src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 02 Aug 2012 18:22:41 +0100

author
mcimadamore
date
Thu, 02 Aug 2012 18:22:41 +0100
changeset 1296
cddc2c894cc6
parent 1268
af6a4c24f4e3
child 1313
873ddd9f4900
permissions
-rw-r--r--

7175911: Simplify error reporting API in Check.CheckContext interface
Summary: Make error messages generated during Check.checkType more uniform and more scalable
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private final boolean skipAnnotations;
    73     private boolean warnOnSyntheticConflicts;
    74     private boolean suppressAbortOnBadClassFile;
    75     private boolean enableSunApiLintControl;
    76     private final TreeInfo treeinfo;
    78     // The set of lint options currently in effect. It is initialized
    79     // from the context, and then is set/reset as needed by Attr as it
    80     // visits all the various parts of the trees during attribution.
    81     private Lint lint;
    83     // The method being analyzed in Attr - it is set/reset as needed by
    84     // Attr as it visits new method declarations.
    85     private MethodSymbol method;
    87     public static Check instance(Context context) {
    88         Check instance = context.get(checkKey);
    89         if (instance == null)
    90             instance = new Check(context);
    91         return instance;
    92     }
    94     protected Check(Context context) {
    95         context.put(checkKey, this);
    97         names = Names.instance(context);
    98         log = Log.instance(context);
    99         rs = Resolve.instance(context);
   100         syms = Symtab.instance(context);
   101         enter = Enter.instance(context);
   102         infer = Infer.instance(context);
   103         this.types = Types.instance(context);
   104         diags = JCDiagnostic.Factory.instance(context);
   105         Options options = Options.instance(context);
   106         lint = Lint.instance(context);
   107         treeinfo = TreeInfo.instance(context);
   109         Source source = Source.instance(context);
   110         allowGenerics = source.allowGenerics();
   111         allowVarargs = source.allowVarargs();
   112         allowAnnotations = source.allowAnnotations();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   115         complexInference = options.isSet("complexinference");
   116         skipAnnotations = options.isSet("skipAnnotations");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report an error that wrong type tag was found.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param required   An internationalized string describing the type tag
   275      *                    required.
   276      *  @param found      The type that was found.
   277      */
   278     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   279         // this error used to be raised by the parser,
   280         // but has been delayed to this point:
   281         if (found instanceof Type && ((Type)found).tag == VOID) {
   282             log.error(pos, "illegal.start.of.type");
   283             return syms.errType;
   284         }
   285         log.error(pos, "type.found.req", found, required);
   286         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   287     }
   289     /** Report an error that symbol cannot be referenced before super
   290      *  has been called.
   291      *  @param pos        Position to be used for error reporting.
   292      *  @param sym        The referenced symbol.
   293      */
   294     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   295         log.error(pos, "cant.ref.before.ctor.called", sym);
   296     }
   298     /** Report duplicate declaration error.
   299      */
   300     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   301         if (!sym.type.isErroneous()) {
   302             Symbol location = sym.location();
   303             if (location.kind == MTH &&
   304                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   305                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   306                         kindName(sym.location()), kindName(sym.location().enclClass()),
   307                         sym.location().enclClass());
   308             } else {
   309                 log.error(pos, "already.defined", kindName(sym), sym,
   310                         kindName(sym.location()), sym.location());
   311             }
   312         }
   313     }
   315     /** Report array/varargs duplicate declaration
   316      */
   317     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   318         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   319             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   320         }
   321     }
   323 /* ************************************************************************
   324  * duplicate declaration checking
   325  *************************************************************************/
   327     /** Check that variable does not hide variable with same name in
   328      *  immediately enclosing local scope.
   329      *  @param pos           Position for error reporting.
   330      *  @param v             The symbol.
   331      *  @param s             The scope.
   332      */
   333     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   334         if (s.next != null) {
   335             for (Scope.Entry e = s.next.lookup(v.name);
   336                  e.scope != null && e.sym.owner == v.owner;
   337                  e = e.next()) {
   338                 if (e.sym.kind == VAR &&
   339                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   340                     v.name != names.error) {
   341                     duplicateError(pos, e.sym);
   342                     return;
   343                 }
   344             }
   345         }
   346     }
   348     /** Check that a class or interface does not hide a class or
   349      *  interface with same name in immediately enclosing local scope.
   350      *  @param pos           Position for error reporting.
   351      *  @param c             The symbol.
   352      *  @param s             The scope.
   353      */
   354     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   355         if (s.next != null) {
   356             for (Scope.Entry e = s.next.lookup(c.name);
   357                  e.scope != null && e.sym.owner == c.owner;
   358                  e = e.next()) {
   359                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   360                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   361                     c.name != names.error) {
   362                     duplicateError(pos, e.sym);
   363                     return;
   364                 }
   365             }
   366         }
   367     }
   369     /** Check that class does not have the same name as one of
   370      *  its enclosing classes, or as a class defined in its enclosing scope.
   371      *  return true if class is unique in its enclosing scope.
   372      *  @param pos           Position for error reporting.
   373      *  @param name          The class name.
   374      *  @param s             The enclosing scope.
   375      */
   376     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   377         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   378             if (e.sym.kind == TYP && e.sym.name != names.error) {
   379                 duplicateError(pos, e.sym);
   380                 return false;
   381             }
   382         }
   383         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   384             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   385                 duplicateError(pos, sym);
   386                 return true;
   387             }
   388         }
   389         return true;
   390     }
   392 /* *************************************************************************
   393  * Class name generation
   394  **************************************************************************/
   396     /** Return name of local class.
   397      *  This is of the form    <enclClass> $ n <classname>
   398      *  where
   399      *    enclClass is the flat name of the enclosing class,
   400      *    classname is the simple name of the local class
   401      */
   402     Name localClassName(ClassSymbol c) {
   403         for (int i=1; ; i++) {
   404             Name flatname = names.
   405                 fromString("" + c.owner.enclClass().flatname +
   406                            syntheticNameChar + i +
   407                            c.name);
   408             if (compiled.get(flatname) == null) return flatname;
   409         }
   410     }
   412 /* *************************************************************************
   413  * Type Checking
   414  **************************************************************************/
   416     /**
   417      * A check context is an object that can be used to perform compatibility
   418      * checks - depending on the check context, meaning of 'compatibility' might
   419      * vary significantly.
   420      */
   421     interface CheckContext {
   422         /**
   423          * Is type 'found' compatible with type 'req' in given context
   424          */
   425         boolean compatible(Type found, Type req, Warner warn);
   426         /**
   427          * Report a check error
   428          */
   429         void report(DiagnosticPosition pos, JCDiagnostic details);
   430         /**
   431          * Obtain a warner for this check context
   432          */
   433         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   434     }
   436     /**
   437      * This class represent a check context that is nested within another check
   438      * context - useful to check sub-expressions. The default behavior simply
   439      * redirects all method calls to the enclosing check context leveraging
   440      * the forwarding pattern.
   441      */
   442     static class NestedCheckContext implements CheckContext {
   443         CheckContext enclosingContext;
   445         NestedCheckContext(CheckContext enclosingContext) {
   446             this.enclosingContext = enclosingContext;
   447         }
   449         public boolean compatible(Type found, Type req, Warner warn) {
   450             return enclosingContext.compatible(found, req, warn);
   451         }
   453         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   454             enclosingContext.report(pos, details);
   455         }
   457         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   458             return enclosingContext.checkWarner(pos, found, req);
   459         }
   460     }
   462     /**
   463      * Check context to be used when evaluating assignment/return statements
   464      */
   465     CheckContext basicHandler = new CheckContext() {
   466         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   467             log.error(pos, "prob.found.req", details);
   468         }
   469         public boolean compatible(Type found, Type req, Warner warn) {
   470             return types.isAssignable(found, req, warn);
   471         }
   473         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   474             return convertWarner(pos, found, req);
   475         }
   476     };
   478     /** Check that a given type is assignable to a given proto-type.
   479      *  If it is, return the type, otherwise return errType.
   480      *  @param pos        Position to be used for error reporting.
   481      *  @param found      The type that was found.
   482      *  @param req        The type that was required.
   483      */
   484     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   485         return checkType(pos, found, req, basicHandler);
   486     }
   488     Type checkType(final DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   489         if (req.tag == ERROR)
   490             return req;
   491         if (req.tag == NONE)
   492             return found;
   493         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   494             return found;
   495         } else {
   496             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   497                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   498                 return types.createErrorType(found);
   499             }
   500             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   501             return types.createErrorType(found);
   502         }
   503     }
   505     /** Check that a given type can be cast to a given target type.
   506      *  Return the result of the cast.
   507      *  @param pos        Position to be used for error reporting.
   508      *  @param found      The type that is being cast.
   509      *  @param req        The target type of the cast.
   510      */
   511     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   512         return checkCastable(pos, found, req, basicHandler);
   513     }
   514     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   515         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   516             return req;
   517         } else {
   518             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   519             return types.createErrorType(found);
   520         }
   521     }
   523     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   524      * The problem should only be reported for non-292 cast
   525      */
   526     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   527         if (!tree.type.isErroneous() &&
   528             (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   529             && types.isSameType(tree.expr.type, tree.clazz.type)
   530             && !is292targetTypeCast(tree)) {
   531             log.warning(Lint.LintCategory.CAST,
   532                     tree.pos(), "redundant.cast", tree.expr.type);
   533         }
   534     }
   535     //where
   536             private boolean is292targetTypeCast(JCTypeCast tree) {
   537                 boolean is292targetTypeCast = false;
   538                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   539                 if (expr.hasTag(APPLY)) {
   540                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   541                     Symbol sym = TreeInfo.symbol(apply.meth);
   542                     is292targetTypeCast = sym != null &&
   543                         sym.kind == MTH &&
   544                         (sym.flags() & HYPOTHETICAL) != 0;
   545                 }
   546                 return is292targetTypeCast;
   547             }
   551 //where
   552         /** Is type a type variable, or a (possibly multi-dimensional) array of
   553          *  type variables?
   554          */
   555         boolean isTypeVar(Type t) {
   556             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   557         }
   559     /** Check that a type is within some bounds.
   560      *
   561      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   562      *  type argument.
   563      *  @param pos           Position to be used for error reporting.
   564      *  @param a             The type that should be bounded by bs.
   565      *  @param bs            The bound.
   566      */
   567     private boolean checkExtends(Type a, Type bound) {
   568          if (a.isUnbound()) {
   569              return true;
   570          } else if (a.tag != WILDCARD) {
   571              a = types.upperBound(a);
   572              return types.isSubtype(a, bound);
   573          } else if (a.isExtendsBound()) {
   574              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   575          } else if (a.isSuperBound()) {
   576              return !types.notSoftSubtype(types.lowerBound(a), bound);
   577          }
   578          return true;
   579      }
   581     /** Check that type is different from 'void'.
   582      *  @param pos           Position to be used for error reporting.
   583      *  @param t             The type to be checked.
   584      */
   585     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   586         if (t.tag == VOID) {
   587             log.error(pos, "void.not.allowed.here");
   588             return types.createErrorType(t);
   589         } else {
   590             return t;
   591         }
   592     }
   594     /** Check that type is a class or interface type.
   595      *  @param pos           Position to be used for error reporting.
   596      *  @param t             The type to be checked.
   597      */
   598     Type checkClassType(DiagnosticPosition pos, Type t) {
   599         if (t.tag != CLASS && t.tag != ERROR)
   600             return typeTagError(pos,
   601                                 diags.fragment("type.req.class"),
   602                                 (t.tag == TYPEVAR)
   603                                 ? diags.fragment("type.parameter", t)
   604                                 : t);
   605         else
   606             return t;
   607     }
   609     /** Check that type is a class or interface type.
   610      *  @param pos           Position to be used for error reporting.
   611      *  @param t             The type to be checked.
   612      *  @param noBounds    True if type bounds are illegal here.
   613      */
   614     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   615         t = checkClassType(pos, t);
   616         if (noBounds && t.isParameterized()) {
   617             List<Type> args = t.getTypeArguments();
   618             while (args.nonEmpty()) {
   619                 if (args.head.tag == WILDCARD)
   620                     return typeTagError(pos,
   621                                         diags.fragment("type.req.exact"),
   622                                         args.head);
   623                 args = args.tail;
   624             }
   625         }
   626         return t;
   627     }
   629     /** Check that type is a reifiable class, interface or array type.
   630      *  @param pos           Position to be used for error reporting.
   631      *  @param t             The type to be checked.
   632      */
   633     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   634         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   635             return typeTagError(pos,
   636                                 diags.fragment("type.req.class.array"),
   637                                 t);
   638         } else if (!types.isReifiable(t)) {
   639             log.error(pos, "illegal.generic.type.for.instof");
   640             return types.createErrorType(t);
   641         } else {
   642             return t;
   643         }
   644     }
   646     /** Check that type is a reference type, i.e. a class, interface or array type
   647      *  or a type variable.
   648      *  @param pos           Position to be used for error reporting.
   649      *  @param t             The type to be checked.
   650      */
   651     Type checkRefType(DiagnosticPosition pos, Type t) {
   652         switch (t.tag) {
   653         case CLASS:
   654         case ARRAY:
   655         case TYPEVAR:
   656         case WILDCARD:
   657         case ERROR:
   658             return t;
   659         default:
   660             return typeTagError(pos,
   661                                 diags.fragment("type.req.ref"),
   662                                 t);
   663         }
   664     }
   666     /** Check that each type is a reference type, i.e. a class, interface or array type
   667      *  or a type variable.
   668      *  @param trees         Original trees, used for error reporting.
   669      *  @param types         The types to be checked.
   670      */
   671     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   672         List<JCExpression> tl = trees;
   673         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   674             l.head = checkRefType(tl.head.pos(), l.head);
   675             tl = tl.tail;
   676         }
   677         return types;
   678     }
   680     /** Check that type is a null or reference type.
   681      *  @param pos           Position to be used for error reporting.
   682      *  @param t             The type to be checked.
   683      */
   684     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   685         switch (t.tag) {
   686         case CLASS:
   687         case ARRAY:
   688         case TYPEVAR:
   689         case WILDCARD:
   690         case BOT:
   691         case ERROR:
   692             return t;
   693         default:
   694             return typeTagError(pos,
   695                                 diags.fragment("type.req.ref"),
   696                                 t);
   697         }
   698     }
   700     /** Check that flag set does not contain elements of two conflicting sets. s
   701      *  Return true if it doesn't.
   702      *  @param pos           Position to be used for error reporting.
   703      *  @param flags         The set of flags to be checked.
   704      *  @param set1          Conflicting flags set #1.
   705      *  @param set2          Conflicting flags set #2.
   706      */
   707     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   708         if ((flags & set1) != 0 && (flags & set2) != 0) {
   709             log.error(pos,
   710                       "illegal.combination.of.modifiers",
   711                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   712                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   713             return false;
   714         } else
   715             return true;
   716     }
   718     /** Check that usage of diamond operator is correct (i.e. diamond should not
   719      * be used with non-generic classes or in anonymous class creation expressions)
   720      */
   721     Type checkDiamond(JCNewClass tree, Type t) {
   722         if (!TreeInfo.isDiamond(tree) ||
   723                 t.isErroneous()) {
   724             return checkClassType(tree.clazz.pos(), t, true);
   725         } else if (tree.def != null) {
   726             log.error(tree.clazz.pos(),
   727                     "cant.apply.diamond.1",
   728                     t, diags.fragment("diamond.and.anon.class", t));
   729             return types.createErrorType(t);
   730         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   731             log.error(tree.clazz.pos(),
   732                 "cant.apply.diamond.1",
   733                 t, diags.fragment("diamond.non.generic", t));
   734             return types.createErrorType(t);
   735         } else if (tree.typeargs != null &&
   736                 tree.typeargs.nonEmpty()) {
   737             log.error(tree.clazz.pos(),
   738                 "cant.apply.diamond.1",
   739                 t, diags.fragment("diamond.and.explicit.params", t));
   740             return types.createErrorType(t);
   741         } else {
   742             return t;
   743         }
   744     }
   746     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   747         MethodSymbol m = tree.sym;
   748         if (!allowSimplifiedVarargs) return;
   749         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   750         Type varargElemType = null;
   751         if (m.isVarArgs()) {
   752             varargElemType = types.elemtype(tree.params.last().type);
   753         }
   754         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   755             if (varargElemType != null) {
   756                 log.error(tree,
   757                         "varargs.invalid.trustme.anno",
   758                         syms.trustMeType.tsym,
   759                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   760             } else {
   761                 log.error(tree,
   762                             "varargs.invalid.trustme.anno",
   763                             syms.trustMeType.tsym,
   764                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   765             }
   766         } else if (hasTrustMeAnno && varargElemType != null &&
   767                             types.isReifiable(varargElemType)) {
   768             warnUnsafeVararg(tree,
   769                             "varargs.redundant.trustme.anno",
   770                             syms.trustMeType.tsym,
   771                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   772         }
   773         else if (!hasTrustMeAnno && varargElemType != null &&
   774                 !types.isReifiable(varargElemType)) {
   775             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   776         }
   777     }
   778     //where
   779         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   780             return (s.flags() & VARARGS) != 0 &&
   781                 (s.isConstructor() ||
   782                     (s.flags() & (STATIC | FINAL)) != 0);
   783         }
   785     Type checkMethod(Type owntype,
   786                             Symbol sym,
   787                             Env<AttrContext> env,
   788                             final List<JCExpression> argtrees,
   789                             List<Type> argtypes,
   790                             boolean useVarargs,
   791                             boolean unchecked) {
   792         // System.out.println("call   : " + env.tree);
   793         // System.out.println("method : " + owntype);
   794         // System.out.println("actuals: " + argtypes);
   795         List<Type> formals = owntype.getParameterTypes();
   796         Type last = useVarargs ? formals.last() : null;
   797         if (sym.name==names.init &&
   798                 sym.owner == syms.enumSym)
   799                 formals = formals.tail.tail;
   800         List<JCExpression> args = argtrees;
   801         while (formals.head != last) {
   802             JCTree arg = args.head;
   803             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   804             assertConvertible(arg, arg.type, formals.head, warn);
   805             args = args.tail;
   806             formals = formals.tail;
   807         }
   808         if (useVarargs) {
   809             Type varArg = types.elemtype(last);
   810             while (args.tail != null) {
   811                 JCTree arg = args.head;
   812                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   813                 assertConvertible(arg, arg.type, varArg, warn);
   814                 args = args.tail;
   815             }
   816         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   817             // non-varargs call to varargs method
   818             Type varParam = owntype.getParameterTypes().last();
   819             Type lastArg = argtypes.last();
   820             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   821                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   822                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   823                         types.elemtype(varParam), varParam);
   824         }
   825         if (unchecked) {
   826             warnUnchecked(env.tree.pos(),
   827                     "unchecked.meth.invocation.applied",
   828                     kindName(sym),
   829                     sym.name,
   830                     rs.methodArguments(sym.type.getParameterTypes()),
   831                     rs.methodArguments(argtypes),
   832                     kindName(sym.location()),
   833                     sym.location());
   834            owntype = new MethodType(owntype.getParameterTypes(),
   835                    types.erasure(owntype.getReturnType()),
   836                    types.erasure(owntype.getThrownTypes()),
   837                    syms.methodClass);
   838         }
   839         if (useVarargs) {
   840             JCTree tree = env.tree;
   841             Type argtype = owntype.getParameterTypes().last();
   842             if (!types.isReifiable(argtype) &&
   843                     (!allowSimplifiedVarargs ||
   844                     sym.attribute(syms.trustMeType.tsym) == null ||
   845                     !isTrustMeAllowedOnMethod(sym))) {
   846                 warnUnchecked(env.tree.pos(),
   847                                   "unchecked.generic.array.creation",
   848                                   argtype);
   849             }
   850             Type elemtype = types.elemtype(argtype);
   851             switch (tree.getTag()) {
   852                 case APPLY:
   853                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   854                     break;
   855                 case NEWCLASS:
   856                     ((JCNewClass) tree).varargsElement = elemtype;
   857                     break;
   858                 default:
   859                     throw new AssertionError(""+tree);
   860             }
   861          }
   862          return owntype;
   863     }
   864     //where
   865         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   866             if (types.isConvertible(actual, formal, warn))
   867                 return;
   869             if (formal.isCompound()
   870                 && types.isSubtype(actual, types.supertype(formal))
   871                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   872                 return;
   873         }
   875     /**
   876      * Check that type 't' is a valid instantiation of a generic class
   877      * (see JLS 4.5)
   878      *
   879      * @param t class type to be checked
   880      * @return true if 't' is well-formed
   881      */
   882     public boolean checkValidGenericType(Type t) {
   883         return firstIncompatibleTypeArg(t) == null;
   884     }
   885     //WHERE
   886         private Type firstIncompatibleTypeArg(Type type) {
   887             List<Type> formals = type.tsym.type.allparams();
   888             List<Type> actuals = type.allparams();
   889             List<Type> args = type.getTypeArguments();
   890             List<Type> forms = type.tsym.type.getTypeArguments();
   891             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   893             // For matching pairs of actual argument types `a' and
   894             // formal type parameters with declared bound `b' ...
   895             while (args.nonEmpty() && forms.nonEmpty()) {
   896                 // exact type arguments needs to know their
   897                 // bounds (for upper and lower bound
   898                 // calculations).  So we create new bounds where
   899                 // type-parameters are replaced with actuals argument types.
   900                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   901                 args = args.tail;
   902                 forms = forms.tail;
   903             }
   905             args = type.getTypeArguments();
   906             List<Type> tvars_cap = types.substBounds(formals,
   907                                       formals,
   908                                       types.capture(type).allparams());
   909             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   910                 // Let the actual arguments know their bound
   911                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   912                 args = args.tail;
   913                 tvars_cap = tvars_cap.tail;
   914             }
   916             args = type.getTypeArguments();
   917             List<Type> bounds = bounds_buf.toList();
   919             while (args.nonEmpty() && bounds.nonEmpty()) {
   920                 Type actual = args.head;
   921                 if (!isTypeArgErroneous(actual) &&
   922                         !bounds.head.isErroneous() &&
   923                         !checkExtends(actual, bounds.head)) {
   924                     return args.head;
   925                 }
   926                 args = args.tail;
   927                 bounds = bounds.tail;
   928             }
   930             args = type.getTypeArguments();
   931             bounds = bounds_buf.toList();
   933             for (Type arg : types.capture(type).getTypeArguments()) {
   934                 if (arg.tag == TYPEVAR &&
   935                         arg.getUpperBound().isErroneous() &&
   936                         !bounds.head.isErroneous() &&
   937                         !isTypeArgErroneous(args.head)) {
   938                     return args.head;
   939                 }
   940                 bounds = bounds.tail;
   941                 args = args.tail;
   942             }
   944             return null;
   945         }
   946         //where
   947         boolean isTypeArgErroneous(Type t) {
   948             return isTypeArgErroneous.visit(t);
   949         }
   951         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   952             public Boolean visitType(Type t, Void s) {
   953                 return t.isErroneous();
   954             }
   955             @Override
   956             public Boolean visitTypeVar(TypeVar t, Void s) {
   957                 return visit(t.getUpperBound());
   958             }
   959             @Override
   960             public Boolean visitCapturedType(CapturedType t, Void s) {
   961                 return visit(t.getUpperBound()) ||
   962                         visit(t.getLowerBound());
   963             }
   964             @Override
   965             public Boolean visitWildcardType(WildcardType t, Void s) {
   966                 return visit(t.type);
   967             }
   968         };
   970     /** Check that given modifiers are legal for given symbol and
   971      *  return modifiers together with any implicit modififiers for that symbol.
   972      *  Warning: we can't use flags() here since this method
   973      *  is called during class enter, when flags() would cause a premature
   974      *  completion.
   975      *  @param pos           Position to be used for error reporting.
   976      *  @param flags         The set of modifiers given in a definition.
   977      *  @param sym           The defined symbol.
   978      */
   979     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   980         long mask;
   981         long implicit = 0;
   982         switch (sym.kind) {
   983         case VAR:
   984             if (sym.owner.kind != TYP)
   985                 mask = LocalVarFlags;
   986             else if ((sym.owner.flags_field & INTERFACE) != 0)
   987                 mask = implicit = InterfaceVarFlags;
   988             else
   989                 mask = VarFlags;
   990             break;
   991         case MTH:
   992             if (sym.name == names.init) {
   993                 if ((sym.owner.flags_field & ENUM) != 0) {
   994                     // enum constructors cannot be declared public or
   995                     // protected and must be implicitly or explicitly
   996                     // private
   997                     implicit = PRIVATE;
   998                     mask = PRIVATE;
   999                 } else
  1000                     mask = ConstructorFlags;
  1001             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1002                 mask = implicit = InterfaceMethodFlags;
  1003             else {
  1004                 mask = MethodFlags;
  1006             // Imply STRICTFP if owner has STRICTFP set.
  1007             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1008               implicit |= sym.owner.flags_field & STRICTFP;
  1009             break;
  1010         case TYP:
  1011             if (sym.isLocal()) {
  1012                 mask = LocalClassFlags;
  1013                 if (sym.name.isEmpty()) { // Anonymous class
  1014                     // Anonymous classes in static methods are themselves static;
  1015                     // that's why we admit STATIC here.
  1016                     mask |= STATIC;
  1017                     // JLS: Anonymous classes are final.
  1018                     implicit |= FINAL;
  1020                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1021                     (flags & ENUM) != 0)
  1022                     log.error(pos, "enums.must.be.static");
  1023             } else if (sym.owner.kind == TYP) {
  1024                 mask = MemberClassFlags;
  1025                 if (sym.owner.owner.kind == PCK ||
  1026                     (sym.owner.flags_field & STATIC) != 0)
  1027                     mask |= STATIC;
  1028                 else if ((flags & ENUM) != 0)
  1029                     log.error(pos, "enums.must.be.static");
  1030                 // Nested interfaces and enums are always STATIC (Spec ???)
  1031                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1032             } else {
  1033                 mask = ClassFlags;
  1035             // Interfaces are always ABSTRACT
  1036             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1038             if ((flags & ENUM) != 0) {
  1039                 // enums can't be declared abstract or final
  1040                 mask &= ~(ABSTRACT | FINAL);
  1041                 implicit |= implicitEnumFinalFlag(tree);
  1043             // Imply STRICTFP if owner has STRICTFP set.
  1044             implicit |= sym.owner.flags_field & STRICTFP;
  1045             break;
  1046         default:
  1047             throw new AssertionError();
  1049         long illegal = flags & StandardFlags & ~mask;
  1050         if (illegal != 0) {
  1051             if ((illegal & INTERFACE) != 0) {
  1052                 log.error(pos, "intf.not.allowed.here");
  1053                 mask |= INTERFACE;
  1055             else {
  1056                 log.error(pos,
  1057                           "mod.not.allowed.here", asFlagSet(illegal));
  1060         else if ((sym.kind == TYP ||
  1061                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1062                   // in the presence of inner classes. Should it be deleted here?
  1063                   checkDisjoint(pos, flags,
  1064                                 ABSTRACT,
  1065                                 PRIVATE | STATIC))
  1066                  &&
  1067                  checkDisjoint(pos, flags,
  1068                                ABSTRACT | INTERFACE,
  1069                                FINAL | NATIVE | SYNCHRONIZED)
  1070                  &&
  1071                  checkDisjoint(pos, flags,
  1072                                PUBLIC,
  1073                                PRIVATE | PROTECTED)
  1074                  &&
  1075                  checkDisjoint(pos, flags,
  1076                                PRIVATE,
  1077                                PUBLIC | PROTECTED)
  1078                  &&
  1079                  checkDisjoint(pos, flags,
  1080                                FINAL,
  1081                                VOLATILE)
  1082                  &&
  1083                  (sym.kind == TYP ||
  1084                   checkDisjoint(pos, flags,
  1085                                 ABSTRACT | NATIVE,
  1086                                 STRICTFP))) {
  1087             // skip
  1089         return flags & (mask | ~StandardFlags) | implicit;
  1093     /** Determine if this enum should be implicitly final.
  1095      *  If the enum has no specialized enum contants, it is final.
  1097      *  If the enum does have specialized enum contants, it is
  1098      *  <i>not</i> final.
  1099      */
  1100     private long implicitEnumFinalFlag(JCTree tree) {
  1101         if (!tree.hasTag(CLASSDEF)) return 0;
  1102         class SpecialTreeVisitor extends JCTree.Visitor {
  1103             boolean specialized;
  1104             SpecialTreeVisitor() {
  1105                 this.specialized = false;
  1106             };
  1108             @Override
  1109             public void visitTree(JCTree tree) { /* no-op */ }
  1111             @Override
  1112             public void visitVarDef(JCVariableDecl tree) {
  1113                 if ((tree.mods.flags & ENUM) != 0) {
  1114                     if (tree.init instanceof JCNewClass &&
  1115                         ((JCNewClass) tree.init).def != null) {
  1116                         specialized = true;
  1122         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1123         JCClassDecl cdef = (JCClassDecl) tree;
  1124         for (JCTree defs: cdef.defs) {
  1125             defs.accept(sts);
  1126             if (sts.specialized) return 0;
  1128         return FINAL;
  1131 /* *************************************************************************
  1132  * Type Validation
  1133  **************************************************************************/
  1135     /** Validate a type expression. That is,
  1136      *  check that all type arguments of a parametric type are within
  1137      *  their bounds. This must be done in a second phase after type attributon
  1138      *  since a class might have a subclass as type parameter bound. E.g:
  1140      *  class B<A extends C> { ... }
  1141      *  class C extends B<C> { ... }
  1143      *  and we can't make sure that the bound is already attributed because
  1144      *  of possible cycles.
  1146      * Visitor method: Validate a type expression, if it is not null, catching
  1147      *  and reporting any completion failures.
  1148      */
  1149     void validate(JCTree tree, Env<AttrContext> env) {
  1150         validate(tree, env, true);
  1152     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1153         new Validator(env).validateTree(tree, checkRaw, true);
  1156     /** Visitor method: Validate a list of type expressions.
  1157      */
  1158     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1159         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1160             validate(l.head, env);
  1163     /** A visitor class for type validation.
  1164      */
  1165     class Validator extends JCTree.Visitor {
  1167         boolean isOuter;
  1168         Env<AttrContext> env;
  1170         Validator(Env<AttrContext> env) {
  1171             this.env = env;
  1174         @Override
  1175         public void visitTypeArray(JCArrayTypeTree tree) {
  1176             tree.elemtype.accept(this);
  1179         @Override
  1180         public void visitTypeApply(JCTypeApply tree) {
  1181             if (tree.type.tag == CLASS) {
  1182                 List<JCExpression> args = tree.arguments;
  1183                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1185                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1186                 if (incompatibleArg != null) {
  1187                     for (JCTree arg : tree.arguments) {
  1188                         if (arg.type == incompatibleArg) {
  1189                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1191                         forms = forms.tail;
  1195                 forms = tree.type.tsym.type.getTypeArguments();
  1197                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1199                 // For matching pairs of actual argument types `a' and
  1200                 // formal type parameters with declared bound `b' ...
  1201                 while (args.nonEmpty() && forms.nonEmpty()) {
  1202                     validateTree(args.head,
  1203                             !(isOuter && is_java_lang_Class),
  1204                             false);
  1205                     args = args.tail;
  1206                     forms = forms.tail;
  1209                 // Check that this type is either fully parameterized, or
  1210                 // not parameterized at all.
  1211                 if (tree.type.getEnclosingType().isRaw())
  1212                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1213                 if (tree.clazz.hasTag(SELECT))
  1214                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1218         @Override
  1219         public void visitTypeParameter(JCTypeParameter tree) {
  1220             validateTrees(tree.bounds, true, isOuter);
  1221             checkClassBounds(tree.pos(), tree.type);
  1224         @Override
  1225         public void visitWildcard(JCWildcard tree) {
  1226             if (tree.inner != null)
  1227                 validateTree(tree.inner, true, isOuter);
  1230         @Override
  1231         public void visitSelect(JCFieldAccess tree) {
  1232             if (tree.type.tag == CLASS) {
  1233                 visitSelectInternal(tree);
  1235                 // Check that this type is either fully parameterized, or
  1236                 // not parameterized at all.
  1237                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1238                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1242         public void visitSelectInternal(JCFieldAccess tree) {
  1243             if (tree.type.tsym.isStatic() &&
  1244                 tree.selected.type.isParameterized()) {
  1245                 // The enclosing type is not a class, so we are
  1246                 // looking at a static member type.  However, the
  1247                 // qualifying expression is parameterized.
  1248                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1249             } else {
  1250                 // otherwise validate the rest of the expression
  1251                 tree.selected.accept(this);
  1255         /** Default visitor method: do nothing.
  1256          */
  1257         @Override
  1258         public void visitTree(JCTree tree) {
  1261         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1262             try {
  1263                 if (tree != null) {
  1264                     this.isOuter = isOuter;
  1265                     tree.accept(this);
  1266                     if (checkRaw)
  1267                         checkRaw(tree, env);
  1269             } catch (CompletionFailure ex) {
  1270                 completionError(tree.pos(), ex);
  1274         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1275             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1276                 validateTree(l.head, checkRaw, isOuter);
  1279         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1280             if (lint.isEnabled(LintCategory.RAW) &&
  1281                 tree.type.tag == CLASS &&
  1282                 !TreeInfo.isDiamond(tree) &&
  1283                 !withinAnonConstr(env) &&
  1284                 tree.type.isRaw()) {
  1285                 log.warning(LintCategory.RAW,
  1286                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1290         boolean withinAnonConstr(Env<AttrContext> env) {
  1291             return env.enclClass.name.isEmpty() &&
  1292                     env.enclMethod != null && env.enclMethod.name == names.init;
  1296 /* *************************************************************************
  1297  * Exception checking
  1298  **************************************************************************/
  1300     /* The following methods treat classes as sets that contain
  1301      * the class itself and all their subclasses
  1302      */
  1304     /** Is given type a subtype of some of the types in given list?
  1305      */
  1306     boolean subset(Type t, List<Type> ts) {
  1307         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1308             if (types.isSubtype(t, l.head)) return true;
  1309         return false;
  1312     /** Is given type a subtype or supertype of
  1313      *  some of the types in given list?
  1314      */
  1315     boolean intersects(Type t, List<Type> ts) {
  1316         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1317             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1318         return false;
  1321     /** Add type set to given type list, unless it is a subclass of some class
  1322      *  in the list.
  1323      */
  1324     List<Type> incl(Type t, List<Type> ts) {
  1325         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1328     /** Remove type set from type set list.
  1329      */
  1330     List<Type> excl(Type t, List<Type> ts) {
  1331         if (ts.isEmpty()) {
  1332             return ts;
  1333         } else {
  1334             List<Type> ts1 = excl(t, ts.tail);
  1335             if (types.isSubtype(ts.head, t)) return ts1;
  1336             else if (ts1 == ts.tail) return ts;
  1337             else return ts1.prepend(ts.head);
  1341     /** Form the union of two type set lists.
  1342      */
  1343     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1344         List<Type> ts = ts1;
  1345         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1346             ts = incl(l.head, ts);
  1347         return ts;
  1350     /** Form the difference of two type lists.
  1351      */
  1352     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1353         List<Type> ts = ts1;
  1354         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1355             ts = excl(l.head, ts);
  1356         return ts;
  1359     /** Form the intersection of two type lists.
  1360      */
  1361     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1362         List<Type> ts = List.nil();
  1363         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1364             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1365         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1366             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1367         return ts;
  1370     /** Is exc an exception symbol that need not be declared?
  1371      */
  1372     boolean isUnchecked(ClassSymbol exc) {
  1373         return
  1374             exc.kind == ERR ||
  1375             exc.isSubClass(syms.errorType.tsym, types) ||
  1376             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1379     /** Is exc an exception type that need not be declared?
  1380      */
  1381     boolean isUnchecked(Type exc) {
  1382         return
  1383             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1384             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1385             exc.tag == BOT;
  1388     /** Same, but handling completion failures.
  1389      */
  1390     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1391         try {
  1392             return isUnchecked(exc);
  1393         } catch (CompletionFailure ex) {
  1394             completionError(pos, ex);
  1395             return true;
  1399     /** Is exc handled by given exception list?
  1400      */
  1401     boolean isHandled(Type exc, List<Type> handled) {
  1402         return isUnchecked(exc) || subset(exc, handled);
  1405     /** Return all exceptions in thrown list that are not in handled list.
  1406      *  @param thrown     The list of thrown exceptions.
  1407      *  @param handled    The list of handled exceptions.
  1408      */
  1409     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1410         List<Type> unhandled = List.nil();
  1411         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1412             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1413         return unhandled;
  1416 /* *************************************************************************
  1417  * Overriding/Implementation checking
  1418  **************************************************************************/
  1420     /** The level of access protection given by a flag set,
  1421      *  where PRIVATE is highest and PUBLIC is lowest.
  1422      */
  1423     static int protection(long flags) {
  1424         switch ((short)(flags & AccessFlags)) {
  1425         case PRIVATE: return 3;
  1426         case PROTECTED: return 1;
  1427         default:
  1428         case PUBLIC: return 0;
  1429         case 0: return 2;
  1433     /** A customized "cannot override" error message.
  1434      *  @param m      The overriding method.
  1435      *  @param other  The overridden method.
  1436      *  @return       An internationalized string.
  1437      */
  1438     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1439         String key;
  1440         if ((other.owner.flags() & INTERFACE) == 0)
  1441             key = "cant.override";
  1442         else if ((m.owner.flags() & INTERFACE) == 0)
  1443             key = "cant.implement";
  1444         else
  1445             key = "clashes.with";
  1446         return diags.fragment(key, m, m.location(), other, other.location());
  1449     /** A customized "override" warning message.
  1450      *  @param m      The overriding method.
  1451      *  @param other  The overridden method.
  1452      *  @return       An internationalized string.
  1453      */
  1454     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1455         String key;
  1456         if ((other.owner.flags() & INTERFACE) == 0)
  1457             key = "unchecked.override";
  1458         else if ((m.owner.flags() & INTERFACE) == 0)
  1459             key = "unchecked.implement";
  1460         else
  1461             key = "unchecked.clash.with";
  1462         return diags.fragment(key, m, m.location(), other, other.location());
  1465     /** A customized "override" warning message.
  1466      *  @param m      The overriding method.
  1467      *  @param other  The overridden method.
  1468      *  @return       An internationalized string.
  1469      */
  1470     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1471         String key;
  1472         if ((other.owner.flags() & INTERFACE) == 0)
  1473             key = "varargs.override";
  1474         else  if ((m.owner.flags() & INTERFACE) == 0)
  1475             key = "varargs.implement";
  1476         else
  1477             key = "varargs.clash.with";
  1478         return diags.fragment(key, m, m.location(), other, other.location());
  1481     /** Check that this method conforms with overridden method 'other'.
  1482      *  where `origin' is the class where checking started.
  1483      *  Complications:
  1484      *  (1) Do not check overriding of synthetic methods
  1485      *      (reason: they might be final).
  1486      *      todo: check whether this is still necessary.
  1487      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1488      *      than the method it implements. Augment the proxy methods with the
  1489      *      undeclared exceptions in this case.
  1490      *  (3) When generics are enabled, admit the case where an interface proxy
  1491      *      has a result type
  1492      *      extended by the result type of the method it implements.
  1493      *      Change the proxies result type to the smaller type in this case.
  1495      *  @param tree         The tree from which positions
  1496      *                      are extracted for errors.
  1497      *  @param m            The overriding method.
  1498      *  @param other        The overridden method.
  1499      *  @param origin       The class of which the overriding method
  1500      *                      is a member.
  1501      */
  1502     void checkOverride(JCTree tree,
  1503                        MethodSymbol m,
  1504                        MethodSymbol other,
  1505                        ClassSymbol origin) {
  1506         // Don't check overriding of synthetic methods or by bridge methods.
  1507         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1508             return;
  1511         // Error if static method overrides instance method (JLS 8.4.6.2).
  1512         if ((m.flags() & STATIC) != 0 &&
  1513                    (other.flags() & STATIC) == 0) {
  1514             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1515                       cannotOverride(m, other));
  1516             return;
  1519         // Error if instance method overrides static or final
  1520         // method (JLS 8.4.6.1).
  1521         if ((other.flags() & FINAL) != 0 ||
  1522                  (m.flags() & STATIC) == 0 &&
  1523                  (other.flags() & STATIC) != 0) {
  1524             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1525                       cannotOverride(m, other),
  1526                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1527             return;
  1530         if ((m.owner.flags() & ANNOTATION) != 0) {
  1531             // handled in validateAnnotationMethod
  1532             return;
  1535         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1536         if ((origin.flags() & INTERFACE) == 0 &&
  1537                  protection(m.flags()) > protection(other.flags())) {
  1538             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1539                       cannotOverride(m, other),
  1540                       other.flags() == 0 ?
  1541                           Flag.PACKAGE :
  1542                           asFlagSet(other.flags() & AccessFlags));
  1543             return;
  1546         Type mt = types.memberType(origin.type, m);
  1547         Type ot = types.memberType(origin.type, other);
  1548         // Error if overriding result type is different
  1549         // (or, in the case of generics mode, not a subtype) of
  1550         // overridden result type. We have to rename any type parameters
  1551         // before comparing types.
  1552         List<Type> mtvars = mt.getTypeArguments();
  1553         List<Type> otvars = ot.getTypeArguments();
  1554         Type mtres = mt.getReturnType();
  1555         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1557         overrideWarner.clear();
  1558         boolean resultTypesOK =
  1559             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1560         if (!resultTypesOK) {
  1561             if (!allowCovariantReturns &&
  1562                 m.owner != origin &&
  1563                 m.owner.isSubClass(other.owner, types)) {
  1564                 // allow limited interoperability with covariant returns
  1565             } else {
  1566                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1567                           "override.incompatible.ret",
  1568                           cannotOverride(m, other),
  1569                           mtres, otres);
  1570                 return;
  1572         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1573             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1574                     "override.unchecked.ret",
  1575                     uncheckedOverrides(m, other),
  1576                     mtres, otres);
  1579         // Error if overriding method throws an exception not reported
  1580         // by overridden method.
  1581         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1582         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1583         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1584         if (unhandledErased.nonEmpty()) {
  1585             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1586                       "override.meth.doesnt.throw",
  1587                       cannotOverride(m, other),
  1588                       unhandledUnerased.head);
  1589             return;
  1591         else if (unhandledUnerased.nonEmpty()) {
  1592             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1593                           "override.unchecked.thrown",
  1594                          cannotOverride(m, other),
  1595                          unhandledUnerased.head);
  1596             return;
  1599         // Optional warning if varargs don't agree
  1600         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1601             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1602             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1603                         ((m.flags() & Flags.VARARGS) != 0)
  1604                         ? "override.varargs.missing"
  1605                         : "override.varargs.extra",
  1606                         varargsOverrides(m, other));
  1609         // Warn if instance method overrides bridge method (compiler spec ??)
  1610         if ((other.flags() & BRIDGE) != 0) {
  1611             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1612                         uncheckedOverrides(m, other));
  1615         // Warn if a deprecated method overridden by a non-deprecated one.
  1616         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1617             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1620     // where
  1621         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1622             // If the method, m, is defined in an interface, then ignore the issue if the method
  1623             // is only inherited via a supertype and also implemented in the supertype,
  1624             // because in that case, we will rediscover the issue when examining the method
  1625             // in the supertype.
  1626             // If the method, m, is not defined in an interface, then the only time we need to
  1627             // address the issue is when the method is the supertype implemementation: any other
  1628             // case, we will have dealt with when examining the supertype classes
  1629             ClassSymbol mc = m.enclClass();
  1630             Type st = types.supertype(origin.type);
  1631             if (st.tag != CLASS)
  1632                 return true;
  1633             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1635             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1636                 List<Type> intfs = types.interfaces(origin.type);
  1637                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1639             else
  1640                 return (stimpl != m);
  1644     // used to check if there were any unchecked conversions
  1645     Warner overrideWarner = new Warner();
  1647     /** Check that a class does not inherit two concrete methods
  1648      *  with the same signature.
  1649      *  @param pos          Position to be used for error reporting.
  1650      *  @param site         The class type to be checked.
  1651      */
  1652     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1653         Type sup = types.supertype(site);
  1654         if (sup.tag != CLASS) return;
  1656         for (Type t1 = sup;
  1657              t1.tsym.type.isParameterized();
  1658              t1 = types.supertype(t1)) {
  1659             for (Scope.Entry e1 = t1.tsym.members().elems;
  1660                  e1 != null;
  1661                  e1 = e1.sibling) {
  1662                 Symbol s1 = e1.sym;
  1663                 if (s1.kind != MTH ||
  1664                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1665                     !s1.isInheritedIn(site.tsym, types) ||
  1666                     ((MethodSymbol)s1).implementation(site.tsym,
  1667                                                       types,
  1668                                                       true) != s1)
  1669                     continue;
  1670                 Type st1 = types.memberType(t1, s1);
  1671                 int s1ArgsLength = st1.getParameterTypes().length();
  1672                 if (st1 == s1.type) continue;
  1674                 for (Type t2 = sup;
  1675                      t2.tag == CLASS;
  1676                      t2 = types.supertype(t2)) {
  1677                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1678                          e2.scope != null;
  1679                          e2 = e2.next()) {
  1680                         Symbol s2 = e2.sym;
  1681                         if (s2 == s1 ||
  1682                             s2.kind != MTH ||
  1683                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1684                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1685                             !s2.isInheritedIn(site.tsym, types) ||
  1686                             ((MethodSymbol)s2).implementation(site.tsym,
  1687                                                               types,
  1688                                                               true) != s2)
  1689                             continue;
  1690                         Type st2 = types.memberType(t2, s2);
  1691                         if (types.overrideEquivalent(st1, st2))
  1692                             log.error(pos, "concrete.inheritance.conflict",
  1693                                       s1, t1, s2, t2, sup);
  1700     /** Check that classes (or interfaces) do not each define an abstract
  1701      *  method with same name and arguments but incompatible return types.
  1702      *  @param pos          Position to be used for error reporting.
  1703      *  @param t1           The first argument type.
  1704      *  @param t2           The second argument type.
  1705      */
  1706     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1707                                             Type t1,
  1708                                             Type t2) {
  1709         return checkCompatibleAbstracts(pos, t1, t2,
  1710                                         types.makeCompoundType(t1, t2));
  1713     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1714                                             Type t1,
  1715                                             Type t2,
  1716                                             Type site) {
  1717         return firstIncompatibility(pos, t1, t2, site) == null;
  1720     /** Return the first method which is defined with same args
  1721      *  but different return types in two given interfaces, or null if none
  1722      *  exists.
  1723      *  @param t1     The first type.
  1724      *  @param t2     The second type.
  1725      *  @param site   The most derived type.
  1726      *  @returns symbol from t2 that conflicts with one in t1.
  1727      */
  1728     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1729         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1730         closure(t1, interfaces1);
  1731         Map<TypeSymbol,Type> interfaces2;
  1732         if (t1 == t2)
  1733             interfaces2 = interfaces1;
  1734         else
  1735             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1737         for (Type t3 : interfaces1.values()) {
  1738             for (Type t4 : interfaces2.values()) {
  1739                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1740                 if (s != null) return s;
  1743         return null;
  1746     /** Compute all the supertypes of t, indexed by type symbol. */
  1747     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1748         if (t.tag != CLASS) return;
  1749         if (typeMap.put(t.tsym, t) == null) {
  1750             closure(types.supertype(t), typeMap);
  1751             for (Type i : types.interfaces(t))
  1752                 closure(i, typeMap);
  1756     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1757     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1758         if (t.tag != CLASS) return;
  1759         if (typesSkip.get(t.tsym) != null) return;
  1760         if (typeMap.put(t.tsym, t) == null) {
  1761             closure(types.supertype(t), typesSkip, typeMap);
  1762             for (Type i : types.interfaces(t))
  1763                 closure(i, typesSkip, typeMap);
  1767     /** Return the first method in t2 that conflicts with a method from t1. */
  1768     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1769         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1770             Symbol s1 = e1.sym;
  1771             Type st1 = null;
  1772             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1773             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1774             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1775             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1776                 Symbol s2 = e2.sym;
  1777                 if (s1 == s2) continue;
  1778                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1779                 if (st1 == null) st1 = types.memberType(t1, s1);
  1780                 Type st2 = types.memberType(t2, s2);
  1781                 if (types.overrideEquivalent(st1, st2)) {
  1782                     List<Type> tvars1 = st1.getTypeArguments();
  1783                     List<Type> tvars2 = st2.getTypeArguments();
  1784                     Type rt1 = st1.getReturnType();
  1785                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1786                     boolean compat =
  1787                         types.isSameType(rt1, rt2) ||
  1788                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1789                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1790                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1791                          checkCommonOverriderIn(s1,s2,site);
  1792                     if (!compat) {
  1793                         log.error(pos, "types.incompatible.diff.ret",
  1794                             t1, t2, s2.name +
  1795                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1796                         return s2;
  1798                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1799                         !checkCommonOverriderIn(s1, s2, site)) {
  1800                     log.error(pos,
  1801                             "name.clash.same.erasure.no.override",
  1802                             s1, s1.location(),
  1803                             s2, s2.location());
  1804                     return s2;
  1808         return null;
  1810     //WHERE
  1811     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1812         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1813         Type st1 = types.memberType(site, s1);
  1814         Type st2 = types.memberType(site, s2);
  1815         closure(site, supertypes);
  1816         for (Type t : supertypes.values()) {
  1817             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1818                 Symbol s3 = e.sym;
  1819                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1820                 Type st3 = types.memberType(site,s3);
  1821                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1822                     if (s3.owner == site.tsym) {
  1823                         return true;
  1825                     List<Type> tvars1 = st1.getTypeArguments();
  1826                     List<Type> tvars2 = st2.getTypeArguments();
  1827                     List<Type> tvars3 = st3.getTypeArguments();
  1828                     Type rt1 = st1.getReturnType();
  1829                     Type rt2 = st2.getReturnType();
  1830                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1831                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1832                     boolean compat =
  1833                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1834                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1835                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1836                     if (compat)
  1837                         return true;
  1841         return false;
  1844     /** Check that a given method conforms with any method it overrides.
  1845      *  @param tree         The tree from which positions are extracted
  1846      *                      for errors.
  1847      *  @param m            The overriding method.
  1848      */
  1849     void checkOverride(JCTree tree, MethodSymbol m) {
  1850         ClassSymbol origin = (ClassSymbol)m.owner;
  1851         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1852             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1853                 log.error(tree.pos(), "enum.no.finalize");
  1854                 return;
  1856         for (Type t = origin.type; t.tag == CLASS;
  1857              t = types.supertype(t)) {
  1858             if (t != origin.type) {
  1859                 checkOverride(tree, t, origin, m);
  1861             for (Type t2 : types.interfaces(t)) {
  1862                 checkOverride(tree, t2, origin, m);
  1867     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1868         TypeSymbol c = site.tsym;
  1869         Scope.Entry e = c.members().lookup(m.name);
  1870         while (e.scope != null) {
  1871             if (m.overrides(e.sym, origin, types, false)) {
  1872                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1873                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1876             e = e.next();
  1880     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1881         ClashFilter cf = new ClashFilter(origin.type);
  1882         return (cf.accepts(s1) &&
  1883                 cf.accepts(s2) &&
  1884                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1888     /** Check that all abstract members of given class have definitions.
