
  2825                 { if (s.kind == PCK) return true; }
  2826             else if (e.value.name == names.TYPE_USE)
  2827                 { if (s.kind == TYP ||
  2828                       s.kind == VAR ||
  2829                       (s.kind == MTH && !s.isConstructor() &&
  2830                        s.type.getReturnType().tag != VOID))
  2831                     return true;
  2833             else
  2834                 return true; // recovery
  2836         return false;
  2840     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2841         Attribute.Compound atTarget =
  2842             s.attribute(syms.annotationTargetType.tsym);
  2843         if (atTarget == null) return null; // ok, is applicable
  2844         Attribute atValue = atTarget.member(names.value);
  2845         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2846         return (Attribute.Array) atValue;
  2849     /** Check an annotation value.
  2850      */
  2851     public void validateAnnotation(JCAnnotation a) {
  2852         // collect an inventory of the members (sorted alphabetically)
  2853         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2854             public int compare(Symbol t, Symbol t1) {
  2855                 return t.name.compareTo(t1.name);
  2857         });
  2858         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2859              e != null;
  2860              e = e.sibling)
  2861             if (e.sym.kind == MTH)
  2862                 members.add((MethodSymbol) e.sym);
  2864         // count them off as they're annotated
  2865         for (JCTree arg : a.args) {
  2866             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2867             JCAssign assign = (JCAssign) arg;
  2868             Symbol m = TreeInfo.symbol(assign.lhs);
  2869             if (m == null || m.type.isErroneous()) continue;
  2870             if (!members.remove(m))
  2871                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2872                           m.name, a.type);
  2875         // all the remaining ones better have default values
  2876         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2877         for (MethodSymbol m : members) {
  2878             if (m.defaultValue == null && !m.type.isErroneous()) {
  2879                 missingDefaults.append(m.name);
  2882         if (missingDefaults.nonEmpty()) {
  2883             String key = (missingDefaults.size() > 1)
  2884                     ? "annotation.missing.default.value.1"
  2885                     : "annotation.missing.default.value";
  2886             log.error(a.pos(), key, a.type, missingDefaults);
  2889         // special case: java.lang.annotation.Target must not have
  2890         // repeated values in its value member
  2891         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2892             a.args.tail == null)
  2893             return;
  2895         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2896         JCAssign assign = (JCAssign) a.args.head;
  2897         Symbol m = TreeInfo.symbol(assign.lhs);
  2898         if (m.name != names.value) return;
  2899         JCTree rhs = assign.rhs;
  2900         if (!rhs.hasTag(NEWARRAY)) return;
  2901         JCNewArray na = (JCNewArray) rhs;
  2902         Set<Symbol> targets = new HashSet<Symbol>();
  2903         for (JCTree elem : na.elems) {
  2904             if (!targets.add(TreeInfo.symbol(elem))) {
  2905                 log.error(elem.pos(), "repeated.annotation.target");
  2910     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2911         if (allowAnnotations &&
  2912             lint.isEnabled(LintCategory.DEP_ANN) &&
  2913             (s.flags() & DEPRECATED) != 0 &&
  2914             !syms.deprecatedType.isErroneous() &&
  2915             s.attribute(syms.deprecatedType.tsym) == null) {
  2916             log.warning(LintCategory.DEP_ANN,
  2917                     pos, "missing.deprecated.annotation");
  2921     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2922         if ((s.flags() & DEPRECATED) != 0 &&
  2923                 (other.flags() & DEPRECATED) == 0 &&
  2924                 s.outermostClass() != other.outermostClass()) {
  2925             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2926                 @Override
  2927                 public void report() {
  2928                     warnDeprecated(pos, s);
  2930             });
  2934     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2935         if ((s.flags() & PROPRIETARY) != 0) {
  2936             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2937                 public void report() {
  2938                     if (enableSunApiLintControl)
  2939                       warnSunApi(pos, "sun.proprietary", s);
  2940                     else
  2941                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2943             });
  2947 /* *************************************************************************
  2948  * Check for recursive annotation elements.
  2949  **************************************************************************/
  2951     /** Check for cycles in the graph of annotation elements.
  2952      */
  2953     void checkNonCyclicElements(JCClassDecl tree) {
  2954         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2955         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2956         try {
  2957             tree.sym.flags_field |= LOCKED;
  2958             for (JCTree def : tree.defs) {
  2959                 if (!def.hasTag(METHODDEF)) continue;
  2960                 JCMethodDecl meth = (JCMethodDecl)def;
  2961                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2963         } finally {
  2964             tree.sym.flags_field &= ~LOCKED;
  2965             tree.sym.flags_field |= ACYCLIC_ANN;
  2969     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2970         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2971             return;
  2972         if ((tsym.flags_field & LOCKED) != 0) {
  2973             log.error(pos, "cyclic.annotation.element");
  2974             return;
  2976         try {
  2977             tsym.flags_field |= LOCKED;
  2978             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2979                 Symbol s = e.sym;
  2980                 if (s.kind != Kinds.MTH)
  2981                     continue;
  2982                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2984         } finally {
  2985             tsym.flags_field &= ~LOCKED;
  2986             tsym.flags_field |= ACYCLIC_ANN;
  2990     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2991         switch (type.tag) {
  2992         case TypeTags.CLASS:
  2993             if ((type.tsym.flags() & ANNOTATION) != 0)
  2994                 checkNonCyclicElementsInternal(pos, type.tsym);
  2995             break;
  2996         case TypeTags.ARRAY:
  2997             checkAnnotationResType(pos, types.elemtype(type));
  2998             break;
  2999         default:
  3000             break; // int etc
  3004 /* *************************************************************************
  3005  * Check for cycles in the constructor call graph.
  3006  **************************************************************************/
  3008     /** Check for cycles in the graph of constructors calling other
  3009      *  constructors.
  3010      */
  3011     void checkCyclicConstructors(JCClassDecl tree) {
  3012         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3014         // enter each constructor this-call into the map
  3015         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3016             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3017             if (app == null) continue;
  3018             JCMethodDecl meth = (JCMethodDecl) l.head;
  3019             if (TreeInfo.name(app.meth) == names._this) {
  3020                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3021             } else {
  3022                 meth.sym.flags_field |= ACYCLIC;
  3026         // Check for cycles in the map
  3027         Symbol[] ctors = new Symbol[0];
  3028         ctors = callMap.keySet().toArray(ctors);
  3029         for (Symbol caller : ctors) {
  3030             checkCyclicConstructor(tree, caller, callMap);
  3034     /** Look in the map to see if the given constructor is part of a
  3035      *  call cycle.
  3036      */
  3037     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3038                                         Map<Symbol,Symbol> callMap) {
  3039         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3040             if ((ctor.flags_field & LOCKED) != 0) {
  3041                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3042                           "recursive.ctor.invocation");
  3043             } else {
  3044                 ctor.flags_field |= LOCKED;
  3045                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3046                 ctor.flags_field &= ~LOCKED;
  3048             ctor.flags_field |= ACYCLIC;
  3052 /* *************************************************************************
  3053  * Miscellaneous
  3054  **************************************************************************/
  3056     /**
  3057      * Return the opcode of the operator but emit an error if it is an
  3058      * error.
  3059      * @param pos        position for error reporting.
  3060      * @param operator   an operator
  3061      * @param tag        a tree tag
  3062      * @param left       type of left hand side
  3063      * @param right      type of right hand side
  3064      */
  3065     int checkOperator(DiagnosticPosition pos,
  3066                        OperatorSymbol operator,
  3067                        JCTree.Tag tag,
  3068                        Type left,
  3069                        Type right) {
  3070         if (operator.opcode == ByteCodes.error) {
  3071             log.error(pos,
  3072                       "operator.cant.be.applied.1",
  3073                       treeinfo.operatorName(tag),
  3074                       left, right);
  3076         return operator.opcode;
  3080     /**
  3081      *  Check for division by integer constant zero
  3082      *  @param pos           Position for error reporting.
  3083      *  @param operator      The operator for the expression
  3084      *  @param operand       The right hand operand for the expression
  3085      */
  3086     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3087         if (operand.constValue() != null
  3088             && lint.isEnabled(LintCategory.DIVZERO)
  3089             && operand.tag <= LONG
  3090             && ((Number) (operand.constValue())).longValue() == 0) {
  3091             int opc = ((OperatorSymbol)operator).opcode;
  3092             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3093                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3094                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3099     /**
  3100      * Check for empty statements after if
  3101      */
  3102     void checkEmptyIf(JCIf tree) {
  3103         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3104                 lint.isEnabled(LintCategory.EMPTY))
  3105             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3108     /** Check that symbol is unique in given scope.
  3109      *  @param pos           Position for error reporting.
  3110      *  @param sym           The symbol.
  3111      *  @param s             The scope.
  3112      */
  3113     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3114         if (sym.type.isErroneous())
  3115             return true;
  3116         if (sym.owner.name == names.any) return false;
  3117         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3118             if (sym != e.sym &&
  3119                     (e.sym.flags() & CLASH) == 0 &&
  3120                     sym.kind == e.sym.kind &&
  3121                     sym.name != names.error &&
  3122                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3123                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3124                     varargsDuplicateError(pos, sym, e.sym);
  3125                     return true;
  3126                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3127                     duplicateErasureError(pos, sym, e.sym);
  3128                     sym.flags_field |= CLASH;
  3129                     return true;
  3130                 } else {
  3131                     duplicateError(pos, e.sym);
  3132                     return false;
  3136         return true;
  3139     /** Report duplicate declaration error.
  3140      */
  3141     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3142         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3143             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3147     /** Check that single-type import is not already imported or top-level defined,
  3148      *  but make an exception for two single-type imports which denote the same type.
  3149      *  @param pos           Position for error reporting.
  3150      *  @param sym           The symbol.
  3151      *  @param s             The scope
  3152      */
  3153     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3154         return checkUniqueImport(pos, sym, s, false);
  3157     /** Check that static single-type import is not already imported or top-level defined,
  3158      *  but make an exception for two single-type imports which denote the same type.
  3159      *  @param pos           Position for error reporting.
  3160      *  @param sym           The symbol.
  3161      *  @param s             The scope
  3162      *  @param staticImport  Whether or not this was a static import
  3163      */
  3164     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3165         return checkUniqueImport(pos, sym, s, true);
  3168     /** Check that single-type import is not already imported or top-level defined,
  3169      *  but make an exception for two single-type imports which denote the same type.
  3170      *  @param pos           Position for error reporting.
  3171      *  @param sym           The symbol.
  3172      *  @param s             The scope.
  3173      *  @param staticImport  Whether or not this was a static import
  3174      */
  3175     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3176         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3177             // is encountered class entered via a class declaration?
  3178             boolean isClassDecl = e.scope == s;
  3179             if ((isClassDecl || sym != e.sym) &&
  3180                 sym.kind == e.sym.kind &&
  3181                 sym.name != names.error) {
  3182                 if (!e.sym.type.isErroneous()) {
  3183                     String what = e.sym.toString();
  3184                     if (!isClassDecl) {
  3185                         if (staticImport)
  3186                             log.error(pos, "already.defined.static.single.import", what);
  3187                         else
  3188                             log.error(pos, "already.defined.single.import", what);
  3190                     else if (sym != e.sym)
  3191                         log.error(pos, "already.defined.this.unit", what);
  3193                 return false;
  3196         return true;
  3199     /** Check that a qualified name is in canonical form (for import decls).
  3200      */
  3201     public void checkCanonical(JCTree tree) {
  3202         if (!isCanonical(tree))
  3203             log.error(tree.pos(), "import.requires.canonical",
  3204                       TreeInfo.symbol(tree));
  3206         // where
  3207         private boolean isCanonical(JCTree tree) {
  3208             while (tree.hasTag(SELECT)) {
  3209                 JCFieldAccess s = (JCFieldAccess) tree;
  3210                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3211                     return false;
  3212                 tree = s.selected;
  3214             return true;
  3217     private class ConversionWarner extends Warner {
  3218         final String uncheckedKey;
  3219         final Type found;
  3220         final Type expected;
  3221         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3222             super(pos);
  3223             this.uncheckedKey = uncheckedKey;
  3224             this.found = found;
  3225             this.expected = expected;
  3228         @Override
  3229         public void warn(LintCategory lint) {
  3230             boolean warned = this.warned;
  3231             super.warn(lint);
  3232             if (warned) return; // suppress redundant diagnostics
  3233             switch (lint) {
  3234                 case UNCHECKED:
  3235                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3236                     break;
  3237                 case VARARGS:
  3238                     if (method != null &&
  3239                             method.attribute(syms.trustMeType.tsym) != null &&
  3240                             isTrustMeAllowedOnMethod(method) &&
  3241                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3242                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3244                     break;
  3245                 default:
  3246                     throw new AssertionError("Unexpected lint: " + lint);
  3251     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3252         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3255     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3256         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial