src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 23 May 2011 11:55:55 +0100

author
mcimadamore
date
Mon, 23 May 2011 11:55:55 +0100
changeset 1015
6bb526ccf5ff
parent 1007
95fc7fd39be2
child 1071
b86277584776
permissions
-rw-r--r--

7046348: Regression: javac complains of missing classfile for a seemingly unrelated interface
Summary: Types.implementation forces unnecessary symbol completion on superinterfaces of a given type
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.jvm.ClassReader;
    35 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    36 import com.sun.tools.javac.code.Lint.LintCategory;
    37 import com.sun.tools.javac.comp.Check;
    39 import static com.sun.tools.javac.code.Scope.*;
    40 import static com.sun.tools.javac.code.Type.*;
    41 import static com.sun.tools.javac.code.TypeTags.*;
    42 import static com.sun.tools.javac.code.Symbol.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.util.ListBuffer.lb;
    47 /**
    48  * Utility class containing various operations on types.
    49  *
    50  * <p>Unless other names are more illustrative, the following naming
    51  * conventions should be observed in this file:
    52  *
    53  * <dl>
    54  * <dt>t</dt>
    55  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    56  * <dt>s</dt>
    57  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    58  * <dt>ts</dt>
    59  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    60  * <dt>ss</dt>
    61  * <dd>A second list of types should be named ss.</dd>
    62  * </dl>
    63  *
    64  * <p><b>This is NOT part of any supported API.
    65  * If you write code that depends on this, you do so at your own risk.
    66  * This code and its internal interfaces are subject to change or
    67  * deletion without notice.</b>
    68  */
    69 public class Types {
    70     protected static final Context.Key<Types> typesKey =
    71         new Context.Key<Types>();
    73     final Symtab syms;
    74     final JavacMessages messages;
    75     final Names names;
    76     final boolean allowBoxing;
    77     final boolean allowCovariantReturns;
    78     final boolean allowObjectToPrimitiveCast;
    79     final ClassReader reader;
    80     final Check chk;
    81     List<Warner> warnStack = List.nil();
    82     final Name capturedName;
    84     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    85     public static Types instance(Context context) {
    86         Types instance = context.get(typesKey);
    87         if (instance == null)
    88             instance = new Types(context);
    89         return instance;
    90     }
    92     protected Types(Context context) {
    93         context.put(typesKey, this);
    94         syms = Symtab.instance(context);
    95         names = Names.instance(context);
    96         Source source = Source.instance(context);
    97         allowBoxing = source.allowBoxing();
    98         allowCovariantReturns = source.allowCovariantReturns();
    99         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   100         reader = ClassReader.instance(context);
   101         chk = Check.instance(context);
   102         capturedName = names.fromString("<captured wildcard>");
   103         messages = JavacMessages.instance(context);
   104     }
   105     // </editor-fold>
   107     // <editor-fold defaultstate="collapsed" desc="upperBound">
   108     /**
   109      * The "rvalue conversion".<br>
   110      * The upper bound of most types is the type
   111      * itself.  Wildcards, on the other hand have upper
   112      * and lower bounds.
   113      * @param t a type
   114      * @return the upper bound of the given type
   115      */
   116     public Type upperBound(Type t) {
   117         return upperBound.visit(t);
   118     }
   119     // where
   120         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   122             @Override
   123             public Type visitWildcardType(WildcardType t, Void ignored) {
   124                 if (t.isSuperBound())
   125                     return t.bound == null ? syms.objectType : t.bound.bound;
   126                 else
   127                     return visit(t.type);
   128             }
   130             @Override
   131             public Type visitCapturedType(CapturedType t, Void ignored) {
   132                 return visit(t.bound);
   133             }
   134         };
   135     // </editor-fold>
   137     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   138     /**
   139      * The "lvalue conversion".<br>
   140      * The lower bound of most types is the type
   141      * itself.  Wildcards, on the other hand have upper
   142      * and lower bounds.
   143      * @param t a type
   144      * @return the lower bound of the given type
   145      */
   146     public Type lowerBound(Type t) {
   147         return lowerBound.visit(t);
   148     }
   149     // where
   150         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   152             @Override
   153             public Type visitWildcardType(WildcardType t, Void ignored) {
   154                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   155             }
   157             @Override
   158             public Type visitCapturedType(CapturedType t, Void ignored) {
   159                 return visit(t.getLowerBound());
   160             }
   161         };
   162     // </editor-fold>
   164     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   165     /**
   166      * Checks that all the arguments to a class are unbounded
   167      * wildcards or something else that doesn't make any restrictions
   168      * on the arguments. If a class isUnbounded, a raw super- or
   169      * subclass can be cast to it without a warning.
   170      * @param t a type
   171      * @return true iff the given type is unbounded or raw
   172      */
   173     public boolean isUnbounded(Type t) {
   174         return isUnbounded.visit(t);
   175     }
   176     // where
   177         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   179             public Boolean visitType(Type t, Void ignored) {
   180                 return true;
   181             }
   183             @Override
   184             public Boolean visitClassType(ClassType t, Void ignored) {
   185                 List<Type> parms = t.tsym.type.allparams();
   186                 List<Type> args = t.allparams();
   187                 while (parms.nonEmpty()) {
   188                     WildcardType unb = new WildcardType(syms.objectType,
   189                                                         BoundKind.UNBOUND,
   190                                                         syms.boundClass,
   191                                                         (TypeVar)parms.head);
   192                     if (!containsType(args.head, unb))
   193                         return false;
   194                     parms = parms.tail;
   195                     args = args.tail;
   196                 }
   197                 return true;
   198             }
   199         };
   200     // </editor-fold>
   202     // <editor-fold defaultstate="collapsed" desc="asSub">
   203     /**
   204      * Return the least specific subtype of t that starts with symbol
   205      * sym.  If none exists, return null.  The least specific subtype
   206      * is determined as follows:
   207      *
   208      * <p>If there is exactly one parameterized instance of sym that is a
   209      * subtype of t, that parameterized instance is returned.<br>
   210      * Otherwise, if the plain type or raw type `sym' is a subtype of
   211      * type t, the type `sym' itself is returned.  Otherwise, null is
   212      * returned.
   213      */
   214     public Type asSub(Type t, Symbol sym) {
   215         return asSub.visit(t, sym);
   216     }
   217     // where
   218         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   220             public Type visitType(Type t, Symbol sym) {
   221                 return null;
   222             }
   224             @Override
   225             public Type visitClassType(ClassType t, Symbol sym) {
   226                 if (t.tsym == sym)
   227                     return t;
   228                 Type base = asSuper(sym.type, t.tsym);
   229                 if (base == null)
   230                     return null;
   231                 ListBuffer<Type> from = new ListBuffer<Type>();
   232                 ListBuffer<Type> to = new ListBuffer<Type>();
   233                 try {
   234                     adapt(base, t, from, to);
   235                 } catch (AdaptFailure ex) {
   236                     return null;
   237                 }
   238                 Type res = subst(sym.type, from.toList(), to.toList());
   239                 if (!isSubtype(res, t))
   240                     return null;
   241                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   242                 for (List<Type> l = sym.type.allparams();
   243                      l.nonEmpty(); l = l.tail)
   244                     if (res.contains(l.head) && !t.contains(l.head))
   245                         openVars.append(l.head);
   246                 if (openVars.nonEmpty()) {
   247                     if (t.isRaw()) {
   248                         // The subtype of a raw type is raw
   249                         res = erasure(res);
   250                     } else {
   251                         // Unbound type arguments default to ?
   252                         List<Type> opens = openVars.toList();
   253                         ListBuffer<Type> qs = new ListBuffer<Type>();
   254                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   255                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   256                         }
   257                         res = subst(res, opens, qs.toList());
   258                     }
   259                 }
   260                 return res;
   261             }
   263             @Override
   264             public Type visitErrorType(ErrorType t, Symbol sym) {
   265                 return t;
   266             }
   267         };
   268     // </editor-fold>
   270     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   271     /**
   272      * Is t a subtype of or convertiable via boxing/unboxing
   273      * convertions to s?
   274      */
   275     public boolean isConvertible(Type t, Type s, Warner warn) {
   276         boolean tPrimitive = t.isPrimitive();
   277         boolean sPrimitive = s.isPrimitive();
   278         if (tPrimitive == sPrimitive) {
   279             checkUnsafeVarargsConversion(t, s, warn);
   280             return isSubtypeUnchecked(t, s, warn);
   281         }
   282         if (!allowBoxing) return false;
   283         return tPrimitive
   284             ? isSubtype(boxedClass(t).type, s)
   285             : isSubtype(unboxedType(t), s);
   286     }
   287     //where
   288     private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   289         if (t.tag != ARRAY || isReifiable(t)) return;
   290         ArrayType from = (ArrayType)t;
   291         boolean shouldWarn = false;
   292         switch (s.tag) {
   293             case ARRAY:
   294                 ArrayType to = (ArrayType)s;
   295                 shouldWarn = from.isVarargs() &&
   296                         !to.isVarargs() &&
   297                         !isReifiable(from);
   298                 break;
   299             case CLASS:
   300                 shouldWarn = from.isVarargs() &&
   301                         isSubtype(from, s);
   302                 break;
   303         }
   304         if (shouldWarn) {
   305             warn.warn(LintCategory.VARARGS);
   306         }
   307     }
   309     /**
   310      * Is t a subtype of or convertiable via boxing/unboxing
   311      * convertions to s?
   312      */
   313     public boolean isConvertible(Type t, Type s) {
   314         return isConvertible(t, s, Warner.noWarnings);
   315     }
   316     // </editor-fold>
   318     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   319     /**
   320      * Is t an unchecked subtype of s?
   321      */
   322     public boolean isSubtypeUnchecked(Type t, Type s) {
   323         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   324     }
   325     /**
   326      * Is t an unchecked subtype of s?
   327      */
   328     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   329         if (t.tag == ARRAY && s.tag == ARRAY) {
   330             if (((ArrayType)t).elemtype.tag <= lastBaseTag) {
   331                 return isSameType(elemtype(t), elemtype(s));
   332             } else {
   333                 ArrayType from = (ArrayType)t;
   334                 ArrayType to = (ArrayType)s;
   335                 if (from.isVarargs() &&
   336                         !to.isVarargs() &&
   337                         !isReifiable(from)) {
   338                     warn.warn(LintCategory.VARARGS);
   339                 }
   340                 return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   341             }
   342         } else if (isSubtype(t, s)) {
   343             return true;
   344         }
   345         else if (t.tag == TYPEVAR) {
   346             return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   347         }
   348         else if (s.tag == UNDETVAR) {
   349             UndetVar uv = (UndetVar)s;
   350             if (uv.inst != null)
   351                 return isSubtypeUnchecked(t, uv.inst, warn);
   352         }
   353         else if (!s.isRaw()) {
   354             Type t2 = asSuper(t, s.tsym);
   355             if (t2 != null && t2.isRaw()) {
   356                 if (isReifiable(s))
   357                     warn.silentWarn(LintCategory.UNCHECKED);
   358                 else
   359                     warn.warn(LintCategory.UNCHECKED);
   360                 return true;
   361             }
   362         }
   363         return false;
   364     }
   366     /**
   367      * Is t a subtype of s?<br>
   368      * (not defined for Method and ForAll types)
   369      */
   370     final public boolean isSubtype(Type t, Type s) {
   371         return isSubtype(t, s, true);
   372     }
   373     final public boolean isSubtypeNoCapture(Type t, Type s) {
   374         return isSubtype(t, s, false);
   375     }
   376     public boolean isSubtype(Type t, Type s, boolean capture) {
   377         if (t == s)
   378             return true;
   380         if (s.tag >= firstPartialTag)
   381             return isSuperType(s, t);
   383         if (s.isCompound()) {
   384             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   385                 if (!isSubtype(t, s2, capture))
   386                     return false;
   387             }
   388             return true;
   389         }
   391         Type lower = lowerBound(s);
   392         if (s != lower)
   393             return isSubtype(capture ? capture(t) : t, lower, false);
   395         return isSubtype.visit(capture ? capture(t) : t, s);
   396     }
   397     // where
   398         private TypeRelation isSubtype = new TypeRelation()
   399         {
   400             public Boolean visitType(Type t, Type s) {
   401                 switch (t.tag) {
   402                 case BYTE: case CHAR:
   403                     return (t.tag == s.tag ||
   404                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   405                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   406                     return t.tag <= s.tag && s.tag <= DOUBLE;
   407                 case BOOLEAN: case VOID:
   408                     return t.tag == s.tag;
   409                 case TYPEVAR:
   410                     return isSubtypeNoCapture(t.getUpperBound(), s);
   411                 case BOT:
   412                     return
   413                         s.tag == BOT || s.tag == CLASS ||
   414                         s.tag == ARRAY || s.tag == TYPEVAR;
   415                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   416                 case NONE:
   417                     return false;
   418                 default:
   419                     throw new AssertionError("isSubtype " + t.tag);
   420                 }
   421             }
   423             private Set<TypePair> cache = new HashSet<TypePair>();
   425             private boolean containsTypeRecursive(Type t, Type s) {
   426                 TypePair pair = new TypePair(t, s);
   427                 if (cache.add(pair)) {
   428                     try {
   429                         return containsType(t.getTypeArguments(),
   430                                             s.getTypeArguments());
   431                     } finally {
   432                         cache.remove(pair);
   433                     }
   434                 } else {
   435                     return containsType(t.getTypeArguments(),
   436                                         rewriteSupers(s).getTypeArguments());
   437                 }
   438             }
   440             private Type rewriteSupers(Type t) {
   441                 if (!t.isParameterized())
   442                     return t;
   443                 ListBuffer<Type> from = lb();
   444                 ListBuffer<Type> to = lb();
   445                 adaptSelf(t, from, to);
   446                 if (from.isEmpty())
   447                     return t;
   448                 ListBuffer<Type> rewrite = lb();
   449                 boolean changed = false;
   450                 for (Type orig : to.toList()) {
   451                     Type s = rewriteSupers(orig);
   452                     if (s.isSuperBound() && !s.isExtendsBound()) {
   453                         s = new WildcardType(syms.objectType,
   454                                              BoundKind.UNBOUND,
   455                                              syms.boundClass);
   456                         changed = true;
   457                     } else if (s != orig) {
   458                         s = new WildcardType(upperBound(s),
   459                                              BoundKind.EXTENDS,
   460                                              syms.boundClass);
   461                         changed = true;
   462                     }
   463                     rewrite.append(s);
   464                 }
   465                 if (changed)
   466                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   467                 else
   468                     return t;
   469             }
   471             @Override
   472             public Boolean visitClassType(ClassType t, Type s) {
   473                 Type sup = asSuper(t, s.tsym);
   474                 return sup != null
   475                     && sup.tsym == s.tsym
   476                     // You're not allowed to write
   477                     //     Vector<Object> vec = new Vector<String>();
   478                     // But with wildcards you can write
   479                     //     Vector<? extends Object> vec = new Vector<String>();
   480                     // which means that subtype checking must be done
   481                     // here instead of same-type checking (via containsType).