  1889      *  @param pos          Position to be used for error reporting.
  1890      *  @param c            The class.
  1891      */
  1892     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1893         try {
  1894             MethodSymbol undef = firstUndef(c, c);
  1895             if (undef != null) {
  1896                 if ((c.flags() & ENUM) != 0 &&
  1897                     types.supertype(c.type).tsym == syms.enumSym &&
  1898                     (c.flags() & FINAL) == 0) {
  1899                     // add the ABSTRACT flag to an enum
  1900                     c.flags_field |= ABSTRACT;
  1901                 } else {
  1902                     MethodSymbol undef1 =
  1903                         new MethodSymbol(undef.flags(), undef.name,
  1904                                          types.memberType(c.type, undef), undef.owner);
  1905                     log.error(pos, "does.not.override.abstract",
  1906                               c, undef1, undef1.location());
  1909         } catch (CompletionFailure ex) {
  1910             completionError(pos, ex);
  1913 //where
  1914         /** Return first abstract member of class `c' that is not defined
  1915          *  in `impl', null if there is none.
  1916          */
  1917         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1918             MethodSymbol undef = null;
  1919             // Do not bother to search in classes that are not abstract,
  1920             // since they cannot have abstract members.
  1921             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1922                 Scope s = c.members();
  1923                 for (Scope.Entry e = s.elems;
  1924                      undef == null && e != null;
  1925                      e = e.sibling) {
  1926                     if (e.sym.kind == MTH &&
  1927                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1928                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1929                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1930                         if (implmeth == null || implmeth == absmeth)
  1931                             undef = absmeth;
  1934                 if (undef == null) {
  1935                     Type st = types.supertype(c.type);
  1936                     if (st.tag == CLASS)
  1937                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1939                 for (List<Type> l = types.interfaces(c.type);
  1940                      undef == null && l.nonEmpty();
  1941                      l = l.tail) {
  1942                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1945             return undef;
  1948     void checkNonCyclicDecl(JCClassDecl tree) {
  1949         CycleChecker cc = new CycleChecker();
  1950         cc.scan(tree);
  1951         if (!cc.errorFound && !cc.partialCheck) {
  1952             tree.sym.flags_field |= ACYCLIC;
  1956     class CycleChecker extends TreeScanner {
  1958         List<Symbol> seenClasses = List.nil();
  1959         boolean errorFound = false;
  1960         boolean partialCheck = false;
  1962         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1963             if (sym != null && sym.kind == TYP) {
  1964                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1965                 if (classEnv != null) {
  1966                     DiagnosticSource prevSource = log.currentSource();
  1967                     try {
  1968                         log.useSource(classEnv.toplevel.sourcefile);
  1969                         scan(classEnv.tree);
  1971                     finally {
  1972                         log.useSource(prevSource.getFile());
  1974                 } else if (sym.kind == TYP) {
  1975                     checkClass(pos, sym, List.<JCTree>nil());
  1977             } else {
  1978                 //not completed yet
  1979                 partialCheck = true;
  1983         @Override
  1984         public void visitSelect(JCFieldAccess tree) {
  1985             super.visitSelect(tree);
  1986             checkSymbol(tree.pos(), tree.sym);
  1989         @Override
  1990         public void visitIdent(JCIdent tree) {
  1991             checkSymbol(tree.pos(), tree.sym);
  1994         @Override
  1995         public void visitTypeApply(JCTypeApply tree) {
  1996             scan(tree.clazz);
  1999         @Override
  2000         public void visitTypeArray(JCArrayTypeTree tree) {
  2001             scan(tree.elemtype);
  2004         @Override
  2005         public void visitClassDef(JCClassDecl tree) {
  2006             List<JCTree> supertypes = List.nil();
  2007             if (tree.getExtendsClause() != null) {
  2008                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2010             if (tree.getImplementsClause() != null) {
  2011                 for (JCTree intf : tree.getImplementsClause()) {
  2012                     supertypes = supertypes.prepend(intf);
  2015             checkClass(tree.pos(), tree.sym, supertypes);
  2018         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2019             if ((c.flags_field & ACYCLIC) != 0)
  2020                 return;
  2021             if (seenClasses.contains(c)) {
  2022                 errorFound = true;
  2023                 noteCyclic(pos, (ClassSymbol)c);
  2024             } else if (!c.type.isErroneous()) {
  2025                 try {
  2026                     seenClasses = seenClasses.prepend(c);
  2027                     if (c.type.tag == CLASS) {
  2028                         if (supertypes.nonEmpty()) {
  2029                             scan(supertypes);
  2031                         else {
  2032                             ClassType ct = (ClassType)c.type;
  2033                             if (ct.supertype_field == null ||
  2034                                     ct.interfaces_field == null) {
  2035                                 //not completed yet
  2036                                 partialCheck = true;
  2037                                 return;
  2039                             checkSymbol(pos, ct.supertype_field.tsym);
  2040                             for (Type intf : ct.interfaces_field) {
  2041                                 checkSymbol(pos, intf.tsym);
  2044                         if (c.owner.kind == TYP) {
  2045                             checkSymbol(pos, c.owner);
  2048                 } finally {
  2049                     seenClasses = seenClasses.tail;
  2055     /** Check for cyclic references. Issue an error if the
  2056      *  symbol of the type referred to has a LOCKED flag set.
  2058      *  @param pos      Position to be used for error reporting.
  2059      *  @param t        The type referred to.
  2060      */
  2061     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2062         checkNonCyclicInternal(pos, t);
  2066     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2067         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2070     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2071         final TypeVar tv;
  2072         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2073             return;
  2074         if (seen.contains(t)) {
  2075             tv = (TypeVar)t;
  2076             tv.bound = types.createErrorType(t);
  2077             log.error(pos, "cyclic.inheritance", t);
  2078         } else if (t.tag == TYPEVAR) {
  2079             tv = (TypeVar)t;
  2080             seen = seen.prepend(tv);
  2081             for (Type b : types.getBounds(tv))
  2082                 checkNonCyclic1(pos, b, seen);
  2086     /** Check for cyclic references. Issue an error if the
  2087      *  symbol of the type referred to has a LOCKED flag set.
  2089      *  @param pos      Position to be used for error reporting.
  2090      *  @param t        The type referred to.
  2091      *  @returns        True if the check completed on all attributed classes
  2092      */
  2093     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2094         boolean complete = true; // was the check complete?
  2095         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2096         Symbol c = t.tsym;
  2097         if ((c.flags_field & ACYCLIC) != 0) return true;
  2099         if ((c.flags_field & LOCKED) != 0) {
  2100             noteCyclic(pos, (ClassSymbol)c);
  2101         } else if (!c.type.isErroneous()) {
  2102             try {
  2103                 c.flags_field |= LOCKED;
  2104                 if (c.type.tag == CLASS) {
  2105                     ClassType clazz = (ClassType)c.type;
  2106                     if (clazz.interfaces_field != null)
  2107                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2108                             complete &= checkNonCyclicInternal(pos, l.head);
  2109                     if (clazz.supertype_field != null) {
  2110                         Type st = clazz.supertype_field;
  2111                         if (st != null && st.tag == CLASS)
  2112                             complete &= checkNonCyclicInternal(pos, st);
  2114                     if (c.owner.kind == TYP)
  2115                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2117             } finally {
  2118                 c.flags_field &= ~LOCKED;
  2121         if (complete)
  2122             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2123         if (complete) c.flags_field |= ACYCLIC;
  2124         return complete;
  2127     /** Note that we found an inheritance cycle. */
  2128     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2129         log.error(pos, "cyclic.inheritance", c);
  2130         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2131             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2132         Type st = types.supertype(c.type);
  2133         if (st.tag == CLASS)
  2134             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2135         c.type = types.createErrorType(c, c.type);
  2136         c.flags_field |= ACYCLIC;
  2139     /** Check that all methods which implement some
  2140      *  method conform to the method they implement.
  2141      *  @param tree         The class definition whose members are checked.
  2142      */
  2143     void checkImplementations(JCClassDecl tree) {
  2144         checkImplementations(tree, tree.sym);
  2146 //where
  2147         /** Check that all methods which implement some
  2148          *  method in `ic' conform to the method they implement.
  2149          */
  2150         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2151             ClassSymbol origin = tree.sym;
  2152             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2153                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2154                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2155                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2156                         if (e.sym.kind == MTH &&
  2157                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2158                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2159                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2160                             if (implmeth != null && implmeth != absmeth &&
  2161                                 (implmeth.owner.flags() & INTERFACE) ==
  2162                                 (origin.flags() & INTERFACE)) {
  2163                                 // don't check if implmeth is in a class, yet
  2164                                 // origin is an interface. This case arises only
  2165                                 // if implmeth is declared in Object. The reason is
  2166                                 // that interfaces really don't inherit from
  2167                                 // Object it's just that the compiler represents
  2168                                 // things that way.
  2169                                 checkOverride(tree, implmeth, absmeth, origin);
  2177     /** Check that all abstract methods implemented by a class are
  2178      *  mutually compatible.
  2179      *  @param pos          Position to be used for error reporting.
  2180      *  @param c            The class whose interfaces are checked.
  2181      */
  2182     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2183         List<Type> supertypes = types.interfaces(c);
  2184         Type supertype = types.supertype(c);
  2185         if (supertype.tag == CLASS &&
  2186             (supertype.tsym.flags() & ABSTRACT) != 0)
  2187             supertypes = supertypes.prepend(supertype);
  2188         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2189             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2190                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2191                 return;
  2192             for (List<Type> m = supertypes; m != l; m = m.tail)
  2193                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2194                     return;
  2196         checkCompatibleConcretes(pos, c);
  2199     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2200         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2201             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2202                 // VM allows methods and variables with differing types
  2203                 if (sym.kind == e.sym.kind &&
  2204                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2205                     sym != e.sym &&
  2206                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2207                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2208                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2209                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2210                     return;
  2216     /** Check that all non-override equivalent methods accessible from 'site'
  2217      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2219      *  @param pos  Position to be used for error reporting.
