src/share/classes/com/sun/tools/javac/comp/Resolve.java

Mon, 26 Mar 2012 15:28:49 +0100

author
mcimadamore
date
Mon, 26 Mar 2012 15:28:49 +0100
changeset 1239
2827076dbf64
parent 1238
e28a06a3c5d9
child 1268
af6a4c24f4e3
permissions
-rw-r--r--

7133185: Update 292 overload resolution logic to match JLS
Summary: Re-implement special overload resolution support for method handles according to the JLS SE 7 definition
Reviewed-by: jjg, dlsmith, jrose

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Type.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    35 import com.sun.tools.javac.jvm.*;
    36 import com.sun.tools.javac.tree.*;
    37 import com.sun.tools.javac.tree.JCTree.*;
    38 import com.sun.tools.javac.util.*;
    39 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    41 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    43 import java.util.Arrays;
    44 import java.util.Collection;
    45 import java.util.EnumMap;
    46 import java.util.EnumSet;
    47 import java.util.HashSet;
    48 import java.util.Map;
    49 import java.util.Set;
    51 import javax.lang.model.element.ElementVisitor;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.BLOCK;
    55 import static com.sun.tools.javac.code.Kinds.*;
    56 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    57 import static com.sun.tools.javac.code.TypeTags.*;
    58 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    59 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    61 /** Helper class for name resolution, used mostly by the attribution phase.
    62  *
    63  *  <p><b>This is NOT part of any supported API.
    64  *  If you write code that depends on this, you do so at your own risk.
    65  *  This code and its internal interfaces are subject to change or
    66  *  deletion without notice.</b>
    67  */
    68 public class Resolve {
    69     protected static final Context.Key<Resolve> resolveKey =
    70         new Context.Key<Resolve>();
    72     Names names;
    73     Log log;
    74     Symtab syms;
    75     Attr attr;
    76     Check chk;
    77     Infer infer;
    78     ClassReader reader;
    79     TreeInfo treeinfo;
    80     Types types;
    81     JCDiagnostic.Factory diags;
    82     public final boolean boxingEnabled; // = source.allowBoxing();
    83     public final boolean varargsEnabled; // = source.allowVarargs();
    84     public final boolean allowMethodHandles;
    85     private final boolean debugResolve;
    86     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    88     Scope polymorphicSignatureScope;
    90     protected Resolve(Context context) {
    91         context.put(resolveKey, this);
    92         syms = Symtab.instance(context);
    94         varNotFound = new
    95             SymbolNotFoundError(ABSENT_VAR);
    96         wrongMethod = new
    97             InapplicableSymbolError();
    98         wrongMethods = new
    99             InapplicableSymbolsError();
   100         methodNotFound = new
   101             SymbolNotFoundError(ABSENT_MTH);
   102         typeNotFound = new
   103             SymbolNotFoundError(ABSENT_TYP);
   105         names = Names.instance(context);
   106         log = Log.instance(context);
   107         attr = Attr.instance(context);
   108         chk = Check.instance(context);
   109         infer = Infer.instance(context);
   110         reader = ClassReader.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   112         types = Types.instance(context);
   113         diags = JCDiagnostic.Factory.instance(context);
   114         Source source = Source.instance(context);
   115         boxingEnabled = source.allowBoxing();
   116         varargsEnabled = source.allowVarargs();
   117         Options options = Options.instance(context);
   118         debugResolve = options.isSet("debugresolve");
   119         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   120         Target target = Target.instance(context);
   121         allowMethodHandles = target.hasMethodHandles();
   122         polymorphicSignatureScope = new Scope(syms.noSymbol);
   124         inapplicableMethodException = new InapplicableMethodException(diags);
   125     }
   127     /** error symbols, which are returned when resolution fails
   128      */
   129     private final SymbolNotFoundError varNotFound;
   130     private final InapplicableSymbolError wrongMethod;
   131     private final InapplicableSymbolsError wrongMethods;
   132     private final SymbolNotFoundError methodNotFound;
   133     private final SymbolNotFoundError typeNotFound;
   135     public static Resolve instance(Context context) {
   136         Resolve instance = context.get(resolveKey);
   137         if (instance == null)
   138             instance = new Resolve(context);
   139         return instance;
   140     }
   142     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   143     enum VerboseResolutionMode {
   144         SUCCESS("success"),
   145         FAILURE("failure"),
   146         APPLICABLE("applicable"),
   147         INAPPLICABLE("inapplicable"),
   148         DEFERRED_INST("deferred-inference"),
   149         PREDEF("predef"),
   150         OBJECT_INIT("object-init"),
   151         INTERNAL("internal");
   153         String opt;
   155         private VerboseResolutionMode(String opt) {
   156             this.opt = opt;
   157         }
   159         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   160             String s = opts.get("verboseResolution");
   161             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   162             if (s == null) return res;
   163             if (s.contains("all")) {
   164                 res = EnumSet.allOf(VerboseResolutionMode.class);
   165             }
   166             Collection<String> args = Arrays.asList(s.split(","));
   167             for (VerboseResolutionMode mode : values()) {
   168                 if (args.contains(mode.opt)) {
   169                     res.add(mode);
   170                 } else if (args.contains("-" + mode.opt)) {
   171                     res.remove(mode);
   172                 }
   173             }
   174             return res;
   175         }
   176     }
   178     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   179             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   180         boolean success = bestSoFar.kind < ERRONEOUS;
   182         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   183             return;
   184         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   185             return;
   186         }
   188         if (bestSoFar.name == names.init &&
   189                 bestSoFar.owner == syms.objectType.tsym &&
   190                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   191             return; //skip diags for Object constructor resolution
   192         } else if (site == syms.predefClass.type &&
   193                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   194             return; //skip spurious diags for predef symbols (i.e. operators)
   195         } else if (currentResolutionContext.internalResolution &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   197             return;
   198         }
   200         int pos = 0;
   201         int mostSpecificPos = -1;
   202         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   203         for (Candidate c : currentResolutionContext.candidates) {
   204             if (currentResolutionContext.step != c.step ||
   205                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   206                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   207                 continue;
   208             } else {
   209                 subDiags.append(c.isApplicable() ?
   210                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   211                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   212                 if (c.sym == bestSoFar)
   213                     mostSpecificPos = pos;
   214                 pos++;
   215             }
   216         }
   217         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   218         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   219                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   220                 methodArguments(argtypes), methodArguments(typeargtypes));
   221         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   222         log.report(d);
   223     }
   225     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   226         JCDiagnostic subDiag = null;
   227         if (inst.getReturnType().tag == FORALL) {
   228             Type diagType = types.createMethodTypeWithReturn(inst.asMethodType(),
   229                                                             ((ForAll)inst.getReturnType()).qtype);
   230             subDiag = diags.fragment("partial.inst.sig", diagType);
   231         } else if (sym.type.tag == FORALL) {
   232             subDiag = diags.fragment("full.inst.sig", inst.asMethodType());
   233         }
   235         String key = subDiag == null ?
   236                 "applicable.method.found" :
   237                 "applicable.method.found.1";
   239         return diags.fragment(key, pos, sym, subDiag);
   240     }
   242     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   243         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   244     }
   245     // </editor-fold>
   247 /* ************************************************************************
   248  * Identifier resolution
   249  *************************************************************************/
   251     /** An environment is "static" if its static level is greater than
   252      *  the one of its outer environment
   253      */
   254     static boolean isStatic(Env<AttrContext> env) {
   255         return env.info.staticLevel > env.outer.info.staticLevel;
   256     }
   258     /** An environment is an "initializer" if it is a constructor or
   259      *  an instance initializer.
   260      */
   261     static boolean isInitializer(Env<AttrContext> env) {
   262         Symbol owner = env.info.scope.owner;
   263         return owner.isConstructor() ||
   264             owner.owner.kind == TYP &&
   265             (owner.kind == VAR ||
   266              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   267             (owner.flags() & STATIC) == 0;
   268     }
   270     /** Is class accessible in given evironment?
   271      *  @param env    The current environment.
   272      *  @param c      The class whose accessibility is checked.
   273      */
   274     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   275         return isAccessible(env, c, false);
   276     }
   278     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   279         boolean isAccessible = false;
   280         switch ((short)(c.flags() & AccessFlags)) {
   281             case PRIVATE:
   282                 isAccessible =
   283                     env.enclClass.sym.outermostClass() ==
   284                     c.owner.outermostClass();
   285                 break;
   286             case 0:
   287                 isAccessible =
   288                     env.toplevel.packge == c.owner // fast special case
   289                     ||
   290                     env.toplevel.packge == c.packge()
   291                     ||
   292                     // Hack: this case is added since synthesized default constructors
   293                     // of anonymous classes should be allowed to access
   294                     // classes which would be inaccessible otherwise.
   295                     env.enclMethod != null &&
   296                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   297                 break;
   298             default: // error recovery
   299             case PUBLIC:
   300                 isAccessible = true;
   301                 break;
   302             case PROTECTED:
   303                 isAccessible =
   304                     env.toplevel.packge == c.owner // fast special case
   305                     ||
   306                     env.toplevel.packge == c.packge()
   307                     ||
   308                     isInnerSubClass(env.enclClass.sym, c.owner);
   309                 break;
   310         }
   311         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   312             isAccessible :
   313             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   314     }
   315     //where
   316         /** Is given class a subclass of given base class, or an inner class
   317          *  of a subclass?
   318          *  Return null if no such class exists.
   319          *  @param c     The class which is the subclass or is contained in it.
   320          *  @param base  The base class
   321          */
   322         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   323             while (c != null && !c.isSubClass(base, types)) {
   324                 c = c.owner.enclClass();
   325             }
   326             return c != null;
   327         }
   329     boolean isAccessible(Env<AttrContext> env, Type t) {
   330         return isAccessible(env, t, false);
   331     }
   333     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   334         return (t.tag == ARRAY)
   335             ? isAccessible(env, types.elemtype(t))
   336             : isAccessible(env, t.tsym, checkInner);
   337     }
   339     /** Is symbol accessible as a member of given type in given evironment?
   340      *  @param env    The current environment.
   341      *  @param site   The type of which the tested symbol is regarded
   342      *                as a member.
   343      *  @param sym    The symbol.
   344      */
   345     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   346         return isAccessible(env, site, sym, false);
   347     }
   348     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   349         if (sym.name == names.init && sym.owner != site.tsym) return false;
   350         switch ((short)(sym.flags() & AccessFlags)) {
   351         case PRIVATE:
   352             return
   353                 (env.enclClass.sym == sym.owner // fast special case
   354                  ||
   355                  env.enclClass.sym.outermostClass() ==
   356                  sym.owner.outermostClass())
   357                 &&
   358                 sym.isInheritedIn(site.tsym, types);
   359         case 0:
   360             return
   361                 (env.toplevel.packge == sym.owner.owner // fast special case
   362                  ||
   363                  env.toplevel.packge == sym.packge())
   364                 &&
   365                 isAccessible(env, site, checkInner)
   366                 &&
   367                 sym.isInheritedIn(site.tsym, types)
   368                 &&
   369                 notOverriddenIn(site, sym);
   370         case PROTECTED:
   371             return
   372                 (env.toplevel.packge == sym.owner.owner // fast special case
   373                  ||
   374                  env.toplevel.packge == sym.packge()
   375                  ||
   376                  isProtectedAccessible(sym, env.enclClass.sym, site)
   377                  ||
   378                  // OK to select instance method or field from 'super' or type name
   379                  // (but type names should be disallowed elsewhere!)
   380                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   381                 &&
   382                 isAccessible(env, site, checkInner)
   383                 &&
   384                 notOverriddenIn(site, sym);
   385         default: // this case includes erroneous combinations as well
   386             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   387         }
   388     }
   389     //where
   390     /* `sym' is accessible only if not overridden by
   391      * another symbol which is a member of `site'
   392      * (because, if it is overridden, `sym' is not strictly
   393      * speaking a member of `site'). A polymorphic signature method
   394      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   395      */
   396     private boolean notOverriddenIn(Type site, Symbol sym) {
   397         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   398             return true;
   399         else {
   400             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   401             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   402                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   403         }
   404     }
   405     //where
   406         /** Is given protected symbol accessible if it is selected from given site
   407          *  and the selection takes place in given class?
   408          *  @param sym     The symbol with protected access
   409          *  @param c       The class where the access takes place
   410          *  @site          The type of the qualifier
   411          */
   412         private
   413         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   414             while (c != null &&
   415                    !(c.isSubClass(sym.owner, types) &&
   416                      (c.flags() & INTERFACE) == 0 &&
   417                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   418                      // only to instance fields and methods -- types are excluded
   419                      // regardless of whether they are declared 'static' or not.
   420                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   421                 c = c.owner.enclClass();
   422             return c != null;
   423         }
   425     /** Try to instantiate the type of a method so that it fits
   426      *  given type arguments and argument types. If succesful, return
   427      *  the method's instantiated type, else return null.
   428      *  The instantiation will take into account an additional leading
   429      *  formal parameter if the method is an instance method seen as a member
   430      *  of un underdetermined site In this case, we treat site as an additional
   431      *  parameter and the parameters of the class containing the method as
   432      *  additional type variables that get instantiated.
   433      *
   434      *  @param env         The current environment
   435      *  @param site        The type of which the method is a member.
   436      *  @param m           The method symbol.
   437      *  @param argtypes    The invocation's given value arguments.
   438      *  @param typeargtypes    The invocation's given type arguments.
   439      *  @param allowBoxing Allow boxing conversions of arguments.
   440      *  @param useVarargs Box trailing arguments into an array for varargs.
   441      */
   442     Type rawInstantiate(Env<AttrContext> env,
   443                         Type site,
   444                         Symbol m,
   445                         List<Type> argtypes,
   446                         List<Type> typeargtypes,
   447                         boolean allowBoxing,
   448                         boolean useVarargs,
   449                         Warner warn)
   450         throws Infer.InferenceException {
   451         if (useVarargs && (m.flags() & VARARGS) == 0)
   452             throw inapplicableMethodException.setMessage();
   453         Type mt = types.memberType(site, m);
   455         // tvars is the list of formal type variables for which type arguments
   456         // need to inferred.
   457         List<Type> tvars = null;
   458         if (env.info.tvars != null) {
   459             tvars = types.newInstances(env.info.tvars);
   460             mt = types.subst(mt, env.info.tvars, tvars);
   461         }
   462         if (typeargtypes == null) typeargtypes = List.nil();
   463         if (mt.tag != FORALL && typeargtypes.nonEmpty()) {
   464             // This is not a polymorphic method, but typeargs are supplied
   465             // which is fine, see JLS 15.12.2.1
   466         } else if (mt.tag == FORALL && typeargtypes.nonEmpty()) {
   467             ForAll pmt = (ForAll) mt;
   468             if (typeargtypes.length() != pmt.tvars.length())
   469                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   470             // Check type arguments are within bounds
   471             List<Type> formals = pmt.tvars;
   472             List<Type> actuals = typeargtypes;
   473             while (formals.nonEmpty() && actuals.nonEmpty()) {
   474                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   475                                                 pmt.tvars, typeargtypes);
   476                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   477                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   478                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   479                 formals = formals.tail;
   480                 actuals = actuals.tail;
   481             }
   482             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   483         } else if (mt.tag == FORALL) {
   484             ForAll pmt = (ForAll) mt;
   485             List<Type> tvars1 = types.newInstances(pmt.tvars);
   486             tvars = tvars.appendList(tvars1);
   487             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   488         }
   490         // find out whether we need to go the slow route via infer
   491         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   492         for (List<Type> l = argtypes;
   493              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   494              l = l.tail) {
   495             if (l.head.tag == FORALL) instNeeded = true;
   496         }
   498         if (instNeeded)
   499             return infer.instantiateMethod(env,
   500                                     tvars,
   501                                     (MethodType)mt,
   502                                     m,
   503                                     argtypes,
   504                                     allowBoxing,
   505                                     useVarargs,
   506                                     warn);
   508         checkRawArgumentsAcceptable(env, argtypes, mt.getParameterTypes(),
   509                                 allowBoxing, useVarargs, warn);
   510         return mt;
   511     }
   513     /** Same but returns null instead throwing a NoInstanceException
   514      */
   515     Type instantiate(Env<AttrContext> env,
   516                      Type site,
   517                      Symbol m,
   518                      List<Type> argtypes,
   519                      List<Type> typeargtypes,
   520                      boolean allowBoxing,
   521                      boolean useVarargs,
   522                      Warner warn) {
   523         try {
   524             return rawInstantiate(env, site, m, argtypes, typeargtypes,
   525                                   allowBoxing, useVarargs, warn);
   526         } catch (InapplicableMethodException ex) {
   527             return null;
   528         }
   529     }
   531     /** Check if a parameter list accepts a list of args.
   532      */
   533     boolean argumentsAcceptable(Env<AttrContext> env,
   534                                 List<Type> argtypes,
   535                                 List<Type> formals,
   536                                 boolean allowBoxing,
   537                                 boolean useVarargs,
   538                                 Warner warn) {
   539         try {
   540             checkRawArgumentsAcceptable(env, argtypes, formals, allowBoxing, useVarargs, warn);
   541             return true;
   542         } catch (InapplicableMethodException ex) {
   543             return false;
   544         }
   545     }
   546     /**
   547      * A check handler is used by the main method applicability routine in order
   548      * to handle specific method applicability failures. It is assumed that a class
   549      * implementing this interface should throw exceptions that are a subtype of
   550      * InapplicableMethodException (see below). Such exception will terminate the
   551      * method applicability check and propagate important info outwards (for the
   552      * purpose of generating better diagnostics).
   553      */
   554     interface MethodCheckHandler {
   555         /* The number of actuals and formals differ */
   556         InapplicableMethodException arityMismatch();
   557         /* An actual argument type does not conform to the corresponding formal type */
   558         InapplicableMethodException argumentMismatch(boolean varargs, Type found, Type expected);
   559         /* The element type of a varargs is not accessible in the current context */
   560         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   561     }
   563     /**
   564      * Basic method check handler used within Resolve - all methods end up
   565      * throwing InapplicableMethodException; a diagnostic fragment that describes
   566      * the cause as to why the method is not applicable is set on the exception
   567      * before it is thrown.
   568      */
   569     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   570             public InapplicableMethodException arityMismatch() {
   571                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   572             }
   573             public InapplicableMethodException argumentMismatch(boolean varargs, Type found, Type expected) {
   574                 String key = varargs ?
   575                         "varargs.argument.mismatch" :
   576                         "no.conforming.assignment.exists";
   577                 return inapplicableMethodException.setMessage(key,
   578                         found, expected);
   579             }
   580             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   581                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   582                         expected, Kinds.kindName(location), location);
   583             }
   584     };
   586     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   587                                 List<Type> argtypes,
   588                                 List<Type> formals,
   589                                 boolean allowBoxing,
   590                                 boolean useVarargs,
   591                                 Warner warn) {
   592         checkRawArgumentsAcceptable(env, List.<Type>nil(), argtypes, formals,
   593                 allowBoxing, useVarargs, warn, resolveHandler);
   594     }
   596     /**
   597      * Main method applicability routine. Given a list of actual types A,
   598      * a list of formal types F, determines whether the types in A are
   599      * compatible (by method invocation conversion) with the types in F.
   600      *
   601      * Since this routine is shared between overload resolution and method
   602      * type-inference, it is crucial that actual types are converted to the
   603      * corresponding 'undet' form (i.e. where inference variables are replaced
   604      * with undetvars) so that constraints can be propagated and collected.
   605      *
   606      * Moreover, if one or more types in A is a poly type, this routine calls
   607      * Infer.instantiateArg in order to complete the poly type (this might involve
   608      * deferred attribution).
   609      *
   610      * A method check handler (see above) is used in order to report errors.
   611      */
   612     List<Type> checkRawArgumentsAcceptable(Env<AttrContext> env,
   613                                 List<Type> undetvars,
   614                                 List<Type> argtypes,
   615                                 List<Type> formals,
   616                                 boolean allowBoxing,
   617                                 boolean useVarargs,
   618                                 Warner warn,
   619                                 MethodCheckHandler handler) {
   620         Type varargsFormal = useVarargs ? formals.last() : null;
   621         ListBuffer<Type> checkedArgs = ListBuffer.lb();
   623         if (varargsFormal == null &&
   624                 argtypes.size() != formals.size()) {
   625             throw handler.arityMismatch(); // not enough args
   626         }
   628         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   629             ResultInfo resultInfo = methodCheckResult(formals.head, allowBoxing, false, undetvars, handler, warn);
   630             checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   631             argtypes = argtypes.tail;
   632             formals = formals.tail;
   633         }
   635         if (formals.head != varargsFormal) {
   636             throw handler.arityMismatch(); // not enough args
   637         }
   639         if (useVarargs) {
   640             //note: if applicability check is triggered by most specific test,
   641             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   642             Type elt = types.elemtype(varargsFormal);
   643             while (argtypes.nonEmpty()) {
   644                 ResultInfo resultInfo = methodCheckResult(elt, allowBoxing, true, undetvars, handler, warn);
   645                 checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   646                 argtypes = argtypes.tail;
   647             }
   648             //check varargs element type accessibility
   649             if (undetvars.isEmpty() && !isAccessible(env, elt)) {
   650                 Symbol location = env.enclClass.sym;
   651                 throw handler.inaccessibleVarargs(location, elt);
   652             }
   653         }
   654         return checkedArgs.toList();
   655     }
   657     /**
   658      * Check context to be used during method applicability checks. A method check
   659      * context might contain inference variables.
   660      */
   661     abstract class MethodCheckContext implements CheckContext {
   663         MethodCheckHandler handler;
   664         boolean useVarargs;
   665         List<Type> undetvars;
   666         Warner rsWarner;
   668         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   669             this.handler = handler;
   670             this.useVarargs = useVarargs;
   671             this.undetvars = undetvars;
   672             this.rsWarner = rsWarner;
   673         }
   675         public void report(DiagnosticPosition pos, Type found, Type req, JCDiagnostic details) {
   676             throw handler.argumentMismatch(useVarargs, found, req);
   677         }
   679         public Type rawInstantiatePoly(ForAll found, Type req, Warner warn) {
   680             throw new AssertionError("ForAll in argument position");
   681         }
   683         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   684             return rsWarner;
   685         }
   686     }
   688     /**
   689      * Subclass of method check context class that implements strict method conversion.
   690      * Strict method conversion checks compatibility between types using subtyping tests.
   691      */
   692     class StrictMethodContext extends MethodCheckContext {
   694         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   695             super(handler, useVarargs, undetvars, rsWarner);
   696         }
   698         public boolean compatible(Type found, Type req, Warner warn) {
   699             return types.isSubtypeUnchecked(found, infer.asUndetType(req, undetvars), warn);
   700         }
   701     }
   703     /**
   704      * Subclass of method check context class that implements loose method conversion.
   705      * Loose method conversion checks compatibility between types using method conversion tests.
   706      */
   707     class LooseMethodContext extends MethodCheckContext {
   709         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   710             super(handler, useVarargs, undetvars, rsWarner);
   711         }
   713         public boolean compatible(Type found, Type req, Warner warn) {
   714             return types.isConvertible(found, infer.asUndetType(req, undetvars), warn);
   715         }
   716     }
   718     /**
   719      * Create a method check context to be used during method applicability check
   720      */
   721     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   722             List<Type> undetvars, MethodCheckHandler methodHandler, Warner rsWarner) {
   723         MethodCheckContext checkContext = allowBoxing ?
   724                 new LooseMethodContext(methodHandler, useVarargs, undetvars, rsWarner) :
   725                 new StrictMethodContext(methodHandler, useVarargs, undetvars, rsWarner);
   726         return attr.new ResultInfo(VAL, to, checkContext) {
   727             @Override
   728             protected Type check(DiagnosticPosition pos, Type found) {
   729                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found))));
   730             }
   731         };
   732     }
   734     public static class InapplicableMethodException extends RuntimeException {
   735         private static final long serialVersionUID = 0;
   737         JCDiagnostic diagnostic;
   738         JCDiagnostic.Factory diags;
   740         InapplicableMethodException(JCDiagnostic.Factory diags) {
   741             this.diagnostic = null;
   742             this.diags = diags;
   743         }
   744         InapplicableMethodException setMessage() {
   745             this.diagnostic = null;
   746             return this;
   747         }
   748         InapplicableMethodException setMessage(String key) {
   749             this.diagnostic = key != null ? diags.fragment(key) : null;
   750             return this;
   751         }
   752         InapplicableMethodException setMessage(String key, Object... args) {
   753             this.diagnostic = key != null ? diags.fragment(key, args) : null;
   754             return this;
   755         }
   756         InapplicableMethodException setMessage(JCDiagnostic diag) {
   757             this.diagnostic = diag;
   758             return this;
   759         }
   761         public JCDiagnostic getDiagnostic() {
   762             return diagnostic;
   763         }
   764     }
   765     private final InapplicableMethodException inapplicableMethodException;
   767 /* ***************************************************************************
   768  *  Symbol lookup
   769  *  the following naming conventions for arguments are used
   770  *
   771  *       env      is the environment where the symbol was mentioned
   772  *       site     is the type of which the symbol is a member
   773  *       name     is the symbol's name
   774  *                if no arguments are given
   775  *       argtypes are the value arguments, if we search for a method
   776  *
   777  *  If no symbol was found, a ResolveError detailing the problem is returned.
   778  ****************************************************************************/
   780     /** Find field. Synthetic fields are always skipped.
   781      *  @param env     The current environment.
   782      *  @param site    The original type from where the selection takes place.
   783      *  @param name    The name of the field.
   784      *  @param c       The class to search for the field. This is always
   785      *                 a superclass or implemented interface of site's class.
   786      */
   787     Symbol findField(Env<AttrContext> env,
   788                      Type site,
   789                      Name name,
   790                      TypeSymbol c) {
   791         while (c.type.tag == TYPEVAR)
   792             c = c.type.getUpperBound().tsym;
   793         Symbol bestSoFar = varNotFound;
   794         Symbol sym;
   795         Scope.Entry e = c.members().lookup(name);
   796         while (e.scope != null) {
   797             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   798                 return isAccessible(env, site, e.sym)
   799                     ? e.sym : new AccessError(env, site, e.sym);
   800             }
   801             e = e.next();
   802         }
   803         Type st = types.supertype(c.type);
   804         if (st != null && (st.tag == CLASS || st.tag == TYPEVAR)) {
   805             sym = findField(env, site, name, st.tsym);
   806             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   807         }
   808         for (List<Type> l = types.interfaces(c.type);
   809              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   810              l = l.tail) {
   811             sym = findField(env, site, name, l.head.tsym);
   812             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   813                 sym.owner != bestSoFar.owner)
   814                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   815             else if (sym.kind < bestSoFar.kind)
   816                 bestSoFar = sym;
   817         }
   818         return bestSoFar;
   819     }
   821     /** Resolve a field identifier, throw a fatal error if not found.
   822      *  @param pos       The position to use for error reporting.
   823      *  @param env       The environment current at the method invocation.
   824      *  @param site      The type of the qualifying expression, in which
   825      *                   identifier is searched.
   826      *  @param name      The identifier's name.
   827      */
   828     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   829                                           Type site, Name name) {
   830         Symbol sym = findField(env, site, name, site.tsym);
   831         if (sym.kind == VAR) return (VarSymbol)sym;
   832         else throw new FatalError(
   833                  diags.fragment("fatal.err.cant.locate.field",
   834                                 name));
   835     }
   837     /** Find unqualified variable or field with given name.
   838      *  Synthetic fields always skipped.
   839      *  @param env     The current environment.
   840      *  @param name    The name of the variable or field.
   841      */
   842     Symbol findVar(Env<AttrContext> env, Name name) {
   843         Symbol bestSoFar = varNotFound;
   844         Symbol sym;
   845         Env<AttrContext> env1 = env;
   846         boolean staticOnly = false;
   847         while (env1.outer != null) {
   848             if (isStatic(env1)) staticOnly = true;
   849             Scope.Entry e = env1.info.scope.lookup(name);
   850             while (e.scope != null &&
   851                    (e.sym.kind != VAR ||
   852                     (e.sym.flags_field & SYNTHETIC) != 0))
   853                 e = e.next();
   854             sym = (e.scope != null)
   855                 ? e.sym
   856                 : findField(
   857                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   858             if (sym.exists()) {
   859                 if (staticOnly &&
   860                     sym.kind == VAR &&
   861                     sym.owner.kind == TYP &&
   862                     (sym.flags() & STATIC) == 0)
   863                     return new StaticError(sym);
   864                 else
   865                     return sym;
   866             } else if (sym.kind < bestSoFar.kind) {
   867                 bestSoFar = sym;
   868             }
   870             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   871             env1 = env1.outer;
   872         }
   874         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   875         if (sym.exists())
   876             return sym;
   877         if (bestSoFar.exists())
   878             return bestSoFar;
   880         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   881         for (; e.scope != null; e = e.next()) {
   882             sym = e.sym;
   883             Type origin = e.getOrigin().owner.type;
   884             if (sym.kind == VAR) {
   885                 if (e.sym.owner.type != origin)
   886                     sym = sym.clone(e.getOrigin().owner);
   887                 return isAccessible(env, origin, sym)
   888                     ? sym : new AccessError(env, origin, sym);
   889             }
   890         }
   892         Symbol origin = null;
   893         e = env.toplevel.starImportScope.lookup(name);
   894         for (; e.scope != null; e = e.next()) {
   895             sym = e.sym;
   896             if (sym.kind != VAR)
   897                 continue;
   898             // invariant: sym.kind == VAR
   899             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   900                 return new AmbiguityError(bestSoFar, sym);
   901             else if (bestSoFar.kind >= VAR) {
   902                 origin = e.getOrigin().owner;
   903                 bestSoFar = isAccessible(env, origin.type, sym)
   904                     ? sym : new AccessError(env, origin.type, sym);
   905             }
   906         }
   907         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   908             return bestSoFar.clone(origin);
   909         else
   910             return bestSoFar;
   911     }
   913     Warner noteWarner = new Warner();
   915     /** Select the best method for a call site among two choices.
   916      *  @param env              The current environment.
   917      *  @param site             The original type from where the
   918      *                          selection takes place.
   919      *  @param argtypes         The invocation's value arguments,
   920      *  @param typeargtypes     The invocation's type arguments,
   921      *  @param sym              Proposed new best match.
   922      *  @param bestSoFar        Previously found best match.
   923      *  @param allowBoxing Allow boxing conversions of arguments.
   924      *  @param useVarargs Box trailing arguments into an array for varargs.
   925      */
   926     @SuppressWarnings("fallthrough")
   927     Symbol selectBest(Env<AttrContext> env,
   928                       Type site,
   929                       List<Type> argtypes,
   930                       List<Type> typeargtypes,
   931                       Symbol sym,
   932                       Symbol bestSoFar,
   933                       boolean allowBoxing,
   934                       boolean useVarargs,
   935                       boolean operator) {
   936         if (sym.kind == ERR) return bestSoFar;
   937         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
   938         Assert.check(sym.kind < AMBIGUOUS);
   939         try {
   940             Type mt = rawInstantiate(env, site, sym, argtypes, typeargtypes,
   941                                allowBoxing, useVarargs, Warner.noWarnings);
   942             if (!operator)
   943                 currentResolutionContext.addApplicableCandidate(sym, mt);
   944         } catch (InapplicableMethodException ex) {
   945             if (!operator)
   946                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
   947             switch (bestSoFar.kind) {
   948             case ABSENT_MTH:
   949                 return wrongMethod;
   950             case WRONG_MTH:
   951                 if (operator) return bestSoFar;
   952             case WRONG_MTHS:
   953                 return wrongMethods;
   954             default:
   955                 return bestSoFar;
   956             }
   957         }
   958         if (!isAccessible(env, site, sym)) {
   959             return (bestSoFar.kind == ABSENT_MTH)
   960                 ? new AccessError(env, site, sym)
   961                 : bestSoFar;
   962         }
   963         return (bestSoFar.kind > AMBIGUOUS)
   964             ? sym
   965             : mostSpecific(sym, bestSoFar, env, site,
   966                            allowBoxing && operator, useVarargs);
   967     }
   969     /* Return the most specific of the two methods for a call,
   970      *  given that both are accessible and applicable.
   971      *  @param m1               A new candidate for most specific.
   972      *  @param m2               The previous most specific candidate.
   973      *  @param env              The current environment.
   974      *  @param site             The original type from where the selection
   975      *                          takes place.
   976      *  @param allowBoxing Allow boxing conversions of arguments.
   977      *  @param useVarargs Box trailing arguments into an array for varargs.
   978      */
   979     Symbol mostSpecific(Symbol m1,
   980                         Symbol m2,
   981                         Env<AttrContext> env,
   982                         final Type site,
   983                         boolean allowBoxing,
   984                         boolean useVarargs) {
   985         switch (m2.kind) {
   986         case MTH:
   987             if (m1 == m2) return m1;
   988             boolean m1SignatureMoreSpecific = signatureMoreSpecific(env, site, m1, m2, allowBoxing, useVarargs);
   989             boolean m2SignatureMoreSpecific = signatureMoreSpecific(env, site, m2, m1, allowBoxing, useVarargs);
   990             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
   991                 Type mt1 = types.memberType(site, m1);
   992                 Type mt2 = types.memberType(site, m2);
   993                 if (!types.overrideEquivalent(mt1, mt2))
   994                     return ambiguityError(m1, m2);
   996                 // same signature; select (a) the non-bridge method, or
   997                 // (b) the one that overrides the other, or (c) the concrete
   998                 // one, or (d) merge both abstract signatures
   999                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1000                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1002                 // if one overrides or hides the other, use it
  1003                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1004                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1005                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1006                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1007                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1008                     m1.overrides(m2, m1Owner, types, false))
  1009                     return m1;
  1010                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1011                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1012                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1013                     m2.overrides(m1, m2Owner, types, false))
  1014                     return m2;
  1015                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1016                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1017                 if (m1Abstract && !m2Abstract) return m2;
  1018                 if (m2Abstract && !m1Abstract) return m1;
  1019                 // both abstract or both concrete
  1020                 if (!m1Abstract && !m2Abstract)
  1021                     return ambiguityError(m1, m2);
  1022                 // check that both signatures have the same erasure
  1023                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1024                                        m2.erasure(types).getParameterTypes()))
  1025                     return ambiguityError(m1, m2);
  1026                 // both abstract, neither overridden; merge throws clause and result type
  1027                 Type mst = mostSpecificReturnType(mt1, mt2);
  1028                 if (mst == null) {
  1029                     // Theoretically, this can't happen, but it is possible
  1030                     // due to error recovery or mixing incompatible class files
  1031                     return ambiguityError(m1, m2);
  1033                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1034                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1035                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1036                 MethodSymbol result = new MethodSymbol(
  1037                         mostSpecific.flags(),
  1038                         mostSpecific.name,
  1039                         newSig,
  1040                         mostSpecific.owner) {
  1041                     @Override
  1042                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1043                         if (origin == site.tsym)
  1044                             return this;
  1045                         else
  1046                             return super.implementation(origin, types, checkResult);
  1048                 };
  1049                 return result;
  1051             if (m1SignatureMoreSpecific) return m1;
  1052             if (m2SignatureMoreSpecific) return m2;
  1053             return ambiguityError(m1, m2);
  1054         case AMBIGUOUS:
  1055             AmbiguityError e = (AmbiguityError)m2;
  1056             Symbol err1 = mostSpecific(m1, e.sym, env, site, allowBoxing, useVarargs);
  1057             Symbol err2 = mostSpecific(m1, e.sym2, env, site, allowBoxing, useVarargs);
  1058             if (err1 == err2) return err1;
  1059             if (err1 == e.sym && err2 == e.sym2) return m2;
  1060             if (err1 instanceof AmbiguityError &&
  1061                 err2 instanceof AmbiguityError &&
  1062                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1063                 return ambiguityError(m1, m2);
  1064             else
  1065                 return ambiguityError(err1, err2);
  1066         default:
  1067             throw new AssertionError();
  1070     //where
  1071     private boolean signatureMoreSpecific(Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1072         noteWarner.clear();
  1073         Type mtype1 = types.memberType(site, adjustVarargs(m1, m2, useVarargs));
  1074         Type mtype2 = instantiate(env, site, adjustVarargs(m2, m1, useVarargs),
  1075                 types.lowerBoundArgtypes(mtype1), null,
  1076                 allowBoxing, false, noteWarner);
  1077         return mtype2 != null &&
  1078                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1080     //where
  1081     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1082         List<Type> fromArgs = from.type.getParameterTypes();
  1083         List<Type> toArgs = to.type.getParameterTypes();
  1084         if (useVarargs &&
  1085                 (from.flags() & VARARGS) != 0 &&
  1086                 (to.flags() & VARARGS) != 0) {
  1087             Type varargsTypeFrom = fromArgs.last();
  1088             Type varargsTypeTo = toArgs.last();
  1089             ListBuffer<Type> args = ListBuffer.lb();
  1090             if (toArgs.length() < fromArgs.length()) {
  1091                 //if we are checking a varargs method 'from' against another varargs
  1092                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1093                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1094                 //until 'to' signature has the same arity as 'from')
  1095                 while (fromArgs.head != varargsTypeFrom) {
  1096                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1097                     fromArgs = fromArgs.tail;
  1098                     toArgs = toArgs.head == varargsTypeTo ?
  1099                         toArgs :
  1100                         toArgs.tail;
  1102             } else {
  1103                 //formal argument list is same as original list where last
  1104                 //argument (array type) is removed
  1105                 args.appendList(toArgs.reverse().tail.reverse());
  1107             //append varargs element type as last synthetic formal
  1108             args.append(types.elemtype(varargsTypeTo));
  1109             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1110             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1111         } else {
  1112             return to;
  1115     //where
  1116     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1117         Type rt1 = mt1.getReturnType();
  1118         Type rt2 = mt2.getReturnType();
  1120         if (mt1.tag == FORALL && mt2.tag == FORALL) {
  1121             //if both are generic methods, adjust return type ahead of subtyping check
  1122             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1124         //first use subtyping, then return type substitutability
  1125         if (types.isSubtype(rt1, rt2)) {
  1126             return mt1;
  1127         } else if (types.isSubtype(rt2, rt1)) {
  1128             return mt2;
  1129         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1130             return mt1;
  1131         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1132             return mt2;
  1133         } else {
  1134             return null;
  1137     //where
  1138     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1139         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1140             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1141         } else {
  1142             return new AmbiguityError(m1, m2);
  1146     /** Find best qualified method matching given name, type and value
  1147      *  arguments.
  1148      *  @param env       The current environment.
  1149      *  @param site      The original type from where the selection
  1150      *                   takes place.
  1151      *  @param name      The method's name.
  1152      *  @param argtypes  The method's value arguments.
  1153      *  @param typeargtypes The method's type arguments
  1154      *  @param allowBoxing Allow boxing conversions of arguments.
  1155      *  @param useVarargs Box trailing arguments into an array for varargs.
  1156      */
  1157     Symbol findMethod(Env<AttrContext> env,
  1158                       Type site,
  1159                       Name name,
  1160                       List<Type> argtypes,
  1161                       List<Type> typeargtypes,
  1162                       boolean allowBoxing,
  1163                       boolean useVarargs,
  1164                       boolean operator) {
  1165         Symbol bestSoFar = methodNotFound;
  1166         bestSoFar = findMethod(env,
  1167                           site,
  1168                           name,
  1169                           argtypes,
  1170                           typeargtypes,
  1171                           site.tsym.type,
  1172                           true,
  1173                           bestSoFar,
  1174                           allowBoxing,
  1175                           useVarargs,
  1176                           operator,
  1177                           new HashSet<TypeSymbol>());
  1178         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1179         return bestSoFar;
  1181     // where
  1182     private Symbol findMethod(Env<AttrContext> env,
  1183                               Type site,
  1184                               Name name,
  1185                               List<Type> argtypes,
  1186                               List<Type> typeargtypes,
  1187                               Type intype,
  1188                               boolean abstractok,
  1189                               Symbol bestSoFar,
  1190                               boolean allowBoxing,
  1191                               boolean useVarargs,
  1192                               boolean operator,
  1193                               Set<TypeSymbol> seen) {
  1194         for (Type ct = intype; ct.tag == CLASS || ct.tag == TYPEVAR; ct = types.supertype(ct)) {
  1195             while (ct.tag == TYPEVAR)
  1196                 ct = ct.getUpperBound();
  1197             ClassSymbol c = (ClassSymbol)ct.tsym;
  1198             if (!seen.add(c)) return bestSoFar;
  1199             if ((c.flags() & (ABSTRACT | INTERFACE | ENUM)) == 0)
  1200                 abstractok = false;
  1201             for (Scope.Entry e = c.members().lookup(name);
  1202                  e.scope != null;
  1203                  e = e.next()) {
  1204                 //- System.out.println(" e " + e.sym);
  1205                 if (e.sym.kind == MTH &&
  1206                     (e.sym.flags_field & SYNTHETIC) == 0) {
  1207                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1208                                            e.sym, bestSoFar,
  1209                                            allowBoxing,
  1210                                            useVarargs,
  1211                                            operator);
  1214             if (name == names.init)
  1215                 break;
  1216             //- System.out.println(" - " + bestSoFar);
  1217             if (abstractok) {
  1218                 Symbol concrete = methodNotFound;
  1219                 if ((bestSoFar.flags() & ABSTRACT) == 0)
  1220                     concrete = bestSoFar;
  1221                 for (List<Type> l = types.interfaces(c.type);
  1222                      l.nonEmpty();
  1223                      l = l.tail) {
  1224                     bestSoFar = findMethod(env, site, name, argtypes,
  1225                                            typeargtypes,
  1226                                            l.head, abstractok, bestSoFar,
  1227                                            allowBoxing, useVarargs, operator, seen);
  1229                 if (concrete != bestSoFar &&
  1230                     concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1231                     types.isSubSignature(concrete.type, bestSoFar.type))
  1232                     bestSoFar = concrete;
  1235         return bestSoFar;
  1238     /** Find unqualified method matching given name, type and value arguments.
  1239      *  @param env       The current environment.
  1240      *  @param name      The method's name.
  1241      *  @param argtypes  The method's value arguments.
  1242      *  @param typeargtypes  The method's type arguments.
  1243      *  @param allowBoxing Allow boxing conversions of arguments.
  1244      *  @param useVarargs Box trailing arguments into an array for varargs.
  1245      */
  1246     Symbol findFun(Env<AttrContext> env, Name name,
  1247                    List<Type> argtypes, List<Type> typeargtypes,
  1248                    boolean allowBoxing, boolean useVarargs) {
  1249         Symbol bestSoFar = methodNotFound;
  1250         Symbol sym;
  1251         Env<AttrContext> env1 = env;
  1252         boolean staticOnly = false;
  1253         while (env1.outer != null) {
  1254             if (isStatic(env1)) staticOnly = true;
  1255             sym = findMethod(
  1256                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1257                 allowBoxing, useVarargs, false);
  1258             if (sym.exists()) {
  1259                 if (staticOnly &&
  1260                     sym.kind == MTH &&
  1261                     sym.owner.kind == TYP &&
  1262                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1263                 else return sym;
  1264             } else if (sym.kind < bestSoFar.kind) {
  1265                 bestSoFar = sym;
  1267             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1268             env1 = env1.outer;
  1271         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1272                          typeargtypes, allowBoxing, useVarargs, false);
  1273         if (sym.exists())
  1274             return sym;
  1276         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1277         for (; e.scope != null; e = e.next()) {
  1278             sym = e.sym;
  1279             Type origin = e.getOrigin().owner.type;
  1280             if (sym.kind == MTH) {
  1281                 if (e.sym.owner.type != origin)
  1282                     sym = sym.clone(e.getOrigin().owner);
  1283                 if (!isAccessible(env, origin, sym))
  1284                     sym = new AccessError(env, origin, sym);
  1285                 bestSoFar = selectBest(env, origin,
  1286                                        argtypes, typeargtypes,
  1287                                        sym, bestSoFar,
  1288                                        allowBoxing, useVarargs, false);
  1291         if (bestSoFar.exists())
  1292             return bestSoFar;
  1294         e = env.toplevel.starImportScope.lookup(name);
  1295         for (; e.scope != null; e = e.next()) {
  1296             sym = e.sym;
  1297             Type origin = e.getOrigin().owner.type;
  1298             if (sym.kind == MTH) {
  1299                 if (e.sym.owner.type != origin)
  1300                     sym = sym.clone(e.getOrigin().owner);
  1301                 if (!isAccessible(env, origin, sym))
  1302                     sym = new AccessError(env, origin, sym);
  1303                 bestSoFar = selectBest(env, origin,
  1304                                        argtypes, typeargtypes,
  1305                                        sym, bestSoFar,
  1306                                        allowBoxing, useVarargs, false);
  1309         return bestSoFar;
  1312     /** Load toplevel or member class with given fully qualified name and
  1313      *  verify that it is accessible.
  1314      *  @param env       The current environment.
  1315      *  @param name      The fully qualified name of the class to be loaded.
  1316      */
  1317     Symbol loadClass(Env<AttrContext> env, Name name) {
  1318         try {
  1319             ClassSymbol c = reader.loadClass(name);
  1320             return isAccessible(env, c) ? c : new AccessError(c);
  1321         } catch (ClassReader.BadClassFile err) {
  1322             throw err;
  1323         } catch (CompletionFailure ex) {
  1324             return typeNotFound;
  1328     /** Find qualified member type.
  1329      *  @param env       The current environment.
  1330      *  @param site      The original type from where the selection takes
  1331      *                   place.
  1332      *  @param name      The type's name.
  1333      *  @param c         The class to search for the member type. This is
  1334      *                   always a superclass or implemented interface of
  1335      *                   site's class.
  1336      */
  1337     Symbol findMemberType(Env<AttrContext> env,
  1338                           Type site,
  1339                           Name name,
  1340                           TypeSymbol c) {
  1341         Symbol bestSoFar = typeNotFound;
  1342         Symbol sym;
  1343         Scope.Entry e = c.members().lookup(name);
  1344         while (e.scope != null) {
  1345             if (e.sym.kind == TYP) {
  1346                 return isAccessible(env, site, e.sym)
  1347                     ? e.sym
  1348                     : new AccessError(env, site, e.sym);
  1350             e = e.next();
  1352         Type st = types.supertype(c.type);
  1353         if (st != null && st.tag == CLASS) {
  1354             sym = findMemberType(env, site, name, st.tsym);
  1355             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1357         for (List<Type> l = types.interfaces(c.type);
  1358              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1359              l = l.tail) {
  1360             sym = findMemberType(env, site, name, l.head.tsym);
  1361             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1362                 sym.owner != bestSoFar.owner)
  1363                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1364             else if (sym.kind < bestSoFar.kind)
  1365                 bestSoFar = sym;
  1367         return bestSoFar;
  1370     /** Find a global type in given scope and load corresponding class.
  1371      *  @param env       The current environment.
  1372      *  @param scope     The scope in which to look for the type.
  1373      *  @param name      The type's name.
  1374      */
  1375     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1376         Symbol bestSoFar = typeNotFound;
  1377         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1378             Symbol sym = loadClass(env, e.sym.flatName());
  1379             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1380                 bestSoFar != sym)
  1381                 return new AmbiguityError(bestSoFar, sym);
  1382             else if (sym.kind < bestSoFar.kind)
  1383                 bestSoFar = sym;
  1385         return bestSoFar;
  1388     /** Find an unqualified type symbol.
  1389      *  @param env       The current environment.
  1390      *  @param name      The type's name.
  1391      */
  1392     Symbol findType(Env<AttrContext> env, Name name) {
  1393         Symbol bestSoFar = typeNotFound;
  1394         Symbol sym;
  1395         boolean staticOnly = false;
  1396         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1397             if (isStatic(env1)) staticOnly = true;
  1398             for (Scope.Entry e = env1.info.scope.lookup(name);
  1399                  e.scope != null;
  1400                  e = e.next()) {
  1401                 if (e.sym.kind == TYP) {
  1402                     if (staticOnly &&
  1403                         e.sym.type.tag == TYPEVAR &&
  1404                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1405                     return e.sym;
  1409             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1410                                  env1.enclClass.sym);
  1411             if (staticOnly && sym.kind == TYP &&
  1412                 sym.type.tag == CLASS &&
  1413                 sym.type.getEnclosingType().tag == CLASS &&
  1414                 env1.enclClass.sym.type.isParameterized() &&
  1415                 sym.type.getEnclosingType().isParameterized())
  1416                 return new StaticError(sym);
  1417             else if (sym.exists()) return sym;
  1418             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1420             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1421             if ((encl.sym.flags() & STATIC) != 0)
  1422                 staticOnly = true;
  1425         if (!env.tree.hasTag(IMPORT)) {
  1426             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1427             if (sym.exists()) return sym;
  1428             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1430             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1431             if (sym.exists()) return sym;
  1432             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1434             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1435             if (sym.exists()) return sym;
  1436             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1439         return bestSoFar;
  1442     /** Find an unqualified identifier which matches a specified kind set.
  1443      *  @param env       The current environment.
  1444      *  @param name      The indentifier's name.
  1445      *  @param kind      Indicates the possible symbol kinds
  1446      *                   (a subset of VAL, TYP, PCK).
  1447      */
  1448     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1449         Symbol bestSoFar = typeNotFound;
  1450         Symbol sym;
  1452         if ((kind & VAR) != 0) {
  1453             sym = findVar(env, name);
  1454             if (sym.exists()) return sym;
  1455             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1458         if ((kind & TYP) != 0) {
  1459             sym = findType(env, name);
  1460             if (sym.exists()) return sym;
  1461             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1464         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1465         else return bestSoFar;
  1468     /** Find an identifier in a package which matches a specified kind set.
  1469      *  @param env       The current environment.
  1470      *  @param name      The identifier's name.
  1471      *  @param kind      Indicates the possible symbol kinds
  1472      *                   (a nonempty subset of TYP, PCK).
  1473      */
  1474     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1475                               Name name, int kind) {
  1476         Name fullname = TypeSymbol.formFullName(name, pck);
  1477         Symbol bestSoFar = typeNotFound;
  1478         PackageSymbol pack = null;
  1479         if ((kind & PCK) != 0) {
  1480             pack = reader.enterPackage(fullname);
  1481             if (pack.exists()) return pack;
  1483         if ((kind & TYP) != 0) {
  1484             Symbol sym = loadClass(env, fullname);
  1485             if (sym.exists()) {
  1486                 // don't allow programs to use flatnames
  1487                 if (name == sym.name) return sym;
  1489             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1491         return (pack != null) ? pack : bestSoFar;
  1494     /** Find an identifier among the members of a given type `site'.
  1495      *  @param env       The current environment.
  1496      *  @param site      The type containing the symbol to be found.
  1497      *  @param name      The identifier's name.
  1498      *  @param kind      Indicates the possible symbol kinds
  1499      *                   (a subset of VAL, TYP).
  1500      */
  1501     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1502                            Name name, int kind) {
  1503         Symbol bestSoFar = typeNotFound;
  1504         Symbol sym;
  1505         if ((kind & VAR) != 0) {
  1506             sym = findField(env, site, name, site.tsym);
  1507             if (sym.exists()) return sym;
  1508             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1511         if ((kind & TYP) != 0) {
  1512             sym = findMemberType(env, site, name, site.tsym);
  1513             if (sym.exists()) return sym;
  1514             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1516         return bestSoFar;
  1519 /* ***************************************************************************
  1520  *  Access checking
  1521  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1522  *  an error message in the process
  1523  ****************************************************************************/
  1525     /** If `sym' is a bad symbol: report error and return errSymbol
  1526      *  else pass through unchanged,
  1527      *  additional arguments duplicate what has been used in trying to find the
  1528      *  symbol (--> flyweight pattern). This improves performance since we
  1529      *  expect misses to happen frequently.
  1531      *  @param sym       The symbol that was found, or a ResolveError.
  1532      *  @param pos       The position to use for error reporting.
  1533      *  @param site      The original type from where the selection took place.
  1534      *  @param name      The symbol's name.
  1535      *  @param argtypes  The invocation's value arguments,
  1536      *                   if we looked for a method.
  1537      *  @param typeargtypes  The invocation's type arguments,
  1538      *                   if we looked for a method.
  1539      */
  1540     Symbol access(Symbol sym,
  1541                   DiagnosticPosition pos,
  1542                   Symbol location,
  1543                   Type site,
  1544                   Name name,
  1545                   boolean qualified,
  1546                   List<Type> argtypes,
  1547                   List<Type> typeargtypes) {
  1548         if (sym.kind >= AMBIGUOUS) {
  1549             ResolveError errSym = (ResolveError)sym;
  1550             if (!site.isErroneous() &&
  1551                 !Type.isErroneous(argtypes) &&
  1552                 (typeargtypes==null || !Type.isErroneous(typeargtypes)))
  1553                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1554             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1556         return sym;
  1559     /** Same as original access(), but without location.
  1560      */
  1561     Symbol access(Symbol sym,
  1562                   DiagnosticPosition pos,
  1563                   Type site,
  1564                   Name name,
  1565                   boolean qualified,
  1566                   List<Type> argtypes,
  1567                   List<Type> typeargtypes) {
  1568         return access(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1571     /** Same as original access(), but without type arguments and arguments.
  1572      */
  1573     Symbol access(Symbol sym,
  1574                   DiagnosticPosition pos,
  1575                   Symbol location,
  1576                   Type site,
  1577                   Name name,
  1578                   boolean qualified) {
  1579         if (sym.kind >= AMBIGUOUS)
  1580             return access(sym, pos, location, site, name, qualified, List.<Type>nil(), null);
  1581         else
  1582             return sym;
  1585     /** Same as original access(), but without location, type arguments and arguments.
  1586      */
  1587     Symbol access(Symbol sym,
  1588                   DiagnosticPosition pos,
  1589                   Type site,
  1590                   Name name,
  1591                   boolean qualified) {
  1592         return access(sym, pos, site.tsym, site, name, qualified);
  1595     /** Check that sym is not an abstract method.
  1596      */
  1597     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1598         if ((sym.flags() & ABSTRACT) != 0)
  1599             log.error(pos, "abstract.cant.be.accessed.directly",
  1600                       kindName(sym), sym, sym.location());
  1603 /* ***************************************************************************
  1604  *  Debugging
  1605  ****************************************************************************/
  1607     /** print all scopes starting with scope s and proceeding outwards.
  1608      *  used for debugging.
  1609      */
  1610     public void printscopes(Scope s) {
  1611         while (s != null) {
  1612             if (s.owner != null)
  1613                 System.err.print(s.owner + ": ");
  1614             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1615                 if ((e.sym.flags() & ABSTRACT) != 0)
  1616                     System.err.print("abstract ");
  1617                 System.err.print(e.sym + " ");
  1619             System.err.println();
  1620             s = s.next;
  1624     void printscopes(Env<AttrContext> env) {
  1625         while (env.outer != null) {
  1626             System.err.println("------------------------------");
  1627             printscopes(env.info.scope);
  1628             env = env.outer;
  1632     public void printscopes(Type t) {
  1633         while (t.tag == CLASS) {
  1634             printscopes(t.tsym.members());
  1635             t = types.supertype(t);
  1639 /* ***************************************************************************
  1640  *  Name resolution
  1641  *  Naming conventions are as for symbol lookup
  1642  *  Unlike the find... methods these methods will report access errors
  1643  ****************************************************************************/
  1645     /** Resolve an unqualified (non-method) identifier.
  1646      *  @param pos       The position to use for error reporting.
  1647      *  @param env       The environment current at the identifier use.
  1648      *  @param name      The identifier's name.
  1649      *  @param kind      The set of admissible symbol kinds for the identifier.
  1650      */
  1651     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  1652                         Name name, int kind) {
  1653         return access(
  1654             findIdent(env, name, kind),
  1655             pos, env.enclClass.sym.type, name, false);
  1658     /** Resolve an unqualified method identifier.
  1659      *  @param pos       The position to use for error reporting.
  1660      *  @param env       The environment current at the method invocation.
  1661      *  @param name      The identifier's name.
  1662      *  @param argtypes  The types of the invocation's value arguments.
  1663      *  @param typeargtypes  The types of the invocation's type arguments.
  1664      */
  1665     Symbol resolveMethod(DiagnosticPosition pos,
  1666                          Env<AttrContext> env,
  1667                          Name name,
  1668                          List<Type> argtypes,
  1669                          List<Type> typeargtypes) {
  1670         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1671         try {
  1672             currentResolutionContext = new MethodResolutionContext();
  1673             Symbol sym = methodNotFound;
  1674             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1675             while (steps.nonEmpty() &&
  1676                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1677                    sym.kind >= ERRONEOUS) {
  1678                 currentResolutionContext.step = steps.head;
  1679                 sym = findFun(env, name, argtypes, typeargtypes,
  1680                         steps.head.isBoxingRequired,
  1681                         env.info.varArgs = steps.head.isVarargsRequired);
  1682                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1683                 steps = steps.tail;
  1685             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1686                 MethodResolutionPhase errPhase =
  1687                         currentResolutionContext.firstErroneousResolutionPhase();
  1688                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1689                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  1690                 env.info.varArgs = errPhase.isVarargsRequired;
  1692             return sym;
  1694         finally {
  1695             currentResolutionContext = prevResolutionContext;
  1699     /** Resolve a qualified method identifier
  1700      *  @param pos       The position to use for error reporting.
  1701      *  @param env       The environment current at the method invocation.
  1702      *  @param site      The type of the qualifying expression, in which
  1703      *                   identifier is searched.
  1704      *  @param name      The identifier's name.
  1705      *  @param argtypes  The types of the invocation's value arguments.
  1706      *  @param typeargtypes  The types of the invocation's type arguments.
  1707      */
  1708     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1709                                   Type site, Name name, List<Type> argtypes,
  1710                                   List<Type> typeargtypes) {
  1711         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  1713     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1714                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1715                                   List<Type> typeargtypes) {
  1716         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  1718     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  1719                                   DiagnosticPosition pos, Env<AttrContext> env,
  1720                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1721                                   List<Type> typeargtypes) {
  1722         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1723         try {
  1724             currentResolutionContext = resolveContext;
  1725             Symbol sym = methodNotFound;
  1726             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1727             while (steps.nonEmpty() &&
  1728                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1729                    sym.kind >= ERRONEOUS) {
  1730                 currentResolutionContext.step = steps.head;
  1731                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  1732                         steps.head.isBoxingRequired(),
  1733                         env.info.varArgs = steps.head.isVarargsRequired(), false);
  1734                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1735                 steps = steps.tail;
  1737             if (sym.kind >= AMBIGUOUS) {
  1738                 //if nothing is found return the 'first' error
  1739                 MethodResolutionPhase errPhase =
  1740                         currentResolutionContext.firstErroneousResolutionPhase();
  1741                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1742                         pos, location, site, name, true, argtypes, typeargtypes);
  1743                 env.info.varArgs = errPhase.isVarargsRequired;
  1744             } else if (allowMethodHandles) {
  1745                 MethodSymbol msym = (MethodSymbol)sym;
  1746                 if (msym.isSignaturePolymorphic(types)) {
  1747                     env.info.varArgs = false;
  1748                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  1751             return sym;
  1753         finally {
  1754             currentResolutionContext = prevResolutionContext;
  1758     /** Find or create an implicit method of exactly the given type (after erasure).
  1759      *  Searches in a side table, not the main scope of the site.
  1760      *  This emulates the lookup process required by JSR 292 in JVM.
  1761      *  @param env       Attribution environment
  1762      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  1763      *  @param argtypes  The required argument types
  1764      */
  1765     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  1766                                             Symbol spMethod,
  1767                                             List<Type> argtypes) {
  1768         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  1769                 (MethodSymbol)spMethod, argtypes);
  1770         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  1771             if (types.isSameType(mtype, sym.type)) {
  1772                return sym;
  1776         // create the desired method
  1777         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  1778         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  1779         polymorphicSignatureScope.enter(msym);
  1780         return msym;
  1783     /** Resolve a qualified method identifier, throw a fatal error if not
  1784      *  found.
  1785      *  @param pos       The position to use for error reporting.
  1786      *  @param env       The environment current at the method invocation.
  1787      *  @param site      The type of the qualifying expression, in which
  1788      *                   identifier is searched.
  1789      *  @param name      The identifier's name.
  1790      *  @param argtypes  The types of the invocation's value arguments.
  1791      *  @param typeargtypes  The types of the invocation's type arguments.
  1792      */
  1793     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1794                                         Type site, Name name,
  1795                                         List<Type> argtypes,
  1796                                         List<Type> typeargtypes) {
  1797         MethodResolutionContext resolveContext = new MethodResolutionContext();
  1798         resolveContext.internalResolution = true;
  1799         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  1800                 site, name, argtypes, typeargtypes);
  1801         if (sym.kind == MTH) return (MethodSymbol)sym;
  1802         else throw new FatalError(
  1803                  diags.fragment("fatal.err.cant.locate.meth",
  1804                                 name));
  1807     /** Resolve constructor.
  1808      *  @param pos       The position to use for error reporting.
  1809      *  @param env       The environment current at the constructor invocation.
  1810      *  @param site      The type of class for which a constructor is searched.
  1811      *  @param argtypes  The types of the constructor invocation's value
  1812      *                   arguments.
  1813      *  @param typeargtypes  The types of the constructor invocation's type
  1814      *                   arguments.
  1815      */
  1816     Symbol resolveConstructor(DiagnosticPosition pos,
  1817                               Env<AttrContext> env,
  1818                               Type site,
  1819                               List<Type> argtypes,
  1820                               List<Type> typeargtypes) {
  1821         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  1823     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  1824                               DiagnosticPosition pos,
  1825                               Env<AttrContext> env,
  1826                               Type site,
  1827                               List<Type> argtypes,
  1828                               List<Type> typeargtypes) {
  1829         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1830         try {
  1831             currentResolutionContext = resolveContext;
  1832             Symbol sym = methodNotFound;
  1833             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1834             while (steps.nonEmpty() &&
  1835                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1836                    sym.kind >= ERRONEOUS) {
  1837                 currentResolutionContext.step = steps.head;
  1838                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  1839                         steps.head.isBoxingRequired(),
  1840                         env.info.varArgs = steps.head.isVarargsRequired());
  1841                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1842                 steps = steps.tail;
  1844             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1845                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1846                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1847                         pos, site, names.init, true, argtypes, typeargtypes);
  1848                 env.info.varArgs = errPhase.isVarargsRequired();
  1850             return sym;
  1852         finally {
  1853             currentResolutionContext = prevResolutionContext;
  1857     /** Resolve constructor using diamond inference.
  1858      *  @param pos       The position to use for error reporting.
  1859      *  @param env       The environment current at the constructor invocation.
  1860      *  @param site      The type of class for which a constructor is searched.
  1861      *                   The scope of this class has been touched in attribution.
  1862      *  @param argtypes  The types of the constructor invocation's value
  1863      *                   arguments.
  1864      *  @param typeargtypes  The types of the constructor invocation's type
  1865      *                   arguments.
  1866      */
  1867     Symbol resolveDiamond(DiagnosticPosition pos,
  1868                               Env<AttrContext> env,
  1869                               Type site,
  1870                               List<Type> argtypes,
  1871                               List<Type> typeargtypes) {
  1872         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1873         try {
  1874             currentResolutionContext = new MethodResolutionContext();
  1875             Symbol sym = methodNotFound;
  1876             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1877             while (steps.nonEmpty() &&
  1878                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1879                    sym.kind >= ERRONEOUS) {
  1880                 currentResolutionContext.step = steps.head;
  1881                 sym = findDiamond(env, site, argtypes, typeargtypes,
  1882                         steps.head.isBoxingRequired(),
  1883                         env.info.varArgs = steps.head.isVarargsRequired());
  1884                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1885                 steps = steps.tail;
  1887             if (sym.kind >= AMBIGUOUS) {
  1888                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  1889                                 currentResolutionContext.candidates.head.details :
  1890                                 null;
  1891                 Symbol errSym = new ResolveError(WRONG_MTH, "diamond error") {
  1892                     @Override
  1893                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  1894                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  1895                         String key = details == null ?
  1896                             "cant.apply.diamond" :
  1897                             "cant.apply.diamond.1";
  1898                         return diags.create(dkind, log.currentSource(), pos, key,
  1899                                 diags.fragment("diamond", site.tsym), details);
  1901                 };
  1902                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1903                 sym = access(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  1904                 env.info.varArgs = errPhase.isVarargsRequired();
  1906             return sym;
  1908         finally {
  1909             currentResolutionContext = prevResolutionContext;
  1913     /** This method scans all the constructor symbol in a given class scope -
  1914      *  assuming that the original scope contains a constructor of the kind:
  1915      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
  1916      *  a method check is executed against the modified constructor type:
  1917      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
  1918      *  inference. The inferred return type of the synthetic constructor IS
  1919      *  the inferred type for the diamond operator.
  1920      */
  1921     private Symbol findDiamond(Env<AttrContext> env,
  1922                               Type site,
  1923                               List<Type> argtypes,
  1924                               List<Type> typeargtypes,
  1925                               boolean allowBoxing,
  1926                               boolean useVarargs) {
  1927         Symbol bestSoFar = methodNotFound;
  1928         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  1929              e.scope != null;
  1930              e = e.next()) {
  1931             //- System.out.println(" e " + e.sym);
  1932             if (e.sym.kind == MTH &&
  1933                 (e.sym.flags_field & SYNTHETIC) == 0) {
  1934                     List<Type> oldParams = e.sym.type.tag == FORALL ?
  1935                             ((ForAll)e.sym.type).tvars :
  1936                             List.<Type>nil();
  1937                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  1938                             types.createMethodTypeWithReturn(e.sym.type.asMethodType(), site));
  1939                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1940                             new MethodSymbol(e.sym.flags(), names.init, constrType, site.tsym),
  1941                             bestSoFar,
  1942                             allowBoxing,
  1943                             useVarargs,
  1944                             false);
  1947         return bestSoFar;
  1950     /** Resolve constructor.
  1951      *  @param pos       The position to use for error reporting.
  1952      *  @param env       The environment current at the constructor invocation.
  1953      *  @param site      The type of class for which a constructor is searched.
  1954      *  @param argtypes  The types of the constructor invocation's value
  1955      *                   arguments.
  1956      *  @param typeargtypes  The types of the constructor invocation's type
  1957      *                   arguments.
  1958      *  @param allowBoxing Allow boxing and varargs conversions.
  1959      *  @param useVarargs Box trailing arguments into an array for varargs.
  1960      */
  1961     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1962                               Type site, List<Type> argtypes,
  1963                               List<Type> typeargtypes,
  1964                               boolean allowBoxing,
  1965                               boolean useVarargs) {
  1966         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1967         try {
  1968             currentResolutionContext = new MethodResolutionContext();
  1969             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  1971         finally {
  1972             currentResolutionContext = prevResolutionContext;
  1976     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1977                               Type site, List<Type> argtypes,
  1978                               List<Type> typeargtypes,
  1979                               boolean allowBoxing,
  1980                               boolean useVarargs) {
  1981         Symbol sym = findMethod(env, site,
  1982                                     names.init, argtypes,
  1983                                     typeargtypes, allowBoxing,
  1984                                     useVarargs, false);
  1985         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  1986         return sym;
  1989     /** Resolve a constructor, throw a fatal error if not found.
  1990      *  @param pos       The position to use for error reporting.
  1991      *  @param env       The environment current at the method invocation.
  1992      *  @param site      The type to be constructed.
  1993      *  @param argtypes  The types of the invocation's value arguments.
  1994      *  @param typeargtypes  The types of the invocation's type arguments.
  1995      */
  1996     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1997                                         Type site,
  1998                                         List<Type> argtypes,
  1999                                         List<Type> typeargtypes) {
  2000         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2001         resolveContext.internalResolution = true;
  2002         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2003         if (sym.kind == MTH) return (MethodSymbol)sym;
  2004         else throw new FatalError(
  2005                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2008     /** Resolve operator.
  2009      *  @param pos       The position to use for error reporting.
  2010      *  @param optag     The tag of the operation tree.
  2011      *  @param env       The environment current at the operation.
  2012      *  @param argtypes  The types of the operands.
  2013      */
  2014     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2015                            Env<AttrContext> env, List<Type> argtypes) {
  2016         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2017         try {
  2018             currentResolutionContext = new MethodResolutionContext();
  2019             Name name = treeinfo.operatorName(optag);
  2020             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2021                                     null, false, false, true);
  2022             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2023                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2024                                  null, true, false, true);
  2025             return access(sym, pos, env.enclClass.sym.type, name,
  2026                           false, argtypes, null);
  2028         finally {
  2029             currentResolutionContext = prevResolutionContext;
  2033     /** Resolve operator.
  2034      *  @param pos       The position to use for error reporting.
  2035      *  @param optag     The tag of the operation tree.
  2036      *  @param env       The environment current at the operation.
  2037      *  @param arg       The type of the operand.
  2038      */
  2039     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2040         return resolveOperator(pos, optag, env, List.of(arg));
  2043     /** Resolve binary operator.
  2044      *  @param pos       The position to use for error reporting.
  2045      *  @param optag     The tag of the operation tree.
  2046      *  @param env       The environment current at the operation.
  2047      *  @param left      The types of the left operand.
  2048      *  @param right     The types of the right operand.
  2049      */
  2050     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2051                                  JCTree.Tag optag,
  2052                                  Env<AttrContext> env,
  2053                                  Type left,
  2054                                  Type right) {
  2055         return resolveOperator(pos, optag, env, List.of(left, right));
  2058     /**
  2059      * Resolve `c.name' where name == this or name == super.
  2060      * @param pos           The position to use for error reporting.
  2061      * @param env           The environment current at the expression.
  2062      * @param c             The qualifier.
  2063      * @param name          The identifier's name.
  2064      */
  2065     Symbol resolveSelf(DiagnosticPosition pos,
  2066                        Env<AttrContext> env,
  2067                        TypeSymbol c,
  2068                        Name name) {
  2069         Env<AttrContext> env1 = env;
  2070         boolean staticOnly = false;
  2071         while (env1.outer != null) {
  2072             if (isStatic(env1)) staticOnly = true;
  2073             if (env1.enclClass.sym == c) {
  2074                 Symbol sym = env1.info.scope.lookup(name).sym;
  2075                 if (sym != null) {
  2076                     if (staticOnly) sym = new StaticError(sym);
  2077                     return access(sym, pos, env.enclClass.sym.type,
  2078                                   name, true);
  2081             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2082             env1 = env1.outer;
  2084         log.error(pos, "not.encl.class", c);
  2085         return syms.errSymbol;
  2088     /**
  2089      * Resolve `c.this' for an enclosing class c that contains the
  2090      * named member.
  2091      * @param pos           The position to use for error reporting.
  2092      * @param env           The environment current at the expression.
  2093      * @param member        The member that must be contained in the result.
  2094      */
  2095     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2096                                  Env<AttrContext> env,
  2097                                  Symbol member,
  2098                                  boolean isSuperCall) {
  2099         Name name = names._this;
  2100         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2101         boolean staticOnly = false;
  2102         if (env1 != null) {
  2103             while (env1 != null && env1.outer != null) {
  2104                 if (isStatic(env1)) staticOnly = true;
  2105                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2106                     Symbol sym = env1.info.scope.lookup(name).sym;
  2107                     if (sym != null) {
  2108                         if (staticOnly) sym = new StaticError(sym);
  2109                         return access(sym, pos, env.enclClass.sym.type,
  2110                                       name, true);
  2113                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2114                     staticOnly = true;
  2115                 env1 = env1.outer;
  2118         log.error(pos, "encl.class.required", member);
  2119         return syms.errSymbol;
  2122     /**
  2123      * Resolve an appropriate implicit this instance for t's container.
  2124      * JLS 8.8.5.1 and 15.9.2
  2125      */
  2126     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2127         return resolveImplicitThis(pos, env, t, false);
  2130     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2131         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2132                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2133                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2134         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2135             log.error(pos, "cant.ref.before.ctor.called", "this");
  2136         return thisType;
  2139 /* ***************************************************************************
  2140  *  ResolveError classes, indicating error situations when accessing symbols
  2141  ****************************************************************************/
  2143     //used by TransTypes when checking target type of synthetic cast
  2144     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2145         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2146         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2148     //where
  2149     private void logResolveError(ResolveError error,
  2150             DiagnosticPosition pos,
  2151             Symbol location,
  2152             Type site,
  2153             Name name,
  2154             List<Type> argtypes,
  2155             List<Type> typeargtypes) {
  2156         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2157                 pos, location, site, name, argtypes, typeargtypes);
  2158         if (d != null) {
  2159             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2160             log.report(d);
  2164     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2166     public Object methodArguments(List<Type> argtypes) {
  2167         return argtypes == null || argtypes.isEmpty() ? noArgs : argtypes;
  2170     /**
  2171      * Root class for resolution errors. Subclass of ResolveError
  2172      * represent a different kinds of resolution error - as such they must
  2173      * specify how they map into concrete compiler diagnostics.
  2174      */
  2175     private abstract class ResolveError extends Symbol {
  2177         /** The name of the kind of error, for debugging only. */
  2178         final String debugName;
  2180         ResolveError(int kind, String debugName) {
  2181             super(kind, 0, null, null, null);
  2182             this.debugName = debugName;
  2185         @Override
  2186         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2187             throw new AssertionError();
  2190         @Override
  2191         public String toString() {
  2192             return debugName;
  2195         @Override
  2196         public boolean exists() {
  2197             return false;
  2200         /**
  2201          * Create an external representation for this erroneous symbol to be
  2202          * used during attribution - by default this returns the symbol of a
  2203          * brand new error type which stores the original type found
  2204          * during resolution.
  2206          * @param name     the name used during resolution
  2207          * @param location the location from which the symbol is accessed
  2208          */
  2209         protected Symbol access(Name name, TypeSymbol location) {
  2210             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2213         /**
  2214          * Create a diagnostic representing this resolution error.
  2216          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2217          * @param pos       The position to be used for error reporting.
  2218          * @param site      The original type from where the selection took place.
  2219          * @param name      The name of the symbol to be resolved.
  2220          * @param argtypes  The invocation's value arguments,
  2221          *                  if we looked for a method.
  2222          * @param typeargtypes  The invocation's type arguments,
  2223          *                      if we looked for a method.
  2224          */
  2225         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2226                 DiagnosticPosition pos,
  2227                 Symbol location,
  2228                 Type site,
  2229                 Name name,
  2230                 List<Type> argtypes,
  2231                 List<Type> typeargtypes);
  2233         /**
  2234          * A name designates an operator if it consists
  2235          * of a non-empty sequence of operator symbols +-~!/*%&|^<>=
  2236          */
  2237         boolean isOperator(Name name) {
  2238             int i = 0;
  2239             while (i < name.getByteLength() &&
  2240                    "+-~!*/%&|^<>=".indexOf(name.getByteAt(i)) >= 0) i++;
  2241             return i > 0 && i == name.getByteLength();
  2245     /**
  2246      * This class is the root class of all resolution errors caused by
  2247      * an invalid symbol being found during resolution.
  2248      */
  2249     abstract class InvalidSymbolError extends ResolveError {
  2251         /** The invalid symbol found during resolution */
  2252         Symbol sym;
  2254         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2255             super(kind, debugName);
  2256             this.sym = sym;
  2259         @Override
  2260         public boolean exists() {
  2261             return true;
  2264         @Override
  2265         public String toString() {
  2266              return super.toString() + " wrongSym=" + sym;
  2269         @Override
  2270         public Symbol access(Name name, TypeSymbol location) {
  2271             if (sym.kind >= AMBIGUOUS)
  2272                 return ((ResolveError)sym).access(name, location);
  2273             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2274                 return types.createErrorType(name, location, sym.type).tsym;
  2275             else
  2276                 return sym;
  2280     /**
  2281      * InvalidSymbolError error class indicating that a symbol matching a
  2282      * given name does not exists in a given site.
  2283      */
  2284     class SymbolNotFoundError extends ResolveError {
  2286         SymbolNotFoundError(int kind) {
  2287             super(kind, "symbol not found error");
  2290         @Override
  2291         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2292                 DiagnosticPosition pos,
  2293                 Symbol location,
  2294                 Type site,
  2295                 Name name,
  2296                 List<Type> argtypes,
  2297                 List<Type> typeargtypes) {
  2298             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2299             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  2300             if (name == names.error)
  2301                 return null;
  2303             if (isOperator(name)) {
  2304                 boolean isUnaryOp = argtypes.size() == 1;
  2305                 String key = argtypes.size() == 1 ?
  2306                     "operator.cant.be.applied" :
  2307                     "operator.cant.be.applied.1";
  2308                 Type first = argtypes.head;
  2309                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2310                 return diags.create(dkind, log.currentSource(), pos,
  2311                         key, name, first, second);
  2313             boolean hasLocation = false;
  2314             if (location == null) {
  2315                 location = site.tsym;
  2317             if (!location.name.isEmpty()) {
  2318                 if (location.kind == PCK && !site.tsym.exists()) {
  2319                     return diags.create(dkind, log.currentSource(), pos,
  2320                         "doesnt.exist", location);
  2322                 hasLocation = !location.name.equals(names._this) &&
  2323                         !location.name.equals(names._super);
  2325             boolean isConstructor = kind == ABSENT_MTH &&
  2326                     name == names.table.names.init;
  2327             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  2328             Name idname = isConstructor ? site.tsym.name : name;
  2329             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  2330             if (hasLocation) {
  2331                 return diags.create(dkind, log.currentSource(), pos,
  2332                         errKey, kindname, idname, //symbol kindname, name
  2333                         typeargtypes, argtypes, //type parameters and arguments (if any)
  2334                         getLocationDiag(location, site)); //location kindname, type
  2336             else {
  2337                 return diags.create(dkind, log.currentSource(), pos,
  2338                         errKey, kindname, idname, //symbol kindname, name
  2339                         typeargtypes, argtypes); //type parameters and arguments (if any)
  2342         //where
  2343         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  2344             String key = "cant.resolve";
  2345             String suffix = hasLocation ? ".location" : "";
  2346             switch (kindname) {
  2347                 case METHOD:
  2348                 case CONSTRUCTOR: {
  2349                     suffix += ".args";
  2350                     suffix += hasTypeArgs ? ".params" : "";
  2353             return key + suffix;
  2355         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  2356             if (location.kind == VAR) {
  2357                 return diags.fragment("location.1",
  2358                     kindName(location),
  2359                     location,
  2360                     location.type);
  2361             } else {
  2362                 return diags.fragment("location",
  2363                     typeKindName(site),
  2364                     site,
  2365                     null);
  2370     /**
  2371      * InvalidSymbolError error class indicating that a given symbol
  2372      * (either a method, a constructor or an operand) is not applicable
  2373      * given an actual arguments/type argument list.
  2374      */
  2375     class InapplicableSymbolError extends ResolveError {
  2377         InapplicableSymbolError() {
  2378             super(WRONG_MTH, "inapplicable symbol error");
  2381         protected InapplicableSymbolError(int kind, String debugName) {
  2382             super(kind, debugName);
  2385         @Override
  2386         public String toString() {
  2387             return super.toString();
  2390         @Override
  2391         public boolean exists() {
  2392             return true;
  2395         @Override
  2396         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2397                 DiagnosticPosition pos,
  2398                 Symbol location,
  2399                 Type site,
  2400                 Name name,
  2401                 List<Type> argtypes,
  2402                 List<Type> typeargtypes) {
  2403             if (name == names.error)
  2404                 return null;
  2406             if (isOperator(name)) {
  2407                 boolean isUnaryOp = argtypes.size() == 1;
  2408                 String key = argtypes.size() == 1 ?
  2409                     "operator.cant.be.applied" :
  2410                     "operator.cant.be.applied.1";
  2411                 Type first = argtypes.head;
  2412                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2413                 return diags.create(dkind, log.currentSource(), pos,
  2414                         key, name, first, second);
  2416             else {
  2417                 Candidate c = errCandidate();
  2418                 Symbol ws = c.sym.asMemberOf(site, types);
  2419                 return diags.create(dkind, log.currentSource(), pos,
  2420                           "cant.apply.symbol" + (c.details != null ? ".1" : ""),
  2421                           kindName(ws),
  2422                           ws.name == names.init ? ws.owner.name : ws.name,
  2423                           methodArguments(ws.type.getParameterTypes()),
  2424                           methodArguments(argtypes),
  2425                           kindName(ws.owner),
  2426                           ws.owner.type,
  2427                           c.details);
  2431         @Override
  2432         public Symbol access(Name name, TypeSymbol location) {
  2433             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2436         protected boolean shouldReport(Candidate c) {
  2437             return !c.isApplicable() &&
  2438                     (((c.sym.flags() & VARARGS) != 0 && c.step == VARARITY) ||
  2439                       (c.sym.flags() & VARARGS) == 0 && c.step == (boxingEnabled ? BOX : BASIC));
  2442         private Candidate errCandidate() {
  2443             for (Candidate c : currentResolutionContext.candidates) {
  2444                 if (shouldReport(c)) {
  2445                     return c;
  2448             Assert.error();
  2449             return null;
  2453     /**
  2454      * ResolveError error class indicating that a set of symbols
  2455      * (either methods, constructors or operands) is not applicable
  2456      * given an actual arguments/type argument list.
  2457      */
  2458     class InapplicableSymbolsError extends InapplicableSymbolError {
  2460         InapplicableSymbolsError() {
  2461             super(WRONG_MTHS, "inapplicable symbols");
  2464         @Override
  2465         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2466                 DiagnosticPosition pos,
  2467                 Symbol location,
  2468                 Type site,
  2469                 Name name,
  2470                 List<Type> argtypes,
  2471                 List<Type> typeargtypes) {
  2472             if (currentResolutionContext.candidates.nonEmpty()) {
  2473                 JCDiagnostic err = diags.create(dkind,
  2474                         log.currentSource(),
  2475                         pos,
  2476                         "cant.apply.symbols",
  2477                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  2478                         getName(),
  2479                         argtypes);
  2480                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  2481             } else {
  2482                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  2483                     location, site, name, argtypes, typeargtypes);
  2487         //where
  2488         List<JCDiagnostic> candidateDetails(Type site) {
  2489             List<JCDiagnostic> details = List.nil();
  2490             for (Candidate c : currentResolutionContext.candidates) {
  2491                 if (!shouldReport(c)) continue;
  2492                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  2493                         Kinds.kindName(c.sym),
  2494                         c.sym.location(site, types),
  2495                         c.sym.asMemberOf(site, types),
  2496                         c.details);
  2497                 details = details.prepend(detailDiag);
  2499             return details.reverse();
  2502         private Name getName() {
  2503             Symbol sym = currentResolutionContext.candidates.head.sym;
  2504             return sym.name == names.init ?
  2505                 sym.owner.name :
  2506                 sym.name;
  2510     /**
  2511      * An InvalidSymbolError error class indicating that a symbol is not
  2512      * accessible from a given site
  2513      */
  2514     class AccessError extends InvalidSymbolError {
  2516         private Env<AttrContext> env;
  2517         private Type site;
  2519         AccessError(Symbol sym) {
  2520             this(null, null, sym);
  2523         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  2524             super(HIDDEN, sym, "access error");
  2525             this.env = env;
  2526             this.site = site;
  2527             if (debugResolve)
  2528                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  2531         @Override
  2532         public boolean exists() {
  2533             return false;
  2536         @Override
  2537         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2538                 DiagnosticPosition pos,
  2539                 Symbol location,
  2540                 Type site,
  2541                 Name name,
  2542                 List<Type> argtypes,
  2543                 List<Type> typeargtypes) {
  2544             if (sym.owner.type.tag == ERROR)
  2545                 return null;
  2547             if (sym.name == names.init && sym.owner != site.tsym) {
  2548                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  2549                         pos, location, site, name, argtypes, typeargtypes);
  2551             else if ((sym.flags() & PUBLIC) != 0
  2552                 || (env != null && this.site != null
  2553                     && !isAccessible(env, this.site))) {
  2554                 return diags.create(dkind, log.currentSource(),
  2555                         pos, "not.def.access.class.intf.cant.access",
  2556                     sym, sym.location());
  2558             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  2559                 return diags.create(dkind, log.currentSource(),
  2560                         pos, "report.access", sym,
  2561                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  2562                         sym.location());
  2564             else {
  2565                 return diags.create(dkind, log.currentSource(),
  2566                         pos, "not.def.public.cant.access", sym, sym.location());
  2571     /**
  2572      * InvalidSymbolError error class indicating that an instance member
  2573      * has erroneously been accessed from a static context.
  2574      */
  2575     class StaticError extends InvalidSymbolError {
  2577         StaticError(Symbol sym) {
  2578             super(STATICERR, sym, "static error");
  2581         @Override
  2582         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2583                 DiagnosticPosition pos,
  2584                 Symbol location,
  2585                 Type site,
  2586                 Name name,
  2587                 List<Type> argtypes,
  2588                 List<Type> typeargtypes) {
  2589             Symbol errSym = ((sym.kind == TYP && sym.type.tag == CLASS)
  2590                 ? types.erasure(sym.type).tsym
  2591                 : sym);
  2592             return diags.create(dkind, log.currentSource(), pos,
  2593                     "non-static.cant.be.ref", kindName(sym), errSym);
  2597     /**
  2598      * InvalidSymbolError error class indicating that a pair of symbols
  2599      * (either methods, constructors or operands) are ambiguous
  2600      * given an actual arguments/type argument list.
  2601      */
  2602     class AmbiguityError extends InvalidSymbolError {
  2604         /** The other maximally specific symbol */
  2605         Symbol sym2;
  2607         AmbiguityError(Symbol sym1, Symbol sym2) {
  2608             super(AMBIGUOUS, sym1, "ambiguity error");
  2609             this.sym2 = sym2;
  2612         @Override
  2613         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2614                 DiagnosticPosition pos,
  2615                 Symbol location,
  2616                 Type site,
  2617                 Name name,
  2618                 List<Type> argtypes,
  2619                 List<Type> typeargtypes) {
  2620             AmbiguityError pair = this;
  2621             while (true) {
  2622                 if (pair.sym.kind == AMBIGUOUS)
  2623                     pair = (AmbiguityError)pair.sym;
  2624                 else if (pair.sym2.kind == AMBIGUOUS)
  2625                     pair = (AmbiguityError)pair.sym2;
  2626                 else break;
  2628             Name sname = pair.sym.name;
  2629             if (sname == names.init) sname = pair.sym.owner.name;
  2630             return diags.create(dkind, log.currentSource(),
  2631                       pos, "ref.ambiguous", sname,
  2632                       kindName(pair.sym),
  2633                       pair.sym,
  2634                       pair.sym.location(site, types),
  2635                       kindName(pair.sym2),
  2636                       pair.sym2,
  2637                       pair.sym2.location(site, types));
  2641     enum MethodResolutionPhase {
  2642         BASIC(false, false),
  2643         BOX(true, false),
  2644         VARARITY(true, true);
  2646         boolean isBoxingRequired;
  2647         boolean isVarargsRequired;
  2649         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  2650            this.isBoxingRequired = isBoxingRequired;
  2651            this.isVarargsRequired = isVarargsRequired;
  2654         public boolean isBoxingRequired() {
  2655             return isBoxingRequired;
  2658         public boolean isVarargsRequired() {
  2659             return isVarargsRequired;
  2662         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  2663             return (varargsEnabled || !isVarargsRequired) &&
  2664                    (boxingEnabled || !isBoxingRequired);
  2668     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  2670     /**
  2671      * A resolution context is used to keep track of intermediate results of
  2672      * overload resolution, such as list of method that are not applicable
  2673      * (used to generate more precise diagnostics) and so on. Resolution contexts
  2674      * can be nested - this means that when each overload resolution routine should
  2675      * work within the resolution context it created.
  2676      */
  2677     class MethodResolutionContext {
  2679         private List<Candidate> candidates = List.nil();
  2681         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  2682             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  2684         private MethodResolutionPhase step = null;
  2686         private boolean internalResolution = false;
  2688         private MethodResolutionPhase firstErroneousResolutionPhase() {
  2689             MethodResolutionPhase bestSoFar = BASIC;
  2690             Symbol sym = methodNotFound;
  2691             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2692             while (steps.nonEmpty() &&
  2693                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2694                    sym.kind >= WRONG_MTHS) {
  2695                 sym = resolutionCache.get(steps.head);
  2696                 bestSoFar = steps.head;
  2697                 steps = steps.tail;
  2699             return bestSoFar;
  2702         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  2703             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  2704             if (!candidates.contains(c))
  2705                 candidates = candidates.append(c);
  2708         void addApplicableCandidate(Symbol sym, Type mtype) {
  2709             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  2710             candidates = candidates.append(c);
  2713         /**
  2714          * This class represents an overload resolution candidate. There are two
  2715          * kinds of candidates: applicable methods and inapplicable methods;
  2716          * applicable methods have a pointer to the instantiated method type,
  2717          * while inapplicable candidates contain further details about the
  2718          * reason why the method has been considered inapplicable.
  2719          */
  2720         class Candidate {
  2722             final MethodResolutionPhase step;
  2723             final Symbol sym;
  2724             final JCDiagnostic details;
  2725             final Type mtype;
  2727             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  2728                 this.step = step;
  2729                 this.sym = sym;
  2730                 this.details = details;
  2731                 this.mtype = mtype;
  2734             @Override
  2735             public boolean equals(Object o) {
  2736                 if (o instanceof Candidate) {
  2737                     Symbol s1 = this.sym;
  2738                     Symbol s2 = ((Candidate)o).sym;
  2739                     if  ((s1 != s2 &&
  2740                         (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  2741                         (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  2742                         ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  2743                         return true;
  2745                 return false;
  2748             boolean isApplicable() {
  2749                 return mtype != null;
  2754     MethodResolutionContext currentResolutionContext = null;

mercurial