   482                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   483                     && isSubtypeNoCapture(sup.getEnclosingType(),
   484                                           s.getEnclosingType());
   485             }
   487             @Override
   488             public Boolean visitArrayType(ArrayType t, Type s) {
   489                 if (s.tag == ARRAY) {
   490                     if (t.elemtype.tag <= lastBaseTag)
   491                         return isSameType(t.elemtype, elemtype(s));
   492                     else
   493                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   494                 }
   496                 if (s.tag == CLASS) {
   497                     Name sname = s.tsym.getQualifiedName();
   498                     return sname == names.java_lang_Object
   499                         || sname == names.java_lang_Cloneable
   500                         || sname == names.java_io_Serializable;
   501                 }
   503                 return false;
   504             }
   506             @Override
   507             public Boolean visitUndetVar(UndetVar t, Type s) {
   508                 //todo: test against origin needed? or replace with substitution?
   509                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   510                     return true;
   512                 if (t.inst != null)
   513                     return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
   515                 t.hibounds = t.hibounds.prepend(s);
   516                 return true;
   517             }
   519             @Override
   520             public Boolean visitErrorType(ErrorType t, Type s) {
   521                 return true;
   522             }
   523         };
   525     /**
   526      * Is t a subtype of every type in given list `ts'?<br>
   527      * (not defined for Method and ForAll types)<br>
   528      * Allows unchecked conversions.
   529      */
   530     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   531         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   532             if (!isSubtypeUnchecked(t, l.head, warn))
   533                 return false;
   534         return true;
   535     }
   537     /**
   538      * Are corresponding elements of ts subtypes of ss?  If lists are
   539      * of different length, return false.
   540      */
   541     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   542         while (ts.tail != null && ss.tail != null
   543                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   544                isSubtype(ts.head, ss.head)) {
   545             ts = ts.tail;
   546             ss = ss.tail;
   547         }
   548         return ts.tail == null && ss.tail == null;
   549         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   550     }
   552     /**
   553      * Are corresponding elements of ts subtypes of ss, allowing
   554      * unchecked conversions?  If lists are of different length,
   555      * return false.
   556      **/
   557     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   558         while (ts.tail != null && ss.tail != null
   559                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   560                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   561             ts = ts.tail;
   562             ss = ss.tail;
   563         }
   564         return ts.tail == null && ss.tail == null;
   565         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   566     }
   567     // </editor-fold>
   569     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   570     /**
   571      * Is t a supertype of s?
   572      */
   573     public boolean isSuperType(Type t, Type s) {
   574         switch (t.tag) {
   575         case ERROR:
   576             return true;
   577         case UNDETVAR: {
   578             UndetVar undet = (UndetVar)t;
   579             if (t == s ||
   580                 undet.qtype == s ||
   581                 s.tag == ERROR ||
   582                 s.tag == BOT) return true;
   583             if (undet.inst != null)
   584                 return isSubtype(s, undet.inst);
   585             undet.lobounds = undet.lobounds.prepend(s);
   586             return true;
   587         }
   588         default:
   589             return isSubtype(s, t);
   590         }
   591     }
   592     // </editor-fold>
   594     // <editor-fold defaultstate="collapsed" desc="isSameType">
   595     /**
   596      * Are corresponding elements of the lists the same type?  If
   597      * lists are of different length, return false.
   598      */
   599     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   600         while (ts.tail != null && ss.tail != null
   601                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   602                isSameType(ts.head, ss.head)) {
   603             ts = ts.tail;
   604             ss = ss.tail;
   605         }
   606         return ts.tail == null && ss.tail == null;
   607         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   608     }
   610     /**
   611      * Is t the same type as s?
   612      */
   613     public boolean isSameType(Type t, Type s) {
   614         return isSameType.visit(t, s);
   615     }
   616     // where
   617         private TypeRelation isSameType = new TypeRelation() {
   619             public Boolean visitType(Type t, Type s) {
   620                 if (t == s)
   621                     return true;
   623                 if (s.tag >= firstPartialTag)
   624                     return visit(s, t);
   626                 switch (t.tag) {
   627                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   628                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   629                     return t.tag == s.tag;
   630                 case TYPEVAR: {
   631                     if (s.tag == TYPEVAR) {
   632                         //type-substitution does not preserve type-var types
   633                         //check that type var symbols and bounds are indeed the same
   634                         return t.tsym == s.tsym &&
   635                                 visit(t.getUpperBound(), s.getUpperBound());
   636                     }
   637                     else {
   638                         //special case for s == ? super X, where upper(s) = u
   639                         //check that u == t, where u has been set by Type.withTypeVar
   640                         return s.isSuperBound() &&
   641                                 !s.isExtendsBound() &&
   642                                 visit(t, upperBound(s));
   643                     }
   644                 }
   645                 default:
   646                     throw new AssertionError("isSameType " + t.tag);
   647                 }
   648             }
   650             @Override
   651             public Boolean visitWildcardType(WildcardType t, Type s) {
   652                 if (s.tag >= firstPartialTag)
   653                     return visit(s, t);
   654                 else
   655                     return false;
   656             }
   658             @Override
   659             public Boolean visitClassType(ClassType t, Type s) {
   660                 if (t == s)
   661                     return true;
   663                 if (s.tag >= firstPartialTag)
   664                     return visit(s, t);
   666                 if (s.isSuperBound() && !s.isExtendsBound())
   667                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   669                 if (t.isCompound() && s.isCompound()) {
   670                     if (!visit(supertype(t), supertype(s)))
   671                         return false;
   673                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   674                     for (Type x : interfaces(t))
   675                         set.add(new SingletonType(x));
   676                     for (Type x : interfaces(s)) {
   677                         if (!set.remove(new SingletonType(x)))
   678                             return false;
   679                     }
   680                     return (set.isEmpty());
   681                 }
   682                 return t.tsym == s.tsym
   683                     && visit(t.getEnclosingType(), s.getEnclosingType())
   684                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   685             }
   687             @Override
   688             public Boolean visitArrayType(ArrayType t, Type s) {
   689                 if (t == s)
   690                     return true;
   692                 if (s.tag >= firstPartialTag)
   693                     return visit(s, t);
   695                 return s.tag == ARRAY
   696                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   697             }
   699             @Override
   700             public Boolean visitMethodType(MethodType t, Type s) {
   701                 // isSameType for methods does not take thrown
   702                 // exceptions into account!
   703                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   704             }
   706             @Override
   707             public Boolean visitPackageType(PackageType t, Type s) {
   708                 return t == s;
   709             }
   711             @Override
   712             public Boolean visitForAll(ForAll t, Type s) {
   713                 if (s.tag != FORALL)
   714                     return false;
   716                 ForAll forAll = (ForAll)s;
   717                 return hasSameBounds(t, forAll)
   718                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   719             }
   721             @Override
   722             public Boolean visitUndetVar(UndetVar t, Type s) {
   723                 if (s.tag == WILDCARD)
   724                     // FIXME, this might be leftovers from before capture conversion
   725                     return false;
   727                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   728                     return true;
   730                 if (t.inst != null)
   731                     return visit(t.inst, s);
   733                 t.inst = fromUnknownFun.apply(s);
   734                 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
   735                     if (!isSubtype(l.head, t.inst))
   736                         return false;
   737                 }
   738                 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
   739                     if (!isSubtype(t.inst, l.head))
   740                         return false;
   741                 }
   742                 return true;
   743             }
   745             @Override
   746             public Boolean visitErrorType(ErrorType t, Type s) {
   747                 return true;
   748             }
   749         };
   750     // </editor-fold>
   752     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   753     /**
   754      * A mapping that turns all unknown types in this type to fresh
   755      * unknown variables.
   756      */
   757     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   758             public Type apply(Type t) {
   759                 if (t.tag == UNKNOWN) return new UndetVar(t);
   760                 else return t.map(this);
   761             }
   762         };
   763     // </editor-fold>
   765     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   766     public boolean containedBy(Type t, Type s) {
   767         switch (t.tag) {
   768         case UNDETVAR:
   769             if (s.tag == WILDCARD) {
   770                 UndetVar undetvar = (UndetVar)t;
   771                 WildcardType wt = (WildcardType)s;
   772                 switch(wt.kind) {
   773                     case UNBOUND: //similar to ? extends Object
   774                     case EXTENDS: {
   775                         Type bound = upperBound(s);
   776                         // We should check the new upper bound against any of the
   777                         // undetvar's lower bounds.
   778                         for (Type t2 : undetvar.lobounds) {
   779                             if (!isSubtype(t2, bound))
   780                                 return false;
   781                         }
   782                         undetvar.hibounds = undetvar.hibounds.prepend(bound);
   783                         break;
   784                     }
   785                     case SUPER: {
   786                         Type bound = lowerBound(s);
   787                         // We should check the new lower bound against any of the
   788                         // undetvar's lower bounds.
   789                         for (Type t2 : undetvar.hibounds) {
   790                             if (!isSubtype(bound, t2))
   791                                 return false;
   792                         }
   793                         undetvar.lobounds = undetvar.lobounds.prepend(bound);
   794                         break;
   795                     }
   796                 }
   797                 return true;
   798             } else {
   799                 return isSameType(t, s);
   800             }
   801         case ERROR:
   802             return true;
   803         default:
   804             return containsType(s, t);
   805         }
   806     }
   808     boolean containsType(List<Type> ts, List<Type> ss) {
   809         while (ts.nonEmpty() && ss.nonEmpty()
   810                && containsType(ts.head, ss.head)) {
   811             ts = ts.tail;
   812             ss = ss.tail;
   813         }
   814         return ts.isEmpty() && ss.isEmpty();
   815     }
   817     /**
   818      * Check if t contains s.
   819      *
   820      * <p>T contains S if:
   821      *
   822      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   823      *
   824      * <p>This relation is only used by ClassType.isSubtype(), that
   825      * is,
   826      *
   827      * <p>{@code C<S> <: C<T> if T contains S.}
   828      *
   829      * <p>Because of F-bounds, this relation can lead to infinite
   830      * recursion.  Thus we must somehow break that recursion.  Notice
   831      * that containsType() is only called from ClassType.isSubtype().
   832      * Since the arguments have already been checked against their
   833      * bounds, we know:
   834      *
   835      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   836      *
   837      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   838      *
   839      * @param t a type
   840      * @param s a type
   841      */
   842     public boolean containsType(Type t, Type s) {
   843         return containsType.visit(t, s);
   844     }
   845     // where
   846         private TypeRelation containsType = new TypeRelation() {
   848             private Type U(Type t) {
   849                 while (t.tag == WILDCARD) {
   850                     WildcardType w = (WildcardType)t;
   851                     if (w.isSuperBound())
   852                         return w.bound == null ? syms.objectType : w.bound.bound;
   853                     else
   854                         t = w.type;
   855                 }
   856                 return t;
   857             }
   859             private Type L(Type t) {
   860                 while (t.tag == WILDCARD) {
   861                     WildcardType w = (WildcardType)t;
   862                     if (w.isExtendsBound())
   863                         return syms.botType;
   864                     else
   865                         t = w.type;
   866                 }
   867                 return t;
   868             }
   870             public Boolean visitType(Type t, Type s) {
   871                 if (s.tag >= firstPartialTag)
   872                     return containedBy(s, t);
   873                 else
   874                     return isSameType(t, s);
   875             }
   877 //            void debugContainsType(WildcardType t, Type s) {
   878 //                System.err.println();
   879 //                System.err.format(" does %s contain %s?%n", t, s);
   880 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   881 //                                  upperBound(s), s, t, U(t),
   882 //                                  t.isSuperBound()
   883 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
   884 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   885 //                                  L(t), t, s, lowerBound(s),
   886 //                                  t.isExtendsBound()
   887 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
   888 //                System.err.println();
   889 //            }
   891             @Override
   892             public Boolean visitWildcardType(WildcardType t, Type s) {
   893                 if (s.tag >= firstPartialTag)
   894                     return containedBy(s, t);
   895                 else {
   896 //                    debugContainsType(t, s);
   897                     return isSameWildcard(t, s)
   898                         || isCaptureOf(s, t)
   899                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   900                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   901                 }
   902             }
   904             @Override
   905             public Boolean visitUndetVar(UndetVar t, Type s) {
   906                 if (s.tag != WILDCARD)
   907                     return isSameType(t, s);
   908                 else
   909                     return false;
   910             }
   912             @Override
   913             public Boolean visitErrorType(ErrorType t, Type s) {
   914                 return true;
   915             }
   916         };
   918     public boolean isCaptureOf(Type s, WildcardType t) {
   919         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   920             return false;
   921         return isSameWildcard(t, ((CapturedType)s).wildcard);
   922     }
   924     public boolean isSameWildcard(WildcardType t, Type s) {
   925         if (s.tag != WILDCARD)
   926             return false;
   927         WildcardType w = (WildcardType)s;
   928         return w.kind == t.kind && w.type == t.type;
   929     }
   931     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   932         while (ts.nonEmpty() && ss.nonEmpty()
   933                && containsTypeEquivalent(ts.head, ss.head)) {
   934             ts = ts.tail;
   935             ss = ss.tail;
   936         }
   937         return ts.isEmpty() && ss.isEmpty();
   938     }
   939     // </editor-fold>
   941     // <editor-fold defaultstate="collapsed" desc="isCastable">
   942     public boolean isCastable(Type t, Type s) {
   943         return isCastable(t, s, Warner.noWarnings);
   944     }
   946     /**
   947      * Is t is castable to s?<br>
   948      * s is assumed to be an erased type.<br>
   949      * (not defined for Method and ForAll types).
   950      */
   951     public boolean isCastable(Type t, Type s, Warner warn) {
   952         if (t == s)
   953             return true;
   955         if (t.isPrimitive() != s.isPrimitive())
   956             return allowBoxing && (
   957                     isConvertible(t, s, warn)
   958                     || (allowObjectToPrimitiveCast &&
   959                         s.isPrimitive() &&
   960                         isSubtype(boxedClass(s).type, t)));
   961         if (warn != warnStack.head) {
   962             try {
   963                 warnStack = warnStack.prepend(warn);
   964                 checkUnsafeVarargsConversion(t, s, warn);
   965                 return isCastable.visit(t,s);
   966             } finally {
   967                 warnStack = warnStack.tail;
   968             }
   969         } else {
   970             return isCastable.visit(t,s);
   971         }
   972     }
   973     // where
   974         private TypeRelation isCastable = new TypeRelation() {
   976             public Boolean visitType(Type t, Type s) {
   977                 if (s.tag == ERROR)
   978                     return true;
   980                 switch (t.tag) {
   981                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   982                 case DOUBLE:
   983                     return s.tag <= DOUBLE;
   984                 case BOOLEAN:
   985                     return s.tag == BOOLEAN;
   986                 case VOID:
   987                     return false;
   988                 case BOT:
   989                     return isSubtype(t, s);
   990                 default:
   991                     throw new AssertionError();
   992                 }
   993             }
   995             @Override
   996             public Boolean visitWildcardType(WildcardType t, Type s) {
   997                 return isCastable(upperBound(t), s, warnStack.head);
   998             }
  1000             @Override
  1001             public Boolean visitClassType(ClassType t, Type s) {
  1002                 if (s.tag == ERROR || s.tag == BOT)
  1003                     return true;
  1005                 if (s.tag == TYPEVAR) {
  1006                     if (isCastable(t, s.getUpperBound(), Warner.noWarnings)) {
  1007                         warnStack.head.warn(LintCategory.UNCHECKED);
  1008                         return true;
  1009                     } else {
  1010                         return false;
  1014                 if (t.isCompound()) {
  1015                     Warner oldWarner = warnStack.head;
  1016                     warnStack.head = Warner.noWarnings;
  1017                     if (!visit(supertype(t), s))
  1018                         return false;
  1019                     for (Type intf : interfaces(t)) {
  1020                         if (!visit(intf, s))
  1021                             return false;
  1023                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1024                         oldWarner.warn(LintCategory.UNCHECKED);
  1025                     return true;
  1028                 if (s.isCompound()) {
  1029                     // call recursively to reuse the above code
  1030                     return visitClassType((ClassType)s, t);
  1033                 if (s.tag == CLASS || s.tag == ARRAY) {
  1034                     boolean upcast;
  1035                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1036                         || isSubtype(erasure(s), erasure(t))) {
  1037                         if (!upcast && s.tag == ARRAY) {
  1038                             if (!isReifiable(s))
  1039                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1040                             return true;
  1041                         } else if (s.isRaw()) {
  1042                             return true;
  1043                         } else if (t.isRaw()) {
  1044                             if (!isUnbounded(s))
  1045                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1046                             return true;
  1048                         // Assume |a| <: |b|
  1049                         final Type a = upcast ? t : s;
  1050                         final Type b = upcast ? s : t;
  1051                         final boolean HIGH = true;
  1052                         final boolean LOW = false;
  1053                         final boolean DONT_REWRITE_TYPEVARS = false;
  1054                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1055                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1056                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1057                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1058                         Type lowSub = asSub(bLow, aLow.tsym);
  1059                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1060                         if (highSub == null) {
  1061                             final boolean REWRITE_TYPEVARS = true;
  1062                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1063                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1064                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1065                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1066                             lowSub = asSub(bLow, aLow.tsym);
  1067                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1069                         if (highSub != null) {
  1070                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1071                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1073                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1074                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1075                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1076                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1077                                 if (upcast ? giveWarning(a, b) :
  1078                                     giveWarning(b, a))
  1079                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1080                                 return true;
  1083                         if (isReifiable(s))
  1084                             return isSubtypeUnchecked(a, b);
  1085                         else
  1086                             return isSubtypeUnchecked(a, b, warnStack.head);
  1089                     // Sidecast
  1090                     if (s.tag == CLASS) {
  1091                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1092                             return ((t.tsym.flags() & FINAL) == 0)
  1093                                 ? sideCast(t, s, warnStack.head)
  1094                                 : sideCastFinal(t, s, warnStack.head);
  1095                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1096                             return ((s.tsym.flags() & FINAL) == 0)
  1097                                 ? sideCast(t, s, warnStack.head)
  1098                                 : sideCastFinal(t, s, warnStack.head);
  1099                         } else {
  1100                             // unrelated class types
  1101                             return false;
  1105                 return false;
  1108             @Override
  1109             public Boolean visitArrayType(ArrayType t, Type s) {
  1110                 switch (s.tag) {
  1111                 case ERROR:
  1112                 case BOT:
  1113                     return true;
  1114                 case TYPEVAR:
  1115                     if (isCastable(s, t, Warner.noWarnings)) {
  1116                         warnStack.head.warn(LintCategory.UNCHECKED);
  1117                         return true;
  1118                     } else {
  1119                         return false;
  1121                 case CLASS:
  1122                     return isSubtype(t, s);
  1123                 case ARRAY:
  1124                     if (elemtype(t).tag <= lastBaseTag ||
  1125                             elemtype(s).tag <= lastBaseTag) {
  1126                         return elemtype(t).tag == elemtype(s).tag;
  1127                     } else {
  1128                         return visit(elemtype(t), elemtype(s));
  1130                 default:
  1131                     return false;
  1135             @Override
  1136             public Boolean visitTypeVar(TypeVar t, Type s) {
  1137                 switch (s.tag) {
  1138                 case ERROR:
  1139                 case BOT:
  1140                     return true;
  1141                 case TYPEVAR:
  1142                     if (isSubtype(t, s)) {
  1143                         return true;
  1144                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1145                         warnStack.head.warn(LintCategory.UNCHECKED);
  1146                         return true;
  1147                     } else {
  1148                         return false;
  1150                 default:
  1151                     return isCastable(t.bound, s, warnStack.head);
  1155             @Override
  1156             public Boolean visitErrorType(ErrorType t, Type s) {
  1157                 return true;
  1159         };
  1160     // </editor-fold>
  1162     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1163     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1164         while (ts.tail != null && ss.tail != null) {
  1165             if (disjointType(ts.head, ss.head)) return true;
  1166             ts = ts.tail;
  1167             ss = ss.tail;
  1169         return false;
  1172     /**
  1173      * Two types or wildcards are considered disjoint if it can be
  1174      * proven that no type can be contained in both. It is
  1175      * conservative in that it is allowed to say that two types are
  1176      * not disjoint, even though they actually are.
  1178      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1179      * disjoint.
  1180      */
  1181     public boolean disjointType(Type t, Type s) {
  1182         return disjointType.visit(t, s);
  1184     // where
  1185         private TypeRelation disjointType = new TypeRelation() {
  1187             private Set<TypePair> cache = new HashSet<TypePair>();
  1189             public Boolean visitType(Type t, Type s) {
  1190                 if (s.tag == WILDCARD)
  1191                     return visit(s, t);
  1192                 else
  1193                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1196             private boolean isCastableRecursive(Type t, Type s) {
  1197                 TypePair pair = new TypePair(t, s);
  1198                 if (cache.add(pair)) {
  1199                     try {
  1200                         return Types.this.isCastable(t, s);
  1201                     } finally {
  1202                         cache.remove(pair);
  1204                 } else {
  1205                     return true;
  1209             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1210                 TypePair pair = new TypePair(t, s);
  1211                 if (cache.add(pair)) {
  1212                     try {
  1213                         return Types.this.notSoftSubtype(t, s);
  1214                     } finally {
  1215                         cache.remove(pair);
  1217                 } else {
  1218                     return false;
  1222             @Override
  1223             public Boolean visitWildcardType(WildcardType t, Type s) {
  1224                 if (t.isUnbound())
  1225                     return false;
  1227                 if (s.tag != WILDCARD) {
  1228                     if (t.isExtendsBound())
  1229                         return notSoftSubtypeRecursive(s, t.type);
  1230                     else // isSuperBound()
  1231                         return notSoftSubtypeRecursive(t.type, s);
  1234                 if (s.isUnbound())
  1235                     return false;
  1237                 if (t.isExtendsBound()) {
  1238                     if (s.isExtendsBound())
  1239                         return !isCastableRecursive(t.type, upperBound(s));
  1240                     else if (s.isSuperBound())
  1241                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1242                 } else if (t.isSuperBound()) {
  1243                     if (s.isExtendsBound())
  1244                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1246                 return false;
  1248         };
  1249     // </editor-fold>
  1251     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1252     /**
  1253      * Returns the lower bounds of the formals of a method.
  1254      */
  1255     public List<Type> lowerBoundArgtypes(Type t) {
  1256         return map(t.getParameterTypes(), lowerBoundMapping);
  1258     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1259             public Type apply(Type t) {
  1260                 return lowerBound(t);
  1262         };
  1263     // </editor-fold>
  1265     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1266     /**
  1267      * This relation answers the question: is impossible that
  1268      * something of type `t' can be a subtype of `s'? This is
  1269      * different from the question "is `t' not a subtype of `s'?"
  1270      * when type variables are involved: Integer is not a subtype of T
  1271      * where <T extends Number> but it is not true that Integer cannot
  1272      * possibly be a subtype of T.
  1273      */
  1274     public boolean notSoftSubtype(Type t, Type s) {
  1275         if (t == s) return false;
  1276         if (t.tag == TYPEVAR) {
  1277             TypeVar tv = (TypeVar) t;
  1278             return !isCastable(tv.bound,
  1279                                relaxBound(s),
  1280                                Warner.noWarnings);
  1282         if (s.tag != WILDCARD)
  1283             s = upperBound(s);
  1285         return !isSubtype(t, relaxBound(s));
  1288     private Type relaxBound(Type t) {
  1289         if (t.tag == TYPEVAR) {
  1290             while (t.tag == TYPEVAR)
  1291                 t = t.getUpperBound();
  1292             t = rewriteQuantifiers(t, true, true);
  1294         return t;
  1296     // </editor-fold>
  1298     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1299     public boolean isReifiable(Type t) {
  1300         return isReifiable.visit(t);
  1302     // where
  1303         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1305             public Boolean visitType(Type t, Void ignored) {
  1306                 return true;
  1309             @Override
  1310             public Boolean visitClassType(ClassType t, Void ignored) {
  1311                 if (t.isCompound())
  1312                     return false;
  1313                 else {
  1314                     if (!t.isParameterized())
  1315                         return true;
  1317                     for (Type param : t.allparams()) {
  1318                         if (!param.isUnbound())
  1319                             return false;
  1321                     return true;
  1325             @Override
  1326             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1327                 return visit(t.elemtype);
  1330             @Override
  1331             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1332                 return false;
  1334         };
  1335     // </editor-fold>
  1337     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1338     public boolean isArray(Type t) {
  1339         while (t.tag == WILDCARD)
  1340             t = upperBound(t);
  1341         return t.tag == ARRAY;
  1344     /**
  1345      * The element type of an array.
  1346      */
  1347     public Type elemtype(Type t) {
  1348         switch (t.tag) {
  1349         case WILDCARD:
  1350             return elemtype(upperBound(t));
  1351         case ARRAY:
  1352             return ((ArrayType)t).elemtype;
  1353         case FORALL:
  1354             return elemtype(((ForAll)t).qtype);
  1355         case ERROR:
  1356             return t;
  1357         default:
  1358             return null;
  1362     public Type elemtypeOrType(Type t) {
  1363         Type elemtype = elemtype(t);
  1364         return elemtype != null ?
  1365             elemtype :
  1366             t;
  1369     /**
  1370      * Mapping to take element type of an arraytype
  1371      */
  1372     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1373         public Type apply(Type t) { return elemtype(t); }
  1374     };
  1376     /**
  1377      * The number of dimensions of an array type.
  1378      */
  1379     public int dimensions(Type t) {
  1380         int result = 0;
  1381         while (t.tag == ARRAY) {
  1382             result++;
  1383             t = elemtype(t);
  1385         return result;
  1387     // </editor-fold>
  1389     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1390     /**
  1391      * Return the (most specific) base type of t that starts with the
  1392      * given symbol.  If none exists, return null.
  1394      * @param t a type
  1395      * @param sym a symbol
  1396      */
  1397     public Type asSuper(Type t, Symbol sym) {
  1398         return asSuper.visit(t, sym);
  1400     // where
  1401         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1403             public Type visitType(Type t, Symbol sym) {
  1404                 return null;
  1407             @Override
  1408             public Type visitClassType(ClassType t, Symbol sym) {
  1409                 if (t.tsym == sym)
  1410                     return t;
  1412                 Type st = supertype(t);
  1413                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1414                     Type x = asSuper(st, sym);
  1415                     if (x != null)
  1416                         return x;
  1418                 if ((sym.flags() & INTERFACE) != 0) {
  1419                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1420                         Type x = asSuper(l.head, sym);
  1421                         if (x != null)
  1422                             return x;
  1425                 return null;
  1428             @Override
  1429             public Type visitArrayType(ArrayType t, Symbol sym) {
  1430                 return isSubtype(t, sym.type) ? sym.type : null;
  1433             @Override
  1434             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1435                 if (t.tsym == sym)
  1436                     return t;
  1437                 else
  1438                     return asSuper(t.bound, sym);
  1441             @Override
  1442             public Type visitErrorType(ErrorType t, Symbol sym) {
  1443                 return t;
  1445         };
  1447     /**
  1448      * Return the base type of t or any of its outer types that starts
  1449      * with the given symbol.  If none exists, return null.
  1451      * @param t a type
  1452      * @param sym a symbol
  1453      */
  1454     public Type asOuterSuper(Type t, Symbol sym) {
  1455         switch (t.tag) {
  1456         case CLASS:
  1457             do {
  1458                 Type s = asSuper(t, sym);
  1459                 if (s != null) return s;
  1460                 t = t.getEnclosingType();
  1461             } while (t.tag == CLASS);
  1462             return null;
  1463         case ARRAY:
  1464             return isSubtype(t, sym.type) ? sym.type : null;
  1465         case TYPEVAR:
  1466             return asSuper(t, sym);
  1467         case ERROR:
  1468             return t;
  1469         default:
  1470             return null;
  1474     /**
  1475      * Return the base type of t or any of its enclosing types that
  1476      * starts with the given symbol.  If none exists, return null.
  1478      * @param t a type
  1479      * @param sym a symbol
  1480      */
  1481     public Type asEnclosingSuper(Type t, Symbol sym) {
  1482         switch (t.tag) {
  1483         case CLASS:
  1484             do {
  1485                 Type s = asSuper(t, sym);
  1486                 if (s != null) return s;
  1487                 Type outer = t.getEnclosingType();
  1488                 t = (outer.tag == CLASS) ? outer :
  1489                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1490                     Type.noType;
  1491             } while (t.tag == CLASS);
  1492             return null;
  1493         case ARRAY:
  1494             return isSubtype(t, sym.type) ? sym.type : null;
  1495         case TYPEVAR:
  1496             return asSuper(t, sym);
  1497         case ERROR:
  1498             return t;
  1499         default:
  1500             return null;
  1503     // </editor-fold>
  1505     // <editor-fold defaultstate="collapsed" desc="memberType">
  1506     /**
  1507      * The type of given symbol, seen as a member of t.
  1509      * @param t a type
  1510      * @param sym a symbol
  1511      */
  1512     public Type memberType(Type t, Symbol sym) {
  1513         return (sym.flags() & STATIC) != 0
  1514             ? sym.type
  1515             : memberType.visit(t, sym);
  1517     // where
  1518         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1520             public Type visitType(Type t, Symbol sym) {
  1521                 return sym.type;
  1524             @Override
  1525             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1526                 return memberType(upperBound(t), sym);
  1529             @Override
  1530             public Type visitClassType(ClassType t, Symbol sym) {
  1531                 Symbol owner = sym.owner;
  1532                 long flags = sym.flags();
  1533                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1534                     Type base = asOuterSuper(t, owner);
  1535                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1536                     //its supertypes CT, I1, ... In might contain wildcards
  1537                     //so we need to go through capture conversion
  1538                     base = t.isCompound() ? capture(base) : base;
  1539                     if (base != null) {
  1540                         List<Type> ownerParams = owner.type.allparams();
  1541                         List<Type> baseParams = base.allparams();
  1542                         if (ownerParams.nonEmpty()) {
  1543                             if (baseParams.isEmpty()) {
  1544                                 // then base is a raw type
  1545                                 return erasure(sym.type);
  1546                             } else {
  1547                                 return subst(sym.type, ownerParams, baseParams);
  1552                 return sym.type;
  1555             @Override
  1556             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1557                 return memberType(t.bound, sym);
  1560             @Override
  1561             public Type visitErrorType(ErrorType t, Symbol sym) {
  1562                 return t;
  1564         };
  1565     // </editor-fold>
  1567     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1568     public boolean isAssignable(Type t, Type s) {
  1569         return isAssignable(t, s, Warner.noWarnings);
  1572     /**
  1573      * Is t assignable to s?<br>
  1574      * Equivalent to subtype except for constant values and raw
  1575      * types.<br>
  1576      * (not defined for Method and ForAll types)
  1577      */
  1578     public boolean isAssignable(Type t, Type s, Warner warn) {
  1579         if (t.tag == ERROR)
  1580             return true;
  1581         if (t.tag <= INT && t.constValue() != null) {
  1582             int value = ((Number)t.constValue()).intValue();
  1583             switch (s.tag) {
  1584             case BYTE:
  1585                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1586                     return true;
  1587                 break;
  1588             case CHAR:
  1589                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1590                     return true;
  1591                 break;
  1592             case SHORT:
  1593                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1594                     return true;
  1595                 break;
  1596             case INT:
  1597                 return true;
  1598             case CLASS:
  1599                 switch (unboxedType(s).tag) {
  1600                 case BYTE:
  1601                 case CHAR:
  1602                 case SHORT:
  1603                     return isAssignable(t, unboxedType(s), warn);
  1605                 break;
  1608         return isConvertible(t, s, warn);
  1610     // </editor-fold>
  1612     // <editor-fold defaultstate="collapsed" desc="erasure">
  1613     /**
  1614      * The erasure of t {@code |t|} -- the type that results when all
  1615      * type parameters in t are deleted.
  1616      */
  1617     public Type erasure(Type t) {
  1618         return erasure(t, false);
  1620     //where
  1621     private Type erasure(Type t, boolean recurse) {
  1622         if (t.tag <= lastBaseTag)
  1623             return t; /* fast special case */
  1624         else
  1625             return erasure.visit(t, recurse);
  1627     // where
  1628         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1629             public Type visitType(Type t, Boolean recurse) {
  1630                 if (t.tag <= lastBaseTag)
  1631                     return t; /*fast special case*/
  1632                 else
  1633                     return t.map(recurse ? erasureRecFun : erasureFun);
  1636             @Override
  1637             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1638                 return erasure(upperBound(t), recurse);
  1641             @Override
  1642             public Type visitClassType(ClassType t, Boolean recurse) {
  1643                 Type erased = t.tsym.erasure(Types.this);
  1644                 if (recurse) {
  1645                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1647                 return erased;
  1650             @Override
  1651             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1652                 return erasure(t.bound, recurse);
  1655             @Override
  1656             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1657                 return t;
  1659         };
  1661     private Mapping erasureFun = new Mapping ("erasure") {
  1662             public Type apply(Type t) { return erasure(t); }
  1663         };
  1665     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1666         public Type apply(Type t) { return erasureRecursive(t); }
  1667     };
  1669     public List<Type> erasure(List<Type> ts) {
  1670         return Type.map(ts, erasureFun);
  1673     public Type erasureRecursive(Type t) {
  1674         return erasure(t, true);
  1677     public List<Type> erasureRecursive(List<Type> ts) {
  1678         return Type.map(ts, erasureRecFun);
  1680     // </editor-fold>
  1682     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1683     /**
  1684      * Make a compound type from non-empty list of types
  1686      * @param bounds            the types from which the compound type is formed
  1687      * @param supertype         is objectType if all bounds are interfaces,
  1688      *                          null otherwise.
  1689      */
  1690     public Type makeCompoundType(List<Type> bounds,
  1691                                  Type supertype) {
  1692         ClassSymbol bc =
  1693             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1694                             Type.moreInfo
  1695                                 ? names.fromString(bounds.toString())
  1696                                 : names.empty,
  1697                             syms.noSymbol);
  1698         if (bounds.head.tag == TYPEVAR)
  1699             // error condition, recover
  1700                 bc.erasure_field = syms.objectType;
  1701             else
  1702                 bc.erasure_field = erasure(bounds.head);
  1703             bc.members_field = new Scope(bc);
  1704         ClassType bt = (ClassType)bc.type;
  1705         bt.allparams_field = List.nil();
  1706         if (supertype != null) {
  1707             bt.supertype_field = supertype;
  1708             bt.interfaces_field = bounds;
  1709         } else {
  1710             bt.supertype_field = bounds.head;
  1711             bt.interfaces_field = bounds.tail;
  1713         Assert.check(bt.supertype_field.tsym.completer != null
  1714                 || !bt.supertype_field.isInterface(),
  1715             bt.supertype_field);
  1716         return bt;
  1719     /**
  1720      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1721      * second parameter is computed directly. Note that this might
  1722      * cause a symbol completion.  Hence, this version of
  1723      * makeCompoundType may not be called during a classfile read.
  1724      */
  1725     public Type makeCompoundType(List<Type> bounds) {
  1726         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1727             supertype(bounds.head) : null;
  1728         return makeCompoundType(bounds, supertype);
  1731     /**
  1732      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1733      * arguments are converted to a list and passed to the other
  1734      * method.  Note that this might cause a symbol completion.
  1735      * Hence, this version of makeCompoundType may not be called
  1736      * during a classfile read.
  1737      */
  1738     public Type makeCompoundType(Type bound1, Type bound2) {
  1739         return makeCompoundType(List.of(bound1, bound2));
  1741     // </editor-fold>
  1743     // <editor-fold defaultstate="collapsed" desc="supertype">
  1744     public Type supertype(Type t) {
  1745         return supertype.visit(t);
  1747     // where
  1748         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1750             public Type visitType(Type t, Void ignored) {
  1751                 // A note on wildcards: there is no good way to
  1752                 // determine a supertype for a super bounded wildcard.
  1753                 return null;
  1756             @Override
  1757             public Type visitClassType(ClassType t, Void ignored) {
  1758                 if (t.supertype_field == null) {
  1759                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1760                     // An interface has no superclass; its supertype is Object.
  1761                     if (t.isInterface())
  1762                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1763                     if (t.supertype_field == null) {
  1764                         List<Type> actuals = classBound(t).allparams();
  1765                         List<Type> formals = t.tsym.type.allparams();
  1766                         if (t.hasErasedSupertypes()) {
  1767                             t.supertype_field = erasureRecursive(supertype);
  1768                         } else if (formals.nonEmpty()) {
  1769                             t.supertype_field = subst(supertype, formals, actuals);
  1771                         else {
  1772                             t.supertype_field = supertype;
  1776                 return t.supertype_field;
  1779             /**
  1780              * The supertype is always a class type. If the type
  1781              * variable's bounds start with a class type, this is also
  1782              * the supertype.  Otherwise, the supertype is
  1783              * java.lang.Object.
  1784              */
  1785             @Override
  1786             public Type visitTypeVar(TypeVar t, Void ignored) {
  1787                 if (t.bound.tag == TYPEVAR ||
  1788                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1789                     return t.bound;
  1790                 } else {
  1791                     return supertype(t.bound);
  1795             @Override
  1796             public Type visitArrayType(ArrayType t, Void ignored) {
  1797                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1798                     return arraySuperType();
  1799                 else
  1800                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1803             @Override
  1804             public Type visitErrorType(ErrorType t, Void ignored) {
  1805                 return t;
  1807         };
  1808     // </editor-fold>
  1810     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1811     /**
  1812      * Return the interfaces implemented by this class.
  1813      */
  1814     public List<Type> interfaces(Type t) {
  1815         return interfaces.visit(t);
  1817     // where
  1818         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1820             public List<Type> visitType(Type t, Void ignored) {
  1821                 return List.nil();
  1824             @Override
  1825             public List<Type> visitClassType(ClassType t, Void ignored) {
  1826                 if (t.interfaces_field == null) {
  1827                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1828                     if (t.interfaces_field == null) {
  1829                         // If t.interfaces_field is null, then t must
  1830                         // be a parameterized type (not to be confused
  1831                         // with a generic type declaration).
  1832                         // Terminology:
  1833                         //    Parameterized type: List<String>
  1834                         //    Generic type declaration: class List<E> { ... }
  1835                         // So t corresponds to List<String> and
  1836                         // t.tsym.type corresponds to List<E>.
  1837                         // The reason t must be parameterized type is
  1838                         // that completion will happen as a side
  1839                         // effect of calling
  1840                         // ClassSymbol.getInterfaces.  Since
  1841                         // t.interfaces_field is null after
  1842                         // completion, we can assume that t is not the
  1843                         // type of a class/interface declaration.
  1844                         Assert.check(t != t.tsym.type, t);
  1845                         List<Type> actuals = t.allparams();
  1846                         List<Type> formals = t.tsym.type.allparams();
  1847                         if (t.hasErasedSupertypes()) {
  1848                             t.interfaces_field = erasureRecursive(interfaces);
  1849                         } else if (formals.nonEmpty()) {
  1850                             t.interfaces_field =
  1851                                 upperBounds(subst(interfaces, formals, actuals));
  1853                         else {
  1854                             t.interfaces_field = interfaces;
  1858                 return t.interfaces_field;
  1861             @Override
  1862             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1863                 if (t.bound.isCompound())
  1864                     return interfaces(t.bound);
  1866                 if (t.bound.isInterface())
  1867                     return List.of(t.bound);
  1869                 return List.nil();
  1871         };
  1872     // </editor-fold>
  1874     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1875     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1877     public boolean isDerivedRaw(Type t) {
  1878         Boolean result = isDerivedRawCache.get(t);
  1879         if (result == null) {
  1880             result = isDerivedRawInternal(t);
  1881             isDerivedRawCache.put(t, result);
  1883         return result;
  1886     public boolean isDerivedRawInternal(Type t) {
  1887         if (t.isErroneous())
  1888             return false;
  1889         return
  1890             t.isRaw() ||
  1891             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1892             isDerivedRaw(interfaces(t));
  1895     public boolean isDerivedRaw(List<Type> ts) {
  1896         List<Type> l = ts;
  1897         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1898         return l.nonEmpty();
  1900     // </editor-fold>
  1902     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1903     /**
  1904      * Set the bounds field of the given type variable to reflect a
  1905      * (possibly multiple) list of bounds.
  1906      * @param t                 a type variable
  1907      * @param bounds            the bounds, must be nonempty
  1908      * @param supertype         is objectType if all bounds are interfaces,
  1909      *                          null otherwise.
  1910      */
  1911     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1912         if (bounds.tail.isEmpty())
  1913             t.bound = bounds.head;
  1914         else
  1915             t.bound = makeCompoundType(bounds, supertype);
  1916         t.rank_field = -1;
  1919     /**
  1920      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1921      * third parameter is computed directly, as follows: if all
  1922      * all bounds are interface types, the computed supertype is Object,
  1923      * otherwise the supertype is simply left null (in this case, the supertype
  1924      * is assumed to be the head of the bound list passed as second argument).
  1925      * Note that this check might cause a symbol completion. Hence, this version of
  1926      * setBounds may not be called during a classfile read.
  1927      */
  1928     public void setBounds(TypeVar t, List<Type> bounds) {
  1929         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1930             syms.objectType : null;
  1931         setBounds(t, bounds, supertype);
  1932         t.rank_field = -1;
  1934     // </editor-fold>
  1936     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1937     /**
  1938      * Return list of bounds of the given type variable.
  1939      */
  1940     public List<Type> getBounds(TypeVar t) {
  1941         if (t.bound.isErroneous() || !t.bound.isCompound())
  1942             return List.of(t.bound);
  1943         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1944             return interfaces(t).prepend(supertype(t));
  1945         else
  1946             // No superclass was given in bounds.
  1947             // In this case, supertype is Object, erasure is first interface.
  1948             return interfaces(t);
  1950     // </editor-fold>
  1952     // <editor-fold defaultstate="collapsed" desc="classBound">
  1953     /**
  1954      * If the given type is a (possibly selected) type variable,
  1955      * return the bounding class of this type, otherwise return the
  1956      * type itself.
  1957      */
  1958     public Type classBound(Type t) {
  1959         return classBound.visit(t);
  1961     // where
  1962         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1964             public Type visitType(Type t, Void ignored) {
  1965                 return t;
  1968             @Override
  1969             public Type visitClassType(ClassType t, Void ignored) {
  1970                 Type outer1 = classBound(t.getEnclosingType());
  1971                 if (outer1 != t.getEnclosingType())
  1972                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1973                 else
  1974                     return t;
  1977             @Override
  1978             public Type visitTypeVar(TypeVar t, Void ignored) {
  1979                 return classBound(supertype(t));
  1982             @Override
  1983             public Type visitErrorType(ErrorType t, Void ignored) {
  1984                 return t;
  1986         };
  1987     // </editor-fold>
  1989     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1990     /**
  1991      * Returns true iff the first signature is a <em>sub
  1992      * signature</em> of the other.  This is <b>not</b> an equivalence
  1993      * relation.
  1995      * @jls section 8.4.2.
  1996      * @see #overrideEquivalent(Type t, Type s)
  1997      * @param t first signature (possibly raw).
  1998      * @param s second signature (could be subjected to erasure).
  1999      * @return true if t is a sub signature of s.
  2000      */
  2001     public boolean isSubSignature(Type t, Type s) {
  2002         return isSubSignature(t, s, true);
  2005     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2006         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2009     /**
  2010      * Returns true iff these signatures are related by <em>override
  2011      * equivalence</em>.  This is the natural extension of
  2012      * isSubSignature to an equivalence relation.
  2014      * @jls section 8.4.2.
  2015      * @see #isSubSignature(Type t, Type s)
  2016      * @param t a signature (possible raw, could be subjected to
  2017      * erasure).
  2018      * @param s a signature (possible raw, could be subjected to
  2019      * erasure).
  2020      * @return true if either argument is a sub signature of the other.
  2021      */
  2022     public boolean overrideEquivalent(Type t, Type s) {
  2023         return hasSameArgs(t, s) ||
  2024             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2027     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2028     class ImplementationCache {
  2030         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2031                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2033         class Entry {
  2034             final MethodSymbol cachedImpl;
  2035             final Filter<Symbol> implFilter;
  2036             final boolean checkResult;
  2037             final int prevMark;
  2039             public Entry(MethodSymbol cachedImpl,
  2040                     Filter<Symbol> scopeFilter,
  2041                     boolean checkResult,
  2042                     int prevMark) {
  2043                 this.cachedImpl = cachedImpl;
  2044                 this.implFilter = scopeFilter;
  2045                 this.checkResult = checkResult;
  2046                 this.prevMark = prevMark;
  2049             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2050                 return this.implFilter == scopeFilter &&
  2051                         this.checkResult == checkResult &&
  2052                         this.prevMark == mark;
  2056         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2057             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2058             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2059             if (cache == null) {
  2060                 cache = new HashMap<TypeSymbol, Entry>();
  2061                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2063             Entry e = cache.get(origin);
  2064             CompoundScope members = membersClosure(origin.type, true);
  2065             if (e == null ||
  2066                     !e.matches(implFilter, checkResult, members.getMark())) {
  2067                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2068                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2069                 return impl;
  2071             else {
  2072                 return e.cachedImpl;
  2076         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2077             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2078                 while (t.tag == TYPEVAR)
  2079                     t = t.getUpperBound();
  2080                 TypeSymbol c = t.tsym;
  2081                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2082                      e.scope != null;
  2083                      e = e.next(implFilter)) {
  2084                     if (e.sym != null &&
  2085                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2086                         return (MethodSymbol)e.sym;
  2089             return null;
  2093     private ImplementationCache implCache = new ImplementationCache();
  2095     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2096         return implCache.get(ms, origin, checkResult, implFilter);
  2098     // </editor-fold>
  2100     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2101     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2103         private WeakHashMap<TypeSymbol, Entry> _map =
  2104                 new WeakHashMap<TypeSymbol, Entry>();
  2106         class Entry {
  2107             final boolean skipInterfaces;
  2108             final CompoundScope compoundScope;
  2110             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2111                 this.skipInterfaces = skipInterfaces;
  2112                 this.compoundScope = compoundScope;
  2115             boolean matches(boolean skipInterfaces) {
  2116                 return this.skipInterfaces == skipInterfaces;
  2120         /** members closure visitor methods **/
  2122         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2123             return null;
  2126         @Override
  2127         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2128             ClassSymbol csym = (ClassSymbol)t.tsym;
  2129             Entry e = _map.get(csym);
  2130             if (e == null || !e.matches(skipInterface)) {
  2131                 CompoundScope membersClosure = new CompoundScope(csym);
  2132                 if (!skipInterface) {
  2133                     for (Type i : interfaces(t)) {
  2134                         membersClosure.addSubScope(visit(i, skipInterface));
  2137                 membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2138                 membersClosure.addSubScope(csym.members());
  2139                 e = new Entry(skipInterface, membersClosure);
  2140                 _map.put(csym, e);
  2142             return e.compoundScope;
  2145         @Override
  2146         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2147             return visit(t.getUpperBound(), skipInterface);
  2151     private MembersClosureCache membersCache = new MembersClosureCache();
  2153     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2154         return membersCache.visit(site, skipInterface);
  2156     // </editor-fold>
  2158     /**
  2159      * Does t have the same arguments as s?  It is assumed that both
  2160      * types are (possibly polymorphic) method types.  Monomorphic
  2161      * method types "have the same arguments", if their argument lists
  2162      * are equal.  Polymorphic method types "have the same arguments",
  2163      * if they have the same arguments after renaming all type
  2164      * variables of one to corresponding type variables in the other,
  2165      * where correspondence is by position in the type parameter list.
  2166      */
  2167     public boolean hasSameArgs(Type t, Type s) {
  2168         return hasSameArgs(t, s, true);
  2171     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2172         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2175     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2176         return hasSameArgs.visit(t, s);
  2178     // where
  2179         private class HasSameArgs extends TypeRelation {
  2181             boolean strict;
  2183             public HasSameArgs(boolean strict) {
  2184                 this.strict = strict;
  2187             public Boolean visitType(Type t, Type s) {
  2188                 throw new AssertionError();
  2191             @Override
  2192             public Boolean visitMethodType(MethodType t, Type s) {
  2193                 return s.tag == METHOD
  2194                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2197             @Override
  2198             public Boolean visitForAll(ForAll t, Type s) {
  2199                 if (s.tag != FORALL)
  2200                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2202                 ForAll forAll = (ForAll)s;
  2203                 return hasSameBounds(t, forAll)
  2204                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2207             @Override
  2208             public Boolean visitErrorType(ErrorType t, Type s) {
  2209                 return false;
  2211         };
  2213         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2214         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2216     // </editor-fold>
  2218     // <editor-fold defaultstate="collapsed" desc="subst">
  2219     public List<Type> subst(List<Type> ts,
  2220                             List<Type> from,
  2221                             List<Type> to) {
  2222         return new Subst(from, to).subst(ts);
  2225     /**
  2226      * Substitute all occurrences of a type in `from' with the
  2227      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2228      * from the right: If lists have different length, discard leading
  2229      * elements of the longer list.
  2230      */
  2231     public Type subst(Type t, List<Type> from, List<Type> to) {
  2232         return new Subst(from, to).subst(t);
  2235     private class Subst extends UnaryVisitor<Type> {
  2236         List<Type> from;
  2237         List<Type> to;
  2239         public Subst(List<Type> from, List<Type> to) {
  2240             int fromLength = from.length();
  2241             int toLength = to.length();
  2242             while (fromLength > toLength) {
  2243                 fromLength--;
  2244                 from = from.tail;
  2246             while (fromLength < toLength) {
  2247                 toLength--;
  2248                 to = to.tail;
  2250             this.from = from;
  2251             this.to = to;
  2254         Type subst(Type t) {
  2255             if (from.tail == null)
  2256                 return t;
  2257             else
  2258                 return visit(t);
  2261         List<Type> subst(List<Type> ts) {
  2262             if (from.tail == null)
  2263                 return ts;
  2264             boolean wild = false;
  2265             if (ts.nonEmpty() && from.nonEmpty()) {
  2266                 Type head1 = subst(ts.head);
  2267                 List<Type> tail1 = subst(ts.tail);
  2268                 if (head1 != ts.head || tail1 != ts.tail)
  2269                     return tail1.prepend(head1);
  2271             return ts;
  2274         public Type visitType(Type t, Void ignored) {
  2275             return t;
  2278         @Override
  2279         public Type visitMethodType(MethodType t, Void ignored) {
  2280             List<Type> argtypes = subst(t.argtypes);
  2281             Type restype = subst(t.restype);
  2282             List<Type> thrown = subst(t.thrown);
  2283             if (argtypes == t.argtypes &&
  2284                 restype == t.restype &&
  2285                 thrown == t.thrown)
  2286                 return t;
  2287             else
  2288                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2291         @Override
  2292         public Type visitTypeVar(TypeVar t, Void ignored) {
  2293             for (List<Type> from = this.from, to = this.to;
  2294                  from.nonEmpty();
  2295                  from = from.tail, to = to.tail) {
  2296                 if (t == from.head) {
  2297                     return to.head.withTypeVar(t);
  2300             return t;
  2303         @Override
  2304         public Type visitClassType(ClassType t, Void ignored) {
  2305             if (!t.isCompound()) {
  2306                 List<Type> typarams = t.getTypeArguments();
  2307                 List<Type> typarams1 = subst(typarams);
  2308                 Type outer = t.getEnclosingType();
  2309                 Type outer1 = subst(outer);
  2310                 if (typarams1 == typarams && outer1 == outer)
  2311                     return t;
  2312                 else
  2313                     return new ClassType(outer1, typarams1, t.tsym);
  2314             } else {
  2315                 Type st = subst(supertype(t));
  2316                 List<Type> is = upperBounds(subst(interfaces(t)));
  2317                 if (st == supertype(t) && is == interfaces(t))
  2318                     return t;
  2319                 else
  2320                     return makeCompoundType(is.prepend(st));
  2324         @Override
  2325         public Type visitWildcardType(WildcardType t, Void ignored) {
  2326             Type bound = t.type;
  2327             if (t.kind != BoundKind.UNBOUND)
  2328                 bound = subst(bound);
  2329             if (bound == t.type) {
  2330                 return t;
  2331             } else {
  2332                 if (t.isExtendsBound() && bound.isExtendsBound())
  2333                     bound = upperBound(bound);
  2334                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2338         @Override
  2339         public Type visitArrayType(ArrayType t, Void ignored) {
  2340             Type elemtype = subst(t.elemtype);
  2341             if (elemtype == t.elemtype)
  2342                 return t;
  2343             else
  2344                 return new ArrayType(upperBound(elemtype), t.tsym);
  2347         @Override
  2348         public Type visitForAll(ForAll t, Void ignored) {
  2349             if (Type.containsAny(to, t.tvars)) {
  2350                 //perform alpha-renaming of free-variables in 't'
  2351                 //if 'to' types contain variables that are free in 't'
  2352                 List<Type> freevars = newInstances(t.tvars);
  2353                 t = new ForAll(freevars,
  2354                         Types.this.subst(t.qtype, t.tvars, freevars));
  2356             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2357             Type qtype1 = subst(t.qtype);
  2358             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2359                 return t;
  2360             } else if (tvars1 == t.tvars) {
  2361                 return new ForAll(tvars1, qtype1);
  2362             } else {
  2363                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2367         @Override
  2368         public Type visitErrorType(ErrorType t, Void ignored) {
  2369             return t;
  2373     public List<Type> substBounds(List<Type> tvars,
  2374                                   List<Type> from,
  2375                                   List<Type> to) {
  2376         if (tvars.isEmpty())
  2377             return tvars;
  2378         ListBuffer<Type> newBoundsBuf = lb();
  2379         boolean changed = false;
  2380         // calculate new bounds
  2381         for (Type t : tvars) {
  2382             TypeVar tv = (TypeVar) t;
  2383             Type bound = subst(tv.bound, from, to);
  2384             if (bound != tv.bound)
  2385                 changed = true;
  2386             newBoundsBuf.append(bound);
  2388         if (!changed)
  2389             return tvars;
  2390         ListBuffer<Type> newTvars = lb();
  2391         // create new type variables without bounds
  2392         for (Type t : tvars) {
  2393             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2395         // the new bounds should use the new type variables in place
  2396         // of the old
  2397         List<Type> newBounds = newBoundsBuf.toList();
  2398         from = tvars;
  2399         to = newTvars.toList();
  2400         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2401             newBounds.head = subst(newBounds.head, from, to);
  2403         newBounds = newBoundsBuf.toList();
  2404         // set the bounds of new type variables to the new bounds
  2405         for (Type t : newTvars.toList()) {
  2406             TypeVar tv = (TypeVar) t;
  2407             tv.bound = newBounds.head;
  2408             newBounds = newBounds.tail;
  2410         return newTvars.toList();
  2413     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2414         Type bound1 = subst(t.bound, from, to);
  2415         if (bound1 == t.bound)
  2416             return t;
  2417         else {
  2418             // create new type variable without bounds
  2419             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2420             // the new bound should use the new type variable in place
  2421             // of the old
  2422             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2423             return tv;
  2426     // </editor-fold>
  2428     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2429     /**
  2430      * Does t have the same bounds for quantified variables as s?
