src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 31 Aug 2012 10:37:46 +0100

author
jfranck
date
Fri, 31 Aug 2012 10:37:46 +0100
changeset 1313
873ddd9f4900
parent 1296
cddc2c894cc6
child 1326
30c36e23f154
permissions
-rw-r--r--

7151010: Add compiler support for repeating annotations
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    46 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTags.*;
    49 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** Type checking helper class for the attribution phase.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Check {
    61     protected static final Context.Key<Check> checkKey =
    62         new Context.Key<Check>();
    64     private final Names names;
    65     private final Log log;
    66     private final Resolve rs;
    67     private final Symtab syms;
    68     private final Enter enter;
    69     private final Infer infer;
    70     private final Types types;
    71     private final JCDiagnostic.Factory diags;
    72     private boolean warnOnSyntheticConflicts;
    73     private boolean suppressAbortOnBadClassFile;
    74     private boolean enableSunApiLintControl;
    75     private final TreeInfo treeinfo;
    77     // The set of lint options currently in effect. It is initialized
    78     // from the context, and then is set/reset as needed by Attr as it
    79     // visits all the various parts of the trees during attribution.
    80     private Lint lint;
    82     // The method being analyzed in Attr - it is set/reset as needed by
    83     // Attr as it visits new method declarations.
    84     private MethodSymbol method;
    86     public static Check instance(Context context) {
    87         Check instance = context.get(checkKey);
    88         if (instance == null)
    89             instance = new Check(context);
    90         return instance;
    91     }
    93     protected Check(Context context) {
    94         context.put(checkKey, this);
    96         names = Names.instance(context);
    97         log = Log.instance(context);
    98         rs = Resolve.instance(context);
    99         syms = Symtab.instance(context);
   100         enter = Enter.instance(context);
   101         infer = Infer.instance(context);
   102         this.types = Types.instance(context);
   103         diags = JCDiagnostic.Factory.instance(context);
   104         Options options = Options.instance(context);
   105         lint = Lint.instance(context);
   106         treeinfo = TreeInfo.instance(context);
   108         Source source = Source.instance(context);
   109         allowGenerics = source.allowGenerics();
   110         allowVarargs = source.allowVarargs();
   111         allowAnnotations = source.allowAnnotations();
   112         allowCovariantReturns = source.allowCovariantReturns();
   113         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   114         complexInference = options.isSet("complexinference");
   115         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   116         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   117         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   119         Target target = Target.instance(context);
   120         syntheticNameChar = target.syntheticNameChar();
   122         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   123         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   124         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   125         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   127         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   128                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   129         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   130                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   131         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   132                 enforceMandatoryWarnings, "sunapi", null);
   134         deferredLintHandler = DeferredLintHandler.immediateHandler;
   135     }
   137     /** Switch: generics enabled?
   138      */
   139     boolean allowGenerics;
   141     /** Switch: varargs enabled?
   142      */
   143     boolean allowVarargs;
   145     /** Switch: annotations enabled?
   146      */
   147     boolean allowAnnotations;
   149     /** Switch: covariant returns enabled?
   150      */
   151     boolean allowCovariantReturns;
   153     /** Switch: simplified varargs enabled?
   154      */
   155     boolean allowSimplifiedVarargs;
   157     /** Switch: -complexinference option set?
   158      */
   159     boolean complexInference;
   161     /** Character for synthetic names
   162      */
   163     char syntheticNameChar;
   165     /** A table mapping flat names of all compiled classes in this run to their
   166      *  symbols; maintained from outside.
   167      */
   168     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   170     /** A handler for messages about deprecated usage.
   171      */
   172     private MandatoryWarningHandler deprecationHandler;
   174     /** A handler for messages about unchecked or unsafe usage.
   175      */
   176     private MandatoryWarningHandler uncheckedHandler;
   178     /** A handler for messages about using proprietary API.
   179      */
   180     private MandatoryWarningHandler sunApiHandler;
   182     /** A handler for deferred lint warnings.
   183      */
   184     private DeferredLintHandler deferredLintHandler;
   186 /* *************************************************************************
   187  * Errors and Warnings
   188  **************************************************************************/
   190     Lint setLint(Lint newLint) {
   191         Lint prev = lint;
   192         lint = newLint;
   193         return prev;
   194     }
   196     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   197         DeferredLintHandler prev = deferredLintHandler;
   198         deferredLintHandler = newDeferredLintHandler;
   199         return prev;
   200     }
   202     MethodSymbol setMethod(MethodSymbol newMethod) {
   203         MethodSymbol prev = method;
   204         method = newMethod;
   205         return prev;
   206     }
   208     /** Warn about deprecated symbol.
   209      *  @param pos        Position to be used for error reporting.
   210      *  @param sym        The deprecated symbol.
   211      */
   212     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   213         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   214             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   215     }
   217     /** Warn about unchecked operation.
   218      *  @param pos        Position to be used for error reporting.
   219      *  @param msg        A string describing the problem.
   220      */
   221     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   222         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   223             uncheckedHandler.report(pos, msg, args);
   224     }
   226     /** Warn about unsafe vararg method decl.
   227      *  @param pos        Position to be used for error reporting.
   228      *  @param sym        The deprecated symbol.
   229      */
   230     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   231         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   232             log.warning(LintCategory.VARARGS, pos, key, args);
   233     }
   235     /** Warn about using proprietary API.
   236      *  @param pos        Position to be used for error reporting.
   237      *  @param msg        A string describing the problem.
   238      */
   239     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   240         if (!lint.isSuppressed(LintCategory.SUNAPI))
   241             sunApiHandler.report(pos, msg, args);
   242     }
   244     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   245         if (lint.isEnabled(LintCategory.STATIC))
   246             log.warning(LintCategory.STATIC, pos, msg, args);
   247     }
   249     /**
   250      * Report any deferred diagnostics.
   251      */
   252     public void reportDeferredDiagnostics() {
   253         deprecationHandler.reportDeferredDiagnostic();
   254         uncheckedHandler.reportDeferredDiagnostic();
   255         sunApiHandler.reportDeferredDiagnostic();
   256     }
   259     /** Report a failure to complete a class.
   260      *  @param pos        Position to be used for error reporting.
   261      *  @param ex         The failure to report.
   262      */
   263     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   264         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   265         if (ex instanceof ClassReader.BadClassFile
   266                 && !suppressAbortOnBadClassFile) throw new Abort();
   267         else return syms.errType;
   268     }
   270     /** Report an error that wrong type tag was found.
   271      *  @param pos        Position to be used for error reporting.
   272      *  @param required   An internationalized string describing the type tag
   273      *                    required.
   274      *  @param found      The type that was found.
   275      */
   276     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   277         // this error used to be raised by the parser,
   278         // but has been delayed to this point:
   279         if (found instanceof Type && ((Type)found).tag == VOID) {
   280             log.error(pos, "illegal.start.of.type");
   281             return syms.errType;
   282         }
   283         log.error(pos, "type.found.req", found, required);
   284         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   285     }
   287     /** Report an error that symbol cannot be referenced before super
   288      *  has been called.
   289      *  @param pos        Position to be used for error reporting.
   290      *  @param sym        The referenced symbol.
   291      */
   292     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   293         log.error(pos, "cant.ref.before.ctor.called", sym);
   294     }
   296     /** Report duplicate declaration error.
   297      */
   298     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   299         if (!sym.type.isErroneous()) {
   300             Symbol location = sym.location();
   301             if (location.kind == MTH &&
   302                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   303                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   304                         kindName(sym.location()), kindName(sym.location().enclClass()),
   305                         sym.location().enclClass());
   306             } else {
   307                 log.error(pos, "already.defined", kindName(sym), sym,
   308                         kindName(sym.location()), sym.location());
   309             }
   310         }
   311     }
   313     /** Report array/varargs duplicate declaration
   314      */
   315     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   316         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   317             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   318         }
   319     }
   321 /* ************************************************************************
   322  * duplicate declaration checking
   323  *************************************************************************/
   325     /** Check that variable does not hide variable with same name in
   326      *  immediately enclosing local scope.
   327      *  @param pos           Position for error reporting.
   328      *  @param v             The symbol.
   329      *  @param s             The scope.
   330      */
   331     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   332         if (s.next != null) {
   333             for (Scope.Entry e = s.next.lookup(v.name);
   334                  e.scope != null && e.sym.owner == v.owner;
   335                  e = e.next()) {
   336                 if (e.sym.kind == VAR &&
   337                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   338                     v.name != names.error) {
   339                     duplicateError(pos, e.sym);
   340                     return;
   341                 }
   342             }
   343         }
   344     }
   346     /** Check that a class or interface does not hide a class or
   347      *  interface with same name in immediately enclosing local scope.
   348      *  @param pos           Position for error reporting.
   349      *  @param c             The symbol.
   350      *  @param s             The scope.
   351      */
   352     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   353         if (s.next != null) {
   354             for (Scope.Entry e = s.next.lookup(c.name);
   355                  e.scope != null && e.sym.owner == c.owner;
   356                  e = e.next()) {
   357                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   358                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   359                     c.name != names.error) {
   360                     duplicateError(pos, e.sym);
   361                     return;
   362                 }
   363             }
   364         }
   365     }
   367     /** Check that class does not have the same name as one of
   368      *  its enclosing classes, or as a class defined in its enclosing scope.
   369      *  return true if class is unique in its enclosing scope.
   370      *  @param pos           Position for error reporting.
   371      *  @param name          The class name.
   372      *  @param s             The enclosing scope.
   373      */
   374     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   375         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   376             if (e.sym.kind == TYP && e.sym.name != names.error) {
   377                 duplicateError(pos, e.sym);
   378                 return false;
   379             }
   380         }
   381         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   382             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   383                 duplicateError(pos, sym);
   384                 return true;
   385             }
   386         }
   387         return true;
   388     }
   390 /* *************************************************************************
   391  * Class name generation
   392  **************************************************************************/
   394     /** Return name of local class.
   395      *  This is of the form    <enclClass> $ n <classname>
   396      *  where
   397      *    enclClass is the flat name of the enclosing class,
   398      *    classname is the simple name of the local class
   399      */
   400     Name localClassName(ClassSymbol c) {
   401         for (int i=1; ; i++) {
   402             Name flatname = names.
   403                 fromString("" + c.owner.enclClass().flatname +
   404                            syntheticNameChar + i +
   405                            c.name);
   406             if (compiled.get(flatname) == null) return flatname;
   407         }
   408     }
   410 /* *************************************************************************
   411  * Type Checking
   412  **************************************************************************/
   414     /**
   415      * A check context is an object that can be used to perform compatibility
   416      * checks - depending on the check context, meaning of 'compatibility' might
   417      * vary significantly.
   418      */
   419     interface CheckContext {
   420         /**
   421          * Is type 'found' compatible with type 'req' in given context
   422          */
   423         boolean compatible(Type found, Type req, Warner warn);
   424         /**
   425          * Report a check error
   426          */
   427         void report(DiagnosticPosition pos, JCDiagnostic details);
   428         /**
   429          * Obtain a warner for this check context
   430          */
   431         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   432     }
   434     /**
   435      * This class represent a check context that is nested within another check
   436      * context - useful to check sub-expressions. The default behavior simply
   437      * redirects all method calls to the enclosing check context leveraging
   438      * the forwarding pattern.
   439      */
   440     static class NestedCheckContext implements CheckContext {
   441         CheckContext enclosingContext;
   443         NestedCheckContext(CheckContext enclosingContext) {
   444             this.enclosingContext = enclosingContext;
   445         }
   447         public boolean compatible(Type found, Type req, Warner warn) {
   448             return enclosingContext.compatible(found, req, warn);
   449         }
   451         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   452             enclosingContext.report(pos, details);
   453         }
   455         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   456             return enclosingContext.checkWarner(pos, found, req);
   457         }
   458     }
   460     /**
   461      * Check context to be used when evaluating assignment/return statements
   462      */
   463     CheckContext basicHandler = new CheckContext() {
   464         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   465             log.error(pos, "prob.found.req", details);
   466         }
   467         public boolean compatible(Type found, Type req, Warner warn) {
   468             return types.isAssignable(found, req, warn);
   469         }
   471         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   472             return convertWarner(pos, found, req);
   473         }
   474     };
   476     /** Check that a given type is assignable to a given proto-type.
   477      *  If it is, return the type, otherwise return errType.
   478      *  @param pos        Position to be used for error reporting.
   479      *  @param found      The type that was found.
   480      *  @param req        The type that was required.
   481      */
   482     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   483         return checkType(pos, found, req, basicHandler);
   484     }
   486     Type checkType(final DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   487         if (req.tag == ERROR)
   488             return req;
   489         if (req.tag == NONE)
   490             return found;
   491         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   492             return found;
   493         } else {
   494             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   495                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   496                 return types.createErrorType(found);
   497             }
   498             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   499             return types.createErrorType(found);
   500         }
   501     }
   503     /** Check that a given type can be cast to a given target type.
   504      *  Return the result of the cast.
   505      *  @param pos        Position to be used for error reporting.
   506      *  @param found      The type that is being cast.
   507      *  @param req        The target type of the cast.
   508      */
   509     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   510         return checkCastable(pos, found, req, basicHandler);
   511     }
   512     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   513         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   514             return req;
   515         } else {
   516             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   517             return types.createErrorType(found);
   518         }
   519     }
   521     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   522      * The problem should only be reported for non-292 cast
   523      */
   524     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   525         if (!tree.type.isErroneous() &&
   526             (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   527             && types.isSameType(tree.expr.type, tree.clazz.type)
   528             && !is292targetTypeCast(tree)) {
   529             log.warning(Lint.LintCategory.CAST,
   530                     tree.pos(), "redundant.cast", tree.expr.type);
   531         }
   532     }
   533     //where
   534             private boolean is292targetTypeCast(JCTypeCast tree) {
   535                 boolean is292targetTypeCast = false;
   536                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   537                 if (expr.hasTag(APPLY)) {
   538                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   539                     Symbol sym = TreeInfo.symbol(apply.meth);
   540                     is292targetTypeCast = sym != null &&
   541                         sym.kind == MTH &&
   542                         (sym.flags() & HYPOTHETICAL) != 0;
   543                 }
   544                 return is292targetTypeCast;
   545             }
   549 //where
   550         /** Is type a type variable, or a (possibly multi-dimensional) array of
   551          *  type variables?
   552          */
   553         boolean isTypeVar(Type t) {
   554             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   555         }
   557     /** Check that a type is within some bounds.
   558      *
   559      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   560      *  type argument.
   561      *  @param pos           Position to be used for error reporting.
   562      *  @param a             The type that should be bounded by bs.
   563      *  @param bs            The bound.
   564      */
   565     private boolean checkExtends(Type a, Type bound) {
   566          if (a.isUnbound()) {
   567              return true;
   568          } else if (a.tag != WILDCARD) {
   569              a = types.upperBound(a);
   570              return types.isSubtype(a, bound);
   571          } else if (a.isExtendsBound()) {
   572              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   573          } else if (a.isSuperBound()) {
   574              return !types.notSoftSubtype(types.lowerBound(a), bound);
   575          }
   576          return true;
   577      }
   579     /** Check that type is different from 'void'.
   580      *  @param pos           Position to be used for error reporting.
   581      *  @param t             The type to be checked.
   582      */
   583     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   584         if (t.tag == VOID) {
   585             log.error(pos, "void.not.allowed.here");
   586             return types.createErrorType(t);
   587         } else {
   588             return t;
   589         }
   590     }
   592     /** Check that type is a class or interface type.
   593      *  @param pos           Position to be used for error reporting.
   594      *  @param t             The type to be checked.
   595      */
   596     Type checkClassType(DiagnosticPosition pos, Type t) {
   597         if (t.tag != CLASS && t.tag != ERROR)
   598             return typeTagError(pos,
   599                                 diags.fragment("type.req.class"),
   600                                 (t.tag == TYPEVAR)
   601                                 ? diags.fragment("type.parameter", t)
   602                                 : t);
   603         else
   604             return t;
   605     }
   607     /** Check that type is a class or interface type.
   608      *  @param pos           Position to be used for error reporting.
   609      *  @param t             The type to be checked.
   610      *  @param noBounds    True if type bounds are illegal here.
   611      */
   612     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   613         t = checkClassType(pos, t);
   614         if (noBounds && t.isParameterized()) {
   615             List<Type> args = t.getTypeArguments();
   616             while (args.nonEmpty()) {
   617                 if (args.head.tag == WILDCARD)
   618                     return typeTagError(pos,
   619                                         diags.fragment("type.req.exact"),
   620                                         args.head);
   621                 args = args.tail;
   622             }
   623         }
   624         return t;
   625     }
   627     /** Check that type is a reifiable class, interface or array type.
   628      *  @param pos           Position to be used for error reporting.
   629      *  @param t             The type to be checked.
   630      */
   631     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   632         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   633             return typeTagError(pos,
   634                                 diags.fragment("type.req.class.array"),
   635                                 t);
   636         } else if (!types.isReifiable(t)) {
   637             log.error(pos, "illegal.generic.type.for.instof");
   638             return types.createErrorType(t);
   639         } else {
   640             return t;
   641         }
   642     }
   644     /** Check that type is a reference type, i.e. a class, interface or array type
   645      *  or a type variable.
   646      *  @param pos           Position to be used for error reporting.
   647      *  @param t             The type to be checked.
   648      */
   649     Type checkRefType(DiagnosticPosition pos, Type t) {
   650         switch (t.tag) {
   651         case CLASS:
   652         case ARRAY:
   653         case TYPEVAR:
   654         case WILDCARD:
   655         case ERROR:
   656             return t;
   657         default:
   658             return typeTagError(pos,
   659                                 diags.fragment("type.req.ref"),
   660                                 t);
   661         }
   662     }
   664     /** Check that each type is a reference type, i.e. a class, interface or array type
   665      *  or a type variable.
   666      *  @param trees         Original trees, used for error reporting.
   667      *  @param types         The types to be checked.
   668      */
   669     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   670         List<JCExpression> tl = trees;
   671         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   672             l.head = checkRefType(tl.head.pos(), l.head);
   673             tl = tl.tail;
   674         }
   675         return types;
   676     }
   678     /** Check that type is a null or reference type.
   679      *  @param pos           Position to be used for error reporting.
   680      *  @param t             The type to be checked.
   681      */
   682     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   683         switch (t.tag) {
   684         case CLASS:
   685         case ARRAY:
   686         case TYPEVAR:
   687         case WILDCARD:
   688         case BOT:
   689         case ERROR:
   690             return t;
   691         default:
   692             return typeTagError(pos,
   693                                 diags.fragment("type.req.ref"),
   694                                 t);
   695         }
   696     }
   698     /** Check that flag set does not contain elements of two conflicting sets. s
   699      *  Return true if it doesn't.
   700      *  @param pos           Position to be used for error reporting.
   701      *  @param flags         The set of flags to be checked.
   702      *  @param set1          Conflicting flags set #1.
   703      *  @param set2          Conflicting flags set #2.
   704      */
   705     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   706         if ((flags & set1) != 0 && (flags & set2) != 0) {
   707             log.error(pos,
   708                       "illegal.combination.of.modifiers",
   709                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   710                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   711             return false;
   712         } else
   713             return true;
   714     }
   716     /** Check that usage of diamond operator is correct (i.e. diamond should not
   717      * be used with non-generic classes or in anonymous class creation expressions)
   718      */
   719     Type checkDiamond(JCNewClass tree, Type t) {
   720         if (!TreeInfo.isDiamond(tree) ||
   721                 t.isErroneous()) {
   722             return checkClassType(tree.clazz.pos(), t, true);
   723         } else if (tree.def != null) {
   724             log.error(tree.clazz.pos(),
   725                     "cant.apply.diamond.1",
   726                     t, diags.fragment("diamond.and.anon.class", t));
   727             return types.createErrorType(t);
   728         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   729             log.error(tree.clazz.pos(),
   730                 "cant.apply.diamond.1",
   731                 t, diags.fragment("diamond.non.generic", t));
   732             return types.createErrorType(t);
   733         } else if (tree.typeargs != null &&
   734                 tree.typeargs.nonEmpty()) {
   735             log.error(tree.clazz.pos(),
   736                 "cant.apply.diamond.1",
   737                 t, diags.fragment("diamond.and.explicit.params", t));
   738             return types.createErrorType(t);
   739         } else {
   740             return t;
   741         }
   742     }
   744     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   745         MethodSymbol m = tree.sym;
   746         if (!allowSimplifiedVarargs) return;
   747         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   748         Type varargElemType = null;
   749         if (m.isVarArgs()) {
   750             varargElemType = types.elemtype(tree.params.last().type);
   751         }
   752         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   753             if (varargElemType != null) {
   754                 log.error(tree,
   755                         "varargs.invalid.trustme.anno",
   756                         syms.trustMeType.tsym,
   757                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   758             } else {
   759                 log.error(tree,
   760                             "varargs.invalid.trustme.anno",
   761                             syms.trustMeType.tsym,
   762                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   763             }
   764         } else if (hasTrustMeAnno && varargElemType != null &&
   765                             types.isReifiable(varargElemType)) {
   766             warnUnsafeVararg(tree,
   767                             "varargs.redundant.trustme.anno",
   768                             syms.trustMeType.tsym,
   769                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   770         }
   771         else if (!hasTrustMeAnno && varargElemType != null &&
   772                 !types.isReifiable(varargElemType)) {
   773             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   774         }
   775     }
   776     //where
   777         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   778             return (s.flags() & VARARGS) != 0 &&
   779                 (s.isConstructor() ||
   780                     (s.flags() & (STATIC | FINAL)) != 0);
   781         }
   783     Type checkMethod(Type owntype,
   784                             Symbol sym,
   785                             Env<AttrContext> env,
   786                             final List<JCExpression> argtrees,
   787                             List<Type> argtypes,
   788                             boolean useVarargs,
   789                             boolean unchecked) {
   790         // System.out.println("call   : " + env.tree);
   791         // System.out.println("method : " + owntype);
   792         // System.out.println("actuals: " + argtypes);
   793         List<Type> formals = owntype.getParameterTypes();
   794         Type last = useVarargs ? formals.last() : null;
   795         if (sym.name==names.init &&
   796                 sym.owner == syms.enumSym)
   797                 formals = formals.tail.tail;
   798         List<JCExpression> args = argtrees;
   799         while (formals.head != last) {
   800             JCTree arg = args.head;
   801             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   802             assertConvertible(arg, arg.type, formals.head, warn);
   803             args = args.tail;
   804             formals = formals.tail;
   805         }
   806         if (useVarargs) {
   807             Type varArg = types.elemtype(last);
   808             while (args.tail != null) {
   809                 JCTree arg = args.head;
   810                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   811                 assertConvertible(arg, arg.type, varArg, warn);
   812                 args = args.tail;
   813             }
   814         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   815             // non-varargs call to varargs method
   816             Type varParam = owntype.getParameterTypes().last();
   817             Type lastArg = argtypes.last();
   818             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   819                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   820                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   821                         types.elemtype(varParam), varParam);
   822         }
   823         if (unchecked) {
   824             warnUnchecked(env.tree.pos(),
   825                     "unchecked.meth.invocation.applied",
   826                     kindName(sym),
   827                     sym.name,
   828                     rs.methodArguments(sym.type.getParameterTypes()),
   829                     rs.methodArguments(argtypes),
   830                     kindName(sym.location()),
   831                     sym.location());
   832            owntype = new MethodType(owntype.getParameterTypes(),
   833                    types.erasure(owntype.getReturnType()),
   834                    types.erasure(owntype.getThrownTypes()),
   835                    syms.methodClass);
   836         }
   837         if (useVarargs) {
   838             JCTree tree = env.tree;
   839             Type argtype = owntype.getParameterTypes().last();
   840             if (!types.isReifiable(argtype) &&
   841                     (!allowSimplifiedVarargs ||
   842                     sym.attribute(syms.trustMeType.tsym) == null ||
   843                     !isTrustMeAllowedOnMethod(sym))) {
   844                 warnUnchecked(env.tree.pos(),
   845                                   "unchecked.generic.array.creation",
   846                                   argtype);
   847             }
   848             Type elemtype = types.elemtype(argtype);
   849             switch (tree.getTag()) {
   850                 case APPLY:
   851                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   852                     break;
   853                 case NEWCLASS:
   854                     ((JCNewClass) tree).varargsElement = elemtype;
   855                     break;
   856                 default:
   857                     throw new AssertionError(""+tree);
   858             }
   859          }
   860          return owntype;
   861     }
   862     //where
   863         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   864             if (types.isConvertible(actual, formal, warn))
   865                 return;
   867             if (formal.isCompound()
   868                 && types.isSubtype(actual, types.supertype(formal))
   869                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   870                 return;
   871         }
   873     /**
   874      * Check that type 't' is a valid instantiation of a generic class
   875      * (see JLS 4.5)
   876      *
   877      * @param t class type to be checked
   878      * @return true if 't' is well-formed
   879      */
   880     public boolean checkValidGenericType(Type t) {
   881         return firstIncompatibleTypeArg(t) == null;
   882     }
   883     //WHERE
   884         private Type firstIncompatibleTypeArg(Type type) {
   885             List<Type> formals = type.tsym.type.allparams();
   886             List<Type> actuals = type.allparams();
   887             List<Type> args = type.getTypeArguments();
   888             List<Type> forms = type.tsym.type.getTypeArguments();
   889             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   891             // For matching pairs of actual argument types `a' and
   892             // formal type parameters with declared bound `b' ...
