src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 31 Aug 2011 16:11:28 +0100

author
mcimadamore
date
Wed, 31 Aug 2011 16:11:28 +0100
changeset 1071
b86277584776
parent 1015
6bb526ccf5ff
child 1072
d0257833498e
permissions
-rw-r--r--

7085024: internal error; cannot instantiate Foo
Summary: Types.isConvertible does not handle erroneous types correctly
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.jvm.ClassReader;
    35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    36 import com.sun.tools.javac.code.Lint.LintCategory;
    37 import com.sun.tools.javac.comp.Check;
    39 import static com.sun.tools.javac.code.Scope.*;
    40 import static com.sun.tools.javac.code.Type.*;
    41 import static com.sun.tools.javac.code.TypeTags.*;
    42 import static com.sun.tools.javac.code.Symbol.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.util.ListBuffer.lb;
    47 /**
    48  * Utility class containing various operations on types.
    49  *
    50  * <p>Unless other names are more illustrative, the following naming
    51  * conventions should be observed in this file:
    52  *
    53  * <dl>
    54  * <dt>t</dt>
    55  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    56  * <dt>s</dt>
    57  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    58  * <dt>ts</dt>
    59  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    60  * <dt>ss</dt>
    61  * <dd>A second list of types should be named ss.</dd>
    62  * </dl>
    63  *
    64  * <p><b>This is NOT part of any supported API.
    65  * If you write code that depends on this, you do so at your own risk.
    66  * This code and its internal interfaces are subject to change or
    67  * deletion without notice.</b>
    68  */
    69 public class Types {
    70     protected static final Context.Key<Types> typesKey =
    71         new Context.Key<Types>();
    73     final Symtab syms;
    74     final JavacMessages messages;
    75     final Names names;
    76     final boolean allowBoxing;
    77     final boolean allowCovariantReturns;
    78     final boolean allowObjectToPrimitiveCast;
    79     final ClassReader reader;
    80     final Check chk;
    81     List<Warner> warnStack = List.nil();
    82     final Name capturedName;
    84     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    85     public static Types instance(Context context) {
    86         Types instance = context.get(typesKey);
    87         if (instance == null)
    88             instance = new Types(context);
    89         return instance;
    90     }
    92     protected Types(Context context) {
    93         context.put(typesKey, this);
    94         syms = Symtab.instance(context);
    95         names = Names.instance(context);
    96         Source source = Source.instance(context);
    97         allowBoxing = source.allowBoxing();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   100         reader = ClassReader.instance(context);
   101         chk = Check.instance(context);
   102         capturedName = names.fromString("<captured wildcard>");
   103         messages = JavacMessages.instance(context);
   104     }
   105     // </editor-fold>
   107     // <editor-fold defaultstate="collapsed" desc="upperBound">
   108     /**
   109      * The "rvalue conversion".<br>
   110      * The upper bound of most types is the type
   111      * itself.  Wildcards, on the other hand have upper
   112      * and lower bounds.
   113      * @param t a type
   114      * @return the upper bound of the given type
   115      */
   116     public Type upperBound(Type t) {
   117         return upperBound.visit(t);
   118     }
   119     // where
   120         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   122             @Override
   123             public Type visitWildcardType(WildcardType t, Void ignored) {
   124                 if (t.isSuperBound())
   125                     return t.bound == null ? syms.objectType : t.bound.bound;
   126                 else
   127                     return visit(t.type);
   128             }
   130             @Override
   131             public Type visitCapturedType(CapturedType t, Void ignored) {
   132                 return visit(t.bound);
   133             }
   134         };
   135     // </editor-fold>
   137     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   138     /**
   139      * The "lvalue conversion".<br>
   140      * The lower bound of most types is the type
   141      * itself.  Wildcards, on the other hand have upper
   142      * and lower bounds.
   143      * @param t a type
   144      * @return the lower bound of the given type
   145      */
   146     public Type lowerBound(Type t) {
   147         return lowerBound.visit(t);
   148     }
   149     // where
   150         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   152             @Override
   153             public Type visitWildcardType(WildcardType t, Void ignored) {
   154                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   155             }
   157             @Override
   158             public Type visitCapturedType(CapturedType t, Void ignored) {
   159                 return visit(t.getLowerBound());
   160             }
   161         };
   162     // </editor-fold>
   164     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   165     /**
   166      * Checks that all the arguments to a class are unbounded
   167      * wildcards or something else that doesn't make any restrictions
   168      * on the arguments. If a class isUnbounded, a raw super- or
   169      * subclass can be cast to it without a warning.
   170      * @param t a type
   171      * @return true iff the given type is unbounded or raw
   172      */
   173     public boolean isUnbounded(Type t) {
   174         return isUnbounded.visit(t);
   175     }
   176     // where
   177         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   179             public Boolean visitType(Type t, Void ignored) {
   180                 return true;
   181             }
   183             @Override
   184             public Boolean visitClassType(ClassType t, Void ignored) {
   185                 List<Type> parms = t.tsym.type.allparams();
   186                 List<Type> args = t.allparams();
   187                 while (parms.nonEmpty()) {
   188                     WildcardType unb = new WildcardType(syms.objectType,
   189                                                         BoundKind.UNBOUND,
   190                                                         syms.boundClass,
   191                                                         (TypeVar)parms.head);
   192                     if (!containsType(args.head, unb))
   193                         return false;
   194                     parms = parms.tail;
   195                     args = args.tail;
   196                 }
   197                 return true;
   198             }
   199         };
   200     // </editor-fold>
   202     // <editor-fold defaultstate="collapsed" desc="asSub">
   203     /**
   204      * Return the least specific subtype of t that starts with symbol
   205      * sym.  If none exists, return null.  The least specific subtype
   206      * is determined as follows:
   207      *
   208      * <p>If there is exactly one parameterized instance of sym that is a
   209      * subtype of t, that parameterized instance is returned.<br>
   210      * Otherwise, if the plain type or raw type `sym' is a subtype of
   211      * type t, the type `sym' itself is returned.  Otherwise, null is
   212      * returned.
   213      */
   214     public Type asSub(Type t, Symbol sym) {
   215         return asSub.visit(t, sym);
   216     }
   217     // where
   218         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   220             public Type visitType(Type t, Symbol sym) {
   221                 return null;
   222             }
   224             @Override
   225             public Type visitClassType(ClassType t, Symbol sym) {
   226                 if (t.tsym == sym)
   227                     return t;
   228                 Type base = asSuper(sym.type, t.tsym);
   229                 if (base == null)
   230                     return null;
   231                 ListBuffer<Type> from = new ListBuffer<Type>();
   232                 ListBuffer<Type> to = new ListBuffer<Type>();
   233                 try {
   234                     adapt(base, t, from, to);
   235                 } catch (AdaptFailure ex) {
   236                     return null;
   237                 }
   238                 Type res = subst(sym.type, from.toList(), to.toList());
   239                 if (!isSubtype(res, t))
   240                     return null;
   241                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   242                 for (List<Type> l = sym.type.allparams();
   243                      l.nonEmpty(); l = l.tail)
   244                     if (res.contains(l.head) && !t.contains(l.head))
   245                         openVars.append(l.head);
   246                 if (openVars.nonEmpty()) {
   247                     if (t.isRaw()) {
   248                         // The subtype of a raw type is raw
   249                         res = erasure(res);
   250                     } else {
   251                         // Unbound type arguments default to ?
   252                         List<Type> opens = openVars.toList();
   253                         ListBuffer<Type> qs = new ListBuffer<Type>();
   254                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   255                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   256                         }
   257                         res = subst(res, opens, qs.toList());
   258                     }
   259                 }
   260                 return res;
   261             }
   263             @Override
   264             public Type visitErrorType(ErrorType t, Symbol sym) {
   265                 return t;
   266             }
   267         };
   268     // </editor-fold>
   270     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   271     /**
   272      * Is t a subtype of or convertible via boxing/unboxing
   273      * conversion to s?
   274      */
   275     public boolean isConvertible(Type t, Type s, Warner warn) {
   276         if (t.tag == ERROR)
   277             return true;
   278         boolean tPrimitive = t.isPrimitive();
   279         boolean sPrimitive = s.isPrimitive();
   280         if (tPrimitive == sPrimitive) {
   281             checkUnsafeVarargsConversion(t, s, warn);
   282             return isSubtypeUnchecked(t, s, warn);
   283         }
   284         if (!allowBoxing) return false;
   285         return tPrimitive
   286             ? isSubtype(boxedClass(t).type, s)
   287             : isSubtype(unboxedType(t), s);
   288     }
   289     //where
   290     private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   291         if (t.tag != ARRAY || isReifiable(t)) return;
   292         ArrayType from = (ArrayType)t;
   293         boolean shouldWarn = false;
   294         switch (s.tag) {
   295             case ARRAY:
   296                 ArrayType to = (ArrayType)s;
   297                 shouldWarn = from.isVarargs() &&
   298                         !to.isVarargs() &&
   299                         !isReifiable(from);
   300                 break;
   301             case CLASS:
   302                 shouldWarn = from.isVarargs() &&
   303                         isSubtype(from, s);
   304                 break;
   305         }
   306         if (shouldWarn) {
   307             warn.warn(LintCategory.VARARGS);
   308         }
   309     }
   311     /**
   312      * Is t a subtype of or convertiable via boxing/unboxing
   313      * convertions to s?
   314      */
   315     public boolean isConvertible(Type t, Type s) {
   316         return isConvertible(t, s, Warner.noWarnings);
   317     }
   318     // </editor-fold>
   320     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   321     /**
   322      * Is t an unchecked subtype of s?
   323      */
   324     public boolean isSubtypeUnchecked(Type t, Type s) {
   325         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   326     }
   327     /**
   328      * Is t an unchecked subtype of s?
   329      */
   330     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   331         if (t.tag == ARRAY && s.tag == ARRAY) {
   332             if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   333                 return isSameType(elemtype(t), elemtype(s));
   334             } else {
   335                 ArrayType from = (ArrayType)t;
   336                 ArrayType to = (ArrayType)s;
   337                 if (from.isVarargs() &&
   338                         !to.isVarargs() &&
   339                         !isReifiable(from)) {
   340                     warn.warn(LintCategory.VARARGS);
   341                 }
   342                 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   343             }
   344         } else if (isSubtype(t, s)) {
   345             return true;
   346         }
   347         else if (t.tag == TYPEVAR) {
   348             return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   349         }
   350         else if (s.tag == UNDETVAR) {
   351             UndetVar uv = (UndetVar)s;
   352             if (uv.inst != null)
   353                 return isSubtypeUnchecked(t, uv.inst, warn);
   354         }
   355         else if (!s.isRaw()) {
   356             Type t2 = asSuper(t, s.tsym);
   357             if (t2 != null && t2.isRaw()) {
   358                 if (isReifiable(s))
   359                     warn.silentWarn(LintCategory.UNCHECKED);
   360                 else
   361                     warn.warn(LintCategory.UNCHECKED);
   362                 return true;
   363             }
   364         }
   365         return false;
   366     }
   368     /**
   369      * Is t a subtype of s?<br>
   370      * (not defined for Method and ForAll types)
   371      */
   372     final public boolean isSubtype(Type t, Type s) {
   373         return isSubtype(t, s, true);
   374     }
   375     final public boolean isSubtypeNoCapture(Type t, Type s) {
   376         return isSubtype(t, s, false);
   377     }
   378     public boolean isSubtype(Type t, Type s, boolean capture) {
   379         if (t == s)
   380             return true;
   382         if (s.tag >= firstPartialTag)
   383             return isSuperType(s, t);
   385         if (s.isCompound()) {
   386             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   387                 if (!isSubtype(t, s2, capture))
   388                     return false;
   389             }
   390             return true;
   391         }
   393         Type lower = lowerBound(s);
   394         if (s != lower)
   395             return isSubtype(capture ? capture(t) : t, lower, false);
   397         return isSubtype.visit(capture ? capture(t) : t, s);
   398     }
   399     // where
   400         private TypeRelation isSubtype = new TypeRelation()
   401         {
   402             public Boolean visitType(Type t, Type s) {
   403                 switch (t.tag) {
   404                 case BYTE: case CHAR:
   405                     return (t.tag == s.tag ||
   406                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   407                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   408                     return t.tag <= s.tag && s.tag <= DOUBLE;
   409                 case BOOLEAN: case VOID:
   410                     return t.tag == s.tag;
   411                 case TYPEVAR:
   412                     return isSubtypeNoCapture(t.getUpperBound(), s);
   413                 case BOT:
   414                     return
   415                         s.tag == BOT || s.tag == CLASS ||
   416                         s.tag == ARRAY || s.tag == TYPEVAR;
   417                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   418                 case NONE:
   419                     return false;
   420                 default:
   421                     throw new AssertionError("isSubtype " + t.tag);
   422                 }
   423             }
   425             private Set<TypePair> cache = new HashSet<TypePair>();
   427             private boolean containsTypeRecursive(Type t, Type s) {
   428                 TypePair pair = new TypePair(t, s);
   429                 if (cache.add(pair)) {
   430                     try {
   431                         return containsType(t.getTypeArguments(),
   432                                             s.getTypeArguments());
   433                     } finally {
   434                         cache.remove(pair);
   435                     }
   436                 } else {
   437                     return containsType(t.getTypeArguments(),
   438                                         rewriteSupers(s).getTypeArguments());
   439                 }
   440             }
   442             private Type rewriteSupers(Type t) {
   443                 if (!t.isParameterized())
   444                     return t;
   445                 ListBuffer<Type> from = lb();
   446                 ListBuffer<Type> to = lb();
   447                 adaptSelf(t, from, to);
   448                 if (from.isEmpty())
   449                     return t;
   450                 ListBuffer<Type> rewrite = lb();
   451                 boolean changed = false;
   452                 for (Type orig : to.toList()) {
   453                     Type s = rewriteSupers(orig);
   454                     if (s.isSuperBound() && !s.isExtendsBound()) {
   455                         s = new WildcardType(syms.objectType,
   456                                              BoundKind.UNBOUND,
   457                                              syms.boundClass);
   458                         changed = true;
   459                     } else if (s != orig) {
   460                         s = new WildcardType(upperBound(s),
   461                                              BoundKind.EXTENDS,
   462                                              syms.boundClass);
   463                         changed = true;
   464                     }
   465                     rewrite.append(s);
   466                 }
   467                 if (changed)
   468                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   469                 else
   470                     return t;
   471             }
   473             @Override
   474             public Boolean visitClassType(ClassType t, Type s) {
   475                 Type sup = asSuper(t, s.tsym);
   476                 return sup != null
   477                     && sup.tsym == s.tsym
   478                     // You're not allowed to write
   479                     //     Vector<Object> vec = new Vector<String>();
   480                     // But with wildcards you can write
   481                     //     Vector<? extends Object> vec = new Vector<String>();
   482                     // which means that subtype checking must be done
   483                     // here instead of same-type checking (via containsType).
   484                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   485                     && isSubtypeNoCapture(sup.getEnclosingType(),
   486                                           s.getEnclosingType());
   487             }
   489             @Override
   490             public Boolean visitArrayType(ArrayType t, Type s) {
   491                 if (s.tag == ARRAY) {
   492                     if (t.elemtype.tag <= lastBaseTag)
   493                         return isSameType(t.elemtype, elemtype(s));
   494                     else
   495                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   496                 }
   498                 if (s.tag == CLASS) {
   499                     Name sname = s.tsym.getQualifiedName();
   500                     return sname == names.java_lang_Object
   501                         || sname == names.java_lang_Cloneable
   502                         || sname == names.java_io_Serializable;
   503                 }
   505                 return false;
   506             }
   508             @Override
   509             public Boolean visitUndetVar(UndetVar t, Type s) {
   510                 //todo: test against origin needed? or replace with substitution?
   511                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   512                     return true;
   514                 if (t.inst != null)
   515                     return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
   517                 t.hibounds = t.hibounds.prepend(s);
   518                 return true;
   519             }
   521             @Override
   522             public Boolean visitErrorType(ErrorType t, Type s) {
   523                 return true;
   524             }
   525         };
   527     /**
   528      * Is t a subtype of every type in given list `ts'?<br>
   529      * (not defined for Method and ForAll types)<br>
   530      * Allows unchecked conversions.
   531      */
   532     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   533         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   534             if (!isSubtypeUnchecked(t, l.head, warn))
   535                 return false;
   536         return true;
   537     }
   539     /**
   540      * Are corresponding elements of ts subtypes of ss?  If lists are
   541      * of different length, return false.
   542      */
   543     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   544         while (ts.tail != null && ss.tail != null
   545                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   546                isSubtype(ts.head, ss.head)) {
   547             ts = ts.tail;
   548             ss = ss.tail;
   549         }
   550         return ts.tail == null && ss.tail == null;
   551         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   552     }
   554     /**
   555      * Are corresponding elements of ts subtypes of ss, allowing
   556      * unchecked conversions?  If lists are of different length,
   557      * return false.
   558      **/
   559     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   560         while (ts.tail != null && ss.tail != null
   561                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   562                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   563             ts = ts.tail;
   564             ss = ss.tail;
   565         }
   566         return ts.tail == null && ss.tail == null;
   567         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   568     }
   569     // </editor-fold>
   571     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   572     /**
   573      * Is t a supertype of s?
   574      */
   575     public boolean isSuperType(Type t, Type s) {
   576         switch (t.tag) {
   577         case ERROR:
   578             return true;
   579         case UNDETVAR: {
   580             UndetVar undet = (UndetVar)t;
   581             if (t == s ||
   582                 undet.qtype == s ||
   583                 s.tag == ERROR ||
   584                 s.tag == BOT) return true;
   585             if (undet.inst != null)
   586                 return isSubtype(s, undet.inst);
   587             undet.lobounds = undet.lobounds.prepend(s);
   588             return true;
   589         }
   590         default:
   591             return isSubtype(s, t);
   592         }
   593     }
   594     // </editor-fold>
   596     // <editor-fold defaultstate="collapsed" desc="isSameType">
   597     /**
   598      * Are corresponding elements of the lists the same type?  If
   599      * lists are of different length, return false.
   600      */
   601     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   602         while (ts.tail != null && ss.tail != null
   603                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   604                isSameType(ts.head, ss.head)) {
   605             ts = ts.tail;
   606             ss = ss.tail;
   607         }
   608         return ts.tail == null && ss.tail == null;
   609         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   610     }
   612     /**
   613      * Is t the same type as s?
   614      */
   615     public boolean isSameType(Type t, Type s) {
   616         return isSameType.visit(t, s);
   617     }
   618     // where
   619         private TypeRelation isSameType = new TypeRelation() {
   621             public Boolean visitType(Type t, Type s) {
   622                 if (t == s)
   623                     return true;
   625                 if (s.tag >= firstPartialTag)
   626                     return visit(s, t);
   628                 switch (t.tag) {
   629                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   630                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   631                     return t.tag == s.tag;
   632                 case TYPEVAR: {
   633                     if (s.tag == TYPEVAR) {
   634                         //type-substitution does not preserve type-var types
   635                         //check that type var symbols and bounds are indeed the same
   636                         return t.tsym == s.tsym &&
   637                                 visit(t.getUpperBound(), s.getUpperBound());
   638                     }
   639                     else {
   640                         //special case for s == ? super X, where upper(s) = u
   641                         //check that u == t, where u has been set by Type.withTypeVar
   642                         return s.isSuperBound() &&
   643                                 !s.isExtendsBound() &&
   644                                 visit(t, upperBound(s));
   645                     }
   646                 }
   647                 default:
   648                     throw new AssertionError("isSameType " + t.tag);
   649                 }
   650             }
   652             @Override
   653             public Boolean visitWildcardType(WildcardType t, Type s) {
   654                 if (s.tag >= firstPartialTag)
   655                     return visit(s, t);
   656                 else
   657                     return false;
   658             }
   660             @Override
   661             public Boolean visitClassType(ClassType t, Type s) {
   662                 if (t == s)
   663                     return true;
   665                 if (s.tag >= firstPartialTag)
   666                     return visit(s, t);
   668                 if (s.isSuperBound() && !s.isExtendsBound())
   669                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   671                 if (t.isCompound() && s.isCompound()) {
   672                     if (!visit(supertype(t), supertype(s)))
   673                         return false;
   675                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   676                     for (Type x : interfaces(t))
   677                         set.add(new SingletonType(x));
   678                     for (Type x : interfaces(s)) {
   679                         if (!set.remove(new SingletonType(x)))
   680                             return false;
   681                     }
   682                     return (set.isEmpty());
   683                 }
   684                 return t.tsym == s.tsym
   685                     && visit(t.getEnclosingType(), s.getEnclosingType())
   686                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   687             }
   689             @Override
   690             public Boolean visitArrayType(ArrayType t, Type s) {
   691                 if (t == s)
   692                     return true;
   694                 if (s.tag >= firstPartialTag)
   695                     return visit(s, t);
   697                 return s.tag == ARRAY
   698                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   699             }
   701             @Override
   702             public Boolean visitMethodType(MethodType t, Type s) {
   703                 // isSameType for methods does not take thrown
   704                 // exceptions into account!
   705                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   706             }
   708             @Override
   709             public Boolean visitPackageType(PackageType t, Type s) {
   710                 return t == s;
   711             }
   713             @Override
   714             public Boolean visitForAll(ForAll t, Type s) {
   715                 if (s.tag != FORALL)
   716                     return false;
   718                 ForAll forAll = (ForAll)s;
   719                 return hasSameBounds(t, forAll)
   720                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   721             }
   723             @Override
   724             public Boolean visitUndetVar(UndetVar t, Type s) {
   725                 if (s.tag == WILDCARD)
   726                     // FIXME, this might be leftovers from before capture conversion
   727                     return false;
   729                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   730                     return true;
   732                 if (t.inst != null)
   733                     return visit(t.inst, s);
   735                 t.inst = fromUnknownFun.apply(s);
   736                 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
   737                     if (!isSubtype(l.head, t.inst))
   738                         return false;
   739                 }
   740                 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
   741                     if (!isSubtype(t.inst, l.head))
   742                         return false;
   743                 }
   744                 return true;
   745             }
   747             @Override
   748             public Boolean visitErrorType(ErrorType t, Type s) {
   749                 return true;
   750             }
   751         };
   752     // </editor-fold>
   754     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   755     /**
   756      * A mapping that turns all unknown types in this type to fresh
   757      * unknown variables.
   758      */
   759     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   760             public Type apply(Type t) {
   761                 if (t.tag == UNKNOWN) return new UndetVar(t);
   762                 else return t.map(this);
   763             }
   764         };
   765     // </editor-fold>
   767     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   768     public boolean containedBy(Type t, Type s) {
   769         switch (t.tag) {
   770         case UNDETVAR:
   771             if (s.tag == WILDCARD) {
   772                 UndetVar undetvar = (UndetVar)t;
   773                 WildcardType wt = (WildcardType)s;
   774                 switch(wt.kind) {
   775                     case UNBOUND: //similar to ? extends Object
   776                     case EXTENDS: {
   777                         Type bound = upperBound(s);
   778                         // We should check the new upper bound against any of the
   779                         // undetvar's lower bounds.
   780                         for (Type t2 : undetvar.lobounds) {
   781                             if (!isSubtype(t2, bound))
   782                                 return false;
   783                         }
   784                         undetvar.hibounds = undetvar.hibounds.prepend(bound);
   785                         break;
   786                     }
   787                     case SUPER: {
   788                         Type bound = lowerBound(s);
   789                         // We should check the new lower bound against any of the
   790                         // undetvar's lower bounds.
   791                         for (Type t2 : undetvar.hibounds) {
   792                             if (!isSubtype(bound, t2))
   793                                 return false;
   794                         }
   795                         undetvar.lobounds = undetvar.lobounds.prepend(bound);
   796                         break;
   797                     }
   798                 }
   799                 return true;
   800             } else {
   801                 return isSameType(t, s);
   802             }
   803         case ERROR:
   804             return true;
   805         default:
   806             return containsType(s, t);
   807         }
   808     }
   810     boolean containsType(List<Type> ts, List<Type> ss) {
   811         while (ts.nonEmpty() && ss.nonEmpty()
   812                && containsType(ts.head, ss.head)) {
   813             ts = ts.tail;
   814             ss = ss.tail;
   815         }
   816         return ts.isEmpty() && ss.isEmpty();
   817     }
   819     /**
   820      * Check if t contains s.
   821      *
   822      * <p>T contains S if:
   823      *
   824      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   825      *
   826      * <p>This relation is only used by ClassType.isSubtype(), that
   827      * is,
   828      *
   829      * <p>{@code C<S> <: C<T> if T contains S.}
   830      *
   831      * <p>Because of F-bounds, this relation can lead to infinite
   832      * recursion.  Thus we must somehow break that recursion.  Notice
   833      * that containsType() is only called from ClassType.isSubtype().
   834      * Since the arguments have already been checked against their
   835      * bounds, we know:
   836      *
   837      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   838      *
   839      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   840      *
   841      * @param t a type
   842      * @param s a type
   843      */
   844     public boolean containsType(Type t, Type s) {
   845         return containsType.visit(t, s);
   846     }
   847     // where
   848         private TypeRelation containsType = new TypeRelation() {
   850             private Type U(Type t) {
   851                 while (t.tag == WILDCARD) {
   852                     WildcardType w = (WildcardType)t;
   853                     if (w.isSuperBound())
   854                         return w.bound == null ? syms.objectType : w.bound.bound;
   855                     else
   856                         t = w.type;
   857                 }
   858                 return t;
   859             }
   861             private Type L(Type t) {
   862                 while (t.tag == WILDCARD) {
   863                     WildcardType w = (WildcardType)t;
   864                     if (w.isExtendsBound())
   865                         return syms.botType;
   866                     else
   867                         t = w.type;
   868                 }
   869                 return t;
   870             }
   872             public Boolean visitType(Type t, Type s) {
   873                 if (s.tag >= firstPartialTag)
   874                     return containedBy(s, t);
   875                 else
   876                     return isSameType(t, s);
   877             }
   879 //            void debugContainsType(WildcardType t, Type s) {
   880 //                System.err.println();
   881 //                System.err.format(" does %s contain %s?%n", t, s);
   882 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   883 //                                  upperBound(s), s, t, U(t),
   884 //                                  t.isSuperBound()
   885 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
   886 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   887 //                                  L(t), t, s, lowerBound(s),
   888 //                                  t.isExtendsBound()
   889 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
   890 //                System.err.println();
   891 //            }
   893             @Override
   894             public Boolean visitWildcardType(WildcardType t, Type s) {
   895                 if (s.tag >= firstPartialTag)
   896                     return containedBy(s, t);
   897                 else {
   898 //                    debugContainsType(t, s);
   899                     return isSameWildcard(t, s)
   900                         || isCaptureOf(s, t)
   901                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   902                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   903                 }
   904             }
   906             @Override
   907             public Boolean visitUndetVar(UndetVar t, Type s) {
   908                 if (s.tag != WILDCARD)
   909                     return isSameType(t, s);
   910                 else
   911                     return false;
   912             }
   914             @Override
   915             public Boolean visitErrorType(ErrorType t, Type s) {
   916                 return true;
   917             }
   918         };
   920     public boolean isCaptureOf(Type s, WildcardType t) {
   921         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   922             return false;
   923         return isSameWildcard(t, ((CapturedType)s).wildcard);
   924     }
   926     public boolean isSameWildcard(WildcardType t, Type s) {
   927         if (s.tag != WILDCARD)
   928             return false;
   929         WildcardType w = (WildcardType)s;
   930         return w.kind == t.kind && w.type == t.type;
   931     }
   933     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   934         while (ts.nonEmpty() && ss.nonEmpty()
   935                && containsTypeEquivalent(ts.head, ss.head)) {
   936             ts = ts.tail;
   937             ss = ss.tail;
   938         }
   939         return ts.isEmpty() && ss.isEmpty();
   940     }
   941     // </editor-fold>
   943     // <editor-fold defaultstate="collapsed" desc="isCastable">
   944     public boolean isCastable(Type t, Type s) {
   945         return isCastable(t, s, Warner.noWarnings);
   946     }
   948     /**
   949      * Is t is castable to s?<br>
   950      * s is assumed to be an erased type.<br>
   951      * (not defined for Method and ForAll types).
