src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 21 Jan 2013 20:13:56 +0000

author
mcimadamore
date
Mon, 21 Jan 2013 20:13:56 +0000
changeset 1510
7873d37f5b37
parent 1492
df694c775e8a
child 1513
cf84b07a82db
permissions
-rw-r--r--

8005244: Implement overload resolution as per latest spec EDR
Summary: Add support for stuck expressions and provisional applicability
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import javax.lang.model.element.ElementKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.jvm.Target;
    49 import com.sun.tools.javac.tree.*;
    50 import com.sun.tools.javac.tree.JCTree.*;
    51 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    52 import com.sun.tools.javac.util.*;
    53 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    54 import com.sun.tools.javac.util.List;
    55 import static com.sun.tools.javac.code.Flags.*;
    56 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    57 import static com.sun.tools.javac.code.Flags.BLOCK;
    58 import static com.sun.tools.javac.code.Kinds.*;
    59 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    60 import static com.sun.tools.javac.code.TypeTag.*;
    61 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    64 /** This is the main context-dependent analysis phase in GJC. It
    65  *  encompasses name resolution, type checking and constant folding as
    66  *  subtasks. Some subtasks involve auxiliary classes.
    67  *  @see Check
    68  *  @see Resolve
    69  *  @see ConstFold
    70  *  @see Infer
    71  *
    72  *  <p><b>This is NOT part of any supported API.
    73  *  If you write code that depends on this, you do so at your own risk.
    74  *  This code and its internal interfaces are subject to change or
    75  *  deletion without notice.</b>
    76  */
    77 public class Attr extends JCTree.Visitor {
    78     protected static final Context.Key<Attr> attrKey =
    79         new Context.Key<Attr>();
    81     final Names names;
    82     final Log log;
    83     final Symtab syms;
    84     final Resolve rs;
    85     final Infer infer;
    86     final DeferredAttr deferredAttr;
    87     final Check chk;
    88     final Flow flow;
    89     final MemberEnter memberEnter;
    90     final TreeMaker make;
    91     final ConstFold cfolder;
    92     final Enter enter;
    93     final Target target;
    94     final Types types;
    95     final JCDiagnostic.Factory diags;
    96     final Annotate annotate;
    97     final DeferredLintHandler deferredLintHandler;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         deferredLintHandler = DeferredLintHandler.instance(context);
   127         Options options = Options.instance(context);
   129         Source source = Source.instance(context);
   130         allowGenerics = source.allowGenerics();
   131         allowVarargs = source.allowVarargs();
   132         allowEnums = source.allowEnums();
   133         allowBoxing = source.allowBoxing();
   134         allowCovariantReturns = source.allowCovariantReturns();
   135         allowAnonOuterThis = source.allowAnonOuterThis();
   136         allowStringsInSwitch = source.allowStringsInSwitch();
   137         allowPoly = source.allowPoly();
   138         allowLambda = source.allowLambda();
   139         allowDefaultMethods = source.allowDefaultMethods();
   140         sourceName = source.name;
   141         relax = (options.isSet("-retrofit") ||
   142                  options.isSet("-relax"));
   143         findDiamonds = options.get("findDiamond") != null &&
   144                  source.allowDiamond();
   145         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   146         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   148         statInfo = new ResultInfo(NIL, Type.noType);
   149         varInfo = new ResultInfo(VAR, Type.noType);
   150         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   151         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   152         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   153     }
   155     /** Switch: relax some constraints for retrofit mode.
   156      */
   157     boolean relax;
   159     /** Switch: support target-typing inference
   160      */
   161     boolean allowPoly;
   163     /** Switch: support generics?
   164      */
   165     boolean allowGenerics;
   167     /** Switch: allow variable-arity methods.
   168      */
   169     boolean allowVarargs;
   171     /** Switch: support enums?
   172      */
   173     boolean allowEnums;
   175     /** Switch: support boxing and unboxing?
   176      */
   177     boolean allowBoxing;
   179     /** Switch: support covariant result types?
   180      */
   181     boolean allowCovariantReturns;
   183     /** Switch: support lambda expressions ?
   184      */
   185     boolean allowLambda;
   187     /** Switch: support default methods ?
   188      */
   189     boolean allowDefaultMethods;
   191     /** Switch: allow references to surrounding object from anonymous
   192      * objects during constructor call?
   193      */
   194     boolean allowAnonOuterThis;
   196     /** Switch: generates a warning if diamond can be safely applied
   197      *  to a given new expression
   198      */
   199     boolean findDiamonds;
   201     /**
   202      * Internally enables/disables diamond finder feature
   203      */
   204     static final boolean allowDiamondFinder = true;
   206     /**
   207      * Switch: warn about use of variable before declaration?
   208      * RFE: 6425594
   209      */
   210     boolean useBeforeDeclarationWarning;
   212     /**
   213      * Switch: generate warnings whenever an anonymous inner class that is convertible
   214      * to a lambda expression is found
   215      */
   216     boolean identifyLambdaCandidate;
   218     /**
   219      * Switch: allow strings in switch?
   220      */
   221     boolean allowStringsInSwitch;
   223     /**
   224      * Switch: name of source level; used for error reporting.
   225      */
   226     String sourceName;
   228     /** Check kind and type of given tree against protokind and prototype.
   229      *  If check succeeds, store type in tree and return it.
   230      *  If check fails, store errType in tree and return it.
   231      *  No checks are performed if the prototype is a method type.
   232      *  It is not necessary in this case since we know that kind and type
   233      *  are correct.
   234      *
   235      *  @param tree     The tree whose kind and type is checked
   236      *  @param ownkind  The computed kind of the tree
   237      *  @param resultInfo  The expected result of the tree
   238      */
   239     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   240         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   241         Type owntype = found;
   242         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   243             if (inferenceContext.free(found)) {
   244                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   245                     @Override
   246                     public void typesInferred(InferenceContext inferenceContext) {
   247                         ResultInfo pendingResult =
   248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types));
   249                         check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult);
   250                     }
   251                 });
   252                 return tree.type = resultInfo.pt;
   253             } else {
   254                 if ((ownkind & ~resultInfo.pkind) == 0) {
   255                     owntype = resultInfo.check(tree, owntype);
   256                 } else {
   257                     log.error(tree.pos(), "unexpected.type",
   258                             kindNames(resultInfo.pkind),
   259                             kindName(ownkind));
   260                     owntype = types.createErrorType(owntype);
   261                 }
   262             }
   263         }
   264         tree.type = owntype;
   265         return owntype;
   266     }
   268     /** Is given blank final variable assignable, i.e. in a scope where it
   269      *  may be assigned to even though it is final?
   270      *  @param v      The blank final variable.
   271      *  @param env    The current environment.
   272      */
   273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   274         Symbol owner = owner(env);
   275            // owner refers to the innermost variable, method or
   276            // initializer block declaration at this point.
   277         return
   278             v.owner == owner
   279             ||
   280             ((owner.name == names.init ||    // i.e. we are in a constructor
   281               owner.kind == VAR ||           // i.e. we are in a variable initializer
   282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   283              &&
   284              v.owner == owner.owner
   285              &&
   286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   287     }
   289     /**
   290      * Return the innermost enclosing owner symbol in a given attribution context
   291      */
   292     Symbol owner(Env<AttrContext> env) {
   293         while (true) {
   294             switch (env.tree.getTag()) {
   295                 case VARDEF:
   296                     //a field can be owner
   297                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   298                     if (vsym.owner.kind == TYP) {
   299                         return vsym;
   300                     }
   301                     break;
   302                 case METHODDEF:
   303                     //method def is always an owner
   304                     return ((JCMethodDecl)env.tree).sym;
   305                 case CLASSDEF:
   306                     //class def is always an owner
   307                     return ((JCClassDecl)env.tree).sym;
   308                 case LAMBDA:
   309                     //a lambda is an owner - return a fresh synthetic method symbol
   310                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   311                 case BLOCK:
   312                     //static/instance init blocks are owner
   313                     Symbol blockSym = env.info.scope.owner;
   314                     if ((blockSym.flags() & BLOCK) != 0) {
   315                         return blockSym;
   316                     }
   317                     break;
   318                 case TOPLEVEL:
   319                     //toplevel is always an owner (for pkge decls)
   320                     return env.info.scope.owner;
   321             }
   322             Assert.checkNonNull(env.next);
   323             env = env.next;
   324         }
   325     }
   327     /** Check that variable can be assigned to.
   328      *  @param pos    The current source code position.
   329      *  @param v      The assigned varaible
   330      *  @param base   If the variable is referred to in a Select, the part
   331      *                to the left of the `.', null otherwise.
   332      *  @param env    The current environment.
   333      */
   334     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   335         if ((v.flags() & FINAL) != 0 &&
   336             ((v.flags() & HASINIT) != 0
   337              ||
   338              !((base == null ||
   339                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   340                isAssignableAsBlankFinal(v, env)))) {
   341             if (v.isResourceVariable()) { //TWR resource
   342                 log.error(pos, "try.resource.may.not.be.assigned", v);
   343             } else {
   344                 log.error(pos, "cant.assign.val.to.final.var", v);
   345             }
   346         }
   347     }
   349     /** Does tree represent a static reference to an identifier?
   350      *  It is assumed that tree is either a SELECT or an IDENT.
   351      *  We have to weed out selects from non-type names here.
   352      *  @param tree    The candidate tree.
   353      */
   354     boolean isStaticReference(JCTree tree) {
   355         if (tree.hasTag(SELECT)) {
   356             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   357             if (lsym == null || lsym.kind != TYP) {
   358                 return false;
   359             }
   360         }
   361         return true;
   362     }
   364     /** Is this symbol a type?
   365      */
   366     static boolean isType(Symbol sym) {
   367         return sym != null && sym.kind == TYP;
   368     }
   370     /** The current `this' symbol.
   371      *  @param env    The current environment.
   372      */
   373     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   374         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   375     }
   377     /** Attribute a parsed identifier.
   378      * @param tree Parsed identifier name
   379      * @param topLevel The toplevel to use
   380      */
   381     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   382         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   383         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   384                                            syms.errSymbol.name,
   385                                            null, null, null, null);
   386         localEnv.enclClass.sym = syms.errSymbol;
   387         return tree.accept(identAttributer, localEnv);
   388     }
   389     // where
   390         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   391         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   392             @Override
   393             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   394                 Symbol site = visit(node.getExpression(), env);
   395                 if (site.kind == ERR)
   396                     return site;
   397                 Name name = (Name)node.getIdentifier();
   398                 if (site.kind == PCK) {
   399                     env.toplevel.packge = (PackageSymbol)site;
   400                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   401                 } else {
   402                     env.enclClass.sym = (ClassSymbol)site;
   403                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   404                 }
   405             }
   407             @Override
   408             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   409                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   410             }
   411         }
   413     public Type coerce(Type etype, Type ttype) {
   414         return cfolder.coerce(etype, ttype);
   415     }
   417     public Type attribType(JCTree node, TypeSymbol sym) {
   418         Env<AttrContext> env = enter.typeEnvs.get(sym);
   419         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   420         return attribTree(node, localEnv, unknownTypeInfo);
   421     }
   423     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   424         // Attribute qualifying package or class.
   425         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   426         return attribTree(s.selected,
   427                        env,
   428                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   429                        Type.noType));
   430     }
   432     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   433         breakTree = tree;
   434         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   435         try {
   436             attribExpr(expr, env);
   437         } catch (BreakAttr b) {
   438             return b.env;
   439         } catch (AssertionError ae) {
   440             if (ae.getCause() instanceof BreakAttr) {
   441                 return ((BreakAttr)(ae.getCause())).env;
   442             } else {
   443                 throw ae;
   444             }
   445         } finally {
   446             breakTree = null;
   447             log.useSource(prev);
   448         }
   449         return env;
   450     }
   452     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   453         breakTree = tree;
   454         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   455         try {
   456             attribStat(stmt, env);
   457         } catch (BreakAttr b) {
   458             return b.env;
   459         } catch (AssertionError ae) {
   460             if (ae.getCause() instanceof BreakAttr) {
   461                 return ((BreakAttr)(ae.getCause())).env;
   462             } else {
   463                 throw ae;
   464             }
   465         } finally {
   466             breakTree = null;
   467             log.useSource(prev);
   468         }
   469         return env;
   470     }
   472     private JCTree breakTree = null;
   474     private static class BreakAttr extends RuntimeException {
   475         static final long serialVersionUID = -6924771130405446405L;
   476         private Env<AttrContext> env;
   477         private BreakAttr(Env<AttrContext> env) {
   478             this.env = copyEnv(env);
   479         }
   481         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   482             Env<AttrContext> newEnv =
   483                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   484             if (newEnv.outer != null) {
   485                 newEnv.outer = copyEnv(newEnv.outer);
   486             }
   487             return newEnv;
   488         }
   490         private Scope copyScope(Scope sc) {
   491             Scope newScope = new Scope(sc.owner);
   492             List<Symbol> elemsList = List.nil();
   493             while (sc != null) {
   494                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   495                     elemsList = elemsList.prepend(e.sym);
   496                 }
   497                 sc = sc.next;
   498             }
   499             for (Symbol s : elemsList) {
   500                 newScope.enter(s);
   501             }
   502             return newScope;
   503         }
   504     }
   506     class ResultInfo {
   507         final int pkind;
   508         final Type pt;
   509         final CheckContext checkContext;
   511         ResultInfo(int pkind, Type pt) {
   512             this(pkind, pt, chk.basicHandler);
   513         }
   515         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   516             this.pkind = pkind;
   517             this.pt = pt;
   518             this.checkContext = checkContext;
   519         }
   521         protected Type check(final DiagnosticPosition pos, final Type found) {
   522             return chk.checkType(pos, found, pt, checkContext);
   523         }
   525         protected ResultInfo dup(Type newPt) {
   526             return new ResultInfo(pkind, newPt, checkContext);
   527         }
   529         protected ResultInfo dup(CheckContext newContext) {
   530             return new ResultInfo(pkind, pt, newContext);
   531         }
   532     }
   534     class RecoveryInfo extends ResultInfo {
   536         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   537             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   538                 @Override
   539                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   540                     return deferredAttrContext;
   541                 }
   542                 @Override
   543                 public boolean compatible(Type found, Type req, Warner warn) {
   544                     return true;
   545                 }
   546                 @Override
   547                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   548                     chk.basicHandler.report(pos, details);
   549                 }
   550             });
   551         }
   553         @Override
   554         protected Type check(DiagnosticPosition pos, Type found) {
   555             return chk.checkNonVoid(pos, super.check(pos, found));
   556         }
   557     }
   559     final ResultInfo statInfo;
   560     final ResultInfo varInfo;
   561     final ResultInfo unknownExprInfo;
   562     final ResultInfo unknownTypeInfo;
   563     final ResultInfo recoveryInfo;
   565     Type pt() {
   566         return resultInfo.pt;
   567     }
   569     int pkind() {
   570         return resultInfo.pkind;
   571     }
   573 /* ************************************************************************
   574  * Visitor methods
   575  *************************************************************************/
   577     /** Visitor argument: the current environment.
   578      */
   579     Env<AttrContext> env;
   581     /** Visitor argument: the currently expected attribution result.
   582      */
   583     ResultInfo resultInfo;
   585     /** Visitor result: the computed type.
   586      */
   587     Type result;
   589     /** Visitor method: attribute a tree, catching any completion failure
   590      *  exceptions. Return the tree's type.
   591      *
   592      *  @param tree    The tree to be visited.
   593      *  @param env     The environment visitor argument.
   594      *  @param resultInfo   The result info visitor argument.
   595      */
   596     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   597         Env<AttrContext> prevEnv = this.env;
   598         ResultInfo prevResult = this.resultInfo;
   599         try {
   600             this.env = env;
   601             this.resultInfo = resultInfo;
   602             tree.accept(this);
   603             if (tree == breakTree &&
   604                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   605                 throw new BreakAttr(env);
   606             }
   607             return result;
   608         } catch (CompletionFailure ex) {
   609             tree.type = syms.errType;
   610             return chk.completionError(tree.pos(), ex);
   611         } finally {
   612             this.env = prevEnv;
   613             this.resultInfo = prevResult;
   614         }
   615     }
   617     /** Derived visitor method: attribute an expression tree.
   618      */
   619     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   620         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   621     }
   623     /** Derived visitor method: attribute an expression tree with
   624      *  no constraints on the computed type.
   625      */
   626     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   627         return attribTree(tree, env, unknownExprInfo);
   628     }
   630     /** Derived visitor method: attribute a type tree.
   631      */
   632     public Type attribType(JCTree tree, Env<AttrContext> env) {
   633         Type result = attribType(tree, env, Type.noType);
   634         return result;
   635     }
   637     /** Derived visitor method: attribute a type tree.
   638      */
   639     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   640         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   641         return result;
   642     }
   644     /** Derived visitor method: attribute a statement or definition tree.
   645      */
   646     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   647         return attribTree(tree, env, statInfo);
   648     }
   650     /** Attribute a list of expressions, returning a list of types.
   651      */
   652     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   653         ListBuffer<Type> ts = new ListBuffer<Type>();
   654         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   655             ts.append(attribExpr(l.head, env, pt));
   656         return ts.toList();
   657     }
   659     /** Attribute a list of statements, returning nothing.
   660      */
   661     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   662         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   663             attribStat(l.head, env);
   664     }
   666     /** Attribute the arguments in a method call, returning a list of types.
   667      */
   668     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   669         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   670         for (JCExpression arg : trees) {
   671             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
   672                     deferredAttr.new DeferredType(arg, env) :
   673                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   674             argtypes.append(argtype);
   675         }
   676         return argtypes.toList();
   677     }
   679     /** Attribute a type argument list, returning a list of types.
   680      *  Caller is responsible for calling checkRefTypes.
   681      */
   682     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   683         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   684         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   685             argtypes.append(attribType(l.head, env));
   686         return argtypes.toList();
   687     }
   689     /** Attribute a type argument list, returning a list of types.
   690      *  Check that all the types are references.
   691      */
   692     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   693         List<Type> types = attribAnyTypes(trees, env);
   694         return chk.checkRefTypes(trees, types);
   695     }
   697     /**
   698      * Attribute type variables (of generic classes or methods).
   699      * Compound types are attributed later in attribBounds.
   700      * @param typarams the type variables to enter
   701      * @param env      the current environment
   702      */
   703     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   704         for (JCTypeParameter tvar : typarams) {
   705             TypeVar a = (TypeVar)tvar.type;
   706             a.tsym.flags_field |= UNATTRIBUTED;
   707             a.bound = Type.noType;
   708             if (!tvar.bounds.isEmpty()) {
   709                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   710                 for (JCExpression bound : tvar.bounds.tail)
   711                     bounds = bounds.prepend(attribType(bound, env));
   712                 types.setBounds(a, bounds.reverse());
   713             } else {
   714                 // if no bounds are given, assume a single bound of
   715                 // java.lang.Object.
   716                 types.setBounds(a, List.of(syms.objectType));
   717             }
   718             a.tsym.flags_field &= ~UNATTRIBUTED;
   719         }
   720         for (JCTypeParameter tvar : typarams) {
   721             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   722         }
   723     }
   725     /**
   726      * Attribute the type references in a list of annotations.
   727      */
   728     void attribAnnotationTypes(List<JCAnnotation> annotations,
   729                                Env<AttrContext> env) {
   730         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   731             JCAnnotation a = al.head;
   732             attribType(a.annotationType, env);
   733         }
   734     }
   736     /**
   737      * Attribute a "lazy constant value".
   738      *  @param env         The env for the const value
   739      *  @param initializer The initializer for the const value
   740      *  @param type        The expected type, or null
   741      *  @see VarSymbol#setLazyConstValue
   742      */
   743     public Object attribLazyConstantValue(Env<AttrContext> env,
   744                                       JCTree.JCExpression initializer,
   745                                       Type type) {
   747         // in case no lint value has been set up for this env, scan up
   748         // env stack looking for smallest enclosing env for which it is set.
   749         Env<AttrContext> lintEnv = env;
   750         while (lintEnv.info.lint == null)
   751             lintEnv = lintEnv.next;
   753         // Having found the enclosing lint value, we can initialize the lint value for this class
   754         // ... but ...
   755         // There's a problem with evaluating annotations in the right order, such that
   756         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   757         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   758         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   759         if (env.info.enclVar.annotations.pendingCompletion()) {
   760             env.info.lint = lintEnv.info.lint;
   761         } else {
   762             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   763                                                       env.info.enclVar.flags());
   764         }
   766         Lint prevLint = chk.setLint(env.info.lint);
   767         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   769         try {
   770             Type itype = attribExpr(initializer, env, type);
   771             if (itype.constValue() != null)
   772                 return coerce(itype, type).constValue();
   773             else
   774                 return null;
   775         } finally {
   776             env.info.lint = prevLint;
   777             log.useSource(prevSource);
   778         }
   779     }
   781     /** Attribute type reference in an `extends' or `implements' clause.
   782      *  Supertypes of anonymous inner classes are usually already attributed.
   783      *
   784      *  @param tree              The tree making up the type reference.
   785      *  @param env               The environment current at the reference.
   786      *  @param classExpected     true if only a class is expected here.
   787      *  @param interfaceExpected true if only an interface is expected here.
   788      */
   789     Type attribBase(JCTree tree,
   790                     Env<AttrContext> env,
   791                     boolean classExpected,
   792                     boolean interfaceExpected,
   793                     boolean checkExtensible) {
   794         Type t = tree.type != null ?
   795             tree.type :
   796             attribType(tree, env);
   797         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   798     }
   799     Type checkBase(Type t,
   800                    JCTree tree,
   801                    Env<AttrContext> env,
   802                    boolean classExpected,
   803                    boolean interfaceExpected,
   804                    boolean checkExtensible) {
   805         if (t.isErroneous())
   806             return t;
   807         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   808             // check that type variable is already visible
   809             if (t.getUpperBound() == null) {
   810                 log.error(tree.pos(), "illegal.forward.ref");
   811                 return types.createErrorType(t);
   812             }
   813         } else {
   814             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   815         }
   816         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   817             log.error(tree.pos(), "intf.expected.here");
   818             // return errType is necessary since otherwise there might
   819             // be undetected cycles which cause attribution to loop
   820             return types.createErrorType(t);
   821         } else if (checkExtensible &&
   822                    classExpected &&
   823                    (t.tsym.flags() & INTERFACE) != 0) {
   824                 log.error(tree.pos(), "no.intf.expected.here");
   825             return types.createErrorType(t);
   826         }
   827         if (checkExtensible &&
   828             ((t.tsym.flags() & FINAL) != 0)) {
   829             log.error(tree.pos(),
   830                       "cant.inherit.from.final", t.tsym);
   831         }
   832         chk.checkNonCyclic(tree.pos(), t);
   833         return t;
   834     }
   836     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   837         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   838         id.type = env.info.scope.owner.type;
   839         id.sym = env.info.scope.owner;
   840         return id.type;
   841     }
   843     public void visitClassDef(JCClassDecl tree) {
   844         // Local classes have not been entered yet, so we need to do it now:
   845         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   846             enter.classEnter(tree, env);
   848         ClassSymbol c = tree.sym;
   849         if (c == null) {
   850             // exit in case something drastic went wrong during enter.
   851             result = null;
   852         } else {
   853             // make sure class has been completed:
   854             c.complete();
   856             // If this class appears as an anonymous class
   857             // in a superclass constructor call where
   858             // no explicit outer instance is given,
   859             // disable implicit outer instance from being passed.
   860             // (This would be an illegal access to "this before super").
   861             if (env.info.isSelfCall &&
   862                 env.tree.hasTag(NEWCLASS) &&
   863                 ((JCNewClass) env.tree).encl == null)
   864             {
   865                 c.flags_field |= NOOUTERTHIS;
   866             }
   867             attribClass(tree.pos(), c);
   868             result = tree.type = c.type;
   869         }
   870     }
   872     public void visitMethodDef(JCMethodDecl tree) {
   873         MethodSymbol m = tree.sym;
   874         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   876         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   877         Lint prevLint = chk.setLint(lint);
   878         MethodSymbol prevMethod = chk.setMethod(m);
   879         try {
   880             deferredLintHandler.flush(tree.pos());
   881             chk.checkDeprecatedAnnotation(tree.pos(), m);
   883             // Create a new environment with local scope
   884             // for attributing the method.
   885             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   886             localEnv.info.lint = lint;
   888             attribStats(tree.typarams, localEnv);
   890             // If we override any other methods, check that we do so properly.
   891             // JLS ???
   892             if (m.isStatic()) {
   893                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   894             } else {
   895                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   896             }
   897             chk.checkOverride(tree, m);
   899             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   900                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   901             }
   903             // Enter all type parameters into the local method scope.
   904             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   905                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   907             ClassSymbol owner = env.enclClass.sym;
   908             if ((owner.flags() & ANNOTATION) != 0 &&
   909                 tree.params.nonEmpty())
   910                 log.error(tree.params.head.pos(),
   911                           "intf.annotation.members.cant.have.params");
   913             // Attribute all value parameters.
   914             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   915                 attribStat(l.head, localEnv);
   916             }
   918             chk.checkVarargsMethodDecl(localEnv, tree);
   920             // Check that type parameters are well-formed.
   921             chk.validate(tree.typarams, localEnv);
   923             // Check that result type is well-formed.
   924             chk.validate(tree.restype, localEnv);
   926             // annotation method checks
   927             if ((owner.flags() & ANNOTATION) != 0) {
   928                 // annotation method cannot have throws clause
   929                 if (tree.thrown.nonEmpty()) {
   930                     log.error(tree.thrown.head.pos(),
   931                             "throws.not.allowed.in.intf.annotation");
   932                 }
   933                 // annotation method cannot declare type-parameters
   934                 if (tree.typarams.nonEmpty()) {
   935                     log.error(tree.typarams.head.pos(),
   936                             "intf.annotation.members.cant.have.type.params");
   937                 }
   938                 // validate annotation method's return type (could be an annotation type)
   939                 chk.validateAnnotationType(tree.restype);
   940                 // ensure that annotation method does not clash with members of Object/Annotation
   941                 chk.validateAnnotationMethod(tree.pos(), m);
   943                 if (tree.defaultValue != null) {
   944                     // if default value is an annotation, check it is a well-formed
   945                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   946                     chk.validateAnnotationTree(tree.defaultValue);
   947                 }
   948             }
   950             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   951                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   953             if (tree.body == null) {
   954                 // Empty bodies are only allowed for
   955                 // abstract, native, or interface methods, or for methods
   956                 // in a retrofit signature class.
   957                 if (isDefaultMethod || ((owner.flags() & INTERFACE) == 0 &&
   958                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0) &&
   959                     !relax)
   960                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   961                 if (tree.defaultValue != null) {
   962                     if ((owner.flags() & ANNOTATION) == 0)
   963                         log.error(tree.pos(),
   964                                   "default.allowed.in.intf.annotation.member");
   965                 }
   966             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   967                 if ((owner.flags() & INTERFACE) != 0) {
   968                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   969                 } else {
   970                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   971                 }
   972             } else if ((tree.mods.flags & NATIVE) != 0) {
   973                 log.error(tree.pos(), "native.meth.cant.have.body");
   974             } else {
   975                 // Add an implicit super() call unless an explicit call to
   976                 // super(...) or this(...) is given
   977                 // or we are compiling class java.lang.Object.
   978                 if (tree.name == names.init && owner.type != syms.objectType) {
   979                     JCBlock body = tree.body;
   980                     if (body.stats.isEmpty() ||
   981                         !TreeInfo.isSelfCall(body.stats.head)) {
   982                         body.stats = body.stats.
   983                             prepend(memberEnter.SuperCall(make.at(body.pos),
   984                                                           List.<Type>nil(),
   985                                                           List.<JCVariableDecl>nil(),
   986                                                           false));
   987                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   988                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   989                                TreeInfo.isSuperCall(body.stats.head)) {
   990                         // enum constructors are not allowed to call super
   991                         // directly, so make sure there aren't any super calls
   992                         // in enum constructors, except in the compiler
   993                         // generated one.
   994                         log.error(tree.body.stats.head.pos(),
   995                                   "call.to.super.not.allowed.in.enum.ctor",
   996                                   env.enclClass.sym);
   997                     }
   998                 }
  1000                 // Attribute method body.
  1001                 attribStat(tree.body, localEnv);
  1003             localEnv.info.scope.leave();
  1004             result = tree.type = m.type;
  1005             chk.validateAnnotations(tree.mods.annotations, m);
  1007         finally {
  1008             chk.setLint(prevLint);
  1009             chk.setMethod(prevMethod);
  1013     public void visitVarDef(JCVariableDecl tree) {
  1014         // Local variables have not been entered yet, so we need to do it now:
  1015         if (env.info.scope.owner.kind == MTH) {
  1016             if (tree.sym != null) {
  1017                 // parameters have already been entered
  1018                 env.info.scope.enter(tree.sym);
  1019             } else {
  1020                 memberEnter.memberEnter(tree, env);
  1021                 annotate.flush();
  1025         VarSymbol v = tree.sym;
  1026         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1027         Lint prevLint = chk.setLint(lint);
  1029         // Check that the variable's declared type is well-formed.
  1030         chk.validate(tree.vartype, env);
  1031         deferredLintHandler.flush(tree.pos());
  1033         try {
  1034             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1036             if (tree.init != null) {
  1037                 if ((v.flags_field & FINAL) != 0 &&
  1038                         !tree.init.hasTag(NEWCLASS) &&
  1039                         !tree.init.hasTag(LAMBDA) &&
  1040                         !tree.init.hasTag(REFERENCE)) {
  1041                     // In this case, `v' is final.  Ensure that it's initializer is
  1042                     // evaluated.
  1043                     v.getConstValue(); // ensure initializer is evaluated
  1044                 } else {
  1045                     // Attribute initializer in a new environment
  1046                     // with the declared variable as owner.
  1047                     // Check that initializer conforms to variable's declared type.
  1048                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1049                     initEnv.info.lint = lint;
  1050                     // In order to catch self-references, we set the variable's
  1051                     // declaration position to maximal possible value, effectively
  1052                     // marking the variable as undefined.
  1053                     initEnv.info.enclVar = v;
  1054                     attribExpr(tree.init, initEnv, v.type);
  1057             result = tree.type = v.type;
  1058             chk.validateAnnotations(tree.mods.annotations, v);
  1060         finally {
  1061             chk.setLint(prevLint);
  1065     public void visitSkip(JCSkip tree) {
  1066         result = null;
  1069     public void visitBlock(JCBlock tree) {
  1070         if (env.info.scope.owner.kind == TYP) {
  1071             // Block is a static or instance initializer;
  1072             // let the owner of the environment be a freshly
  1073             // created BLOCK-method.
  1074             Env<AttrContext> localEnv =
  1075                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1076             localEnv.info.scope.owner =
  1077                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
  1078                                  env.info.scope.owner);
  1079             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1080             attribStats(tree.stats, localEnv);
  1081         } else {
  1082             // Create a new local environment with a local scope.
  1083             Env<AttrContext> localEnv =
  1084                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1085             try {
  1086                 attribStats(tree.stats, localEnv);
  1087             } finally {
  1088                 localEnv.info.scope.leave();
  1091         result = null;
  1094     public void visitDoLoop(JCDoWhileLoop tree) {
  1095         attribStat(tree.body, env.dup(tree));
  1096         attribExpr(tree.cond, env, syms.booleanType);
  1097         result = null;
  1100     public void visitWhileLoop(JCWhileLoop tree) {
  1101         attribExpr(tree.cond, env, syms.booleanType);
  1102         attribStat(tree.body, env.dup(tree));
  1103         result = null;
  1106     public void visitForLoop(JCForLoop tree) {
  1107         Env<AttrContext> loopEnv =
  1108             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1109         try {
  1110             attribStats(tree.init, loopEnv);
  1111             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1112             loopEnv.tree = tree; // before, we were not in loop!
  1113             attribStats(tree.step, loopEnv);
  1114             attribStat(tree.body, loopEnv);
  1115             result = null;
  1117         finally {
  1118             loopEnv.info.scope.leave();
  1122     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1123         Env<AttrContext> loopEnv =
  1124             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1125         try {
  1126             attribStat(tree.var, loopEnv);
  1127             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1128             chk.checkNonVoid(tree.pos(), exprType);
  1129             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1130             if (elemtype == null) {
  1131                 // or perhaps expr implements Iterable<T>?
  1132                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1133                 if (base == null) {
  1134                     log.error(tree.expr.pos(),
  1135                             "foreach.not.applicable.to.type",
  1136                             exprType,
  1137                             diags.fragment("type.req.array.or.iterable"));
  1138                     elemtype = types.createErrorType(exprType);
  1139                 } else {
  1140                     List<Type> iterableParams = base.allparams();
  1141                     elemtype = iterableParams.isEmpty()
  1142                         ? syms.objectType
  1143                         : types.upperBound(iterableParams.head);
  1146             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1147             loopEnv.tree = tree; // before, we were not in loop!
  1148             attribStat(tree.body, loopEnv);
  1149             result = null;
  1151         finally {
  1152             loopEnv.info.scope.leave();
  1156     public void visitLabelled(JCLabeledStatement tree) {
  1157         // Check that label is not used in an enclosing statement
  1158         Env<AttrContext> env1 = env;
  1159         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1160             if (env1.tree.hasTag(LABELLED) &&
  1161                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1162                 log.error(tree.pos(), "label.already.in.use",
  1163                           tree.label);
  1164                 break;
  1166             env1 = env1.next;
  1169         attribStat(tree.body, env.dup(tree));
  1170         result = null;
  1173     public void visitSwitch(JCSwitch tree) {
  1174         Type seltype = attribExpr(tree.selector, env);
  1176         Env<AttrContext> switchEnv =
  1177             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1179         try {
  1181             boolean enumSwitch =
  1182                 allowEnums &&
  1183                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1184             boolean stringSwitch = false;
  1185             if (types.isSameType(seltype, syms.stringType)) {
  1186                 if (allowStringsInSwitch) {
  1187                     stringSwitch = true;
  1188                 } else {
  1189                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1192             if (!enumSwitch && !stringSwitch)
  1193                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1195             // Attribute all cases and
  1196             // check that there are no duplicate case labels or default clauses.
  1197             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1198             boolean hasDefault = false;      // Is there a default label?
  1199             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1200                 JCCase c = l.head;
  1201                 Env<AttrContext> caseEnv =
  1202                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1203                 try {
  1204                     if (c.pat != null) {
  1205                         if (enumSwitch) {
  1206                             Symbol sym = enumConstant(c.pat, seltype);
  1207                             if (sym == null) {
  1208                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1209                             } else if (!labels.add(sym)) {
  1210                                 log.error(c.pos(), "duplicate.case.label");
  1212                         } else {
  1213                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1214                             if (!pattype.hasTag(ERROR)) {
  1215                                 if (pattype.constValue() == null) {
  1216                                     log.error(c.pat.pos(),
  1217                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1218                                 } else if (labels.contains(pattype.constValue())) {
  1219                                     log.error(c.pos(), "duplicate.case.label");
  1220                                 } else {
  1221                                     labels.add(pattype.constValue());
  1225                     } else if (hasDefault) {
  1226                         log.error(c.pos(), "duplicate.default.label");
  1227                     } else {
  1228                         hasDefault = true;
  1230                     attribStats(c.stats, caseEnv);
  1231                 } finally {
  1232                     caseEnv.info.scope.leave();
  1233                     addVars(c.stats, switchEnv.info.scope);
  1237             result = null;
  1239         finally {
  1240             switchEnv.info.scope.leave();
  1243     // where
  1244         /** Add any variables defined in stats to the switch scope. */
  1245         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1246             for (;stats.nonEmpty(); stats = stats.tail) {
  1247                 JCTree stat = stats.head;
  1248                 if (stat.hasTag(VARDEF))
  1249                     switchScope.enter(((JCVariableDecl) stat).sym);
  1252     // where
  1253     /** Return the selected enumeration constant symbol, or null. */
  1254     private Symbol enumConstant(JCTree tree, Type enumType) {
  1255         if (!tree.hasTag(IDENT)) {
  1256             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1257             return syms.errSymbol;
  1259         JCIdent ident = (JCIdent)tree;
  1260         Name name = ident.name;
  1261         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1262              e.scope != null; e = e.next()) {
  1263             if (e.sym.kind == VAR) {
  1264                 Symbol s = ident.sym = e.sym;
  1265                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1266                 ident.type = s.type;
  1267                 return ((s.flags_field & Flags.ENUM) == 0)
  1268                     ? null : s;
  1271         return null;
  1274     public void visitSynchronized(JCSynchronized tree) {
  1275         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1276         attribStat(tree.body, env);
  1277         result = null;
  1280     public void visitTry(JCTry tree) {
  1281         // Create a new local environment with a local
  1282         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1283         try {
  1284             boolean isTryWithResource = tree.resources.nonEmpty();
  1285             // Create a nested environment for attributing the try block if needed
  1286             Env<AttrContext> tryEnv = isTryWithResource ?
  1287                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1288                 localEnv;
  1289             try {
  1290                 // Attribute resource declarations
  1291                 for (JCTree resource : tree.resources) {
  1292                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1293                         @Override
  1294                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1295                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1297                     };
  1298                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1299                     if (resource.hasTag(VARDEF)) {
  1300                         attribStat(resource, tryEnv);
  1301                         twrResult.check(resource, resource.type);
  1303                         //check that resource type cannot throw InterruptedException
  1304                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1306                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1307                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1308                     } else {
  1309                         attribTree(resource, tryEnv, twrResult);
  1312                 // Attribute body
  1313                 attribStat(tree.body, tryEnv);
  1314             } finally {
  1315                 if (isTryWithResource)
  1316                     tryEnv.info.scope.leave();
  1319             // Attribute catch clauses
  1320             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1321                 JCCatch c = l.head;
  1322                 Env<AttrContext> catchEnv =
  1323                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1324                 try {
  1325                     Type ctype = attribStat(c.param, catchEnv);
  1326                     if (TreeInfo.isMultiCatch(c)) {
  1327                         //multi-catch parameter is implicitly marked as final
  1328                         c.param.sym.flags_field |= FINAL | UNION;
  1330                     if (c.param.sym.kind == Kinds.VAR) {
  1331                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1333                     chk.checkType(c.param.vartype.pos(),
  1334                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1335                                   syms.throwableType);
  1336                     attribStat(c.body, catchEnv);
  1337                 } finally {
  1338                     catchEnv.info.scope.leave();
  1342             // Attribute finalizer
  1343             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1344             result = null;
  1346         finally {
  1347             localEnv.info.scope.leave();
  1351     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1352         if (!resource.isErroneous() &&
  1353             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1354             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1355             Symbol close = syms.noSymbol;
  1356             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1357             try {
  1358                 close = rs.resolveQualifiedMethod(pos,
  1359                         env,
  1360                         resource,
  1361                         names.close,
  1362                         List.<Type>nil(),
  1363                         List.<Type>nil());
  1365             finally {
  1366                 log.popDiagnosticHandler(discardHandler);
  1368             if (close.kind == MTH &&
  1369                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1370                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1371                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1372                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1377     public void visitConditional(JCConditional tree) {
  1378         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1380         tree.polyKind = (!allowPoly ||
  1381                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1382                 isBooleanOrNumeric(env, tree)) ?
  1383                 PolyKind.STANDALONE : PolyKind.POLY;
  1385         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1386             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1387             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1388             result = tree.type = types.createErrorType(resultInfo.pt);
  1389             return;
  1392         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1393                 unknownExprInfo :
  1394                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1395                     //this will use enclosing check context to check compatibility of
  1396                     //subexpression against target type; if we are in a method check context,
  1397                     //depending on whether boxing is allowed, we could have incompatibilities
  1398                     @Override
  1399                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1400                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1402                 });
  1404         Type truetype = attribTree(tree.truepart, env, condInfo);
  1405         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1407         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1408         if (condtype.constValue() != null &&
  1409                 truetype.constValue() != null &&
  1410                 falsetype.constValue() != null &&
  1411                 !owntype.hasTag(NONE)) {
  1412             //constant folding
  1413             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1415         result = check(tree, owntype, VAL, resultInfo);
  1417     //where
  1418         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1419             switch (tree.getTag()) {
  1420                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1421                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1422                               ((JCLiteral)tree).typetag == BOT;
  1423                 case LAMBDA: case REFERENCE: return false;
  1424                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1425                 case CONDEXPR:
  1426                     JCConditional condTree = (JCConditional)tree;
  1427                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1428                             isBooleanOrNumeric(env, condTree.falsepart);
  1429                 case APPLY:
  1430                     JCMethodInvocation speculativeMethodTree =
  1431                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1432                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1433                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1434                 case NEWCLASS:
  1435                     JCExpression className =
  1436                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1437                     JCExpression speculativeNewClassTree =
  1438                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1439                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1440                 default:
  1441                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1442                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1443                     return speculativeType.isPrimitive();
  1446         //where
  1447             TreeTranslator removeClassParams = new TreeTranslator() {
  1448                 @Override
  1449                 public void visitTypeApply(JCTypeApply tree) {
  1450                     result = translate(tree.clazz);
  1452             };
  1454         /** Compute the type of a conditional expression, after
  1455          *  checking that it exists.  See JLS 15.25. Does not take into
  1456          *  account the special case where condition and both arms
  1457          *  are constants.
  1459          *  @param pos      The source position to be used for error
  1460          *                  diagnostics.
  1461          *  @param thentype The type of the expression's then-part.
  1462          *  @param elsetype The type of the expression's else-part.
  1463          */
  1464         private Type condType(DiagnosticPosition pos,
  1465                                Type thentype, Type elsetype) {
  1466             // If same type, that is the result
  1467             if (types.isSameType(thentype, elsetype))
  1468                 return thentype.baseType();
  1470             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1471                 ? thentype : types.unboxedType(thentype);
  1472             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1473                 ? elsetype : types.unboxedType(elsetype);
  1475             // Otherwise, if both arms can be converted to a numeric
  1476             // type, return the least numeric type that fits both arms
  1477             // (i.e. return larger of the two, or return int if one
  1478             // arm is short, the other is char).
  1479             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1480                 // If one arm has an integer subrange type (i.e., byte,
  1481                 // short, or char), and the other is an integer constant
  1482                 // that fits into the subrange, return the subrange type.
  1483                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
  1484                     types.isAssignable(elseUnboxed, thenUnboxed))
  1485                     return thenUnboxed.baseType();
  1486                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
  1487                     types.isAssignable(thenUnboxed, elseUnboxed))
  1488                     return elseUnboxed.baseType();
  1490                 for (TypeTag tag : TypeTag.values()) {
  1491                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
  1492                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1493                     if (candidate != null &&
  1494                         candidate.isPrimitive() &&
  1495                         types.isSubtype(thenUnboxed, candidate) &&
  1496                         types.isSubtype(elseUnboxed, candidate))
  1497                         return candidate;
  1501             // Those were all the cases that could result in a primitive
  1502             if (allowBoxing) {
  1503                 if (thentype.isPrimitive())
  1504                     thentype = types.boxedClass(thentype).type;
  1505                 if (elsetype.isPrimitive())
  1506                     elsetype = types.boxedClass(elsetype).type;
  1509             if (types.isSubtype(thentype, elsetype))
  1510                 return elsetype.baseType();
  1511             if (types.isSubtype(elsetype, thentype))
  1512                 return thentype.baseType();
  1514             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1515                 log.error(pos, "neither.conditional.subtype",
  1516                           thentype, elsetype);
  1517                 return thentype.baseType();
  1520             // both are known to be reference types.  The result is
  1521             // lub(thentype,elsetype). This cannot fail, as it will
  1522             // always be possible to infer "Object" if nothing better.
  1523             return types.lub(thentype.baseType(), elsetype.baseType());
  1526     public void visitIf(JCIf tree) {
  1527         attribExpr(tree.cond, env, syms.booleanType);
  1528         attribStat(tree.thenpart, env);
  1529         if (tree.elsepart != null)
  1530             attribStat(tree.elsepart, env);
  1531         chk.checkEmptyIf(tree);
  1532         result = null;
  1535     public void visitExec(JCExpressionStatement tree) {
  1536         //a fresh environment is required for 292 inference to work properly ---
  1537         //see Infer.instantiatePolymorphicSignatureInstance()
  1538         Env<AttrContext> localEnv = env.dup(tree);
  1539         attribExpr(tree.expr, localEnv);
  1540         result = null;
  1543     public void visitBreak(JCBreak tree) {
  1544         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1545         result = null;
  1548     public void visitContinue(JCContinue tree) {
  1549         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1550         result = null;
  1552     //where
  1553         /** Return the target of a break or continue statement, if it exists,
  1554          *  report an error if not.
  1555          *  Note: The target of a labelled break or continue is the
  1556          *  (non-labelled) statement tree referred to by the label,
  1557          *  not the tree representing the labelled statement itself.
  1559          *  @param pos     The position to be used for error diagnostics
  1560          *  @param tag     The tag of the jump statement. This is either
  1561          *                 Tree.BREAK or Tree.CONTINUE.
  1562          *  @param label   The label of the jump statement, or null if no
  1563          *                 label is given.
  1564          *  @param env     The environment current at the jump statement.
  1565          */
  1566         private JCTree findJumpTarget(DiagnosticPosition pos,
  1567                                     JCTree.Tag tag,
  1568                                     Name label,
  1569                                     Env<AttrContext> env) {
  1570             // Search environments outwards from the point of jump.
  1571             Env<AttrContext> env1 = env;
  1572             LOOP:
  1573             while (env1 != null) {
  1574                 switch (env1.tree.getTag()) {
  1575                     case LABELLED:
  1576                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1577                         if (label == labelled.label) {
  1578                             // If jump is a continue, check that target is a loop.
  1579                             if (tag == CONTINUE) {
  1580                                 if (!labelled.body.hasTag(DOLOOP) &&
  1581                                         !labelled.body.hasTag(WHILELOOP) &&
  1582                                         !labelled.body.hasTag(FORLOOP) &&
  1583                                         !labelled.body.hasTag(FOREACHLOOP))
  1584                                     log.error(pos, "not.loop.label", label);
  1585                                 // Found labelled statement target, now go inwards
  1586                                 // to next non-labelled tree.
  1587                                 return TreeInfo.referencedStatement(labelled);
  1588                             } else {
  1589                                 return labelled;
  1592                         break;
  1593                     case DOLOOP:
  1594                     case WHILELOOP:
  1595                     case FORLOOP:
  1596                     case FOREACHLOOP:
  1597                         if (label == null) return env1.tree;
  1598                         break;
  1599                     case SWITCH:
  1600                         if (label == null && tag == BREAK) return env1.tree;
  1601                         break;
  1602                     case LAMBDA:
  1603                     case METHODDEF:
  1604                     case CLASSDEF:
  1605                         break LOOP;
  1606                     default:
  1608                 env1 = env1.next;
  1610             if (label != null)
  1611                 log.error(pos, "undef.label", label);
  1612             else if (tag == CONTINUE)
  1613                 log.error(pos, "cont.outside.loop");
  1614             else
  1615                 log.error(pos, "break.outside.switch.loop");
  1616             return null;
  1619     public void visitReturn(JCReturn tree) {
  1620         // Check that there is an enclosing method which is
  1621         // nested within than the enclosing class.
  1622         if (env.info.returnResult == null) {
  1623             log.error(tree.pos(), "ret.outside.meth");
  1624         } else {
  1625             // Attribute return expression, if it exists, and check that
  1626             // it conforms to result type of enclosing method.
  1627             if (tree.expr != null) {
  1628                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1629                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1630                               diags.fragment("unexpected.ret.val"));
  1632                 attribTree(tree.expr, env, env.info.returnResult);
  1633             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
  1634                 env.info.returnResult.checkContext.report(tree.pos(),
  1635                               diags.fragment("missing.ret.val"));
  1638         result = null;
  1641     public void visitThrow(JCThrow tree) {
  1642         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1643         if (allowPoly) {
  1644             chk.checkType(tree, owntype, syms.throwableType);
  1646         result = null;
  1649     public void visitAssert(JCAssert tree) {
  1650         attribExpr(tree.cond, env, syms.booleanType);
  1651         if (tree.detail != null) {
  1652             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1654         result = null;
  1657      /** Visitor method for method invocations.
  1658      *  NOTE: The method part of an application will have in its type field
  1659      *        the return type of the method, not the method's type itself!
  1660      */
  1661     public void visitApply(JCMethodInvocation tree) {
  1662         // The local environment of a method application is
  1663         // a new environment nested in the current one.
  1664         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1666         // The types of the actual method arguments.
  1667         List<Type> argtypes;
  1669         // The types of the actual method type arguments.
  1670         List<Type> typeargtypes = null;
  1672         Name methName = TreeInfo.name(tree.meth);
  1674         boolean isConstructorCall =
  1675             methName == names._this || methName == names._super;
  1677         if (isConstructorCall) {
  1678             // We are seeing a ...this(...) or ...super(...) call.
  1679             // Check that this is the first statement in a constructor.
  1680             if (checkFirstConstructorStat(tree, env)) {
  1682                 // Record the fact
  1683                 // that this is a constructor call (using isSelfCall).
  1684                 localEnv.info.isSelfCall = true;
  1686                 // Attribute arguments, yielding list of argument types.
  1687                 argtypes = attribArgs(tree.args, localEnv);
  1688                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1690                 // Variable `site' points to the class in which the called
  1691                 // constructor is defined.
  1692                 Type site = env.enclClass.sym.type;
  1693                 if (methName == names._super) {
  1694                     if (site == syms.objectType) {
  1695                         log.error(tree.meth.pos(), "no.superclass", site);
  1696                         site = types.createErrorType(syms.objectType);
  1697                     } else {
  1698                         site = types.supertype(site);
  1702                 if (site.hasTag(CLASS)) {
  1703                     Type encl = site.getEnclosingType();
  1704                     while (encl != null && encl.hasTag(TYPEVAR))
  1705                         encl = encl.getUpperBound();
  1706                     if (encl.hasTag(CLASS)) {
  1707                         // we are calling a nested class
  1709                         if (tree.meth.hasTag(SELECT)) {
  1710                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1712                             // We are seeing a prefixed call, of the form
  1713                             //     <expr>.super(...).
  1714                             // Check that the prefix expression conforms
  1715                             // to the outer instance type of the class.
  1716                             chk.checkRefType(qualifier.pos(),
  1717                                              attribExpr(qualifier, localEnv,
  1718                                                         encl));
  1719                         } else if (methName == names._super) {
  1720                             // qualifier omitted; check for existence
  1721                             // of an appropriate implicit qualifier.
  1722                             rs.resolveImplicitThis(tree.meth.pos(),
  1723                                                    localEnv, site, true);
  1725                     } else if (tree.meth.hasTag(SELECT)) {
  1726                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1727                                   site.tsym);
  1730                     // if we're calling a java.lang.Enum constructor,
  1731                     // prefix the implicit String and int parameters
  1732                     if (site.tsym == syms.enumSym && allowEnums)
  1733                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1735                     // Resolve the called constructor under the assumption
  1736                     // that we are referring to a superclass instance of the
  1737                     // current instance (JLS ???).
  1738                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1739                     localEnv.info.selectSuper = true;
  1740                     localEnv.info.pendingResolutionPhase = null;
  1741                     Symbol sym = rs.resolveConstructor(
  1742                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1743                     localEnv.info.selectSuper = selectSuperPrev;
  1745                     // Set method symbol to resolved constructor...
  1746                     TreeInfo.setSymbol(tree.meth, sym);
  1748                     // ...and check that it is legal in the current context.
  1749                     // (this will also set the tree's type)
  1750                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1751                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1753                 // Otherwise, `site' is an error type and we do nothing
  1755             result = tree.type = syms.voidType;
  1756         } else {
  1757             // Otherwise, we are seeing a regular method call.
  1758             // Attribute the arguments, yielding list of argument types, ...
  1759             argtypes = attribArgs(tree.args, localEnv);
  1760             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1762             // ... and attribute the method using as a prototype a methodtype
  1763             // whose formal argument types is exactly the list of actual
  1764             // arguments (this will also set the method symbol).
  1765             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1766             localEnv.info.pendingResolutionPhase = null;
  1767             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1769             // Compute the result type.
  1770             Type restype = mtype.getReturnType();
  1771             if (restype.hasTag(WILDCARD))
  1772                 throw new AssertionError(mtype);
  1774             Type qualifier = (tree.meth.hasTag(SELECT))
  1775                     ? ((JCFieldAccess) tree.meth).selected.type
  1776                     : env.enclClass.sym.type;
  1777             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1779             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1781             // Check that value of resulting type is admissible in the
  1782             // current context.  Also, capture the return type
  1783             result = check(tree, capture(restype), VAL, resultInfo);
  1785             if (localEnv.info.lastResolveVarargs())
  1786                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1788         chk.validate(tree.typeargs, localEnv);
  1790     //where
  1791         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1792             if (allowCovariantReturns &&
  1793                     methodName == names.clone &&
  1794                 types.isArray(qualifierType)) {
  1795                 // as a special case, array.clone() has a result that is
  1796                 // the same as static type of the array being cloned
  1797                 return qualifierType;
  1798             } else if (allowGenerics &&
  1799                     methodName == names.getClass &&
  1800                     argtypes.isEmpty()) {
  1801                 // as a special case, x.getClass() has type Class<? extends |X|>
  1802                 return new ClassType(restype.getEnclosingType(),
  1803                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1804                                                                BoundKind.EXTENDS,
  1805                                                                syms.boundClass)),
  1806                               restype.tsym);
  1807             } else {
  1808                 return restype;
  1812         /** Check that given application node appears as first statement
  1813          *  in a constructor call.
  1814          *  @param tree   The application node
  1815          *  @param env    The environment current at the application.
  1816          */
  1817         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1818             JCMethodDecl enclMethod = env.enclMethod;
  1819             if (enclMethod != null && enclMethod.name == names.init) {
  1820                 JCBlock body = enclMethod.body;
  1821                 if (body.stats.head.hasTag(EXEC) &&
  1822                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1823                     return true;
  1825             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1826                       TreeInfo.name(tree.meth));
  1827             return false;
  1830         /** Obtain a method type with given argument types.
  1831          */
  1832         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1833             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1834             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1837     public void visitNewClass(final JCNewClass tree) {
  1838         Type owntype = types.createErrorType(tree.type);
  1840         // The local environment of a class creation is
  1841         // a new environment nested in the current one.
  1842         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1844         // The anonymous inner class definition of the new expression,
  1845         // if one is defined by it.
  1846         JCClassDecl cdef = tree.def;
  1848         // If enclosing class is given, attribute it, and
  1849         // complete class name to be fully qualified
  1850         JCExpression clazz = tree.clazz; // Class field following new
  1851         JCExpression clazzid =          // Identifier in class field
  1852             (clazz.hasTag(TYPEAPPLY))
  1853             ? ((JCTypeApply) clazz).clazz
  1854             : clazz;
  1856         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1858         if (tree.encl != null) {
  1859             // We are seeing a qualified new, of the form
  1860             //    <expr>.new C <...> (...) ...
  1861             // In this case, we let clazz stand for the name of the
  1862             // allocated class C prefixed with the type of the qualifier
  1863             // expression, so that we can
  1864             // resolve it with standard techniques later. I.e., if
  1865             // <expr> has type T, then <expr>.new C <...> (...)
  1866             // yields a clazz T.C.
  1867             Type encltype = chk.checkRefType(tree.encl.pos(),
  1868                                              attribExpr(tree.encl, env));
  1869             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1870                                                  ((JCIdent) clazzid).name);
  1871             if (clazz.hasTag(TYPEAPPLY))
  1872                 clazz = make.at(tree.pos).
  1873                     TypeApply(clazzid1,
  1874                               ((JCTypeApply) clazz).arguments);
  1875             else
  1876                 clazz = clazzid1;
  1879         // Attribute clazz expression and store
  1880         // symbol + type back into the attributed tree.
  1881         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1882             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1883             attribType(clazz, env);
  1885         clazztype = chk.checkDiamond(tree, clazztype);
  1886         chk.validate(clazz, localEnv);
  1887         if (tree.encl != null) {
  1888             // We have to work in this case to store
  1889             // symbol + type back into the attributed tree.
  1890             tree.clazz.type = clazztype;
  1891             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1892             clazzid.type = ((JCIdent) clazzid).sym.type;
  1893             if (!clazztype.isErroneous()) {
  1894                 if (cdef != null && clazztype.tsym.isInterface()) {
  1895                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1896                 } else if (clazztype.tsym.isStatic()) {
  1897                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1900         } else if (!clazztype.tsym.isInterface() &&
  1901                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1902             // Check for the existence of an apropos outer instance
  1903             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1906         // Attribute constructor arguments.
  1907         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1908         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1910         // If we have made no mistakes in the class type...
  1911         if (clazztype.hasTag(CLASS)) {
  1912             // Enums may not be instantiated except implicitly
  1913             if (allowEnums &&
  1914                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1915                 (!env.tree.hasTag(VARDEF) ||
  1916                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1917                  ((JCVariableDecl) env.tree).init != tree))
  1918                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1919             // Check that class is not abstract
  1920             if (cdef == null &&
  1921                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1922                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1923                           clazztype.tsym);
  1924             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1925                 // Check that no constructor arguments are given to
  1926                 // anonymous classes implementing an interface
  1927                 if (!argtypes.isEmpty())
  1928                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1930                 if (!typeargtypes.isEmpty())
  1931                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1933                 // Error recovery: pretend no arguments were supplied.
  1934                 argtypes = List.nil();
  1935                 typeargtypes = List.nil();
  1936             } else if (TreeInfo.isDiamond(tree)) {
  1937                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  1938                             clazztype.tsym.type.getTypeArguments(),
  1939                             clazztype.tsym);
  1941                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  1942                 diamondEnv.info.selectSuper = cdef != null;
  1943                 diamondEnv.info.pendingResolutionPhase = null;
  1945                 //if the type of the instance creation expression is a class type
  1946                 //apply method resolution inference (JLS 15.12.2.7). The return type
  1947                 //of the resolved constructor will be a partially instantiated type
  1948                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  1949                             diamondEnv,
  1950                             site,
  1951                             argtypes,
  1952                             typeargtypes);
  1953                 tree.constructor = constructor.baseSymbol();
  1955                 final TypeSymbol csym = clazztype.tsym;
  1956                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  1957                     @Override
  1958                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  1959                         enclosingContext.report(tree.clazz,
  1960                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  1962                 });
  1963                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  1964                 constructorType = checkId(tree, site,
  1965                         constructor,
  1966                         diamondEnv,
  1967                         diamondResult);
  1969                 tree.clazz.type = types.createErrorType(clazztype);
  1970                 if (!constructorType.isErroneous()) {
  1971                     tree.clazz.type = clazztype = constructorType.getReturnType();
  1972                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  1974                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  1977             // Resolve the called constructor under the assumption
  1978             // that we are referring to a superclass instance of the
  1979             // current instance (JLS ???).
  1980             else {
  1981                 //the following code alters some of the fields in the current
  1982                 //AttrContext - hence, the current context must be dup'ed in
  1983                 //order to avoid downstream failures
  1984                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  1985                 rsEnv.info.selectSuper = cdef != null;
  1986                 rsEnv.info.pendingResolutionPhase = null;
  1987                 tree.constructor = rs.resolveConstructor(
  1988                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  1989                 if (cdef == null) { //do not check twice!
  1990                     tree.constructorType = checkId(tree,
  1991                             clazztype,
  1992                             tree.constructor,
  1993                             rsEnv,
  1994                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  1995                     if (rsEnv.info.lastResolveVarargs())
  1996                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  1998                 findDiamondIfNeeded(localEnv, tree, clazztype);
  2001             if (cdef != null) {
  2002                 // We are seeing an anonymous class instance creation.
  2003                 // In this case, the class instance creation
  2004                 // expression
  2005                 //
  2006                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2007                 //
  2008                 // is represented internally as
  2009                 //
  2010                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2011                 //
  2012                 // This expression is then *transformed* as follows:
  2013                 //
  2014                 // (1) add a STATIC flag to the class definition
  2015                 //     if the current environment is static
  2016                 // (2) add an extends or implements clause
  2017                 // (3) add a constructor.
  2018                 //
  2019                 // For instance, if C is a class, and ET is the type of E,
  2020                 // the expression
  2021                 //
  2022                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2023                 //
  2024                 // is translated to (where X is a fresh name and typarams is the
  2025                 // parameter list of the super constructor):
  2026                 //
  2027                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2028                 //     X extends C<typargs2> {
  2029                 //       <typarams> X(ET e, args) {
  2030                 //         e.<typeargs1>super(args)
  2031                 //       }
  2032                 //       ...
  2033                 //     }
  2034                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2036                 if (clazztype.tsym.isInterface()) {
  2037                     cdef.implementing = List.of(clazz);
  2038                 } else {
  2039                     cdef.extending = clazz;
  2042                 attribStat(cdef, localEnv);
  2044                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2046                 // If an outer instance is given,
  2047                 // prefix it to the constructor arguments
  2048                 // and delete it from the new expression
  2049                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2050                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2051                     argtypes = argtypes.prepend(tree.encl.type);
  2052                     tree.encl = null;
  2055                 // Reassign clazztype and recompute constructor.
  2056                 clazztype = cdef.sym.type;
  2057                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2058                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2059                 Assert.check(sym.kind < AMBIGUOUS);
  2060                 tree.constructor = sym;
  2061                 tree.constructorType = checkId(tree,
  2062                     clazztype,
  2063                     tree.constructor,
  2064                     localEnv,
  2065                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2068             if (tree.constructor != null && tree.constructor.kind == MTH)
  2069                 owntype = clazztype;
  2071         result = check(tree, owntype, VAL, resultInfo);
  2072         chk.validate(tree.typeargs, localEnv);
  2074     //where
  2075         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2076             if (tree.def == null &&
  2077                     !clazztype.isErroneous() &&
  2078                     clazztype.getTypeArguments().nonEmpty() &&
  2079                     findDiamonds) {
  2080                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2081                 List<JCExpression> prevTypeargs = ta.arguments;
  2082                 try {
  2083                     //create a 'fake' diamond AST node by removing type-argument trees
  2084                     ta.arguments = List.nil();
  2085                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2086                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2087                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2088                     if (!inferred.isErroneous() &&
  2089                         types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), types.noWarnings)) {
  2090                         String key = types.isSameType(clazztype, inferred) ?
  2091                             "diamond.redundant.args" :
  2092                             "diamond.redundant.args.1";
  2093                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2095                 } finally {
  2096                     ta.arguments = prevTypeargs;
  2101             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2102                 if (allowLambda &&
  2103                         identifyLambdaCandidate &&
  2104                         clazztype.hasTag(CLASS) &&
  2105                         !pt().hasTag(NONE) &&
  2106                         types.isFunctionalInterface(clazztype.tsym)) {
  2107                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2108                     int count = 0;
  2109                     boolean found = false;
  2110                     for (Symbol sym : csym.members().getElements()) {
  2111                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2112                                 sym.isConstructor()) continue;
  2113                         count++;
  2114                         if (sym.kind != MTH ||
  2115                                 !sym.name.equals(descriptor.name)) continue;
  2116                         Type mtype = types.memberType(clazztype, sym);
  2117                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2118                             found = true;
  2121                     if (found && count == 1) {
  2122                         log.note(tree.def, "potential.lambda.found");
  2127     /** Make an attributed null check tree.