   893             while (args.nonEmpty() && forms.nonEmpty()) {
   894                 // exact type arguments needs to know their
   895                 // bounds (for upper and lower bound
   896                 // calculations).  So we create new bounds where
   897                 // type-parameters are replaced with actuals argument types.
   898                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   899                 args = args.tail;
   900                 forms = forms.tail;
   901             }
   903             args = type.getTypeArguments();
   904             List<Type> tvars_cap = types.substBounds(formals,
   905                                       formals,
   906                                       types.capture(type).allparams());
   907             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   908                 // Let the actual arguments know their bound
   909                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   910                 args = args.tail;
   911                 tvars_cap = tvars_cap.tail;
   912             }
   914             args = type.getTypeArguments();
   915             List<Type> bounds = bounds_buf.toList();
   917             while (args.nonEmpty() && bounds.nonEmpty()) {
   918                 Type actual = args.head;
   919                 if (!isTypeArgErroneous(actual) &&
   920                         !bounds.head.isErroneous() &&
   921                         !checkExtends(actual, bounds.head)) {
   922                     return args.head;
   923                 }
   924                 args = args.tail;
   925                 bounds = bounds.tail;
   926             }
   928             args = type.getTypeArguments();
   929             bounds = bounds_buf.toList();
   931             for (Type arg : types.capture(type).getTypeArguments()) {
   932                 if (arg.tag == TYPEVAR &&
   933                         arg.getUpperBound().isErroneous() &&
   934                         !bounds.head.isErroneous() &&
   935                         !isTypeArgErroneous(args.head)) {
   936                     return args.head;
   937                 }
   938                 bounds = bounds.tail;
   939                 args = args.tail;
   940             }
   942             return null;
   943         }
   944         //where
   945         boolean isTypeArgErroneous(Type t) {
   946             return isTypeArgErroneous.visit(t);
   947         }
   949         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   950             public Boolean visitType(Type t, Void s) {
   951                 return t.isErroneous();
   952             }
   953             @Override
   954             public Boolean visitTypeVar(TypeVar t, Void s) {
   955                 return visit(t.getUpperBound());
   956             }
   957             @Override
   958             public Boolean visitCapturedType(CapturedType t, Void s) {
   959                 return visit(t.getUpperBound()) ||
   960                         visit(t.getLowerBound());
   961             }
   962             @Override
   963             public Boolean visitWildcardType(WildcardType t, Void s) {
   964                 return visit(t.type);
   965             }
   966         };
   968     /** Check that given modifiers are legal for given symbol and
   969      *  return modifiers together with any implicit modififiers for that symbol.
   970      *  Warning: we can't use flags() here since this method
   971      *  is called during class enter, when flags() would cause a premature
   972      *  completion.
   973      *  @param pos           Position to be used for error reporting.
   974      *  @param flags         The set of modifiers given in a definition.
   975      *  @param sym           The defined symbol.
   976      */
   977     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   978         long mask;
   979         long implicit = 0;
   980         switch (sym.kind) {
   981         case VAR:
   982             if (sym.owner.kind != TYP)
   983                 mask = LocalVarFlags;
   984             else if ((sym.owner.flags_field & INTERFACE) != 0)
   985                 mask = implicit = InterfaceVarFlags;
   986             else
   987                 mask = VarFlags;
   988             break;
   989         case MTH:
   990             if (sym.name == names.init) {
   991                 if ((sym.owner.flags_field & ENUM) != 0) {
   992                     // enum constructors cannot be declared public or
   993                     // protected and must be implicitly or explicitly
   994                     // private
   995                     implicit = PRIVATE;
   996                     mask = PRIVATE;
   997                 } else
   998                     mask = ConstructorFlags;
   999             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1000                 mask = implicit = InterfaceMethodFlags;
  1001             else {
  1002                 mask = MethodFlags;
  1004             // Imply STRICTFP if owner has STRICTFP set.
  1005             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1006               implicit |= sym.owner.flags_field & STRICTFP;
  1007             break;
  1008         case TYP:
  1009             if (sym.isLocal()) {
  1010                 mask = LocalClassFlags;
  1011                 if (sym.name.isEmpty()) { // Anonymous class
  1012                     // Anonymous classes in static methods are themselves static;
  1013                     // that's why we admit STATIC here.
  1014                     mask |= STATIC;
  1015                     // JLS: Anonymous classes are final.
  1016                     implicit |= FINAL;
  1018                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1019                     (flags & ENUM) != 0)
  1020                     log.error(pos, "enums.must.be.static");
  1021             } else if (sym.owner.kind == TYP) {
  1022                 mask = MemberClassFlags;
  1023                 if (sym.owner.owner.kind == PCK ||
  1024                     (sym.owner.flags_field & STATIC) != 0)
  1025                     mask |= STATIC;
  1026                 else if ((flags & ENUM) != 0)
  1027                     log.error(pos, "enums.must.be.static");
  1028                 // Nested interfaces and enums are always STATIC (Spec ???)
  1029                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1030             } else {
  1031                 mask = ClassFlags;
  1033             // Interfaces are always ABSTRACT
  1034             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1036             if ((flags & ENUM) != 0) {
  1037                 // enums can't be declared abstract or final
  1038                 mask &= ~(ABSTRACT | FINAL);
  1039                 implicit |= implicitEnumFinalFlag(tree);
  1041             // Imply STRICTFP if owner has STRICTFP set.
  1042             implicit |= sym.owner.flags_field & STRICTFP;
  1043             break;
  1044         default:
  1045             throw new AssertionError();
  1047         long illegal = flags & StandardFlags & ~mask;
  1048         if (illegal != 0) {
  1049             if ((illegal & INTERFACE) != 0) {
  1050                 log.error(pos, "intf.not.allowed.here");
  1051                 mask |= INTERFACE;
  1053             else {
  1054                 log.error(pos,
  1055                           "mod.not.allowed.here", asFlagSet(illegal));
  1058         else if ((sym.kind == TYP ||
  1059                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1060                   // in the presence of inner classes. Should it be deleted here?
  1061                   checkDisjoint(pos, flags,
  1062                                 ABSTRACT,
  1063                                 PRIVATE | STATIC))
  1064                  &&
  1065                  checkDisjoint(pos, flags,
  1066                                ABSTRACT | INTERFACE,
  1067                                FINAL | NATIVE | SYNCHRONIZED)
  1068                  &&
  1069                  checkDisjoint(pos, flags,
  1070                                PUBLIC,
  1071                                PRIVATE | PROTECTED)
  1072                  &&
  1073                  checkDisjoint(pos, flags,
  1074                                PRIVATE,
  1075                                PUBLIC | PROTECTED)
  1076                  &&
  1077                  checkDisjoint(pos, flags,
  1078                                FINAL,
  1079                                VOLATILE)
  1080                  &&
  1081                  (sym.kind == TYP ||
  1082                   checkDisjoint(pos, flags,
  1083                                 ABSTRACT | NATIVE,
  1084                                 STRICTFP))) {
  1085             // skip
  1087         return flags & (mask | ~StandardFlags) | implicit;
  1091     /** Determine if this enum should be implicitly final.
  1093      *  If the enum has no specialized enum contants, it is final.
  1095      *  If the enum does have specialized enum contants, it is
  1096      *  <i>not</i> final.
  1097      */
  1098     private long implicitEnumFinalFlag(JCTree tree) {
  1099         if (!tree.hasTag(CLASSDEF)) return 0;
  1100         class SpecialTreeVisitor extends JCTree.Visitor {
  1101             boolean specialized;
  1102             SpecialTreeVisitor() {
  1103                 this.specialized = false;
  1104             };
  1106             @Override
  1107             public void visitTree(JCTree tree) { /* no-op */ }
  1109             @Override
  1110             public void visitVarDef(JCVariableDecl tree) {
  1111                 if ((tree.mods.flags & ENUM) != 0) {
  1112                     if (tree.init instanceof JCNewClass &&
  1113                         ((JCNewClass) tree.init).def != null) {
  1114                         specialized = true;
  1120         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1121         JCClassDecl cdef = (JCClassDecl) tree;
  1122         for (JCTree defs: cdef.defs) {
  1123             defs.accept(sts);
  1124             if (sts.specialized) return 0;
  1126         return FINAL;
  1129 /* *************************************************************************
  1130  * Type Validation
  1131  **************************************************************************/
  1133     /** Validate a type expression. That is,
  1134      *  check that all type arguments of a parametric type are within
  1135      *  their bounds. This must be done in a second phase after type attributon
  1136      *  since a class might have a subclass as type parameter bound. E.g:
  1138      *  class B<A extends C> { ... }
  1139      *  class C extends B<C> { ... }
  1141      *  and we can't make sure that the bound is already attributed because
  1142      *  of possible cycles.