  2431      */
  2432     boolean hasSameBounds(ForAll t, ForAll s) {
  2433         List<Type> l1 = t.tvars;
  2434         List<Type> l2 = s.tvars;
  2435         while (l1.nonEmpty() && l2.nonEmpty() &&
  2436                isSameType(l1.head.getUpperBound(),
  2437                           subst(l2.head.getUpperBound(),
  2438                                 s.tvars,
  2439                                 t.tvars))) {
  2440             l1 = l1.tail;
  2441             l2 = l2.tail;
  2443         return l1.isEmpty() && l2.isEmpty();
  2445     // </editor-fold>
  2447     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2448     /** Create new vector of type variables from list of variables
  2449      *  changing all recursive bounds from old to new list.
  2450      */
  2451     public List<Type> newInstances(List<Type> tvars) {
  2452         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2453         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2454             TypeVar tv = (TypeVar) l.head;
  2455             tv.bound = subst(tv.bound, tvars, tvars1);
  2457         return tvars1;
  2459     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2460             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2461         };
  2462     // </editor-fold>
  2464     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2465         return original.accept(methodWithParameters, newParams);
  2467     // where
  2468         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2469             public Type visitType(Type t, List<Type> newParams) {
  2470                 throw new IllegalArgumentException("Not a method type: " + t);
  2472             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2473                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2475             public Type visitForAll(ForAll t, List<Type> newParams) {
  2476                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2478         };
  2480     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2481         return original.accept(methodWithThrown, newThrown);
  2483     // where
  2484         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2485             public Type visitType(Type t, List<Type> newThrown) {
  2486                 throw new IllegalArgumentException("Not a method type: " + t);
  2488             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2489                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2491             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2492                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2494         };
  2496     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2497         return original.accept(methodWithReturn, newReturn);
  2499     // where
  2500         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2501             public Type visitType(Type t, Type newReturn) {
  2502                 throw new IllegalArgumentException("Not a method type: " + t);
  2504             public Type visitMethodType(MethodType t, Type newReturn) {
  2505                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2507             public Type visitForAll(ForAll t, Type newReturn) {
  2508                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2510         };
  2512     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2513     public Type createErrorType(Type originalType) {
  2514         return new ErrorType(originalType, syms.errSymbol);
  2517     public Type createErrorType(ClassSymbol c, Type originalType) {
  2518         return new ErrorType(c, originalType);
  2521     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2522         return new ErrorType(name, container, originalType);
  2524     // </editor-fold>
  2526     // <editor-fold defaultstate="collapsed" desc="rank">
  2527     /**
  2528      * The rank of a class is the length of the longest path between
  2529      * the class and java.lang.Object in the class inheritance
  2530      * graph. Undefined for all but reference types.
  2531      */
  2532     public int rank(Type t) {
  2533         switch(t.tag) {
  2534         case CLASS: {
  2535             ClassType cls = (ClassType)t;
  2536             if (cls.rank_field < 0) {
  2537                 Name fullname = cls.tsym.getQualifiedName();
  2538                 if (fullname == names.java_lang_Object)
  2539                     cls.rank_field = 0;
  2540                 else {
  2541                     int r = rank(supertype(cls));
  2542                     for (List<Type> l = interfaces(cls);
  2543                          l.nonEmpty();
  2544                          l = l.tail) {
  2545                         if (rank(l.head) > r)
  2546                             r = rank(l.head);
  2548                     cls.rank_field = r + 1;
  2551             return cls.rank_field;
  2553         case TYPEVAR: {
  2554             TypeVar tvar = (TypeVar)t;
  2555             if (tvar.rank_field < 0) {
  2556                 int r = rank(supertype(tvar));
  2557                 for (List<Type> l = interfaces(tvar);
  2558                      l.nonEmpty();
  2559                      l = l.tail) {
  2560                     if (rank(l.head) > r) r = rank(l.head);
  2562                 tvar.rank_field = r + 1;
  2564             return tvar.rank_field;
  2566         case ERROR:
  2567             return 0;
  2568         default:
  2569             throw new AssertionError();
  2572     // </editor-fold>
  2574     /**
  2575      * Helper method for generating a string representation of a given type
  2576      * accordingly to a given locale
  2577      */
  2578     public String toString(Type t, Locale locale) {
  2579         return Printer.createStandardPrinter(messages).visit(t, locale);
  2582     /**
  2583      * Helper method for generating a string representation of a given type
  2584      * accordingly to a given locale
  2585      */
  2586     public String toString(Symbol t, Locale locale) {
  2587         return Printer.createStandardPrinter(messages).visit(t, locale);
  2590     // <editor-fold defaultstate="collapsed" desc="toString">
  2591     /**
  2592      * This toString is slightly more descriptive than the one on Type.
  2594      * @deprecated Types.toString(Type t, Locale l) provides better support
  2595      * for localization
  2596      */
  2597     @Deprecated
  2598     public String toString(Type t) {
  2599         if (t.tag == FORALL) {
  2600             ForAll forAll = (ForAll)t;
  2601             return typaramsString(forAll.tvars) + forAll.qtype;
  2603         return "" + t;
  2605     // where
  2606         private String typaramsString(List<Type> tvars) {
  2607             StringBuilder s = new StringBuilder();
  2608             s.append('<');
  2609             boolean first = true;
  2610             for (Type t : tvars) {
  2611                 if (!first) s.append(", ");
  2612                 first = false;
  2613                 appendTyparamString(((TypeVar)t), s);
  2615             s.append('>');
  2616             return s.toString();
  2618         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2619             buf.append(t);
  2620             if (t.bound == null ||
  2621                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2622                 return;
  2623             buf.append(" extends "); // Java syntax; no need for i18n
  2624             Type bound = t.bound;
  2625             if (!bound.isCompound()) {
  2626                 buf.append(bound);
  2627             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2628                 buf.append(supertype(t));
  2629                 for (Type intf : interfaces(t)) {
  2630                     buf.append('&');
  2631                     buf.append(intf);
  2633             } else {
  2634                 // No superclass was given in bounds.
  2635                 // In this case, supertype is Object, erasure is first interface.
  2636                 boolean first = true;
  2637                 for (Type intf : interfaces(t)) {
  2638                     if (!first) buf.append('&');
  2639                     first = false;
  2640                     buf.append(intf);
  2644     // </editor-fold>
  2646     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2647     /**
  2648      * A cache for closures.
  2650      * <p>A closure is a list of all the supertypes and interfaces of
  2651      * a class or interface type, ordered by ClassSymbol.precedes
  2652      * (that is, subclasses come first, arbitrary but fixed
  2653      * otherwise).
  2654      */
  2655     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2657     /**
  2658      * Returns the closure of a class or interface type.
  2659      */
  2660     public List<Type> closure(Type t) {
  2661         List<Type> cl = closureCache.get(t);
  2662         if (cl == null) {
  2663             Type st = supertype(t);
  2664             if (!t.isCompound()) {
  2665                 if (st.tag == CLASS) {
  2666                     cl = insert(closure(st), t);
  2667                 } else if (st.tag == TYPEVAR) {
  2668                     cl = closure(st).prepend(t);
  2669                 } else {
  2670                     cl = List.of(t);
  2672             } else {
  2673                 cl = closure(supertype(t));
  2675             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2676                 cl = union(cl, closure(l.head));
  2677             closureCache.put(t, cl);
  2679         return cl;
  2682     /**
  2683      * Insert a type in a closure
  2684      */
  2685     public List<Type> insert(List<Type> cl, Type t) {
  2686         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2687             return cl.prepend(t);
  2688         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2689             return insert(cl.tail, t).prepend(cl.head);
  2690         } else {
  2691             return cl;
  2695     /**
  2696      * Form the union of two closures
  2697      */
  2698     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2699         if (cl1.isEmpty()) {
  2700             return cl2;
  2701         } else if (cl2.isEmpty()) {
  2702             return cl1;
  2703         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2704             return union(cl1.tail, cl2).prepend(cl1.head);
  2705         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2706             return union(cl1, cl2.tail).prepend(cl2.head);
  2707         } else {
  2708             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2712     /**
  2713      * Intersect two closures
  2714      */
  2715     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2716         if (cl1 == cl2)
  2717             return cl1;
  2718         if (cl1.isEmpty() || cl2.isEmpty())
  2719             return List.nil();
  2720         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2721             return intersect(cl1.tail, cl2);
  2722         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2723             return intersect(cl1, cl2.tail);
  2724         if (isSameType(cl1.head, cl2.head))
  2725             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2726         if (cl1.head.tsym == cl2.head.tsym &&
  2727             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2728             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2729                 Type merge = merge(cl1.head,cl2.head);
  2730                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2732             if (cl1.head.isRaw() || cl2.head.isRaw())
  2733                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2735         return intersect(cl1.tail, cl2.tail);
  2737     // where
  2738         class TypePair {
  2739             final Type t1;
  2740             final Type t2;
  2741             TypePair(Type t1, Type t2) {
  2742                 this.t1 = t1;
  2743                 this.t2 = t2;
  2745             @Override
  2746             public int hashCode() {
  2747                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  2749             @Override
  2750             public boolean equals(Object obj) {
  2751                 if (!(obj instanceof TypePair))
  2752                     return false;
  2753                 TypePair typePair = (TypePair)obj;
  2754                 return isSameType(t1, typePair.t1)
  2755                     && isSameType(t2, typePair.t2);
  2758         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2759         private Type merge(Type c1, Type c2) {
  2760             ClassType class1 = (ClassType) c1;
  2761             List<Type> act1 = class1.getTypeArguments();
  2762             ClassType class2 = (ClassType) c2;
  2763             List<Type> act2 = class2.getTypeArguments();
  2764             ListBuffer<Type> merged = new ListBuffer<Type>();
  2765             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2767             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2768                 if (containsType(act1.head, act2.head)) {
  2769                     merged.append(act1.head);
  2770                 } else if (containsType(act2.head, act1.head)) {
  2771                     merged.append(act2.head);
  2772                 } else {
  2773                     TypePair pair = new TypePair(c1, c2);
  2774                     Type m;
  2775                     if (mergeCache.add(pair)) {
  2776                         m = new WildcardType(lub(upperBound(act1.head),
  2777                                                  upperBound(act2.head)),
  2778                                              BoundKind.EXTENDS,
  2779                                              syms.boundClass);
  2780                         mergeCache.remove(pair);
  2781                     } else {
  2782                         m = new WildcardType(syms.objectType,
  2783                                              BoundKind.UNBOUND,
  2784                                              syms.boundClass);
  2786                     merged.append(m.withTypeVar(typarams.head));
  2788                 act1 = act1.tail;
  2789                 act2 = act2.tail;
  2790                 typarams = typarams.tail;
  2792             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2793             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2796     /**
  2797      * Return the minimum type of a closure, a compound type if no
  2798      * unique minimum exists.
  2799      */
  2800     private Type compoundMin(List<Type> cl) {
  2801         if (cl.isEmpty()) return syms.objectType;
  2802         List<Type> compound = closureMin(cl);
  2803         if (compound.isEmpty())
  2804             return null;
  2805         else if (compound.tail.isEmpty())
  2806             return compound.head;
  2807         else
  2808             return makeCompoundType(compound);
  2811     /**
  2812      * Return the minimum types of a closure, suitable for computing
  2813      * compoundMin or glb.
  2814      */
  2815     private List<Type> closureMin(List<Type> cl) {
  2816         ListBuffer<Type> classes = lb();
  2817         ListBuffer<Type> interfaces = lb();
  2818         while (!cl.isEmpty()) {
  2819             Type current = cl.head;
  2820             if (current.isInterface())
  2821                 interfaces.append(current);
  2822             else
  2823                 classes.append(current);
  2824             ListBuffer<Type> candidates = lb();
  2825             for (Type t : cl.tail) {
  2826                 if (!isSubtypeNoCapture(current, t))
  2827                     candidates.append(t);
  2829             cl = candidates.toList();
  2831         return classes.appendList(interfaces).toList();
  2834     /**
  2835      * Return the least upper bound of pair of types.  if the lub does
  2836      * not exist return null.
  2837      */
  2838     public Type lub(Type t1, Type t2) {
  2839         return lub(List.of(t1, t2));
  2842     /**
  2843      * Return the least upper bound (lub) of set of types.  If the lub
  2844      * does not exist return the type of null (bottom).
  2845      */
  2846     public Type lub(List<Type> ts) {
  2847         final int ARRAY_BOUND = 1;
  2848         final int CLASS_BOUND = 2;
  2849         int boundkind = 0;
  2850         for (Type t : ts) {
  2851             switch (t.tag) {
  2852             case CLASS:
  2853                 boundkind |= CLASS_BOUND;
  2854                 break;
  2855             case ARRAY:
  2856                 boundkind |= ARRAY_BOUND;
  2857                 break;
  2858             case  TYPEVAR:
  2859                 do {
  2860                     t = t.getUpperBound();
  2861                 } while (t.tag == TYPEVAR);
  2862                 if (t.tag == ARRAY) {
  2863                     boundkind |= ARRAY_BOUND;
  2864                 } else {
  2865                     boundkind |= CLASS_BOUND;
  2867                 break;
  2868             default:
  2869                 if (t.isPrimitive())
  2870                     return syms.errType;
  2873         switch (boundkind) {
  2874         case 0:
  2875             return syms.botType;
  2877         case ARRAY_BOUND:
  2878             // calculate lub(A[], B[])
  2879             List<Type> elements = Type.map(ts, elemTypeFun);
  2880             for (Type t : elements) {
  2881                 if (t.isPrimitive()) {
  2882                     // if a primitive type is found, then return
  2883                     // arraySuperType unless all the types are the
  2884                     // same
  2885                     Type first = ts.head;
  2886                     for (Type s : ts.tail) {
  2887                         if (!isSameType(first, s)) {
  2888                              // lub(int[], B[]) is Cloneable & Serializable
  2889                             return arraySuperType();
  2892                     // all the array types are the same, return one
  2893                     // lub(int[], int[]) is int[]
  2894                     return first;
  2897             // lub(A[], B[]) is lub(A, B)[]
  2898             return new ArrayType(lub(elements), syms.arrayClass);
  2900         case CLASS_BOUND:
  2901             // calculate lub(A, B)
  2902             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2903                 ts = ts.tail;
  2904             Assert.check(!ts.isEmpty());
  2905             //step 1 - compute erased candidate set (EC)
  2906             List<Type> cl = erasedSupertypes(ts.head);
  2907             for (Type t : ts.tail) {
  2908                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2909                     cl = intersect(cl, erasedSupertypes(t));
  2911             //step 2 - compute minimal erased candidate set (MEC)
  2912             List<Type> mec = closureMin(cl);
  2913             //step 3 - for each element G in MEC, compute lci(Inv(G))
  2914             List<Type> candidates = List.nil();
  2915             for (Type erasedSupertype : mec) {
  2916                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  2917                 for (Type t : ts) {
  2918                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  2920                 candidates = candidates.appendList(lci);
  2922             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  2923             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  2924             return compoundMin(candidates);
  2926         default:
  2927             // calculate lub(A, B[])
  2928             List<Type> classes = List.of(arraySuperType());
  2929             for (Type t : ts) {
  2930                 if (t.tag != ARRAY) // Filter out any arrays
  2931                     classes = classes.prepend(t);
  2933             // lub(A, B[]) is lub(A, arraySuperType)
  2934             return lub(classes);
  2937     // where
  2938         List<Type> erasedSupertypes(Type t) {
  2939             ListBuffer<Type> buf = lb();
  2940             for (Type sup : closure(t)) {
  2941                 if (sup.tag == TYPEVAR) {
  2942                     buf.append(sup);
  2943                 } else {
  2944                     buf.append(erasure(sup));
  2947             return buf.toList();
  2950         private Type arraySuperType = null;
  2951         private Type arraySuperType() {
  2952             // initialized lazily to avoid problems during compiler startup
  2953             if (arraySuperType == null) {
  2954                 synchronized (this) {
  2955                     if (arraySuperType == null) {
  2956                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2957                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2958                                                                   syms.cloneableType),
  2959                                                           syms.objectType);
  2963             return arraySuperType;
  2965     // </editor-fold>
  2967     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2968     public Type glb(List<Type> ts) {
  2969         Type t1 = ts.head;
  2970         for (Type t2 : ts.tail) {
  2971             if (t1.isErroneous())
  2972                 return t1;
  2973             t1 = glb(t1, t2);
  2975         return t1;
  2977     //where
  2978     public Type glb(Type t, Type s) {
  2979         if (s == null)
  2980             return t;
  2981         else if (t.isPrimitive() || s.isPrimitive())
  2982             return syms.errType;
  2983         else if (isSubtypeNoCapture(t, s))
  2984             return t;
  2985         else if (isSubtypeNoCapture(s, t))
  2986             return s;
  2988         List<Type> closure = union(closure(t), closure(s));
  2989         List<Type> bounds = closureMin(closure);
  2991         if (bounds.isEmpty()) {             // length == 0
  2992             return syms.objectType;
  2993         } else if (bounds.tail.isEmpty()) { // length == 1
  2994             return bounds.head;
  2995         } else {                            // length > 1
  2996             int classCount = 0;
  2997             for (Type bound : bounds)
  2998                 if (!bound.isInterface())
  2999                     classCount++;
  3000             if (classCount > 1)
  3001                 return createErrorType(t);
  3003         return makeCompoundType(bounds);
  3005     // </editor-fold>
  3007     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3008     /**
  3009      * Compute a hash code on a type.
  3010      */
  3011     public static int hashCode(Type t) {
  3012         return hashCode.visit(t);
  3014     // where
  3015         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3017             public Integer visitType(Type t, Void ignored) {
  3018                 return t.tag;
  3021             @Override
  3022             public Integer visitClassType(ClassType t, Void ignored) {
  3023                 int result = visit(t.getEnclosingType());
  3024                 result *= 127;
  3025                 result += t.tsym.flatName().hashCode();
  3026                 for (Type s : t.getTypeArguments()) {
  3027                     result *= 127;
  3028                     result += visit(s);
  3030                 return result;
  3033             @Override
  3034             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3035                 int result = t.kind.hashCode();
  3036                 if (t.type != null) {
  3037                     result *= 127;
  3038                     result += visit(t.type);
  3040                 return result;
  3043             @Override
  3044             public Integer visitArrayType(ArrayType t, Void ignored) {
  3045                 return visit(t.elemtype) + 12;
  3048             @Override
  3049             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3050                 return System.identityHashCode(t.tsym);
  3053             @Override
  3054             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3055                 return System.identityHashCode(t);
  3058             @Override
  3059             public Integer visitErrorType(ErrorType t, Void ignored) {
  3060                 return 0;
  3062         };
  3063     // </editor-fold>
  3065     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3066     /**
  3067      * Does t have a result that is a subtype of the result type of s,
  3068      * suitable for covariant returns?  It is assumed that both types
  3069      * are (possibly polymorphic) method types.  Monomorphic method
  3070      * types are handled in the obvious way.  Polymorphic method types
  3071      * require renaming all type variables of one to corresponding
  3072      * type variables in the other, where correspondence is by
  3073      * position in the type parameter list. */
  3074     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3075         List<Type> tvars = t.getTypeArguments();
  3076         List<Type> svars = s.getTypeArguments();
  3077         Type tres = t.getReturnType();
  3078         Type sres = subst(s.getReturnType(), svars, tvars);
  3079         return covariantReturnType(tres, sres, warner);
  3082     /**
  3083      * Return-Type-Substitutable.
  3084      * @jls section 8.4.5
  3085      */
  3086     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3087         if (hasSameArgs(r1, r2))
  3088             return resultSubtype(r1, r2, Warner.noWarnings);
  3089         else
  3090             return covariantReturnType(r1.getReturnType(),
  3091                                        erasure(r2.getReturnType()),
  3092                                        Warner.noWarnings);
  3095     public boolean returnTypeSubstitutable(Type r1,
  3096                                            Type r2, Type r2res,
  3097                                            Warner warner) {
  3098         if (isSameType(r1.getReturnType(), r2res))
  3099             return true;
  3100         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3101             return false;
  3103         if (hasSameArgs(r1, r2))
  3104             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3105         if (!allowCovariantReturns)
  3106             return false;
  3107         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3108             return true;
  3109         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3110             return false;
  3111         warner.warn(LintCategory.UNCHECKED);
  3112         return true;
  3115     /**
  3116      * Is t an appropriate return type in an overrider for a
  3117      * method that returns s?
  3118      */
  3119     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3120         return
  3121             isSameType(t, s) ||
  3122             allowCovariantReturns &&
  3123             !t.isPrimitive() &&
  3124             !s.isPrimitive() &&
  3125             isAssignable(t, s, warner);
  3127     // </editor-fold>
  3129     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3130     /**
  3131      * Return the class that boxes the given primitive.
  3132      */
  3133     public ClassSymbol boxedClass(Type t) {
  3134         return reader.enterClass(syms.boxedName[t.tag]);
  3137     /**
  3138      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3139      */
  3140     public Type boxedTypeOrType(Type t) {
  3141         return t.isPrimitive() ?
  3142             boxedClass(t).type :
  3143             t;
  3146     /**
  3147      * Return the primitive type corresponding to a boxed type.
  3148      */
  3149     public Type unboxedType(Type t) {
  3150         if (allowBoxing) {
  3151             for (int i=0; i<syms.boxedName.length; i++) {
  3152                 Name box = syms.boxedName[i];
  3153                 if (box != null &&
  3154                     asSuper(t, reader.enterClass(box)) != null)
  3155                     return syms.typeOfTag[i];
  3158         return Type.noType;
  3160     // </editor-fold>
  3162     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3163     /*
  3164      * JLS 5.1.10 Capture Conversion:
  3166      * Let G name a generic type declaration with n formal type
  3167      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3168      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3169      * where, for 1 <= i <= n:
  3171      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3172      *   Si is a fresh type variable whose upper bound is
  3173      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3174      *   type.
  3176      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3177      *   then Si is a fresh type variable whose upper bound is
  3178      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3179      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3180      *   a compile-time error if for any two classes (not interfaces)
  3181      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3183      * + If Ti is a wildcard type argument of the form ? super Bi,
  3184      *   then Si is a fresh type variable whose upper bound is
  3185      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3187      * + Otherwise, Si = Ti.
  3189      * Capture conversion on any type other than a parameterized type
  3190      * (4.5) acts as an identity conversion (5.1.1). Capture
  3191      * conversions never require a special action at run time and
  3192      * therefore never throw an exception at run time.
  3194      * Capture conversion is not applied recursively.
  3195      */
  3196     /**
  3197      * Capture conversion as specified by the JLS.
  3198      */
  3200     public List<Type> capture(List<Type> ts) {
  3201         List<Type> buf = List.nil();
  3202         for (Type t : ts) {
  3203             buf = buf.prepend(capture(t));
  3205         return buf.reverse();
  3207     public Type capture(Type t) {
  3208         if (t.tag != CLASS)
  3209             return t;
  3210         if (t.getEnclosingType() != Type.noType) {
  3211             Type capturedEncl = capture(t.getEnclosingType());
  3212             if (capturedEncl != t.getEnclosingType()) {
  3213                 Type type1 = memberType(capturedEncl, t.tsym);
  3214                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3217         ClassType cls = (ClassType)t;
  3218         if (cls.isRaw() || !cls.isParameterized())
  3219             return cls;
  3221         ClassType G = (ClassType)cls.asElement().asType();
  3222         List<Type> A = G.getTypeArguments();
  3223         List<Type> T = cls.getTypeArguments();
  3224         List<Type> S = freshTypeVariables(T);
  3226         List<Type> currentA = A;
  3227         List<Type> currentT = T;
  3228         List<Type> currentS = S;
  3229         boolean captured = false;
  3230         while (!currentA.isEmpty() &&
  3231                !currentT.isEmpty() &&
  3232                !currentS.isEmpty()) {
  3233             if (currentS.head != currentT.head) {
  3234                 captured = true;
  3235                 WildcardType Ti = (WildcardType)currentT.head;
  3236                 Type Ui = currentA.head.getUpperBound();
  3237                 CapturedType Si = (CapturedType)currentS.head;
  3238                 if (Ui == null)
  3239                     Ui = syms.objectType;
  3240                 switch (Ti.kind) {
  3241                 case UNBOUND:
  3242                     Si.bound = subst(Ui, A, S);
  3243                     Si.lower = syms.botType;
  3244                     break;
  3245                 case EXTENDS:
  3246                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3247                     Si.lower = syms.botType;
  3248                     break;
  3249                 case SUPER:
  3250                     Si.bound = subst(Ui, A, S);
  3251                     Si.lower = Ti.getSuperBound();
  3252                     break;
  3254                 if (Si.bound == Si.lower)
  3255                     currentS.head = Si.bound;
  3257             currentA = currentA.tail;
  3258             currentT = currentT.tail;
  3259             currentS = currentS.tail;
  3261         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3262             return erasure(t); // some "rare" type involved
  3264         if (captured)
  3265             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3266         else
  3267             return t;
  3269     // where
  3270         public List<Type> freshTypeVariables(List<Type> types) {
  3271             ListBuffer<Type> result = lb();
  3272             for (Type t : types) {
  3273                 if (t.tag == WILDCARD) {
  3274                     Type bound = ((WildcardType)t).getExtendsBound();
  3275                     if (bound == null)
  3276                         bound = syms.objectType;
  3277                     result.append(new CapturedType(capturedName,
  3278                                                    syms.noSymbol,
  3279                                                    bound,
  3280                                                    syms.botType,
  3281                                                    (WildcardType)t));
  3282                 } else {
  3283                     result.append(t);
  3286             return result.toList();
  3288     // </editor-fold>
  3290     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3291     private List<Type> upperBounds(List<Type> ss) {
  3292         if (ss.isEmpty()) return ss;
  3293         Type head = upperBound(ss.head);
  3294         List<Type> tail = upperBounds(ss.tail);
  3295         if (head != ss.head || tail != ss.tail)
  3296             return tail.prepend(head);
  3297         else
  3298             return ss;
  3301     private boolean sideCast(Type from, Type to, Warner warn) {
  3302         // We are casting from type $from$ to type $to$, which are
  3303         // non-final unrelated types.  This method
  3304         // tries to reject a cast by transferring type parameters
  3305         // from $to$ to $from$ by common superinterfaces.
  3306         boolean reverse = false;
  3307         Type target = to;
  3308         if ((to.tsym.flags() & INTERFACE) == 0) {
  3309             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3310             reverse = true;
  3311             to = from;
  3312             from = target;
  3314         List<Type> commonSupers = superClosure(to, erasure(from));
  3315         boolean giveWarning = commonSupers.isEmpty();
  3316         // The arguments to the supers could be unified here to
  3317         // get a more accurate analysis
  3318         while (commonSupers.nonEmpty()) {
  3319             Type t1 = asSuper(from, commonSupers.head.tsym);
  3320             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3321             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3322                 return false;
  3323             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3324             commonSupers = commonSupers.tail;
  3326         if (giveWarning && !isReifiable(reverse ? from : to))
  3327             warn.warn(LintCategory.UNCHECKED);
  3328         if (!allowCovariantReturns)
  3329             // reject if there is a common method signature with
  3330             // incompatible return types.
  3331             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3332         return true;
  3335     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3336         // We are casting from type $from$ to type $to$, which are
  3337         // unrelated types one of which is final and the other of
  3338         // which is an interface.  This method
  3339         // tries to reject a cast by transferring type parameters
  3340         // from the final class to the interface.