  2220      *  @param site The class whose methods are checked.
  2221      *  @param sym  The method symbol to be checked.
  2222      */
  2223     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2224          ClashFilter cf = new ClashFilter(site);
  2225         //for each method m1 that is overridden (directly or indirectly)
  2226         //by method 'sym' in 'site'...
  2227         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2228             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2229              //...check each method m2 that is a member of 'site'
  2230              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2231                 if (m2 == m1) continue;
  2232                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2233                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2234                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2235                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2236                     sym.flags_field |= CLASH;
  2237                     String key = m1 == sym ?
  2238                             "name.clash.same.erasure.no.override" :
  2239                             "name.clash.same.erasure.no.override.1";
  2240                     log.error(pos,
  2241                             key,
  2242                             sym, sym.location(),
  2243                             m2, m2.location(),
  2244                             m1, m1.location());
  2245                     return;
  2253     /** Check that all static methods accessible from 'site' are
  2254      *  mutually compatible (JLS 8.4.8).
  2256      *  @param pos  Position to be used for error reporting.
  2257      *  @param site The class whose methods are checked.
  2258      *  @param sym  The method symbol to be checked.
  2259      */
  2260     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2261         ClashFilter cf = new ClashFilter(site);
  2262         //for each method m1 that is a member of 'site'...
  2263         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2264             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2265             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2266             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2267                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2268                 log.error(pos,
  2269                         "name.clash.same.erasure.no.hide",
  2270                         sym, sym.location(),
  2271                         s, s.location());
  2272                 return;
  2277      //where
  2278      private class ClashFilter implements Filter<Symbol> {
  2280          Type site;
  2282          ClashFilter(Type site) {
  2283              this.site = site;
  2286          boolean shouldSkip(Symbol s) {
  2287              return (s.flags() & CLASH) != 0 &&
  2288                 s.owner == site.tsym;
  2291          public boolean accepts(Symbol s) {
  2292              return s.kind == MTH &&
  2293                      (s.flags() & SYNTHETIC) == 0 &&
  2294                      !shouldSkip(s) &&
  2295                      s.isInheritedIn(site.tsym, types) &&
  2296                      !s.isConstructor();
  2300     /** Report a conflict between a user symbol and a synthetic symbol.
  2301      */
  2302     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2303         if (!sym.type.isErroneous()) {
  2304             if (warnOnSyntheticConflicts) {
  2305                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2307             else {
  2308                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2313     /** Check that class c does not implement directly or indirectly
  2314      *  the same parameterized interface with two different argument lists.
  2315      *  @param pos          Position to be used for error reporting.
  2316      *  @param type         The type whose interfaces are checked.
  2317      */
  2318     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2319         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2321 //where
  2322         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2323          *  with their class symbol as key and their type as value. Make
  2324          *  sure no class is entered with two different types.
  2325          */
  2326         void checkClassBounds(DiagnosticPosition pos,
  2327                               Map<TypeSymbol,Type> seensofar,
  2328                               Type type) {
  2329             if (type.isErroneous()) return;
  2330             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2331                 Type it = l.head;
  2332                 Type oldit = seensofar.put(it.tsym, it);
  2333                 if (oldit != null) {
  2334                     List<Type> oldparams = oldit.allparams();
  2335                     List<Type> newparams = it.allparams();
  2336                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2337                         log.error(pos, "cant.inherit.diff.arg",
  2338                                   it.tsym, Type.toString(oldparams),
  2339                                   Type.toString(newparams));
  2341                 checkClassBounds(pos, seensofar, it);
  2343             Type st = types.supertype(type);
  2344             if (st != null) checkClassBounds(pos, seensofar, st);
  2347     /** Enter interface into into set.
  2348      *  If it existed already, issue a "repeated interface" error.
  2349      */
  2350     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2351         if (its.contains(it))
  2352             log.error(pos, "repeated.interface");
  2353         else {
  2354             its.add(it);
  2358 /* *************************************************************************
  2359  * Check annotations
  2360  **************************************************************************/
  2362     /**
  2363      * Recursively validate annotations values
  2364      */
  2365     void validateAnnotationTree(JCTree tree) {
  2366         class AnnotationValidator extends TreeScanner {
  2367             @Override
  2368             public void visitAnnotation(JCAnnotation tree) {
  2369                 if (!tree.type.isErroneous()) {
  2370                     super.visitAnnotation(tree);
  2371                     validateAnnotation(tree);
  2375         tree.accept(new AnnotationValidator());
  2378     /** Annotation types are restricted to primitives, String, an
  2379      *  enum, an annotation, Class, Class<?>, Class<? extends
  2380      *  Anything>, arrays of the preceding.
  2381      */
  2382     void validateAnnotationType(JCTree restype) {
  2383         // restype may be null if an error occurred, so don't bother validating it
  2384         if (restype != null) {
  2385             validateAnnotationType(restype.pos(), restype.type);
  2389     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2390         if (type.isPrimitive()) return;
  2391         if (types.isSameType(type, syms.stringType)) return;
  2392         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2393         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2394         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2395         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2396             validateAnnotationType(pos, types.elemtype(type));
  2397             return;
  2399         log.error(pos, "invalid.annotation.member.type");
  2402     /**
  2403      * "It is also a compile-time error if any method declared in an
  2404      * annotation type has a signature that is override-equivalent to
  2405      * that of any public or protected method declared in class Object
  2406      * or in the interface annotation.Annotation."
  2408      * @jls 9.6 Annotation Types
  2409      */
  2410     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2411         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2412             Scope s = sup.tsym.members();
  2413             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2414                 if (e.sym.kind == MTH &&
  2415                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2416                     types.overrideEquivalent(m.type, e.sym.type))
  2417                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2422     /** Check the annotations of a symbol.
  2423      */
  2424     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2425         if (skipAnnotations) return;
  2426         for (JCAnnotation a : annotations)
  2427             validateAnnotation(a, s);
  2430     /** Check an annotation of a symbol.
  2431      */
  2432     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2433         validateAnnotationTree(a);
  2435         if (!annotationApplicable(a, s))
  2436             log.error(a.pos(), "annotation.type.not.applicable");
  2438         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2439             if (!isOverrider(s))
  2440                 log.error(a.pos(), "method.does.not.override.superclass");
  2444     /** Is s a method symbol that overrides a method in a superclass? */
  2445     boolean isOverrider(Symbol s) {
  2446         if (s.kind != MTH || s.isStatic())
  2447             return false;
  2448         MethodSymbol m = (MethodSymbol)s;
  2449         TypeSymbol owner = (TypeSymbol)m.owner;
  2450         for (Type sup : types.closure(owner.type)) {
  2451             if (sup == owner.type)
  2452                 continue; // skip "this"
  2453             Scope scope = sup.tsym.members();
  2454             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2455                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2456                     return true;
  2459         return false;
  2462     /** Is the annotation applicable to the symbol? */
  2463     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2464         Attribute.Compound atTarget =
  2465             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2466         if (atTarget == null) return true;
  2467         Attribute atValue = atTarget.member(names.value);
  2468         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2469         Attribute.Array arr = (Attribute.Array) atValue;
  2470         for (Attribute app : arr.values) {
  2471             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2472             Attribute.Enum e = (Attribute.Enum) app;
  2473             if (e.value.name == names.TYPE)
  2474                 { if (s.kind == TYP) return true; }
  2475             else if (e.value.name == names.FIELD)
  2476                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2477             else if (e.value.name == names.METHOD)
  2478                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2479             else if (e.value.name == names.PARAMETER)
  2480                 { if (s.kind == VAR &&
  2481                       s.owner.kind == MTH &&
  2482                       (s.flags() & PARAMETER) != 0)
  2483                     return true;
  2485             else if (e.value.name == names.CONSTRUCTOR)
  2486                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2487             else if (e.value.name == names.LOCAL_VARIABLE)
  2488                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2489                       (s.flags() & PARAMETER) == 0)
  2490                     return true;
  2492             else if (e.value.name == names.ANNOTATION_TYPE)
  2493                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2494                     return true;
  2496             else if (e.value.name == names.PACKAGE)
  2497                 { if (s.kind == PCK) return true; }
  2498             else if (e.value.name == names.TYPE_USE)
  2499                 { if (s.kind == TYP ||
  2500                       s.kind == VAR ||
  2501                       (s.kind == MTH && !s.isConstructor() &&
  2502                        s.type.getReturnType().tag != VOID))
  2503                     return true;
  2505             else
  2506                 return true; // recovery
  2508         return false;
  2511     /** Check an annotation value.
  2512      */
  2513     public void validateAnnotation(JCAnnotation a) {
  2514         // collect an inventory of the members (sorted alphabetically)
  2515         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2516             public int compare(Symbol t, Symbol t1) {
  2517                 return t.name.compareTo(t1.name);
  2519         });
  2520         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2521              e != null;
  2522              e = e.sibling)
  2523             if (e.sym.kind == MTH)
  2524                 members.add((MethodSymbol) e.sym);
  2526         // count them off as they're annotated
  2527         for (JCTree arg : a.args) {
  2528             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2529             JCAssign assign = (JCAssign) arg;
  2530             Symbol m = TreeInfo.symbol(assign.lhs);
  2531             if (m == null || m.type.isErroneous()) continue;
  2532             if (!members.remove(m))
  2533                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2534                           m.name, a.type);
  2537         // all the remaining ones better have default values
  2538         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2539         for (MethodSymbol m : members) {
  2540             if (m.defaultValue == null && !m.type.isErroneous()) {
  2541                 missingDefaults.append(m.name);
  2544         if (missingDefaults.nonEmpty()) {
  2545             String key = (missingDefaults.size() > 1)
  2546                     ? "annotation.missing.default.value.1"
  2547                     : "annotation.missing.default.value";
  2548             log.error(a.pos(), key, a.type, missingDefaults);
  2551         // special case: java.lang.annotation.Target must not have
  2552         // repeated values in its value member
  2553         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2554             a.args.tail == null)
  2555             return;
  2557         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2558         JCAssign assign = (JCAssign) a.args.head;
  2559         Symbol m = TreeInfo.symbol(assign.lhs);
  2560         if (m.name != names.value) return;
  2561         JCTree rhs = assign.rhs;
  2562         if (!rhs.hasTag(NEWARRAY)) return;
  2563         JCNewArray na = (JCNewArray) rhs;
  2564         Set<Symbol> targets = new HashSet<Symbol>();
  2565         for (JCTree elem : na.elems) {
  2566             if (!targets.add(TreeInfo.symbol(elem))) {
  2567                 log.error(elem.pos(), "repeated.annotation.target");
  2572     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2573         if (allowAnnotations &&
  2574             lint.isEnabled(LintCategory.DEP_ANN) &&
  2575             (s.flags() & DEPRECATED) != 0 &&
  2576             !syms.deprecatedType.isErroneous() &&
  2577             s.attribute(syms.deprecatedType.tsym) == null) {
  2578             log.warning(LintCategory.DEP_ANN,
  2579                     pos, "missing.deprecated.annotation");
  2583     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2584         if ((s.flags() & DEPRECATED) != 0 &&
  2585                 (other.flags() & DEPRECATED) == 0 &&
  2586                 s.outermostClass() != other.outermostClass()) {
  2587             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2588                 @Override
  2589                 public void report() {
  2590                     warnDeprecated(pos, s);
  2592             });
  2596     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2597         if ((s.flags() & PROPRIETARY) != 0) {
  2598             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2599                 public void report() {
  2600                     if (enableSunApiLintControl)
  2601                       warnSunApi(pos, "sun.proprietary", s);
  2602                     else
  2603                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2605             });
  2609 /* *************************************************************************
  2610  * Check for recursive annotation elements.