   952      */
   953     public boolean isCastable(Type t, Type s, Warner warn) {
   954         if (t == s)
   955             return true;
   957         if (t.isPrimitive() != s.isPrimitive())
   958             return allowBoxing && (
   959                     isConvertible(t, s, warn)
   960                     || (allowObjectToPrimitiveCast &&
   961                         s.isPrimitive() &&
   962                         isSubtype(boxedClass(s).type, t)));
   963         if (warn != warnStack.head) {
   964             try {
   965                 warnStack = warnStack.prepend(warn);
   966                 checkUnsafeVarargsConversion(t, s, warn);
   967                 return isCastable.visit(t,s);
   968             } finally {
   969                 warnStack = warnStack.tail;
   970             }
   971         } else {
   972             return isCastable.visit(t,s);
   973         }
   974     }
   975     // where
   976         private TypeRelation isCastable = new TypeRelation() {
   978             public Boolean visitType(Type t, Type s) {
   979                 if (s.tag == ERROR)
   980                     return true;
   982                 switch (t.tag) {
   983                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   984                 case DOUBLE:
   985                     return s.tag <= DOUBLE;
   986                 case BOOLEAN:
   987                     return s.tag == BOOLEAN;
   988                 case VOID:
   989                     return false;
   990                 case BOT:
   991                     return isSubtype(t, s);
   992                 default:
   993                     throw new AssertionError();
   994                 }
   995             }
   997             @Override
   998             public Boolean visitWildcardType(WildcardType t, Type s) {
   999                 return isCastable(upperBound(t), s, warnStack.head);
  1002             @Override
  1003             public Boolean visitClassType(ClassType t, Type s) {
  1004                 if (s.tag == ERROR || s.tag == BOT)
  1005                     return true;
  1007                 if (s.tag == TYPEVAR) {
  1008                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
  1009                         warnStack.head.warn(LintCategory.UNCHECKED);
  1010                         return true;
  1011                     } else {
  1012                         return false;
  1016                 if (t.isCompound()) {
  1017                     Warner oldWarner = warnStack.head;
  1018                     warnStack.head = Warner.noWarnings;
  1019                     if (!visit(supertype(t), s))
  1020                         return false;
  1021                     for (Type intf : interfaces(t)) {
  1022                         if (!visit(intf, s))
  1023                             return false;
  1025                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1026                         oldWarner.warn(LintCategory.UNCHECKED);
  1027                     return true;
  1030                 if (s.isCompound()) {
  1031                     // call recursively to reuse the above code
  1032                     return visitClassType((ClassType)s, t);
  1035                 if (s.tag == CLASS || s.tag == ARRAY) {
  1036                     boolean upcast;
  1037                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1038                         || isSubtype(erasure(s), erasure(t))) {
  1039                         if (!upcast && s.tag == ARRAY) {
  1040                             if (!isReifiable(s))
  1041                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1042                             return true;
  1043                         } else if (s.isRaw()) {
  1044                             return true;
  1045                         } else if (t.isRaw()) {
  1046                             if (!isUnbounded(s))
  1047                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1048                             return true;
  1050                         // Assume |a| <: |b|
  1051                         final Type a = upcast ? t : s;
  1052                         final Type b = upcast ? s : t;
  1053                         final boolean HIGH = true;
  1054                         final boolean LOW = false;
  1055                         final boolean DONT_REWRITE_TYPEVARS = false;
  1056                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1057                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1058                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1059                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1060                         Type lowSub = asSub(bLow, aLow.tsym);
  1061                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1062                         if (highSub == null) {
  1063                             final boolean REWRITE_TYPEVARS = true;
  1064                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1065                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1066                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1067                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1068                             lowSub = asSub(bLow, aLow.tsym);
  1069                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1071                         if (highSub != null) {
  1072                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1073                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1075                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1076                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1077                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1078                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1079                                 if (upcast ? giveWarning(a, b) :
  1080                                     giveWarning(b, a))
  1081                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1082                                 return true;
  1085                         if (isReifiable(s))
  1086                             return isSubtypeUnchecked(a, b);
  1087                         else
  1088                             return isSubtypeUnchecked(a, b, warnStack.head);
  1091                     // Sidecast
  1092                     if (s.tag == CLASS) {
  1093                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1094                             return ((t.tsym.flags() & FINAL) == 0)
  1095                                 ? sideCast(t, s, warnStack.head)
  1096                                 : sideCastFinal(t, s, warnStack.head);
  1097                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1098                             return ((s.tsym.flags() & FINAL) == 0)
  1099                                 ? sideCast(t, s, warnStack.head)
  1100                                 : sideCastFinal(t, s, warnStack.head);
  1101                         } else {
  1102                             // unrelated class types
  1103                             return false;
  1107                 return false;
  1110             @Override
  1111             public Boolean visitArrayType(ArrayType t, Type s) {
  1112                 switch (s.tag) {
  1113                 case ERROR:
  1114                 case BOT:
  1115                     return true;
  1116                 case TYPEVAR:
  1117                     if (isCastable(s, t, Warner.noWarnings)) {
  1118                         warnStack.head.warn(LintCategory.UNCHECKED);
  1119                         return true;
  1120                     } else {
  1121                         return false;
  1123                 case CLASS:
  1124                     return isSubtype(t, s);
  1125                 case ARRAY:
  1126                     if (elemtype(t).tag <= lastBaseTag ||
  1127                             elemtype(s).tag <= lastBaseTag) {
  1128                         return elemtype(t).tag == elemtype(s).tag;
  1129                     } else {
  1130                         return visit(elemtype(t), elemtype(s));
  1132                 default:
  1133                     return false;
  1137             @Override
  1138             public Boolean visitTypeVar(TypeVar t, Type s) {
  1139                 switch (s.tag) {
  1140                 case ERROR:
  1141                 case BOT:
  1142                     return true;
  1143                 case TYPEVAR:
  1144                     if (isSubtype(t, s)) {
  1145                         return true;
  1146                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1147                         warnStack.head.warn(LintCategory.UNCHECKED);
  1148                         return true;
  1149                     } else {
  1150                         return false;
  1152                 default:
  1153                     return isCastable(t.bound, s, warnStack.head);
  1157             @Override
  1158             public Boolean visitErrorType(ErrorType t, Type s) {
  1159                 return true;
  1161         };
  1162     // </editor-fold>
  1164     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1165     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1166         while (ts.tail != null && ss.tail != null) {
  1167             if (disjointType(ts.head, ss.head)) return true;
  1168             ts = ts.tail;
  1169             ss = ss.tail;
  1171         return false;
  1174     /**
  1175      * Two types or wildcards are considered disjoint if it can be
  1176      * proven that no type can be contained in both. It is
  1177      * conservative in that it is allowed to say that two types are
  1178      * not disjoint, even though they actually are.
  1180      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1181      * disjoint.
  1182      */
  1183     public boolean disjointType(Type t, Type s) {
  1184         return disjointType.visit(t, s);
  1186     // where
  1187         private TypeRelation disjointType = new TypeRelation() {
  1189             private Set<TypePair> cache = new HashSet<TypePair>();
  1191             public Boolean visitType(Type t, Type s) {
  1192                 if (s.tag == WILDCARD)
  1193                     return visit(s, t);
  1194                 else
  1195                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1198             private boolean isCastableRecursive(Type t, Type s) {
  1199                 TypePair pair = new TypePair(t, s);
  1200                 if (cache.add(pair)) {
  1201                     try {
  1202                         return Types.this.isCastable(t, s);
  1203                     } finally {
  1204                         cache.remove(pair);
  1206                 } else {
  1207                     return true;
  1211             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1212                 TypePair pair = new TypePair(t, s);
  1213                 if (cache.add(pair)) {
  1214                     try {
  1215                         return Types.this.notSoftSubtype(t, s);
  1216                     } finally {
  1217                         cache.remove(pair);
  1219                 } else {
  1220                     return false;
  1224             @Override
  1225             public Boolean visitWildcardType(WildcardType t, Type s) {
  1226                 if (t.isUnbound())
  1227                     return false;
  1229                 if (s.tag != WILDCARD) {
  1230                     if (t.isExtendsBound())
  1231                         return notSoftSubtypeRecursive(s, t.type);
  1232                     else // isSuperBound()
  1233                         return notSoftSubtypeRecursive(t.type, s);
  1236                 if (s.isUnbound())
  1237                     return false;
  1239                 if (t.isExtendsBound()) {
  1240                     if (s.isExtendsBound())
  1241                         return !isCastableRecursive(t.type, upperBound(s));
  1242                     else if (s.isSuperBound())
  1243                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1244                 } else if (t.isSuperBound()) {
  1245                     if (s.isExtendsBound())
  1246                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1248                 return false;
  1250         };
  1251     // </editor-fold>
  1253     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1254     /**
  1255      * Returns the lower bounds of the formals of a method.
  1256      */
  1257     public List<Type> lowerBoundArgtypes(Type t) {
  1258         return map(t.getParameterTypes(), lowerBoundMapping);
  1260     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1261             public Type apply(Type t) {
  1262                 return lowerBound(t);
  1264         };
  1265     // </editor-fold>
  1267     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1268     /**
  1269      * This relation answers the question: is impossible that
  1270      * something of type `t' can be a subtype of `s'? This is
  1271      * different from the question "is `t' not a subtype of `s'?"
  1272      * when type variables are involved: Integer is not a subtype of T
  1273      * where <T extends Number> but it is not true that Integer cannot
  1274      * possibly be a subtype of T.
  1275      */
  1276     public boolean notSoftSubtype(Type t, Type s) {
  1277         if (t == s) return false;
  1278         if (t.tag == TYPEVAR) {
  1279             TypeVar tv = (TypeVar) t;
  1280             return !isCastable(tv.bound,
  1281                                relaxBound(s),
  1282                                Warner.noWarnings);
  1284         if (s.tag != WILDCARD)
  1285             s = upperBound(s);
  1287         return !isSubtype(t, relaxBound(s));
  1290     private Type relaxBound(Type t) {
  1291         if (t.tag == TYPEVAR) {
  1292             while (t.tag == TYPEVAR)
  1293                 t = t.getUpperBound();
  1294             t = rewriteQuantifiers(t, true, true);
  1296         return t;
  1298     // </editor-fold>
  1300     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1301     public boolean isReifiable(Type t) {
  1302         return isReifiable.visit(t);
  1304     // where
  1305         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1307             public Boolean visitType(Type t, Void ignored) {
  1308                 return true;
  1311             @Override
  1312             public Boolean visitClassType(ClassType t, Void ignored) {
  1313                 if (t.isCompound())
  1314                     return false;
  1315                 else {
  1316                     if (!t.isParameterized())
  1317                         return true;
  1319                     for (Type param : t.allparams()) {
  1320                         if (!param.isUnbound())
  1321                             return false;
  1323                     return true;
  1327             @Override
  1328             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1329                 return visit(t.elemtype);
  1332             @Override
  1333             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1334                 return false;
  1336         };
  1337     // </editor-fold>
  1339     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1340     public boolean isArray(Type t) {
  1341         while (t.tag == WILDCARD)
  1342             t = upperBound(t);
  1343         return t.tag == ARRAY;
  1346     /**
  1347      * The element type of an array.
  1348      */
  1349     public Type elemtype(Type t) {
  1350         switch (t.tag) {
  1351         case WILDCARD:
  1352             return elemtype(upperBound(t));
  1353         case ARRAY:
  1354             return ((ArrayType)t).elemtype;
  1355         case FORALL:
  1356             return elemtype(((ForAll)t).qtype);
  1357         case ERROR:
  1358             return t;
  1359         default:
  1360             return null;
  1364     public Type elemtypeOrType(Type t) {
  1365         Type elemtype = elemtype(t);
  1366         return elemtype != null ?
  1367             elemtype :
  1368             t;
  1371     /**
  1372      * Mapping to take element type of an arraytype
  1373      */
  1374     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1375         public Type apply(Type t) { return elemtype(t); }
  1376     };
  1378     /**
  1379      * The number of dimensions of an array type.
  1380      */
  1381     public int dimensions(Type t) {
  1382         int result = 0;
  1383         while (t.tag == ARRAY) {
  1384             result++;
  1385             t = elemtype(t);
  1387         return result;
  1389     // </editor-fold>
  1391     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1392     /**
  1393      * Return the (most specific) base type of t that starts with the
  1394      * given symbol.  If none exists, return null.
  1396      * @param t a type
  1397      * @param sym a symbol
  1398      */
  1399     public Type asSuper(Type t, Symbol sym) {
  1400         return asSuper.visit(t, sym);
  1402     // where
  1403         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1405             public Type visitType(Type t, Symbol sym) {
  1406                 return null;
  1409             @Override
  1410             public Type visitClassType(ClassType t, Symbol sym) {
  1411                 if (t.tsym == sym)
  1412                     return t;
  1414                 Type st = supertype(t);
  1415                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1416                     Type x = asSuper(st, sym);
  1417                     if (x != null)
  1418                         return x;
  1420                 if ((sym.flags() & INTERFACE) != 0) {
  1421                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1422                         Type x = asSuper(l.head, sym);
  1423                         if (x != null)
  1424                             return x;
  1427                 return null;
  1430             @Override
  1431             public Type visitArrayType(ArrayType t, Symbol sym) {
  1432                 return isSubtype(t, sym.type) ? sym.type : null;
  1435             @Override
  1436             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1437                 if (t.tsym == sym)
  1438                     return t;
  1439                 else
  1440                     return asSuper(t.bound, sym);
  1443             @Override
  1444             public Type visitErrorType(ErrorType t, Symbol sym) {
  1445                 return t;
  1447         };
  1449     /**
  1450      * Return the base type of t or any of its outer types that starts
  1451      * with the given symbol.  If none exists, return null.