  2128      */
  2129     public JCExpression makeNullCheck(JCExpression arg) {
  2130         // optimization: X.this is never null; skip null check
  2131         Name name = TreeInfo.name(arg);
  2132         if (name == names._this || name == names._super) return arg;
  2134         JCTree.Tag optag = NULLCHK;
  2135         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2136         tree.operator = syms.nullcheck;
  2137         tree.type = arg.type;
  2138         return tree;
  2141     public void visitNewArray(JCNewArray tree) {
  2142         Type owntype = types.createErrorType(tree.type);
  2143         Env<AttrContext> localEnv = env.dup(tree);
  2144         Type elemtype;
  2145         if (tree.elemtype != null) {
  2146             elemtype = attribType(tree.elemtype, localEnv);
  2147             chk.validate(tree.elemtype, localEnv);
  2148             owntype = elemtype;
  2149             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2150                 attribExpr(l.head, localEnv, syms.intType);
  2151                 owntype = new ArrayType(owntype, syms.arrayClass);
  2153         } else {
  2154             // we are seeing an untyped aggregate { ... }
  2155             // this is allowed only if the prototype is an array
  2156             if (pt().hasTag(ARRAY)) {
  2157                 elemtype = types.elemtype(pt());
  2158             } else {
  2159                 if (!pt().hasTag(ERROR)) {
  2160                     log.error(tree.pos(), "illegal.initializer.for.type",
  2161                               pt());
  2163                 elemtype = types.createErrorType(pt());
  2166         if (tree.elems != null) {
  2167             attribExprs(tree.elems, localEnv, elemtype);
  2168             owntype = new ArrayType(elemtype, syms.arrayClass);
  2170         if (!types.isReifiable(elemtype))
  2171             log.error(tree.pos(), "generic.array.creation");
  2172         result = check(tree, owntype, VAL, resultInfo);
  2175     /*
  2176      * A lambda expression can only be attributed when a target-type is available.
  2177      * In addition, if the target-type is that of a functional interface whose
  2178      * descriptor contains inference variables in argument position the lambda expression
  2179      * is 'stuck' (see DeferredAttr).
  2180      */
  2181     @Override
  2182     public void visitLambda(final JCLambda that) {
  2183         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2184             if (pt().hasTag(NONE)) {
  2185                 //lambda only allowed in assignment or method invocation/cast context
  2186                 log.error(that.pos(), "unexpected.lambda");
  2188             result = that.type = types.createErrorType(pt());
  2189             return;
  2191         //create an environment for attribution of the lambda expression
  2192         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2193         boolean needsRecovery =
  2194                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2195         try {
  2196             Type target = pt();
  2197             List<Type> explicitParamTypes = null;
  2198             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2199                 //attribute lambda parameters
  2200                 attribStats(that.params, localEnv);
  2201                 explicitParamTypes = TreeInfo.types(that.params);
  2202                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
  2205             Type lambdaType;
  2206             if (pt() != Type.recoveryType) {
  2207                 target = checkIntersectionTarget(that, target, resultInfo.checkContext);
  2208                 lambdaType = types.findDescriptorType(target);
  2209                 chk.checkFunctionalInterface(that, target);
  2210             } else {
  2211                 target = Type.recoveryType;
  2212                 lambdaType = fallbackDescriptorType(that);
  2215             setFunctionalInfo(that, pt(), lambdaType, resultInfo.checkContext.inferenceContext());
  2217             if (lambdaType.hasTag(FORALL)) {
  2218                 //lambda expression target desc cannot be a generic method
  2219                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2220                         lambdaType, kindName(target.tsym), target.tsym));
  2221                 result = that.type = types.createErrorType(pt());
  2222                 return;
  2225             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2226                 //add param type info in the AST
  2227                 List<Type> actuals = lambdaType.getParameterTypes();
  2228                 List<JCVariableDecl> params = that.params;
  2230                 boolean arityMismatch = false;
  2232                 while (params.nonEmpty()) {
  2233                     if (actuals.isEmpty()) {
  2234                         //not enough actuals to perform lambda parameter inference
  2235                         arityMismatch = true;
  2237                     //reset previously set info
  2238                     Type argType = arityMismatch ?
  2239                             syms.errType :
  2240                             actuals.head;
  2241                     params.head.vartype = make.Type(argType);
  2242                     params.head.sym = null;
  2243                     actuals = actuals.isEmpty() ?
  2244                             actuals :
  2245                             actuals.tail;
  2246                     params = params.tail;
  2249                 //attribute lambda parameters
  2250                 attribStats(that.params, localEnv);
  2252                 if (arityMismatch) {
  2253                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2254                         result = that.type = types.createErrorType(target);
  2255                         return;
  2259             //from this point on, no recovery is needed; if we are in assignment context
  2260             //we will be able to attribute the whole lambda body, regardless of errors;
  2261             //if we are in a 'check' method context, and the lambda is not compatible
  2262             //with the target-type, it will be recovered anyway in Attr.checkId
  2263             needsRecovery = false;
  2265             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2266                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2267                     new FunctionalReturnContext(resultInfo.checkContext);
  2269             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2270                 recoveryInfo :
  2271                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2272             localEnv.info.returnResult = bodyResultInfo;
  2274             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2275                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2276             } else {
  2277                 JCBlock body = (JCBlock)that.body;
  2278                 attribStats(body.stats, localEnv);
  2281             result = check(that, target, VAL, resultInfo);
  2283             boolean isSpeculativeRound =
  2284                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2286             postAttr(that);
  2287             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2289             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2291             if (!isSpeculativeRound) {
  2292                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
  2294             result = check(that, target, VAL, resultInfo);
  2295         } catch (Types.FunctionDescriptorLookupError ex) {
  2296             JCDiagnostic cause = ex.getDiagnostic();
  2297             resultInfo.checkContext.report(that, cause);
  2298             result = that.type = types.createErrorType(pt());
  2299             return;
  2300         } finally {
  2301             localEnv.info.scope.leave();
  2302             if (needsRecovery) {
  2303                 attribTree(that, env, recoveryInfo);
  2308     private Type checkIntersectionTarget(DiagnosticPosition pos, Type pt, CheckContext checkContext) {
  2309         if (pt != Type.recoveryType && pt.isCompound()) {
  2310             IntersectionClassType ict = (IntersectionClassType)pt;
  2311             List<Type> bounds = ict.allInterfaces ?
  2312                     ict.getComponents().tail :
  2313                     ict.getComponents();
  2314             types.findDescriptorType(bounds.head); //propagate exception outwards!
  2315             for (Type bound : bounds.tail) {
  2316                 if (!types.isMarkerInterface(bound)) {
  2317                     checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound));
  2320             //for now (translation doesn't support intersection types)
  2321             return bounds.head;
  2322         } else {
  2323             return pt;
  2326     //where
  2327         private Type fallbackDescriptorType(JCExpression tree) {
  2328             switch (tree.getTag()) {
  2329                 case LAMBDA:
  2330                     JCLambda lambda = (JCLambda)tree;
  2331                     List<Type> argtypes = List.nil();
  2332                     for (JCVariableDecl param : lambda.params) {
  2333                         argtypes = param.vartype != null ?
  2334                                 argtypes.append(param.vartype.type) :
  2335                                 argtypes.append(syms.errType);
  2337                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2338                 case REFERENCE:
  2339                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2340                 default:
  2341                     Assert.error("Cannot get here!");
  2343             return null;
  2346         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final Type... ts) {
  2347             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2350         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final List<Type> ts) {
  2351             if (inferenceContext.free(ts)) {
  2352                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2353                     @Override
  2354                     public void typesInferred(InferenceContext inferenceContext) {
  2355                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts, types));
  2357                 });
  2358             } else {
  2359                 for (Type t : ts) {
  2360                     rs.checkAccessibleType(env, t);
  2365         /**
  2366          * Lambda/method reference have a special check context that ensures
  2367          * that i.e. a lambda return type is compatible with the expected
  2368          * type according to both the inherited context and the assignment
  2369          * context.
  2370          */
  2371         class FunctionalReturnContext extends Check.NestedCheckContext {
  2373             FunctionalReturnContext(CheckContext enclosingContext) {
  2374                 super(enclosingContext);
  2377             @Override
  2378             public boolean compatible(Type found, Type req, Warner warn) {
  2379                 //return type must be compatible in both current context and assignment context
  2380                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req, types), warn);
  2383             @Override
  2384             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2385                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2389         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2391             JCExpression expr;
  2393             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2394                 super(enclosingContext);
  2395                 this.expr = expr;
  2398             @Override
  2399             public boolean compatible(Type found, Type req, Warner warn) {
  2400                 //a void return is compatible with an expression statement lambda
  2401                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2402                         super.compatible(found, req, warn);
  2406         /**
  2407         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2408         * are compatible with the expected functional interface descriptor. This means that:
  2409         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2410         * types must be compatible with the return type of the expected descriptor;
  2411         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2412         * descriptor.
  2413         */
  2414         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2415             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2417             //return values have already been checked - but if lambda has no return
  2418             //values, we must ensure that void/value compatibility is correct;
  2419             //this amounts at checking that, if a lambda body can complete normally,
  2420             //the descriptor's return type must be void
  2421             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2422                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2423                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2424                         diags.fragment("missing.ret.val", returnType)));
  2427             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types);
  2428             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2429                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2432             if (!speculativeAttr) {
  2433                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2434                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2435                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2440         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2441             Env<AttrContext> lambdaEnv;
  2442             Symbol owner = env.info.scope.owner;
  2443             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2444                 //field initializer
  2445                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2446                 lambdaEnv.info.scope.owner =
  2447                     new MethodSymbol(0, names.empty, null,
  2448                                      env.info.scope.owner);
  2449             } else {
  2450                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2452             return lambdaEnv;
  2455     @Override
  2456     public void visitReference(final JCMemberReference that) {
  2457         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2458             if (pt().hasTag(NONE)) {
  2459                 //method reference only allowed in assignment or method invocation/cast context
  2460                 log.error(that.pos(), "unexpected.mref");
  2462             result = that.type = types.createErrorType(pt());
  2463             return;
  2465         final Env<AttrContext> localEnv = env.dup(that);
  2466         try {
  2467             //attribute member reference qualifier - if this is a constructor
  2468             //reference, the expected kind must be a type
  2469             Type exprType = attribTree(that.expr,
  2470                     env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType));
  2472             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2473                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2476             if (exprType.isErroneous()) {
  2477                 //if the qualifier expression contains problems,
  2478                 //give up atttribution of method reference
  2479                 result = that.type = exprType;
  2480                 return;
  2483             if (TreeInfo.isStaticSelector(that.expr, names) &&
  2484                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
  2485                 //if the qualifier is a type, validate it
  2486                 chk.validate(that.expr, env);
  2489             //attrib type-arguments
  2490             List<Type> typeargtypes = List.nil();
  2491             if (that.typeargs != null) {
  2492                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2495             Type target;
  2496             Type desc;
  2497             if (pt() != Type.recoveryType) {
  2498                 target = checkIntersectionTarget(that, pt(), resultInfo.checkContext);
  2499                 desc = types.findDescriptorType(target);
  2500                 chk.checkFunctionalInterface(that, target);
  2501             } else {
  2502                 target = Type.recoveryType;
  2503                 desc = fallbackDescriptorType(that);
  2506             setFunctionalInfo(that, pt(), desc, resultInfo.checkContext.inferenceContext());
  2507             List<Type> argtypes = desc.getParameterTypes();
  2509             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
  2510                     that.expr.type, that.name, argtypes, typeargtypes, true);
  2512             Symbol refSym = refResult.fst;
  2513             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2515             if (refSym.kind != MTH) {
  2516                 boolean targetError;
  2517                 switch (refSym.kind) {
  2518                     case ABSENT_MTH:
  2519                         targetError = false;
  2520                         break;
  2521                     case WRONG_MTH:
  2522                     case WRONG_MTHS:
  2523                     case AMBIGUOUS:
  2524                     case HIDDEN:
  2525                     case STATICERR:
  2526                     case MISSING_ENCL:
  2527                         targetError = true;
  2528                         break;
  2529                     default:
  2530                         Assert.error("unexpected result kind " + refSym.kind);
  2531                         targetError = false;
  2534                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2535                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2537                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2538                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2540                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2541                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2543                 if (targetError && target == Type.recoveryType) {
  2544                     //a target error doesn't make sense during recovery stage
  2545                     //as we don't know what actual parameter types are
  2546                     result = that.type = target;
  2547                     return;
  2548                 } else {
  2549                     if (targetError) {
  2550                         resultInfo.checkContext.report(that, diag);
  2551                     } else {
  2552                         log.report(diag);
  2554                     result = that.type = types.createErrorType(target);
  2555                     return;
  2559             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2560                 if (refSym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2561                         exprType.getTypeArguments().nonEmpty()) {
  2562                     //static ref with class type-args
  2563                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2564                             diags.fragment("static.mref.with.targs"));
  2565                     result = that.type = types.createErrorType(target);
  2566                     return;
  2569                 if (refSym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2570                         !lookupHelper.referenceKind(refSym).isUnbound()) {
  2571                     //no static bound mrefs
  2572                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2573                             diags.fragment("static.bound.mref"));
  2574                     result = that.type = types.createErrorType(target);
  2575                     return;
  2579             if (desc.getReturnType() == Type.recoveryType) {
  2580                 // stop here
  2581                 result = that.type = target;
  2582                 return;
  2585             that.sym = refSym.baseSymbol();
  2586             that.kind = lookupHelper.referenceKind(that.sym);
  2588             ResultInfo checkInfo =
  2589                     resultInfo.dup(newMethodTemplate(
  2590                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2591                         lookupHelper.argtypes,
  2592                         typeargtypes));
  2594             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2596             if (!refType.isErroneous()) {
  2597                 refType = types.createMethodTypeWithReturn(refType,
  2598                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2601             //go ahead with standard method reference compatibility check - note that param check
  2602             //is a no-op (as this has been taken care during method applicability)
  2603             boolean isSpeculativeRound =
  2604                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2605             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2606             if (!isSpeculativeRound) {
  2607                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2609             result = check(that, target, VAL, resultInfo);
  2610         } catch (Types.FunctionDescriptorLookupError ex) {
  2611             JCDiagnostic cause = ex.getDiagnostic();
  2612             resultInfo.checkContext.report(that, cause);
  2613             result = that.type = types.createErrorType(pt());
  2614             return;
  2618     @SuppressWarnings("fallthrough")
  2619     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2620         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2622         Type resType;
  2623         switch (tree.getMode()) {
  2624             case NEW:
  2625                 if (!tree.expr.type.isRaw()) {
  2626                     resType = tree.expr.type;
  2627                     break;
  2629             default:
  2630                 resType = refType.getReturnType();
  2633         Type incompatibleReturnType = resType;
  2635         if (returnType.hasTag(VOID)) {
  2636             incompatibleReturnType = null;
  2639         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2640             if (resType.isErroneous() ||
  2641                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2642                 incompatibleReturnType = null;
  2646         if (incompatibleReturnType != null) {
  2647             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2648                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2651         if (!speculativeAttr) {
  2652             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2653             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2654                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2659     /**
  2660      * Set functional type info on the underlying AST. Note: as the target descriptor
  2661      * might contain inference variables, we might need to register an hook in the
  2662      * current inference context.