  2611  **************************************************************************/
  2613     /** Check for cycles in the graph of annotation elements.
  2614      */
  2615     void checkNonCyclicElements(JCClassDecl tree) {
  2616         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2617         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2618         try {
  2619             tree.sym.flags_field |= LOCKED;
  2620             for (JCTree def : tree.defs) {
  2621                 if (!def.hasTag(METHODDEF)) continue;
  2622                 JCMethodDecl meth = (JCMethodDecl)def;
  2623                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2625         } finally {
  2626             tree.sym.flags_field &= ~LOCKED;
  2627             tree.sym.flags_field |= ACYCLIC_ANN;
  2631     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2632         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2633             return;
  2634         if ((tsym.flags_field & LOCKED) != 0) {
  2635             log.error(pos, "cyclic.annotation.element");
  2636             return;
  2638         try {
  2639             tsym.flags_field |= LOCKED;
  2640             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2641                 Symbol s = e.sym;
  2642                 if (s.kind != Kinds.MTH)
  2643                     continue;
  2644                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2646         } finally {
  2647             tsym.flags_field &= ~LOCKED;
  2648             tsym.flags_field |= ACYCLIC_ANN;
  2652     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2653         switch (type.tag) {
  2654         case TypeTags.CLASS:
  2655             if ((type.tsym.flags() & ANNOTATION) != 0)
  2656                 checkNonCyclicElementsInternal(pos, type.tsym);
  2657             break;
  2658         case TypeTags.ARRAY:
  2659             checkAnnotationResType(pos, types.elemtype(type));
  2660             break;
  2661         default:
  2662             break; // int etc
  2666 /* *************************************************************************
  2667  * Check for cycles in the constructor call graph.
  2668  **************************************************************************/
  2670     /** Check for cycles in the graph of constructors calling other
  2671      *  constructors.
  2672      */
  2673     void checkCyclicConstructors(JCClassDecl tree) {
  2674         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2676         // enter each constructor this-call into the map
  2677         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2678             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2679             if (app == null) continue;
  2680             JCMethodDecl meth = (JCMethodDecl) l.head;
  2681             if (TreeInfo.name(app.meth) == names._this) {
  2682                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2683             } else {
  2684                 meth.sym.flags_field |= ACYCLIC;
  2688         // Check for cycles in the map
  2689         Symbol[] ctors = new Symbol[0];
  2690         ctors = callMap.keySet().toArray(ctors);
  2691         for (Symbol caller : ctors) {
  2692             checkCyclicConstructor(tree, caller, callMap);
  2696     /** Look in the map to see if the given constructor is part of a
  2697      *  call cycle.
  2698      */
  2699     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2700                                         Map<Symbol,Symbol> callMap) {
  2701         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2702             if ((ctor.flags_field & LOCKED) != 0) {
  2703                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2704                           "recursive.ctor.invocation");
  2705             } else {
  2706                 ctor.flags_field |= LOCKED;
  2707                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2708                 ctor.flags_field &= ~LOCKED;
  2710             ctor.flags_field |= ACYCLIC;
  2714 /* *************************************************************************
  2715  * Miscellaneous
  2716  **************************************************************************/
  2718     /**
  2719      * Return the opcode of the operator but emit an error if it is an
  2720      * error.
  2721      * @param pos        position for error reporting.
  2722      * @param operator   an operator
  2723      * @param tag        a tree tag
  2724      * @param left       type of left hand side
  2725      * @param right      type of right hand side
  2726      */
  2727     int checkOperator(DiagnosticPosition pos,
  2728                        OperatorSymbol operator,
  2729                        JCTree.Tag tag,
  2730                        Type left,
  2731                        Type right) {
  2732         if (operator.opcode == ByteCodes.error) {
  2733             log.error(pos,
  2734                       "operator.cant.be.applied.1",
  2735                       treeinfo.operatorName(tag),
  2736                       left, right);
  2738         return operator.opcode;
  2742     /**
  2743      *  Check for division by integer constant zero
  2744      *  @param pos           Position for error reporting.
  2745      *  @param operator      The operator for the expression
  2746      *  @param operand       The right hand operand for the expression
  2747      */
  2748     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2749         if (operand.constValue() != null
  2750             && lint.isEnabled(LintCategory.DIVZERO)
  2751             && operand.tag <= LONG
  2752             && ((Number) (operand.constValue())).longValue() == 0) {
  2753             int opc = ((OperatorSymbol)operator).opcode;
  2754             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2755                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2756                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2761     /**
  2762      * Check for empty statements after if
  2763      */
  2764     void checkEmptyIf(JCIf tree) {
  2765         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2766                 lint.isEnabled(LintCategory.EMPTY))
  2767             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2770     /** Check that symbol is unique in given scope.
  2771      *  @param pos           Position for error reporting.
  2772      *  @param sym           The symbol.
  2773      *  @param s             The scope.
  2774      */
  2775     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2776         if (sym.type.isErroneous())
  2777             return true;
  2778         if (sym.owner.name == names.any) return false;
  2779         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2780             if (sym != e.sym &&
  2781                     (e.sym.flags() & CLASH) == 0 &&
  2782                     sym.kind == e.sym.kind &&
  2783                     sym.name != names.error &&
  2784                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2785                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2786                     varargsDuplicateError(pos, sym, e.sym);
  2787                     return true;
  2788                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2789                     duplicateErasureError(pos, sym, e.sym);
  2790                     sym.flags_field |= CLASH;
  2791                     return true;
  2792                 } else {
  2793                     duplicateError(pos, e.sym);
  2794                     return false;
  2798         return true;
  2801     /** Report duplicate declaration error.
  2802      */
  2803     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2804         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2805             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2809     /** Check that single-type import is not already imported or top-level defined,
  2810      *  but make an exception for two single-type imports which denote the same type.
  2811      *  @param pos           Position for error reporting.
  2812      *  @param sym           The symbol.
  2813      *  @param s             The scope
  2814      */
  2815     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2816         return checkUniqueImport(pos, sym, s, false);
  2819     /** Check that static single-type import is not already imported or top-level defined,
  2820      *  but make an exception for two single-type imports which denote the same type.
  2821      *  @param pos           Position for error reporting.
  2822      *  @param sym           The symbol.
  2823      *  @param s             The scope
  2824      *  @param staticImport  Whether or not this was a static import
  2825      */
  2826     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2827         return checkUniqueImport(pos, sym, s, true);
  2830     /** Check that single-type import is not already imported or top-level defined,
  2831      *  but make an exception for two single-type imports which denote the same type.
  2832      *  @param pos           Position for error reporting.
  2833      *  @param sym           The symbol.
  2834      *  @param s             The scope.
  2835      *  @param staticImport  Whether or not this was a static import
  2836      */
  2837     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2838         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2839             // is encountered class entered via a class declaration?
  2840             boolean isClassDecl = e.scope == s;
  2841             if ((isClassDecl || sym != e.sym) &&
  2842                 sym.kind == e.sym.kind &&
  2843                 sym.name != names.error) {
  2844                 if (!e.sym.type.isErroneous()) {
  2845                     String what = e.sym.toString();
  2846                     if (!isClassDecl) {
  2847                         if (staticImport)
  2848                             log.error(pos, "already.defined.static.single.import", what);
  2849                         else
  2850                             log.error(pos, "already.defined.single.import", what);
  2852                     else if (sym != e.sym)
  2853                         log.error(pos, "already.defined.this.unit", what);
  2855                 return false;
  2858         return true;
  2861     /** Check that a qualified name is in canonical form (for import decls).
  2862      */
  2863     public void checkCanonical(JCTree tree) {
  2864         if (!isCanonical(tree))
  2865             log.error(tree.pos(), "import.requires.canonical",
  2866                       TreeInfo.symbol(tree));
  2868         // where
  2869         private boolean isCanonical(JCTree tree) {
  2870             while (tree.hasTag(SELECT)) {
  2871                 JCFieldAccess s = (JCFieldAccess) tree;
  2872                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2873                     return false;
  2874                 tree = s.selected;
  2876             return true;
  2879     private class ConversionWarner extends Warner {
  2880         final String uncheckedKey;
  2881         final Type found;
  2882         final Type expected;
  2883         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2884             super(pos);
  2885             this.uncheckedKey = uncheckedKey;
  2886             this.found = found;
  2887             this.expected = expected;
  2890         @Override
  2891         public void warn(LintCategory lint) {
  2892             boolean warned = this.warned;
  2893             super.warn(lint);
  2894             if (warned) return; // suppress redundant diagnostics
  2895             switch (lint) {
  2896                 case UNCHECKED:
  2897                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2898                     break;
  2899                 case VARARGS:
  2900                     if (method != null &&
  2901                             method.attribute(syms.trustMeType.tsym) != null &&
  2902                             isTrustMeAllowedOnMethod(method) &&
  2903                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2904                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2906                     break;
  2907                 default:
  2908                     throw new AssertionError("Unexpected lint: " + lint);
  2913     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2914         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2917     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2918         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial