src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 31 May 2012 17:42:14 +0100

author
mcimadamore
date
Thu, 31 May 2012 17:42:14 +0100
changeset 1268
af6a4c24f4e3
parent 1239
2827076dbf64
child 1296
cddc2c894cc6
permissions
-rw-r--r--

7166552: Inference: cleanup usage of Type.ForAll
Summary: Remove hack to callback into type-inference from assignment context
Reviewed-by: dlsmith, jjg

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Type.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    35 import com.sun.tools.javac.jvm.*;
    36 import com.sun.tools.javac.tree.*;
    37 import com.sun.tools.javac.tree.JCTree.*;
    38 import com.sun.tools.javac.util.*;
    39 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    41 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    43 import java.util.Arrays;
    44 import java.util.Collection;
    45 import java.util.EnumMap;
    46 import java.util.EnumSet;
    47 import java.util.HashSet;
    48 import java.util.Map;
    49 import java.util.Set;
    51 import javax.lang.model.element.ElementVisitor;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.BLOCK;
    55 import static com.sun.tools.javac.code.Kinds.*;
    56 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    57 import static com.sun.tools.javac.code.TypeTags.*;
    58 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    59 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    61 /** Helper class for name resolution, used mostly by the attribution phase.
    62  *
    63  *  <p><b>This is NOT part of any supported API.
    64  *  If you write code that depends on this, you do so at your own risk.
    65  *  This code and its internal interfaces are subject to change or
    66  *  deletion without notice.</b>
    67  */
    68 public class Resolve {
    69     protected static final Context.Key<Resolve> resolveKey =
    70         new Context.Key<Resolve>();
    72     Names names;
    73     Log log;
    74     Symtab syms;
    75     Attr attr;
    76     Check chk;
    77     Infer infer;
    78     ClassReader reader;
    79     TreeInfo treeinfo;
    80     Types types;
    81     JCDiagnostic.Factory diags;
    82     public final boolean boxingEnabled; // = source.allowBoxing();
    83     public final boolean varargsEnabled; // = source.allowVarargs();
    84     public final boolean allowMethodHandles;
    85     private final boolean debugResolve;
    86     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    88     Scope polymorphicSignatureScope;
    90     protected Resolve(Context context) {
    91         context.put(resolveKey, this);
    92         syms = Symtab.instance(context);
    94         varNotFound = new
    95             SymbolNotFoundError(ABSENT_VAR);
    96         wrongMethod = new
    97             InapplicableSymbolError();
    98         wrongMethods = new
    99             InapplicableSymbolsError();
   100         methodNotFound = new
   101             SymbolNotFoundError(ABSENT_MTH);
   102         typeNotFound = new
   103             SymbolNotFoundError(ABSENT_TYP);
   105         names = Names.instance(context);
   106         log = Log.instance(context);
   107         attr = Attr.instance(context);
   108         chk = Check.instance(context);
   109         infer = Infer.instance(context);
   110         reader = ClassReader.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   112         types = Types.instance(context);
   113         diags = JCDiagnostic.Factory.instance(context);
   114         Source source = Source.instance(context);
   115         boxingEnabled = source.allowBoxing();
   116         varargsEnabled = source.allowVarargs();
   117         Options options = Options.instance(context);
   118         debugResolve = options.isSet("debugresolve");
   119         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   120         Target target = Target.instance(context);
   121         allowMethodHandles = target.hasMethodHandles();
   122         polymorphicSignatureScope = new Scope(syms.noSymbol);
   124         inapplicableMethodException = new InapplicableMethodException(diags);
   125     }
   127     /** error symbols, which are returned when resolution fails
   128      */
   129     private final SymbolNotFoundError varNotFound;
   130     private final InapplicableSymbolError wrongMethod;
   131     private final InapplicableSymbolsError wrongMethods;
   132     private final SymbolNotFoundError methodNotFound;
   133     private final SymbolNotFoundError typeNotFound;
   135     public static Resolve instance(Context context) {
   136         Resolve instance = context.get(resolveKey);
   137         if (instance == null)
   138             instance = new Resolve(context);
   139         return instance;
   140     }
   142     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   143     enum VerboseResolutionMode {
   144         SUCCESS("success"),
   145         FAILURE("failure"),
   146         APPLICABLE("applicable"),
   147         INAPPLICABLE("inapplicable"),
   148         DEFERRED_INST("deferred-inference"),
   149         PREDEF("predef"),
   150         OBJECT_INIT("object-init"),
   151         INTERNAL("internal");
   153         String opt;
   155         private VerboseResolutionMode(String opt) {
   156             this.opt = opt;
   157         }
   159         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   160             String s = opts.get("verboseResolution");
   161             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   162             if (s == null) return res;
   163             if (s.contains("all")) {
   164                 res = EnumSet.allOf(VerboseResolutionMode.class);
   165             }
   166             Collection<String> args = Arrays.asList(s.split(","));
   167             for (VerboseResolutionMode mode : values()) {
   168                 if (args.contains(mode.opt)) {
   169                     res.add(mode);
   170                 } else if (args.contains("-" + mode.opt)) {
   171                     res.remove(mode);
   172                 }
   173             }
   174             return res;
   175         }
   176     }
   178     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   179             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   180         boolean success = bestSoFar.kind < ERRONEOUS;
   182         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   183             return;
   184         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   185             return;
   186         }
   188         if (bestSoFar.name == names.init &&
   189                 bestSoFar.owner == syms.objectType.tsym &&
   190                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   191             return; //skip diags for Object constructor resolution
   192         } else if (site == syms.predefClass.type &&
   193                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   194             return; //skip spurious diags for predef symbols (i.e. operators)
   195         } else if (currentResolutionContext.internalResolution &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   197             return;
   198         }
   200         int pos = 0;
   201         int mostSpecificPos = -1;
   202         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   203         for (Candidate c : currentResolutionContext.candidates) {
   204             if (currentResolutionContext.step != c.step ||
   205                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   206                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   207                 continue;
   208             } else {
   209                 subDiags.append(c.isApplicable() ?
   210                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   211                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   212                 if (c.sym == bestSoFar)
   213                     mostSpecificPos = pos;
   214                 pos++;
   215             }
   216         }
   217         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   218         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   219                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   220                 methodArguments(argtypes), methodArguments(typeargtypes));
   221         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   222         log.report(d);
   223     }
   225     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   226         JCDiagnostic subDiag = null;
   227         if (sym.type.tag == FORALL) {
   228             subDiag = diags.fragment("partial.inst.sig", inst);
   229         }
   231         String key = subDiag == null ?
   232                 "applicable.method.found" :
   233                 "applicable.method.found.1";
   235         return diags.fragment(key, pos, sym, subDiag);
   236     }
   238     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   239         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   240     }
   241     // </editor-fold>
   243 /* ************************************************************************
   244  * Identifier resolution
   245  *************************************************************************/
   247     /** An environment is "static" if its static level is greater than
   248      *  the one of its outer environment
   249      */
   250     static boolean isStatic(Env<AttrContext> env) {
   251         return env.info.staticLevel > env.outer.info.staticLevel;
   252     }
   254     /** An environment is an "initializer" if it is a constructor or
   255      *  an instance initializer.
   256      */
   257     static boolean isInitializer(Env<AttrContext> env) {
   258         Symbol owner = env.info.scope.owner;
   259         return owner.isConstructor() ||
   260             owner.owner.kind == TYP &&
   261             (owner.kind == VAR ||
   262              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   263             (owner.flags() & STATIC) == 0;
   264     }
   266     /** Is class accessible in given evironment?
   267      *  @param env    The current environment.
   268      *  @param c      The class whose accessibility is checked.
   269      */
   270     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   271         return isAccessible(env, c, false);
   272     }
   274     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   275         boolean isAccessible = false;
   276         switch ((short)(c.flags() & AccessFlags)) {
   277             case PRIVATE:
   278                 isAccessible =
   279                     env.enclClass.sym.outermostClass() ==
   280                     c.owner.outermostClass();
   281                 break;
   282             case 0:
   283                 isAccessible =
   284                     env.toplevel.packge == c.owner // fast special case
   285                     ||
   286                     env.toplevel.packge == c.packge()
   287                     ||
   288                     // Hack: this case is added since synthesized default constructors
   289                     // of anonymous classes should be allowed to access
   290                     // classes which would be inaccessible otherwise.
   291                     env.enclMethod != null &&
   292                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   293                 break;
   294             default: // error recovery
   295             case PUBLIC:
   296                 isAccessible = true;
   297                 break;
   298             case PROTECTED:
   299                 isAccessible =
   300                     env.toplevel.packge == c.owner // fast special case
   301                     ||
   302                     env.toplevel.packge == c.packge()
   303                     ||
   304                     isInnerSubClass(env.enclClass.sym, c.owner);
   305                 break;
   306         }
   307         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   308             isAccessible :
   309             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   310     }
   311     //where
   312         /** Is given class a subclass of given base class, or an inner class
   313          *  of a subclass?
   314          *  Return null if no such class exists.
   315          *  @param c     The class which is the subclass or is contained in it.
   316          *  @param base  The base class
   317          */
   318         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   319             while (c != null && !c.isSubClass(base, types)) {
   320                 c = c.owner.enclClass();
   321             }
   322             return c != null;
   323         }
   325     boolean isAccessible(Env<AttrContext> env, Type t) {
   326         return isAccessible(env, t, false);
   327     }
   329     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   330         return (t.tag == ARRAY)
   331             ? isAccessible(env, types.elemtype(t))
   332             : isAccessible(env, t.tsym, checkInner);
   333     }
   335     /** Is symbol accessible as a member of given type in given evironment?
   336      *  @param env    The current environment.
   337      *  @param site   The type of which the tested symbol is regarded
   338      *                as a member.
   339      *  @param sym    The symbol.
   340      */
   341     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   342         return isAccessible(env, site, sym, false);
   343     }
   344     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   345         if (sym.name == names.init && sym.owner != site.tsym) return false;
   346         switch ((short)(sym.flags() & AccessFlags)) {
   347         case PRIVATE:
   348             return
   349                 (env.enclClass.sym == sym.owner // fast special case
   350                  ||
   351                  env.enclClass.sym.outermostClass() ==
   352                  sym.owner.outermostClass())
   353                 &&
   354                 sym.isInheritedIn(site.tsym, types);
   355         case 0:
   356             return
   357                 (env.toplevel.packge == sym.owner.owner // fast special case
   358                  ||
   359                  env.toplevel.packge == sym.packge())
   360                 &&
   361                 isAccessible(env, site, checkInner)
   362                 &&
   363                 sym.isInheritedIn(site.tsym, types)
   364                 &&
   365                 notOverriddenIn(site, sym);
   366         case PROTECTED:
   367             return
   368                 (env.toplevel.packge == sym.owner.owner // fast special case
   369                  ||
   370                  env.toplevel.packge == sym.packge()
   371                  ||
   372                  isProtectedAccessible(sym, env.enclClass.sym, site)
   373                  ||
   374                  // OK to select instance method or field from 'super' or type name
   375                  // (but type names should be disallowed elsewhere!)
   376                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   377                 &&
   378                 isAccessible(env, site, checkInner)
   379                 &&
   380                 notOverriddenIn(site, sym);
   381         default: // this case includes erroneous combinations as well
   382             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   383         }
   384     }
   385     //where
   386     /* `sym' is accessible only if not overridden by
   387      * another symbol which is a member of `site'
   388      * (because, if it is overridden, `sym' is not strictly
   389      * speaking a member of `site'). A polymorphic signature method
   390      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   391      */
   392     private boolean notOverriddenIn(Type site, Symbol sym) {
   393         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   394             return true;
   395         else {
   396             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   397             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   398                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   399         }
   400     }
   401     //where
   402         /** Is given protected symbol accessible if it is selected from given site
   403          *  and the selection takes place in given class?
   404          *  @param sym     The symbol with protected access
   405          *  @param c       The class where the access takes place
   406          *  @site          The type of the qualifier
   407          */
   408         private
   409         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   410             while (c != null &&
   411                    !(c.isSubClass(sym.owner, types) &&
   412                      (c.flags() & INTERFACE) == 0 &&
   413                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   414                      // only to instance fields and methods -- types are excluded
   415                      // regardless of whether they are declared 'static' or not.
   416                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   417                 c = c.owner.enclClass();
   418             return c != null;
   419         }
   421     /** Try to instantiate the type of a method so that it fits
   422      *  given type arguments and argument types. If succesful, return
   423      *  the method's instantiated type, else return null.
   424      *  The instantiation will take into account an additional leading
   425      *  formal parameter if the method is an instance method seen as a member
   426      *  of un underdetermined site In this case, we treat site as an additional
   427      *  parameter and the parameters of the class containing the method as
   428      *  additional type variables that get instantiated.
   429      *
   430      *  @param env         The current environment
   431      *  @param site        The type of which the method is a member.
   432      *  @param m           The method symbol.
   433      *  @param argtypes    The invocation's given value arguments.
   434      *  @param typeargtypes    The invocation's given type arguments.
   435      *  @param allowBoxing Allow boxing conversions of arguments.
   436      *  @param useVarargs Box trailing arguments into an array for varargs.
   437      */
   438     Type rawInstantiate(Env<AttrContext> env,
   439                         Type site,
   440                         Symbol m,
   441                         ResultInfo resultInfo,
   442                         List<Type> argtypes,
   443                         List<Type> typeargtypes,
   444                         boolean allowBoxing,
   445                         boolean useVarargs,
   446                         Warner warn)
   447         throws Infer.InferenceException {
   448         if (useVarargs && (m.flags() & VARARGS) == 0)
   449             throw inapplicableMethodException.setMessage();
   450         Type mt = types.memberType(site, m);
   452         // tvars is the list of formal type variables for which type arguments
   453         // need to inferred.
   454         List<Type> tvars = List.nil();
   455         if (typeargtypes == null) typeargtypes = List.nil();
   456         if (mt.tag != FORALL && typeargtypes.nonEmpty()) {
   457             // This is not a polymorphic method, but typeargs are supplied
   458             // which is fine, see JLS 15.12.2.1
   459         } else if (mt.tag == FORALL && typeargtypes.nonEmpty()) {
   460             ForAll pmt = (ForAll) mt;
   461             if (typeargtypes.length() != pmt.tvars.length())
   462                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   463             // Check type arguments are within bounds
   464             List<Type> formals = pmt.tvars;
   465             List<Type> actuals = typeargtypes;
   466             while (formals.nonEmpty() && actuals.nonEmpty()) {
   467                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   468                                                 pmt.tvars, typeargtypes);
   469                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   470                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   471                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   472                 formals = formals.tail;
   473                 actuals = actuals.tail;
   474             }
   475             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   476         } else if (mt.tag == FORALL) {
   477             ForAll pmt = (ForAll) mt;
   478             List<Type> tvars1 = types.newInstances(pmt.tvars);
   479             tvars = tvars.appendList(tvars1);
   480             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   481         }
   483         // find out whether we need to go the slow route via infer
   484         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   485         for (List<Type> l = argtypes;
   486              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   487              l = l.tail) {
   488             if (l.head.tag == FORALL) instNeeded = true;
   489         }
   491         if (instNeeded)
   492             return infer.instantiateMethod(env,
   493                                     tvars,
   494                                     (MethodType)mt,
   495                                     resultInfo,
   496                                     m,
   497                                     argtypes,
   498                                     allowBoxing,
   499                                     useVarargs,
   500                                     warn);
   502         checkRawArgumentsAcceptable(env, argtypes, mt.getParameterTypes(),
   503                                 allowBoxing, useVarargs, warn);
   504         return mt;
   505     }
   507     /** Same but returns null instead throwing a NoInstanceException
   508      */
   509     Type instantiate(Env<AttrContext> env,
   510                      Type site,
   511                      Symbol m,
   512                      ResultInfo resultInfo,
   513                      List<Type> argtypes,
   514                      List<Type> typeargtypes,
   515                      boolean allowBoxing,
   516                      boolean useVarargs,
   517                      Warner warn) {
   518         try {
   519             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   520                                   allowBoxing, useVarargs, warn);
   521         } catch (InapplicableMethodException ex) {
   522             return null;
   523         }
   524     }
   526     /** Check if a parameter list accepts a list of args.
   527      */
   528     boolean argumentsAcceptable(Env<AttrContext> env,
   529                                 List<Type> argtypes,
   530                                 List<Type> formals,
   531                                 boolean allowBoxing,
   532                                 boolean useVarargs,
   533                                 Warner warn) {
   534         try {
   535             checkRawArgumentsAcceptable(env, argtypes, formals, allowBoxing, useVarargs, warn);
   536             return true;
   537         } catch (InapplicableMethodException ex) {
   538             return false;
   539         }
   540     }
   541     /**
   542      * A check handler is used by the main method applicability routine in order
   543      * to handle specific method applicability failures. It is assumed that a class
   544      * implementing this interface should throw exceptions that are a subtype of
   545      * InapplicableMethodException (see below). Such exception will terminate the
   546      * method applicability check and propagate important info outwards (for the
   547      * purpose of generating better diagnostics).
   548      */
   549     interface MethodCheckHandler {
   550         /* The number of actuals and formals differ */
   551         InapplicableMethodException arityMismatch();
   552         /* An actual argument type does not conform to the corresponding formal type */
   553         InapplicableMethodException argumentMismatch(boolean varargs, Type found, Type expected);
   554         /* The element type of a varargs is not accessible in the current context */
   555         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   556     }
   558     /**
   559      * Basic method check handler used within Resolve - all methods end up
   560      * throwing InapplicableMethodException; a diagnostic fragment that describes
   561      * the cause as to why the method is not applicable is set on the exception
   562      * before it is thrown.
   563      */
   564     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   565             public InapplicableMethodException arityMismatch() {
   566                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   567             }
   568             public InapplicableMethodException argumentMismatch(boolean varargs, Type found, Type expected) {
   569                 String key = varargs ?
   570                         "varargs.argument.mismatch" :
   571                         "no.conforming.assignment.exists";
   572                 return inapplicableMethodException.setMessage(key,
   573                         found, expected);
   574             }
   575             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   576                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   577                         expected, Kinds.kindName(location), location);
   578             }
   579     };
   581     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   582                                 List<Type> argtypes,
   583                                 List<Type> formals,
   584                                 boolean allowBoxing,
   585                                 boolean useVarargs,
   586                                 Warner warn) {
   587         checkRawArgumentsAcceptable(env, List.<Type>nil(), argtypes, formals,
   588                 allowBoxing, useVarargs, warn, resolveHandler);
   589     }
   591     /**
   592      * Main method applicability routine. Given a list of actual types A,
   593      * a list of formal types F, determines whether the types in A are
   594      * compatible (by method invocation conversion) with the types in F.
   595      *
   596      * Since this routine is shared between overload resolution and method
   597      * type-inference, it is crucial that actual types are converted to the
   598      * corresponding 'undet' form (i.e. where inference variables are replaced
   599      * with undetvars) so that constraints can be propagated and collected.
   600      *
   601      * Moreover, if one or more types in A is a poly type, this routine calls
   602      * Infer.instantiateArg in order to complete the poly type (this might involve
   603      * deferred attribution).
   604      *
   605      * A method check handler (see above) is used in order to report errors.
   606      */
   607     List<Type> checkRawArgumentsAcceptable(Env<AttrContext> env,
   608                                 List<Type> undetvars,
   609                                 List<Type> argtypes,
   610                                 List<Type> formals,
   611                                 boolean allowBoxing,
   612                                 boolean useVarargs,
   613                                 Warner warn,
   614                                 MethodCheckHandler handler) {
   615         Type varargsFormal = useVarargs ? formals.last() : null;
   616         ListBuffer<Type> checkedArgs = ListBuffer.lb();
   618         if (varargsFormal == null &&
   619                 argtypes.size() != formals.size()) {
   620             throw handler.arityMismatch(); // not enough args
   621         }
   623         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   624             ResultInfo resultInfo = methodCheckResult(formals.head, allowBoxing, false, undetvars, handler, warn);
   625             checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   626             argtypes = argtypes.tail;
   627             formals = formals.tail;
   628         }
   630         if (formals.head != varargsFormal) {
   631             throw handler.arityMismatch(); // not enough args
   632         }
   634         if (useVarargs) {
   635             //note: if applicability check is triggered by most specific test,
   636             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   637             Type elt = types.elemtype(varargsFormal);
   638             while (argtypes.nonEmpty()) {
   639                 ResultInfo resultInfo = methodCheckResult(elt, allowBoxing, true, undetvars, handler, warn);
   640                 checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   641                 argtypes = argtypes.tail;
   642             }
   643             //check varargs element type accessibility
   644             if (undetvars.isEmpty() && !isAccessible(env, elt)) {
   645                 Symbol location = env.enclClass.sym;
   646                 throw handler.inaccessibleVarargs(location, elt);
   647             }
   648         }
   649         return checkedArgs.toList();
   650     }
   652     /**
   653      * Check context to be used during method applicability checks. A method check
   654      * context might contain inference variables.
   655      */
   656     abstract class MethodCheckContext implements CheckContext {
   658         MethodCheckHandler handler;
   659         boolean useVarargs;
   660         List<Type> undetvars;
   661         Warner rsWarner;
   663         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   664             this.handler = handler;
   665             this.useVarargs = useVarargs;
   666             this.undetvars = undetvars;
   667             this.rsWarner = rsWarner;
   668         }
   670         public void report(DiagnosticPosition pos, Type found, Type req, JCDiagnostic details) {
   671             throw handler.argumentMismatch(useVarargs, found, req);
   672         }
   674         public Type rawInstantiatePoly(ForAll found, Type req, Warner warn) {
   675             throw new AssertionError("ForAll in argument position");
   676         }
   678         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   679             return rsWarner;
   680         }
   681     }
   683     /**
   684      * Subclass of method check context class that implements strict method conversion.
   685      * Strict method conversion checks compatibility between types using subtyping tests.
   686      */
   687     class StrictMethodContext extends MethodCheckContext {
   689         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   690             super(handler, useVarargs, undetvars, rsWarner);
   691         }
   693         public boolean compatible(Type found, Type req, Warner warn) {
   694             return types.isSubtypeUnchecked(found, infer.asUndetType(req, undetvars), warn);
   695         }
   696     }
   698     /**
   699      * Subclass of method check context class that implements loose method conversion.
   700      * Loose method conversion checks compatibility between types using method conversion tests.
   701      */
   702     class LooseMethodContext extends MethodCheckContext {
   704         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   705             super(handler, useVarargs, undetvars, rsWarner);
   706         }
   708         public boolean compatible(Type found, Type req, Warner warn) {
   709             return types.isConvertible(found, infer.asUndetType(req, undetvars), warn);
   710         }
   711     }
   713     /**
   714      * Create a method check context to be used during method applicability check
   715      */
   716     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   717             List<Type> undetvars, MethodCheckHandler methodHandler, Warner rsWarner) {
   718         MethodCheckContext checkContext = allowBoxing ?
   719                 new LooseMethodContext(methodHandler, useVarargs, undetvars, rsWarner) :
   720                 new StrictMethodContext(methodHandler, useVarargs, undetvars, rsWarner);
   721         return attr.new ResultInfo(VAL, to, checkContext) {
   722             @Override
   723             protected Type check(DiagnosticPosition pos, Type found) {
   724                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found))));
   725             }
   726         };
   727     }
   729     public static class InapplicableMethodException extends RuntimeException {
   730         private static final long serialVersionUID = 0;
   732         JCDiagnostic diagnostic;
   733         JCDiagnostic.Factory diags;
   735         InapplicableMethodException(JCDiagnostic.Factory diags) {
   736             this.diagnostic = null;
   737             this.diags = diags;
   738         }
   739         InapplicableMethodException setMessage() {
   740             this.diagnostic = null;
   741             return this;
   742         }
   743         InapplicableMethodException setMessage(String key) {
   744             this.diagnostic = key != null ? diags.fragment(key) : null;
   745             return this;
   746         }
   747         InapplicableMethodException setMessage(String key, Object... args) {
   748             this.diagnostic = key != null ? diags.fragment(key, args) : null;
   749             return this;
   750         }
   751         InapplicableMethodException setMessage(JCDiagnostic diag) {
   752             this.diagnostic = diag;
   753             return this;
   754         }
   756         public JCDiagnostic getDiagnostic() {
   757             return diagnostic;
   758         }
   759     }
   760     private final InapplicableMethodException inapplicableMethodException;
   762 /* ***************************************************************************
   763  *  Symbol lookup
   764  *  the following naming conventions for arguments are used
   765  *
   766  *       env      is the environment where the symbol was mentioned
   767  *       site     is the type of which the symbol is a member
   768  *       name     is the symbol's name
   769  *                if no arguments are given
   770  *       argtypes are the value arguments, if we search for a method
   771  *
   772  *  If no symbol was found, a ResolveError detailing the problem is returned.
   773  ****************************************************************************/
   775     /** Find field. Synthetic fields are always skipped.
   776      *  @param env     The current environment.
   777      *  @param site    The original type from where the selection takes place.
   778      *  @param name    The name of the field.
   779      *  @param c       The class to search for the field. This is always
   780      *                 a superclass or implemented interface of site's class.
   781      */
   782     Symbol findField(Env<AttrContext> env,
   783                      Type site,
   784                      Name name,
   785                      TypeSymbol c) {
   786         while (c.type.tag == TYPEVAR)
   787             c = c.type.getUpperBound().tsym;
   788         Symbol bestSoFar = varNotFound;
   789         Symbol sym;
   790         Scope.Entry e = c.members().lookup(name);
   791         while (e.scope != null) {
   792             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   793                 return isAccessible(env, site, e.sym)
   794                     ? e.sym : new AccessError(env, site, e.sym);
   795             }
   796             e = e.next();
   797         }
   798         Type st = types.supertype(c.type);
   799         if (st != null && (st.tag == CLASS || st.tag == TYPEVAR)) {
   800             sym = findField(env, site, name, st.tsym);
   801             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   802         }
   803         for (List<Type> l = types.interfaces(c.type);
   804              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   805              l = l.tail) {
   806             sym = findField(env, site, name, l.head.tsym);
   807             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   808                 sym.owner != bestSoFar.owner)
   809                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   810             else if (sym.kind < bestSoFar.kind)
   811                 bestSoFar = sym;
   812         }
   813         return bestSoFar;
   814     }
   816     /** Resolve a field identifier, throw a fatal error if not found.
   817      *  @param pos       The position to use for error reporting.
   818      *  @param env       The environment current at the method invocation.
   819      *  @param site      The type of the qualifying expression, in which
   820      *                   identifier is searched.
   821      *  @param name      The identifier's name.
   822      */
   823     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   824                                           Type site, Name name) {
   825         Symbol sym = findField(env, site, name, site.tsym);
   826         if (sym.kind == VAR) return (VarSymbol)sym;
   827         else throw new FatalError(
   828                  diags.fragment("fatal.err.cant.locate.field",
   829                                 name));
   830     }
   832     /** Find unqualified variable or field with given name.
   833      *  Synthetic fields always skipped.
   834      *  @param env     The current environment.
   835      *  @param name    The name of the variable or field.
   836      */
   837     Symbol findVar(Env<AttrContext> env, Name name) {
   838         Symbol bestSoFar = varNotFound;
   839         Symbol sym;
   840         Env<AttrContext> env1 = env;
   841         boolean staticOnly = false;
   842         while (env1.outer != null) {
   843             if (isStatic(env1)) staticOnly = true;
   844             Scope.Entry e = env1.info.scope.lookup(name);
   845             while (e.scope != null &&
   846                    (e.sym.kind != VAR ||
   847                     (e.sym.flags_field & SYNTHETIC) != 0))
   848                 e = e.next();
   849             sym = (e.scope != null)
   850                 ? e.sym
   851                 : findField(
   852                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   853             if (sym.exists()) {
   854                 if (staticOnly &&
   855                     sym.kind == VAR &&
   856                     sym.owner.kind == TYP &&
   857                     (sym.flags() & STATIC) == 0)
   858                     return new StaticError(sym);
   859                 else
   860                     return sym;
   861             } else if (sym.kind < bestSoFar.kind) {
   862                 bestSoFar = sym;
   863             }
   865             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   866             env1 = env1.outer;
   867         }
   869         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   870         if (sym.exists())
   871             return sym;
   872         if (bestSoFar.exists())
   873             return bestSoFar;
   875         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   876         for (; e.scope != null; e = e.next()) {
   877             sym = e.sym;
   878             Type origin = e.getOrigin().owner.type;
   879             if (sym.kind == VAR) {
   880                 if (e.sym.owner.type != origin)
   881                     sym = sym.clone(e.getOrigin().owner);
   882                 return isAccessible(env, origin, sym)
   883                     ? sym : new AccessError(env, origin, sym);
   884             }
   885         }
   887         Symbol origin = null;
   888         e = env.toplevel.starImportScope.lookup(name);
   889         for (; e.scope != null; e = e.next()) {
   890             sym = e.sym;
   891             if (sym.kind != VAR)
   892                 continue;
   893             // invariant: sym.kind == VAR
   894             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   895                 return new AmbiguityError(bestSoFar, sym);
   896             else if (bestSoFar.kind >= VAR) {
   897                 origin = e.getOrigin().owner;
   898                 bestSoFar = isAccessible(env, origin.type, sym)
   899                     ? sym : new AccessError(env, origin.type, sym);
   900             }
   901         }
   902         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   903             return bestSoFar.clone(origin);
   904         else
   905             return bestSoFar;
   906     }
   908     Warner noteWarner = new Warner();
   910     /** Select the best method for a call site among two choices.
   911      *  @param env              The current environment.
   912      *  @param site             The original type from where the
   913      *                          selection takes place.
   914      *  @param argtypes         The invocation's value arguments,
   915      *  @param typeargtypes     The invocation's type arguments,
   916      *  @param sym              Proposed new best match.
   917      *  @param bestSoFar        Previously found best match.
   918      *  @param allowBoxing Allow boxing conversions of arguments.
   919      *  @param useVarargs Box trailing arguments into an array for varargs.
   920      */
   921     @SuppressWarnings("fallthrough")
   922     Symbol selectBest(Env<AttrContext> env,
   923                       Type site,
   924                       List<Type> argtypes,
   925                       List<Type> typeargtypes,
   926                       Symbol sym,
   927                       Symbol bestSoFar,
   928                       boolean allowBoxing,
   929                       boolean useVarargs,
   930                       boolean operator) {
   931         if (sym.kind == ERR) return bestSoFar;
   932         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
   933         Assert.check(sym.kind < AMBIGUOUS);
   934         try {
   935             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
   936                                allowBoxing, useVarargs, Warner.noWarnings);
   937             if (!operator)
   938                 currentResolutionContext.addApplicableCandidate(sym, mt);
   939         } catch (InapplicableMethodException ex) {
   940             if (!operator)
   941                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
   942             switch (bestSoFar.kind) {
   943             case ABSENT_MTH:
   944                 return wrongMethod;
   945             case WRONG_MTH:
   946                 if (operator) return bestSoFar;
   947             case WRONG_MTHS:
   948                 return wrongMethods;
   949             default:
   950                 return bestSoFar;
   951             }
   952         }
   953         if (!isAccessible(env, site, sym)) {
   954             return (bestSoFar.kind == ABSENT_MTH)
   955                 ? new AccessError(env, site, sym)
   956                 : bestSoFar;
   957         }
   958         return (bestSoFar.kind > AMBIGUOUS)
   959             ? sym
   960             : mostSpecific(sym, bestSoFar, env, site,
   961                            allowBoxing && operator, useVarargs);
   962     }
   964     /* Return the most specific of the two methods for a call,
   965      *  given that both are accessible and applicable.
   966      *  @param m1               A new candidate for most specific.
   967      *  @param m2               The previous most specific candidate.
   968      *  @param env              The current environment.
   969      *  @param site             The original type from where the selection
   970      *                          takes place.
   971      *  @param allowBoxing Allow boxing conversions of arguments.
   972      *  @param useVarargs Box trailing arguments into an array for varargs.
   973      */
   974     Symbol mostSpecific(Symbol m1,
   975                         Symbol m2,
   976                         Env<AttrContext> env,
   977                         final Type site,
   978                         boolean allowBoxing,
   979                         boolean useVarargs) {
   980         switch (m2.kind) {
   981         case MTH:
   982             if (m1 == m2) return m1;
   983             boolean m1SignatureMoreSpecific = signatureMoreSpecific(env, site, m1, m2, allowBoxing, useVarargs);
   984             boolean m2SignatureMoreSpecific = signatureMoreSpecific(env, site, m2, m1, allowBoxing, useVarargs);
   985             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
   986                 Type mt1 = types.memberType(site, m1);
   987                 Type mt2 = types.memberType(site, m2);
   988                 if (!types.overrideEquivalent(mt1, mt2))
   989                     return ambiguityError(m1, m2);
   991                 // same signature; select (a) the non-bridge method, or
   992                 // (b) the one that overrides the other, or (c) the concrete
   993                 // one, or (d) merge both abstract signatures
   994                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
   995                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
   997                 // if one overrides or hides the other, use it
   998                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
   999                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1000                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1001                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1002                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1003                     m1.overrides(m2, m1Owner, types, false))
  1004                     return m1;
  1005                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1006                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1007                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1008                     m2.overrides(m1, m2Owner, types, false))
  1009                     return m2;
  1010                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1011                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1012                 if (m1Abstract && !m2Abstract) return m2;
  1013                 if (m2Abstract && !m1Abstract) return m1;
  1014                 // both abstract or both concrete
  1015                 if (!m1Abstract && !m2Abstract)
  1016                     return ambiguityError(m1, m2);
  1017                 // check that both signatures have the same erasure
  1018                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1019                                        m2.erasure(types).getParameterTypes()))
  1020                     return ambiguityError(m1, m2);
  1021                 // both abstract, neither overridden; merge throws clause and result type
  1022                 Type mst = mostSpecificReturnType(mt1, mt2);
  1023                 if (mst == null) {
  1024                     // Theoretically, this can't happen, but it is possible
  1025                     // due to error recovery or mixing incompatible class files
  1026                     return ambiguityError(m1, m2);
  1028                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1029                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1030                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1031                 MethodSymbol result = new MethodSymbol(
  1032                         mostSpecific.flags(),
  1033                         mostSpecific.name,
  1034                         newSig,
  1035                         mostSpecific.owner) {
  1036                     @Override
  1037                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1038                         if (origin == site.tsym)
  1039                             return this;
  1040                         else
  1041                             return super.implementation(origin, types, checkResult);
  1043                 };
  1044                 return result;
  1046             if (m1SignatureMoreSpecific) return m1;
  1047             if (m2SignatureMoreSpecific) return m2;
  1048             return ambiguityError(m1, m2);
  1049         case AMBIGUOUS:
  1050             AmbiguityError e = (AmbiguityError)m2;
  1051             Symbol err1 = mostSpecific(m1, e.sym, env, site, allowBoxing, useVarargs);
  1052             Symbol err2 = mostSpecific(m1, e.sym2, env, site, allowBoxing, useVarargs);
  1053             if (err1 == err2) return err1;
  1054             if (err1 == e.sym && err2 == e.sym2) return m2;
  1055             if (err1 instanceof AmbiguityError &&
  1056                 err2 instanceof AmbiguityError &&
  1057                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1058                 return ambiguityError(m1, m2);
  1059             else
  1060                 return ambiguityError(err1, err2);
  1061         default:
  1062             throw new AssertionError();
  1065     //where
  1066     private boolean signatureMoreSpecific(Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1067         noteWarner.clear();
  1068         Type mtype1 = types.memberType(site, adjustVarargs(m1, m2, useVarargs));
  1069         Type mtype2 = instantiate(env, site, adjustVarargs(m2, m1, useVarargs), null,
  1070                 types.lowerBoundArgtypes(mtype1), null,
  1071                 allowBoxing, false, noteWarner);
  1072         return mtype2 != null &&
  1073                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1075     //where
  1076     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1077         List<Type> fromArgs = from.type.getParameterTypes();
  1078         List<Type> toArgs = to.type.getParameterTypes();
  1079         if (useVarargs &&
  1080                 (from.flags() & VARARGS) != 0 &&
  1081                 (to.flags() & VARARGS) != 0) {
  1082             Type varargsTypeFrom = fromArgs.last();
  1083             Type varargsTypeTo = toArgs.last();
  1084             ListBuffer<Type> args = ListBuffer.lb();
  1085             if (toArgs.length() < fromArgs.length()) {
  1086                 //if we are checking a varargs method 'from' against another varargs
  1087                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1088                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1089                 //until 'to' signature has the same arity as 'from')
  1090                 while (fromArgs.head != varargsTypeFrom) {
  1091                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1092                     fromArgs = fromArgs.tail;
  1093                     toArgs = toArgs.head == varargsTypeTo ?
  1094                         toArgs :
  1095                         toArgs.tail;
  1097             } else {
  1098                 //formal argument list is same as original list where last
  1099                 //argument (array type) is removed
  1100                 args.appendList(toArgs.reverse().tail.reverse());
  1102             //append varargs element type as last synthetic formal
  1103             args.append(types.elemtype(varargsTypeTo));
  1104             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1105             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1106         } else {
  1107             return to;
  1110     //where
  1111     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1112         Type rt1 = mt1.getReturnType();
  1113         Type rt2 = mt2.getReturnType();
  1115         if (mt1.tag == FORALL && mt2.tag == FORALL) {
  1116             //if both are generic methods, adjust return type ahead of subtyping check
  1117             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1119         //first use subtyping, then return type substitutability
  1120         if (types.isSubtype(rt1, rt2)) {
  1121             return mt1;
  1122         } else if (types.isSubtype(rt2, rt1)) {
  1123             return mt2;
  1124         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1125             return mt1;
  1126         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1127             return mt2;
  1128         } else {
  1129             return null;
  1132     //where
  1133     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1134         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1135             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1136         } else {
  1137             return new AmbiguityError(m1, m2);
  1141     /** Find best qualified method matching given name, type and value
  1142      *  arguments.
  1143      *  @param env       The current environment.
  1144      *  @param site      The original type from where the selection
  1145      *                   takes place.
  1146      *  @param name      The method's name.
  1147      *  @param argtypes  The method's value arguments.
  1148      *  @param typeargtypes The method's type arguments
  1149      *  @param allowBoxing Allow boxing conversions of arguments.
  1150      *  @param useVarargs Box trailing arguments into an array for varargs.
  1151      */
  1152     Symbol findMethod(Env<AttrContext> env,
  1153                       Type site,
  1154                       Name name,
  1155                       List<Type> argtypes,
  1156                       List<Type> typeargtypes,
  1157                       boolean allowBoxing,
  1158                       boolean useVarargs,
  1159                       boolean operator) {
  1160         Symbol bestSoFar = methodNotFound;
  1161         bestSoFar = findMethod(env,
  1162                           site,
  1163                           name,
  1164                           argtypes,
  1165                           typeargtypes,
  1166                           site.tsym.type,
  1167                           true,
  1168                           bestSoFar,
  1169                           allowBoxing,
  1170                           useVarargs,
  1171                           operator,
  1172                           new HashSet<TypeSymbol>());
  1173         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1174         return bestSoFar;
  1176     // where
  1177     private Symbol findMethod(Env<AttrContext> env,
  1178                               Type site,
  1179                               Name name,
  1180                               List<Type> argtypes,
  1181                               List<Type> typeargtypes,
  1182                               Type intype,
  1183                               boolean abstractok,
  1184                               Symbol bestSoFar,
  1185                               boolean allowBoxing,
  1186                               boolean useVarargs,
  1187                               boolean operator,
  1188                               Set<TypeSymbol> seen) {
  1189         for (Type ct = intype; ct.tag == CLASS || ct.tag == TYPEVAR; ct = types.supertype(ct)) {
  1190             while (ct.tag == TYPEVAR)
  1191                 ct = ct.getUpperBound();
  1192             ClassSymbol c = (ClassSymbol)ct.tsym;
  1193             if (!seen.add(c)) return bestSoFar;
  1194             if ((c.flags() & (ABSTRACT | INTERFACE | ENUM)) == 0)
  1195                 abstractok = false;
  1196             for (Scope.Entry e = c.members().lookup(name);
  1197                  e.scope != null;
  1198                  e = e.next()) {
  1199                 //- System.out.println(" e " + e.sym);
  1200                 if (e.sym.kind == MTH &&
  1201                     (e.sym.flags_field & SYNTHETIC) == 0) {
  1202                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1203                                            e.sym, bestSoFar,
  1204                                            allowBoxing,
  1205                                            useVarargs,
  1206                                            operator);
  1209             if (name == names.init)
  1210                 break;
  1211             //- System.out.println(" - " + bestSoFar);
  1212             if (abstractok) {
  1213                 Symbol concrete = methodNotFound;
  1214                 if ((bestSoFar.flags() & ABSTRACT) == 0)
  1215                     concrete = bestSoFar;
  1216                 for (List<Type> l = types.interfaces(c.type);
  1217                      l.nonEmpty();
  1218                      l = l.tail) {
  1219                     bestSoFar = findMethod(env, site, name, argtypes,
  1220                                            typeargtypes,
  1221                                            l.head, abstractok, bestSoFar,
  1222                                            allowBoxing, useVarargs, operator, seen);
  1224                 if (concrete != bestSoFar &&
  1225                     concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1226                     types.isSubSignature(concrete.type, bestSoFar.type))
  1227                     bestSoFar = concrete;
  1230         return bestSoFar;
  1233     /** Find unqualified method matching given name, type and value arguments.
  1234      *  @param env       The current environment.
  1235      *  @param name      The method's name.
  1236      *  @param argtypes  The method's value arguments.
  1237      *  @param typeargtypes  The method's type arguments.
  1238      *  @param allowBoxing Allow boxing conversions of arguments.
  1239      *  @param useVarargs Box trailing arguments into an array for varargs.
  1240      */
  1241     Symbol findFun(Env<AttrContext> env, Name name,
  1242                    List<Type> argtypes, List<Type> typeargtypes,
  1243                    boolean allowBoxing, boolean useVarargs) {
  1244         Symbol bestSoFar = methodNotFound;
  1245         Symbol sym;
  1246         Env<AttrContext> env1 = env;
  1247         boolean staticOnly = false;
  1248         while (env1.outer != null) {
  1249             if (isStatic(env1)) staticOnly = true;
  1250             sym = findMethod(
  1251                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1252                 allowBoxing, useVarargs, false);
  1253             if (sym.exists()) {
  1254                 if (staticOnly &&
  1255                     sym.kind == MTH &&
  1256                     sym.owner.kind == TYP &&
  1257                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1258                 else return sym;
  1259             } else if (sym.kind < bestSoFar.kind) {
  1260                 bestSoFar = sym;
  1262             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1263             env1 = env1.outer;
  1266         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1267                          typeargtypes, allowBoxing, useVarargs, false);
  1268         if (sym.exists())
  1269             return sym;
  1271         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1272         for (; e.scope != null; e = e.next()) {
  1273             sym = e.sym;
  1274             Type origin = e.getOrigin().owner.type;
  1275             if (sym.kind == MTH) {
  1276                 if (e.sym.owner.type != origin)
  1277                     sym = sym.clone(e.getOrigin().owner);
  1278                 if (!isAccessible(env, origin, sym))
  1279                     sym = new AccessError(env, origin, sym);
  1280                 bestSoFar = selectBest(env, origin,
  1281                                        argtypes, typeargtypes,
  1282                                        sym, bestSoFar,
  1283                                        allowBoxing, useVarargs, false);
  1286         if (bestSoFar.exists())
  1287             return bestSoFar;
  1289         e = env.toplevel.starImportScope.lookup(name);
  1290         for (; e.scope != null; e = e.next()) {
  1291             sym = e.sym;
  1292             Type origin = e.getOrigin().owner.type;
  1293             if (sym.kind == MTH) {
  1294                 if (e.sym.owner.type != origin)
  1295                     sym = sym.clone(e.getOrigin().owner);
  1296                 if (!isAccessible(env, origin, sym))
  1297                     sym = new AccessError(env, origin, sym);
  1298                 bestSoFar = selectBest(env, origin,
  1299                                        argtypes, typeargtypes,
  1300                                        sym, bestSoFar,
  1301                                        allowBoxing, useVarargs, false);
  1304         return bestSoFar;
  1307     /** Load toplevel or member class with given fully qualified name and
  1308      *  verify that it is accessible.
  1309      *  @param env       The current environment.
  1310      *  @param name      The fully qualified name of the class to be loaded.
  1311      */
  1312     Symbol loadClass(Env<AttrContext> env, Name name) {
  1313         try {
  1314             ClassSymbol c = reader.loadClass(name);
  1315             return isAccessible(env, c) ? c : new AccessError(c);
  1316         } catch (ClassReader.BadClassFile err) {
  1317             throw err;
  1318         } catch (CompletionFailure ex) {
  1319             return typeNotFound;
  1323     /** Find qualified member type.
  1324      *  @param env       The current environment.
  1325      *  @param site      The original type from where the selection takes
  1326      *                   place.
  1327      *  @param name      The type's name.
  1328      *  @param c         The class to search for the member type. This is
  1329      *                   always a superclass or implemented interface of
  1330      *                   site's class.
  1331      */
  1332     Symbol findMemberType(Env<AttrContext> env,
  1333                           Type site,
  1334                           Name name,
  1335                           TypeSymbol c) {
  1336         Symbol bestSoFar = typeNotFound;
  1337         Symbol sym;
  1338         Scope.Entry e = c.members().lookup(name);
  1339         while (e.scope != null) {
  1340             if (e.sym.kind == TYP) {
  1341                 return isAccessible(env, site, e.sym)
  1342                     ? e.sym
  1343                     : new AccessError(env, site, e.sym);
  1345             e = e.next();
  1347         Type st = types.supertype(c.type);
  1348         if (st != null && st.tag == CLASS) {
  1349             sym = findMemberType(env, site, name, st.tsym);
  1350             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1352         for (List<Type> l = types.interfaces(c.type);
  1353              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1354              l = l.tail) {
  1355             sym = findMemberType(env, site, name, l.head.tsym);
  1356             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1357                 sym.owner != bestSoFar.owner)
  1358                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1359             else if (sym.kind < bestSoFar.kind)
  1360                 bestSoFar = sym;
  1362         return bestSoFar;
  1365     /** Find a global type in given scope and load corresponding class.
  1366      *  @param env       The current environment.
  1367      *  @param scope     The scope in which to look for the type.
  1368      *  @param name      The type's name.
  1369      */
  1370     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1371         Symbol bestSoFar = typeNotFound;
  1372         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1373             Symbol sym = loadClass(env, e.sym.flatName());
  1374             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1375                 bestSoFar != sym)
  1376                 return new AmbiguityError(bestSoFar, sym);
  1377             else if (sym.kind < bestSoFar.kind)
  1378                 bestSoFar = sym;
  1380         return bestSoFar;
  1383     /** Find an unqualified type symbol.
  1384      *  @param env       The current environment.
  1385      *  @param name      The type's name.
  1386      */
  1387     Symbol findType(Env<AttrContext> env, Name name) {
  1388         Symbol bestSoFar = typeNotFound;
  1389         Symbol sym;
  1390         boolean staticOnly = false;
  1391         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1392             if (isStatic(env1)) staticOnly = true;
  1393             for (Scope.Entry e = env1.info.scope.lookup(name);
  1394                  e.scope != null;
  1395                  e = e.next()) {
  1396                 if (e.sym.kind == TYP) {
  1397                     if (staticOnly &&
  1398                         e.sym.type.tag == TYPEVAR &&
  1399                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1400                     return e.sym;
  1404             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1405                                  env1.enclClass.sym);
  1406             if (staticOnly && sym.kind == TYP &&
  1407                 sym.type.tag == CLASS &&
  1408                 sym.type.getEnclosingType().tag == CLASS &&
  1409                 env1.enclClass.sym.type.isParameterized() &&
  1410                 sym.type.getEnclosingType().isParameterized())
  1411                 return new StaticError(sym);
  1412             else if (sym.exists()) return sym;
  1413             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1415             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1416             if ((encl.sym.flags() & STATIC) != 0)
  1417                 staticOnly = true;
  1420         if (!env.tree.hasTag(IMPORT)) {
  1421             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1422             if (sym.exists()) return sym;
  1423             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1425             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1426             if (sym.exists()) return sym;
  1427             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1429             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1430             if (sym.exists()) return sym;
  1431             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1434         return bestSoFar;
  1437     /** Find an unqualified identifier which matches a specified kind set.
  1438      *  @param env       The current environment.
  1439      *  @param name      The indentifier's name.
  1440      *  @param kind      Indicates the possible symbol kinds
  1441      *                   (a subset of VAL, TYP, PCK).
  1442      */
  1443     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1444         Symbol bestSoFar = typeNotFound;
  1445         Symbol sym;
  1447         if ((kind & VAR) != 0) {
  1448             sym = findVar(env, name);
  1449             if (sym.exists()) return sym;
  1450             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1453         if ((kind & TYP) != 0) {
  1454             sym = findType(env, name);
  1455             if (sym.exists()) return sym;
  1456             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1459         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1460         else return bestSoFar;
  1463     /** Find an identifier in a package which matches a specified kind set.
  1464      *  @param env       The current environment.
  1465      *  @param name      The identifier's name.
  1466      *  @param kind      Indicates the possible symbol kinds
  1467      *                   (a nonempty subset of TYP, PCK).
  1468      */
  1469     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1470                               Name name, int kind) {
  1471         Name fullname = TypeSymbol.formFullName(name, pck);
  1472         Symbol bestSoFar = typeNotFound;
  1473         PackageSymbol pack = null;
  1474         if ((kind & PCK) != 0) {
  1475             pack = reader.enterPackage(fullname);
  1476             if (pack.exists()) return pack;
  1478         if ((kind & TYP) != 0) {
  1479             Symbol sym = loadClass(env, fullname);
  1480             if (sym.exists()) {
  1481                 // don't allow programs to use flatnames
  1482                 if (name == sym.name) return sym;
  1484             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1486         return (pack != null) ? pack : bestSoFar;
  1489     /** Find an identifier among the members of a given type `site'.
  1490      *  @param env       The current environment.
  1491      *  @param site      The type containing the symbol to be found.
  1492      *  @param name      The identifier's name.
  1493      *  @param kind      Indicates the possible symbol kinds
  1494      *                   (a subset of VAL, TYP).
  1495      */
  1496     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1497                            Name name, int kind) {
  1498         Symbol bestSoFar = typeNotFound;
  1499         Symbol sym;
  1500         if ((kind & VAR) != 0) {
  1501             sym = findField(env, site, name, site.tsym);
  1502             if (sym.exists()) return sym;
  1503             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1506         if ((kind & TYP) != 0) {
  1507             sym = findMemberType(env, site, name, site.tsym);
  1508             if (sym.exists()) return sym;
  1509             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1511         return bestSoFar;
  1514 /* ***************************************************************************
  1515  *  Access checking
  1516  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1517  *  an error message in the process
  1518  ****************************************************************************/
  1520     /** If `sym' is a bad symbol: report error and return errSymbol
  1521      *  else pass through unchanged,
  1522      *  additional arguments duplicate what has been used in trying to find the
  1523      *  symbol (--> flyweight pattern). This improves performance since we
  1524      *  expect misses to happen frequently.
  1526      *  @param sym       The symbol that was found, or a ResolveError.
  1527      *  @param pos       The position to use for error reporting.
  1528      *  @param site      The original type from where the selection took place.
  1529      *  @param name      The symbol's name.
  1530      *  @param argtypes  The invocation's value arguments,
  1531      *                   if we looked for a method.
  1532      *  @param typeargtypes  The invocation's type arguments,
  1533      *                   if we looked for a method.
  1534      */
  1535     Symbol access(Symbol sym,
  1536                   DiagnosticPosition pos,
  1537                   Symbol location,
  1538                   Type site,
  1539                   Name name,
  1540                   boolean qualified,
  1541                   List<Type> argtypes,
  1542                   List<Type> typeargtypes) {
  1543         if (sym.kind >= AMBIGUOUS) {
  1544             ResolveError errSym = (ResolveError)sym;
  1545             if (!site.isErroneous() &&
  1546                 !Type.isErroneous(argtypes) &&
  1547                 (typeargtypes==null || !Type.isErroneous(typeargtypes)))
  1548                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1549             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1551         return sym;
  1554     /** Same as original access(), but without location.
  1555      */
  1556     Symbol access(Symbol sym,
  1557                   DiagnosticPosition pos,
  1558                   Type site,
  1559                   Name name,
  1560                   boolean qualified,
  1561                   List<Type> argtypes,
  1562                   List<Type> typeargtypes) {
  1563         return access(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1566     /** Same as original access(), but without type arguments and arguments.
  1567      */
  1568     Symbol access(Symbol sym,
  1569                   DiagnosticPosition pos,
  1570                   Symbol location,
  1571                   Type site,
  1572                   Name name,
  1573                   boolean qualified) {
  1574         if (sym.kind >= AMBIGUOUS)
  1575             return access(sym, pos, location, site, name, qualified, List.<Type>nil(), null);
  1576         else
  1577             return sym;
  1580     /** Same as original access(), but without location, type arguments and arguments.
  1581      */
  1582     Symbol access(Symbol sym,
  1583                   DiagnosticPosition pos,
  1584                   Type site,
  1585                   Name name,
  1586                   boolean qualified) {
  1587         return access(sym, pos, site.tsym, site, name, qualified);
  1590     /** Check that sym is not an abstract method.
  1591      */
  1592     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1593         if ((sym.flags() & ABSTRACT) != 0)
  1594             log.error(pos, "abstract.cant.be.accessed.directly",
  1595                       kindName(sym), sym, sym.location());
  1598 /* ***************************************************************************
  1599  *  Debugging
  1600  ****************************************************************************/
  1602     /** print all scopes starting with scope s and proceeding outwards.
  1603      *  used for debugging.
  1604      */
  1605     public void printscopes(Scope s) {
  1606         while (s != null) {
  1607             if (s.owner != null)
  1608                 System.err.print(s.owner + ": ");
  1609             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1610                 if ((e.sym.flags() & ABSTRACT) != 0)
  1611                     System.err.print("abstract ");
  1612                 System.err.print(e.sym + " ");
  1614             System.err.println();
  1615             s = s.next;
  1619     void printscopes(Env<AttrContext> env) {
  1620         while (env.outer != null) {
  1621             System.err.println("------------------------------");
  1622             printscopes(env.info.scope);
  1623             env = env.outer;
  1627     public void printscopes(Type t) {
  1628         while (t.tag == CLASS) {
  1629             printscopes(t.tsym.members());
  1630             t = types.supertype(t);
  1634 /* ***************************************************************************
  1635  *  Name resolution
  1636  *  Naming conventions are as for symbol lookup
  1637  *  Unlike the find... methods these methods will report access errors
  1638  ****************************************************************************/
  1640     /** Resolve an unqualified (non-method) identifier.
  1641      *  @param pos       The position to use for error reporting.
  1642      *  @param env       The environment current at the identifier use.
  1643      *  @param name      The identifier's name.
  1644      *  @param kind      The set of admissible symbol kinds for the identifier.
  1645      */
  1646     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  1647                         Name name, int kind) {
  1648         return access(
  1649             findIdent(env, name, kind),
  1650             pos, env.enclClass.sym.type, name, false);
  1653     /** Resolve an unqualified method identifier.
  1654      *  @param pos       The position to use for error reporting.
  1655      *  @param env       The environment current at the method invocation.
  1656      *  @param name      The identifier's name.
  1657      *  @param argtypes  The types of the invocation's value arguments.
  1658      *  @param typeargtypes  The types of the invocation's type arguments.
  1659      */
  1660     Symbol resolveMethod(DiagnosticPosition pos,
  1661                          Env<AttrContext> env,
  1662                          Name name,
  1663                          List<Type> argtypes,
  1664                          List<Type> typeargtypes) {
  1665         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1666         try {
  1667             currentResolutionContext = new MethodResolutionContext();
  1668             Symbol sym = methodNotFound;
  1669             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1670             while (steps.nonEmpty() &&
  1671                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1672                    sym.kind >= ERRONEOUS) {
  1673                 currentResolutionContext.step = steps.head;
  1674                 sym = findFun(env, name, argtypes, typeargtypes,
  1675                         steps.head.isBoxingRequired,
  1676                         env.info.varArgs = steps.head.isVarargsRequired);
  1677                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1678                 steps = steps.tail;
  1680             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1681                 MethodResolutionPhase errPhase =
  1682                         currentResolutionContext.firstErroneousResolutionPhase();
  1683                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1684                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  1685                 env.info.varArgs = errPhase.isVarargsRequired;
  1687             return sym;
  1689         finally {
  1690             currentResolutionContext = prevResolutionContext;
  1694     /** Resolve a qualified method identifier
  1695      *  @param pos       The position to use for error reporting.
  1696      *  @param env       The environment current at the method invocation.
  1697      *  @param site      The type of the qualifying expression, in which
  1698      *                   identifier is searched.
  1699      *  @param name      The identifier's name.
  1700      *  @param argtypes  The types of the invocation's value arguments.
  1701      *  @param typeargtypes  The types of the invocation's type arguments.
  1702      */
  1703     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1704                                   Type site, Name name, List<Type> argtypes,
  1705                                   List<Type> typeargtypes) {
  1706         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  1708     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1709                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1710                                   List<Type> typeargtypes) {
  1711         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  1713     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  1714                                   DiagnosticPosition pos, Env<AttrContext> env,
  1715                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1716                                   List<Type> typeargtypes) {
  1717         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1718         try {
  1719             currentResolutionContext = resolveContext;
  1720             Symbol sym = methodNotFound;
  1721             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1722             while (steps.nonEmpty() &&
  1723                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1724                    sym.kind >= ERRONEOUS) {
  1725                 currentResolutionContext.step = steps.head;
  1726                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  1727                         steps.head.isBoxingRequired(),
  1728                         env.info.varArgs = steps.head.isVarargsRequired(), false);
  1729                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1730                 steps = steps.tail;
  1732             if (sym.kind >= AMBIGUOUS) {
  1733                 //if nothing is found return the 'first' error
  1734                 MethodResolutionPhase errPhase =
  1735                         currentResolutionContext.firstErroneousResolutionPhase();
  1736                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1737                         pos, location, site, name, true, argtypes, typeargtypes);
  1738                 env.info.varArgs = errPhase.isVarargsRequired;
  1739             } else if (allowMethodHandles) {
  1740                 MethodSymbol msym = (MethodSymbol)sym;
  1741                 if (msym.isSignaturePolymorphic(types)) {
  1742                     env.info.varArgs = false;
  1743                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  1746             return sym;
  1748         finally {
  1749             currentResolutionContext = prevResolutionContext;
  1753     /** Find or create an implicit method of exactly the given type (after erasure).
  1754      *  Searches in a side table, not the main scope of the site.
  1755      *  This emulates the lookup process required by JSR 292 in JVM.
  1756      *  @param env       Attribution environment
  1757      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  1758      *  @param argtypes  The required argument types
  1759      */
  1760     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  1761                                             Symbol spMethod,
  1762                                             List<Type> argtypes) {
  1763         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  1764                 (MethodSymbol)spMethod, argtypes);
  1765         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  1766             if (types.isSameType(mtype, sym.type)) {
  1767                return sym;
  1771         // create the desired method
  1772         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  1773         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  1774         polymorphicSignatureScope.enter(msym);
  1775         return msym;
  1778     /** Resolve a qualified method identifier, throw a fatal error if not
  1779      *  found.
  1780      *  @param pos       The position to use for error reporting.
  1781      *  @param env       The environment current at the method invocation.
  1782      *  @param site      The type of the qualifying expression, in which
  1783      *                   identifier is searched.
  1784      *  @param name      The identifier's name.
  1785      *  @param argtypes  The types of the invocation's value arguments.
  1786      *  @param typeargtypes  The types of the invocation's type arguments.
  1787      */
  1788     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1789                                         Type site, Name name,
  1790                                         List<Type> argtypes,
  1791                                         List<Type> typeargtypes) {
  1792         MethodResolutionContext resolveContext = new MethodResolutionContext();
  1793         resolveContext.internalResolution = true;
  1794         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  1795                 site, name, argtypes, typeargtypes);
  1796         if (sym.kind == MTH) return (MethodSymbol)sym;
  1797         else throw new FatalError(
  1798                  diags.fragment("fatal.err.cant.locate.meth",
  1799                                 name));
  1802     /** Resolve constructor.
  1803      *  @param pos       The position to use for error reporting.
  1804      *  @param env       The environment current at the constructor invocation.
  1805      *  @param site      The type of class for which a constructor is searched.
  1806      *  @param argtypes  The types of the constructor invocation's value
  1807      *                   arguments.
  1808      *  @param typeargtypes  The types of the constructor invocation's type
  1809      *                   arguments.
  1810      */
  1811     Symbol resolveConstructor(DiagnosticPosition pos,
  1812                               Env<AttrContext> env,
  1813                               Type site,
  1814                               List<Type> argtypes,
  1815                               List<Type> typeargtypes) {
  1816         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  1818     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  1819                               DiagnosticPosition pos,
  1820                               Env<AttrContext> env,
  1821                               Type site,
  1822                               List<Type> argtypes,
  1823                               List<Type> typeargtypes) {
  1824         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1825         try {
  1826             currentResolutionContext = resolveContext;
  1827             Symbol sym = methodNotFound;
  1828             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1829             while (steps.nonEmpty() &&
  1830                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1831                    sym.kind >= ERRONEOUS) {
  1832                 currentResolutionContext.step = steps.head;
  1833                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  1834                         steps.head.isBoxingRequired(),
  1835                         env.info.varArgs = steps.head.isVarargsRequired());
  1836                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1837                 steps = steps.tail;
  1839             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1840                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1841                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1842                         pos, site, names.init, true, argtypes, typeargtypes);
  1843                 env.info.varArgs = errPhase.isVarargsRequired();
  1845             return sym;
  1847         finally {
  1848             currentResolutionContext = prevResolutionContext;
  1852     /** Resolve constructor using diamond inference.
  1853      *  @param pos       The position to use for error reporting.
  1854      *  @param env       The environment current at the constructor invocation.
  1855      *  @param site      The type of class for which a constructor is searched.
  1856      *                   The scope of this class has been touched in attribution.
  1857      *  @param argtypes  The types of the constructor invocation's value
  1858      *                   arguments.
  1859      *  @param typeargtypes  The types of the constructor invocation's type
  1860      *                   arguments.
  1861      */
  1862     Symbol resolveDiamond(DiagnosticPosition pos,
  1863                               Env<AttrContext> env,
  1864                               Type site,
  1865                               List<Type> argtypes,
  1866                               List<Type> typeargtypes) {
  1867         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1868         try {
  1869             currentResolutionContext = new MethodResolutionContext();
  1870             Symbol sym = methodNotFound;
  1871             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1872             while (steps.nonEmpty() &&
  1873                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1874                    sym.kind >= ERRONEOUS) {
  1875                 currentResolutionContext.step = steps.head;
  1876                 sym = findDiamond(env, site, argtypes, typeargtypes,
  1877                         steps.head.isBoxingRequired(),
  1878                         env.info.varArgs = steps.head.isVarargsRequired());
  1879                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1880                 steps = steps.tail;
  1882             if (sym.kind >= AMBIGUOUS) {
  1883                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  1884                                 currentResolutionContext.candidates.head.details :
  1885                                 null;
  1886                 Symbol errSym = new ResolveError(WRONG_MTH, "diamond error") {
  1887                     @Override
  1888                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  1889                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  1890                         String key = details == null ?
  1891                             "cant.apply.diamond" :
  1892                             "cant.apply.diamond.1";
  1893                         return diags.create(dkind, log.currentSource(), pos, key,
  1894                                 diags.fragment("diamond", site.tsym), details);
  1896                 };
  1897                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1898                 sym = access(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  1899                 env.info.varArgs = errPhase.isVarargsRequired();
  1901             return sym;
  1903         finally {
  1904             currentResolutionContext = prevResolutionContext;
  1908     /** This method scans all the constructor symbol in a given class scope -
  1909      *  assuming that the original scope contains a constructor of the kind:
  1910      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
  1911      *  a method check is executed against the modified constructor type:
  1912      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
  1913      *  inference. The inferred return type of the synthetic constructor IS
  1914      *  the inferred type for the diamond operator.
  1915      */
  1916     private Symbol findDiamond(Env<AttrContext> env,
  1917                               Type site,
  1918                               List<Type> argtypes,
  1919                               List<Type> typeargtypes,
  1920                               boolean allowBoxing,
  1921                               boolean useVarargs) {
  1922         Symbol bestSoFar = methodNotFound;
  1923         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  1924              e.scope != null;
  1925              e = e.next()) {
  1926             //- System.out.println(" e " + e.sym);
  1927             if (e.sym.kind == MTH &&
  1928                 (e.sym.flags_field & SYNTHETIC) == 0) {
  1929                     List<Type> oldParams = e.sym.type.tag == FORALL ?
  1930                             ((ForAll)e.sym.type).tvars :
  1931                             List.<Type>nil();
  1932                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  1933                             types.createMethodTypeWithReturn(e.sym.type.asMethodType(), site));
  1934                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1935                             new MethodSymbol(e.sym.flags(), names.init, constrType, site.tsym),
  1936                             bestSoFar,
  1937                             allowBoxing,
  1938                             useVarargs,
  1939                             false);
  1942         return bestSoFar;
  1945     /** Resolve constructor.
  1946      *  @param pos       The position to use for error reporting.
  1947      *  @param env       The environment current at the constructor invocation.
  1948      *  @param site      The type of class for which a constructor is searched.
  1949      *  @param argtypes  The types of the constructor invocation's value
  1950      *                   arguments.
  1951      *  @param typeargtypes  The types of the constructor invocation's type
  1952      *                   arguments.
  1953      *  @param allowBoxing Allow boxing and varargs conversions.
  1954      *  @param useVarargs Box trailing arguments into an array for varargs.
  1955      */
  1956     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1957                               Type site, List<Type> argtypes,
  1958                               List<Type> typeargtypes,
  1959                               boolean allowBoxing,
  1960                               boolean useVarargs) {
  1961         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1962         try {
  1963             currentResolutionContext = new MethodResolutionContext();
  1964             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  1966         finally {
  1967             currentResolutionContext = prevResolutionContext;
  1971     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1972                               Type site, List<Type> argtypes,
  1973                               List<Type> typeargtypes,
  1974                               boolean allowBoxing,
  1975                               boolean useVarargs) {
  1976         Symbol sym = findMethod(env, site,
  1977                                     names.init, argtypes,
  1978                                     typeargtypes, allowBoxing,
  1979                                     useVarargs, false);
  1980         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  1981         return sym;
  1984     /** Resolve a constructor, throw a fatal error if not found.
  1985      *  @param pos       The position to use for error reporting.
  1986      *  @param env       The environment current at the method invocation.
  1987      *  @param site      The type to be constructed.
  1988      *  @param argtypes  The types of the invocation's value arguments.
  1989      *  @param typeargtypes  The types of the invocation's type arguments.
  1990      */
  1991     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1992                                         Type site,
  1993                                         List<Type> argtypes,
  1994                                         List<Type> typeargtypes) {
  1995         MethodResolutionContext resolveContext = new MethodResolutionContext();
  1996         resolveContext.internalResolution = true;
  1997         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  1998         if (sym.kind == MTH) return (MethodSymbol)sym;
  1999         else throw new FatalError(
  2000                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2003     /** Resolve operator.
  2004      *  @param pos       The position to use for error reporting.
  2005      *  @param optag     The tag of the operation tree.
  2006      *  @param env       The environment current at the operation.
  2007      *  @param argtypes  The types of the operands.
  2008      */
  2009     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2010                            Env<AttrContext> env, List<Type> argtypes) {
  2011         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2012         try {
  2013             currentResolutionContext = new MethodResolutionContext();
  2014             Name name = treeinfo.operatorName(optag);
  2015             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2016                                     null, false, false, true);
  2017             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2018                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2019                                  null, true, false, true);
  2020             return access(sym, pos, env.enclClass.sym.type, name,
  2021                           false, argtypes, null);
  2023         finally {
  2024             currentResolutionContext = prevResolutionContext;
  2028     /** Resolve operator.
  2029      *  @param pos       The position to use for error reporting.
  2030      *  @param optag     The tag of the operation tree.
  2031      *  @param env       The environment current at the operation.
  2032      *  @param arg       The type of the operand.
  2033      */
  2034     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2035         return resolveOperator(pos, optag, env, List.of(arg));
  2038     /** Resolve binary operator.
  2039      *  @param pos       The position to use for error reporting.
  2040      *  @param optag     The tag of the operation tree.
  2041      *  @param env       The environment current at the operation.
  2042      *  @param left      The types of the left operand.
  2043      *  @param right     The types of the right operand.
  2044      */
  2045     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2046                                  JCTree.Tag optag,
  2047                                  Env<AttrContext> env,
  2048                                  Type left,
  2049                                  Type right) {
  2050         return resolveOperator(pos, optag, env, List.of(left, right));
  2053     /**
  2054      * Resolve `c.name' where name == this or name == super.
  2055      * @param pos           The position to use for error reporting.
  2056      * @param env           The environment current at the expression.
  2057      * @param c             The qualifier.
  2058      * @param name          The identifier's name.
  2059      */
  2060     Symbol resolveSelf(DiagnosticPosition pos,
  2061                        Env<AttrContext> env,
  2062                        TypeSymbol c,
  2063                        Name name) {
  2064         Env<AttrContext> env1 = env;
  2065         boolean staticOnly = false;
  2066         while (env1.outer != null) {
  2067             if (isStatic(env1)) staticOnly = true;
  2068             if (env1.enclClass.sym == c) {
  2069                 Symbol sym = env1.info.scope.lookup(name).sym;
  2070                 if (sym != null) {
  2071                     if (staticOnly) sym = new StaticError(sym);
  2072                     return access(sym, pos, env.enclClass.sym.type,
  2073                                   name, true);
  2076             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2077             env1 = env1.outer;
  2079         log.error(pos, "not.encl.class", c);
  2080         return syms.errSymbol;
  2083     /**
  2084      * Resolve `c.this' for an enclosing class c that contains the
  2085      * named member.
  2086      * @param pos           The position to use for error reporting.
  2087      * @param env           The environment current at the expression.
  2088      * @param member        The member that must be contained in the result.
  2089      */
  2090     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2091                                  Env<AttrContext> env,
  2092                                  Symbol member,
  2093                                  boolean isSuperCall) {
  2094         Name name = names._this;
  2095         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2096         boolean staticOnly = false;
  2097         if (env1 != null) {
  2098             while (env1 != null && env1.outer != null) {
  2099                 if (isStatic(env1)) staticOnly = true;
  2100                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2101                     Symbol sym = env1.info.scope.lookup(name).sym;
  2102                     if (sym != null) {
  2103                         if (staticOnly) sym = new StaticError(sym);
  2104                         return access(sym, pos, env.enclClass.sym.type,
  2105                                       name, true);
  2108                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2109                     staticOnly = true;
  2110                 env1 = env1.outer;
  2113         log.error(pos, "encl.class.required", member);
  2114         return syms.errSymbol;
  2117     /**
  2118      * Resolve an appropriate implicit this instance for t's container.
  2119      * JLS 8.8.5.1 and 15.9.2
  2120      */
  2121     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2122         return resolveImplicitThis(pos, env, t, false);
  2125     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2126         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2127                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2128                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2129         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2130             log.error(pos, "cant.ref.before.ctor.called", "this");
  2131         return thisType;
  2134 /* ***************************************************************************
  2135  *  ResolveError classes, indicating error situations when accessing symbols
  2136  ****************************************************************************/
  2138     //used by TransTypes when checking target type of synthetic cast
  2139     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2140         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2141         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2143     //where
  2144     private void logResolveError(ResolveError error,
  2145             DiagnosticPosition pos,
  2146             Symbol location,
  2147             Type site,
  2148             Name name,
  2149             List<Type> argtypes,
  2150             List<Type> typeargtypes) {
  2151         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2152                 pos, location, site, name, argtypes, typeargtypes);
  2153         if (d != null) {
  2154             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2155             log.report(d);
  2159     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2161     public Object methodArguments(List<Type> argtypes) {
  2162         return argtypes == null || argtypes.isEmpty() ? noArgs : argtypes;
  2165     /**
  2166      * Root class for resolution errors. Subclass of ResolveError
  2167      * represent a different kinds of resolution error - as such they must
  2168      * specify how they map into concrete compiler diagnostics.
  2169      */
  2170     private abstract class ResolveError extends Symbol {
  2172         /** The name of the kind of error, for debugging only. */
  2173         final String debugName;
  2175         ResolveError(int kind, String debugName) {
  2176             super(kind, 0, null, null, null);
  2177             this.debugName = debugName;
  2180         @Override
  2181         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2182             throw new AssertionError();
  2185         @Override
  2186         public String toString() {
  2187             return debugName;
  2190         @Override
  2191         public boolean exists() {
  2192             return false;
  2195         /**
  2196          * Create an external representation for this erroneous symbol to be
  2197          * used during attribution - by default this returns the symbol of a
  2198          * brand new error type which stores the original type found
  2199          * during resolution.
  2201          * @param name     the name used during resolution
  2202          * @param location the location from which the symbol is accessed
  2203          */
  2204         protected Symbol access(Name name, TypeSymbol location) {
  2205             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2208         /**
  2209          * Create a diagnostic representing this resolution error.
  2211          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2212          * @param pos       The position to be used for error reporting.
  2213          * @param site      The original type from where the selection took place.
  2214          * @param name      The name of the symbol to be resolved.
  2215          * @param argtypes  The invocation's value arguments,
  2216          *                  if we looked for a method.
  2217          * @param typeargtypes  The invocation's type arguments,
  2218          *                      if we looked for a method.
  2219          */
  2220         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2221                 DiagnosticPosition pos,
  2222                 Symbol location,
  2223                 Type site,
  2224                 Name name,
  2225                 List<Type> argtypes,
  2226                 List<Type> typeargtypes);
  2228         /**
  2229          * A name designates an operator if it consists
  2230          * of a non-empty sequence of operator symbols +-~!/*%&|^<>=
  2231          */
  2232         boolean isOperator(Name name) {
  2233             int i = 0;
  2234             while (i < name.getByteLength() &&
  2235                    "+-~!*/%&|^<>=".indexOf(name.getByteAt(i)) >= 0) i++;
  2236             return i > 0 && i == name.getByteLength();
  2240     /**
  2241      * This class is the root class of all resolution errors caused by
  2242      * an invalid symbol being found during resolution.
  2243      */
  2244     abstract class InvalidSymbolError extends ResolveError {
  2246         /** The invalid symbol found during resolution */
  2247         Symbol sym;
  2249         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2250             super(kind, debugName);
  2251             this.sym = sym;
  2254         @Override
  2255         public boolean exists() {
  2256             return true;
  2259         @Override
  2260         public String toString() {
  2261              return super.toString() + " wrongSym=" + sym;
  2264         @Override
  2265         public Symbol access(Name name, TypeSymbol location) {
  2266             if (sym.kind >= AMBIGUOUS)
  2267                 return ((ResolveError)sym).access(name, location);
  2268             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2269                 return types.createErrorType(name, location, sym.type).tsym;
  2270             else
  2271                 return sym;
  2275     /**
  2276      * InvalidSymbolError error class indicating that a symbol matching a
  2277      * given name does not exists in a given site.
  2278      */
  2279     class SymbolNotFoundError extends ResolveError {
  2281         SymbolNotFoundError(int kind) {
  2282             super(kind, "symbol not found error");
  2285         @Override
  2286         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2287                 DiagnosticPosition pos,
  2288                 Symbol location,
  2289                 Type site,
  2290                 Name name,
  2291                 List<Type> argtypes,
  2292                 List<Type> typeargtypes) {
  2293             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2294             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  2295             if (name == names.error)
  2296                 return null;
  2298             if (isOperator(name)) {
  2299                 boolean isUnaryOp = argtypes.size() == 1;
  2300                 String key = argtypes.size() == 1 ?
  2301                     "operator.cant.be.applied" :
  2302                     "operator.cant.be.applied.1";
  2303                 Type first = argtypes.head;
  2304                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2305                 return diags.create(dkind, log.currentSource(), pos,
  2306                         key, name, first, second);
  2308             boolean hasLocation = false;
  2309             if (location == null) {
  2310                 location = site.tsym;
  2312             if (!location.name.isEmpty()) {
  2313                 if (location.kind == PCK && !site.tsym.exists()) {
  2314                     return diags.create(dkind, log.currentSource(), pos,
  2315                         "doesnt.exist", location);
  2317                 hasLocation = !location.name.equals(names._this) &&
  2318                         !location.name.equals(names._super);
  2320             boolean isConstructor = kind == ABSENT_MTH &&
  2321                     name == names.table.names.init;
  2322             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  2323             Name idname = isConstructor ? site.tsym.name : name;
  2324             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  2325             if (hasLocation) {
  2326                 return diags.create(dkind, log.currentSource(), pos,
  2327                         errKey, kindname, idname, //symbol kindname, name
  2328                         typeargtypes, argtypes, //type parameters and arguments (if any)
  2329                         getLocationDiag(location, site)); //location kindname, type
  2331             else {
  2332                 return diags.create(dkind, log.currentSource(), pos,
  2333                         errKey, kindname, idname, //symbol kindname, name
  2334                         typeargtypes, argtypes); //type parameters and arguments (if any)
  2337         //where
  2338         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  2339             String key = "cant.resolve";
  2340             String suffix = hasLocation ? ".location" : "";
  2341             switch (kindname) {
  2342                 case METHOD:
  2343                 case CONSTRUCTOR: {
  2344                     suffix += ".args";
  2345                     suffix += hasTypeArgs ? ".params" : "";
  2348             return key + suffix;
  2350         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  2351             if (location.kind == VAR) {
  2352                 return diags.fragment("location.1",
  2353                     kindName(location),
  2354                     location,
  2355                     location.type);
  2356             } else {
  2357                 return diags.fragment("location",
  2358                     typeKindName(site),
  2359                     site,
  2360                     null);
  2365     /**
  2366      * InvalidSymbolError error class indicating that a given symbol
  2367      * (either a method, a constructor or an operand) is not applicable
  2368      * given an actual arguments/type argument list.
  2369      */
  2370     class InapplicableSymbolError extends ResolveError {
  2372         InapplicableSymbolError() {
  2373             super(WRONG_MTH, "inapplicable symbol error");
  2376         protected InapplicableSymbolError(int kind, String debugName) {
  2377             super(kind, debugName);
  2380         @Override
  2381         public String toString() {
  2382             return super.toString();
  2385         @Override
  2386         public boolean exists() {
  2387             return true;
  2390         @Override
  2391         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2392                 DiagnosticPosition pos,
  2393                 Symbol location,
  2394                 Type site,
  2395                 Name name,
  2396                 List<Type> argtypes,
  2397                 List<Type> typeargtypes) {
  2398             if (name == names.error)
  2399                 return null;
  2401             if (isOperator(name)) {
  2402                 boolean isUnaryOp = argtypes.size() == 1;
  2403                 String key = argtypes.size() == 1 ?
  2404                     "operator.cant.be.applied" :
  2405                     "operator.cant.be.applied.1";
  2406                 Type first = argtypes.head;
  2407                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2408                 return diags.create(dkind, log.currentSource(), pos,
  2409                         key, name, first, second);
  2411             else {
  2412                 Candidate c = errCandidate();
  2413                 Symbol ws = c.sym.asMemberOf(site, types);
  2414                 return diags.create(dkind, log.currentSource(), pos,
  2415                           "cant.apply.symbol" + (c.details != null ? ".1" : ""),
  2416                           kindName(ws),
  2417                           ws.name == names.init ? ws.owner.name : ws.name,
  2418                           methodArguments(ws.type.getParameterTypes()),
  2419                           methodArguments(argtypes),
  2420                           kindName(ws.owner),
  2421                           ws.owner.type,
  2422                           c.details);
  2426         @Override
  2427         public Symbol access(Name name, TypeSymbol location) {
  2428             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2431         protected boolean shouldReport(Candidate c) {
  2432             return !c.isApplicable() &&
  2433                     (((c.sym.flags() & VARARGS) != 0 && c.step == VARARITY) ||
  2434                       (c.sym.flags() & VARARGS) == 0 && c.step == (boxingEnabled ? BOX : BASIC));
  2437         private Candidate errCandidate() {
  2438             for (Candidate c : currentResolutionContext.candidates) {
  2439                 if (shouldReport(c)) {
  2440                     return c;
  2443             Assert.error();
  2444             return null;
  2448     /**
  2449      * ResolveError error class indicating that a set of symbols
  2450      * (either methods, constructors or operands) is not applicable
  2451      * given an actual arguments/type argument list.
  2452      */
  2453     class InapplicableSymbolsError extends InapplicableSymbolError {
  2455         InapplicableSymbolsError() {
  2456             super(WRONG_MTHS, "inapplicable symbols");
  2459         @Override
  2460         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2461                 DiagnosticPosition pos,
  2462                 Symbol location,
  2463                 Type site,
  2464                 Name name,
  2465                 List<Type> argtypes,
  2466                 List<Type> typeargtypes) {
  2467             if (currentResolutionContext.candidates.nonEmpty()) {
  2468                 JCDiagnostic err = diags.create(dkind,
  2469                         log.currentSource(),
  2470                         pos,
  2471                         "cant.apply.symbols",
  2472                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  2473                         getName(),
  2474                         argtypes);
  2475                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  2476             } else {
  2477                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  2478                     location, site, name, argtypes, typeargtypes);
  2482         //where
  2483         List<JCDiagnostic> candidateDetails(Type site) {
  2484             List<JCDiagnostic> details = List.nil();
  2485             for (Candidate c : currentResolutionContext.candidates) {
  2486                 if (!shouldReport(c)) continue;
  2487                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  2488                         Kinds.kindName(c.sym),
  2489                         c.sym.location(site, types),
  2490                         c.sym.asMemberOf(site, types),
  2491                         c.details);
  2492                 details = details.prepend(detailDiag);
  2494             return details.reverse();
  2497         private Name getName() {
  2498             Symbol sym = currentResolutionContext.candidates.head.sym;
  2499             return sym.name == names.init ?
  2500                 sym.owner.name :
  2501                 sym.name;
  2505     /**
  2506      * An InvalidSymbolError error class indicating that a symbol is not
  2507      * accessible from a given site
  2508      */
  2509     class AccessError extends InvalidSymbolError {
  2511         private Env<AttrContext> env;
  2512         private Type site;
  2514         AccessError(Symbol sym) {
  2515             this(null, null, sym);
  2518         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  2519             super(HIDDEN, sym, "access error");
  2520             this.env = env;
  2521             this.site = site;
  2522             if (debugResolve)
  2523                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  2526         @Override
  2527         public boolean exists() {
  2528             return false;
  2531         @Override
  2532         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2533                 DiagnosticPosition pos,
  2534                 Symbol location,
  2535                 Type site,
  2536                 Name name,
  2537                 List<Type> argtypes,
  2538                 List<Type> typeargtypes) {
  2539             if (sym.owner.type.tag == ERROR)
  2540                 return null;
  2542             if (sym.name == names.init && sym.owner != site.tsym) {
  2543                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  2544                         pos, location, site, name, argtypes, typeargtypes);
  2546             else if ((sym.flags() & PUBLIC) != 0
  2547                 || (env != null && this.site != null
  2548                     && !isAccessible(env, this.site))) {
  2549                 return diags.create(dkind, log.currentSource(),
  2550                         pos, "not.def.access.class.intf.cant.access",
  2551                     sym, sym.location());
  2553             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  2554                 return diags.create(dkind, log.currentSource(),
  2555                         pos, "report.access", sym,
  2556                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  2557                         sym.location());
  2559             else {
  2560                 return diags.create(dkind, log.currentSource(),
  2561                         pos, "not.def.public.cant.access", sym, sym.location());
  2566     /**
  2567      * InvalidSymbolError error class indicating that an instance member
  2568      * has erroneously been accessed from a static context.
  2569      */
  2570     class StaticError extends InvalidSymbolError {
  2572         StaticError(Symbol sym) {
  2573             super(STATICERR, sym, "static error");
  2576         @Override
  2577         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2578                 DiagnosticPosition pos,
  2579                 Symbol location,
  2580                 Type site,
  2581                 Name name,
  2582                 List<Type> argtypes,
  2583                 List<Type> typeargtypes) {
  2584             Symbol errSym = ((sym.kind == TYP && sym.type.tag == CLASS)
  2585                 ? types.erasure(sym.type).tsym
  2586                 : sym);
  2587             return diags.create(dkind, log.currentSource(), pos,
  2588                     "non-static.cant.be.ref", kindName(sym), errSym);
  2592     /**
  2593      * InvalidSymbolError error class indicating that a pair of symbols
  2594      * (either methods, constructors or operands) are ambiguous
  2595      * given an actual arguments/type argument list.
  2596      */
  2597     class AmbiguityError extends InvalidSymbolError {
  2599         /** The other maximally specific symbol */
  2600         Symbol sym2;
  2602         AmbiguityError(Symbol sym1, Symbol sym2) {
  2603             super(AMBIGUOUS, sym1, "ambiguity error");
  2604             this.sym2 = sym2;
  2607         @Override
  2608         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2609                 DiagnosticPosition pos,
  2610                 Symbol location,
  2611                 Type site,
  2612                 Name name,
  2613                 List<Type> argtypes,
  2614                 List<Type> typeargtypes) {
  2615             AmbiguityError pair = this;
  2616             while (true) {
  2617                 if (pair.sym.kind == AMBIGUOUS)
  2618                     pair = (AmbiguityError)pair.sym;
  2619                 else if (pair.sym2.kind == AMBIGUOUS)
  2620                     pair = (AmbiguityError)pair.sym2;
  2621                 else break;
  2623             Name sname = pair.sym.name;
  2624             if (sname == names.init) sname = pair.sym.owner.name;
  2625             return diags.create(dkind, log.currentSource(),
  2626                       pos, "ref.ambiguous", sname,
  2627                       kindName(pair.sym),
  2628                       pair.sym,
  2629                       pair.sym.location(site, types),
  2630                       kindName(pair.sym2),
  2631                       pair.sym2,
  2632                       pair.sym2.location(site, types));
  2636     enum MethodResolutionPhase {
  2637         BASIC(false, false),
  2638         BOX(true, false),
  2639         VARARITY(true, true);
  2641         boolean isBoxingRequired;
  2642         boolean isVarargsRequired;
  2644         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  2645            this.isBoxingRequired = isBoxingRequired;
  2646            this.isVarargsRequired = isVarargsRequired;
  2649         public boolean isBoxingRequired() {
  2650             return isBoxingRequired;
  2653         public boolean isVarargsRequired() {
  2654             return isVarargsRequired;
  2657         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  2658             return (varargsEnabled || !isVarargsRequired) &&
  2659                    (boxingEnabled || !isBoxingRequired);
  2663     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  2665     /**
  2666      * A resolution context is used to keep track of intermediate results of
  2667      * overload resolution, such as list of method that are not applicable
  2668      * (used to generate more precise diagnostics) and so on. Resolution contexts
  2669      * can be nested - this means that when each overload resolution routine should
  2670      * work within the resolution context it created.
  2671      */
  2672     class MethodResolutionContext {
  2674         private List<Candidate> candidates = List.nil();
  2676         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  2677             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  2679         private MethodResolutionPhase step = null;
  2681         private boolean internalResolution = false;
  2683         private MethodResolutionPhase firstErroneousResolutionPhase() {
  2684             MethodResolutionPhase bestSoFar = BASIC;
  2685             Symbol sym = methodNotFound;
  2686             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2687             while (steps.nonEmpty() &&
  2688                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2689                    sym.kind >= WRONG_MTHS) {
  2690                 sym = resolutionCache.get(steps.head);
  2691                 bestSoFar = steps.head;
  2692                 steps = steps.tail;
  2694             return bestSoFar;
  2697         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  2698             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  2699             if (!candidates.contains(c))
  2700                 candidates = candidates.append(c);
  2703         void addApplicableCandidate(Symbol sym, Type mtype) {
  2704             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  2705             candidates = candidates.append(c);
  2708         /**
  2709          * This class represents an overload resolution candidate. There are two
  2710          * kinds of candidates: applicable methods and inapplicable methods;
  2711          * applicable methods have a pointer to the instantiated method type,
  2712          * while inapplicable candidates contain further details about the
  2713          * reason why the method has been considered inapplicable.
  2714          */
  2715         class Candidate {
  2717             final MethodResolutionPhase step;
  2718             final Symbol sym;
  2719             final JCDiagnostic details;
  2720             final Type mtype;
  2722             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  2723                 this.step = step;
  2724                 this.sym = sym;
  2725                 this.details = details;
  2726                 this.mtype = mtype;
  2729             @Override
  2730             public boolean equals(Object o) {
  2731                 if (o instanceof Candidate) {
  2732                     Symbol s1 = this.sym;
  2733                     Symbol s2 = ((Candidate)o).sym;
  2734                     if  ((s1 != s2 &&
  2735                         (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  2736                         (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  2737                         ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  2738                         return true;
  2740                 return false;
  2743             boolean isApplicable() {
  2744                 return mtype != null;
  2749     MethodResolutionContext currentResolutionContext = null;

mercurial