  1453      * @param t a type
  1454      * @param sym a symbol
  1455      */
  1456     public Type asOuterSuper(Type t, Symbol sym) {
  1457         switch (t.tag) {
  1458         case CLASS:
  1459             do {
  1460                 Type s = asSuper(t, sym);
  1461                 if (s != null) return s;
  1462                 t = t.getEnclosingType();
  1463             } while (t.tag == CLASS);
  1464             return null;
  1465         case ARRAY:
  1466             return isSubtype(t, sym.type) ? sym.type : null;
  1467         case TYPEVAR:
  1468             return asSuper(t, sym);
  1469         case ERROR:
  1470             return t;
  1471         default:
  1472             return null;
  1476     /**
  1477      * Return the base type of t or any of its enclosing types that
  1478      * starts with the given symbol.  If none exists, return null.
  1480      * @param t a type
  1481      * @param sym a symbol
  1482      */
  1483     public Type asEnclosingSuper(Type t, Symbol sym) {
  1484         switch (t.tag) {
  1485         case CLASS:
  1486             do {
  1487                 Type s = asSuper(t, sym);
  1488                 if (s != null) return s;
  1489                 Type outer = t.getEnclosingType();
  1490                 t = (outer.tag == CLASS) ? outer :
  1491                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1492                     Type.noType;
  1493             } while (t.tag == CLASS);
  1494             return null;
  1495         case ARRAY:
  1496             return isSubtype(t, sym.type) ? sym.type : null;
  1497         case TYPEVAR:
  1498             return asSuper(t, sym);
  1499         case ERROR:
  1500             return t;
  1501         default:
  1502             return null;
  1505     // </editor-fold>
  1507     // <editor-fold defaultstate="collapsed" desc="memberType">
  1508     /**
  1509      * The type of given symbol, seen as a member of t.
  1511      * @param t a type
  1512      * @param sym a symbol
  1513      */
  1514     public Type memberType(Type t, Symbol sym) {
  1515         return (sym.flags() & STATIC) != 0
  1516             ? sym.type
  1517             : memberType.visit(t, sym);
  1519     // where
  1520         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1522             public Type visitType(Type t, Symbol sym) {
  1523                 return sym.type;
  1526             @Override
  1527             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1528                 return memberType(upperBound(t), sym);
  1531             @Override
  1532             public Type visitClassType(ClassType t, Symbol sym) {
  1533                 Symbol owner = sym.owner;
  1534                 long flags = sym.flags();
  1535                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1536                     Type base = asOuterSuper(t, owner);
  1537                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1538                     //its supertypes CT, I1, ... In might contain wildcards
  1539                     //so we need to go through capture conversion
  1540                     base = t.isCompound() ? capture(base) : base;
  1541                     if (base != null) {
  1542                         List<Type> ownerParams = owner.type.allparams();
  1543                         List<Type> baseParams = base.allparams();
  1544                         if (ownerParams.nonEmpty()) {
  1545                             if (baseParams.isEmpty()) {
  1546                                 // then base is a raw type
  1547                                 return erasure(sym.type);
  1548                             } else {
  1549                                 return subst(sym.type, ownerParams, baseParams);
  1554                 return sym.type;
  1557             @Override
  1558             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1559                 return memberType(t.bound, sym);
  1562             @Override
  1563             public Type visitErrorType(ErrorType t, Symbol sym) {
  1564                 return t;
  1566         };
  1567     // </editor-fold>
  1569     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1570     public boolean isAssignable(Type t, Type s) {
  1571         return isAssignable(t, s, Warner.noWarnings);
  1574     /**
  1575      * Is t assignable to s?<br>
  1576      * Equivalent to subtype except for constant values and raw
  1577      * types.<br>
  1578      * (not defined for Method and ForAll types)
  1579      */
  1580     public boolean isAssignable(Type t, Type s, Warner warn) {
  1581         if (t.tag == ERROR)
  1582             return true;
  1583         if (t.tag <= INT && t.constValue() != null) {
  1584             int value = ((Number)t.constValue()).intValue();
  1585             switch (s.tag) {
  1586             case BYTE:
  1587                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1588                     return true;
  1589                 break;
  1590             case CHAR:
  1591                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1592                     return true;
  1593                 break;
  1594             case SHORT:
  1595                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1596                     return true;
  1597                 break;
  1598             case INT:
  1599                 return true;
  1600             case CLASS:
  1601                 switch (unboxedType(s).tag) {
  1602                 case BYTE:
  1603                 case CHAR:
  1604                 case SHORT:
  1605                     return isAssignable(t, unboxedType(s), warn);
  1607                 break;
  1610         return isConvertible(t, s, warn);
  1612     // </editor-fold>
  1614     // <editor-fold defaultstate="collapsed" desc="erasure">
  1615     /**
  1616      * The erasure of t {@code |t|} -- the type that results when all
  1617      * type parameters in t are deleted.
  1618      */
  1619     public Type erasure(Type t) {
  1620         return erasure(t, false);
  1622     //where
  1623     private Type erasure(Type t, boolean recurse) {
  1624         if (t.tag <= lastBaseTag)
  1625             return t; /* fast special case */
  1626         else
  1627             return erasure.visit(t, recurse);
  1629     // where
  1630         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1631             public Type visitType(Type t, Boolean recurse) {
  1632                 if (t.tag <= lastBaseTag)
  1633                     return t; /*fast special case*/
  1634                 else
  1635                     return t.map(recurse ? erasureRecFun : erasureFun);
  1638             @Override
  1639             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1640                 return erasure(upperBound(t), recurse);
  1643             @Override
  1644             public Type visitClassType(ClassType t, Boolean recurse) {
  1645                 Type erased = t.tsym.erasure(Types.this);
  1646                 if (recurse) {
  1647                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1649                 return erased;
  1652             @Override
  1653             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1654                 return erasure(t.bound, recurse);
  1657             @Override
  1658             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1659                 return t;
  1661         };
  1663     private Mapping erasureFun = new Mapping ("erasure") {
  1664             public Type apply(Type t) { return erasure(t); }
  1665         };
  1667     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1668         public Type apply(Type t) { return erasureRecursive(t); }
  1669     };
  1671     public List<Type> erasure(List<Type> ts) {
  1672         return Type.map(ts, erasureFun);
  1675     public Type erasureRecursive(Type t) {
  1676         return erasure(t, true);
  1679     public List<Type> erasureRecursive(List<Type> ts) {
  1680         return Type.map(ts, erasureRecFun);
  1682     // </editor-fold>
  1684     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1685     /**
  1686      * Make a compound type from non-empty list of types
  1688      * @param bounds            the types from which the compound type is formed
  1689      * @param supertype         is objectType if all bounds are interfaces,
  1690      *                          null otherwise.
  1691      */
  1692     public Type makeCompoundType(List<Type> bounds,
  1693                                  Type supertype) {
  1694         ClassSymbol bc =
  1695             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1696                             Type.moreInfo
  1697                                 ? names.fromString(bounds.toString())
  1698                                 : names.empty,
  1699                             syms.noSymbol);
  1700         if (bounds.head.tag == TYPEVAR)
  1701             // error condition, recover
  1702                 bc.erasure_field = syms.objectType;
  1703             else
  1704                 bc.erasure_field = erasure(bounds.head);
  1705             bc.members_field = new Scope(bc);
  1706         ClassType bt = (ClassType)bc.type;
  1707         bt.allparams_field = List.nil();
  1708         if (supertype != null) {
  1709             bt.supertype_field = supertype;
  1710             bt.interfaces_field = bounds;
  1711         } else {
  1712             bt.supertype_field = bounds.head;
  1713             bt.interfaces_field = bounds.tail;
  1715         Assert.check(bt.supertype_field.tsym.completer != null
  1716                 || !bt.supertype_field.isInterface(),
  1717             bt.supertype_field);
  1718         return bt;
  1721     /**
  1722      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1723      * second parameter is computed directly. Note that this might
  1724      * cause a symbol completion.  Hence, this version of
  1725      * makeCompoundType may not be called during a classfile read.
  1726      */
  1727     public Type makeCompoundType(List<Type> bounds) {
  1728         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1729             supertype(bounds.head) : null;
  1730         return makeCompoundType(bounds, supertype);
  1733     /**
  1734      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1735      * arguments are converted to a list and passed to the other
  1736      * method.  Note that this might cause a symbol completion.
  1737      * Hence, this version of makeCompoundType may not be called
  1738      * during a classfile read.
  1739      */
  1740     public Type makeCompoundType(Type bound1, Type bound2) {
  1741         return makeCompoundType(List.of(bound1, bound2));
  1743     // </editor-fold>
  1745     // <editor-fold defaultstate="collapsed" desc="supertype">
  1746     public Type supertype(Type t) {
  1747         return supertype.visit(t);
  1749     // where
  1750         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1752             public Type visitType(Type t, Void ignored) {
  1753                 // A note on wildcards: there is no good way to
  1754                 // determine a supertype for a super bounded wildcard.
  1755                 return null;
  1758             @Override
  1759             public Type visitClassType(ClassType t, Void ignored) {
  1760                 if (t.supertype_field == null) {
  1761                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1762                     // An interface has no superclass; its supertype is Object.
  1763                     if (t.isInterface())
  1764                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1765                     if (t.supertype_field == null) {
  1766                         List<Type> actuals = classBound(t).allparams();
  1767                         List<Type> formals = t.tsym.type.allparams();
  1768                         if (t.hasErasedSupertypes()) {
  1769                             t.supertype_field = erasureRecursive(supertype);
  1770                         } else if (formals.nonEmpty()) {
  1771                             t.supertype_field = subst(supertype, formals, actuals);
  1773                         else {
  1774                             t.supertype_field = supertype;
  1778                 return t.supertype_field;
  1781             /**
  1782              * The supertype is always a class type. If the type
  1783              * variable's bounds start with a class type, this is also
  1784              * the supertype.  Otherwise, the supertype is
  1785              * java.lang.Object.
  1786              */
  1787             @Override
  1788             public Type visitTypeVar(TypeVar t, Void ignored) {
  1789                 if (t.bound.tag == TYPEVAR ||
  1790                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1791                     return t.bound;
  1792                 } else {
  1793                     return supertype(t.bound);
  1797             @Override
  1798             public Type visitArrayType(ArrayType t, Void ignored) {
  1799                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1800                     return arraySuperType();
  1801                 else
  1802                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1805             @Override
  1806             public Type visitErrorType(ErrorType t, Void ignored) {
  1807                 return t;
  1809         };
  1810     // </editor-fold>
  1812     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1813     /**
  1814      * Return the interfaces implemented by this class.
  1815      */
  1816     public List<Type> interfaces(Type t) {
  1817         return interfaces.visit(t);
  1819     // where
  1820         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1822             public List<Type> visitType(Type t, Void ignored) {
  1823                 return List.nil();
  1826             @Override
  1827             public List<Type> visitClassType(ClassType t, Void ignored) {
  1828                 if (t.interfaces_field == null) {
  1829                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1830                     if (t.interfaces_field == null) {
  1831                         // If t.interfaces_field is null, then t must
  1832                         // be a parameterized type (not to be confused
  1833                         // with a generic type declaration).
  1834                         // Terminology:
  1835                         //    Parameterized type: List<String>
  1836                         //    Generic type declaration: class List<E> { ... }
  1837                         // So t corresponds to List<String> and
  1838                         // t.tsym.type corresponds to List<E>.
  1839                         // The reason t must be parameterized type is
  1840                         // that completion will happen as a side
  1841                         // effect of calling
  1842                         // ClassSymbol.getInterfaces.  Since
  1843                         // t.interfaces_field is null after
  1844                         // completion, we can assume that t is not the
  1845                         // type of a class/interface declaration.
  1846                         Assert.check(t != t.tsym.type, t);
  1847                         List<Type> actuals = t.allparams();
  1848                         List<Type> formals = t.tsym.type.allparams();
  1849                         if (t.hasErasedSupertypes()) {
  1850                             t.interfaces_field = erasureRecursive(interfaces);
  1851                         } else if (formals.nonEmpty()) {
  1852                             t.interfaces_field =
  1853                                 upperBounds(subst(interfaces, formals, actuals));
  1855                         else {
  1856                             t.interfaces_field = interfaces;
  1860                 return t.interfaces_field;
  1863             @Override
  1864             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1865                 if (t.bound.isCompound())
  1866                     return interfaces(t.bound);
  1868                 if (t.bound.isInterface())
  1869                     return List.of(t.bound);
  1871                 return List.nil();
  1873         };
  1874     // </editor-fold>
  1876     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1877     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1879     public boolean isDerivedRaw(Type t) {
  1880         Boolean result = isDerivedRawCache.get(t);
  1881         if (result == null) {
  1882             result = isDerivedRawInternal(t);
  1883             isDerivedRawCache.put(t, result);
  1885         return result;
  1888     public boolean isDerivedRawInternal(Type t) {
  1889         if (t.isErroneous())
  1890             return false;
  1891         return
  1892             t.isRaw() ||
  1893             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1894             isDerivedRaw(interfaces(t));
  1897     public boolean isDerivedRaw(List<Type> ts) {
  1898         List<Type> l = ts;
  1899         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1900         return l.nonEmpty();
  1902     // </editor-fold>
  1904     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1905     /**
  1906      * Set the bounds field of the given type variable to reflect a
  1907      * (possibly multiple) list of bounds.
  1908      * @param t                 a type variable
  1909      * @param bounds            the bounds, must be nonempty
  1910      * @param supertype         is objectType if all bounds are interfaces,
  1911      *                          null otherwise.
  1912      */
  1913     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1914         if (bounds.tail.isEmpty())
  1915             t.bound = bounds.head;
  1916         else
  1917             t.bound = makeCompoundType(bounds, supertype);
  1918         t.rank_field = -1;
  1921     /**
  1922      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1923      * third parameter is computed directly, as follows: if all
  1924      * all bounds are interface types, the computed supertype is Object,
  1925      * otherwise the supertype is simply left null (in this case, the supertype
  1926      * is assumed to be the head of the bound list passed as second argument).
  1927      * Note that this check might cause a symbol completion. Hence, this version of
  1928      * setBounds may not be called during a classfile read.
  1929      */
  1930     public void setBounds(TypeVar t, List<Type> bounds) {
  1931         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1932             syms.objectType : null;
  1933         setBounds(t, bounds, supertype);
  1934         t.rank_field = -1;
  1936     // </editor-fold>
  1938     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1939     /**
  1940      * Return list of bounds of the given type variable.
  1941      */
  1942     public List<Type> getBounds(TypeVar t) {
  1943         if (t.bound.isErroneous() || !t.bound.isCompound())
  1944             return List.of(t.bound);
  1945         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1946             return interfaces(t).prepend(supertype(t));
  1947         else
  1948             // No superclass was given in bounds.
  1949             // In this case, supertype is Object, erasure is first interface.
  1950             return interfaces(t);
  1952     // </editor-fold>
  1954     // <editor-fold defaultstate="collapsed" desc="classBound">
  1955     /**
  1956      * If the given type is a (possibly selected) type variable,
  1957      * return the bounding class of this type, otherwise return the
  1958      * type itself.
  1959      */
  1960     public Type classBound(Type t) {
  1961         return classBound.visit(t);
  1963     // where
  1964         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1966             public Type visitType(Type t, Void ignored) {
  1967                 return t;
  1970             @Override
  1971             public Type visitClassType(ClassType t, Void ignored) {
  1972                 Type outer1 = classBound(t.getEnclosingType());
  1973                 if (outer1 != t.getEnclosingType())
  1974                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1975                 else
  1976                     return t;
  1979             @Override
  1980             public Type visitTypeVar(TypeVar t, Void ignored) {
  1981                 return classBound(supertype(t));
  1984             @Override
  1985             public Type visitErrorType(ErrorType t, Void ignored) {
  1986                 return t;
  1988         };
  1989     // </editor-fold>
  1991     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1992     /**
  1993      * Returns true iff the first signature is a <em>sub
  1994      * signature</em> of the other.  This is <b>not</b> an equivalence
  1995      * relation.
  1997      * @jls section 8.4.2.
  1998      * @see #overrideEquivalent(Type t, Type s)
  1999      * @param t first signature (possibly raw).
  2000      * @param s second signature (could be subjected to erasure).
  2001      * @return true if t is a sub signature of s.
  2002      */
  2003     public boolean isSubSignature(Type t, Type s) {
  2004         return isSubSignature(t, s, true);
  2007     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2008         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2011     /**
  2012      * Returns true iff these signatures are related by <em>override
  2013      * equivalence</em>.  This is the natural extension of
  2014      * isSubSignature to an equivalence relation.
  2016      * @jls section 8.4.2.
  2017      * @see #isSubSignature(Type t, Type s)
  2018      * @param t a signature (possible raw, could be subjected to
  2019      * erasure).
  2020      * @param s a signature (possible raw, could be subjected to
  2021      * erasure).
  2022      * @return true if either argument is a sub signature of the other.
  2023      */
  2024     public boolean overrideEquivalent(Type t, Type s) {
  2025         return hasSameArgs(t, s) ||
  2026             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2029     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2030     class ImplementationCache {
  2032         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2033                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2035         class Entry {
  2036             final MethodSymbol cachedImpl;
  2037             final Filter<Symbol> implFilter;
  2038             final boolean checkResult;
  2039             final int prevMark;
  2041             public Entry(MethodSymbol cachedImpl,
  2042                     Filter<Symbol> scopeFilter,
  2043                     boolean checkResult,
  2044                     int prevMark) {
  2045                 this.cachedImpl = cachedImpl;
  2046                 this.implFilter = scopeFilter;
  2047                 this.checkResult = checkResult;
  2048                 this.prevMark = prevMark;
  2051             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2052                 return this.implFilter == scopeFilter &&
  2053                         this.checkResult == checkResult &&
  2054                         this.prevMark == mark;
  2058         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2059             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2060             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2061             if (cache == null) {
  2062                 cache = new HashMap<TypeSymbol, Entry>();
  2063                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2065             Entry e = cache.get(origin);
  2066             CompoundScope members = membersClosure(origin.type, true);
  2067             if (e == null ||
  2068                     !e.matches(implFilter, checkResult, members.getMark())) {
  2069                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2070                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2071                 return impl;
  2073             else {
  2074                 return e.cachedImpl;
  2078         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2079             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2080                 while (t.tag == TYPEVAR)
  2081                     t = t.getUpperBound();
  2082                 TypeSymbol c = t.tsym;
  2083                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2084                      e.scope != null;
  2085                      e = e.next(implFilter)) {
  2086                     if (e.sym != null &&
  2087                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2088                         return (MethodSymbol)e.sym;
  2091             return null;
  2095     private ImplementationCache implCache = new ImplementationCache();
  2097     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2098         return implCache.get(ms, origin, checkResult, implFilter);
  2100     // </editor-fold>
  2102     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2103     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2105         private WeakHashMap<TypeSymbol, Entry> _map =
  2106                 new WeakHashMap<TypeSymbol, Entry>();
  2108         class Entry {
  2109             final boolean skipInterfaces;
  2110             final CompoundScope compoundScope;
  2112             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2113                 this.skipInterfaces = skipInterfaces;
  2114                 this.compoundScope = compoundScope;
  2117             boolean matches(boolean skipInterfaces) {
  2118                 return this.skipInterfaces == skipInterfaces;
  2122         /** members closure visitor methods **/
  2124         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2125             return null;
  2128         @Override
  2129         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2130             ClassSymbol csym = (ClassSymbol)t.tsym;
  2131             Entry e = _map.get(csym);
  2132             if (e == null || !e.matches(skipInterface)) {
  2133                 CompoundScope membersClosure = new CompoundScope(csym);
  2134                 if (!skipInterface) {
  2135                     for (Type i : interfaces(t)) {
  2136                         membersClosure.addSubScope(visit(i, skipInterface));
  2139                 membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2140                 membersClosure.addSubScope(csym.members());
  2141                 e = new Entry(skipInterface, membersClosure);
  2142                 _map.put(csym, e);
  2144             return e.compoundScope;
  2147         @Override
  2148         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2149             return visit(t.getUpperBound(), skipInterface);
  2153     private MembersClosureCache membersCache = new MembersClosureCache();
  2155     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2156         return membersCache.visit(site, skipInterface);
  2158     // </editor-fold>
  2160     /**
  2161      * Does t have the same arguments as s?  It is assumed that both
  2162      * types are (possibly polymorphic) method types.  Monomorphic
  2163      * method types "have the same arguments", if their argument lists
  2164      * are equal.  Polymorphic method types "have the same arguments",
  2165      * if they have the same arguments after renaming all type
  2166      * variables of one to corresponding type variables in the other,
  2167      * where correspondence is by position in the type parameter list.
  2168      */
  2169     public boolean hasSameArgs(Type t, Type s) {
  2170         return hasSameArgs(t, s, true);
  2173     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2174         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2177     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2178         return hasSameArgs.visit(t, s);
  2180     // where
  2181         private class HasSameArgs extends TypeRelation {
  2183             boolean strict;
  2185             public HasSameArgs(boolean strict) {
  2186                 this.strict = strict;
  2189             public Boolean visitType(Type t, Type s) {
  2190                 throw new AssertionError();
  2193             @Override
  2194             public Boolean visitMethodType(MethodType t, Type s) {
  2195                 return s.tag == METHOD
  2196                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2199             @Override
  2200             public Boolean visitForAll(ForAll t, Type s) {
  2201                 if (s.tag != FORALL)
  2202                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2204                 ForAll forAll = (ForAll)s;
  2205                 return hasSameBounds(t, forAll)
  2206                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2209             @Override
  2210             public Boolean visitErrorType(ErrorType t, Type s) {
  2211                 return false;
  2213         };
  2215         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2216         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2218     // </editor-fold>
  2220     // <editor-fold defaultstate="collapsed" desc="subst">
  2221     public List<Type> subst(List<Type> ts,
  2222                             List<Type> from,
  2223                             List<Type> to) {
  2224         return new Subst(from, to).subst(ts);
  2227     /**
  2228      * Substitute all occurrences of a type in `from' with the
  2229      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2230      * from the right: If lists have different length, discard leading
  2231      * elements of the longer list.
  2232      */
  2233     public Type subst(Type t, List<Type> from, List<Type> to) {
  2234         return new Subst(from, to).subst(t);
  2237     private class Subst extends UnaryVisitor<Type> {
  2238         List<Type> from;
  2239         List<Type> to;
  2241         public Subst(List<Type> from, List<Type> to) {
  2242             int fromLength = from.length();
  2243             int toLength = to.length();
  2244             while (fromLength > toLength) {
  2245                 fromLength--;
  2246                 from = from.tail;
  2248             while (fromLength < toLength) {
  2249                 toLength--;
  2250                 to = to.tail;
  2252             this.from = from;
  2253             this.to = to;
  2256         Type subst(Type t) {
  2257             if (from.tail == null)
  2258                 return t;
  2259             else
  2260                 return visit(t);
  2263         List<Type> subst(List<Type> ts) {
  2264             if (from.tail == null)
  2265                 return ts;
  2266             boolean wild = false;
  2267             if (ts.nonEmpty() && from.nonEmpty()) {
  2268                 Type head1 = subst(ts.head);
  2269                 List<Type> tail1 = subst(ts.tail);
  2270                 if (head1 != ts.head || tail1 != ts.tail)
  2271                     return tail1.prepend(head1);
  2273             return ts;
  2276         public Type visitType(Type t, Void ignored) {
  2277             return t;
  2280         @Override
  2281         public Type visitMethodType(MethodType t, Void ignored) {
  2282             List<Type> argtypes = subst(t.argtypes);
  2283             Type restype = subst(t.restype);
  2284             List<Type> thrown = subst(t.thrown);
  2285             if (argtypes == t.argtypes &&
  2286                 restype == t.restype &&
  2287                 thrown == t.thrown)
  2288                 return t;
  2289             else
  2290                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2293         @Override
  2294         public Type visitTypeVar(TypeVar t, Void ignored) {
  2295             for (List<Type> from = this.from, to = this.to;
  2296                  from.nonEmpty();
  2297                  from = from.tail, to = to.tail) {
  2298                 if (t == from.head) {
  2299                     return to.head.withTypeVar(t);
  2302             return t;
  2305         @Override
  2306         public Type visitClassType(ClassType t, Void ignored) {
  2307             if (!t.isCompound()) {
  2308                 List<Type> typarams = t.getTypeArguments();
  2309                 List<Type> typarams1 = subst(typarams);
  2310                 Type outer = t.getEnclosingType();
  2311                 Type outer1 = subst(outer);
  2312                 if (typarams1 == typarams && outer1 == outer)
  2313                     return t;
  2314                 else
  2315                     return new ClassType(outer1, typarams1, t.tsym);
  2316             } else {
  2317                 Type st = subst(supertype(t));
  2318                 List<Type> is = upperBounds(subst(interfaces(t)));
  2319                 if (st == supertype(t) && is == interfaces(t))
  2320                     return t;
  2321                 else
  2322                     return makeCompoundType(is.prepend(st));
  2326         @Override
  2327         public Type visitWildcardType(WildcardType t, Void ignored) {
  2328             Type bound = t.type;
  2329             if (t.kind != BoundKind.UNBOUND)
  2330                 bound = subst(bound);
  2331             if (bound == t.type) {
  2332                 return t;
  2333             } else {
  2334                 if (t.isExtendsBound() && bound.isExtendsBound())
  2335                     bound = upperBound(bound);
  2336                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2340         @Override
  2341         public Type visitArrayType(ArrayType t, Void ignored) {
  2342             Type elemtype = subst(t.elemtype);
  2343             if (elemtype == t.elemtype)
  2344                 return t;
  2345             else
  2346                 return new ArrayType(upperBound(elemtype), t.tsym);
  2349         @Override
  2350         public Type visitForAll(ForAll t, Void ignored) {
  2351             if (Type.containsAny(to, t.tvars)) {
  2352                 //perform alpha-renaming of free-variables in 't'
  2353                 //if 'to' types contain variables that are free in 't'
  2354                 List<Type> freevars = newInstances(t.tvars);
  2355                 t = new ForAll(freevars,
  2356                         Types.this.subst(t.qtype, t.tvars, freevars));
  2358             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2359             Type qtype1 = subst(t.qtype);
  2360             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2361                 return t;
  2362             } else if (tvars1 == t.tvars) {
  2363                 return new ForAll(tvars1, qtype1);
  2364             } else {
  2365                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2369         @Override
  2370         public Type visitErrorType(ErrorType t, Void ignored) {
  2371             return t;
  2375     public List<Type> substBounds(List<Type> tvars,
  2376                                   List<Type> from,
  2377                                   List<Type> to) {
  2378         if (tvars.isEmpty())
  2379             return tvars;
  2380         ListBuffer<Type> newBoundsBuf = lb();
  2381         boolean changed = false;
  2382         // calculate new bounds
  2383         for (Type t : tvars) {
  2384             TypeVar tv = (TypeVar) t;
  2385             Type bound = subst(tv.bound, from, to);
  2386             if (bound != tv.bound)
  2387                 changed = true;
  2388             newBoundsBuf.append(bound);
  2390         if (!changed)
  2391             return tvars;
  2392         ListBuffer<Type> newTvars = lb();
  2393         // create new type variables without bounds
  2394         for (Type t : tvars) {
  2395             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2397         // the new bounds should use the new type variables in place
  2398         // of the old
  2399         List<Type> newBounds = newBoundsBuf.toList();
  2400         from = tvars;
  2401         to = newTvars.toList();
  2402         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2403             newBounds.head = subst(newBounds.head, from, to);
  2405         newBounds = newBoundsBuf.toList();
  2406         // set the bounds of new type variables to the new bounds
  2407         for (Type t : newTvars.toList()) {
  2408             TypeVar tv = (TypeVar) t;
  2409             tv.bound = newBounds.head;
  2410             newBounds = newBounds.tail;
  2412         return newTvars.toList();
  2415     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2416         Type bound1 = subst(t.bound, from, to);
  2417         if (bound1 == t.bound)
  2418             return t;
  2419         else {
  2420             // create new type variable without bounds
  2421             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2422             // the new bound should use the new type variable in place
  2423             // of the old
  2424             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2425             return tv;
  2428     // </editor-fold>
  2430     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2431     /**
  2432      * Does t have the same bounds for quantified variables as s?
  2433      */
  2434     boolean hasSameBounds(ForAll t, ForAll s) {
  2435         List<Type> l1 = t.tvars;
  2436         List<Type> l2 = s.tvars;
  2437         while (l1.nonEmpty() && l2.nonEmpty() &&
  2438                isSameType(l1.head.getUpperBound(),
  2439                           subst(l2.head.getUpperBound(),
  2440                                 s.tvars,
  2441                                 t.tvars))) {
  2442             l1 = l1.tail;
  2443             l2 = l2.tail;
  2445         return l1.isEmpty() && l2.isEmpty();
  2447     // </editor-fold>
  2449     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2450     /** Create new vector of type variables from list of variables
  2451      *  changing all recursive bounds from old to new list.
  2452      */
  2453     public List<Type> newInstances(List<Type> tvars) {
  2454         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2455         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2456             TypeVar tv = (TypeVar) l.head;
  2457             tv.bound = subst(tv.bound, tvars, tvars1);
  2459         return tvars1;
  2461     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2462             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2463         };
  2464     // </editor-fold>
  2466     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2467         return original.accept(methodWithParameters, newParams);
  2469     // where
  2470         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2471             public Type visitType(Type t, List<Type> newParams) {
  2472                 throw new IllegalArgumentException("Not a method type: " + t);
  2474             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2475                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2477             public Type visitForAll(ForAll t, List<Type> newParams) {
  2478                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2480         };
  2482     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2483         return original.accept(methodWithThrown, newThrown);
  2485     // where
  2486         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2487             public Type visitType(Type t, List<Type> newThrown) {
  2488                 throw new IllegalArgumentException("Not a method type: " + t);
  2490             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2491                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2493             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2494                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2496         };
  2498     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2499         return original.accept(methodWithReturn, newReturn);
  2501     // where
  2502         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2503             public Type visitType(Type t, Type newReturn) {
  2504                 throw new IllegalArgumentException("Not a method type: " + t);
  2506             public Type visitMethodType(MethodType t, Type newReturn) {
  2507                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2509             public Type visitForAll(ForAll t, Type newReturn) {
  2510                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2512         };
  2514     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2515     public Type createErrorType(Type originalType) {
  2516         return new ErrorType(originalType, syms.errSymbol);
  2519     public Type createErrorType(ClassSymbol c, Type originalType) {
  2520         return new ErrorType(c, originalType);
  2523     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2524         return new ErrorType(name, container, originalType);
  2526     // </editor-fold>
  2528     // <editor-fold defaultstate="collapsed" desc="rank">
  2529     /**
  2530      * The rank of a class is the length of the longest path between
  2531      * the class and java.lang.Object in the class inheritance
  2532      * graph. Undefined for all but reference types.
  2533      */
  2534     public int rank(Type t) {
  2535         switch(t.tag) {
  2536         case CLASS: {
  2537             ClassType cls = (ClassType)t;
  2538             if (cls.rank_field < 0) {
  2539                 Name fullname = cls.tsym.getQualifiedName();
  2540                 if (fullname == names.java_lang_Object)
  2541                     cls.rank_field = 0;
  2542                 else {
  2543                     int r = rank(supertype(cls));
  2544                     for (List<Type> l = interfaces(cls);
  2545                          l.nonEmpty();
  2546                          l = l.tail) {
  2547                         if (rank(l.head) > r)
  2548                             r = rank(l.head);
  2550                     cls.rank_field = r + 1;
  2553             return cls.rank_field;
  2555         case TYPEVAR: {
  2556             TypeVar tvar = (TypeVar)t;
  2557             if (tvar.rank_field < 0) {
  2558                 int r = rank(supertype(tvar));
  2559                 for (List<Type> l = interfaces(tvar);
  2560                      l.nonEmpty();
  2561                      l = l.tail) {
  2562                     if (rank(l.head) > r) r = rank(l.head);
  2564                 tvar.rank_field = r + 1;
  2566             return tvar.rank_field;
  2568         case ERROR:
  2569             return 0;
  2570         default:
  2571             throw new AssertionError();
  2574     // </editor-fold>
  2576     /**
  2577      * Helper method for generating a string representation of a given type
  2578      * accordingly to a given locale
  2579      */
  2580     public String toString(Type t, Locale locale) {
  2581         return Printer.createStandardPrinter(messages).visit(t, locale);
  2584     /**
  2585      * Helper method for generating a string representation of a given type
  2586      * accordingly to a given locale
  2587      */
  2588     public String toString(Symbol t, Locale locale) {
  2589         return Printer.createStandardPrinter(messages).visit(t, locale);
  2592     // <editor-fold defaultstate="collapsed" desc="toString">
  2593     /**
  2594      * This toString is slightly more descriptive than the one on Type.
  2596      * @deprecated Types.toString(Type t, Locale l) provides better support
  2597      * for localization
  2598      */
  2599     @Deprecated
  2600     public String toString(Type t) {
  2601         if (t.tag == FORALL) {
  2602             ForAll forAll = (ForAll)t;
  2603             return typaramsString(forAll.tvars) + forAll.qtype;
  2605         return "" + t;
  2607     // where
  2608         private String typaramsString(List<Type> tvars) {
  2609             StringBuilder s = new StringBuilder();
  2610             s.append('<');
  2611             boolean first = true;
  2612             for (Type t : tvars) {
  2613                 if (!first) s.append(", ");
  2614                 first = false;
  2615                 appendTyparamString(((TypeVar)t), s);
  2617             s.append('>');
  2618             return s.toString();
  2620         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2621             buf.append(t);
  2622             if (t.bound == null ||
  2623                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2624                 return;
  2625             buf.append(" extends "); // Java syntax; no need for i18n
  2626             Type bound = t.bound;
  2627             if (!bound.isCompound()) {
  2628                 buf.append(bound);
  2629             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2630                 buf.append(supertype(t));
  2631                 for (Type intf : interfaces(t)) {
  2632                     buf.append('&');
  2633                     buf.append(intf);
  2635             } else {
  2636                 // No superclass was given in bounds.
  2637                 // In this case, supertype is Object, erasure is first interface.
  2638                 boolean first = true;
  2639                 for (Type intf : interfaces(t)) {
  2640                     if (!first) buf.append('&');
  2641                     first = false;
  2642                     buf.append(intf);
  2646     // </editor-fold>
  2648     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2649     /**
  2650      * A cache for closures.
  2652      * <p>A closure is a list of all the supertypes and interfaces of
  2653      * a class or interface type, ordered by ClassSymbol.precedes
  2654      * (that is, subclasses come first, arbitrary but fixed
  2655      * otherwise).
  2656      */
  2657     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2659     /**
  2660      * Returns the closure of a class or interface type.
  2661      */
  2662     public List<Type> closure(Type t) {
  2663         List<Type> cl = closureCache.get(t);
  2664         if (cl == null) {
  2665             Type st = supertype(t);
  2666             if (!t.isCompound()) {
  2667                 if (st.tag == CLASS) {
  2668                     cl = insert(closure(st), t);
  2669                 } else if (st.tag == TYPEVAR) {
  2670                     cl = closure(st).prepend(t);
  2671                 } else {
  2672                     cl = List.of(t);
  2674             } else {
  2675                 cl = closure(supertype(t));
  2677             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2678                 cl = union(cl, closure(l.head));
  2679             closureCache.put(t, cl);
  2681         return cl;
  2684     /**
  2685      * Insert a type in a closure
  2686      */
  2687     public List<Type> insert(List<Type> cl, Type t) {
  2688         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2689             return cl.prepend(t);
  2690         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2691             return insert(cl.tail, t).prepend(cl.head);
  2692         } else {
  2693             return cl;
  2697     /**
  2698      * Form the union of two closures
  2699      */
  2700     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2701         if (cl1.isEmpty()) {
  2702             return cl2;
  2703         } else if (cl2.isEmpty()) {
  2704             return cl1;
  2705         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2706             return union(cl1.tail, cl2).prepend(cl1.head);
  2707         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2708             return union(cl1, cl2.tail).prepend(cl2.head);
  2709         } else {
  2710             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2714     /**
  2715      * Intersect two closures
  2716      */
  2717     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2718         if (cl1 == cl2)
  2719             return cl1;
  2720         if (cl1.isEmpty() || cl2.isEmpty())
  2721             return List.nil();
  2722         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2723             return intersect(cl1.tail, cl2);
  2724         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2725             return intersect(cl1, cl2.tail);
  2726         if (isSameType(cl1.head, cl2.head))
  2727             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2728         if (cl1.head.tsym == cl2.head.tsym &&
  2729             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2730             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2731                 Type merge = merge(cl1.head,cl2.head);
  2732                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2734             if (cl1.head.isRaw() || cl2.head.isRaw())
  2735                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2737         return intersect(cl1.tail, cl2.tail);
  2739     // where
  2740         class TypePair {
  2741             final Type t1;
  2742             final Type t2;
  2743             TypePair(Type t1, Type t2) {
  2744                 this.t1 = t1;
  2745                 this.t2 = t2;
  2747             @Override
  2748             public int hashCode() {
  2749                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  2751             @Override
  2752             public boolean equals(Object obj) {
  2753                 if (!(obj instanceof TypePair))
  2754                     return false;
  2755                 TypePair typePair = (TypePair)obj;
  2756                 return isSameType(t1, typePair.t1)
  2757                     && isSameType(t2, typePair.t2);
  2760         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2761         private Type merge(Type c1, Type c2) {
  2762             ClassType class1 = (ClassType) c1;
  2763             List<Type> act1 = class1.getTypeArguments();
  2764             ClassType class2 = (ClassType) c2;
  2765             List<Type> act2 = class2.getTypeArguments();
  2766             ListBuffer<Type> merged = new ListBuffer<Type>();
  2767             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2769             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2770                 if (containsType(act1.head, act2.head)) {
  2771                     merged.append(act1.head);
  2772                 } else if (containsType(act2.head, act1.head)) {
  2773                     merged.append(act2.head);
  2774                 } else {
  2775                     TypePair pair = new TypePair(c1, c2);
  2776                     Type m;
  2777                     if (mergeCache.add(pair)) {
  2778                         m = new WildcardType(lub(upperBound(act1.head),
  2779                                                  upperBound(act2.head)),
  2780                                              BoundKind.EXTENDS,
  2781                                              syms.boundClass);
  2782                         mergeCache.remove(pair);
  2783                     } else {
  2784                         m = new WildcardType(syms.objectType,
  2785                                              BoundKind.UNBOUND,
  2786                                              syms.boundClass);
  2788                     merged.append(m.withTypeVar(typarams.head));
  2790                 act1 = act1.tail;
  2791                 act2 = act2.tail;
  2792                 typarams = typarams.tail;
  2794             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2795             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2798     /**
  2799      * Return the minimum type of a closure, a compound type if no
  2800      * unique minimum exists.
  2801      */
  2802     private Type compoundMin(List<Type> cl) {
  2803         if (cl.isEmpty()) return syms.objectType;
  2804         List<Type> compound = closureMin(cl);
  2805         if (compound.isEmpty())
  2806             return null;
  2807         else if (compound.tail.isEmpty())
  2808             return compound.head;
  2809         else
  2810             return makeCompoundType(compound);
  2813     /**
  2814      * Return the minimum types of a closure, suitable for computing
  2815      * compoundMin or glb.
  2816      */
  2817     private List<Type> closureMin(List<Type> cl) {
  2818         ListBuffer<Type> classes = lb();
  2819         ListBuffer<Type> interfaces = lb();
  2820         while (!cl.isEmpty()) {
  2821             Type current = cl.head;
  2822             if (current.isInterface())
  2823                 interfaces.append(current);
  2824             else
  2825                 classes.append(current);
  2826             ListBuffer<Type> candidates = lb();
  2827             for (Type t : cl.tail) {
  2828                 if (!isSubtypeNoCapture(current, t))
  2829                     candidates.append(t);
  2831             cl = candidates.toList();
  2833         return classes.appendList(interfaces).toList();
  2836     /**
  2837      * Return the least upper bound of pair of types.  if the lub does
  2838      * not exist return null.
  2839      */
  2840     public Type lub(Type t1, Type t2) {
  2841         return lub(List.of(t1, t2));
  2844     /**
  2845      * Return the least upper bound (lub) of set of types.  If the lub
  2846      * does not exist return the type of null (bottom).
  2847      */
  2848     public Type lub(List<Type> ts) {
  2849         final int ARRAY_BOUND = 1;
  2850         final int CLASS_BOUND = 2;
  2851         int boundkind = 0;
  2852         for (Type t : ts) {
  2853             switch (t.tag) {
  2854             case CLASS:
  2855                 boundkind |= CLASS_BOUND;
  2856                 break;
  2857             case ARRAY:
  2858                 boundkind |= ARRAY_BOUND;
  2859                 break;
  2860             case  TYPEVAR:
  2861                 do {
  2862                     t = t.getUpperBound();
  2863                 } while (t.tag == TYPEVAR);
  2864                 if (t.tag == ARRAY) {
  2865                     boundkind |= ARRAY_BOUND;
  2866                 } else {
  2867                     boundkind |= CLASS_BOUND;
  2869                 break;
  2870             default:
  2871                 if (t.isPrimitive())
  2872                     return syms.errType;
  2875         switch (boundkind) {
  2876         case 0:
  2877             return syms.botType;
  2879         case ARRAY_BOUND:
  2880             // calculate lub(A[], B[])
  2881             List<Type> elements = Type.map(ts, elemTypeFun);
  2882             for (Type t : elements) {
  2883                 if (t.isPrimitive()) {
  2884                     // if a primitive type is found, then return
  2885                     // arraySuperType unless all the types are the
  2886                     // same
  2887                     Type first = ts.head;
  2888                     for (Type s : ts.tail) {
  2889                         if (!isSameType(first, s)) {
  2890                              // lub(int[], B[]) is Cloneable & Serializable
  2891                             return arraySuperType();
  2894                     // all the array types are the same, return one
  2895                     // lub(int[], int[]) is int[]
  2896                     return first;
  2899             // lub(A[], B[]) is lub(A, B)[]
  2900             return new ArrayType(lub(elements), syms.arrayClass);
  2902         case CLASS_BOUND:
  2903             // calculate lub(A, B)
  2904             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2905                 ts = ts.tail;
  2906             Assert.check(!ts.isEmpty());
  2907             //step 1 - compute erased candidate set (EC)
  2908             List<Type> cl = erasedSupertypes(ts.head);
  2909             for (Type t : ts.tail) {
  2910                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2911                     cl = intersect(cl, erasedSupertypes(t));
  2913             //step 2 - compute minimal erased candidate set (MEC)
  2914             List<Type> mec = closureMin(cl);
  2915             //step 3 - for each element G in MEC, compute lci(Inv(G))
  2916             List<Type> candidates = List.nil();
  2917             for (Type erasedSupertype : mec) {
  2918                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  2919                 for (Type t : ts) {
  2920                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  2922                 candidates = candidates.appendList(lci);
  2924             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  2925             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  2926             return compoundMin(candidates);
  2928         default:
  2929             // calculate lub(A, B[])
  2930             List<Type> classes = List.of(arraySuperType());
  2931             for (Type t : ts) {
  2932                 if (t.tag != ARRAY) // Filter out any arrays
  2933                     classes = classes.prepend(t);
  2935             // lub(A, B[]) is lub(A, arraySuperType)
  2936             return lub(classes);
  2939     // where
  2940         List<Type> erasedSupertypes(Type t) {
  2941             ListBuffer<Type> buf = lb();
  2942             for (Type sup : closure(t)) {
  2943                 if (sup.tag == TYPEVAR) {
  2944                     buf.append(sup);
  2945                 } else {
  2946                     buf.append(erasure(sup));
  2949             return buf.toList();
  2952         private Type arraySuperType = null;
  2953         private Type arraySuperType() {
  2954             // initialized lazily to avoid problems during compiler startup
  2955             if (arraySuperType == null) {
  2956                 synchronized (this) {
  2957                     if (arraySuperType == null) {
  2958                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2959                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2960                                                                   syms.cloneableType),
  2961                                                           syms.objectType);
  2965             return arraySuperType;
  2967     // </editor-fold>
  2969     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2970     public Type glb(List<Type> ts) {
  2971         Type t1 = ts.head;
  2972         for (Type t2 : ts.tail) {
  2973             if (t1.isErroneous())
  2974                 return t1;
  2975             t1 = glb(t1, t2);
  2977         return t1;
  2979     //where
  2980     public Type glb(Type t, Type s) {
  2981         if (s == null)
  2982             return t;
  2983         else if (t.isPrimitive() || s.isPrimitive())
  2984             return syms.errType;
  2985         else if (isSubtypeNoCapture(t, s))
  2986             return t;
  2987         else if (isSubtypeNoCapture(s, t))
  2988             return s;
  2990         List<Type> closure = union(closure(t), closure(s));
  2991         List<Type> bounds = closureMin(closure);
  2993         if (bounds.isEmpty()) {             // length == 0
  2994             return syms.objectType;
  2995         } else if (bounds.tail.isEmpty()) { // length == 1
  2996             return bounds.head;
  2997         } else {                            // length > 1
  2998             int classCount = 0;
  2999             for (Type bound : bounds)
  3000                 if (!bound.isInterface())
  3001                     classCount++;
  3002             if (classCount > 1)
  3003                 return createErrorType(t);
  3005         return makeCompoundType(bounds);
  3007     // </editor-fold>
  3009     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3010     /**
  3011      * Compute a hash code on a type.
  3012      */
  3013     public static int hashCode(Type t) {
  3014         return hashCode.visit(t);
  3016     // where
  3017         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3019             public Integer visitType(Type t, Void ignored) {
  3020                 return t.tag;
  3023             @Override
  3024             public Integer visitClassType(ClassType t, Void ignored) {
  3025                 int result = visit(t.getEnclosingType());
  3026                 result *= 127;
  3027                 result += t.tsym.flatName().hashCode();
  3028                 for (Type s : t.getTypeArguments()) {
  3029                     result *= 127;
  3030                     result += visit(s);
  3032                 return result;
  3035             @Override
  3036             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3037                 int result = t.kind.hashCode();
  3038                 if (t.type != null) {
  3039                     result *= 127;
  3040                     result += visit(t.type);
  3042                 return result;
  3045             @Override
  3046             public Integer visitArrayType(ArrayType t, Void ignored) {
  3047                 return visit(t.elemtype) + 12;
  3050             @Override
  3051             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3052                 return System.identityHashCode(t.tsym);
  3055             @Override
  3056             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3057                 return System.identityHashCode(t);
  3060             @Override
  3061             public Integer visitErrorType(ErrorType t, Void ignored) {
  3062                 return 0;
  3064         };
  3065     // </editor-fold>
  3067     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3068     /**
  3069      * Does t have a result that is a subtype of the result type of s,
  3070      * suitable for covariant returns?  It is assumed that both types
  3071      * are (possibly polymorphic) method types.  Monomorphic method
  3072      * types are handled in the obvious way.  Polymorphic method types
  3073      * require renaming all type variables of one to corresponding
  3074      * type variables in the other, where correspondence is by
  3075      * position in the type parameter list. */
  3076     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3077         List<Type> tvars = t.getTypeArguments();
  3078         List<Type> svars = s.getTypeArguments();
  3079         Type tres = t.getReturnType();
  3080         Type sres = subst(s.getReturnType(), svars, tvars);
  3081         return covariantReturnType(tres, sres, warner);
  3084     /**
  3085      * Return-Type-Substitutable.
  3086      * @jls section 8.4.5
  3087      */
  3088     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3089         if (hasSameArgs(r1, r2))
  3090             return resultSubtype(r1, r2, Warner.noWarnings);
  3091         else
  3092             return covariantReturnType(r1.getReturnType(),
  3093                                        erasure(r2.getReturnType()),
  3094                                        Warner.noWarnings);
  3097     public boolean returnTypeSubstitutable(Type r1,
  3098                                            Type r2, Type r2res,
  3099                                            Warner warner) {
  3100         if (isSameType(r1.getReturnType(), r2res))
  3101             return true;
  3102         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3103             return false;
  3105         if (hasSameArgs(r1, r2))
  3106             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3107         if (!allowCovariantReturns)
  3108             return false;
  3109         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3110             return true;
  3111         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3112             return false;
  3113         warner.warn(LintCategory.UNCHECKED);
  3114         return true;
  3117     /**
  3118      * Is t an appropriate return type in an overrider for a
  3119      * method that returns s?
  3120      */
  3121     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3122         return
  3123             isSameType(t, s) ||
  3124             allowCovariantReturns &&
  3125             !t.isPrimitive() &&
  3126             !s.isPrimitive() &&
  3127             isAssignable(t, s, warner);
  3129     // </editor-fold>
  3131     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3132     /**
  3133      * Return the class that boxes the given primitive.
  3134      */
  3135     public ClassSymbol boxedClass(Type t) {
  3136         return reader.enterClass(syms.boxedName[t.tag]);
  3139     /**
  3140      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3141      */
  3142     public Type boxedTypeOrType(Type t) {
  3143         return t.isPrimitive() ?
  3144             boxedClass(t).type :
  3145             t;
  3148     /**
  3149      * Return the primitive type corresponding to a boxed type.
  3150      */
  3151     public Type unboxedType(Type t) {
  3152         if (allowBoxing) {
  3153             for (int i=0; i<syms.boxedName.length; i++) {
  3154                 Name box = syms.boxedName[i];
  3155                 if (box != null &&
  3156                     asSuper(t, reader.enterClass(box)) != null)
  3157                     return syms.typeOfTag[i];
  3160         return Type.noType;
  3162     // </editor-fold>
  3164     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3165     /*
  3166      * JLS 5.1.10 Capture Conversion:
  3168      * Let G name a generic type declaration with n formal type
  3169      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3170      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3171      * where, for 1 <= i <= n:
  3173      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3174      *   Si is a fresh type variable whose upper bound is
  3175      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3176      *   type.
  3178      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3179      *   then Si is a fresh type variable whose upper bound is
  3180      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3181      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3182      *   a compile-time error if for any two classes (not interfaces)
  3183      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3185      * + If Ti is a wildcard type argument of the form ? super Bi,
  3186      *   then Si is a fresh type variable whose upper bound is
  3187      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3189      * + Otherwise, Si = Ti.
  3191      * Capture conversion on any type other than a parameterized type
  3192      * (4.5) acts as an identity conversion (5.1.1). Capture
  3193      * conversions never require a special action at run time and
  3194      * therefore never throw an exception at run time.
  3196      * Capture conversion is not applied recursively.
  3197      */
  3198     /**
  3199      * Capture conversion as specified by the JLS.
  3200      */
  3202     public List<Type> capture(List<Type> ts) {
  3203         List<Type> buf = List.nil();
  3204         for (Type t : ts) {
  3205             buf = buf.prepend(capture(t));
  3207         return buf.reverse();
  3209     public Type capture(Type t) {
  3210         if (t.tag != CLASS)
  3211             return t;
  3212         if (t.getEnclosingType() != Type.noType) {
  3213             Type capturedEncl = capture(t.getEnclosingType());
  3214             if (capturedEncl != t.getEnclosingType()) {
  3215                 Type type1 = memberType(capturedEncl, t.tsym);
  3216                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3219         ClassType cls = (ClassType)t;
  3220         if (cls.isRaw() || !cls.isParameterized())
  3221             return cls;
  3223         ClassType G = (ClassType)cls.asElement().asType();
  3224         List<Type> A = G.getTypeArguments();
  3225         List<Type> T = cls.getTypeArguments();
  3226         List<Type> S = freshTypeVariables(T);
  3228         List<Type> currentA = A;
  3229         List<Type> currentT = T;
  3230         List<Type> currentS = S;
  3231         boolean captured = false;
  3232         while (!currentA.isEmpty() &&
  3233                !currentT.isEmpty() &&
  3234                !currentS.isEmpty()) {
  3235             if (currentS.head != currentT.head) {
  3236                 captured = true;
  3237                 WildcardType Ti = (WildcardType)currentT.head;
  3238                 Type Ui = currentA.head.getUpperBound();
  3239                 CapturedType Si = (CapturedType)currentS.head;
  3240                 if (Ui == null)
  3241                     Ui = syms.objectType;
  3242                 switch (Ti.kind) {
  3243                 case UNBOUND:
  3244                     Si.bound = subst(Ui, A, S);
  3245                     Si.lower = syms.botType;
  3246                     break;
  3247                 case EXTENDS:
  3248                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3249                     Si.lower = syms.botType;
  3250                     break;
  3251                 case SUPER:
  3252                     Si.bound = subst(Ui, A, S);
  3253                     Si.lower = Ti.getSuperBound();
  3254                     break;
  3256                 if (Si.bound == Si.lower)
  3257                     currentS.head = Si.bound;
  3259             currentA = currentA.tail;
  3260             currentT = currentT.tail;
  3261             currentS = currentS.tail;
  3263         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3264             return erasure(t); // some "rare" type involved
  3266         if (captured)
  3267             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3268         else
  3269             return t;
  3271     // where
  3272         public List<Type> freshTypeVariables(List<Type> types) {
  3273             ListBuffer<Type> result = lb();
  3274             for (Type t : types) {
  3275                 if (t.tag == WILDCARD) {
  3276                     Type bound = ((WildcardType)t).getExtendsBound();
  3277                     if (bound == null)
  3278                         bound = syms.objectType;
  3279                     result.append(new CapturedType(capturedName,
  3280                                                    syms.noSymbol,
  3281                                                    bound,
  3282                                                    syms.botType,
  3283                                                    (WildcardType)t));
  3284                 } else {
  3285                     result.append(t);
  3288             return result.toList();
  3290     // </editor-fold>
  3292     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3293     private List<Type> upperBounds(List<Type> ss) {
  3294         if (ss.isEmpty()) return ss;
  3295         Type head = upperBound(ss.head);
  3296         List<Type> tail = upperBounds(ss.tail);
  3297         if (head != ss.head || tail != ss.tail)
  3298             return tail.prepend(head);
  3299         else
  3300             return ss;
  3303     private boolean sideCast(Type from, Type to, Warner warn) {
  3304         // We are casting from type $from$ to type $to$, which are
  3305         // non-final unrelated types.  This method
  3306         // tries to reject a cast by transferring type parameters
  3307         // from $to$ to $from$ by common superinterfaces.
  3308         boolean reverse = false;
  3309         Type target = to;
  3310         if ((to.tsym.flags() & INTERFACE) == 0) {
  3311             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3312             reverse = true;
  3313             to = from;
  3314             from = target;
  3316         List<Type> commonSupers = superClosure(to, erasure(from));
  3317         boolean giveWarning = commonSupers.isEmpty();
  3318         // The arguments to the supers could be unified here to
  3319         // get a more accurate analysis
  3320         while (commonSupers.nonEmpty()) {
  3321             Type t1 = asSuper(from, commonSupers.head.tsym);
  3322             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3323             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3324                 return false;
  3325             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3326             commonSupers = commonSupers.tail;
  3328         if (giveWarning && !isReifiable(reverse ? from : to))
  3329             warn.warn(LintCategory.UNCHECKED);
  3330         if (!allowCovariantReturns)
  3331             // reject if there is a common method signature with
  3332             // incompatible return types.
  3333             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3334         return true;
  3337     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3338         // We are casting from type $from$ to type $to$, which are
  3339         // unrelated types one of which is final and the other of
  3340         // which is an interface.  This method
  3341         // tries to reject a cast by transferring type parameters
  3342         // from the final class to the interface.
  3343         boolean reverse = false;
  3344         Type target = to;
  3345         if ((to.tsym.flags() & INTERFACE) == 0) {
  3346             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3347             reverse = true;
  3348             to = from;
  3349             from = target;
  3351         Assert.check((from.tsym.flags() & FINAL) != 0);
  3352         Type t1 = asSuper(from, to.tsym);
  3353         if (t1 == null) return false;
  3354         Type t2 = to;
  3355         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3356             return false;
  3357         if (!allowCovariantReturns)
  3358             // reject if there is a common method signature with
  3359             // incompatible return types.
  3360             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3361         if (!isReifiable(target) &&
  3362             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3363             warn.warn(LintCategory.UNCHECKED);
  3364         return true;
  3367     private boolean giveWarning(Type from, Type to) {
  3368         Type subFrom = asSub(from, to.tsym);
  3369         return to.isParameterized() &&
  3370                 (!(isUnbounded(to) ||
  3371                 isSubtype(from, to) ||
  3372                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3375     private List<Type> superClosure(Type t, Type s) {
  3376         List<Type> cl = List.nil();
  3377         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3378             if (isSubtype(s, erasure(l.head))) {
  3379                 cl = insert(cl, l.head);
  3380             } else {
  3381                 cl = union(cl, superClosure(l.head, s));
  3384         return cl;
  3387     private boolean containsTypeEquivalent(Type t, Type s) {
  3388         return
  3389             isSameType(t, s) || // shortcut
  3390             containsType(t, s) && containsType(s, t);
  3393     // <editor-fold defaultstate="collapsed" desc="adapt">
  3394     /**
  3395      * Adapt a type by computing a substitution which maps a source
  3396      * type to a target type.
  3398      * @param source    the source type
  3399      * @param target    the target type
  3400      * @param from      the type variables of the computed substitution
  3401      * @param to        the types of the computed substitution.
  3402      */
  3403     public void adapt(Type source,
  3404                        Type target,
  3405                        ListBuffer<Type> from,
  3406                        ListBuffer<Type> to) throws AdaptFailure {
  3407         new Adapter(from, to).adapt(source, target);
  3410     class Adapter extends SimpleVisitor<Void, Type> {
  3412         ListBuffer<Type> from;
  3413         ListBuffer<Type> to;
  3414         Map<Symbol,Type> mapping;
  3416         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3417             this.from = from;
  3418             this.to = to;
  3419             mapping = new HashMap<Symbol,Type>();
  3422         public void adapt(Type source, Type target) throws AdaptFailure {
  3423             visit(source, target);
  3424             List<Type> fromList = from.toList();
  3425             List<Type> toList = to.toList();
  3426             while (!fromList.isEmpty()) {
  3427                 Type val = mapping.get(fromList.head.tsym);
  3428                 if (toList.head != val)
  3429                     toList.head = val;
  3430                 fromList = fromList.tail;
  3431                 toList = toList.tail;
  3435         @Override
  3436         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3437             if (target.tag == CLASS)
  3438                 adaptRecursive(source.allparams(), target.allparams());
  3439             return null;
  3442         @Override
  3443         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3444             if (target.tag == ARRAY)
  3445                 adaptRecursive(elemtype(source), elemtype(target));
  3446             return null;
  3449         @Override
  3450         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3451             if (source.isExtendsBound())
  3452                 adaptRecursive(upperBound(source), upperBound(target));
  3453             else if (source.isSuperBound())
  3454                 adaptRecursive(lowerBound(source), lowerBound(target));
  3455             return null;
  3458         @Override
  3459         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3460             // Check to see if there is
  3461             // already a mapping for $source$, in which case
  3462             // the old mapping will be merged with the new
  3463             Type val = mapping.get(source.tsym);
  3464             if (val != null) {
  3465                 if (val.isSuperBound() && target.isSuperBound()) {
  3466                     val = isSubtype(lowerBound(val), lowerBound(target))
  3467                         ? target : val;
  3468                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3469                     val = isSubtype(upperBound(val), upperBound(target))
  3470                         ? val : target;
  3471                 } else if (!isSameType(val, target)) {
  3472                     throw new AdaptFailure();
  3474             } else {
  3475                 val = target;
  3476                 from.append(source);
  3477                 to.append(target);
  3479             mapping.put(source.tsym, val);
  3480             return null;
  3483         @Override
  3484         public Void visitType(Type source, Type target) {
  3485             return null;
  3488         private Set<TypePair> cache = new HashSet<TypePair>();
  3490         private void adaptRecursive(Type source, Type target) {
  3491             TypePair pair = new TypePair(source, target);
  3492             if (cache.add(pair)) {
  3493                 try {
  3494                     visit(source, target);
  3495                 } finally {
  3496                     cache.remove(pair);
  3501         private void adaptRecursive(List<Type> source, List<Type> target) {
  3502             if (source.length() == target.length()) {
  3503                 while (source.nonEmpty()) {
  3504                     adaptRecursive(source.head, target.head);
  3505                     source = source.tail;
  3506                     target = target.tail;
  3512     public static class AdaptFailure extends RuntimeException {
  3513         static final long serialVersionUID = -7490231548272701566L;
  3516     private void adaptSelf(Type t,
  3517                            ListBuffer<Type> from,
  3518                            ListBuffer<Type> to) {
  3519         try {
  3520             //if (t.tsym.type != t)
  3521                 adapt(t.tsym.type, t, from, to);
  3522         } catch (AdaptFailure ex) {
  3523             // Adapt should never fail calculating a mapping from
  3524             // t.tsym.type to t as there can be no merge problem.
  3525             throw new AssertionError(ex);
  3528     // </editor-fold>
  3530     /**
  3531      * Rewrite all type variables (universal quantifiers) in the given
  3532      * type to wildcards (existential quantifiers).  This is used to
  3533      * determine if a cast is allowed.  For example, if high is true
  3534      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3535      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3536      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3537      * List<Integer>} with a warning.
  3538      * @param t a type
  3539      * @param high if true return an upper bound; otherwise a lower
  3540      * bound
  3541      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3542      * otherwise rewrite all type variables
  3543      * @return the type rewritten with wildcards (existential
  3544      * quantifiers) only
  3545      */
  3546     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3547         return new Rewriter(high, rewriteTypeVars).visit(t);
  3550     class Rewriter extends UnaryVisitor<Type> {
  3552         boolean high;
  3553         boolean rewriteTypeVars;
  3555         Rewriter(boolean high, boolean rewriteTypeVars) {
  3556             this.high = high;
  3557             this.rewriteTypeVars = rewriteTypeVars;
  3560         @Override
  3561         public Type visitClassType(ClassType t, Void s) {
  3562             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3563             boolean changed = false;
  3564             for (Type arg : t.allparams()) {
  3565                 Type bound = visit(arg);
  3566                 if (arg != bound) {
  3567                     changed = true;
  3569                 rewritten.append(bound);
  3571             if (changed)
  3572                 return subst(t.tsym.type,
  3573                         t.tsym.type.allparams(),
  3574                         rewritten.toList());
  3575             else
  3576                 return t;
  3579         public Type visitType(Type t, Void s) {
  3580             return high ? upperBound(t) : lowerBound(t);
  3583         @Override
  3584         public Type visitCapturedType(CapturedType t, Void s) {
  3585             Type bound = visitWildcardType(t.wildcard, null);
  3586             return (bound.contains(t)) ?
  3587                     erasure(bound) :
  3588                     bound;
  3591         @Override
  3592         public Type visitTypeVar(TypeVar t, Void s) {
  3593             if (rewriteTypeVars) {
  3594                 Type bound = high ?
  3595                     (t.bound.contains(t) ?
  3596                         erasure(t.bound) :
  3597                         visit(t.bound)) :
  3598                     syms.botType;
  3599                 return rewriteAsWildcardType(bound, t);
  3601             else
  3602                 return t;
  3605         @Override
  3606         public Type visitWildcardType(WildcardType t, Void s) {
  3607             Type bound = high ? t.getExtendsBound() :
  3608                                 t.getSuperBound();
  3609             if (bound == null)
  3610             bound = high ? syms.objectType : syms.botType;
  3611             return rewriteAsWildcardType(visit(bound), t.bound);
  3614         private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
  3615             return high ?
  3616                 makeExtendsWildcard(B(bound), formal) :
  3617                 makeSuperWildcard(B(bound), formal);
  3620         Type B(Type t) {
  3621             while (t.tag == WILDCARD) {
  3622                 WildcardType w = (WildcardType)t;
  3623                 t = high ?
  3624                     w.getExtendsBound() :
  3625                     w.getSuperBound();
  3626                 if (t == null) {
  3627                     t = high ? syms.objectType : syms.botType;
  3630             return t;
  3635     /**
  3636      * Create a wildcard with the given upper (extends) bound; create
  3637      * an unbounded wildcard if bound is Object.
  3639      * @param bound the upper bound
  3640      * @param formal the formal type parameter that will be
  3641      * substituted by the wildcard
  3642      */
  3643     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3644         if (bound == syms.objectType) {
  3645             return new WildcardType(syms.objectType,
  3646                                     BoundKind.UNBOUND,
  3647                                     syms.boundClass,
  3648                                     formal);
  3649         } else {
  3650             return new WildcardType(bound,
  3651                                     BoundKind.EXTENDS,
  3652                                     syms.boundClass,
  3653                                     formal);
  3657     /**
  3658      * Create a wildcard with the given lower (super) bound; create an
  3659      * unbounded wildcard if bound is bottom (type of {@code null}).
  3661      * @param bound the lower bound
  3662      * @param formal the formal type parameter that will be
  3663      * substituted by the wildcard
  3664      */
  3665     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3666         if (bound.tag == BOT) {
  3667             return new WildcardType(syms.objectType,
  3668                                     BoundKind.UNBOUND,
  3669                                     syms.boundClass,
  3670                                     formal);
  3671         } else {
  3672             return new WildcardType(bound,
  3673                                     BoundKind.SUPER,
  3674                                     syms.boundClass,
  3675                                     formal);
  3679     /**
  3680      * A wrapper for a type that allows use in sets.
  3681      */
  3682     class SingletonType {
  3683         final Type t;
  3684         SingletonType(Type t) {
  3685             this.t = t;
  3687         public int hashCode() {
  3688             return Types.hashCode(t);
  3690         public boolean equals(Object obj) {
  3691             return (obj instanceof SingletonType) &&
  3692                 isSameType(t, ((SingletonType)obj).t);
  3694         public String toString() {
  3695             return t.toString();
  3698     // </editor-fold>
  3700     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3701     /**
  3702      * A default visitor for types.  All visitor methods except
  3703      * visitType are implemented by delegating to visitType.  Concrete
  3704      * subclasses must provide an implementation of visitType and can
  3705      * override other methods as needed.
  3707      * @param <R> the return type of the operation implemented by this
  3708      * visitor; use Void if no return type is needed.
  3709      * @param <S> the type of the second argument (the first being the
  3710      * type itself) of the operation implemented by this visitor; use
  3711      * Void if a second argument is not needed.
  3712      */
  3713     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3714         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3715         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3716         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3717         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3718         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3719         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3720         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3721         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3722         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3723         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3724         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3727     /**
  3728      * A default visitor for symbols.  All visitor methods except
  3729      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3730      * subclasses must provide an implementation of visitSymbol and can
  3731      * override other methods as needed.
  3733      * @param <R> the return type of the operation implemented by this
  3734      * visitor; use Void if no return type is needed.
  3735      * @param <S> the type of the second argument (the first being the
  3736      * symbol itself) of the operation implemented by this visitor; use
  3737      * Void if a second argument is not needed.
  3738      */
  3739     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3740         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3741         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3742         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3743         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3744         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3745         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3746         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3749     /**
  3750      * A <em>simple</em> visitor for types.  This visitor is simple as
  3751      * captured wildcards, for-all types (generic methods), and
  3752      * undetermined type variables (part of inference) are hidden.
  3753      * Captured wildcards are hidden by treating them as type
  3754      * variables and the rest are hidden by visiting their qtypes.
  3756      * @param <R> the return type of the operation implemented by this
  3757      * visitor; use Void if no return type is needed.
  3758      * @param <S> the type of the second argument (the first being the
  3759      * type itself) of the operation implemented by this visitor; use
  3760      * Void if a second argument is not needed.
  3761      */
  3762     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3763         @Override
  3764         public R visitCapturedType(CapturedType t, S s) {
  3765             return visitTypeVar(t, s);
  3767         @Override
  3768         public R visitForAll(ForAll t, S s) {
  3769             return visit(t.qtype, s);
  3771         @Override
  3772         public R visitUndetVar(UndetVar t, S s) {
  3773             return visit(t.qtype, s);
  3777     /**
  3778      * A plain relation on types.  That is a 2-ary function on the
  3779      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3780      * <!-- In plain text: Type x Type -> Boolean -->
  3781      */
  3782     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3784     /**
  3785      * A convenience visitor for implementing operations that only
  3786      * require one argument (the type itself), that is, unary
  3787      * operations.
  3789      * @param <R> the return type of the operation implemented by this
  3790      * visitor; use Void if no return type is needed.
  3791      */
  3792     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3793         final public R visit(Type t) { return t.accept(this, null); }
  3796     /**
  3797      * A visitor for implementing a mapping from types to types.  The
  3798      * default behavior of this class is to implement the identity
  3799      * mapping (mapping a type to itself).  This can be overridden in
  3800      * subclasses.
  3802      * @param <S> the type of the second argument (the first being the
  3803      * type itself) of this mapping; use Void if a second argument is
  3804      * not needed.
  3805      */
  3806     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3807         final public Type visit(Type t) { return t.accept(this, null); }
  3808         public Type visitType(Type t, S s) { return t; }
  3810     // </editor-fold>
  3813     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  3815     public RetentionPolicy getRetention(Attribute.Compound a) {
  3816         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  3817         Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
  3818         if (c != null) {
  3819             Attribute value = c.member(names.value);
  3820             if (value != null && value instanceof Attribute.Enum) {
  3821                 Name levelName = ((Attribute.Enum)value).value.name;
  3822                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  3823                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  3824                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  3825                 else ;// /* fail soft */ throw new AssertionError(levelName);
  3828         return vis;
  3830     // </editor-fold>

mercurial