  3341         boolean reverse = false;
  3342         Type target = to;
  3343         if ((to.tsym.flags() & INTERFACE) == 0) {
  3344             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3345             reverse = true;
  3346             to = from;
  3347             from = target;
  3349         Assert.check((from.tsym.flags() & FINAL) != 0);
  3350         Type t1 = asSuper(from, to.tsym);
  3351         if (t1 == null) return false;
  3352         Type t2 = to;
  3353         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3354             return false;
  3355         if (!allowCovariantReturns)
  3356             // reject if there is a common method signature with
  3357             // incompatible return types.
  3358             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3359         if (!isReifiable(target) &&
  3360             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3361             warn.warn(LintCategory.UNCHECKED);
  3362         return true;
  3365     private boolean giveWarning(Type from, Type to) {
  3366         Type subFrom = asSub(from, to.tsym);
  3367         return to.isParameterized() &&
  3368                 (!(isUnbounded(to) ||
  3369                 isSubtype(from, to) ||
  3370                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3373     private List<Type> superClosure(Type t, Type s) {
  3374         List<Type> cl = List.nil();
  3375         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3376             if (isSubtype(s, erasure(l.head))) {
  3377                 cl = insert(cl, l.head);
  3378             } else {
  3379                 cl = union(cl, superClosure(l.head, s));
  3382         return cl;
  3385     private boolean containsTypeEquivalent(Type t, Type s) {
  3386         return
  3387             isSameType(t, s) || // shortcut
  3388             containsType(t, s) && containsType(s, t);
  3391     // <editor-fold defaultstate="collapsed" desc="adapt">
  3392     /**
  3393      * Adapt a type by computing a substitution which maps a source
  3394      * type to a target type.
  3396      * @param source    the source type
  3397      * @param target    the target type
  3398      * @param from      the type variables of the computed substitution
  3399      * @param to        the types of the computed substitution.
  3400      */
  3401     public void adapt(Type source,
  3402                        Type target,
  3403                        ListBuffer<Type> from,
  3404                        ListBuffer<Type> to) throws AdaptFailure {
  3405         new Adapter(from, to).adapt(source, target);
  3408     class Adapter extends SimpleVisitor<Void, Type> {
  3410         ListBuffer<Type> from;
  3411         ListBuffer<Type> to;
  3412         Map<Symbol,Type> mapping;
  3414         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3415             this.from = from;
  3416             this.to = to;
  3417             mapping = new HashMap<Symbol,Type>();
  3420         public void adapt(Type source, Type target) throws AdaptFailure {
  3421             visit(source, target);
  3422             List<Type> fromList = from.toList();
  3423             List<Type> toList = to.toList();
  3424             while (!fromList.isEmpty()) {
  3425                 Type val = mapping.get(fromList.head.tsym);
  3426                 if (toList.head != val)
  3427                     toList.head = val;
  3428                 fromList = fromList.tail;
  3429                 toList = toList.tail;
  3433         @Override
  3434         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3435             if (target.tag == CLASS)
  3436                 adaptRecursive(source.allparams(), target.allparams());
  3437             return null;
  3440         @Override
  3441         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3442             if (target.tag == ARRAY)
  3443                 adaptRecursive(elemtype(source), elemtype(target));
  3444             return null;
  3447         @Override
  3448         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3449             if (source.isExtendsBound())
  3450                 adaptRecursive(upperBound(source), upperBound(target));
  3451             else if (source.isSuperBound())
  3452                 adaptRecursive(lowerBound(source), lowerBound(target));
  3453             return null;
  3456         @Override
  3457         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3458             // Check to see if there is
  3459             // already a mapping for $source$, in which case
  3460             // the old mapping will be merged with the new
  3461             Type val = mapping.get(source.tsym);
  3462             if (val != null) {
  3463                 if (val.isSuperBound() && target.isSuperBound()) {
  3464                     val = isSubtype(lowerBound(val), lowerBound(target))
  3465                         ? target : val;
  3466                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3467                     val = isSubtype(upperBound(val), upperBound(target))
  3468                         ? val : target;
  3469                 } else if (!isSameType(val, target)) {
  3470                     throw new AdaptFailure();
  3472             } else {
  3473                 val = target;
  3474                 from.append(source);
  3475                 to.append(target);
  3477             mapping.put(source.tsym, val);
  3478             return null;
  3481         @Override
  3482         public Void visitType(Type source, Type target) {
  3483             return null;
  3486         private Set<TypePair> cache = new HashSet<TypePair>();
  3488         private void adaptRecursive(Type source, Type target) {
  3489             TypePair pair = new TypePair(source, target);
  3490             if (cache.add(pair)) {
  3491                 try {
  3492                     visit(source, target);
  3493                 } finally {
  3494                     cache.remove(pair);
  3499         private void adaptRecursive(List<Type> source, List<Type> target) {
  3500             if (source.length() == target.length()) {
  3501                 while (source.nonEmpty()) {
  3502                     adaptRecursive(source.head, target.head);
  3503                     source = source.tail;
  3504                     target = target.tail;
  3510     public static class AdaptFailure extends RuntimeException {
  3511         static final long serialVersionUID = -7490231548272701566L;
  3514     private void adaptSelf(Type t,
  3515                            ListBuffer<Type> from,
  3516                            ListBuffer<Type> to) {
  3517         try {
  3518             //if (t.tsym.type != t)
  3519                 adapt(t.tsym.type, t, from, to);
  3520         } catch (AdaptFailure ex) {
  3521             // Adapt should never fail calculating a mapping from
  3522             // t.tsym.type to t as there can be no merge problem.
  3523             throw new AssertionError(ex);
  3526     // </editor-fold>
  3528     /**
  3529      * Rewrite all type variables (universal quantifiers) in the given
  3530      * type to wildcards (existential quantifiers).  This is used to
  3531      * determine if a cast is allowed.  For example, if high is true
  3532      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3533      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3534      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3535      * List<Integer>} with a warning.
  3536      * @param t a type
  3537      * @param high if true return an upper bound; otherwise a lower
  3538      * bound
  3539      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3540      * otherwise rewrite all type variables
  3541      * @return the type rewritten with wildcards (existential
  3542      * quantifiers) only
  3543      */
  3544     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3545         return new Rewriter(high, rewriteTypeVars).visit(t);
  3548     class Rewriter extends UnaryVisitor<Type> {
  3550         boolean high;
  3551         boolean rewriteTypeVars;
  3553         Rewriter(boolean high, boolean rewriteTypeVars) {
  3554             this.high = high;
  3555             this.rewriteTypeVars = rewriteTypeVars;
  3558         @Override
  3559         public Type visitClassType(ClassType t, Void s) {
  3560             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3561             boolean changed = false;
  3562             for (Type arg : t.allparams()) {
  3563                 Type bound = visit(arg);
  3564                 if (arg != bound) {
  3565                     changed = true;
  3567                 rewritten.append(bound);
  3569             if (changed)
  3570                 return subst(t.tsym.type,
  3571                         t.tsym.type.allparams(),
  3572                         rewritten.toList());
  3573             else
  3574                 return t;
  3577         public Type visitType(Type t, Void s) {
  3578             return high ? upperBound(t) : lowerBound(t);
  3581         @Override
  3582         public Type visitCapturedType(CapturedType t, Void s) {
  3583             Type bound = visitWildcardType(t.wildcard, null);
  3584             return (bound.contains(t)) ?
  3585                     erasure(bound) :
  3586                     bound;
  3589         @Override
  3590         public Type visitTypeVar(TypeVar t, Void s) {
  3591             if (rewriteTypeVars) {
  3592                 Type bound = high ?
  3593                     (t.bound.contains(t) ?
  3594                         erasure(t.bound) :
  3595                         visit(t.bound)) :
  3596                     syms.botType;
  3597                 return rewriteAsWildcardType(bound, t);
  3599             else
  3600                 return t;
  3603         @Override
  3604         public Type visitWildcardType(WildcardType t, Void s) {
  3605             Type bound = high ? t.getExtendsBound() :
  3606                                 t.getSuperBound();
  3607             if (bound == null)
  3608             bound = high ? syms.objectType : syms.botType;
  3609             return rewriteAsWildcardType(visit(bound), t.bound);
  3612         private Type rewriteAsWildcardType(Type bound, TypeVar formal) {
  3613             return high ?
  3614                 makeExtendsWildcard(B(bound), formal) :
  3615                 makeSuperWildcard(B(bound), formal);
  3618         Type B(Type t) {
  3619             while (t.tag == WILDCARD) {
  3620                 WildcardType w = (WildcardType)t;
  3621                 t = high ?
  3622                     w.getExtendsBound() :
  3623                     w.getSuperBound();
  3624                 if (t == null) {
  3625                     t = high ? syms.objectType : syms.botType;
  3628             return t;
  3633     /**
  3634      * Create a wildcard with the given upper (extends) bound; create
  3635      * an unbounded wildcard if bound is Object.
  3637      * @param bound the upper bound
  3638      * @param formal the formal type parameter that will be
  3639      * substituted by the wildcard
  3640      */
  3641     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3642         if (bound == syms.objectType) {
  3643             return new WildcardType(syms.objectType,
  3644                                     BoundKind.UNBOUND,
  3645                                     syms.boundClass,
  3646                                     formal);
  3647         } else {
  3648             return new WildcardType(bound,
  3649                                     BoundKind.EXTENDS,
  3650                                     syms.boundClass,
  3651                                     formal);
  3655     /**
  3656      * Create a wildcard with the given lower (super) bound; create an
  3657      * unbounded wildcard if bound is bottom (type of {@code null}).
  3659      * @param bound the lower bound
  3660      * @param formal the formal type parameter that will be
  3661      * substituted by the wildcard
  3662      */
  3663     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3664         if (bound.tag == BOT) {
  3665             return new WildcardType(syms.objectType,
  3666                                     BoundKind.UNBOUND,
  3667                                     syms.boundClass,
  3668                                     formal);
  3669         } else {
  3670             return new WildcardType(bound,
  3671                                     BoundKind.SUPER,
  3672                                     syms.boundClass,
  3673                                     formal);
  3677     /**
  3678      * A wrapper for a type that allows use in sets.
  3679      */
  3680     class SingletonType {
  3681         final Type t;
  3682         SingletonType(Type t) {
  3683             this.t = t;
  3685         public int hashCode() {
  3686             return Types.hashCode(t);
  3688         public boolean equals(Object obj) {
  3689             return (obj instanceof SingletonType) &&
  3690                 isSameType(t, ((SingletonType)obj).t);
  3692         public String toString() {
  3693             return t.toString();
  3696     // </editor-fold>
  3698     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3699     /**
  3700      * A default visitor for types.  All visitor methods except
  3701      * visitType are implemented by delegating to visitType.  Concrete
  3702      * subclasses must provide an implementation of visitType and can
  3703      * override other methods as needed.
  3705      * @param <R> the return type of the operation implemented by this
  3706      * visitor; use Void if no return type is needed.
  3707      * @param <S> the type of the second argument (the first being the
  3708      * type itself) of the operation implemented by this visitor; use
  3709      * Void if a second argument is not needed.
  3710      */
  3711     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3712         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3713         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3714         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3715         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3716         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3717         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3718         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3719         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3720         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3721         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3722         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3725     /**
  3726      * A default visitor for symbols.  All visitor methods except
  3727      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3728      * subclasses must provide an implementation of visitSymbol and can
  3729      * override other methods as needed.
  3731      * @param <R> the return type of the operation implemented by this
  3732      * visitor; use Void if no return type is needed.
  3733      * @param <S> the type of the second argument (the first being the
  3734      * symbol itself) of the operation implemented by this visitor; use
  3735      * Void if a second argument is not needed.
  3736      */
  3737     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3738         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3739         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3740         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3741         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3742         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3743         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3744         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3747     /**
  3748      * A <em>simple</em> visitor for types.  This visitor is simple as
  3749      * captured wildcards, for-all types (generic methods), and
  3750      * undetermined type variables (part of inference) are hidden.
  3751      * Captured wildcards are hidden by treating them as type
  3752      * variables and the rest are hidden by visiting their qtypes.
  3754      * @param <R> the return type of the operation implemented by this
  3755      * visitor; use Void if no return type is needed.
  3756      * @param <S> the type of the second argument (the first being the
  3757      * type itself) of the operation implemented by this visitor; use
  3758      * Void if a second argument is not needed.
  3759      */
  3760     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3761         @Override
  3762         public R visitCapturedType(CapturedType t, S s) {
  3763             return visitTypeVar(t, s);
  3765         @Override
  3766         public R visitForAll(ForAll t, S s) {
  3767             return visit(t.qtype, s);
  3769         @Override
  3770         public R visitUndetVar(UndetVar t, S s) {
  3771             return visit(t.qtype, s);
  3775     /**
  3776      * A plain relation on types.  That is a 2-ary function on the
  3777      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3778      * <!-- In plain text: Type x Type -> Boolean -->
  3779      */
  3780     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3782     /**
  3783      * A convenience visitor for implementing operations that only
  3784      * require one argument (the type itself), that is, unary
  3785      * operations.
  3787      * @param <R> the return type of the operation implemented by this
  3788      * visitor; use Void if no return type is needed.
  3789      */
  3790     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3791         final public R visit(Type t) { return t.accept(this, null); }
  3794     /**
  3795      * A visitor for implementing a mapping from types to types.  The
  3796      * default behavior of this class is to implement the identity
  3797      * mapping (mapping a type to itself).  This can be overridden in
  3798      * subclasses.
  3800      * @param <S> the type of the second argument (the first being the
  3801      * type itself) of this mapping; use Void if a second argument is
  3802      * not needed.
  3803      */
  3804     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3805         final public Type visit(Type t) { return t.accept(this, null); }
  3806         public Type visitType(Type t, S s) { return t; }
  3808     // </editor-fold>
  3811     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  3813     public RetentionPolicy getRetention(Attribute.Compound a) {
  3814         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  3815         Attribute.Compound c = a.type.tsym.attribute(syms.retentionType.tsym);
  3816         if (c != null) {
  3817             Attribute value = c.member(names.value);
  3818             if (value != null && value instanceof Attribute.Enum) {
  3819                 Name levelName = ((Attribute.Enum)value).value.name;
  3820                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  3821                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  3822                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  3823                 else ;// /* fail soft */ throw new AssertionError(levelName);
  3826         return vis;
  3828     // </editor-fold>

mercurial