  1144      * Visitor method: Validate a type expression, if it is not null, catching
  1145      *  and reporting any completion failures.
  1146      */
  1147     void validate(JCTree tree, Env<AttrContext> env) {
  1148         validate(tree, env, true);
  1150     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1151         new Validator(env).validateTree(tree, checkRaw, true);
  1154     /** Visitor method: Validate a list of type expressions.
  1155      */
  1156     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1157         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1158             validate(l.head, env);
  1161     /** A visitor class for type validation.
  1162      */
  1163     class Validator extends JCTree.Visitor {
  1165         boolean isOuter;
  1166         Env<AttrContext> env;
  1168         Validator(Env<AttrContext> env) {
  1169             this.env = env;
  1172         @Override
  1173         public void visitTypeArray(JCArrayTypeTree tree) {
  1174             tree.elemtype.accept(this);
  1177         @Override
  1178         public void visitTypeApply(JCTypeApply tree) {
  1179             if (tree.type.tag == CLASS) {
  1180                 List<JCExpression> args = tree.arguments;
  1181                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1183                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1184                 if (incompatibleArg != null) {
  1185                     for (JCTree arg : tree.arguments) {
  1186                         if (arg.type == incompatibleArg) {
  1187                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1189                         forms = forms.tail;
  1193                 forms = tree.type.tsym.type.getTypeArguments();
  1195                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1197                 // For matching pairs of actual argument types `a' and
  1198                 // formal type parameters with declared bound `b' ...
  1199                 while (args.nonEmpty() && forms.nonEmpty()) {
  1200                     validateTree(args.head,
  1201                             !(isOuter && is_java_lang_Class),
  1202                             false);
  1203                     args = args.tail;
  1204                     forms = forms.tail;
  1207                 // Check that this type is either fully parameterized, or
  1208                 // not parameterized at all.
  1209                 if (tree.type.getEnclosingType().isRaw())
  1210                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1211                 if (tree.clazz.hasTag(SELECT))
  1212                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1216         @Override
  1217         public void visitTypeParameter(JCTypeParameter tree) {
  1218             validateTrees(tree.bounds, true, isOuter);
  1219             checkClassBounds(tree.pos(), tree.type);
  1222         @Override
  1223         public void visitWildcard(JCWildcard tree) {
  1224             if (tree.inner != null)
  1225                 validateTree(tree.inner, true, isOuter);
  1228         @Override
  1229         public void visitSelect(JCFieldAccess tree) {
  1230             if (tree.type.tag == CLASS) {
  1231                 visitSelectInternal(tree);
  1233                 // Check that this type is either fully parameterized, or
  1234                 // not parameterized at all.
  1235                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1236                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1240         public void visitSelectInternal(JCFieldAccess tree) {
  1241             if (tree.type.tsym.isStatic() &&
  1242                 tree.selected.type.isParameterized()) {
  1243                 // The enclosing type is not a class, so we are
  1244                 // looking at a static member type.  However, the
  1245                 // qualifying expression is parameterized.
  1246                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1247             } else {
  1248                 // otherwise validate the rest of the expression
  1249                 tree.selected.accept(this);
  1253         /** Default visitor method: do nothing.
  1254          */
  1255         @Override
  1256         public void visitTree(JCTree tree) {
  1259         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1260             try {
  1261                 if (tree != null) {
  1262                     this.isOuter = isOuter;
  1263                     tree.accept(this);
  1264                     if (checkRaw)
  1265                         checkRaw(tree, env);
  1267             } catch (CompletionFailure ex) {
  1268                 completionError(tree.pos(), ex);
  1272         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1273             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1274                 validateTree(l.head, checkRaw, isOuter);
  1277         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1278             if (lint.isEnabled(LintCategory.RAW) &&
  1279                 tree.type.tag == CLASS &&
  1280                 !TreeInfo.isDiamond(tree) &&
  1281                 !withinAnonConstr(env) &&
  1282                 tree.type.isRaw()) {
  1283                 log.warning(LintCategory.RAW,
  1284                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1288         boolean withinAnonConstr(Env<AttrContext> env) {
  1289             return env.enclClass.name.isEmpty() &&
  1290                     env.enclMethod != null && env.enclMethod.name == names.init;
  1294 /* *************************************************************************
  1295  * Exception checking
  1296  **************************************************************************/
  1298     /* The following methods treat classes as sets that contain
  1299      * the class itself and all their subclasses
  1300      */
  1302     /** Is given type a subtype of some of the types in given list?
  1303      */
  1304     boolean subset(Type t, List<Type> ts) {
  1305         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1306             if (types.isSubtype(t, l.head)) return true;
  1307         return false;
  1310     /** Is given type a subtype or supertype of
  1311      *  some of the types in given list?
  1312      */
  1313     boolean intersects(Type t, List<Type> ts) {
  1314         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1315             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1316         return false;
  1319     /** Add type set to given type list, unless it is a subclass of some class
  1320      *  in the list.
  1321      */
  1322     List<Type> incl(Type t, List<Type> ts) {
  1323         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1326     /** Remove type set from type set list.
  1327      */
  1328     List<Type> excl(Type t, List<Type> ts) {
  1329         if (ts.isEmpty()) {
  1330             return ts;
  1331         } else {
  1332             List<Type> ts1 = excl(t, ts.tail);
  1333             if (types.isSubtype(ts.head, t)) return ts1;
  1334             else if (ts1 == ts.tail) return ts;
  1335             else return ts1.prepend(ts.head);
  1339     /** Form the union of two type set lists.
  1340      */
  1341     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1342         List<Type> ts = ts1;
  1343         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1344             ts = incl(l.head, ts);
  1345         return ts;
  1348     /** Form the difference of two type lists.
  1349      */
  1350     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1351         List<Type> ts = ts1;
  1352         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1353             ts = excl(l.head, ts);
  1354         return ts;
  1357     /** Form the intersection of two type lists.
  1358      */
  1359     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1360         List<Type> ts = List.nil();
  1361         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1362             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1363         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1364             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1365         return ts;
  1368     /** Is exc an exception symbol that need not be declared?
  1369      */
  1370     boolean isUnchecked(ClassSymbol exc) {
  1371         return
  1372             exc.kind == ERR ||
  1373             exc.isSubClass(syms.errorType.tsym, types) ||
  1374             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1377     /** Is exc an exception type that need not be declared?
  1378      */
  1379     boolean isUnchecked(Type exc) {
  1380         return
  1381             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1382             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1383             exc.tag == BOT;
  1386     /** Same, but handling completion failures.
  1387      */
  1388     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1389         try {
  1390             return isUnchecked(exc);
  1391         } catch (CompletionFailure ex) {
  1392             completionError(pos, ex);
  1393             return true;
  1397     /** Is exc handled by given exception list?
  1398      */
  1399     boolean isHandled(Type exc, List<Type> handled) {
  1400         return isUnchecked(exc) || subset(exc, handled);
  1403     /** Return all exceptions in thrown list that are not in handled list.
  1404      *  @param thrown     The list of thrown exceptions.
  1405      *  @param handled    The list of handled exceptions.
  1406      */
  1407     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1408         List<Type> unhandled = List.nil();
  1409         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1410             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1411         return unhandled;
  1414 /* *************************************************************************
  1415  * Overriding/Implementation checking
  1416  **************************************************************************/
  1418     /** The level of access protection given by a flag set,
  1419      *  where PRIVATE is highest and PUBLIC is lowest.
  1420      */
  1421     static int protection(long flags) {
  1422         switch ((short)(flags & AccessFlags)) {
  1423         case PRIVATE: return 3;
  1424         case PROTECTED: return 1;
  1425         default:
  1426         case PUBLIC: return 0;
  1427         case 0: return 2;
  1431     /** A customized "cannot override" error message.
  1432      *  @param m      The overriding method.
  1433      *  @param other  The overridden method.
  1434      *  @return       An internationalized string.
  1435      */
  1436     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1437         String key;
  1438         if ((other.owner.flags() & INTERFACE) == 0)
  1439             key = "cant.override";
  1440         else if ((m.owner.flags() & INTERFACE) == 0)
  1441             key = "cant.implement";
  1442         else
  1443             key = "clashes.with";
  1444         return diags.fragment(key, m, m.location(), other, other.location());
  1447     /** A customized "override" warning message.
  1448      *  @param m      The overriding method.
  1449      *  @param other  The overridden method.
  1450      *  @return       An internationalized string.
  1451      */
  1452     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1453         String key;
  1454         if ((other.owner.flags() & INTERFACE) == 0)
  1455             key = "unchecked.override";
  1456         else if ((m.owner.flags() & INTERFACE) == 0)
  1457             key = "unchecked.implement";
  1458         else
  1459             key = "unchecked.clash.with";
  1460         return diags.fragment(key, m, m.location(), other, other.location());
  1463     /** A customized "override" warning message.
  1464      *  @param m      The overriding method.
  1465      *  @param other  The overridden method.
  1466      *  @return       An internationalized string.
  1467      */
  1468     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1469         String key;
  1470         if ((other.owner.flags() & INTERFACE) == 0)
  1471             key = "varargs.override";
  1472         else  if ((m.owner.flags() & INTERFACE) == 0)
  1473             key = "varargs.implement";
  1474         else
  1475             key = "varargs.clash.with";
  1476         return diags.fragment(key, m, m.location(), other, other.location());
  1479     /** Check that this method conforms with overridden method 'other'.
  1480      *  where `origin' is the class where checking started.
  1481      *  Complications:
  1482      *  (1) Do not check overriding of synthetic methods
  1483      *      (reason: they might be final).
  1484      *      todo: check whether this is still necessary.
  1485      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1486      *      than the method it implements. Augment the proxy methods with the
  1487      *      undeclared exceptions in this case.
  1488      *  (3) When generics are enabled, admit the case where an interface proxy
  1489      *      has a result type
  1490      *      extended by the result type of the method it implements.
  1491      *      Change the proxies result type to the smaller type in this case.
  1493      *  @param tree         The tree from which positions
  1494      *                      are extracted for errors.
  1495      *  @param m            The overriding method.
  1496      *  @param other        The overridden method.
  1497      *  @param origin       The class of which the overriding method
  1498      *                      is a member.
  1499      */
  1500     void checkOverride(JCTree tree,
  1501                        MethodSymbol m,
  1502                        MethodSymbol other,
  1503                        ClassSymbol origin) {
  1504         // Don't check overriding of synthetic methods or by bridge methods.
  1505         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1506             return;
  1509         // Error if static method overrides instance method (JLS 8.4.6.2).
  1510         if ((m.flags() & STATIC) != 0 &&
  1511                    (other.flags() & STATIC) == 0) {
  1512             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1513                       cannotOverride(m, other));
  1514             return;
  1517         // Error if instance method overrides static or final
  1518         // method (JLS 8.4.6.1).
  1519         if ((other.flags() & FINAL) != 0 ||
  1520                  (m.flags() & STATIC) == 0 &&
  1521                  (other.flags() & STATIC) != 0) {
  1522             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1523                       cannotOverride(m, other),
  1524                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1525             return;
  1528         if ((m.owner.flags() & ANNOTATION) != 0) {
  1529             // handled in validateAnnotationMethod
  1530             return;
  1533         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1534         if ((origin.flags() & INTERFACE) == 0 &&
  1535                  protection(m.flags()) > protection(other.flags())) {
  1536             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1537                       cannotOverride(m, other),
  1538                       other.flags() == 0 ?
