src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 21 Jan 2013 20:19:53 +0000

author
mcimadamore
date
Mon, 21 Jan 2013 20:19:53 +0000
changeset 1513
cf84b07a82db
parent 1510
7873d37f5b37
child 1521
71f35e4b93a5
permissions
-rw-r--r--

8005166: Add support for static interface methods
Summary: Support public static interface methods
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import javax.lang.model.element.ElementKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.jvm.Target;
    49 import com.sun.tools.javac.tree.*;
    50 import com.sun.tools.javac.tree.JCTree.*;
    51 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    52 import com.sun.tools.javac.util.*;
    53 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    54 import com.sun.tools.javac.util.List;
    55 import static com.sun.tools.javac.code.Flags.*;
    56 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    57 import static com.sun.tools.javac.code.Flags.BLOCK;
    58 import static com.sun.tools.javac.code.Kinds.*;
    59 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    60 import static com.sun.tools.javac.code.TypeTag.*;
    61 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    64 /** This is the main context-dependent analysis phase in GJC. It
    65  *  encompasses name resolution, type checking and constant folding as
    66  *  subtasks. Some subtasks involve auxiliary classes.
    67  *  @see Check
    68  *  @see Resolve
    69  *  @see ConstFold
    70  *  @see Infer
    71  *
    72  *  <p><b>This is NOT part of any supported API.
    73  *  If you write code that depends on this, you do so at your own risk.
    74  *  This code and its internal interfaces are subject to change or
    75  *  deletion without notice.</b>
    76  */
    77 public class Attr extends JCTree.Visitor {
    78     protected static final Context.Key<Attr> attrKey =
    79         new Context.Key<Attr>();
    81     final Names names;
    82     final Log log;
    83     final Symtab syms;
    84     final Resolve rs;
    85     final Infer infer;
    86     final DeferredAttr deferredAttr;
    87     final Check chk;
    88     final Flow flow;
    89     final MemberEnter memberEnter;
    90     final TreeMaker make;
    91     final ConstFold cfolder;
    92     final Enter enter;
    93     final Target target;
    94     final Types types;
    95     final JCDiagnostic.Factory diags;
    96     final Annotate annotate;
    97     final DeferredLintHandler deferredLintHandler;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         deferredLintHandler = DeferredLintHandler.instance(context);
   127         Options options = Options.instance(context);
   129         Source source = Source.instance(context);
   130         allowGenerics = source.allowGenerics();
   131         allowVarargs = source.allowVarargs();
   132         allowEnums = source.allowEnums();
   133         allowBoxing = source.allowBoxing();
   134         allowCovariantReturns = source.allowCovariantReturns();
   135         allowAnonOuterThis = source.allowAnonOuterThis();
   136         allowStringsInSwitch = source.allowStringsInSwitch();
   137         allowPoly = source.allowPoly();
   138         allowLambda = source.allowLambda();
   139         allowDefaultMethods = source.allowDefaultMethods();
   140         sourceName = source.name;
   141         relax = (options.isSet("-retrofit") ||
   142                  options.isSet("-relax"));
   143         findDiamonds = options.get("findDiamond") != null &&
   144                  source.allowDiamond();
   145         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   146         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   148         statInfo = new ResultInfo(NIL, Type.noType);
   149         varInfo = new ResultInfo(VAR, Type.noType);
   150         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   151         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   152         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   153     }
   155     /** Switch: relax some constraints for retrofit mode.
   156      */
   157     boolean relax;
   159     /** Switch: support target-typing inference
   160      */
   161     boolean allowPoly;
   163     /** Switch: support generics?
   164      */
   165     boolean allowGenerics;
   167     /** Switch: allow variable-arity methods.
   168      */
   169     boolean allowVarargs;
   171     /** Switch: support enums?
   172      */
   173     boolean allowEnums;
   175     /** Switch: support boxing and unboxing?
   176      */
   177     boolean allowBoxing;
   179     /** Switch: support covariant result types?
   180      */
   181     boolean allowCovariantReturns;
   183     /** Switch: support lambda expressions ?
   184      */
   185     boolean allowLambda;
   187     /** Switch: support default methods ?
   188      */
   189     boolean allowDefaultMethods;
   191     /** Switch: allow references to surrounding object from anonymous
   192      * objects during constructor call?
   193      */
   194     boolean allowAnonOuterThis;
   196     /** Switch: generates a warning if diamond can be safely applied
   197      *  to a given new expression
   198      */
   199     boolean findDiamonds;
   201     /**
   202      * Internally enables/disables diamond finder feature
   203      */
   204     static final boolean allowDiamondFinder = true;
   206     /**
   207      * Switch: warn about use of variable before declaration?
   208      * RFE: 6425594
   209      */
   210     boolean useBeforeDeclarationWarning;
   212     /**
   213      * Switch: generate warnings whenever an anonymous inner class that is convertible
   214      * to a lambda expression is found
   215      */
   216     boolean identifyLambdaCandidate;
   218     /**
   219      * Switch: allow strings in switch?
   220      */
   221     boolean allowStringsInSwitch;
   223     /**
   224      * Switch: name of source level; used for error reporting.
   225      */
   226     String sourceName;
   228     /** Check kind and type of given tree against protokind and prototype.
   229      *  If check succeeds, store type in tree and return it.
   230      *  If check fails, store errType in tree and return it.
   231      *  No checks are performed if the prototype is a method type.
   232      *  It is not necessary in this case since we know that kind and type
   233      *  are correct.
   234      *
   235      *  @param tree     The tree whose kind and type is checked
   236      *  @param ownkind  The computed kind of the tree
   237      *  @param resultInfo  The expected result of the tree
   238      */
   239     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   240         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   241         Type owntype = found;
   242         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   243             if (inferenceContext.free(found)) {
   244                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   245                     @Override
   246                     public void typesInferred(InferenceContext inferenceContext) {
   247                         ResultInfo pendingResult =
   248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types));
   249                         check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult);
   250                     }
   251                 });
   252                 return tree.type = resultInfo.pt;
   253             } else {
   254                 if ((ownkind & ~resultInfo.pkind) == 0) {
   255                     owntype = resultInfo.check(tree, owntype);
   256                 } else {
   257                     log.error(tree.pos(), "unexpected.type",
   258                             kindNames(resultInfo.pkind),
   259                             kindName(ownkind));
   260                     owntype = types.createErrorType(owntype);
   261                 }
   262             }
   263         }
   264         tree.type = owntype;
   265         return owntype;
   266     }
   268     /** Is given blank final variable assignable, i.e. in a scope where it
   269      *  may be assigned to even though it is final?
   270      *  @param v      The blank final variable.
   271      *  @param env    The current environment.
   272      */
   273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   274         Symbol owner = owner(env);
   275            // owner refers to the innermost variable, method or
   276            // initializer block declaration at this point.
   277         return
   278             v.owner == owner
   279             ||
   280             ((owner.name == names.init ||    // i.e. we are in a constructor
   281               owner.kind == VAR ||           // i.e. we are in a variable initializer
   282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   283              &&
   284              v.owner == owner.owner
   285              &&
   286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   287     }
   289     /**
   290      * Return the innermost enclosing owner symbol in a given attribution context
   291      */
   292     Symbol owner(Env<AttrContext> env) {
   293         while (true) {
   294             switch (env.tree.getTag()) {
   295                 case VARDEF:
   296                     //a field can be owner
   297                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   298                     if (vsym.owner.kind == TYP) {
   299                         return vsym;
   300                     }
   301                     break;
   302                 case METHODDEF:
   303                     //method def is always an owner
   304                     return ((JCMethodDecl)env.tree).sym;
   305                 case CLASSDEF:
   306                     //class def is always an owner
   307                     return ((JCClassDecl)env.tree).sym;
   308                 case LAMBDA:
   309                     //a lambda is an owner - return a fresh synthetic method symbol
   310                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   311                 case BLOCK:
   312                     //static/instance init blocks are owner
   313                     Symbol blockSym = env.info.scope.owner;
   314                     if ((blockSym.flags() & BLOCK) != 0) {
   315                         return blockSym;
   316                     }
   317                     break;
   318                 case TOPLEVEL:
   319                     //toplevel is always an owner (for pkge decls)
   320                     return env.info.scope.owner;
   321             }
   322             Assert.checkNonNull(env.next);
   323             env = env.next;
   324         }
   325     }
   327     /** Check that variable can be assigned to.
   328      *  @param pos    The current source code position.
   329      *  @param v      The assigned varaible
   330      *  @param base   If the variable is referred to in a Select, the part
   331      *                to the left of the `.', null otherwise.
   332      *  @param env    The current environment.
   333      */
   334     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   335         if ((v.flags() & FINAL) != 0 &&
   336             ((v.flags() & HASINIT) != 0
   337              ||
   338              !((base == null ||
   339                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   340                isAssignableAsBlankFinal(v, env)))) {
   341             if (v.isResourceVariable()) { //TWR resource
   342                 log.error(pos, "try.resource.may.not.be.assigned", v);
   343             } else {
   344                 log.error(pos, "cant.assign.val.to.final.var", v);
   345             }
   346         }
   347     }
   349     /** Does tree represent a static reference to an identifier?
   350      *  It is assumed that tree is either a SELECT or an IDENT.
   351      *  We have to weed out selects from non-type names here.
   352      *  @param tree    The candidate tree.
   353      */
   354     boolean isStaticReference(JCTree tree) {
   355         if (tree.hasTag(SELECT)) {
   356             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   357             if (lsym == null || lsym.kind != TYP) {
   358                 return false;
   359             }
   360         }
   361         return true;
   362     }
   364     /** Is this symbol a type?
   365      */
   366     static boolean isType(Symbol sym) {
   367         return sym != null && sym.kind == TYP;
   368     }
   370     /** The current `this' symbol.
   371      *  @param env    The current environment.
   372      */
   373     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   374         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   375     }
   377     /** Attribute a parsed identifier.
   378      * @param tree Parsed identifier name
   379      * @param topLevel The toplevel to use
   380      */
   381     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   382         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   383         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   384                                            syms.errSymbol.name,
   385                                            null, null, null, null);
   386         localEnv.enclClass.sym = syms.errSymbol;
   387         return tree.accept(identAttributer, localEnv);
   388     }
   389     // where
   390         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   391         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   392             @Override
   393             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   394                 Symbol site = visit(node.getExpression(), env);
   395                 if (site.kind == ERR)
   396                     return site;
   397                 Name name = (Name)node.getIdentifier();
   398                 if (site.kind == PCK) {
   399                     env.toplevel.packge = (PackageSymbol)site;
   400                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   401                 } else {
   402                     env.enclClass.sym = (ClassSymbol)site;
   403                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   404                 }
   405             }
   407             @Override
   408             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   409                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   410             }
   411         }
   413     public Type coerce(Type etype, Type ttype) {
   414         return cfolder.coerce(etype, ttype);
   415     }
   417     public Type attribType(JCTree node, TypeSymbol sym) {
   418         Env<AttrContext> env = enter.typeEnvs.get(sym);
   419         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   420         return attribTree(node, localEnv, unknownTypeInfo);
   421     }
   423     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   424         // Attribute qualifying package or class.
   425         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   426         return attribTree(s.selected,
   427                        env,
   428                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   429                        Type.noType));
   430     }
   432     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   433         breakTree = tree;
   434         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   435         try {
   436             attribExpr(expr, env);
   437         } catch (BreakAttr b) {
   438             return b.env;
   439         } catch (AssertionError ae) {
   440             if (ae.getCause() instanceof BreakAttr) {
   441                 return ((BreakAttr)(ae.getCause())).env;
   442             } else {
   443                 throw ae;
   444             }
   445         } finally {
   446             breakTree = null;
   447             log.useSource(prev);
   448         }
   449         return env;
   450     }
   452     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   453         breakTree = tree;
   454         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   455         try {
   456             attribStat(stmt, env);
   457         } catch (BreakAttr b) {
   458             return b.env;
   459         } catch (AssertionError ae) {
   460             if (ae.getCause() instanceof BreakAttr) {
   461                 return ((BreakAttr)(ae.getCause())).env;
   462             } else {
   463                 throw ae;
   464             }
   465         } finally {
   466             breakTree = null;
   467             log.useSource(prev);
   468         }
   469         return env;
   470     }
   472     private JCTree breakTree = null;
   474     private static class BreakAttr extends RuntimeException {
   475         static final long serialVersionUID = -6924771130405446405L;
   476         private Env<AttrContext> env;
   477         private BreakAttr(Env<AttrContext> env) {
   478             this.env = copyEnv(env);
   479         }
   481         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   482             Env<AttrContext> newEnv =
   483                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   484             if (newEnv.outer != null) {
   485                 newEnv.outer = copyEnv(newEnv.outer);
   486             }
   487             return newEnv;
   488         }
   490         private Scope copyScope(Scope sc) {
   491             Scope newScope = new Scope(sc.owner);
   492             List<Symbol> elemsList = List.nil();
   493             while (sc != null) {
   494                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   495                     elemsList = elemsList.prepend(e.sym);
   496                 }
   497                 sc = sc.next;
   498             }
   499             for (Symbol s : elemsList) {
   500                 newScope.enter(s);
   501             }
   502             return newScope;
   503         }
   504     }
   506     class ResultInfo {
   507         final int pkind;
   508         final Type pt;
   509         final CheckContext checkContext;
   511         ResultInfo(int pkind, Type pt) {
   512             this(pkind, pt, chk.basicHandler);
   513         }
   515         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   516             this.pkind = pkind;
   517             this.pt = pt;
   518             this.checkContext = checkContext;
   519         }
   521         protected Type check(final DiagnosticPosition pos, final Type found) {
   522             return chk.checkType(pos, found, pt, checkContext);
   523         }
   525         protected ResultInfo dup(Type newPt) {
   526             return new ResultInfo(pkind, newPt, checkContext);
   527         }
   529         protected ResultInfo dup(CheckContext newContext) {
   530             return new ResultInfo(pkind, pt, newContext);
   531         }
   532     }
   534     class RecoveryInfo extends ResultInfo {
   536         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   537             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   538                 @Override
   539                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   540                     return deferredAttrContext;
   541                 }
   542                 @Override
   543                 public boolean compatible(Type found, Type req, Warner warn) {
   544                     return true;
   545                 }
   546                 @Override
   547                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   548                     chk.basicHandler.report(pos, details);
   549                 }
   550             });
   551         }
   553         @Override
   554         protected Type check(DiagnosticPosition pos, Type found) {
   555             return chk.checkNonVoid(pos, super.check(pos, found));
   556         }
   557     }
   559     final ResultInfo statInfo;
   560     final ResultInfo varInfo;
   561     final ResultInfo unknownExprInfo;
   562     final ResultInfo unknownTypeInfo;
   563     final ResultInfo recoveryInfo;
   565     Type pt() {
   566         return resultInfo.pt;
   567     }
   569     int pkind() {
   570         return resultInfo.pkind;
   571     }
   573 /* ************************************************************************
   574  * Visitor methods
   575  *************************************************************************/
   577     /** Visitor argument: the current environment.
   578      */
   579     Env<AttrContext> env;
   581     /** Visitor argument: the currently expected attribution result.
   582      */
   583     ResultInfo resultInfo;
   585     /** Visitor result: the computed type.
   586      */
   587     Type result;
   589     /** Visitor method: attribute a tree, catching any completion failure
   590      *  exceptions. Return the tree's type.
   591      *
   592      *  @param tree    The tree to be visited.
   593      *  @param env     The environment visitor argument.
   594      *  @param resultInfo   The result info visitor argument.
   595      */
   596     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   597         Env<AttrContext> prevEnv = this.env;
   598         ResultInfo prevResult = this.resultInfo;
   599         try {
   600             this.env = env;
   601             this.resultInfo = resultInfo;
   602             tree.accept(this);
   603             if (tree == breakTree &&
   604                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   605                 throw new BreakAttr(env);
   606             }
   607             return result;
   608         } catch (CompletionFailure ex) {
   609             tree.type = syms.errType;
   610             return chk.completionError(tree.pos(), ex);
   611         } finally {
   612             this.env = prevEnv;
   613             this.resultInfo = prevResult;
   614         }
   615     }
   617     /** Derived visitor method: attribute an expression tree.
   618      */
   619     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   620         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   621     }
   623     /** Derived visitor method: attribute an expression tree with
   624      *  no constraints on the computed type.
   625      */
   626     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   627         return attribTree(tree, env, unknownExprInfo);
   628     }
   630     /** Derived visitor method: attribute a type tree.
   631      */
   632     public Type attribType(JCTree tree, Env<AttrContext> env) {
   633         Type result = attribType(tree, env, Type.noType);
   634         return result;
   635     }
   637     /** Derived visitor method: attribute a type tree.
   638      */
   639     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   640         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   641         return result;
   642     }
   644     /** Derived visitor method: attribute a statement or definition tree.
   645      */
   646     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   647         return attribTree(tree, env, statInfo);
   648     }
   650     /** Attribute a list of expressions, returning a list of types.
   651      */
   652     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   653         ListBuffer<Type> ts = new ListBuffer<Type>();
   654         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   655             ts.append(attribExpr(l.head, env, pt));
   656         return ts.toList();
   657     }
   659     /** Attribute a list of statements, returning nothing.
   660      */
   661     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   662         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   663             attribStat(l.head, env);
   664     }
   666     /** Attribute the arguments in a method call, returning a list of types.
   667      */
   668     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   669         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   670         for (JCExpression arg : trees) {
   671             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
   672                     deferredAttr.new DeferredType(arg, env) :
   673                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   674             argtypes.append(argtype);
   675         }
   676         return argtypes.toList();
   677     }
   679     /** Attribute a type argument list, returning a list of types.
   680      *  Caller is responsible for calling checkRefTypes.
   681      */
   682     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   683         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   684         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   685             argtypes.append(attribType(l.head, env));
   686         return argtypes.toList();
   687     }
   689     /** Attribute a type argument list, returning a list of types.
   690      *  Check that all the types are references.
   691      */
   692     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   693         List<Type> types = attribAnyTypes(trees, env);
   694         return chk.checkRefTypes(trees, types);
   695     }
   697     /**
   698      * Attribute type variables (of generic classes or methods).
   699      * Compound types are attributed later in attribBounds.
   700      * @param typarams the type variables to enter
   701      * @param env      the current environment
   702      */
   703     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   704         for (JCTypeParameter tvar : typarams) {
   705             TypeVar a = (TypeVar)tvar.type;
   706             a.tsym.flags_field |= UNATTRIBUTED;
   707             a.bound = Type.noType;
   708             if (!tvar.bounds.isEmpty()) {
   709                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   710                 for (JCExpression bound : tvar.bounds.tail)
   711                     bounds = bounds.prepend(attribType(bound, env));
   712                 types.setBounds(a, bounds.reverse());
   713             } else {
   714                 // if no bounds are given, assume a single bound of
   715                 // java.lang.Object.
   716                 types.setBounds(a, List.of(syms.objectType));
   717             }
   718             a.tsym.flags_field &= ~UNATTRIBUTED;
   719         }
   720         for (JCTypeParameter tvar : typarams) {
   721             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   722         }
   723     }
   725     /**
   726      * Attribute the type references in a list of annotations.
   727      */
   728     void attribAnnotationTypes(List<JCAnnotation> annotations,
   729                                Env<AttrContext> env) {
   730         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   731             JCAnnotation a = al.head;
   732             attribType(a.annotationType, env);
   733         }
   734     }
   736     /**
   737      * Attribute a "lazy constant value".
   738      *  @param env         The env for the const value
   739      *  @param initializer The initializer for the const value
   740      *  @param type        The expected type, or null
   741      *  @see VarSymbol#setLazyConstValue
   742      */
   743     public Object attribLazyConstantValue(Env<AttrContext> env,
   744                                       JCTree.JCExpression initializer,
   745                                       Type type) {
   747         // in case no lint value has been set up for this env, scan up
   748         // env stack looking for smallest enclosing env for which it is set.
   749         Env<AttrContext> lintEnv = env;
   750         while (lintEnv.info.lint == null)
   751             lintEnv = lintEnv.next;
   753         // Having found the enclosing lint value, we can initialize the lint value for this class
   754         // ... but ...
   755         // There's a problem with evaluating annotations in the right order, such that
   756         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   757         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   758         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   759         if (env.info.enclVar.annotations.pendingCompletion()) {
   760             env.info.lint = lintEnv.info.lint;
   761         } else {
   762             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   763                                                       env.info.enclVar.flags());
   764         }
   766         Lint prevLint = chk.setLint(env.info.lint);
   767         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   769         try {
   770             Type itype = attribExpr(initializer, env, type);
   771             if (itype.constValue() != null)
   772                 return coerce(itype, type).constValue();
   773             else
   774                 return null;
   775         } finally {
   776             env.info.lint = prevLint;
   777             log.useSource(prevSource);
   778         }
   779     }
   781     /** Attribute type reference in an `extends' or `implements' clause.
   782      *  Supertypes of anonymous inner classes are usually already attributed.
   783      *
   784      *  @param tree              The tree making up the type reference.
   785      *  @param env               The environment current at the reference.
   786      *  @param classExpected     true if only a class is expected here.
   787      *  @param interfaceExpected true if only an interface is expected here.
   788      */
   789     Type attribBase(JCTree tree,
   790                     Env<AttrContext> env,
   791                     boolean classExpected,
   792                     boolean interfaceExpected,
   793                     boolean checkExtensible) {
   794         Type t = tree.type != null ?
   795             tree.type :
   796             attribType(tree, env);
   797         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   798     }
   799     Type checkBase(Type t,
   800                    JCTree tree,
   801                    Env<AttrContext> env,
   802                    boolean classExpected,
   803                    boolean interfaceExpected,
   804                    boolean checkExtensible) {
   805         if (t.isErroneous())
   806             return t;
   807         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   808             // check that type variable is already visible
   809             if (t.getUpperBound() == null) {
   810                 log.error(tree.pos(), "illegal.forward.ref");
   811                 return types.createErrorType(t);
   812             }
   813         } else {
   814             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   815         }
   816         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   817             log.error(tree.pos(), "intf.expected.here");
   818             // return errType is necessary since otherwise there might
   819             // be undetected cycles which cause attribution to loop
   820             return types.createErrorType(t);
   821         } else if (checkExtensible &&
   822                    classExpected &&
   823                    (t.tsym.flags() & INTERFACE) != 0) {
   824                 log.error(tree.pos(), "no.intf.expected.here");
   825             return types.createErrorType(t);
   826         }
   827         if (checkExtensible &&
   828             ((t.tsym.flags() & FINAL) != 0)) {
   829             log.error(tree.pos(),
   830                       "cant.inherit.from.final", t.tsym);
   831         }
   832         chk.checkNonCyclic(tree.pos(), t);
   833         return t;
   834     }
   836     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   837         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   838         id.type = env.info.scope.owner.type;
   839         id.sym = env.info.scope.owner;
   840         return id.type;
   841     }
   843     public void visitClassDef(JCClassDecl tree) {
   844         // Local classes have not been entered yet, so we need to do it now:
   845         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   846             enter.classEnter(tree, env);
   848         ClassSymbol c = tree.sym;
   849         if (c == null) {
   850             // exit in case something drastic went wrong during enter.
   851             result = null;
   852         } else {
   853             // make sure class has been completed:
   854             c.complete();
   856             // If this class appears as an anonymous class
   857             // in a superclass constructor call where
   858             // no explicit outer instance is given,
   859             // disable implicit outer instance from being passed.
   860             // (This would be an illegal access to "this before super").
   861             if (env.info.isSelfCall &&
   862                 env.tree.hasTag(NEWCLASS) &&
   863                 ((JCNewClass) env.tree).encl == null)
   864             {
   865                 c.flags_field |= NOOUTERTHIS;
   866             }
   867             attribClass(tree.pos(), c);
   868             result = tree.type = c.type;
   869         }
   870     }
   872     public void visitMethodDef(JCMethodDecl tree) {
   873         MethodSymbol m = tree.sym;
   874         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   876         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   877         Lint prevLint = chk.setLint(lint);
   878         MethodSymbol prevMethod = chk.setMethod(m);
   879         try {
   880             deferredLintHandler.flush(tree.pos());
   881             chk.checkDeprecatedAnnotation(tree.pos(), m);
   883             // Create a new environment with local scope
   884             // for attributing the method.
   885             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   886             localEnv.info.lint = lint;
   888             attribStats(tree.typarams, localEnv);
   890             // If we override any other methods, check that we do so properly.
   891             // JLS ???
   892             if (m.isStatic()) {
   893                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   894             } else {
   895                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   896             }
   897             chk.checkOverride(tree, m);
   899             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   900                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   901             }
   903             // Enter all type parameters into the local method scope.
   904             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   905                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   907             ClassSymbol owner = env.enclClass.sym;
   908             if ((owner.flags() & ANNOTATION) != 0 &&
   909                 tree.params.nonEmpty())
   910                 log.error(tree.params.head.pos(),
   911                           "intf.annotation.members.cant.have.params");
   913             // Attribute all value parameters.
   914             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   915                 attribStat(l.head, localEnv);
   916             }
   918             chk.checkVarargsMethodDecl(localEnv, tree);
   920             // Check that type parameters are well-formed.
   921             chk.validate(tree.typarams, localEnv);
   923             // Check that result type is well-formed.
   924             chk.validate(tree.restype, localEnv);
   926             // annotation method checks
   927             if ((owner.flags() & ANNOTATION) != 0) {
   928                 // annotation method cannot have throws clause
   929                 if (tree.thrown.nonEmpty()) {
   930                     log.error(tree.thrown.head.pos(),
   931                             "throws.not.allowed.in.intf.annotation");
   932                 }
   933                 // annotation method cannot declare type-parameters
   934                 if (tree.typarams.nonEmpty()) {
   935                     log.error(tree.typarams.head.pos(),
   936                             "intf.annotation.members.cant.have.type.params");
   937                 }
   938                 // validate annotation method's return type (could be an annotation type)
   939                 chk.validateAnnotationType(tree.restype);
   940                 // ensure that annotation method does not clash with members of Object/Annotation
   941                 chk.validateAnnotationMethod(tree.pos(), m);
   943                 if (tree.defaultValue != null) {
   944                     // if default value is an annotation, check it is a well-formed
   945                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   946                     chk.validateAnnotationTree(tree.defaultValue);
   947                 }
   948             }
   950             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   951                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   953             if (tree.body == null) {
   954                 // Empty bodies are only allowed for
   955                 // abstract, native, or interface methods, or for methods
   956                 // in a retrofit signature class.
   957                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   958                     !relax)
   959                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   960                 if (tree.defaultValue != null) {
   961                     if ((owner.flags() & ANNOTATION) == 0)
   962                         log.error(tree.pos(),
   963                                   "default.allowed.in.intf.annotation.member");
   964                 }
   965             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   966                 if ((owner.flags() & INTERFACE) != 0) {
   967                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   968                 } else {
   969                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   970                 }
   971             } else if ((tree.mods.flags & NATIVE) != 0) {
   972                 log.error(tree.pos(), "native.meth.cant.have.body");
   973             } else {
   974                 // Add an implicit super() call unless an explicit call to
   975                 // super(...) or this(...) is given
   976                 // or we are compiling class java.lang.Object.
   977                 if (tree.name == names.init && owner.type != syms.objectType) {
   978                     JCBlock body = tree.body;
   979                     if (body.stats.isEmpty() ||
   980                         !TreeInfo.isSelfCall(body.stats.head)) {
   981                         body.stats = body.stats.
   982                             prepend(memberEnter.SuperCall(make.at(body.pos),
   983                                                           List.<Type>nil(),
   984                                                           List.<JCVariableDecl>nil(),
   985                                                           false));
   986                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   987                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   988                                TreeInfo.isSuperCall(body.stats.head)) {
   989                         // enum constructors are not allowed to call super
   990                         // directly, so make sure there aren't any super calls
   991                         // in enum constructors, except in the compiler
   992                         // generated one.
   993                         log.error(tree.body.stats.head.pos(),
   994                                   "call.to.super.not.allowed.in.enum.ctor",
   995                                   env.enclClass.sym);
   996                     }
   997                 }
   999                 // Attribute method body.
  1000                 attribStat(tree.body, localEnv);
  1002             localEnv.info.scope.leave();
  1003             result = tree.type = m.type;
  1004             chk.validateAnnotations(tree.mods.annotations, m);
  1006         finally {
  1007             chk.setLint(prevLint);
  1008             chk.setMethod(prevMethod);
  1012     public void visitVarDef(JCVariableDecl tree) {
  1013         // Local variables have not been entered yet, so we need to do it now:
  1014         if (env.info.scope.owner.kind == MTH) {
  1015             if (tree.sym != null) {
  1016                 // parameters have already been entered
  1017                 env.info.scope.enter(tree.sym);
  1018             } else {
  1019                 memberEnter.memberEnter(tree, env);
  1020                 annotate.flush();
  1024         VarSymbol v = tree.sym;
  1025         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1026         Lint prevLint = chk.setLint(lint);
  1028         // Check that the variable's declared type is well-formed.
  1029         chk.validate(tree.vartype, env);
  1030         deferredLintHandler.flush(tree.pos());
  1032         try {
  1033             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1035             if (tree.init != null) {
  1036                 if ((v.flags_field & FINAL) != 0 &&
  1037                         !tree.init.hasTag(NEWCLASS) &&
  1038                         !tree.init.hasTag(LAMBDA) &&
  1039                         !tree.init.hasTag(REFERENCE)) {
  1040                     // In this case, `v' is final.  Ensure that it's initializer is
  1041                     // evaluated.
  1042                     v.getConstValue(); // ensure initializer is evaluated
  1043                 } else {
  1044                     // Attribute initializer in a new environment
  1045                     // with the declared variable as owner.
  1046                     // Check that initializer conforms to variable's declared type.
  1047                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1048                     initEnv.info.lint = lint;
  1049                     // In order to catch self-references, we set the variable's
  1050                     // declaration position to maximal possible value, effectively
  1051                     // marking the variable as undefined.
  1052                     initEnv.info.enclVar = v;
  1053                     attribExpr(tree.init, initEnv, v.type);
  1056             result = tree.type = v.type;
  1057             chk.validateAnnotations(tree.mods.annotations, v);
  1059         finally {
  1060             chk.setLint(prevLint);
  1064     public void visitSkip(JCSkip tree) {
  1065         result = null;
  1068     public void visitBlock(JCBlock tree) {
  1069         if (env.info.scope.owner.kind == TYP) {
  1070             // Block is a static or instance initializer;
  1071             // let the owner of the environment be a freshly
  1072             // created BLOCK-method.
  1073             Env<AttrContext> localEnv =
  1074                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1075             localEnv.info.scope.owner =
  1076                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
  1077                                  env.info.scope.owner);
  1078             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1079             attribStats(tree.stats, localEnv);
  1080         } else {
  1081             // Create a new local environment with a local scope.
  1082             Env<AttrContext> localEnv =
  1083                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1084             try {
  1085                 attribStats(tree.stats, localEnv);
  1086             } finally {
  1087                 localEnv.info.scope.leave();
  1090         result = null;
  1093     public void visitDoLoop(JCDoWhileLoop tree) {
  1094         attribStat(tree.body, env.dup(tree));
  1095         attribExpr(tree.cond, env, syms.booleanType);
  1096         result = null;
  1099     public void visitWhileLoop(JCWhileLoop tree) {
  1100         attribExpr(tree.cond, env, syms.booleanType);
  1101         attribStat(tree.body, env.dup(tree));
  1102         result = null;
  1105     public void visitForLoop(JCForLoop tree) {
  1106         Env<AttrContext> loopEnv =
  1107             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1108         try {
  1109             attribStats(tree.init, loopEnv);
  1110             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1111             loopEnv.tree = tree; // before, we were not in loop!
  1112             attribStats(tree.step, loopEnv);
  1113             attribStat(tree.body, loopEnv);
  1114             result = null;
  1116         finally {
  1117             loopEnv.info.scope.leave();
  1121     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1122         Env<AttrContext> loopEnv =
  1123             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1124         try {
  1125             attribStat(tree.var, loopEnv);
  1126             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1127             chk.checkNonVoid(tree.pos(), exprType);
  1128             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1129             if (elemtype == null) {
  1130                 // or perhaps expr implements Iterable<T>?
  1131                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1132                 if (base == null) {
  1133                     log.error(tree.expr.pos(),
  1134                             "foreach.not.applicable.to.type",
  1135                             exprType,
  1136                             diags.fragment("type.req.array.or.iterable"));
  1137                     elemtype = types.createErrorType(exprType);
  1138                 } else {
  1139                     List<Type> iterableParams = base.allparams();
  1140                     elemtype = iterableParams.isEmpty()
  1141                         ? syms.objectType
  1142                         : types.upperBound(iterableParams.head);
  1145             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1146             loopEnv.tree = tree; // before, we were not in loop!
  1147             attribStat(tree.body, loopEnv);
  1148             result = null;
  1150         finally {
  1151             loopEnv.info.scope.leave();
  1155     public void visitLabelled(JCLabeledStatement tree) {
  1156         // Check that label is not used in an enclosing statement
  1157         Env<AttrContext> env1 = env;
  1158         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1159             if (env1.tree.hasTag(LABELLED) &&
  1160                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1161                 log.error(tree.pos(), "label.already.in.use",
  1162                           tree.label);
  1163                 break;
  1165             env1 = env1.next;
  1168         attribStat(tree.body, env.dup(tree));
  1169         result = null;
  1172     public void visitSwitch(JCSwitch tree) {
  1173         Type seltype = attribExpr(tree.selector, env);
  1175         Env<AttrContext> switchEnv =
  1176             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1178         try {
  1180             boolean enumSwitch =
  1181                 allowEnums &&
  1182                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1183             boolean stringSwitch = false;
  1184             if (types.isSameType(seltype, syms.stringType)) {
  1185                 if (allowStringsInSwitch) {
  1186                     stringSwitch = true;
  1187                 } else {
  1188                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1191             if (!enumSwitch && !stringSwitch)
  1192                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1194             // Attribute all cases and
  1195             // check that there are no duplicate case labels or default clauses.
  1196             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1197             boolean hasDefault = false;      // Is there a default label?
  1198             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1199                 JCCase c = l.head;
  1200                 Env<AttrContext> caseEnv =
  1201                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1202                 try {
  1203                     if (c.pat != null) {
  1204                         if (enumSwitch) {
  1205                             Symbol sym = enumConstant(c.pat, seltype);
  1206                             if (sym == null) {
  1207                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1208                             } else if (!labels.add(sym)) {
  1209                                 log.error(c.pos(), "duplicate.case.label");
  1211                         } else {
  1212                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1213                             if (!pattype.hasTag(ERROR)) {
  1214                                 if (pattype.constValue() == null) {
  1215                                     log.error(c.pat.pos(),
  1216                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1217                                 } else if (labels.contains(pattype.constValue())) {
  1218                                     log.error(c.pos(), "duplicate.case.label");
  1219                                 } else {
  1220                                     labels.add(pattype.constValue());
  1224                     } else if (hasDefault) {
  1225                         log.error(c.pos(), "duplicate.default.label");
  1226                     } else {
  1227                         hasDefault = true;
  1229                     attribStats(c.stats, caseEnv);
  1230                 } finally {
  1231                     caseEnv.info.scope.leave();
  1232                     addVars(c.stats, switchEnv.info.scope);
  1236             result = null;
  1238         finally {
  1239             switchEnv.info.scope.leave();
  1242     // where
  1243         /** Add any variables defined in stats to the switch scope. */
  1244         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1245             for (;stats.nonEmpty(); stats = stats.tail) {
  1246                 JCTree stat = stats.head;
  1247                 if (stat.hasTag(VARDEF))
  1248                     switchScope.enter(((JCVariableDecl) stat).sym);
  1251     // where
  1252     /** Return the selected enumeration constant symbol, or null. */
  1253     private Symbol enumConstant(JCTree tree, Type enumType) {
  1254         if (!tree.hasTag(IDENT)) {
  1255             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1256             return syms.errSymbol;
  1258         JCIdent ident = (JCIdent)tree;
  1259         Name name = ident.name;
  1260         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1261              e.scope != null; e = e.next()) {
  1262             if (e.sym.kind == VAR) {
  1263                 Symbol s = ident.sym = e.sym;
  1264                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1265                 ident.type = s.type;
  1266                 return ((s.flags_field & Flags.ENUM) == 0)
  1267                     ? null : s;
  1270         return null;
  1273     public void visitSynchronized(JCSynchronized tree) {
  1274         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1275         attribStat(tree.body, env);
  1276         result = null;
  1279     public void visitTry(JCTry tree) {
  1280         // Create a new local environment with a local
  1281         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1282         try {
  1283             boolean isTryWithResource = tree.resources.nonEmpty();
  1284             // Create a nested environment for attributing the try block if needed
  1285             Env<AttrContext> tryEnv = isTryWithResource ?
  1286                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1287                 localEnv;
  1288             try {
  1289                 // Attribute resource declarations
  1290                 for (JCTree resource : tree.resources) {
  1291                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1292                         @Override
  1293                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1294                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1296                     };
  1297                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1298                     if (resource.hasTag(VARDEF)) {
  1299                         attribStat(resource, tryEnv);
  1300                         twrResult.check(resource, resource.type);
  1302                         //check that resource type cannot throw InterruptedException
  1303                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1305                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1306                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1307                     } else {
  1308                         attribTree(resource, tryEnv, twrResult);
  1311                 // Attribute body
  1312                 attribStat(tree.body, tryEnv);
  1313             } finally {
  1314                 if (isTryWithResource)
  1315                     tryEnv.info.scope.leave();
  1318             // Attribute catch clauses
  1319             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1320                 JCCatch c = l.head;
  1321                 Env<AttrContext> catchEnv =
  1322                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1323                 try {
  1324                     Type ctype = attribStat(c.param, catchEnv);
  1325                     if (TreeInfo.isMultiCatch(c)) {
  1326                         //multi-catch parameter is implicitly marked as final
  1327                         c.param.sym.flags_field |= FINAL | UNION;
  1329                     if (c.param.sym.kind == Kinds.VAR) {
  1330                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1332                     chk.checkType(c.param.vartype.pos(),
  1333                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1334                                   syms.throwableType);
  1335                     attribStat(c.body, catchEnv);
  1336                 } finally {
  1337                     catchEnv.info.scope.leave();
  1341             // Attribute finalizer
  1342             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1343             result = null;
  1345         finally {
  1346             localEnv.info.scope.leave();
  1350     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1351         if (!resource.isErroneous() &&
  1352             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1353             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1354             Symbol close = syms.noSymbol;
  1355             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1356             try {
  1357                 close = rs.resolveQualifiedMethod(pos,
  1358                         env,
  1359                         resource,
  1360                         names.close,
  1361                         List.<Type>nil(),
  1362                         List.<Type>nil());
  1364             finally {
  1365                 log.popDiagnosticHandler(discardHandler);
  1367             if (close.kind == MTH &&
  1368                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1369                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1370                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1371                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1376     public void visitConditional(JCConditional tree) {
  1377         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1379         tree.polyKind = (!allowPoly ||
  1380                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1381                 isBooleanOrNumeric(env, tree)) ?
  1382                 PolyKind.STANDALONE : PolyKind.POLY;
  1384         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1385             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1386             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1387             result = tree.type = types.createErrorType(resultInfo.pt);
  1388             return;
  1391         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1392                 unknownExprInfo :
  1393                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1394                     //this will use enclosing check context to check compatibility of
  1395                     //subexpression against target type; if we are in a method check context,
  1396                     //depending on whether boxing is allowed, we could have incompatibilities
  1397                     @Override
  1398                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1399                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1401                 });
  1403         Type truetype = attribTree(tree.truepart, env, condInfo);
  1404         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1406         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1407         if (condtype.constValue() != null &&
  1408                 truetype.constValue() != null &&
  1409                 falsetype.constValue() != null &&
  1410                 !owntype.hasTag(NONE)) {
  1411             //constant folding
  1412             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1414         result = check(tree, owntype, VAL, resultInfo);
  1416     //where
  1417         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1418             switch (tree.getTag()) {
  1419                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1420                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1421                               ((JCLiteral)tree).typetag == BOT;
  1422                 case LAMBDA: case REFERENCE: return false;
  1423                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1424                 case CONDEXPR:
  1425                     JCConditional condTree = (JCConditional)tree;
  1426                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1427                             isBooleanOrNumeric(env, condTree.falsepart);
  1428                 case APPLY:
  1429                     JCMethodInvocation speculativeMethodTree =
  1430                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1431                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1432                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1433                 case NEWCLASS:
  1434                     JCExpression className =
  1435                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1436                     JCExpression speculativeNewClassTree =
  1437                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1438                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1439                 default:
  1440                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1441                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1442                     return speculativeType.isPrimitive();
  1445         //where
  1446             TreeTranslator removeClassParams = new TreeTranslator() {
  1447                 @Override
  1448                 public void visitTypeApply(JCTypeApply tree) {
  1449                     result = translate(tree.clazz);
  1451             };
  1453         /** Compute the type of a conditional expression, after
  1454          *  checking that it exists.  See JLS 15.25. Does not take into
  1455          *  account the special case where condition and both arms
  1456          *  are constants.
  1458          *  @param pos      The source position to be used for error
  1459          *                  diagnostics.
  1460          *  @param thentype The type of the expression's then-part.
  1461          *  @param elsetype The type of the expression's else-part.
  1462          */
  1463         private Type condType(DiagnosticPosition pos,
  1464                                Type thentype, Type elsetype) {
  1465             // If same type, that is the result
  1466             if (types.isSameType(thentype, elsetype))
  1467                 return thentype.baseType();
  1469             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1470                 ? thentype : types.unboxedType(thentype);
  1471             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1472                 ? elsetype : types.unboxedType(elsetype);
  1474             // Otherwise, if both arms can be converted to a numeric
  1475             // type, return the least numeric type that fits both arms
  1476             // (i.e. return larger of the two, or return int if one
  1477             // arm is short, the other is char).
  1478             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1479                 // If one arm has an integer subrange type (i.e., byte,
  1480                 // short, or char), and the other is an integer constant
  1481                 // that fits into the subrange, return the subrange type.
  1482                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
  1483                     types.isAssignable(elseUnboxed, thenUnboxed))
  1484                     return thenUnboxed.baseType();
  1485                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
  1486                     types.isAssignable(thenUnboxed, elseUnboxed))
  1487                     return elseUnboxed.baseType();
  1489                 for (TypeTag tag : TypeTag.values()) {
  1490                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
  1491                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1492                     if (candidate != null &&
  1493                         candidate.isPrimitive() &&
  1494                         types.isSubtype(thenUnboxed, candidate) &&
  1495                         types.isSubtype(elseUnboxed, candidate))
  1496                         return candidate;
  1500             // Those were all the cases that could result in a primitive
  1501             if (allowBoxing) {
  1502                 if (thentype.isPrimitive())
  1503                     thentype = types.boxedClass(thentype).type;
  1504                 if (elsetype.isPrimitive())
  1505                     elsetype = types.boxedClass(elsetype).type;
  1508             if (types.isSubtype(thentype, elsetype))
  1509                 return elsetype.baseType();
  1510             if (types.isSubtype(elsetype, thentype))
  1511                 return thentype.baseType();
  1513             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1514                 log.error(pos, "neither.conditional.subtype",
  1515                           thentype, elsetype);
  1516                 return thentype.baseType();
  1519             // both are known to be reference types.  The result is
  1520             // lub(thentype,elsetype). This cannot fail, as it will
  1521             // always be possible to infer "Object" if nothing better.
  1522             return types.lub(thentype.baseType(), elsetype.baseType());
  1525     public void visitIf(JCIf tree) {
  1526         attribExpr(tree.cond, env, syms.booleanType);
  1527         attribStat(tree.thenpart, env);
  1528         if (tree.elsepart != null)
  1529             attribStat(tree.elsepart, env);
  1530         chk.checkEmptyIf(tree);
  1531         result = null;
  1534     public void visitExec(JCExpressionStatement tree) {
  1535         //a fresh environment is required for 292 inference to work properly ---
  1536         //see Infer.instantiatePolymorphicSignatureInstance()
  1537         Env<AttrContext> localEnv = env.dup(tree);
  1538         attribExpr(tree.expr, localEnv);
  1539         result = null;
  1542     public void visitBreak(JCBreak tree) {
  1543         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1544         result = null;
  1547     public void visitContinue(JCContinue tree) {
  1548         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1549         result = null;
  1551     //where
  1552         /** Return the target of a break or continue statement, if it exists,
  1553          *  report an error if not.
  1554          *  Note: The target of a labelled break or continue is the
  1555          *  (non-labelled) statement tree referred to by the label,
  1556          *  not the tree representing the labelled statement itself.
  1558          *  @param pos     The position to be used for error diagnostics
  1559          *  @param tag     The tag of the jump statement. This is either
  1560          *                 Tree.BREAK or Tree.CONTINUE.
  1561          *  @param label   The label of the jump statement, or null if no
  1562          *                 label is given.
  1563          *  @param env     The environment current at the jump statement.
  1564          */
  1565         private JCTree findJumpTarget(DiagnosticPosition pos,
  1566                                     JCTree.Tag tag,
  1567                                     Name label,
  1568                                     Env<AttrContext> env) {
  1569             // Search environments outwards from the point of jump.
  1570             Env<AttrContext> env1 = env;
  1571             LOOP:
  1572             while (env1 != null) {
  1573                 switch (env1.tree.getTag()) {
  1574                     case LABELLED:
  1575                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1576                         if (label == labelled.label) {
  1577                             // If jump is a continue, check that target is a loop.
  1578                             if (tag == CONTINUE) {
  1579                                 if (!labelled.body.hasTag(DOLOOP) &&
  1580                                         !labelled.body.hasTag(WHILELOOP) &&
  1581                                         !labelled.body.hasTag(FORLOOP) &&
  1582                                         !labelled.body.hasTag(FOREACHLOOP))
  1583                                     log.error(pos, "not.loop.label", label);
  1584                                 // Found labelled statement target, now go inwards
  1585                                 // to next non-labelled tree.
  1586                                 return TreeInfo.referencedStatement(labelled);
  1587                             } else {
  1588                                 return labelled;
  1591                         break;
  1592                     case DOLOOP:
  1593                     case WHILELOOP:
  1594                     case FORLOOP:
  1595                     case FOREACHLOOP:
  1596                         if (label == null) return env1.tree;
  1597                         break;
  1598                     case SWITCH:
  1599                         if (label == null && tag == BREAK) return env1.tree;
  1600                         break;
  1601                     case LAMBDA:
  1602                     case METHODDEF:
  1603                     case CLASSDEF:
  1604                         break LOOP;
  1605                     default:
  1607                 env1 = env1.next;
  1609             if (label != null)
  1610                 log.error(pos, "undef.label", label);
  1611             else if (tag == CONTINUE)
  1612                 log.error(pos, "cont.outside.loop");
  1613             else
  1614                 log.error(pos, "break.outside.switch.loop");
  1615             return null;
  1618     public void visitReturn(JCReturn tree) {
  1619         // Check that there is an enclosing method which is
  1620         // nested within than the enclosing class.
  1621         if (env.info.returnResult == null) {
  1622             log.error(tree.pos(), "ret.outside.meth");
  1623         } else {
  1624             // Attribute return expression, if it exists, and check that
  1625             // it conforms to result type of enclosing method.
  1626             if (tree.expr != null) {
  1627                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1628                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1629                               diags.fragment("unexpected.ret.val"));
  1631                 attribTree(tree.expr, env, env.info.returnResult);
  1632             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
  1633                 env.info.returnResult.checkContext.report(tree.pos(),
  1634                               diags.fragment("missing.ret.val"));
  1637         result = null;
  1640     public void visitThrow(JCThrow tree) {
  1641         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1642         if (allowPoly) {
  1643             chk.checkType(tree, owntype, syms.throwableType);
  1645         result = null;
  1648     public void visitAssert(JCAssert tree) {
  1649         attribExpr(tree.cond, env, syms.booleanType);
  1650         if (tree.detail != null) {
  1651             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1653         result = null;
  1656      /** Visitor method for method invocations.
  1657      *  NOTE: The method part of an application will have in its type field
  1658      *        the return type of the method, not the method's type itself!
  1659      */
  1660     public void visitApply(JCMethodInvocation tree) {
  1661         // The local environment of a method application is
  1662         // a new environment nested in the current one.
  1663         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1665         // The types of the actual method arguments.
  1666         List<Type> argtypes;
  1668         // The types of the actual method type arguments.
  1669         List<Type> typeargtypes = null;
  1671         Name methName = TreeInfo.name(tree.meth);
  1673         boolean isConstructorCall =
  1674             methName == names._this || methName == names._super;
  1676         if (isConstructorCall) {
  1677             // We are seeing a ...this(...) or ...super(...) call.
  1678             // Check that this is the first statement in a constructor.
  1679             if (checkFirstConstructorStat(tree, env)) {
  1681                 // Record the fact
  1682                 // that this is a constructor call (using isSelfCall).
  1683                 localEnv.info.isSelfCall = true;
  1685                 // Attribute arguments, yielding list of argument types.
  1686                 argtypes = attribArgs(tree.args, localEnv);
  1687                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1689                 // Variable `site' points to the class in which the called
  1690                 // constructor is defined.
  1691                 Type site = env.enclClass.sym.type;
  1692                 if (methName == names._super) {
  1693                     if (site == syms.objectType) {
  1694                         log.error(tree.meth.pos(), "no.superclass", site);
  1695                         site = types.createErrorType(syms.objectType);
  1696                     } else {
  1697                         site = types.supertype(site);
  1701                 if (site.hasTag(CLASS)) {
  1702                     Type encl = site.getEnclosingType();
  1703                     while (encl != null && encl.hasTag(TYPEVAR))
  1704                         encl = encl.getUpperBound();
  1705                     if (encl.hasTag(CLASS)) {
  1706                         // we are calling a nested class
  1708                         if (tree.meth.hasTag(SELECT)) {
  1709                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1711                             // We are seeing a prefixed call, of the form
  1712                             //     <expr>.super(...).
  1713                             // Check that the prefix expression conforms
  1714                             // to the outer instance type of the class.
  1715                             chk.checkRefType(qualifier.pos(),
  1716                                              attribExpr(qualifier, localEnv,
  1717                                                         encl));
  1718                         } else if (methName == names._super) {
  1719                             // qualifier omitted; check for existence
  1720                             // of an appropriate implicit qualifier.
  1721                             rs.resolveImplicitThis(tree.meth.pos(),
  1722                                                    localEnv, site, true);
  1724                     } else if (tree.meth.hasTag(SELECT)) {
  1725                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1726                                   site.tsym);
  1729                     // if we're calling a java.lang.Enum constructor,
  1730                     // prefix the implicit String and int parameters
  1731                     if (site.tsym == syms.enumSym && allowEnums)
  1732                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1734                     // Resolve the called constructor under the assumption
  1735                     // that we are referring to a superclass instance of the
  1736                     // current instance (JLS ???).
  1737                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1738                     localEnv.info.selectSuper = true;
  1739                     localEnv.info.pendingResolutionPhase = null;
  1740                     Symbol sym = rs.resolveConstructor(
  1741                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1742                     localEnv.info.selectSuper = selectSuperPrev;
  1744                     // Set method symbol to resolved constructor...
  1745                     TreeInfo.setSymbol(tree.meth, sym);
  1747                     // ...and check that it is legal in the current context.
  1748                     // (this will also set the tree's type)
  1749                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1750                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1752                 // Otherwise, `site' is an error type and we do nothing
  1754             result = tree.type = syms.voidType;
  1755         } else {
  1756             // Otherwise, we are seeing a regular method call.
  1757             // Attribute the arguments, yielding list of argument types, ...
  1758             argtypes = attribArgs(tree.args, localEnv);
  1759             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1761             // ... and attribute the method using as a prototype a methodtype
  1762             // whose formal argument types is exactly the list of actual
  1763             // arguments (this will also set the method symbol).
  1764             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1765             localEnv.info.pendingResolutionPhase = null;
  1766             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1768             // Compute the result type.
  1769             Type restype = mtype.getReturnType();
  1770             if (restype.hasTag(WILDCARD))
  1771                 throw new AssertionError(mtype);
  1773             Type qualifier = (tree.meth.hasTag(SELECT))
  1774                     ? ((JCFieldAccess) tree.meth).selected.type
  1775                     : env.enclClass.sym.type;
  1776             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1778             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1780             // Check that value of resulting type is admissible in the
  1781             // current context.  Also, capture the return type
  1782             result = check(tree, capture(restype), VAL, resultInfo);
  1784             if (localEnv.info.lastResolveVarargs())
  1785                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1787         chk.validate(tree.typeargs, localEnv);
  1789     //where
  1790         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1791             if (allowCovariantReturns &&
  1792                     methodName == names.clone &&
  1793                 types.isArray(qualifierType)) {
  1794                 // as a special case, array.clone() has a result that is
  1795                 // the same as static type of the array being cloned
  1796                 return qualifierType;
  1797             } else if (allowGenerics &&
  1798                     methodName == names.getClass &&
  1799                     argtypes.isEmpty()) {
  1800                 // as a special case, x.getClass() has type Class<? extends |X|>
  1801                 return new ClassType(restype.getEnclosingType(),
  1802                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1803                                                                BoundKind.EXTENDS,
  1804                                                                syms.boundClass)),
  1805                               restype.tsym);
  1806             } else {
  1807                 return restype;
  1811         /** Check that given application node appears as first statement
  1812          *  in a constructor call.
  1813          *  @param tree   The application node
  1814          *  @param env    The environment current at the application.
  1815          */
  1816         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1817             JCMethodDecl enclMethod = env.enclMethod;
  1818             if (enclMethod != null && enclMethod.name == names.init) {
  1819                 JCBlock body = enclMethod.body;
  1820                 if (body.stats.head.hasTag(EXEC) &&
  1821                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1822                     return true;
  1824             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1825                       TreeInfo.name(tree.meth));
  1826             return false;
  1829         /** Obtain a method type with given argument types.
  1830          */
  1831         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1832             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1833             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1836     public void visitNewClass(final JCNewClass tree) {
  1837         Type owntype = types.createErrorType(tree.type);
  1839         // The local environment of a class creation is
  1840         // a new environment nested in the current one.
  1841         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1843         // The anonymous inner class definition of the new expression,
  1844         // if one is defined by it.
  1845         JCClassDecl cdef = tree.def;
  1847         // If enclosing class is given, attribute it, and
  1848         // complete class name to be fully qualified
  1849         JCExpression clazz = tree.clazz; // Class field following new
  1850         JCExpression clazzid =          // Identifier in class field
  1851             (clazz.hasTag(TYPEAPPLY))
  1852             ? ((JCTypeApply) clazz).clazz
  1853             : clazz;
  1855         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1857         if (tree.encl != null) {
  1858             // We are seeing a qualified new, of the form
  1859             //    <expr>.new C <...> (...) ...
  1860             // In this case, we let clazz stand for the name of the
  1861             // allocated class C prefixed with the type of the qualifier
  1862             // expression, so that we can
  1863             // resolve it with standard techniques later. I.e., if
  1864             // <expr> has type T, then <expr>.new C <...> (...)
  1865             // yields a clazz T.C.
  1866             Type encltype = chk.checkRefType(tree.encl.pos(),
  1867                                              attribExpr(tree.encl, env));
  1868             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1869                                                  ((JCIdent) clazzid).name);
  1870             if (clazz.hasTag(TYPEAPPLY))
  1871                 clazz = make.at(tree.pos).
  1872                     TypeApply(clazzid1,
  1873                               ((JCTypeApply) clazz).arguments);
  1874             else
  1875                 clazz = clazzid1;
  1878         // Attribute clazz expression and store
  1879         // symbol + type back into the attributed tree.
  1880         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1881             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1882             attribType(clazz, env);
  1884         clazztype = chk.checkDiamond(tree, clazztype);
  1885         chk.validate(clazz, localEnv);
  1886         if (tree.encl != null) {
  1887             // We have to work in this case to store
  1888             // symbol + type back into the attributed tree.
  1889             tree.clazz.type = clazztype;
  1890             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1891             clazzid.type = ((JCIdent) clazzid).sym.type;
  1892             if (!clazztype.isErroneous()) {
  1893                 if (cdef != null && clazztype.tsym.isInterface()) {
  1894                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1895                 } else if (clazztype.tsym.isStatic()) {
  1896                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1899         } else if (!clazztype.tsym.isInterface() &&
  1900                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1901             // Check for the existence of an apropos outer instance
  1902             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1905         // Attribute constructor arguments.
  1906         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1907         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1909         // If we have made no mistakes in the class type...
  1910         if (clazztype.hasTag(CLASS)) {
  1911             // Enums may not be instantiated except implicitly
  1912             if (allowEnums &&
  1913                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1914                 (!env.tree.hasTag(VARDEF) ||
  1915                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1916                  ((JCVariableDecl) env.tree).init != tree))
  1917                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1918             // Check that class is not abstract
  1919             if (cdef == null &&
  1920                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1921                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1922                           clazztype.tsym);
  1923             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1924                 // Check that no constructor arguments are given to
  1925                 // anonymous classes implementing an interface
  1926                 if (!argtypes.isEmpty())
  1927                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1929                 if (!typeargtypes.isEmpty())
  1930                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1932                 // Error recovery: pretend no arguments were supplied.
  1933                 argtypes = List.nil();
  1934                 typeargtypes = List.nil();
  1935             } else if (TreeInfo.isDiamond(tree)) {
  1936                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  1937                             clazztype.tsym.type.getTypeArguments(),
  1938                             clazztype.tsym);
  1940                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  1941                 diamondEnv.info.selectSuper = cdef != null;
  1942                 diamondEnv.info.pendingResolutionPhase = null;
  1944                 //if the type of the instance creation expression is a class type
  1945                 //apply method resolution inference (JLS 15.12.2.7). The return type
  1946                 //of the resolved constructor will be a partially instantiated type
  1947                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  1948                             diamondEnv,
  1949                             site,
  1950                             argtypes,
  1951                             typeargtypes);
  1952                 tree.constructor = constructor.baseSymbol();
  1954                 final TypeSymbol csym = clazztype.tsym;
  1955                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  1956                     @Override
  1957                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  1958                         enclosingContext.report(tree.clazz,
  1959                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  1961                 });
  1962                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  1963                 constructorType = checkId(tree, site,
  1964                         constructor,
  1965                         diamondEnv,
  1966                         diamondResult);
  1968                 tree.clazz.type = types.createErrorType(clazztype);
  1969                 if (!constructorType.isErroneous()) {
  1970                     tree.clazz.type = clazztype = constructorType.getReturnType();
  1971                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  1973                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  1976             // Resolve the called constructor under the assumption
  1977             // that we are referring to a superclass instance of the
  1978             // current instance (JLS ???).
  1979             else {
  1980                 //the following code alters some of the fields in the current
  1981                 //AttrContext - hence, the current context must be dup'ed in
  1982                 //order to avoid downstream failures
  1983                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  1984                 rsEnv.info.selectSuper = cdef != null;
  1985                 rsEnv.info.pendingResolutionPhase = null;
  1986                 tree.constructor = rs.resolveConstructor(
  1987                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  1988                 if (cdef == null) { //do not check twice!
  1989                     tree.constructorType = checkId(tree,
  1990                             clazztype,
  1991                             tree.constructor,
  1992                             rsEnv,
  1993                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  1994                     if (rsEnv.info.lastResolveVarargs())
  1995                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  1997                 findDiamondIfNeeded(localEnv, tree, clazztype);
  2000             if (cdef != null) {
  2001                 // We are seeing an anonymous class instance creation.
  2002                 // In this case, the class instance creation
  2003                 // expression
  2004                 //
  2005                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2006                 //
  2007                 // is represented internally as
  2008                 //
  2009                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2010                 //
  2011                 // This expression is then *transformed* as follows:
  2012                 //
  2013                 // (1) add a STATIC flag to the class definition
  2014                 //     if the current environment is static
  2015                 // (2) add an extends or implements clause
  2016                 // (3) add a constructor.
  2017                 //
  2018                 // For instance, if C is a class, and ET is the type of E,
  2019                 // the expression
  2020                 //
  2021                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2022                 //
  2023                 // is translated to (where X is a fresh name and typarams is the
  2024                 // parameter list of the super constructor):
  2025                 //
  2026                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2027                 //     X extends C<typargs2> {
  2028                 //       <typarams> X(ET e, args) {
  2029                 //         e.<typeargs1>super(args)
  2030                 //       }
  2031                 //       ...
  2032                 //     }
  2033                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2035                 if (clazztype.tsym.isInterface()) {
  2036                     cdef.implementing = List.of(clazz);
  2037                 } else {
  2038                     cdef.extending = clazz;
  2041                 attribStat(cdef, localEnv);
  2043                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2045                 // If an outer instance is given,
  2046                 // prefix it to the constructor arguments
  2047                 // and delete it from the new expression
  2048                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2049                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2050                     argtypes = argtypes.prepend(tree.encl.type);
  2051                     tree.encl = null;
  2054                 // Reassign clazztype and recompute constructor.
  2055                 clazztype = cdef.sym.type;
  2056                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2057                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2058                 Assert.check(sym.kind < AMBIGUOUS);
  2059                 tree.constructor = sym;
  2060                 tree.constructorType = checkId(tree,
  2061                     clazztype,
  2062                     tree.constructor,
  2063                     localEnv,
  2064                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2067             if (tree.constructor != null && tree.constructor.kind == MTH)
  2068                 owntype = clazztype;
  2070         result = check(tree, owntype, VAL, resultInfo);
  2071         chk.validate(tree.typeargs, localEnv);
  2073     //where
  2074         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2075             if (tree.def == null &&
  2076                     !clazztype.isErroneous() &&
  2077                     clazztype.getTypeArguments().nonEmpty() &&
  2078                     findDiamonds) {
  2079                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2080                 List<JCExpression> prevTypeargs = ta.arguments;
  2081                 try {
  2082                     //create a 'fake' diamond AST node by removing type-argument trees
  2083                     ta.arguments = List.nil();
  2084                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2085                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2086                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2087                     if (!inferred.isErroneous() &&
  2088                         types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), types.noWarnings)) {
  2089                         String key = types.isSameType(clazztype, inferred) ?
  2090                             "diamond.redundant.args" :
  2091                             "diamond.redundant.args.1";
  2092                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2094                 } finally {
  2095                     ta.arguments = prevTypeargs;
  2100             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2101                 if (allowLambda &&
  2102                         identifyLambdaCandidate &&
  2103                         clazztype.hasTag(CLASS) &&
  2104                         !pt().hasTag(NONE) &&
  2105                         types.isFunctionalInterface(clazztype.tsym)) {
  2106                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2107                     int count = 0;
  2108                     boolean found = false;
  2109                     for (Symbol sym : csym.members().getElements()) {
  2110                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2111                                 sym.isConstructor()) continue;
  2112                         count++;
  2113                         if (sym.kind != MTH ||
  2114                                 !sym.name.equals(descriptor.name)) continue;
  2115                         Type mtype = types.memberType(clazztype, sym);
  2116                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2117                             found = true;
  2120                     if (found && count == 1) {
  2121                         log.note(tree.def, "potential.lambda.found");
  2126     /** Make an attributed null check tree.
  2127      */
  2128     public JCExpression makeNullCheck(JCExpression arg) {
  2129         // optimization: X.this is never null; skip null check
  2130         Name name = TreeInfo.name(arg);
  2131         if (name == names._this || name == names._super) return arg;
  2133         JCTree.Tag optag = NULLCHK;
  2134         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2135         tree.operator = syms.nullcheck;
  2136         tree.type = arg.type;
  2137         return tree;
  2140     public void visitNewArray(JCNewArray tree) {
  2141         Type owntype = types.createErrorType(tree.type);
  2142         Env<AttrContext> localEnv = env.dup(tree);
  2143         Type elemtype;
  2144         if (tree.elemtype != null) {
  2145             elemtype = attribType(tree.elemtype, localEnv);
  2146             chk.validate(tree.elemtype, localEnv);
  2147             owntype = elemtype;
  2148             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2149                 attribExpr(l.head, localEnv, syms.intType);
  2150                 owntype = new ArrayType(owntype, syms.arrayClass);
  2152         } else {
  2153             // we are seeing an untyped aggregate { ... }
  2154             // this is allowed only if the prototype is an array
  2155             if (pt().hasTag(ARRAY)) {
  2156                 elemtype = types.elemtype(pt());
  2157             } else {
  2158                 if (!pt().hasTag(ERROR)) {
  2159                     log.error(tree.pos(), "illegal.initializer.for.type",
  2160                               pt());
  2162                 elemtype = types.createErrorType(pt());
  2165         if (tree.elems != null) {
  2166             attribExprs(tree.elems, localEnv, elemtype);
  2167             owntype = new ArrayType(elemtype, syms.arrayClass);
  2169         if (!types.isReifiable(elemtype))
  2170             log.error(tree.pos(), "generic.array.creation");
  2171         result = check(tree, owntype, VAL, resultInfo);
  2174     /*
  2175      * A lambda expression can only be attributed when a target-type is available.
  2176      * In addition, if the target-type is that of a functional interface whose
  2177      * descriptor contains inference variables in argument position the lambda expression
  2178      * is 'stuck' (see DeferredAttr).
  2179      */
  2180     @Override
  2181     public void visitLambda(final JCLambda that) {
  2182         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2183             if (pt().hasTag(NONE)) {
  2184                 //lambda only allowed in assignment or method invocation/cast context
  2185                 log.error(that.pos(), "unexpected.lambda");
  2187             result = that.type = types.createErrorType(pt());
  2188             return;
  2190         //create an environment for attribution of the lambda expression
  2191         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2192         boolean needsRecovery =
  2193                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2194         try {
  2195             Type target = pt();
  2196             List<Type> explicitParamTypes = null;
  2197             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2198                 //attribute lambda parameters
  2199                 attribStats(that.params, localEnv);
  2200                 explicitParamTypes = TreeInfo.types(that.params);
  2201                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
  2204             Type lambdaType;
  2205             if (pt() != Type.recoveryType) {
  2206                 target = checkIntersectionTarget(that, target, resultInfo.checkContext);
  2207                 lambdaType = types.findDescriptorType(target);
  2208                 chk.checkFunctionalInterface(that, target);
  2209             } else {
  2210                 target = Type.recoveryType;
  2211                 lambdaType = fallbackDescriptorType(that);
  2214             setFunctionalInfo(that, pt(), lambdaType, resultInfo.checkContext.inferenceContext());
  2216             if (lambdaType.hasTag(FORALL)) {
  2217                 //lambda expression target desc cannot be a generic method
  2218                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2219                         lambdaType, kindName(target.tsym), target.tsym));
  2220                 result = that.type = types.createErrorType(pt());
  2221                 return;
  2224             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2225                 //add param type info in the AST
  2226                 List<Type> actuals = lambdaType.getParameterTypes();
  2227                 List<JCVariableDecl> params = that.params;
  2229                 boolean arityMismatch = false;
  2231                 while (params.nonEmpty()) {
  2232                     if (actuals.isEmpty()) {
  2233                         //not enough actuals to perform lambda parameter inference
  2234                         arityMismatch = true;
  2236                     //reset previously set info
  2237                     Type argType = arityMismatch ?
  2238                             syms.errType :
  2239                             actuals.head;
  2240                     params.head.vartype = make.Type(argType);
  2241                     params.head.sym = null;
  2242                     actuals = actuals.isEmpty() ?
  2243                             actuals :
  2244                             actuals.tail;
  2245                     params = params.tail;
  2248                 //attribute lambda parameters
  2249                 attribStats(that.params, localEnv);
  2251                 if (arityMismatch) {
  2252                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2253                         result = that.type = types.createErrorType(target);
  2254                         return;
  2258             //from this point on, no recovery is needed; if we are in assignment context
  2259             //we will be able to attribute the whole lambda body, regardless of errors;
  2260             //if we are in a 'check' method context, and the lambda is not compatible
  2261             //with the target-type, it will be recovered anyway in Attr.checkId
  2262             needsRecovery = false;
  2264             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2265                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2266                     new FunctionalReturnContext(resultInfo.checkContext);
  2268             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2269                 recoveryInfo :
  2270                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2271             localEnv.info.returnResult = bodyResultInfo;
  2273             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2274                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2275             } else {
  2276                 JCBlock body = (JCBlock)that.body;
  2277                 attribStats(body.stats, localEnv);
  2280             result = check(that, target, VAL, resultInfo);
  2282             boolean isSpeculativeRound =
  2283                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2285             postAttr(that);
  2286             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2288             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2290             if (!isSpeculativeRound) {
  2291                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
  2293             result = check(that, target, VAL, resultInfo);
  2294         } catch (Types.FunctionDescriptorLookupError ex) {
  2295             JCDiagnostic cause = ex.getDiagnostic();
  2296             resultInfo.checkContext.report(that, cause);
  2297             result = that.type = types.createErrorType(pt());
  2298             return;
  2299         } finally {
  2300             localEnv.info.scope.leave();
  2301             if (needsRecovery) {
  2302                 attribTree(that, env, recoveryInfo);
  2307     private Type checkIntersectionTarget(DiagnosticPosition pos, Type pt, CheckContext checkContext) {
  2308         if (pt != Type.recoveryType && pt.isCompound()) {
  2309             IntersectionClassType ict = (IntersectionClassType)pt;
  2310             List<Type> bounds = ict.allInterfaces ?
  2311                     ict.getComponents().tail :
  2312                     ict.getComponents();
  2313             types.findDescriptorType(bounds.head); //propagate exception outwards!
  2314             for (Type bound : bounds.tail) {
  2315                 if (!types.isMarkerInterface(bound)) {
  2316                     checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound));
  2319             //for now (translation doesn't support intersection types)
  2320             return bounds.head;
  2321         } else {
  2322             return pt;
  2325     //where
  2326         private Type fallbackDescriptorType(JCExpression tree) {
  2327             switch (tree.getTag()) {
  2328                 case LAMBDA:
  2329                     JCLambda lambda = (JCLambda)tree;
  2330                     List<Type> argtypes = List.nil();
  2331                     for (JCVariableDecl param : lambda.params) {
  2332                         argtypes = param.vartype != null ?
  2333                                 argtypes.append(param.vartype.type) :
  2334                                 argtypes.append(syms.errType);
  2336                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2337                 case REFERENCE:
  2338                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2339                 default:
  2340                     Assert.error("Cannot get here!");
  2342             return null;
  2345         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final Type... ts) {
  2346             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2349         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final List<Type> ts) {
  2350             if (inferenceContext.free(ts)) {
  2351                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2352                     @Override
  2353                     public void typesInferred(InferenceContext inferenceContext) {
  2354                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts, types));
  2356                 });
  2357             } else {
  2358                 for (Type t : ts) {
  2359                     rs.checkAccessibleType(env, t);
  2364         /**
  2365          * Lambda/method reference have a special check context that ensures
  2366          * that i.e. a lambda return type is compatible with the expected
  2367          * type according to both the inherited context and the assignment
  2368          * context.
  2369          */
  2370         class FunctionalReturnContext extends Check.NestedCheckContext {
  2372             FunctionalReturnContext(CheckContext enclosingContext) {
  2373                 super(enclosingContext);
  2376             @Override
  2377             public boolean compatible(Type found, Type req, Warner warn) {
  2378                 //return type must be compatible in both current context and assignment context
  2379                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req, types), warn);
  2382             @Override
  2383             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2384                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2388         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2390             JCExpression expr;
  2392             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2393                 super(enclosingContext);
  2394                 this.expr = expr;
  2397             @Override
  2398             public boolean compatible(Type found, Type req, Warner warn) {
  2399                 //a void return is compatible with an expression statement lambda
  2400                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2401                         super.compatible(found, req, warn);
  2405         /**
  2406         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2407         * are compatible with the expected functional interface descriptor. This means that:
  2408         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2409         * types must be compatible with the return type of the expected descriptor;
  2410         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2411         * descriptor.
  2412         */
  2413         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2414             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2416             //return values have already been checked - but if lambda has no return
  2417             //values, we must ensure that void/value compatibility is correct;
  2418             //this amounts at checking that, if a lambda body can complete normally,
  2419             //the descriptor's return type must be void
  2420             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2421                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2422                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2423                         diags.fragment("missing.ret.val", returnType)));
  2426             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types);
  2427             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2428                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2431             if (!speculativeAttr) {
  2432                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2433                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2434                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2439         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2440             Env<AttrContext> lambdaEnv;
  2441             Symbol owner = env.info.scope.owner;
  2442             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2443                 //field initializer
  2444                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2445                 lambdaEnv.info.scope.owner =
  2446                     new MethodSymbol(0, names.empty, null,
  2447                                      env.info.scope.owner);
  2448             } else {
  2449                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2451             return lambdaEnv;
  2454     @Override
  2455     public void visitReference(final JCMemberReference that) {
  2456         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2457             if (pt().hasTag(NONE)) {
  2458                 //method reference only allowed in assignment or method invocation/cast context
  2459                 log.error(that.pos(), "unexpected.mref");
  2461             result = that.type = types.createErrorType(pt());
  2462             return;
  2464         final Env<AttrContext> localEnv = env.dup(that);
  2465         try {
  2466             //attribute member reference qualifier - if this is a constructor
  2467             //reference, the expected kind must be a type
  2468             Type exprType = attribTree(that.expr,
  2469                     env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType));
  2471             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2472                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2475             if (exprType.isErroneous()) {
  2476                 //if the qualifier expression contains problems,
  2477                 //give up atttribution of method reference
  2478                 result = that.type = exprType;
  2479                 return;
  2482             if (TreeInfo.isStaticSelector(that.expr, names) &&
  2483                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
  2484                 //if the qualifier is a type, validate it
  2485                 chk.validate(that.expr, env);
  2488             //attrib type-arguments
  2489             List<Type> typeargtypes = List.nil();
  2490             if (that.typeargs != null) {
  2491                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2494             Type target;
  2495             Type desc;
  2496             if (pt() != Type.recoveryType) {
  2497                 target = checkIntersectionTarget(that, pt(), resultInfo.checkContext);
  2498                 desc = types.findDescriptorType(target);
  2499                 chk.checkFunctionalInterface(that, target);
  2500             } else {
  2501                 target = Type.recoveryType;
  2502                 desc = fallbackDescriptorType(that);
  2505             setFunctionalInfo(that, pt(), desc, resultInfo.checkContext.inferenceContext());
  2506             List<Type> argtypes = desc.getParameterTypes();
  2508             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
  2509                     that.expr.type, that.name, argtypes, typeargtypes, true);
  2511             Symbol refSym = refResult.fst;
  2512             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2514             if (refSym.kind != MTH) {
  2515                 boolean targetError;
  2516                 switch (refSym.kind) {
  2517                     case ABSENT_MTH:
  2518                         targetError = false;
  2519                         break;
  2520                     case WRONG_MTH:
  2521                     case WRONG_MTHS:
  2522                     case AMBIGUOUS:
  2523                     case HIDDEN:
  2524                     case STATICERR:
  2525                     case MISSING_ENCL:
  2526                         targetError = true;
  2527                         break;
  2528                     default:
  2529                         Assert.error("unexpected result kind " + refSym.kind);
  2530                         targetError = false;
  2533                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2534                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2536                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2537                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2539                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2540                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2542                 if (targetError && target == Type.recoveryType) {
  2543                     //a target error doesn't make sense during recovery stage
  2544                     //as we don't know what actual parameter types are
  2545                     result = that.type = target;
  2546                     return;
  2547                 } else {
  2548                     if (targetError) {
  2549                         resultInfo.checkContext.report(that, diag);
  2550                     } else {
  2551                         log.report(diag);
  2553                     result = that.type = types.createErrorType(target);
  2554                     return;
  2558             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2559                 if (refSym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2560                         exprType.getTypeArguments().nonEmpty()) {
  2561                     //static ref with class type-args
  2562                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2563                             diags.fragment("static.mref.with.targs"));
  2564                     result = that.type = types.createErrorType(target);
  2565                     return;
  2568                 if (refSym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2569                         !lookupHelper.referenceKind(refSym).isUnbound()) {
  2570                     //no static bound mrefs
  2571                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2572                             diags.fragment("static.bound.mref"));
  2573                     result = that.type = types.createErrorType(target);
  2574                     return;
  2578             if (desc.getReturnType() == Type.recoveryType) {
  2579                 // stop here
  2580                 result = that.type = target;
  2581                 return;
  2584             that.sym = refSym.baseSymbol();
  2585             that.kind = lookupHelper.referenceKind(that.sym);
  2587             ResultInfo checkInfo =
  2588                     resultInfo.dup(newMethodTemplate(
  2589                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2590                         lookupHelper.argtypes,
  2591                         typeargtypes));
  2593             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2595             if (!refType.isErroneous()) {
  2596                 refType = types.createMethodTypeWithReturn(refType,
  2597                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2600             //go ahead with standard method reference compatibility check - note that param check
  2601             //is a no-op (as this has been taken care during method applicability)
  2602             boolean isSpeculativeRound =
  2603                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2604             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2605             if (!isSpeculativeRound) {
  2606                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2608             result = check(that, target, VAL, resultInfo);
  2609         } catch (Types.FunctionDescriptorLookupError ex) {
  2610             JCDiagnostic cause = ex.getDiagnostic();
  2611             resultInfo.checkContext.report(that, cause);
  2612             result = that.type = types.createErrorType(pt());
  2613             return;
  2617     @SuppressWarnings("fallthrough")
  2618     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2619         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2621         Type resType;
  2622         switch (tree.getMode()) {
  2623             case NEW:
  2624                 if (!tree.expr.type.isRaw()) {
  2625                     resType = tree.expr.type;
  2626                     break;
  2628             default:
  2629                 resType = refType.getReturnType();
  2632         Type incompatibleReturnType = resType;
  2634         if (returnType.hasTag(VOID)) {
  2635             incompatibleReturnType = null;
  2638         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2639             if (resType.isErroneous() ||
  2640                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2641                 incompatibleReturnType = null;
  2645         if (incompatibleReturnType != null) {
  2646             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2647                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2650         if (!speculativeAttr) {
  2651             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2652             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2653                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2658     /**
  2659      * Set functional type info on the underlying AST. Note: as the target descriptor
  2660      * might contain inference variables, we might need to register an hook in the
  2661      * current inference context.
  2662      */
  2663     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt, final Type descriptorType, InferenceContext inferenceContext) {
  2664         if (inferenceContext.free(descriptorType)) {
  2665             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2666                 public void typesInferred(InferenceContext inferenceContext) {
  2667                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType, types), inferenceContext);
  2669             });
  2670         } else {
  2671             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
  2672             if (pt.hasTag(CLASS)) {
  2673                 if (pt.isCompound()) {
  2674                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2675                         targets.append(t.tsym);
  2677                 } else {
  2678                     targets.append(pt.tsym);
  2681             fExpr.targets = targets.toList();
  2682             fExpr.descriptorType = descriptorType;
  2686     public void visitParens(JCParens tree) {
  2687         Type owntype = attribTree(tree.expr, env, resultInfo);
  2688         result = check(tree, owntype, pkind(), resultInfo);
  2689         Symbol sym = TreeInfo.symbol(tree);
  2690         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2691             log.error(tree.pos(), "illegal.start.of.type");
  2694     public void visitAssign(JCAssign tree) {
  2695         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2696         Type capturedType = capture(owntype);
  2697         attribExpr(tree.rhs, env, owntype);
  2698         result = check(tree, capturedType, VAL, resultInfo);
  2701     public void visitAssignop(JCAssignOp tree) {
  2702         // Attribute arguments.
  2703         Type owntype = attribTree(tree.lhs, env, varInfo);
  2704         Type operand = attribExpr(tree.rhs, env);
  2705         // Find operator.
  2706         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2707             tree.pos(), tree.getTag().noAssignOp(), env,
  2708             owntype, operand);
  2710         if (operator.kind == MTH &&
  2711                 !owntype.isErroneous() &&
  2712                 !operand.isErroneous()) {
  2713             chk.checkOperator(tree.pos(),
  2714                               (OperatorSymbol)operator,
  2715                               tree.getTag().noAssignOp(),
  2716                               owntype,
  2717                               operand);
  2718             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2719             chk.checkCastable(tree.rhs.pos(),
  2720                               operator.type.getReturnType(),
  2721                               owntype);
  2723         result = check(tree, owntype, VAL, resultInfo);
  2726     public void visitUnary(JCUnary tree) {
  2727         // Attribute arguments.
  2728         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2729             ? attribTree(tree.arg, env, varInfo)
  2730             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2732         // Find operator.
  2733         Symbol operator = tree.operator =
  2734             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2736         Type owntype = types.createErrorType(tree.type);
  2737         if (operator.kind == MTH &&
  2738                 !argtype.isErroneous()) {
  2739             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2740                 ? tree.arg.type
  2741                 : operator.type.getReturnType();
  2742             int opc = ((OperatorSymbol)operator).opcode;
  2744             // If the argument is constant, fold it.
  2745             if (argtype.constValue() != null) {
  2746                 Type ctype = cfolder.fold1(opc, argtype);
  2747                 if (ctype != null) {
  2748                     owntype = cfolder.coerce(ctype, owntype);
  2750                     // Remove constant types from arguments to
  2751                     // conserve space. The parser will fold concatenations
  2752                     // of string literals; the code here also
  2753                     // gets rid of intermediate results when some of the
  2754                     // operands are constant identifiers.
  2755                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2756                         tree.arg.type = syms.stringType;
  2761         result = check(tree, owntype, VAL, resultInfo);
  2764     public void visitBinary(JCBinary tree) {
  2765         // Attribute arguments.
  2766         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2767         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2769         // Find operator.
  2770         Symbol operator = tree.operator =
  2771             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2773         Type owntype = types.createErrorType(tree.type);
  2774         if (operator.kind == MTH &&
  2775                 !left.isErroneous() &&
  2776                 !right.isErroneous()) {
  2777             owntype = operator.type.getReturnType();
  2778             int opc = chk.checkOperator(tree.lhs.pos(),
  2779                                         (OperatorSymbol)operator,
  2780                                         tree.getTag(),
  2781                                         left,
  2782                                         right);
  2784             // If both arguments are constants, fold them.
  2785             if (left.constValue() != null && right.constValue() != null) {
  2786                 Type ctype = cfolder.fold2(opc, left, right);
  2787                 if (ctype != null) {
  2788                     owntype = cfolder.coerce(ctype, owntype);
  2790                     // Remove constant types from arguments to
  2791                     // conserve space. The parser will fold concatenations
  2792                     // of string literals; the code here also
  2793                     // gets rid of intermediate results when some of the
  2794                     // operands are constant identifiers.
  2795                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2796                         tree.lhs.type = syms.stringType;
  2798                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2799                         tree.rhs.type = syms.stringType;
  2804             // Check that argument types of a reference ==, != are
  2805             // castable to each other, (JLS???).
  2806             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2807                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2808                     log.error(tree.pos(), "incomparable.types", left, right);
  2812             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2814         result = check(tree, owntype, VAL, resultInfo);
  2817     public void visitTypeCast(final JCTypeCast tree) {
  2818         Type clazztype = attribType(tree.clazz, env);
  2819         chk.validate(tree.clazz, env, false);
  2820         //a fresh environment is required for 292 inference to work properly ---
  2821         //see Infer.instantiatePolymorphicSignatureInstance()
  2822         Env<AttrContext> localEnv = env.dup(tree);
  2823         //should we propagate the target type?
  2824         final ResultInfo castInfo;
  2825         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
  2826         if (isPoly) {
  2827             //expression is a poly - we need to propagate target type info
  2828             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  2829                 @Override
  2830                 public boolean compatible(Type found, Type req, Warner warn) {
  2831                     return types.isCastable(found, req, warn);
  2833             });
  2834         } else {
  2835             //standalone cast - target-type info is not propagated
  2836             castInfo = unknownExprInfo;
  2838         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  2839         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2840         if (exprtype.constValue() != null)
  2841             owntype = cfolder.coerce(exprtype, owntype);
  2842         result = check(tree, capture(owntype), VAL, resultInfo);
  2843         if (!isPoly)
  2844             chk.checkRedundantCast(localEnv, tree);
  2847     public void visitTypeTest(JCInstanceOf tree) {
  2848         Type exprtype = chk.checkNullOrRefType(
  2849             tree.expr.pos(), attribExpr(tree.expr, env));
  2850         Type clazztype = chk.checkReifiableReferenceType(
  2851             tree.clazz.pos(), attribType(tree.clazz, env));
  2852         chk.validate(tree.clazz, env, false);
  2853         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2854         result = check(tree, syms.booleanType, VAL, resultInfo);
  2857     public void visitIndexed(JCArrayAccess tree) {
  2858         Type owntype = types.createErrorType(tree.type);
  2859         Type atype = attribExpr(tree.indexed, env);
  2860         attribExpr(tree.index, env, syms.intType);
  2861         if (types.isArray(atype))
  2862             owntype = types.elemtype(atype);
  2863         else if (!atype.hasTag(ERROR))
  2864             log.error(tree.pos(), "array.req.but.found", atype);
  2865         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  2866         result = check(tree, owntype, VAR, resultInfo);
  2869     public void visitIdent(JCIdent tree) {
  2870         Symbol sym;
  2872         // Find symbol
  2873         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  2874             // If we are looking for a method, the prototype `pt' will be a
  2875             // method type with the type of the call's arguments as parameters.
  2876             env.info.pendingResolutionPhase = null;
  2877             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  2878         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2879             sym = tree.sym;
  2880         } else {
  2881             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  2883         tree.sym = sym;
  2885         // (1) Also find the environment current for the class where
  2886         //     sym is defined (`symEnv').
  2887         // Only for pre-tiger versions (1.4 and earlier):
  2888         // (2) Also determine whether we access symbol out of an anonymous
  2889         //     class in a this or super call.  This is illegal for instance
  2890         //     members since such classes don't carry a this$n link.
  2891         //     (`noOuterThisPath').
  2892         Env<AttrContext> symEnv = env;
  2893         boolean noOuterThisPath = false;
  2894         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2895             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2896             sym.owner.kind == TYP &&
  2897             tree.name != names._this && tree.name != names._super) {
  2899             // Find environment in which identifier is defined.
  2900             while (symEnv.outer != null &&
  2901                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2902                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2903                     noOuterThisPath = !allowAnonOuterThis;
  2904                 symEnv = symEnv.outer;
  2908         // If symbol is a variable, ...
  2909         if (sym.kind == VAR) {
  2910             VarSymbol v = (VarSymbol)sym;
  2912             // ..., evaluate its initializer, if it has one, and check for
  2913             // illegal forward reference.
  2914             checkInit(tree, env, v, false);
  2916             // If we are expecting a variable (as opposed to a value), check
  2917             // that the variable is assignable in the current environment.
  2918             if (pkind() == VAR)
  2919                 checkAssignable(tree.pos(), v, null, env);
  2922         // In a constructor body,
  2923         // if symbol is a field or instance method, check that it is
  2924         // not accessed before the supertype constructor is called.
  2925         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2926             (sym.kind & (VAR | MTH)) != 0 &&
  2927             sym.owner.kind == TYP &&
  2928             (sym.flags() & STATIC) == 0) {
  2929             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2931         Env<AttrContext> env1 = env;
  2932         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2933             // If the found symbol is inaccessible, then it is
  2934             // accessed through an enclosing instance.  Locate this
  2935             // enclosing instance:
  2936             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2937                 env1 = env1.outer;
  2939         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  2942     public void visitSelect(JCFieldAccess tree) {
  2943         // Determine the expected kind of the qualifier expression.
  2944         int skind = 0;
  2945         if (tree.name == names._this || tree.name == names._super ||
  2946             tree.name == names._class)
  2948             skind = TYP;
  2949         } else {
  2950             if ((pkind() & PCK) != 0) skind = skind | PCK;
  2951             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  2952             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2955         // Attribute the qualifier expression, and determine its symbol (if any).
  2956         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  2957         if ((pkind() & (PCK | TYP)) == 0)
  2958             site = capture(site); // Capture field access
  2960         // don't allow T.class T[].class, etc
  2961         if (skind == TYP) {
  2962             Type elt = site;
  2963             while (elt.hasTag(ARRAY))
  2964                 elt = ((ArrayType)elt).elemtype;
  2965             if (elt.hasTag(TYPEVAR)) {
  2966                 log.error(tree.pos(), "type.var.cant.be.deref");
  2967                 result = types.createErrorType(tree.type);
  2968                 return;
  2972         // If qualifier symbol is a type or `super', assert `selectSuper'
  2973         // for the selection. This is relevant for determining whether
  2974         // protected symbols are accessible.
  2975         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2976         boolean selectSuperPrev = env.info.selectSuper;
  2977         env.info.selectSuper =
  2978             sitesym != null &&
  2979             sitesym.name == names._super;
  2981         // Determine the symbol represented by the selection.
  2982         env.info.pendingResolutionPhase = null;
  2983         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  2984         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  2985             site = capture(site);
  2986             sym = selectSym(tree, sitesym, site, env, resultInfo);
  2988         boolean varArgs = env.info.lastResolveVarargs();
  2989         tree.sym = sym;
  2991         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  2992             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  2993             site = capture(site);
  2996         // If that symbol is a variable, ...
  2997         if (sym.kind == VAR) {
  2998             VarSymbol v = (VarSymbol)sym;
  3000             // ..., evaluate its initializer, if it has one, and check for
  3001             // illegal forward reference.
  3002             checkInit(tree, env, v, true);
  3004             // If we are expecting a variable (as opposed to a value), check
  3005             // that the variable is assignable in the current environment.
  3006             if (pkind() == VAR)
  3007                 checkAssignable(tree.pos(), v, tree.selected, env);
  3010         if (sitesym != null &&
  3011                 sitesym.kind == VAR &&
  3012                 ((VarSymbol)sitesym).isResourceVariable() &&
  3013                 sym.kind == MTH &&
  3014                 sym.name.equals(names.close) &&
  3015                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3016                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3017             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3020         // Disallow selecting a type from an expression
  3021         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3022             tree.type = check(tree.selected, pt(),
  3023                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3026         if (isType(sitesym)) {
  3027             if (sym.name == names._this) {
  3028                 // If `C' is the currently compiled class, check that
  3029                 // C.this' does not appear in a call to a super(...)
  3030                 if (env.info.isSelfCall &&
  3031                     site.tsym == env.enclClass.sym) {
  3032                     chk.earlyRefError(tree.pos(), sym);
  3034             } else {
  3035                 // Check if type-qualified fields or methods are static (JLS)
  3036                 if ((sym.flags() & STATIC) == 0 &&
  3037                     !env.next.tree.hasTag(REFERENCE) &&
  3038                     sym.name != names._super &&
  3039                     (sym.kind == VAR || sym.kind == MTH)) {
  3040                     rs.accessBase(rs.new StaticError(sym),
  3041                               tree.pos(), site, sym.name, true);
  3044         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3045             // If the qualified item is not a type and the selected item is static, report
  3046             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3047             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3050         // If we are selecting an instance member via a `super', ...
  3051         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3053             // Check that super-qualified symbols are not abstract (JLS)
  3054             rs.checkNonAbstract(tree.pos(), sym);
  3056             if (site.isRaw()) {
  3057                 // Determine argument types for site.
  3058                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3059                 if (site1 != null) site = site1;
  3063         env.info.selectSuper = selectSuperPrev;
  3064         result = checkId(tree, site, sym, env, resultInfo);
  3066     //where
  3067         /** Determine symbol referenced by a Select expression,
  3069          *  @param tree   The select tree.
  3070          *  @param site   The type of the selected expression,
  3071          *  @param env    The current environment.
  3072          *  @param resultInfo The current result.
  3073          */
  3074         private Symbol selectSym(JCFieldAccess tree,
  3075                                  Symbol location,
  3076                                  Type site,
  3077                                  Env<AttrContext> env,
  3078                                  ResultInfo resultInfo) {
  3079             DiagnosticPosition pos = tree.pos();
  3080             Name name = tree.name;
  3081             switch (site.getTag()) {
  3082             case PACKAGE:
  3083                 return rs.accessBase(
  3084                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3085                     pos, location, site, name, true);
  3086             case ARRAY:
  3087             case CLASS:
  3088                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3089                     return rs.resolveQualifiedMethod(
  3090                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3091                 } else if (name == names._this || name == names._super) {
  3092                     return rs.resolveSelf(pos, env, site.tsym, name);
  3093                 } else if (name == names._class) {
  3094                     // In this case, we have already made sure in
  3095                     // visitSelect that qualifier expression is a type.
  3096                     Type t = syms.classType;
  3097                     List<Type> typeargs = allowGenerics
  3098                         ? List.of(types.erasure(site))
  3099                         : List.<Type>nil();
  3100                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3101                     return new VarSymbol(
  3102                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3103                 } else {
  3104                     // We are seeing a plain identifier as selector.
  3105                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3106                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3107                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3108                     return sym;
  3110             case WILDCARD:
  3111                 throw new AssertionError(tree);
  3112             case TYPEVAR:
  3113                 // Normally, site.getUpperBound() shouldn't be null.
  3114                 // It should only happen during memberEnter/attribBase
  3115                 // when determining the super type which *must* beac
  3116                 // done before attributing the type variables.  In
  3117                 // other words, we are seeing this illegal program:
  3118                 // class B<T> extends A<T.foo> {}
  3119                 Symbol sym = (site.getUpperBound() != null)
  3120                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3121                     : null;
  3122                 if (sym == null) {
  3123                     log.error(pos, "type.var.cant.be.deref");
  3124                     return syms.errSymbol;
  3125                 } else {
  3126                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3127                         rs.new AccessError(env, site, sym) :
  3128                                 sym;
  3129                     rs.accessBase(sym2, pos, location, site, name, true);
  3130                     return sym;
  3132             case ERROR:
  3133                 // preserve identifier names through errors
  3134                 return types.createErrorType(name, site.tsym, site).tsym;
  3135             default:
  3136                 // The qualifier expression is of a primitive type -- only
  3137                 // .class is allowed for these.
  3138                 if (name == names._class) {
  3139                     // In this case, we have already made sure in Select that
  3140                     // qualifier expression is a type.
  3141                     Type t = syms.classType;
  3142                     Type arg = types.boxedClass(site).type;
  3143                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3144                     return new VarSymbol(
  3145                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3146                 } else {
  3147                     log.error(pos, "cant.deref", site);
  3148                     return syms.errSymbol;
  3153         /** Determine type of identifier or select expression and check that
  3154          *  (1) the referenced symbol is not deprecated
  3155          *  (2) the symbol's type is safe (@see checkSafe)
  3156          *  (3) if symbol is a variable, check that its type and kind are
  3157          *      compatible with the prototype and protokind.
  3158          *  (4) if symbol is an instance field of a raw type,
  3159          *      which is being assigned to, issue an unchecked warning if its
  3160          *      type changes under erasure.
  3161          *  (5) if symbol is an instance method of a raw type, issue an
  3162          *      unchecked warning if its argument types change under erasure.
  3163          *  If checks succeed:
  3164          *    If symbol is a constant, return its constant type
  3165          *    else if symbol is a method, return its result type
  3166          *    otherwise return its type.
  3167          *  Otherwise return errType.
  3169          *  @param tree       The syntax tree representing the identifier
  3170          *  @param site       If this is a select, the type of the selected
  3171          *                    expression, otherwise the type of the current class.
  3172          *  @param sym        The symbol representing the identifier.
  3173          *  @param env        The current environment.
  3174          *  @param resultInfo    The expected result
  3175          */
  3176         Type checkId(JCTree tree,
  3177                      Type site,
  3178                      Symbol sym,
  3179                      Env<AttrContext> env,
  3180                      ResultInfo resultInfo) {
  3181             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3182                     checkMethodId(tree, site, sym, env, resultInfo) :
  3183                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3186         Type checkMethodId(JCTree tree,
  3187                      Type site,
  3188                      Symbol sym,
  3189                      Env<AttrContext> env,
  3190                      ResultInfo resultInfo) {
  3191             boolean isPolymorhicSignature =
  3192                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
  3193             return isPolymorhicSignature ?
  3194                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3195                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3198         Type checkSigPolyMethodId(JCTree tree,
  3199                      Type site,
  3200                      Symbol sym,
  3201                      Env<AttrContext> env,
  3202                      ResultInfo resultInfo) {
  3203             //recover original symbol for signature polymorphic methods
  3204             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3205             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3206             return sym.type;
  3209         Type checkMethodIdInternal(JCTree tree,
  3210                      Type site,
  3211                      Symbol sym,
  3212                      Env<AttrContext> env,
  3213                      ResultInfo resultInfo) {
  3214             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3215             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3216             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3217             return owntype;
  3220         Type checkIdInternal(JCTree tree,
  3221                      Type site,
  3222                      Symbol sym,
  3223                      Type pt,
  3224                      Env<AttrContext> env,
  3225                      ResultInfo resultInfo) {
  3226             if (pt.isErroneous()) {
  3227                 return types.createErrorType(site);
  3229             Type owntype; // The computed type of this identifier occurrence.
  3230             switch (sym.kind) {
  3231             case TYP:
  3232                 // For types, the computed type equals the symbol's type,
  3233                 // except for two situations:
  3234                 owntype = sym.type;
  3235                 if (owntype.hasTag(CLASS)) {
  3236                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3237                     Type ownOuter = owntype.getEnclosingType();
  3239                     // (a) If the symbol's type is parameterized, erase it
  3240                     // because no type parameters were given.
  3241                     // We recover generic outer type later in visitTypeApply.
  3242                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3243                         owntype = types.erasure(owntype);
  3246                     // (b) If the symbol's type is an inner class, then
  3247                     // we have to interpret its outer type as a superclass
  3248                     // of the site type. Example:
  3249                     //
  3250                     // class Tree<A> { class Visitor { ... } }
  3251                     // class PointTree extends Tree<Point> { ... }
  3252                     // ...PointTree.Visitor...
  3253                     //
  3254                     // Then the type of the last expression above is
  3255                     // Tree<Point>.Visitor.
  3256                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3257                         Type normOuter = site;
  3258                         if (normOuter.hasTag(CLASS))
  3259                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3260                         if (normOuter == null) // perhaps from an import
  3261                             normOuter = types.erasure(ownOuter);
  3262                         if (normOuter != ownOuter)
  3263                             owntype = new ClassType(
  3264                                 normOuter, List.<Type>nil(), owntype.tsym);
  3267                 break;
  3268             case VAR:
  3269                 VarSymbol v = (VarSymbol)sym;
  3270                 // Test (4): if symbol is an instance field of a raw type,
  3271                 // which is being assigned to, issue an unchecked warning if
  3272                 // its type changes under erasure.
  3273                 if (allowGenerics &&
  3274                     resultInfo.pkind == VAR &&
  3275                     v.owner.kind == TYP &&
  3276                     (v.flags() & STATIC) == 0 &&
  3277                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3278                     Type s = types.asOuterSuper(site, v.owner);
  3279                     if (s != null &&
  3280                         s.isRaw() &&
  3281                         !types.isSameType(v.type, v.erasure(types))) {
  3282                         chk.warnUnchecked(tree.pos(),
  3283                                           "unchecked.assign.to.var",
  3284                                           v, s);
  3287                 // The computed type of a variable is the type of the
  3288                 // variable symbol, taken as a member of the site type.
  3289                 owntype = (sym.owner.kind == TYP &&
  3290                            sym.name != names._this && sym.name != names._super)
  3291                     ? types.memberType(site, sym)
  3292                     : sym.type;
  3294                 // If the variable is a constant, record constant value in
  3295                 // computed type.
  3296                 if (v.getConstValue() != null && isStaticReference(tree))
  3297                     owntype = owntype.constType(v.getConstValue());
  3299                 if (resultInfo.pkind == VAL) {
  3300                     owntype = capture(owntype); // capture "names as expressions"
  3302                 break;
  3303             case MTH: {
  3304                 owntype = checkMethod(site, sym,
  3305                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3306                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3307                         resultInfo.pt.getTypeArguments());
  3308                 break;
  3310             case PCK: case ERR:
  3311                 owntype = sym.type;
  3312                 break;
  3313             default:
  3314                 throw new AssertionError("unexpected kind: " + sym.kind +
  3315                                          " in tree " + tree);
  3318             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3319             // (for constructors, the error was given when the constructor was
  3320             // resolved)
  3322             if (sym.name != names.init) {
  3323                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3324                 chk.checkSunAPI(tree.pos(), sym);
  3327             // Test (3): if symbol is a variable, check that its type and
  3328             // kind are compatible with the prototype and protokind.
  3329             return check(tree, owntype, sym.kind, resultInfo);
  3332         /** Check that variable is initialized and evaluate the variable's
  3333          *  initializer, if not yet done. Also check that variable is not
  3334          *  referenced before it is defined.
  3335          *  @param tree    The tree making up the variable reference.
  3336          *  @param env     The current environment.
  3337          *  @param v       The variable's symbol.
  3338          */
  3339         private void checkInit(JCTree tree,
  3340                                Env<AttrContext> env,
  3341                                VarSymbol v,
  3342                                boolean onlyWarning) {
  3343 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3344 //                             tree.pos + " " + v.pos + " " +
  3345 //                             Resolve.isStatic(env));//DEBUG
  3347             // A forward reference is diagnosed if the declaration position
  3348             // of the variable is greater than the current tree position
  3349             // and the tree and variable definition occur in the same class
  3350             // definition.  Note that writes don't count as references.
  3351             // This check applies only to class and instance
  3352             // variables.  Local variables follow different scope rules,
  3353             // and are subject to definite assignment checking.
  3354             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3355                 v.owner.kind == TYP &&
  3356                 canOwnInitializer(owner(env)) &&
  3357                 v.owner == env.info.scope.owner.enclClass() &&
  3358                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3359                 (!env.tree.hasTag(ASSIGN) ||
  3360                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3361                 String suffix = (env.info.enclVar == v) ?
  3362                                 "self.ref" : "forward.ref";
  3363                 if (!onlyWarning || isStaticEnumField(v)) {
  3364                     log.error(tree.pos(), "illegal." + suffix);
  3365                 } else if (useBeforeDeclarationWarning) {
  3366                     log.warning(tree.pos(), suffix, v);
  3370             v.getConstValue(); // ensure initializer is evaluated
  3372             checkEnumInitializer(tree, env, v);
  3375         /**
  3376          * Check for illegal references to static members of enum.  In
  3377          * an enum type, constructors and initializers may not
  3378          * reference its static members unless they are constant.
  3380          * @param tree    The tree making up the variable reference.
  3381          * @param env     The current environment.
  3382          * @param v       The variable's symbol.
  3383          * @jls  section 8.9 Enums
  3384          */
  3385         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3386             // JLS:
  3387             //
  3388             // "It is a compile-time error to reference a static field
  3389             // of an enum type that is not a compile-time constant
  3390             // (15.28) from constructors, instance initializer blocks,
  3391             // or instance variable initializer expressions of that
  3392             // type. It is a compile-time error for the constructors,
  3393             // instance initializer blocks, or instance variable
  3394             // initializer expressions of an enum constant e to refer
  3395             // to itself or to an enum constant of the same type that
  3396             // is declared to the right of e."
  3397             if (isStaticEnumField(v)) {
  3398                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3400                 if (enclClass == null || enclClass.owner == null)
  3401                     return;
  3403                 // See if the enclosing class is the enum (or a
  3404                 // subclass thereof) declaring v.  If not, this
  3405                 // reference is OK.
  3406                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3407                     return;
  3409                 // If the reference isn't from an initializer, then
  3410                 // the reference is OK.
  3411                 if (!Resolve.isInitializer(env))
  3412                     return;
  3414                 log.error(tree.pos(), "illegal.enum.static.ref");
  3418         /** Is the given symbol a static, non-constant field of an Enum?
  3419          *  Note: enum literals should not be regarded as such
  3420          */
  3421         private boolean isStaticEnumField(VarSymbol v) {
  3422             return Flags.isEnum(v.owner) &&
  3423                    Flags.isStatic(v) &&
  3424                    !Flags.isConstant(v) &&
  3425                    v.name != names._class;
  3428         /** Can the given symbol be the owner of code which forms part
  3429          *  if class initialization? This is the case if the symbol is
  3430          *  a type or field, or if the symbol is the synthetic method.
  3431          *  owning a block.
  3432          */
  3433         private boolean canOwnInitializer(Symbol sym) {
  3434             return
  3435                 (sym.kind & (VAR | TYP)) != 0 ||
  3436                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3439     Warner noteWarner = new Warner();
  3441     /**
  3442      * Check that method arguments conform to its instantiation.
  3443      **/
  3444     public Type checkMethod(Type site,
  3445                             Symbol sym,
  3446                             ResultInfo resultInfo,
  3447                             Env<AttrContext> env,
  3448                             final List<JCExpression> argtrees,
  3449                             List<Type> argtypes,
  3450                             List<Type> typeargtypes) {
  3451         // Test (5): if symbol is an instance method of a raw type, issue
  3452         // an unchecked warning if its argument types change under erasure.
  3453         if (allowGenerics &&
  3454             (sym.flags() & STATIC) == 0 &&
  3455             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3456             Type s = types.asOuterSuper(site, sym.owner);
  3457             if (s != null && s.isRaw() &&
  3458                 !types.isSameTypes(sym.type.getParameterTypes(),
  3459                                    sym.erasure(types).getParameterTypes())) {
  3460                 chk.warnUnchecked(env.tree.pos(),
  3461                                   "unchecked.call.mbr.of.raw.type",
  3462                                   sym, s);
  3466         if (env.info.defaultSuperCallSite != null) {
  3467             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3468                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3469                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3470                 List<MethodSymbol> icand_sup =
  3471                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3472                 if (icand_sup.nonEmpty() &&
  3473                         icand_sup.head != sym &&
  3474                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3475                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3476                         diags.fragment("overridden.default", sym, sup));
  3477                     break;
  3480             env.info.defaultSuperCallSite = null;
  3483         if (sym.isStatic() && site.isInterface()) {
  3484             Assert.check(env.tree.hasTag(APPLY));
  3485             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3486             if (app.meth.hasTag(SELECT) &&
  3487                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3488                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3492         // Compute the identifier's instantiated type.
  3493         // For methods, we need to compute the instance type by
  3494         // Resolve.instantiate from the symbol's type as well as
  3495         // any type arguments and value arguments.
  3496         noteWarner.clear();
  3497         try {
  3498             Type owntype = rs.checkMethod(
  3499                     env,
  3500                     site,
  3501                     sym,
  3502                     resultInfo,
  3503                     argtypes,
  3504                     typeargtypes,
  3505                     noteWarner);
  3507             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3508                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
  3509         } catch (Infer.InferenceException ex) {
  3510             //invalid target type - propagate exception outwards or report error
  3511             //depending on the current check context
  3512             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3513             return types.createErrorType(site);
  3514         } catch (Resolve.InapplicableMethodException ex) {
  3515             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3516             return null;
  3520     public void visitLiteral(JCLiteral tree) {
  3521         result = check(
  3522             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3524     //where
  3525     /** Return the type of a literal with given type tag.
  3526      */
  3527     Type litType(TypeTag tag) {
  3528         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3531     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3532         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3535     public void visitTypeArray(JCArrayTypeTree tree) {
  3536         Type etype = attribType(tree.elemtype, env);
  3537         Type type = new ArrayType(etype, syms.arrayClass);
  3538         result = check(tree, type, TYP, resultInfo);
  3541     /** Visitor method for parameterized types.
  3542      *  Bound checking is left until later, since types are attributed
  3543      *  before supertype structure is completely known
  3544      */
  3545     public void visitTypeApply(JCTypeApply tree) {
  3546         Type owntype = types.createErrorType(tree.type);
  3548         // Attribute functor part of application and make sure it's a class.
  3549         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3551         // Attribute type parameters
  3552         List<Type> actuals = attribTypes(tree.arguments, env);
  3554         if (clazztype.hasTag(CLASS)) {
  3555             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3556             if (actuals.isEmpty()) //diamond
  3557                 actuals = formals;
  3559             if (actuals.length() == formals.length()) {
  3560                 List<Type> a = actuals;
  3561                 List<Type> f = formals;
  3562                 while (a.nonEmpty()) {
  3563                     a.head = a.head.withTypeVar(f.head);
  3564                     a = a.tail;
  3565                     f = f.tail;
  3567                 // Compute the proper generic outer
  3568                 Type clazzOuter = clazztype.getEnclosingType();
  3569                 if (clazzOuter.hasTag(CLASS)) {
  3570                     Type site;
  3571                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3572                     if (clazz.hasTag(IDENT)) {
  3573                         site = env.enclClass.sym.type;
  3574                     } else if (clazz.hasTag(SELECT)) {
  3575                         site = ((JCFieldAccess) clazz).selected.type;
  3576                     } else throw new AssertionError(""+tree);
  3577                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3578                         if (site.hasTag(CLASS))
  3579                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3580                         if (site == null)
  3581                             site = types.erasure(clazzOuter);
  3582                         clazzOuter = site;
  3585                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3586             } else {
  3587                 if (formals.length() != 0) {
  3588                     log.error(tree.pos(), "wrong.number.type.args",
  3589                               Integer.toString(formals.length()));
  3590                 } else {
  3591                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3593                 owntype = types.createErrorType(tree.type);
  3596         result = check(tree, owntype, TYP, resultInfo);
  3599     public void visitTypeUnion(JCTypeUnion tree) {
  3600         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3601         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3602         for (JCExpression typeTree : tree.alternatives) {
  3603             Type ctype = attribType(typeTree, env);
  3604             ctype = chk.checkType(typeTree.pos(),
  3605                           chk.checkClassType(typeTree.pos(), ctype),
  3606                           syms.throwableType);
  3607             if (!ctype.isErroneous()) {
  3608                 //check that alternatives of a union type are pairwise
  3609                 //unrelated w.r.t. subtyping
  3610                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3611                     for (Type t : multicatchTypes) {
  3612                         boolean sub = types.isSubtype(ctype, t);
  3613                         boolean sup = types.isSubtype(t, ctype);
  3614                         if (sub || sup) {
  3615                             //assume 'a' <: 'b'
  3616                             Type a = sub ? ctype : t;
  3617                             Type b = sub ? t : ctype;
  3618                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3622                 multicatchTypes.append(ctype);
  3623                 if (all_multicatchTypes != null)
  3624                     all_multicatchTypes.append(ctype);
  3625             } else {
  3626                 if (all_multicatchTypes == null) {
  3627                     all_multicatchTypes = ListBuffer.lb();
  3628                     all_multicatchTypes.appendList(multicatchTypes);
  3630                 all_multicatchTypes.append(ctype);
  3633         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3634         if (t.hasTag(CLASS)) {
  3635             List<Type> alternatives =
  3636                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3637             t = new UnionClassType((ClassType) t, alternatives);
  3639         tree.type = result = t;
  3642     public void visitTypeIntersection(JCTypeIntersection tree) {
  3643         attribTypes(tree.bounds, env);
  3644         tree.type = result = checkIntersection(tree, tree.bounds);
  3647      public void visitTypeParameter(JCTypeParameter tree) {
  3648         TypeVar typeVar = (TypeVar)tree.type;
  3649         if (!typeVar.bound.isErroneous()) {
  3650             //fixup type-parameter bound computed in 'attribTypeVariables'
  3651             typeVar.bound = checkIntersection(tree, tree.bounds);
  3655     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3656         Set<Type> boundSet = new HashSet<Type>();
  3657         if (bounds.nonEmpty()) {
  3658             // accept class or interface or typevar as first bound.
  3659             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3660             boundSet.add(types.erasure(bounds.head.type));
  3661             if (bounds.head.type.isErroneous()) {
  3662                 return bounds.head.type;
  3664             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3665                 // if first bound was a typevar, do not accept further bounds.
  3666                 if (bounds.tail.nonEmpty()) {
  3667                     log.error(bounds.tail.head.pos(),
  3668                               "type.var.may.not.be.followed.by.other.bounds");
  3669                     return bounds.head.type;
  3671             } else {
  3672                 // if first bound was a class or interface, accept only interfaces
  3673                 // as further bounds.
  3674                 for (JCExpression bound : bounds.tail) {
  3675                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  3676                     if (bound.type.isErroneous()) {
  3677                         bounds = List.of(bound);
  3679                     else if (bound.type.hasTag(CLASS)) {
  3680                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  3686         if (bounds.length() == 0) {
  3687             return syms.objectType;
  3688         } else if (bounds.length() == 1) {
  3689             return bounds.head.type;
  3690         } else {
  3691             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  3692             if (tree.hasTag(TYPEINTERSECTION)) {
  3693                 ((IntersectionClassType)owntype).intersectionKind =
  3694                         IntersectionClassType.IntersectionKind.EXPLICIT;
  3696             // ... the variable's bound is a class type flagged COMPOUND
  3697             // (see comment for TypeVar.bound).
  3698             // In this case, generate a class tree that represents the
  3699             // bound class, ...
  3700             JCExpression extending;
  3701             List<JCExpression> implementing;
  3702             if (!bounds.head.type.isInterface()) {
  3703                 extending = bounds.head;
  3704                 implementing = bounds.tail;
  3705             } else {
  3706                 extending = null;
  3707                 implementing = bounds;
  3709             JCClassDecl cd = make.at(tree).ClassDef(
  3710                 make.Modifiers(PUBLIC | ABSTRACT),
  3711                 names.empty, List.<JCTypeParameter>nil(),
  3712                 extending, implementing, List.<JCTree>nil());
  3714             ClassSymbol c = (ClassSymbol)owntype.tsym;
  3715             Assert.check((c.flags() & COMPOUND) != 0);
  3716             cd.sym = c;
  3717             c.sourcefile = env.toplevel.sourcefile;
  3719             // ... and attribute the bound class
  3720             c.flags_field |= UNATTRIBUTED;
  3721             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3722             enter.typeEnvs.put(c, cenv);
  3723             attribClass(c);
  3724             return owntype;
  3728     public void visitWildcard(JCWildcard tree) {
  3729         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3730         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3731             ? syms.objectType
  3732             : attribType(tree.inner, env);
  3733         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3734                                               tree.kind.kind,
  3735                                               syms.boundClass),
  3736                        TYP, resultInfo);
  3739     public void visitAnnotation(JCAnnotation tree) {
  3740         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3741         result = tree.type = syms.errType;
  3744     public void visitErroneous(JCErroneous tree) {
  3745         if (tree.errs != null)
  3746             for (JCTree err : tree.errs)
  3747                 attribTree(err, env, new ResultInfo(ERR, pt()));
  3748         result = tree.type = syms.errType;
  3751     /** Default visitor method for all other trees.
  3752      */
  3753     public void visitTree(JCTree tree) {
  3754         throw new AssertionError();
  3757     /**
  3758      * Attribute an env for either a top level tree or class declaration.
  3759      */
  3760     public void attrib(Env<AttrContext> env) {
  3761         if (env.tree.hasTag(TOPLEVEL))
  3762             attribTopLevel(env);
  3763         else
  3764             attribClass(env.tree.pos(), env.enclClass.sym);
  3767     /**
  3768      * Attribute a top level tree. These trees are encountered when the
  3769      * package declaration has annotations.
  3770      */
  3771     public void attribTopLevel(Env<AttrContext> env) {
  3772         JCCompilationUnit toplevel = env.toplevel;
  3773         try {
  3774             annotate.flush();
  3775             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3776         } catch (CompletionFailure ex) {
  3777             chk.completionError(toplevel.pos(), ex);
  3781     /** Main method: attribute class definition associated with given class symbol.
  3782      *  reporting completion failures at the given position.
  3783      *  @param pos The source position at which completion errors are to be
  3784      *             reported.
  3785      *  @param c   The class symbol whose definition will be attributed.
  3786      */
  3787     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3788         try {
  3789             annotate.flush();
  3790             attribClass(c);
  3791         } catch (CompletionFailure ex) {
  3792             chk.completionError(pos, ex);
  3796     /** Attribute class definition associated with given class symbol.
  3797      *  @param c   The class symbol whose definition will be attributed.
  3798      */
  3799     void attribClass(ClassSymbol c) throws CompletionFailure {
  3800         if (c.type.hasTag(ERROR)) return;
  3802         // Check for cycles in the inheritance graph, which can arise from
  3803         // ill-formed class files.
  3804         chk.checkNonCyclic(null, c.type);
  3806         Type st = types.supertype(c.type);
  3807         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3808             // First, attribute superclass.
  3809             if (st.hasTag(CLASS))
  3810                 attribClass((ClassSymbol)st.tsym);
  3812             // Next attribute owner, if it is a class.
  3813             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  3814                 attribClass((ClassSymbol)c.owner);
  3817         // The previous operations might have attributed the current class
  3818         // if there was a cycle. So we test first whether the class is still
  3819         // UNATTRIBUTED.
  3820         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3821             c.flags_field &= ~UNATTRIBUTED;
  3823             // Get environment current at the point of class definition.
  3824             Env<AttrContext> env = enter.typeEnvs.get(c);
  3826             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3827             // because the annotations were not available at the time the env was created. Therefore,
  3828             // we look up the environment chain for the first enclosing environment for which the
  3829             // lint value is set. Typically, this is the parent env, but might be further if there
  3830             // are any envs created as a result of TypeParameter nodes.
  3831             Env<AttrContext> lintEnv = env;
  3832             while (lintEnv.info.lint == null)
  3833                 lintEnv = lintEnv.next;
  3835             // Having found the enclosing lint value, we can initialize the lint value for this class
  3836             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  3838             Lint prevLint = chk.setLint(env.info.lint);
  3839             JavaFileObject prev = log.useSource(c.sourcefile);
  3840             ResultInfo prevReturnRes = env.info.returnResult;
  3842             try {
  3843                 env.info.returnResult = null;
  3844                 // java.lang.Enum may not be subclassed by a non-enum
  3845                 if (st.tsym == syms.enumSym &&
  3846                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3847                     log.error(env.tree.pos(), "enum.no.subclassing");
  3849                 // Enums may not be extended by source-level classes
  3850                 if (st.tsym != null &&
  3851                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3852                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3853                     !target.compilerBootstrap(c)) {
  3854                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3856                 attribClassBody(env, c);
  3858                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3859             } finally {
  3860                 env.info.returnResult = prevReturnRes;
  3861                 log.useSource(prev);
  3862                 chk.setLint(prevLint);
  3868     public void visitImport(JCImport tree) {
  3869         // nothing to do
  3872     /** Finish the attribution of a class. */
  3873     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3874         JCClassDecl tree = (JCClassDecl)env.tree;
  3875         Assert.check(c == tree.sym);
  3877         // Validate annotations
  3878         chk.validateAnnotations(tree.mods.annotations, c);
  3880         // Validate type parameters, supertype and interfaces.
  3881         attribStats(tree.typarams, env);
  3882         if (!c.isAnonymous()) {
  3883             //already checked if anonymous
  3884             chk.validate(tree.typarams, env);
  3885             chk.validate(tree.extending, env);
  3886             chk.validate(tree.implementing, env);
  3889         // If this is a non-abstract class, check that it has no abstract
  3890         // methods or unimplemented methods of an implemented interface.
  3891         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3892             if (!relax)
  3893                 chk.checkAllDefined(tree.pos(), c);
  3896         if ((c.flags() & ANNOTATION) != 0) {
  3897             if (tree.implementing.nonEmpty())
  3898                 log.error(tree.implementing.head.pos(),
  3899                           "cant.extend.intf.annotation");
  3900             if (tree.typarams.nonEmpty())
  3901                 log.error(tree.typarams.head.pos(),
  3902                           "intf.annotation.cant.have.type.params");
  3904             // If this annotation has a @Repeatable, validate
  3905             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  3906             if (repeatable != null) {
  3907                 // get diagnostic position for error reporting
  3908                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  3909                 Assert.checkNonNull(cbPos);
  3911                 chk.validateRepeatable(c, repeatable, cbPos);
  3913         } else {
  3914             // Check that all extended classes and interfaces
  3915             // are compatible (i.e. no two define methods with same arguments
  3916             // yet different return types).  (JLS 8.4.6.3)
  3917             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3918             if (allowDefaultMethods) {
  3919                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  3923         // Check that class does not import the same parameterized interface
  3924         // with two different argument lists.
  3925         chk.checkClassBounds(tree.pos(), c.type);
  3927         tree.type = c.type;
  3929         for (List<JCTypeParameter> l = tree.typarams;
  3930              l.nonEmpty(); l = l.tail) {
  3931              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  3934         // Check that a generic class doesn't extend Throwable
  3935         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3936             log.error(tree.extending.pos(), "generic.throwable");
  3938         // Check that all methods which implement some
  3939         // method conform to the method they implement.
  3940         chk.checkImplementations(tree);
  3942         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  3943         checkAutoCloseable(tree.pos(), env, c.type);
  3945         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3946             // Attribute declaration
  3947             attribStat(l.head, env);
  3948             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3949             // Make an exception for static constants.
  3950             if (c.owner.kind != PCK &&
  3951                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3952                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3953                 Symbol sym = null;
  3954                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  3955                 if (sym == null ||
  3956                     sym.kind != VAR ||
  3957                     ((VarSymbol) sym).getConstValue() == null)
  3958                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  3962         // Check for cycles among non-initial constructors.
  3963         chk.checkCyclicConstructors(tree);
  3965         // Check for cycles among annotation elements.
  3966         chk.checkNonCyclicElements(tree);
  3968         // Check for proper use of serialVersionUID
  3969         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3970             isSerializable(c) &&
  3971             (c.flags() & Flags.ENUM) == 0 &&
  3972             (c.flags() & ABSTRACT) == 0) {
  3973             checkSerialVersionUID(tree, c);
  3976         // where
  3977         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  3978         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  3979             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  3980                 if (types.isSameType(al.head.annotationType.type, t))
  3981                     return al.head.pos();
  3984             return null;
  3987         /** check if a class is a subtype of Serializable, if that is available. */
  3988         private boolean isSerializable(ClassSymbol c) {
  3989             try {
  3990                 syms.serializableType.complete();
  3992             catch (CompletionFailure e) {
  3993                 return false;
  3995             return types.isSubtype(c.type, syms.serializableType);
  3998         /** Check that an appropriate serialVersionUID member is defined. */
  3999         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4001             // check for presence of serialVersionUID
  4002             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4003             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4004             if (e.scope == null) {
  4005                 log.warning(LintCategory.SERIAL,
  4006                         tree.pos(), "missing.SVUID", c);
  4007                 return;
  4010             // check that it is static final
  4011             VarSymbol svuid = (VarSymbol)e.sym;
  4012             if ((svuid.flags() & (STATIC | FINAL)) !=
  4013                 (STATIC | FINAL))
  4014                 log.warning(LintCategory.SERIAL,
  4015                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4017             // check that it is long
  4018             else if (!svuid.type.hasTag(LONG))
  4019                 log.warning(LintCategory.SERIAL,
  4020                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4022             // check constant
  4023             else if (svuid.getConstValue() == null)
  4024                 log.warning(LintCategory.SERIAL,
  4025                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4028     private Type capture(Type type) {
  4029         return types.capture(type);
  4032     // <editor-fold desc="post-attribution visitor">
  4034     /**
  4035      * Handle missing types/symbols in an AST. This routine is useful when
  4036      * the compiler has encountered some errors (which might have ended up
  4037      * terminating attribution abruptly); if the compiler is used in fail-over
  4038      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4039      * prevents NPE to be progagated during subsequent compilation steps.
  4040      */
  4041     public void postAttr(JCTree tree) {
  4042         new PostAttrAnalyzer().scan(tree);
  4045     class PostAttrAnalyzer extends TreeScanner {
  4047         private void initTypeIfNeeded(JCTree that) {
  4048             if (that.type == null) {
  4049                 that.type = syms.unknownType;
  4053         @Override
  4054         public void scan(JCTree tree) {
  4055             if (tree == null) return;
  4056             if (tree instanceof JCExpression) {
  4057                 initTypeIfNeeded(tree);
  4059             super.scan(tree);
  4062         @Override
  4063         public void visitIdent(JCIdent that) {
  4064             if (that.sym == null) {
  4065                 that.sym = syms.unknownSymbol;
  4069         @Override
  4070         public void visitSelect(JCFieldAccess that) {
  4071             if (that.sym == null) {
  4072                 that.sym = syms.unknownSymbol;
  4074             super.visitSelect(that);
  4077         @Override
  4078         public void visitClassDef(JCClassDecl that) {
  4079             initTypeIfNeeded(that);
  4080             if (that.sym == null) {
  4081                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4083             super.visitClassDef(that);
  4086         @Override
  4087         public void visitMethodDef(JCMethodDecl that) {
  4088             initTypeIfNeeded(that);
  4089             if (that.sym == null) {
  4090                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4092             super.visitMethodDef(that);
  4095         @Override
  4096         public void visitVarDef(JCVariableDecl that) {
  4097             initTypeIfNeeded(that);
  4098             if (that.sym == null) {
  4099                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4100                 that.sym.adr = 0;
  4102             super.visitVarDef(that);
  4105         @Override
  4106         public void visitNewClass(JCNewClass that) {
  4107             if (that.constructor == null) {
  4108                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4110             if (that.constructorType == null) {
  4111                 that.constructorType = syms.unknownType;
  4113             super.visitNewClass(that);
  4116         @Override
  4117         public void visitAssignop(JCAssignOp that) {
  4118             if (that.operator == null)
  4119                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4120             super.visitAssignop(that);
  4123         @Override
  4124         public void visitBinary(JCBinary that) {
  4125             if (that.operator == null)
  4126                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4127             super.visitBinary(that);
  4130         @Override
  4131         public void visitUnary(JCUnary that) {
  4132             if (that.operator == null)
  4133                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4134             super.visitUnary(that);
  4137         @Override
  4138         public void visitLambda(JCLambda that) {
  4139             super.visitLambda(that);
  4140             if (that.descriptorType == null) {
  4141                 that.descriptorType = syms.unknownType;
  4143             if (that.targets == null) {
  4144                 that.targets = List.nil();
  4148         @Override
  4149         public void visitReference(JCMemberReference that) {
  4150             super.visitReference(that);
  4151             if (that.sym == null) {
  4152                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4154             if (that.descriptorType == null) {
  4155                 that.descriptorType = syms.unknownType;
  4157             if (that.targets == null) {
  4158                 that.targets = List.nil();
  4162     // </editor-fold>

mercurial