  2663      */
  2664     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt, final Type descriptorType, InferenceContext inferenceContext) {
  2665         if (inferenceContext.free(descriptorType)) {
  2666             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2667                 public void typesInferred(InferenceContext inferenceContext) {
  2668                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType, types), inferenceContext);
  2670             });
  2671         } else {
  2672             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
  2673             if (pt.hasTag(CLASS)) {
  2674                 if (pt.isCompound()) {
  2675                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2676                         targets.append(t.tsym);
  2678                 } else {
  2679                     targets.append(pt.tsym);
  2682             fExpr.targets = targets.toList();
  2683             fExpr.descriptorType = descriptorType;
  2687     public void visitParens(JCParens tree) {
  2688         Type owntype = attribTree(tree.expr, env, resultInfo);
  2689         result = check(tree, owntype, pkind(), resultInfo);
  2690         Symbol sym = TreeInfo.symbol(tree);
  2691         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2692             log.error(tree.pos(), "illegal.start.of.type");
  2695     public void visitAssign(JCAssign tree) {
  2696         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2697         Type capturedType = capture(owntype);
  2698         attribExpr(tree.rhs, env, owntype);
  2699         result = check(tree, capturedType, VAL, resultInfo);
  2702     public void visitAssignop(JCAssignOp tree) {
  2703         // Attribute arguments.
  2704         Type owntype = attribTree(tree.lhs, env, varInfo);
  2705         Type operand = attribExpr(tree.rhs, env);
  2706         // Find operator.
  2707         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2708             tree.pos(), tree.getTag().noAssignOp(), env,
  2709             owntype, operand);
  2711         if (operator.kind == MTH &&
  2712                 !owntype.isErroneous() &&
  2713                 !operand.isErroneous()) {
  2714             chk.checkOperator(tree.pos(),
  2715                               (OperatorSymbol)operator,
  2716                               tree.getTag().noAssignOp(),
  2717                               owntype,
  2718                               operand);
  2719             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2720             chk.checkCastable(tree.rhs.pos(),
  2721                               operator.type.getReturnType(),
  2722                               owntype);
  2724         result = check(tree, owntype, VAL, resultInfo);
  2727     public void visitUnary(JCUnary tree) {
  2728         // Attribute arguments.
  2729         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2730             ? attribTree(tree.arg, env, varInfo)
  2731             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2733         // Find operator.
  2734         Symbol operator = tree.operator =
  2735             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2737         Type owntype = types.createErrorType(tree.type);
  2738         if (operator.kind == MTH &&
  2739                 !argtype.isErroneous()) {
  2740             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2741                 ? tree.arg.type
  2742                 : operator.type.getReturnType();
  2743             int opc = ((OperatorSymbol)operator).opcode;
  2745             // If the argument is constant, fold it.
  2746             if (argtype.constValue() != null) {
  2747                 Type ctype = cfolder.fold1(opc, argtype);
  2748                 if (ctype != null) {
  2749                     owntype = cfolder.coerce(ctype, owntype);
  2751                     // Remove constant types from arguments to
  2752                     // conserve space. The parser will fold concatenations
  2753                     // of string literals; the code here also
  2754                     // gets rid of intermediate results when some of the
  2755                     // operands are constant identifiers.
  2756                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2757                         tree.arg.type = syms.stringType;
  2762         result = check(tree, owntype, VAL, resultInfo);
  2765     public void visitBinary(JCBinary tree) {
  2766         // Attribute arguments.
  2767         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2768         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2770         // Find operator.
  2771         Symbol operator = tree.operator =
  2772             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2774         Type owntype = types.createErrorType(tree.type);
  2775         if (operator.kind == MTH &&
  2776                 !left.isErroneous() &&
  2777                 !right.isErroneous()) {
  2778             owntype = operator.type.getReturnType();
  2779             int opc = chk.checkOperator(tree.lhs.pos(),
  2780                                         (OperatorSymbol)operator,
  2781                                         tree.getTag(),
  2782                                         left,
  2783                                         right);
  2785             // If both arguments are constants, fold them.
  2786             if (left.constValue() != null && right.constValue() != null) {
  2787                 Type ctype = cfolder.fold2(opc, left, right);
  2788                 if (ctype != null) {
  2789                     owntype = cfolder.coerce(ctype, owntype);
  2791                     // Remove constant types from arguments to
  2792                     // conserve space. The parser will fold concatenations
  2793                     // of string literals; the code here also
  2794                     // gets rid of intermediate results when some of the
  2795                     // operands are constant identifiers.
  2796                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2797                         tree.lhs.type = syms.stringType;
  2799                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2800                         tree.rhs.type = syms.stringType;
  2805             // Check that argument types of a reference ==, != are
  2806             // castable to each other, (JLS???).
  2807             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2808                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2809                     log.error(tree.pos(), "incomparable.types", left, right);
  2813             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2815         result = check(tree, owntype, VAL, resultInfo);
  2818     public void visitTypeCast(final JCTypeCast tree) {
  2819         Type clazztype = attribType(tree.clazz, env);
  2820         chk.validate(tree.clazz, env, false);
  2821         //a fresh environment is required for 292 inference to work properly ---
  2822         //see Infer.instantiatePolymorphicSignatureInstance()
  2823         Env<AttrContext> localEnv = env.dup(tree);
  2824         //should we propagate the target type?
  2825         final ResultInfo castInfo;
  2826         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
  2827         if (isPoly) {
  2828             //expression is a poly - we need to propagate target type info
  2829             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  2830                 @Override
  2831                 public boolean compatible(Type found, Type req, Warner warn) {
  2832                     return types.isCastable(found, req, warn);
  2834             });
  2835         } else {
  2836             //standalone cast - target-type info is not propagated
  2837             castInfo = unknownExprInfo;
  2839         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  2840         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2841         if (exprtype.constValue() != null)
  2842             owntype = cfolder.coerce(exprtype, owntype);
  2843         result = check(tree, capture(owntype), VAL, resultInfo);
  2844         if (!isPoly)
  2845             chk.checkRedundantCast(localEnv, tree);
  2848     public void visitTypeTest(JCInstanceOf tree) {
  2849         Type exprtype = chk.checkNullOrRefType(
  2850             tree.expr.pos(), attribExpr(tree.expr, env));
  2851         Type clazztype = chk.checkReifiableReferenceType(
  2852             tree.clazz.pos(), attribType(tree.clazz, env));
  2853         chk.validate(tree.clazz, env, false);
  2854         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2855         result = check(tree, syms.booleanType, VAL, resultInfo);
  2858     public void visitIndexed(JCArrayAccess tree) {
  2859         Type owntype = types.createErrorType(tree.type);
  2860         Type atype = attribExpr(tree.indexed, env);
  2861         attribExpr(tree.index, env, syms.intType);
  2862         if (types.isArray(atype))
  2863             owntype = types.elemtype(atype);
  2864         else if (!atype.hasTag(ERROR))
  2865             log.error(tree.pos(), "array.req.but.found", atype);
  2866         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  2867         result = check(tree, owntype, VAR, resultInfo);
  2870     public void visitIdent(JCIdent tree) {
  2871         Symbol sym;
  2873         // Find symbol
  2874         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  2875             // If we are looking for a method, the prototype `pt' will be a
  2876             // method type with the type of the call's arguments as parameters.
  2877             env.info.pendingResolutionPhase = null;
  2878             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  2879         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2880             sym = tree.sym;
  2881         } else {
  2882             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  2884         tree.sym = sym;
  2886         // (1) Also find the environment current for the class where
  2887         //     sym is defined (`symEnv').
  2888         // Only for pre-tiger versions (1.4 and earlier):
  2889         // (2) Also determine whether we access symbol out of an anonymous
  2890         //     class in a this or super call.  This is illegal for instance
  2891         //     members since such classes don't carry a this$n link.
  2892         //     (`noOuterThisPath').
  2893         Env<AttrContext> symEnv = env;
  2894         boolean noOuterThisPath = false;
  2895         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2896             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2897             sym.owner.kind == TYP &&
  2898             tree.name != names._this && tree.name != names._super) {
  2900             // Find environment in which identifier is defined.
  2901             while (symEnv.outer != null &&
  2902                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2903                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2904                     noOuterThisPath = !allowAnonOuterThis;
  2905                 symEnv = symEnv.outer;
  2909         // If symbol is a variable, ...
  2910         if (sym.kind == VAR) {
  2911             VarSymbol v = (VarSymbol)sym;
  2913             // ..., evaluate its initializer, if it has one, and check for
  2914             // illegal forward reference.
  2915             checkInit(tree, env, v, false);
  2917             // If we are expecting a variable (as opposed to a value), check
  2918             // that the variable is assignable in the current environment.
  2919             if (pkind() == VAR)
  2920                 checkAssignable(tree.pos(), v, null, env);
  2923         // In a constructor body,
  2924         // if symbol is a field or instance method, check that it is
  2925         // not accessed before the supertype constructor is called.
  2926         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2927             (sym.kind & (VAR | MTH)) != 0 &&
  2928             sym.owner.kind == TYP &&
  2929             (sym.flags() & STATIC) == 0) {
  2930             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2932         Env<AttrContext> env1 = env;
  2933         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2934             // If the found symbol is inaccessible, then it is
  2935             // accessed through an enclosing instance.  Locate this
  2936             // enclosing instance:
  2937             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2938                 env1 = env1.outer;
  2940         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  2943     public void visitSelect(JCFieldAccess tree) {
  2944         // Determine the expected kind of the qualifier expression.
  2945         int skind = 0;
  2946         if (tree.name == names._this || tree.name == names._super ||
  2947             tree.name == names._class)
  2949             skind = TYP;
  2950         } else {
  2951             if ((pkind() & PCK) != 0) skind = skind | PCK;
  2952             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  2953             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2956         // Attribute the qualifier expression, and determine its symbol (if any).
  2957         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  2958         if ((pkind() & (PCK | TYP)) == 0)
  2959             site = capture(site); // Capture field access
  2961         // don't allow T.class T[].class, etc
  2962         if (skind == TYP) {
  2963             Type elt = site;
  2964             while (elt.hasTag(ARRAY))
  2965                 elt = ((ArrayType)elt).elemtype;
  2966             if (elt.hasTag(TYPEVAR)) {
  2967                 log.error(tree.pos(), "type.var.cant.be.deref");
  2968                 result = types.createErrorType(tree.type);
  2969                 return;
  2973         // If qualifier symbol is a type or `super', assert `selectSuper'
  2974         // for the selection. This is relevant for determining whether
  2975         // protected symbols are accessible.
  2976         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2977         boolean selectSuperPrev = env.info.selectSuper;
  2978         env.info.selectSuper =
  2979             sitesym != null &&
  2980             sitesym.name == names._super;
  2982         // Determine the symbol represented by the selection.
  2983         env.info.pendingResolutionPhase = null;
  2984         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  2985         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  2986             site = capture(site);
  2987             sym = selectSym(tree, sitesym, site, env, resultInfo);
  2989         boolean varArgs = env.info.lastResolveVarargs();
  2990         tree.sym = sym;
  2992         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  2993             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  2994             site = capture(site);
  2997         // If that symbol is a variable, ...
  2998         if (sym.kind == VAR) {
  2999             VarSymbol v = (VarSymbol)sym;
  3001             // ..., evaluate its initializer, if it has one, and check for
  3002             // illegal forward reference.
  3003             checkInit(tree, env, v, true);
  3005             // If we are expecting a variable (as opposed to a value), check
  3006             // that the variable is assignable in the current environment.
  3007             if (pkind() == VAR)
  3008                 checkAssignable(tree.pos(), v, tree.selected, env);
  3011         if (sitesym != null &&
  3012                 sitesym.kind == VAR &&
  3013                 ((VarSymbol)sitesym).isResourceVariable() &&
  3014                 sym.kind == MTH &&
  3015                 sym.name.equals(names.close) &&
  3016                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3017                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3018             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3021         // Disallow selecting a type from an expression
  3022         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3023             tree.type = check(tree.selected, pt(),
  3024                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3027         if (isType(sitesym)) {
  3028             if (sym.name == names._this) {
  3029                 // If `C' is the currently compiled class, check that
  3030                 // C.this' does not appear in a call to a super(...)
  3031                 if (env.info.isSelfCall &&
  3032                     site.tsym == env.enclClass.sym) {
  3033                     chk.earlyRefError(tree.pos(), sym);
  3035             } else {
  3036                 // Check if type-qualified fields or methods are static (JLS)
  3037                 if ((sym.flags() & STATIC) == 0 &&
  3038                     !env.next.tree.hasTag(REFERENCE) &&
  3039                     sym.name != names._super &&
  3040                     (sym.kind == VAR || sym.kind == MTH)) {
  3041                     rs.accessBase(rs.new StaticError(sym),
  3042                               tree.pos(), site, sym.name, true);
  3045         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3046             // If the qualified item is not a type and the selected item is static, report
  3047             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3048             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3051         // If we are selecting an instance member via a `super', ...
  3052         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3054             // Check that super-qualified symbols are not abstract (JLS)
  3055             rs.checkNonAbstract(tree.pos(), sym);
  3057             if (site.isRaw()) {
  3058                 // Determine argument types for site.
  3059                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3060                 if (site1 != null) site = site1;
  3064         env.info.selectSuper = selectSuperPrev;
  3065         result = checkId(tree, site, sym, env, resultInfo);
  3067     //where
  3068         /** Determine symbol referenced by a Select expression,
  3070          *  @param tree   The select tree.
  3071          *  @param site   The type of the selected expression,
  3072          *  @param env    The current environment.
  3073          *  @param resultInfo The current result.
  3074          */
  3075         private Symbol selectSym(JCFieldAccess tree,
  3076                                  Symbol location,
  3077                                  Type site,
  3078                                  Env<AttrContext> env,
  3079                                  ResultInfo resultInfo) {
  3080             DiagnosticPosition pos = tree.pos();
  3081             Name name = tree.name;
  3082             switch (site.getTag()) {
  3083             case PACKAGE:
  3084                 return rs.accessBase(
  3085                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3086                     pos, location, site, name, true);
  3087             case ARRAY:
  3088             case CLASS:
  3089                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3090                     return rs.resolveQualifiedMethod(
  3091                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3092                 } else if (name == names._this || name == names._super) {
  3093                     return rs.resolveSelf(pos, env, site.tsym, name);
  3094                 } else if (name == names._class) {
  3095                     // In this case, we have already made sure in
  3096                     // visitSelect that qualifier expression is a type.
  3097                     Type t = syms.classType;
  3098                     List<Type> typeargs = allowGenerics
  3099                         ? List.of(types.erasure(site))
  3100                         : List.<Type>nil();
  3101                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3102                     return new VarSymbol(
  3103                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3104                 } else {
  3105                     // We are seeing a plain identifier as selector.
  3106                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3107                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3108                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3109                     return sym;
  3111             case WILDCARD:
  3112                 throw new AssertionError(tree);
  3113             case TYPEVAR:
  3114                 // Normally, site.getUpperBound() shouldn't be null.
  3115                 // It should only happen during memberEnter/attribBase
  3116                 // when determining the super type which *must* beac
  3117                 // done before attributing the type variables.  In
  3118                 // other words, we are seeing this illegal program:
  3119                 // class B<T> extends A<T.foo> {}
  3120                 Symbol sym = (site.getUpperBound() != null)
  3121                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3122                     : null;
  3123                 if (sym == null) {
  3124                     log.error(pos, "type.var.cant.be.deref");
  3125                     return syms.errSymbol;
  3126                 } else {
  3127                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3128                         rs.new AccessError(env, site, sym) :
  3129                                 sym;
  3130                     rs.accessBase(sym2, pos, location, site, name, true);
  3131                     return sym;
  3133             case ERROR:
  3134                 // preserve identifier names through errors
  3135                 return types.createErrorType(name, site.tsym, site).tsym;
  3136             default:
  3137                 // The qualifier expression is of a primitive type -- only
  3138                 // .class is allowed for these.
  3139                 if (name == names._class) {
  3140                     // In this case, we have already made sure in Select that
  3141                     // qualifier expression is a type.
  3142                     Type t = syms.classType;
  3143                     Type arg = types.boxedClass(site).type;
  3144                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3145                     return new VarSymbol(
  3146                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3147                 } else {
  3148                     log.error(pos, "cant.deref", site);
  3149                     return syms.errSymbol;
  3154         /** Determine type of identifier or select expression and check that
  3155          *  (1) the referenced symbol is not deprecated
  3156          *  (2) the symbol's type is safe (@see checkSafe)
  3157          *  (3) if symbol is a variable, check that its type and kind are
  3158          *      compatible with the prototype and protokind.
  3159          *  (4) if symbol is an instance field of a raw type,
  3160          *      which is being assigned to, issue an unchecked warning if its
  3161          *      type changes under erasure.
  3162          *  (5) if symbol is an instance method of a raw type, issue an
  3163          *      unchecked warning if its argument types change under erasure.
  3164          *  If checks succeed:
  3165          *    If symbol is a constant, return its constant type
  3166          *    else if symbol is a method, return its result type
  3167          *    otherwise return its type.
  3168          *  Otherwise return errType.
  3170          *  @param tree       The syntax tree representing the identifier
  3171          *  @param site       If this is a select, the type of the selected
  3172          *                    expression, otherwise the type of the current class.
  3173          *  @param sym        The symbol representing the identifier.
  3174          *  @param env        The current environment.
  3175          *  @param resultInfo    The expected result
  3176          */
  3177         Type checkId(JCTree tree,
  3178                      Type site,
  3179                      Symbol sym,
  3180                      Env<AttrContext> env,
  3181                      ResultInfo resultInfo) {
  3182             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3183                     checkMethodId(tree, site, sym, env, resultInfo) :
  3184                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3187         Type checkMethodId(JCTree tree,
  3188                      Type site,
  3189                      Symbol sym,
  3190                      Env<AttrContext> env,
  3191                      ResultInfo resultInfo) {
  3192             boolean isPolymorhicSignature =
  3193                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
  3194             return isPolymorhicSignature ?
  3195                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3196                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3199         Type checkSigPolyMethodId(JCTree tree,
  3200                      Type site,
  3201                      Symbol sym,
  3202                      Env<AttrContext> env,
  3203                      ResultInfo resultInfo) {
  3204             //recover original symbol for signature polymorphic methods
  3205             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3206             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3207             return sym.type;
  3210         Type checkMethodIdInternal(JCTree tree,
  3211                      Type site,
  3212                      Symbol sym,
  3213                      Env<AttrContext> env,
  3214                      ResultInfo resultInfo) {
  3215             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3216             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3217             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3218             return owntype;
  3221         Type checkIdInternal(JCTree tree,
  3222                      Type site,
  3223                      Symbol sym,
  3224                      Type pt,
  3225                      Env<AttrContext> env,
  3226                      ResultInfo resultInfo) {
  3227             if (pt.isErroneous()) {
  3228                 return types.createErrorType(site);
  3230             Type owntype; // The computed type of this identifier occurrence.
  3231             switch (sym.kind) {
  3232             case TYP:
  3233                 // For types, the computed type equals the symbol's type,
  3234                 // except for two situations:
  3235                 owntype = sym.type;
  3236                 if (owntype.hasTag(CLASS)) {
  3237                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3238                     Type ownOuter = owntype.getEnclosingType();
  3240                     // (a) If the symbol's type is parameterized, erase it
  3241                     // because no type parameters were given.
  3242                     // We recover generic outer type later in visitTypeApply.
  3243                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3244                         owntype = types.erasure(owntype);
  3247                     // (b) If the symbol's type is an inner class, then
  3248                     // we have to interpret its outer type as a superclass
  3249                     // of the site type. Example:
  3250                     //
  3251                     // class Tree<A> { class Visitor { ... } }
  3252                     // class PointTree extends Tree<Point> { ... }
  3253                     // ...PointTree.Visitor...
  3254                     //
  3255                     // Then the type of the last expression above is
  3256                     // Tree<Point>.Visitor.
  3257                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3258                         Type normOuter = site;
  3259                         if (normOuter.hasTag(CLASS))
  3260                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3261                         if (normOuter == null) // perhaps from an import
  3262                             normOuter = types.erasure(ownOuter);
  3263                         if (normOuter != ownOuter)
  3264                             owntype = new ClassType(
  3265                                 normOuter, List.<Type>nil(), owntype.tsym);
  3268                 break;
  3269             case VAR:
  3270                 VarSymbol v = (VarSymbol)sym;
  3271                 // Test (4): if symbol is an instance field of a raw type,
  3272                 // which is being assigned to, issue an unchecked warning if
  3273                 // its type changes under erasure.
  3274                 if (allowGenerics &&
  3275                     resultInfo.pkind == VAR &&
  3276                     v.owner.kind == TYP &&
  3277                     (v.flags() & STATIC) == 0 &&
  3278                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3279                     Type s = types.asOuterSuper(site, v.owner);
  3280                     if (s != null &&
  3281                         s.isRaw() &&
  3282                         !types.isSameType(v.type, v.erasure(types))) {
  3283                         chk.warnUnchecked(tree.pos(),
  3284                                           "unchecked.assign.to.var",
  3285                                           v, s);
  3288                 // The computed type of a variable is the type of the
  3289                 // variable symbol, taken as a member of the site type.
  3290                 owntype = (sym.owner.kind == TYP &&
  3291                            sym.name != names._this && sym.name != names._super)
  3292                     ? types.memberType(site, sym)
  3293                     : sym.type;
  3295                 // If the variable is a constant, record constant value in
  3296                 // computed type.
  3297                 if (v.getConstValue() != null && isStaticReference(tree))
  3298                     owntype = owntype.constType(v.getConstValue());
  3300                 if (resultInfo.pkind == VAL) {
  3301                     owntype = capture(owntype); // capture "names as expressions"
  3303                 break;
  3304             case MTH: {
  3305                 owntype = checkMethod(site, sym,
  3306                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3307                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3308                         resultInfo.pt.getTypeArguments());
  3309                 break;
  3311             case PCK: case ERR:
  3312                 owntype = sym.type;
  3313                 break;
  3314             default:
  3315                 throw new AssertionError("unexpected kind: " + sym.kind +
  3316                                          " in tree " + tree);
  3319             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3320             // (for constructors, the error was given when the constructor was
  3321             // resolved)
  3323             if (sym.name != names.init) {
  3324                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3325                 chk.checkSunAPI(tree.pos(), sym);
  3328             // Test (3): if symbol is a variable, check that its type and
  3329             // kind are compatible with the prototype and protokind.
  3330             return check(tree, owntype, sym.kind, resultInfo);
  3333         /** Check that variable is initialized and evaluate the variable's
  3334          *  initializer, if not yet done. Also check that variable is not
  3335          *  referenced before it is defined.
  3336          *  @param tree    The tree making up the variable reference.
  3337          *  @param env     The current environment.
  3338          *  @param v       The variable's symbol.
  3339          */
  3340         private void checkInit(JCTree tree,
  3341                                Env<AttrContext> env,
  3342                                VarSymbol v,
  3343                                boolean onlyWarning) {
  3344 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3345 //                             tree.pos + " " + v.pos + " " +
  3346 //                             Resolve.isStatic(env));//DEBUG
  3348             // A forward reference is diagnosed if the declaration position
  3349             // of the variable is greater than the current tree position
  3350             // and the tree and variable definition occur in the same class
  3351             // definition.  Note that writes don't count as references.
  3352             // This check applies only to class and instance
  3353             // variables.  Local variables follow different scope rules,
  3354             // and are subject to definite assignment checking.
  3355             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3356                 v.owner.kind == TYP &&
  3357                 canOwnInitializer(owner(env)) &&
  3358                 v.owner == env.info.scope.owner.enclClass() &&
  3359                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3360                 (!env.tree.hasTag(ASSIGN) ||
  3361                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3362                 String suffix = (env.info.enclVar == v) ?
  3363                                 "self.ref" : "forward.ref";
  3364                 if (!onlyWarning || isStaticEnumField(v)) {
  3365                     log.error(tree.pos(), "illegal." + suffix);
  3366                 } else if (useBeforeDeclarationWarning) {
  3367                     log.warning(tree.pos(), suffix, v);
  3371             v.getConstValue(); // ensure initializer is evaluated
  3373             checkEnumInitializer(tree, env, v);
  3376         /**
  3377          * Check for illegal references to static members of enum.  In
  3378          * an enum type, constructors and initializers may not
  3379          * reference its static members unless they are constant.
  3381          * @param tree    The tree making up the variable reference.
  3382          * @param env     The current environment.
  3383          * @param v       The variable's symbol.
  3384          * @jls  section 8.9 Enums
  3385          */
  3386         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3387             // JLS:
  3388             //
  3389             // "It is a compile-time error to reference a static field
  3390             // of an enum type that is not a compile-time constant
  3391             // (15.28) from constructors, instance initializer blocks,
  3392             // or instance variable initializer expressions of that
  3393             // type. It is a compile-time error for the constructors,
  3394             // instance initializer blocks, or instance variable
  3395             // initializer expressions of an enum constant e to refer
  3396             // to itself or to an enum constant of the same type that
  3397             // is declared to the right of e."
  3398             if (isStaticEnumField(v)) {
  3399                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3401                 if (enclClass == null || enclClass.owner == null)
  3402                     return;
  3404                 // See if the enclosing class is the enum (or a
  3405                 // subclass thereof) declaring v.  If not, this
  3406                 // reference is OK.
  3407                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3408                     return;
  3410                 // If the reference isn't from an initializer, then
  3411                 // the reference is OK.
  3412                 if (!Resolve.isInitializer(env))
  3413                     return;
  3415                 log.error(tree.pos(), "illegal.enum.static.ref");
  3419         /** Is the given symbol a static, non-constant field of an Enum?
  3420          *  Note: enum literals should not be regarded as such
  3421          */
  3422         private boolean isStaticEnumField(VarSymbol v) {
  3423             return Flags.isEnum(v.owner) &&
  3424                    Flags.isStatic(v) &&
  3425                    !Flags.isConstant(v) &&
  3426                    v.name != names._class;
  3429         /** Can the given symbol be the owner of code which forms part
  3430          *  if class initialization? This is the case if the symbol is
  3431          *  a type or field, or if the symbol is the synthetic method.
  3432          *  owning a block.
  3433          */
  3434         private boolean canOwnInitializer(Symbol sym) {
  3435             return
  3436                 (sym.kind & (VAR | TYP)) != 0 ||
  3437                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3440     Warner noteWarner = new Warner();
  3442     /**
  3443      * Check that method arguments conform to its instantiation.
  3444      **/
  3445     public Type checkMethod(Type site,
  3446                             Symbol sym,
  3447                             ResultInfo resultInfo,
  3448                             Env<AttrContext> env,
  3449                             final List<JCExpression> argtrees,
  3450                             List<Type> argtypes,
  3451                             List<Type> typeargtypes) {
  3452         // Test (5): if symbol is an instance method of a raw type, issue
  3453         // an unchecked warning if its argument types change under erasure.
  3454         if (allowGenerics &&
  3455             (sym.flags() & STATIC) == 0 &&
  3456             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3457             Type s = types.asOuterSuper(site, sym.owner);
  3458             if (s != null && s.isRaw() &&
  3459                 !types.isSameTypes(sym.type.getParameterTypes(),
  3460                                    sym.erasure(types).getParameterTypes())) {
  3461                 chk.warnUnchecked(env.tree.pos(),
  3462                                   "unchecked.call.mbr.of.raw.type",
  3463                                   sym, s);
  3467         if (env.info.defaultSuperCallSite != null) {
  3468             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3469                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3470                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3471                 List<MethodSymbol> icand_sup =
  3472                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3473                 if (icand_sup.nonEmpty() &&
  3474                         icand_sup.head != sym &&
  3475                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3476                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3477                         diags.fragment("overridden.default", sym, sup));
  3478                     break;
  3481             env.info.defaultSuperCallSite = null;
  3484         // Compute the identifier's instantiated type.
  3485         // For methods, we need to compute the instance type by
  3486         // Resolve.instantiate from the symbol's type as well as
  3487         // any type arguments and value arguments.
  3488         noteWarner.clear();
  3489         try {
  3490             Type owntype = rs.checkMethod(
  3491                     env,
  3492                     site,
  3493                     sym,
  3494                     resultInfo,
  3495                     argtypes,
  3496                     typeargtypes,
  3497                     noteWarner);
  3499             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3500                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
  3501         } catch (Infer.InferenceException ex) {
  3502             //invalid target type - propagate exception outwards or report error
  3503             //depending on the current check context
  3504             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3505             return types.createErrorType(site);
  3506         } catch (Resolve.InapplicableMethodException ex) {
  3507             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3508             return null;
  3512     public void visitLiteral(JCLiteral tree) {
  3513         result = check(
  3514             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3516     //where
  3517     /** Return the type of a literal with given type tag.
  3518      */
  3519     Type litType(TypeTag tag) {
  3520         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3523     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3524         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3527     public void visitTypeArray(JCArrayTypeTree tree) {
  3528         Type etype = attribType(tree.elemtype, env);
  3529         Type type = new ArrayType(etype, syms.arrayClass);
  3530         result = check(tree, type, TYP, resultInfo);
  3533     /** Visitor method for parameterized types.
  3534      *  Bound checking is left until later, since types are attributed
  3535      *  before supertype structure is completely known
  3536      */
  3537     public void visitTypeApply(JCTypeApply tree) {
  3538         Type owntype = types.createErrorType(tree.type);
  3540         // Attribute functor part of application and make sure it's a class.
  3541         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3543         // Attribute type parameters
  3544         List<Type> actuals = attribTypes(tree.arguments, env);
  3546         if (clazztype.hasTag(CLASS)) {
  3547             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3548             if (actuals.isEmpty()) //diamond
  3549                 actuals = formals;
  3551             if (actuals.length() == formals.length()) {
  3552                 List<Type> a = actuals;
  3553                 List<Type> f = formals;
  3554                 while (a.nonEmpty()) {
  3555                     a.head = a.head.withTypeVar(f.head);
  3556                     a = a.tail;
  3557                     f = f.tail;
  3559                 // Compute the proper generic outer
  3560                 Type clazzOuter = clazztype.getEnclosingType();
  3561                 if (clazzOuter.hasTag(CLASS)) {
  3562                     Type site;
  3563                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3564                     if (clazz.hasTag(IDENT)) {
  3565                         site = env.enclClass.sym.type;
  3566                     } else if (clazz.hasTag(SELECT)) {
  3567                         site = ((JCFieldAccess) clazz).selected.type;
  3568                     } else throw new AssertionError(""+tree);
  3569                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3570                         if (site.hasTag(CLASS))
  3571                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3572                         if (site == null)
  3573                             site = types.erasure(clazzOuter);
  3574                         clazzOuter = site;
  3577                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3578             } else {
  3579                 if (formals.length() != 0) {
  3580                     log.error(tree.pos(), "wrong.number.type.args",
  3581                               Integer.toString(formals.length()));
  3582                 } else {
  3583                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3585                 owntype = types.createErrorType(tree.type);
  3588         result = check(tree, owntype, TYP, resultInfo);
  3591     public void visitTypeUnion(JCTypeUnion tree) {
  3592         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3593         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3594         for (JCExpression typeTree : tree.alternatives) {
  3595             Type ctype = attribType(typeTree, env);
  3596             ctype = chk.checkType(typeTree.pos(),
  3597                           chk.checkClassType(typeTree.pos(), ctype),
  3598                           syms.throwableType);
  3599             if (!ctype.isErroneous()) {
  3600                 //check that alternatives of a union type are pairwise
  3601                 //unrelated w.r.t. subtyping
  3602                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3603                     for (Type t : multicatchTypes) {
  3604                         boolean sub = types.isSubtype(ctype, t);
  3605                         boolean sup = types.isSubtype(t, ctype);
  3606                         if (sub || sup) {
  3607                             //assume 'a' <: 'b'
  3608                             Type a = sub ? ctype : t;
  3609                             Type b = sub ? t : ctype;
  3610                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3614                 multicatchTypes.append(ctype);
  3615                 if (all_multicatchTypes != null)
  3616                     all_multicatchTypes.append(ctype);
  3617             } else {
  3618                 if (all_multicatchTypes == null) {
  3619                     all_multicatchTypes = ListBuffer.lb();
  3620                     all_multicatchTypes.appendList(multicatchTypes);
  3622                 all_multicatchTypes.append(ctype);
  3625         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3626         if (t.hasTag(CLASS)) {
  3627             List<Type> alternatives =
  3628                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3629             t = new UnionClassType((ClassType) t, alternatives);
  3631         tree.type = result = t;
  3634     public void visitTypeIntersection(JCTypeIntersection tree) {
  3635         attribTypes(tree.bounds, env);
  3636         tree.type = result = checkIntersection(tree, tree.bounds);
  3639      public void visitTypeParameter(JCTypeParameter tree) {
  3640         TypeVar typeVar = (TypeVar)tree.type;
  3641         if (!typeVar.bound.isErroneous()) {
  3642             //fixup type-parameter bound computed in 'attribTypeVariables'
  3643             typeVar.bound = checkIntersection(tree, tree.bounds);
  3647     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3648         Set<Type> boundSet = new HashSet<Type>();
  3649         if (bounds.nonEmpty()) {
  3650             // accept class or interface or typevar as first bound.
  3651             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3652             boundSet.add(types.erasure(bounds.head.type));
  3653             if (bounds.head.type.isErroneous()) {
  3654                 return bounds.head.type;
  3656             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3657                 // if first bound was a typevar, do not accept further bounds.
  3658                 if (bounds.tail.nonEmpty()) {
  3659                     log.error(bounds.tail.head.pos(),
  3660                               "type.var.may.not.be.followed.by.other.bounds");
  3661                     return bounds.head.type;
  3663             } else {
  3664                 // if first bound was a class or interface, accept only interfaces
  3665                 // as further bounds.
  3666                 for (JCExpression bound : bounds.tail) {
  3667                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  3668                     if (bound.type.isErroneous()) {
  3669                         bounds = List.of(bound);
  3671                     else if (bound.type.hasTag(CLASS)) {
  3672                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  3678         if (bounds.length() == 0) {
  3679             return syms.objectType;
  3680         } else if (bounds.length() == 1) {
  3681             return bounds.head.type;
  3682         } else {
  3683             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  3684             if (tree.hasTag(TYPEINTERSECTION)) {
  3685                 ((IntersectionClassType)owntype).intersectionKind =
  3686                         IntersectionClassType.IntersectionKind.EXPLICIT;
  3688             // ... the variable's bound is a class type flagged COMPOUND
  3689             // (see comment for TypeVar.bound).
  3690             // In this case, generate a class tree that represents the
  3691             // bound class, ...
  3692             JCExpression extending;
  3693             List<JCExpression> implementing;
  3694             if (!bounds.head.type.isInterface()) {
  3695                 extending = bounds.head;
  3696                 implementing = bounds.tail;
  3697             } else {
  3698                 extending = null;
  3699                 implementing = bounds;
  3701             JCClassDecl cd = make.at(tree).ClassDef(
  3702                 make.Modifiers(PUBLIC | ABSTRACT),
  3703                 names.empty, List.<JCTypeParameter>nil(),
  3704                 extending, implementing, List.<JCTree>nil());
  3706             ClassSymbol c = (ClassSymbol)owntype.tsym;
  3707             Assert.check((c.flags() & COMPOUND) != 0);
  3708             cd.sym = c;
  3709             c.sourcefile = env.toplevel.sourcefile;
  3711             // ... and attribute the bound class
  3712             c.flags_field |= UNATTRIBUTED;
  3713             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3714             enter.typeEnvs.put(c, cenv);
  3715             attribClass(c);
  3716             return owntype;
  3720     public void visitWildcard(JCWildcard tree) {
  3721         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3722         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3723             ? syms.objectType
  3724             : attribType(tree.inner, env);
  3725         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3726                                               tree.kind.kind,
  3727                                               syms.boundClass),
  3728                        TYP, resultInfo);
  3731     public void visitAnnotation(JCAnnotation tree) {
  3732         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3733         result = tree.type = syms.errType;
  3736     public void visitErroneous(JCErroneous tree) {
  3737         if (tree.errs != null)
  3738             for (JCTree err : tree.errs)
  3739                 attribTree(err, env, new ResultInfo(ERR, pt()));
  3740         result = tree.type = syms.errType;
  3743     /** Default visitor method for all other trees.
  3744      */
  3745     public void visitTree(JCTree tree) {
  3746         throw new AssertionError();
  3749     /**
  3750      * Attribute an env for either a top level tree or class declaration.
  3751      */
  3752     public void attrib(Env<AttrContext> env) {
  3753         if (env.tree.hasTag(TOPLEVEL))
  3754             attribTopLevel(env);
  3755         else
  3756             attribClass(env.tree.pos(), env.enclClass.sym);
  3759     /**
  3760      * Attribute a top level tree. These trees are encountered when the
  3761      * package declaration has annotations.
  3762      */
  3763     public void attribTopLevel(Env<AttrContext> env) {
  3764         JCCompilationUnit toplevel = env.toplevel;
  3765         try {
  3766             annotate.flush();
  3767             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3768         } catch (CompletionFailure ex) {
  3769             chk.completionError(toplevel.pos(), ex);
  3773     /** Main method: attribute class definition associated with given class symbol.
  3774      *  reporting completion failures at the given position.
  3775      *  @param pos The source position at which completion errors are to be
  3776      *             reported.
  3777      *  @param c   The class symbol whose definition will be attributed.
  3778      */
  3779     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3780         try {
  3781             annotate.flush();
  3782             attribClass(c);
  3783         } catch (CompletionFailure ex) {
  3784             chk.completionError(pos, ex);
  3788     /** Attribute class definition associated with given class symbol.
  3789      *  @param c   The class symbol whose definition will be attributed.
  3790      */
  3791     void attribClass(ClassSymbol c) throws CompletionFailure {
  3792         if (c.type.hasTag(ERROR)) return;
  3794         // Check for cycles in the inheritance graph, which can arise from
  3795         // ill-formed class files.
  3796         chk.checkNonCyclic(null, c.type);
  3798         Type st = types.supertype(c.type);
  3799         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3800             // First, attribute superclass.
  3801             if (st.hasTag(CLASS))
  3802                 attribClass((ClassSymbol)st.tsym);
  3804             // Next attribute owner, if it is a class.
  3805             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  3806                 attribClass((ClassSymbol)c.owner);
  3809         // The previous operations might have attributed the current class
  3810         // if there was a cycle. So we test first whether the class is still
  3811         // UNATTRIBUTED.
  3812         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3813             c.flags_field &= ~UNATTRIBUTED;
  3815             // Get environment current at the point of class definition.
  3816             Env<AttrContext> env = enter.typeEnvs.get(c);
  3818             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3819             // because the annotations were not available at the time the env was created. Therefore,
  3820             // we look up the environment chain for the first enclosing environment for which the
  3821             // lint value is set. Typically, this is the parent env, but might be further if there
  3822             // are any envs created as a result of TypeParameter nodes.
  3823             Env<AttrContext> lintEnv = env;
  3824             while (lintEnv.info.lint == null)
  3825                 lintEnv = lintEnv.next;
  3827             // Having found the enclosing lint value, we can initialize the lint value for this class
  3828             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  3830             Lint prevLint = chk.setLint(env.info.lint);
  3831             JavaFileObject prev = log.useSource(c.sourcefile);
  3832             ResultInfo prevReturnRes = env.info.returnResult;
  3834             try {
  3835                 env.info.returnResult = null;
  3836                 // java.lang.Enum may not be subclassed by a non-enum
  3837                 if (st.tsym == syms.enumSym &&
  3838                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3839                     log.error(env.tree.pos(), "enum.no.subclassing");
  3841                 // Enums may not be extended by source-level classes
  3842                 if (st.tsym != null &&
  3843                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3844                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3845                     !target.compilerBootstrap(c)) {
  3846                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3848                 attribClassBody(env, c);
  3850                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3851             } finally {
  3852                 env.info.returnResult = prevReturnRes;
  3853                 log.useSource(prev);
  3854                 chk.setLint(prevLint);
  3860     public void visitImport(JCImport tree) {
  3861         // nothing to do
  3864     /** Finish the attribution of a class. */
  3865     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3866         JCClassDecl tree = (JCClassDecl)env.tree;
  3867         Assert.check(c == tree.sym);
  3869         // Validate annotations
  3870         chk.validateAnnotations(tree.mods.annotations, c);
  3872         // Validate type parameters, supertype and interfaces.
  3873         attribStats(tree.typarams, env);
  3874         if (!c.isAnonymous()) {
  3875             //already checked if anonymous
  3876             chk.validate(tree.typarams, env);
  3877             chk.validate(tree.extending, env);
  3878             chk.validate(tree.implementing, env);
  3881         // If this is a non-abstract class, check that it has no abstract
  3882         // methods or unimplemented methods of an implemented interface.
  3883         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3884             if (!relax)
  3885                 chk.checkAllDefined(tree.pos(), c);
  3888         if ((c.flags() & ANNOTATION) != 0) {
  3889             if (tree.implementing.nonEmpty())
  3890                 log.error(tree.implementing.head.pos(),
  3891                           "cant.extend.intf.annotation");
  3892             if (tree.typarams.nonEmpty())
  3893                 log.error(tree.typarams.head.pos(),
  3894                           "intf.annotation.cant.have.type.params");
  3896             // If this annotation has a @Repeatable, validate
  3897             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  3898             if (repeatable != null) {
  3899                 // get diagnostic position for error reporting
  3900                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  3901                 Assert.checkNonNull(cbPos);
  3903                 chk.validateRepeatable(c, repeatable, cbPos);
  3905         } else {
  3906             // Check that all extended classes and interfaces
  3907             // are compatible (i.e. no two define methods with same arguments
  3908             // yet different return types).  (JLS 8.4.6.3)
  3909             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3910             if (allowDefaultMethods) {
  3911                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  3915         // Check that class does not import the same parameterized interface
  3916         // with two different argument lists.
  3917         chk.checkClassBounds(tree.pos(), c.type);
  3919         tree.type = c.type;
  3921         for (List<JCTypeParameter> l = tree.typarams;
  3922              l.nonEmpty(); l = l.tail) {
  3923              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  3926         // Check that a generic class doesn't extend Throwable
  3927         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3928             log.error(tree.extending.pos(), "generic.throwable");
  3930         // Check that all methods which implement some
  3931         // method conform to the method they implement.
  3932         chk.checkImplementations(tree);
  3934         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  3935         checkAutoCloseable(tree.pos(), env, c.type);
  3937         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3938             // Attribute declaration
  3939             attribStat(l.head, env);
  3940             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3941             // Make an exception for static constants.
  3942             if (c.owner.kind != PCK &&
  3943                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3944                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3945                 Symbol sym = null;
  3946                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  3947                 if (sym == null ||
  3948                     sym.kind != VAR ||
  3949                     ((VarSymbol) sym).getConstValue() == null)
  3950                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  3954         // Check for cycles among non-initial constructors.
  3955         chk.checkCyclicConstructors(tree);
  3957         // Check for cycles among annotation elements.
  3958         chk.checkNonCyclicElements(tree);
  3960         // Check for proper use of serialVersionUID
  3961         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3962             isSerializable(c) &&
  3963             (c.flags() & Flags.ENUM) == 0 &&
  3964             (c.flags() & ABSTRACT) == 0) {
  3965             checkSerialVersionUID(tree, c);
  3968         // where
  3969         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  3970         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  3971             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  3972                 if (types.isSameType(al.head.annotationType.type, t))
  3973                     return al.head.pos();
  3976             return null;
  3979         /** check if a class is a subtype of Serializable, if that is available. */
  3980         private boolean isSerializable(ClassSymbol c) {
  3981             try {
  3982                 syms.serializableType.complete();
  3984             catch (CompletionFailure e) {
  3985                 return false;
  3987             return types.isSubtype(c.type, syms.serializableType);
  3990         /** Check that an appropriate serialVersionUID member is defined. */
  3991         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3993             // check for presence of serialVersionUID
  3994             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3995             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3996             if (e.scope == null) {
  3997                 log.warning(LintCategory.SERIAL,
  3998                         tree.pos(), "missing.SVUID", c);
  3999                 return;
  4002             // check that it is static final
  4003             VarSymbol svuid = (VarSymbol)e.sym;
  4004             if ((svuid.flags() & (STATIC | FINAL)) !=
  4005                 (STATIC | FINAL))
  4006                 log.warning(LintCategory.SERIAL,
  4007                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4009             // check that it is long
  4010             else if (!svuid.type.hasTag(LONG))
  4011                 log.warning(LintCategory.SERIAL,
  4012                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4014             // check constant
  4015             else if (svuid.getConstValue() == null)
  4016                 log.warning(LintCategory.SERIAL,
  4017                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4020     private Type capture(Type type) {
  4021         return types.capture(type);
  4024     // <editor-fold desc="post-attribution visitor">
  4026     /**
  4027      * Handle missing types/symbols in an AST. This routine is useful when
  4028      * the compiler has encountered some errors (which might have ended up
  4029      * terminating attribution abruptly); if the compiler is used in fail-over
  4030      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4031      * prevents NPE to be progagated during subsequent compilation steps.
  4032      */
  4033     public void postAttr(JCTree tree) {
  4034         new PostAttrAnalyzer().scan(tree);
  4037     class PostAttrAnalyzer extends TreeScanner {
  4039         private void initTypeIfNeeded(JCTree that) {
  4040             if (that.type == null) {
  4041                 that.type = syms.unknownType;
  4045         @Override
  4046         public void scan(JCTree tree) {
  4047             if (tree == null) return;
  4048             if (tree instanceof JCExpression) {
  4049                 initTypeIfNeeded(tree);
  4051             super.scan(tree);
  4054         @Override
  4055         public void visitIdent(JCIdent that) {
  4056             if (that.sym == null) {
  4057                 that.sym = syms.unknownSymbol;
  4061         @Override
  4062         public void visitSelect(JCFieldAccess that) {
  4063             if (that.sym == null) {
  4064                 that.sym = syms.unknownSymbol;
  4066             super.visitSelect(that);
  4069         @Override
  4070         public void visitClassDef(JCClassDecl that) {
  4071             initTypeIfNeeded(that);
  4072             if (that.sym == null) {
  4073                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4075             super.visitClassDef(that);
  4078         @Override
  4079         public void visitMethodDef(JCMethodDecl that) {
  4080             initTypeIfNeeded(that);
  4081             if (that.sym == null) {
  4082                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4084             super.visitMethodDef(that);
  4087         @Override
  4088         public void visitVarDef(JCVariableDecl that) {
  4089             initTypeIfNeeded(that);
  4090             if (that.sym == null) {
  4091                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4092                 that.sym.adr = 0;
  4094             super.visitVarDef(that);
  4097         @Override
  4098         public void visitNewClass(JCNewClass that) {
  4099             if (that.constructor == null) {
  4100                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4102             if (that.constructorType == null) {
  4103                 that.constructorType = syms.unknownType;
  4105             super.visitNewClass(that);
  4108         @Override
  4109         public void visitAssignop(JCAssignOp that) {
  4110             if (that.operator == null)
  4111                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4112             super.visitAssignop(that);
  4115         @Override
  4116         public void visitBinary(JCBinary that) {
  4117             if (that.operator == null)
  4118                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4119             super.visitBinary(that);
  4122         @Override
  4123         public void visitUnary(JCUnary that) {
  4124             if (that.operator == null)
  4125                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4126             super.visitUnary(that);
  4129         @Override
  4130         public void visitLambda(JCLambda that) {
  4131             super.visitLambda(that);
  4132             if (that.descriptorType == null) {
  4133                 that.descriptorType = syms.unknownType;
  4135             if (that.targets == null) {
  4136                 that.targets = List.nil();
  4140         @Override
  4141         public void visitReference(JCMemberReference that) {
  4142             super.visitReference(that);
  4143             if (that.sym == null) {
  4144                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4146             if (that.descriptorType == null) {
  4147                 that.descriptorType = syms.unknownType;
  4149             if (that.targets == null) {
  4150                 that.targets = List.nil();
  4154     // </editor-fold>

mercurial