  1539                           Flag.PACKAGE :
  1540                           asFlagSet(other.flags() & AccessFlags));
  1541             return;
  1544         Type mt = types.memberType(origin.type, m);
  1545         Type ot = types.memberType(origin.type, other);
  1546         // Error if overriding result type is different
  1547         // (or, in the case of generics mode, not a subtype) of
  1548         // overridden result type. We have to rename any type parameters
  1549         // before comparing types.
  1550         List<Type> mtvars = mt.getTypeArguments();
  1551         List<Type> otvars = ot.getTypeArguments();
  1552         Type mtres = mt.getReturnType();
  1553         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1555         overrideWarner.clear();
  1556         boolean resultTypesOK =
  1557             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1558         if (!resultTypesOK) {
  1559             if (!allowCovariantReturns &&
  1560                 m.owner != origin &&
  1561                 m.owner.isSubClass(other.owner, types)) {
  1562                 // allow limited interoperability with covariant returns
  1563             } else {
  1564                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1565                           "override.incompatible.ret",
  1566                           cannotOverride(m, other),
  1567                           mtres, otres);
  1568                 return;
  1570         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1571             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1572                     "override.unchecked.ret",
  1573                     uncheckedOverrides(m, other),
  1574                     mtres, otres);
  1577         // Error if overriding method throws an exception not reported
  1578         // by overridden method.
  1579         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1580         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1581         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1582         if (unhandledErased.nonEmpty()) {
  1583             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1584                       "override.meth.doesnt.throw",
  1585                       cannotOverride(m, other),
  1586                       unhandledUnerased.head);
  1587             return;
  1589         else if (unhandledUnerased.nonEmpty()) {
  1590             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1591                           "override.unchecked.thrown",
  1592                          cannotOverride(m, other),
  1593                          unhandledUnerased.head);
  1594             return;
  1597         // Optional warning if varargs don't agree
  1598         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1599             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1600             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1601                         ((m.flags() & Flags.VARARGS) != 0)
  1602                         ? "override.varargs.missing"
  1603                         : "override.varargs.extra",
  1604                         varargsOverrides(m, other));
  1607         // Warn if instance method overrides bridge method (compiler spec ??)
  1608         if ((other.flags() & BRIDGE) != 0) {
  1609             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1610                         uncheckedOverrides(m, other));
  1613         // Warn if a deprecated method overridden by a non-deprecated one.
  1614         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1615             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1618     // where
  1619         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1620             // If the method, m, is defined in an interface, then ignore the issue if the method
  1621             // is only inherited via a supertype and also implemented in the supertype,
  1622             // because in that case, we will rediscover the issue when examining the method
  1623             // in the supertype.
  1624             // If the method, m, is not defined in an interface, then the only time we need to
  1625             // address the issue is when the method is the supertype implemementation: any other
  1626             // case, we will have dealt with when examining the supertype classes
  1627             ClassSymbol mc = m.enclClass();
  1628             Type st = types.supertype(origin.type);
  1629             if (st.tag != CLASS)
  1630                 return true;
  1631             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1633             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1634                 List<Type> intfs = types.interfaces(origin.type);
  1635                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1637             else
  1638                 return (stimpl != m);
  1642     // used to check if there were any unchecked conversions
  1643     Warner overrideWarner = new Warner();
  1645     /** Check that a class does not inherit two concrete methods
  1646      *  with the same signature.
  1647      *  @param pos          Position to be used for error reporting.
  1648      *  @param site         The class type to be checked.
  1649      */
  1650     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1651         Type sup = types.supertype(site);
  1652         if (sup.tag != CLASS) return;
  1654         for (Type t1 = sup;
  1655              t1.tsym.type.isParameterized();
  1656              t1 = types.supertype(t1)) {
  1657             for (Scope.Entry e1 = t1.tsym.members().elems;
  1658                  e1 != null;
  1659                  e1 = e1.sibling) {
  1660                 Symbol s1 = e1.sym;
  1661                 if (s1.kind != MTH ||
  1662                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1663                     !s1.isInheritedIn(site.tsym, types) ||
  1664                     ((MethodSymbol)s1).implementation(site.tsym,
  1665                                                       types,
  1666                                                       true) != s1)
  1667                     continue;
  1668                 Type st1 = types.memberType(t1, s1);
  1669                 int s1ArgsLength = st1.getParameterTypes().length();
  1670                 if (st1 == s1.type) continue;
  1672                 for (Type t2 = sup;
  1673                      t2.tag == CLASS;
  1674                      t2 = types.supertype(t2)) {
  1675                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1676                          e2.scope != null;
  1677                          e2 = e2.next()) {
  1678                         Symbol s2 = e2.sym;
  1679                         if (s2 == s1 ||
  1680                             s2.kind != MTH ||
  1681                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1682                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1683                             !s2.isInheritedIn(site.tsym, types) ||
  1684                             ((MethodSymbol)s2).implementation(site.tsym,
  1685                                                               types,
  1686                                                               true) != s2)
  1687                             continue;
  1688                         Type st2 = types.memberType(t2, s2);
  1689                         if (types.overrideEquivalent(st1, st2))
  1690                             log.error(pos, "concrete.inheritance.conflict",
  1691                                       s1, t1, s2, t2, sup);
  1698     /** Check that classes (or interfaces) do not each define an abstract
  1699      *  method with same name and arguments but incompatible return types.
  1700      *  @param pos          Position to be used for error reporting.
  1701      *  @param t1           The first argument type.
  1702      *  @param t2           The second argument type.
  1703      */
  1704     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1705                                             Type t1,
  1706                                             Type t2) {
  1707         return checkCompatibleAbstracts(pos, t1, t2,
  1708                                         types.makeCompoundType(t1, t2));
  1711     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1712                                             Type t1,
  1713                                             Type t2,
  1714                                             Type site) {
  1715         return firstIncompatibility(pos, t1, t2, site) == null;
  1718     /** Return the first method which is defined with same args
  1719      *  but different return types in two given interfaces, or null if none
  1720      *  exists.
  1721      *  @param t1     The first type.
  1722      *  @param t2     The second type.
  1723      *  @param site   The most derived type.
  1724      *  @returns symbol from t2 that conflicts with one in t1.
  1725      */
  1726     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1727         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1728         closure(t1, interfaces1);
  1729         Map<TypeSymbol,Type> interfaces2;
  1730         if (t1 == t2)
  1731             interfaces2 = interfaces1;
  1732         else
  1733             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1735         for (Type t3 : interfaces1.values()) {
  1736             for (Type t4 : interfaces2.values()) {
  1737                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1738                 if (s != null) return s;
  1741         return null;
  1744     /** Compute all the supertypes of t, indexed by type symbol. */
  1745     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1746         if (t.tag != CLASS) return;
  1747         if (typeMap.put(t.tsym, t) == null) {
  1748             closure(types.supertype(t), typeMap);
  1749             for (Type i : types.interfaces(t))
  1750                 closure(i, typeMap);
  1754     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1755     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1756         if (t.tag != CLASS) return;
  1757         if (typesSkip.get(t.tsym) != null) return;
  1758         if (typeMap.put(t.tsym, t) == null) {
  1759             closure(types.supertype(t), typesSkip, typeMap);
  1760             for (Type i : types.interfaces(t))
  1761                 closure(i, typesSkip, typeMap);
  1765     /** Return the first method in t2 that conflicts with a method from t1. */
  1766     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1767         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1768             Symbol s1 = e1.sym;
  1769             Type st1 = null;
  1770             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1771             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1772             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1773             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1774                 Symbol s2 = e2.sym;
  1775                 if (s1 == s2) continue;
  1776                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1777                 if (st1 == null) st1 = types.memberType(t1, s1);
  1778                 Type st2 = types.memberType(t2, s2);
  1779                 if (types.overrideEquivalent(st1, st2)) {
  1780                     List<Type> tvars1 = st1.getTypeArguments();
  1781                     List<Type> tvars2 = st2.getTypeArguments();
  1782                     Type rt1 = st1.getReturnType();
  1783                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1784                     boolean compat =
  1785                         types.isSameType(rt1, rt2) ||
  1786                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1787                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1788                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1789                          checkCommonOverriderIn(s1,s2,site);
  1790                     if (!compat) {
  1791                         log.error(pos, "types.incompatible.diff.ret",
  1792                             t1, t2, s2.name +
  1793                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1794                         return s2;
  1796                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1797                         !checkCommonOverriderIn(s1, s2, site)) {
  1798                     log.error(pos,
  1799                             "name.clash.same.erasure.no.override",
  1800                             s1, s1.location(),
  1801                             s2, s2.location());
  1802                     return s2;
  1806         return null;
  1808     //WHERE
  1809     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1810         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1811         Type st1 = types.memberType(site, s1);
  1812         Type st2 = types.memberType(site, s2);
  1813         closure(site, supertypes);
  1814         for (Type t : supertypes.values()) {
  1815             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1816                 Symbol s3 = e.sym;
  1817                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1818                 Type st3 = types.memberType(site,s3);
  1819                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1820                     if (s3.owner == site.tsym) {
  1821                         return true;
  1823                     List<Type> tvars1 = st1.getTypeArguments();
  1824                     List<Type> tvars2 = st2.getTypeArguments();
  1825                     List<Type> tvars3 = st3.getTypeArguments();
  1826                     Type rt1 = st1.getReturnType();
  1827                     Type rt2 = st2.getReturnType();
  1828                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1829                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1830                     boolean compat =
  1831                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1832                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1833                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1834                     if (compat)
  1835                         return true;
  1839         return false;
  1842     /** Check that a given method conforms with any method it overrides.
  1843      *  @param tree         The tree from which positions are extracted
  1844      *                      for errors.
  1845      *  @param m            The overriding method.
  1846      */
  1847     void checkOverride(JCTree tree, MethodSymbol m) {
  1848         ClassSymbol origin = (ClassSymbol)m.owner;
  1849         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1850             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1851                 log.error(tree.pos(), "enum.no.finalize");
  1852                 return;
  1854         for (Type t = origin.type; t.tag == CLASS;
  1855              t = types.supertype(t)) {
  1856             if (t != origin.type) {
  1857                 checkOverride(tree, t, origin, m);
  1859             for (Type t2 : types.interfaces(t)) {
  1860                 checkOverride(tree, t2, origin, m);
  1865     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1866         TypeSymbol c = site.tsym;
  1867         Scope.Entry e = c.members().lookup(m.name);
  1868         while (e.scope != null) {
  1869             if (m.overrides(e.sym, origin, types, false)) {
  1870                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1871                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1874             e = e.next();
  1878     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1879         ClashFilter cf = new ClashFilter(origin.type);
  1880         return (cf.accepts(s1) &&
  1881                 cf.accepts(s2) &&
  1882                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1886     /** Check that all abstract members of given class have definitions.
  1887      *  @param pos          Position to be used for error reporting.
  1888      *  @param c            The class.
  1889      */
  1890     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1891         try {
  1892             MethodSymbol undef = firstUndef(c, c);
  1893             if (undef != null) {
  1894                 if ((c.flags() & ENUM) != 0 &&
  1895                     types.supertype(c.type).tsym == syms.enumSym &&
  1896                     (c.flags() & FINAL) == 0) {
  1897                     // add the ABSTRACT flag to an enum
  1898                     c.flags_field |= ABSTRACT;
  1899                 } else {
  1900                     MethodSymbol undef1 =
  1901                         new MethodSymbol(undef.flags(), undef.name,
  1902                                          types.memberType(c.type, undef), undef.owner);
  1903                     log.error(pos, "does.not.override.abstract",
  1904                               c, undef1, undef1.location());
  1907         } catch (CompletionFailure ex) {
  1908             completionError(pos, ex);
  1911 //where
  1912         /** Return first abstract member of class `c' that is not defined
  1913          *  in `impl', null if there is none.
  1914          */
  1915         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1916             MethodSymbol undef = null;
  1917             // Do not bother to search in classes that are not abstract,
  1918             // since they cannot have abstract members.
  1919             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1920                 Scope s = c.members();
  1921                 for (Scope.Entry e = s.elems;
  1922                      undef == null && e != null;
  1923                      e = e.sibling) {
  1924                     if (e.sym.kind == MTH &&
  1925                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1926                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1927                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1928                         if (implmeth == null || implmeth == absmeth)
  1929                             undef = absmeth;
  1932                 if (undef == null) {
  1933                     Type st = types.supertype(c.type);
  1934                     if (st.tag == CLASS)
  1935                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1937                 for (List<Type> l = types.interfaces(c.type);
  1938                      undef == null && l.nonEmpty();
  1939                      l = l.tail) {
  1940                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1943             return undef;
  1946     void checkNonCyclicDecl(JCClassDecl tree) {
  1947         CycleChecker cc = new CycleChecker();
  1948         cc.scan(tree);
  1949         if (!cc.errorFound && !cc.partialCheck) {
  1950             tree.sym.flags_field |= ACYCLIC;
  1954     class CycleChecker extends TreeScanner {
  1956         List<Symbol> seenClasses = List.nil();
  1957         boolean errorFound = false;
  1958         boolean partialCheck = false;
  1960         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1961             if (sym != null && sym.kind == TYP) {
  1962                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1963                 if (classEnv != null) {
  1964                     DiagnosticSource prevSource = log.currentSource();
  1965                     try {
  1966                         log.useSource(classEnv.toplevel.sourcefile);
  1967                         scan(classEnv.tree);
  1969                     finally {
  1970                         log.useSource(prevSource.getFile());
  1972                 } else if (sym.kind == TYP) {
  1973                     checkClass(pos, sym, List.<JCTree>nil());
  1975             } else {
  1976                 //not completed yet
  1977                 partialCheck = true;
  1981         @Override
  1982         public void visitSelect(JCFieldAccess tree) {
  1983             super.visitSelect(tree);
  1984             checkSymbol(tree.pos(), tree.sym);
  1987         @Override
  1988         public void visitIdent(JCIdent tree) {
  1989             checkSymbol(tree.pos(), tree.sym);
  1992         @Override
  1993         public void visitTypeApply(JCTypeApply tree) {
  1994             scan(tree.clazz);
  1997         @Override
  1998         public void visitTypeArray(JCArrayTypeTree tree) {
  1999             scan(tree.elemtype);
  2002         @Override
  2003         public void visitClassDef(JCClassDecl tree) {
  2004             List<JCTree> supertypes = List.nil();
  2005             if (tree.getExtendsClause() != null) {
  2006                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2008             if (tree.getImplementsClause() != null) {
  2009                 for (JCTree intf : tree.getImplementsClause()) {
  2010                     supertypes = supertypes.prepend(intf);
  2013             checkClass(tree.pos(), tree.sym, supertypes);
  2016         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2017             if ((c.flags_field & ACYCLIC) != 0)
  2018                 return;
  2019             if (seenClasses.contains(c)) {
  2020                 errorFound = true;
  2021                 noteCyclic(pos, (ClassSymbol)c);
  2022             } else if (!c.type.isErroneous()) {
  2023                 try {
  2024                     seenClasses = seenClasses.prepend(c);
  2025                     if (c.type.tag == CLASS) {
  2026                         if (supertypes.nonEmpty()) {
  2027                             scan(supertypes);
  2029                         else {
  2030                             ClassType ct = (ClassType)c.type;
  2031                             if (ct.supertype_field == null ||
  2032                                     ct.interfaces_field == null) {
  2033                                 //not completed yet
  2034                                 partialCheck = true;
  2035                                 return;
  2037                             checkSymbol(pos, ct.supertype_field.tsym);
  2038                             for (Type intf : ct.interfaces_field) {
  2039                                 checkSymbol(pos, intf.tsym);
  2042                         if (c.owner.kind == TYP) {
  2043                             checkSymbol(pos, c.owner);
  2046                 } finally {
  2047                     seenClasses = seenClasses.tail;
  2053     /** Check for cyclic references. Issue an error if the
  2054      *  symbol of the type referred to has a LOCKED flag set.
  2056      *  @param pos      Position to be used for error reporting.
  2057      *  @param t        The type referred to.
  2058      */
  2059     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2060         checkNonCyclicInternal(pos, t);
  2064     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2065         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2068     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2069         final TypeVar tv;
  2070         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2071             return;
  2072         if (seen.contains(t)) {
  2073             tv = (TypeVar)t;
  2074             tv.bound = types.createErrorType(t);
  2075             log.error(pos, "cyclic.inheritance", t);
  2076         } else if (t.tag == TYPEVAR) {
  2077             tv = (TypeVar)t;
  2078             seen = seen.prepend(tv);
  2079             for (Type b : types.getBounds(tv))
  2080                 checkNonCyclic1(pos, b, seen);
  2084     /** Check for cyclic references. Issue an error if the
  2085      *  symbol of the type referred to has a LOCKED flag set.
  2087      *  @param pos      Position to be used for error reporting.
  2088      *  @param t        The type referred to.
  2089      *  @returns        True if the check completed on all attributed classes
  2090      */
  2091     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2092         boolean complete = true; // was the check complete?
  2093         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2094         Symbol c = t.tsym;
  2095         if ((c.flags_field & ACYCLIC) != 0) return true;
  2097         if ((c.flags_field & LOCKED) != 0) {
  2098             noteCyclic(pos, (ClassSymbol)c);
  2099         } else if (!c.type.isErroneous()) {
  2100             try {
  2101                 c.flags_field |= LOCKED;
  2102                 if (c.type.tag == CLASS) {
  2103                     ClassType clazz = (ClassType)c.type;
  2104                     if (clazz.interfaces_field != null)
  2105                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2106                             complete &= checkNonCyclicInternal(pos, l.head);
  2107                     if (clazz.supertype_field != null) {
  2108                         Type st = clazz.supertype_field;
  2109                         if (st != null && st.tag == CLASS)
  2110                             complete &= checkNonCyclicInternal(pos, st);
  2112                     if (c.owner.kind == TYP)
  2113                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2115             } finally {
  2116                 c.flags_field &= ~LOCKED;
  2119         if (complete)
  2120             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2121         if (complete) c.flags_field |= ACYCLIC;
  2122         return complete;
  2125     /** Note that we found an inheritance cycle. */
  2126     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2127         log.error(pos, "cyclic.inheritance", c);
  2128         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2129             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2130         Type st = types.supertype(c.type);
  2131         if (st.tag == CLASS)
  2132             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2133         c.type = types.createErrorType(c, c.type);
  2134         c.flags_field |= ACYCLIC;
  2137     /** Check that all methods which implement some
  2138      *  method conform to the method they implement.
  2139      *  @param tree         The class definition whose members are checked.
  2140      */
  2141     void checkImplementations(JCClassDecl tree) {
  2142         checkImplementations(tree, tree.sym);
  2144 //where
  2145         /** Check that all methods which implement some
  2146          *  method in `ic' conform to the method they implement.
  2147          */
  2148         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2149             ClassSymbol origin = tree.sym;
  2150             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2151                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2152                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2153                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2154                         if (e.sym.kind == MTH &&
  2155                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2156                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2157                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2158                             if (implmeth != null && implmeth != absmeth &&
  2159                                 (implmeth.owner.flags() & INTERFACE) ==
  2160                                 (origin.flags() & INTERFACE)) {
  2161                                 // don't check if implmeth is in a class, yet
  2162                                 // origin is an interface. This case arises only
  2163                                 // if implmeth is declared in Object. The reason is
  2164                                 // that interfaces really don't inherit from
  2165                                 // Object it's just that the compiler represents
  2166                                 // things that way.
  2167                                 checkOverride(tree, implmeth, absmeth, origin);
  2175     /** Check that all abstract methods implemented by a class are
  2176      *  mutually compatible.
  2177      *  @param pos          Position to be used for error reporting.
  2178      *  @param c            The class whose interfaces are checked.
  2179      */
  2180     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2181         List<Type> supertypes = types.interfaces(c);
  2182         Type supertype = types.supertype(c);
  2183         if (supertype.tag == CLASS &&
  2184             (supertype.tsym.flags() & ABSTRACT) != 0)
  2185             supertypes = supertypes.prepend(supertype);
  2186         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2187             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2188                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2189                 return;
  2190             for (List<Type> m = supertypes; m != l; m = m.tail)
  2191                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2192                     return;
  2194         checkCompatibleConcretes(pos, c);
  2197     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2198         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2199             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2200                 // VM allows methods and variables with differing types
  2201                 if (sym.kind == e.sym.kind &&
  2202                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2203                     sym != e.sym &&
  2204                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2205                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2206                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2207                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2208                     return;
  2214     /** Check that all non-override equivalent methods accessible from 'site'
  2215      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2217      *  @param pos  Position to be used for error reporting.
  2218      *  @param site The class whose methods are checked.
  2219      *  @param sym  The method symbol to be checked.
  2220      */
  2221     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2222          ClashFilter cf = new ClashFilter(site);
  2223         //for each method m1 that is overridden (directly or indirectly)
  2224         //by method 'sym' in 'site'...
  2225         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2226             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2227              //...check each method m2 that is a member of 'site'
  2228              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2229                 if (m2 == m1) continue;
  2230                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2231                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2232                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2233                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2234                     sym.flags_field |= CLASH;
  2235                     String key = m1 == sym ?
  2236                             "name.clash.same.erasure.no.override" :
  2237                             "name.clash.same.erasure.no.override.1";
  2238                     log.error(pos,
  2239                             key,
  2240                             sym, sym.location(),
  2241                             m2, m2.location(),
  2242                             m1, m1.location());
  2243                     return;
  2251     /** Check that all static methods accessible from 'site' are
  2252      *  mutually compatible (JLS 8.4.8).
  2254      *  @param pos  Position to be used for error reporting.
  2255      *  @param site The class whose methods are checked.
  2256      *  @param sym  The method symbol to be checked.
  2257      */
  2258     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2259         ClashFilter cf = new ClashFilter(site);
  2260         //for each method m1 that is a member of 'site'...
  2261         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2262             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2263             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2264             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2265                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2266                 log.error(pos,
  2267                         "name.clash.same.erasure.no.hide",
  2268                         sym, sym.location(),
  2269                         s, s.location());
  2270                 return;
  2275      //where
  2276      private class ClashFilter implements Filter<Symbol> {
  2278          Type site;
  2280          ClashFilter(Type site) {
  2281              this.site = site;
  2284          boolean shouldSkip(Symbol s) {
  2285              return (s.flags() & CLASH) != 0 &&
  2286                 s.owner == site.tsym;
  2289          public boolean accepts(Symbol s) {
  2290              return s.kind == MTH &&
  2291                      (s.flags() & SYNTHETIC) == 0 &&
  2292                      !shouldSkip(s) &&
  2293                      s.isInheritedIn(site.tsym, types) &&
  2294                      !s.isConstructor();
  2298     /** Report a conflict between a user symbol and a synthetic symbol.
  2299      */
  2300     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2301         if (!sym.type.isErroneous()) {
  2302             if (warnOnSyntheticConflicts) {
  2303                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2305             else {
  2306                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2311     /** Check that class c does not implement directly or indirectly
  2312      *  the same parameterized interface with two different argument lists.
  2313      *  @param pos          Position to be used for error reporting.
  2314      *  @param type         The type whose interfaces are checked.
  2315      */
  2316     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2317         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2319 //where
  2320         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2321          *  with their class symbol as key and their type as value. Make
  2322          *  sure no class is entered with two different types.
  2323          */
  2324         void checkClassBounds(DiagnosticPosition pos,
  2325                               Map<TypeSymbol,Type> seensofar,
  2326                               Type type) {
  2327             if (type.isErroneous()) return;
  2328             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2329                 Type it = l.head;
  2330                 Type oldit = seensofar.put(it.tsym, it);
  2331                 if (oldit != null) {
  2332                     List<Type> oldparams = oldit.allparams();
  2333                     List<Type> newparams = it.allparams();
  2334                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2335                         log.error(pos, "cant.inherit.diff.arg",
  2336                                   it.tsym, Type.toString(oldparams),
  2337                                   Type.toString(newparams));
  2339                 checkClassBounds(pos, seensofar, it);
  2341             Type st = types.supertype(type);
  2342             if (st != null) checkClassBounds(pos, seensofar, st);
  2345     /** Enter interface into into set.
  2346      *  If it existed already, issue a "repeated interface" error.
  2347      */
  2348     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2349         if (its.contains(it))
  2350             log.error(pos, "repeated.interface");
  2351         else {
  2352             its.add(it);
  2356 /* *************************************************************************
  2357  * Check annotations
  2358  **************************************************************************/
  2360     /**
  2361      * Recursively validate annotations values
  2362      */
  2363     void validateAnnotationTree(JCTree tree) {
  2364         class AnnotationValidator extends TreeScanner {
  2365             @Override
  2366             public void visitAnnotation(JCAnnotation tree) {
  2367                 if (!tree.type.isErroneous()) {
  2368                     super.visitAnnotation(tree);
  2369                     validateAnnotation(tree);
  2373         tree.accept(new AnnotationValidator());
  2376     /** Annotation types are restricted to primitives, String, an
  2377      *  enum, an annotation, Class, Class<?>, Class<? extends
  2378      *  Anything>, arrays of the preceding.
  2379      */
  2380     void validateAnnotationType(JCTree restype) {
  2381         // restype may be null if an error occurred, so don't bother validating it
  2382         if (restype != null) {
  2383             validateAnnotationType(restype.pos(), restype.type);
  2387     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2388         if (type.isPrimitive()) return;
  2389         if (types.isSameType(type, syms.stringType)) return;
  2390         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2391         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2392         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2393         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2394             validateAnnotationType(pos, types.elemtype(type));
  2395             return;
  2397         log.error(pos, "invalid.annotation.member.type");
  2400     /**
  2401      * "It is also a compile-time error if any method declared in an
  2402      * annotation type has a signature that is override-equivalent to
  2403      * that of any public or protected method declared in class Object
  2404      * or in the interface annotation.Annotation."
  2406      * @jls 9.6 Annotation Types
  2407      */
  2408     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2409         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2410             Scope s = sup.tsym.members();
  2411             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2412                 if (e.sym.kind == MTH &&
  2413                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2414                     types.overrideEquivalent(m.type, e.sym.type))
  2415                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2420     /** Check the annotations of a symbol.
  2421      */
  2422     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2423         for (JCAnnotation a : annotations)
  2424             validateAnnotation(a, s);
  2427     /** Check an annotation of a symbol.
  2428      */
  2429     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2430         validateAnnotationTree(a);
  2432         if (!annotationApplicable(a, s))
  2433             log.error(a.pos(), "annotation.type.not.applicable");
  2435         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2436             if (!isOverrider(s))
  2437                 log.error(a.pos(), "method.does.not.override.superclass");
  2441     /**
  2442      * Validate the proposed container 'containedBy' on the
  2443      * annotation type symbol 's'. Report errors at position
  2444      * 'pos'.
  2446      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2447      * @param containerAnno the @ContainedBy on 's'
  2448      * @param pos where to report errors
  2449      */
  2450     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2451         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2453         Type t = null;
  2454         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2455         if (!l.isEmpty()) {
  2456             Assert.check(l.head.fst.name == names.value);
  2457             t = ((Attribute.Class)l.head.snd).getValue();
  2460         if (t == null) {
  2461             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2462             return;
  2465         validateHasContainerFor(t.tsym, s, pos);
  2466         validateRetention(t.tsym, s, pos);
  2467         validateDocumented(t.tsym, s, pos);
  2468         validateInherited(t.tsym, s, pos);
  2469         validateTarget(t.tsym, s, pos);
  2472     /**
  2473      * Validate the proposed container 'containerFor' on the
  2474      * annotation type symbol 's'. Report errors at position
  2475      * 'pos'.
  2477      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2478      * @param containerFor the @ContainedFor on 's'
  2479      * @param pos where to report errors
  2480      */
  2481     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2482         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2484         Type t = null;
  2485         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2486         if (!l.isEmpty()) {
  2487             Assert.check(l.head.fst.name == names.value);
  2488             t = ((Attribute.Class)l.head.snd).getValue();
  2491         if (t == null) {
  2492             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2493             return;
  2496         validateHasContainedBy(t.tsym, s, pos);
  2499     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2500         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2502         if (containedBy == null) {
  2503             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2504             return;
  2507         Type t = null;
  2508         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2509         if (!l.isEmpty()) {
  2510             Assert.check(l.head.fst.name == names.value);
  2511             t = ((Attribute.Class)l.head.snd).getValue();
  2514         if (t == null) {
  2515             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2516             return;
  2519         if (!types.isSameType(t, contained.type))
  2520             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2523     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2524         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2526         if (containerFor == null) {
  2527             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2528             return;
  2531         Type t = null;
  2532         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2533         if (!l.isEmpty()) {
  2534             Assert.check(l.head.fst.name == names.value);
  2535             t = ((Attribute.Class)l.head.snd).getValue();
  2538         if (t == null) {
  2539             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2540             return;
  2543         if (!types.isSameType(t, contained.type))
  2544             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2547     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2548         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2549         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2551         boolean error = false;
  2552         switch (containedRetention) {
  2553         case RUNTIME:
  2554             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2555                 error = true;
  2557             break;
  2558         case CLASS:
  2559             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2560                 error = true;
  2563         if (error ) {
  2564             log.error(pos, "invalid.containedby.annotation.retention",
  2565                       container, containerRetention,
  2566                       contained, containedRetention);
  2570     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2571         if (contained.attribute(syms.documentedType.tsym) != null) {
  2572             if (container.attribute(syms.documentedType.tsym) == null) {
  2573                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2578     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2579         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2580             if (container.attribute(syms.inheritedType.tsym) == null) {
  2581                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2586     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2587         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2589         // If contained has no Target, we are done
  2590         if (containedTarget == null) {
  2591             return;
  2594         // If contained has Target m1, container must have a Target
  2595         // annotation, m2, and m2 must be a subset of m1. (This is
  2596         // trivially true if contained has no target as per above).
  2598         // contained has target, but container has not, error
  2599         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2600         if (containerTarget == null) {
  2601             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2602             return;
  2605         Set<Name> containerTargets = new HashSet<Name>();
  2606         for (Attribute app : containerTarget.values) {
  2607             if (!(app instanceof Attribute.Enum)) {
  2608                 continue; // recovery
  2610             Attribute.Enum e = (Attribute.Enum)app;
  2611             containerTargets.add(e.value.name);
  2614         Set<Name> containedTargets = new HashSet<Name>();
  2615         for (Attribute app : containedTarget.values) {
  2616             if (!(app instanceof Attribute.Enum)) {
  2617                 continue; // recovery
  2619             Attribute.Enum e = (Attribute.Enum)app;
  2620             containedTargets.add(e.value.name);
  2623         if (!isTargetSubset(containedTargets, containerTargets)) {
  2624             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2628     /** Checks that t is a subset of s, with respect to ElementType
  2629      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2630      */
  2631     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2632         // Check that all elements in t are present in s
  2633         for (Name n2 : t) {
  2634             boolean currentElementOk = false;
  2635             for (Name n1 : s) {
  2636                 if (n1 == n2) {
  2637                     currentElementOk = true;
  2638                     break;
  2639                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2640                     currentElementOk = true;
  2641                     break;
  2644             if (!currentElementOk)
  2645                 return false;
  2647         return true;
  2650     /** Is s a method symbol that overrides a method in a superclass? */
  2651     boolean isOverrider(Symbol s) {
  2652         if (s.kind != MTH || s.isStatic())
  2653             return false;
  2654         MethodSymbol m = (MethodSymbol)s;
  2655         TypeSymbol owner = (TypeSymbol)m.owner;
  2656         for (Type sup : types.closure(owner.type)) {
  2657             if (sup == owner.type)
  2658                 continue; // skip "this"
  2659             Scope scope = sup.tsym.members();
  2660             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2661                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2662                     return true;
  2665         return false;
  2668     /** Is the annotation applicable to the symbol? */
  2669     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2670         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2671         if (arr == null) {
  2672             return true;
  2674         for (Attribute app : arr.values) {
  2675             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2676             Attribute.Enum e = (Attribute.Enum) app;
  2677             if (e.value.name == names.TYPE)
  2678                 { if (s.kind == TYP) return true; }
  2679             else if (e.value.name == names.FIELD)
  2680                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2681             else if (e.value.name == names.METHOD)
  2682                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2683             else if (e.value.name == names.PARAMETER)
  2684                 { if (s.kind == VAR &&
  2685                       s.owner.kind == MTH &&
  2686                       (s.flags() & PARAMETER) != 0)
  2687                     return true;
  2689             else if (e.value.name == names.CONSTRUCTOR)
  2690                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2691             else if (e.value.name == names.LOCAL_VARIABLE)
  2692                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2693                       (s.flags() & PARAMETER) == 0)
  2694                     return true;
  2696             else if (e.value.name == names.ANNOTATION_TYPE)
  2697                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2698                     return true;
  2700             else if (e.value.name == names.PACKAGE)
  2701                 { if (s.kind == PCK) return true; }
  2702             else if (e.value.name == names.TYPE_USE)
  2703                 { if (s.kind == TYP ||
  2704                       s.kind == VAR ||
  2705                       (s.kind == MTH && !s.isConstructor() &&
  2706                        s.type.getReturnType().tag != VOID))
  2707                     return true;
  2709             else
  2710                 return true; // recovery
  2712         return false;
  2716     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2717         Attribute.Compound atTarget =
  2718             s.attribute(syms.annotationTargetType.tsym);
  2719         if (atTarget == null) return null; // ok, is applicable
  2720         Attribute atValue = atTarget.member(names.value);
  2721         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2722         return (Attribute.Array) atValue;
  2725     /** Check an annotation value.
  2726      */
  2727     public void validateAnnotation(JCAnnotation a) {
  2728         // collect an inventory of the members (sorted alphabetically)
  2729         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2730             public int compare(Symbol t, Symbol t1) {
  2731                 return t.name.compareTo(t1.name);
  2733         });
  2734         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2735              e != null;
  2736              e = e.sibling)
  2737             if (e.sym.kind == MTH)
  2738                 members.add((MethodSymbol) e.sym);
  2740         // count them off as they're annotated
  2741         for (JCTree arg : a.args) {
  2742             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2743             JCAssign assign = (JCAssign) arg;
  2744             Symbol m = TreeInfo.symbol(assign.lhs);
  2745             if (m == null || m.type.isErroneous()) continue;
  2746             if (!members.remove(m))
  2747                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2748                           m.name, a.type);
  2751         // all the remaining ones better have default values
  2752         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2753         for (MethodSymbol m : members) {
  2754             if (m.defaultValue == null && !m.type.isErroneous()) {
  2755                 missingDefaults.append(m.name);
  2758         if (missingDefaults.nonEmpty()) {
  2759             String key = (missingDefaults.size() > 1)
  2760                     ? "annotation.missing.default.value.1"
  2761                     : "annotation.missing.default.value";
  2762             log.error(a.pos(), key, a.type, missingDefaults);
  2765         // special case: java.lang.annotation.Target must not have
  2766         // repeated values in its value member
  2767         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2768             a.args.tail == null)
  2769             return;
  2771         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2772         JCAssign assign = (JCAssign) a.args.head;
  2773         Symbol m = TreeInfo.symbol(assign.lhs);
  2774         if (m.name != names.value) return;
  2775         JCTree rhs = assign.rhs;
  2776         if (!rhs.hasTag(NEWARRAY)) return;
  2777         JCNewArray na = (JCNewArray) rhs;
  2778         Set<Symbol> targets = new HashSet<Symbol>();
  2779         for (JCTree elem : na.elems) {
  2780             if (!targets.add(TreeInfo.symbol(elem))) {
  2781                 log.error(elem.pos(), "repeated.annotation.target");
  2786     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2787         if (allowAnnotations &&
  2788             lint.isEnabled(LintCategory.DEP_ANN) &&
  2789             (s.flags() & DEPRECATED) != 0 &&
  2790             !syms.deprecatedType.isErroneous() &&
  2791             s.attribute(syms.deprecatedType.tsym) == null) {
  2792             log.warning(LintCategory.DEP_ANN,
  2793                     pos, "missing.deprecated.annotation");
  2797     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2798         if ((s.flags() & DEPRECATED) != 0 &&
  2799                 (other.flags() & DEPRECATED) == 0 &&
  2800                 s.outermostClass() != other.outermostClass()) {
  2801             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2802                 @Override
  2803                 public void report() {
  2804                     warnDeprecated(pos, s);
  2806             });
  2810     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2811         if ((s.flags() & PROPRIETARY) != 0) {
  2812             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2813                 public void report() {
  2814                     if (enableSunApiLintControl)
  2815                       warnSunApi(pos, "sun.proprietary", s);
  2816                     else
  2817                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2819             });
  2823 /* *************************************************************************
  2824  * Check for recursive annotation elements.
  2825  **************************************************************************/
  2827     /** Check for cycles in the graph of annotation elements.
  2828      */
  2829     void checkNonCyclicElements(JCClassDecl tree) {
  2830         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2831         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2832         try {
  2833             tree.sym.flags_field |= LOCKED;
  2834             for (JCTree def : tree.defs) {
  2835                 if (!def.hasTag(METHODDEF)) continue;
  2836                 JCMethodDecl meth = (JCMethodDecl)def;
  2837                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2839         } finally {
  2840             tree.sym.flags_field &= ~LOCKED;
  2841             tree.sym.flags_field |= ACYCLIC_ANN;
  2845     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2846         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2847             return;
  2848         if ((tsym.flags_field & LOCKED) != 0) {
  2849             log.error(pos, "cyclic.annotation.element");
  2850             return;
  2852         try {
  2853             tsym.flags_field |= LOCKED;
  2854             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2855                 Symbol s = e.sym;
  2856                 if (s.kind != Kinds.MTH)
  2857                     continue;
  2858                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2860         } finally {
  2861             tsym.flags_field &= ~LOCKED;
  2862             tsym.flags_field |= ACYCLIC_ANN;
  2866     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2867         switch (type.tag) {
  2868         case TypeTags.CLASS:
  2869             if ((type.tsym.flags() & ANNOTATION) != 0)
  2870                 checkNonCyclicElementsInternal(pos, type.tsym);
  2871             break;
  2872         case TypeTags.ARRAY:
  2873             checkAnnotationResType(pos, types.elemtype(type));
  2874             break;
  2875         default:
  2876             break; // int etc
  2880 /* *************************************************************************
  2881  * Check for cycles in the constructor call graph.
  2882  **************************************************************************/
  2884     /** Check for cycles in the graph of constructors calling other
  2885      *  constructors.
  2886      */
  2887     void checkCyclicConstructors(JCClassDecl tree) {
  2888         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2890         // enter each constructor this-call into the map
  2891         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2892             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2893             if (app == null) continue;
  2894             JCMethodDecl meth = (JCMethodDecl) l.head;
  2895             if (TreeInfo.name(app.meth) == names._this) {
  2896                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2897             } else {
  2898                 meth.sym.flags_field |= ACYCLIC;
  2902         // Check for cycles in the map
  2903         Symbol[] ctors = new Symbol[0];
  2904         ctors = callMap.keySet().toArray(ctors);
  2905         for (Symbol caller : ctors) {
  2906             checkCyclicConstructor(tree, caller, callMap);
  2910     /** Look in the map to see if the given constructor is part of a
  2911      *  call cycle.
  2912      */
  2913     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2914                                         Map<Symbol,Symbol> callMap) {
  2915         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2916             if ((ctor.flags_field & LOCKED) != 0) {
  2917                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2918                           "recursive.ctor.invocation");
  2919             } else {
  2920                 ctor.flags_field |= LOCKED;
  2921                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2922                 ctor.flags_field &= ~LOCKED;
  2924             ctor.flags_field |= ACYCLIC;
  2928 /* *************************************************************************
  2929  * Miscellaneous
  2930  **************************************************************************/
  2932     /**
  2933      * Return the opcode of the operator but emit an error if it is an
  2934      * error.
  2935      * @param pos        position for error reporting.
  2936      * @param operator   an operator
  2937      * @param tag        a tree tag
  2938      * @param left       type of left hand side
  2939      * @param right      type of right hand side
  2940      */
  2941     int checkOperator(DiagnosticPosition pos,
  2942                        OperatorSymbol operator,
  2943                        JCTree.Tag tag,
  2944                        Type left,
  2945                        Type right) {
  2946         if (operator.opcode == ByteCodes.error) {
  2947             log.error(pos,
  2948                       "operator.cant.be.applied.1",
  2949                       treeinfo.operatorName(tag),
  2950                       left, right);
  2952         return operator.opcode;
  2956     /**
  2957      *  Check for division by integer constant zero
  2958      *  @param pos           Position for error reporting.
  2959      *  @param operator      The operator for the expression
  2960      *  @param operand       The right hand operand for the expression
  2961      */
  2962     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2963         if (operand.constValue() != null
  2964             && lint.isEnabled(LintCategory.DIVZERO)
  2965             && operand.tag <= LONG
  2966             && ((Number) (operand.constValue())).longValue() == 0) {
  2967             int opc = ((OperatorSymbol)operator).opcode;
  2968             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2969                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2970                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2975     /**
  2976      * Check for empty statements after if
  2977      */
  2978     void checkEmptyIf(JCIf tree) {
  2979         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  2980                 lint.isEnabled(LintCategory.EMPTY))
  2981             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2984     /** Check that symbol is unique in given scope.
  2985      *  @param pos           Position for error reporting.
  2986      *  @param sym           The symbol.
  2987      *  @param s             The scope.
  2988      */
  2989     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2990         if (sym.type.isErroneous())
  2991             return true;
  2992         if (sym.owner.name == names.any) return false;
  2993         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2994             if (sym != e.sym &&
  2995                     (e.sym.flags() & CLASH) == 0 &&
  2996                     sym.kind == e.sym.kind &&
  2997                     sym.name != names.error &&
  2998                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2999                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3000                     varargsDuplicateError(pos, sym, e.sym);
  3001                     return true;
  3002                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3003                     duplicateErasureError(pos, sym, e.sym);
  3004                     sym.flags_field |= CLASH;
  3005                     return true;
  3006                 } else {
  3007                     duplicateError(pos, e.sym);
  3008                     return false;
  3012         return true;
  3015     /** Report duplicate declaration error.
  3016      */
  3017     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3018         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3019             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3023     /** Check that single-type import is not already imported or top-level defined,
  3024      *  but make an exception for two single-type imports which denote the same type.
  3025      *  @param pos           Position for error reporting.
  3026      *  @param sym           The symbol.
  3027      *  @param s             The scope
  3028      */
  3029     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3030         return checkUniqueImport(pos, sym, s, false);
  3033     /** Check that static single-type import is not already imported or top-level defined,
  3034      *  but make an exception for two single-type imports which denote the same type.
  3035      *  @param pos           Position for error reporting.
  3036      *  @param sym           The symbol.
  3037      *  @param s             The scope
  3038      *  @param staticImport  Whether or not this was a static import
  3039      */
  3040     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3041         return checkUniqueImport(pos, sym, s, true);
  3044     /** Check that single-type import is not already imported or top-level defined,
  3045      *  but make an exception for two single-type imports which denote the same type.
  3046      *  @param pos           Position for error reporting.
  3047      *  @param sym           The symbol.
  3048      *  @param s             The scope.
  3049      *  @param staticImport  Whether or not this was a static import
  3050      */
  3051     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3052         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3053             // is encountered class entered via a class declaration?
  3054             boolean isClassDecl = e.scope == s;
  3055             if ((isClassDecl || sym != e.sym) &&
  3056                 sym.kind == e.sym.kind &&
  3057                 sym.name != names.error) {
  3058                 if (!e.sym.type.isErroneous()) {
  3059                     String what = e.sym.toString();
  3060                     if (!isClassDecl) {
  3061                         if (staticImport)
  3062                             log.error(pos, "already.defined.static.single.import", what);
  3063                         else
  3064                             log.error(pos, "already.defined.single.import", what);
  3066                     else if (sym != e.sym)
  3067                         log.error(pos, "already.defined.this.unit", what);
  3069                 return false;
  3072         return true;
  3075     /** Check that a qualified name is in canonical form (for import decls).
  3076      */
  3077     public void checkCanonical(JCTree tree) {
  3078         if (!isCanonical(tree))
  3079             log.error(tree.pos(), "import.requires.canonical",
  3080                       TreeInfo.symbol(tree));
  3082         // where
  3083         private boolean isCanonical(JCTree tree) {
  3084             while (tree.hasTag(SELECT)) {
  3085                 JCFieldAccess s = (JCFieldAccess) tree;
  3086                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3087                     return false;
  3088                 tree = s.selected;
  3090             return true;
  3093     private class ConversionWarner extends Warner {
  3094         final String uncheckedKey;
  3095         final Type found;
  3096         final Type expected;
  3097         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3098             super(pos);
  3099             this.uncheckedKey = uncheckedKey;
  3100             this.found = found;
  3101             this.expected = expected;
  3104         @Override
  3105         public void warn(LintCategory lint) {
  3106             boolean warned = this.warned;
  3107             super.warn(lint);
  3108             if (warned) return; // suppress redundant diagnostics
  3109             switch (lint) {
  3110                 case UNCHECKED:
  3111                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3112                     break;
  3113                 case VARARGS:
  3114                     if (method != null &&
  3115                             method.attribute(syms.trustMeType.tsym) != null &&
  3116                             isTrustMeAllowedOnMethod(method) &&
  3117                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3118                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3120                     break;
  3121                 default:
  3122                     throw new AssertionError("Unexpected lint: " + lint);
  3127     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3128         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3131     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3132         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial