src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 13 Oct 2009 15:26:30 -0700

author
jjg
date
Tue, 13 Oct 2009 15:26:30 -0700
changeset 423
8a4543b30586
parent 383
8109aa93b212
child 430
8fb9b4be3cb1
permissions
-rw-r--r--

6891079: Compiler allows invalid binary literals 0b and oBL
Reviewed-by: darcy

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.jvm.Target;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.code.Type.*;
    45 import com.sun.source.tree.IdentifierTree;
    46 import com.sun.source.tree.MemberSelectTree;
    47 import com.sun.source.tree.TreeVisitor;
    48 import com.sun.source.util.SimpleTreeVisitor;
    50 import static com.sun.tools.javac.code.Flags.*;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTags.*;
    54 /** This is the main context-dependent analysis phase in GJC. It
    55  *  encompasses name resolution, type checking and constant folding as
    56  *  subtasks. Some subtasks involve auxiliary classes.
    57  *  @see Check
    58  *  @see Resolve
    59  *  @see ConstFold
    60  *  @see Infer
    61  *
    62  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    63  *  you write code that depends on this, you do so at your own risk.
    64  *  This code and its internal interfaces are subject to change or
    65  *  deletion without notice.</b>
    66  */
    67 public class Attr extends JCTree.Visitor {
    68     protected static final Context.Key<Attr> attrKey =
    69         new Context.Key<Attr>();
    71     final Names names;
    72     final Log log;
    73     final Symtab syms;
    74     final Resolve rs;
    75     final Check chk;
    76     final MemberEnter memberEnter;
    77     final TreeMaker make;
    78     final ConstFold cfolder;
    79     final Enter enter;
    80     final Target target;
    81     final Types types;
    82     final JCDiagnostic.Factory diags;
    83     final Annotate annotate;
    85     public static Attr instance(Context context) {
    86         Attr instance = context.get(attrKey);
    87         if (instance == null)
    88             instance = new Attr(context);
    89         return instance;
    90     }
    92     protected Attr(Context context) {
    93         context.put(attrKey, this);
    95         names = Names.instance(context);
    96         log = Log.instance(context);
    97         syms = Symtab.instance(context);
    98         rs = Resolve.instance(context);
    99         chk = Check.instance(context);
   100         memberEnter = MemberEnter.instance(context);
   101         make = TreeMaker.instance(context);
   102         enter = Enter.instance(context);
   103         cfolder = ConstFold.instance(context);
   104         target = Target.instance(context);
   105         types = Types.instance(context);
   106         diags = JCDiagnostic.Factory.instance(context);
   107         annotate = Annotate.instance(context);
   109         Options options = Options.instance(context);
   111         Source source = Source.instance(context);
   112         allowGenerics = source.allowGenerics();
   113         allowVarargs = source.allowVarargs();
   114         allowEnums = source.allowEnums();
   115         allowBoxing = source.allowBoxing();
   116         allowCovariantReturns = source.allowCovariantReturns();
   117         allowAnonOuterThis = source.allowAnonOuterThis();
   118         relax = (options.get("-retrofit") != null ||
   119                  options.get("-relax") != null);
   120         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
   121         allowInvokedynamic = options.get("invokedynamic") != null;
   122         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
   123     }
   125     /** Switch: relax some constraints for retrofit mode.
   126      */
   127     boolean relax;
   129     /** Switch: support generics?
   130      */
   131     boolean allowGenerics;
   133     /** Switch: allow variable-arity methods.
   134      */
   135     boolean allowVarargs;
   137     /** Switch: support enums?
   138      */
   139     boolean allowEnums;
   141     /** Switch: support boxing and unboxing?
   142      */
   143     boolean allowBoxing;
   145     /** Switch: support covariant result types?
   146      */
   147     boolean allowCovariantReturns;
   149     /** Switch: allow references to surrounding object from anonymous
   150      * objects during constructor call?
   151      */
   152     boolean allowAnonOuterThis;
   154     /** Switch: allow invokedynamic syntax
   155      */
   156     boolean allowInvokedynamic;
   158     /**
   159      * Switch: warn about use of variable before declaration?
   160      * RFE: 6425594
   161      */
   162     boolean useBeforeDeclarationWarning;
   164     /**
   165      * Switch: allow lint infrastructure to control Sun proprietary
   166      * API warnings.
   167      */
   168     boolean enableSunApiLintControl;
   170     /** Check kind and type of given tree against protokind and prototype.
   171      *  If check succeeds, store type in tree and return it.
   172      *  If check fails, store errType in tree and return it.
   173      *  No checks are performed if the prototype is a method type.
   174      *  It is not necessary in this case since we know that kind and type
   175      *  are correct.
   176      *
   177      *  @param tree     The tree whose kind and type is checked
   178      *  @param owntype  The computed type of the tree
   179      *  @param ownkind  The computed kind of the tree
   180      *  @param pkind    The expected kind (or: protokind) of the tree
   181      *  @param pt       The expected type (or: prototype) of the tree
   182      */
   183     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   184         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   185             if ((ownkind & ~pkind) == 0) {
   186                 owntype = chk.checkType(tree.pos(), owntype, pt);
   187             } else {
   188                 log.error(tree.pos(), "unexpected.type",
   189                           kindNames(pkind),
   190                           kindName(ownkind));
   191                 owntype = types.createErrorType(owntype);
   192             }
   193         }
   194         tree.type = owntype;
   195         return owntype;
   196     }
   198     Type checkReturn(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   199         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   200             if ((ownkind & ~pkind) == 0) {
   201                 owntype = chk.checkReturnType(tree.pos(), owntype, pt);
   202             } else {
   203                 log.error(tree.pos(), "unexpected.type",
   204                           kindNames(pkind),
   205                           kindName(ownkind));
   206                 owntype = types.createErrorType(owntype);
   207             }
   208         }
   209         tree.type = owntype;
   210         return owntype;
   211     }
   213     /** Is given blank final variable assignable, i.e. in a scope where it
   214      *  may be assigned to even though it is final?
   215      *  @param v      The blank final variable.
   216      *  @param env    The current environment.
   217      */
   218     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   219         Symbol owner = env.info.scope.owner;
   220            // owner refers to the innermost variable, method or
   221            // initializer block declaration at this point.
   222         return
   223             v.owner == owner
   224             ||
   225             ((owner.name == names.init ||    // i.e. we are in a constructor
   226               owner.kind == VAR ||           // i.e. we are in a variable initializer
   227               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   228              &&
   229              v.owner == owner.owner
   230              &&
   231              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   232     }
   234     /** Check that variable can be assigned to.
   235      *  @param pos    The current source code position.
   236      *  @param v      The assigned varaible
   237      *  @param base   If the variable is referred to in a Select, the part
   238      *                to the left of the `.', null otherwise.
   239      *  @param env    The current environment.
   240      */
   241     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   242         if ((v.flags() & FINAL) != 0 &&
   243             ((v.flags() & HASINIT) != 0
   244              ||
   245              !((base == null ||
   246                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
   247                isAssignableAsBlankFinal(v, env)))) {
   248             log.error(pos, "cant.assign.val.to.final.var", v);
   249         }
   250     }
   252     /** Does tree represent a static reference to an identifier?
   253      *  It is assumed that tree is either a SELECT or an IDENT.
   254      *  We have to weed out selects from non-type names here.
   255      *  @param tree    The candidate tree.
   256      */
   257     boolean isStaticReference(JCTree tree) {
   258         if (tree.getTag() == JCTree.SELECT) {
   259             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   260             if (lsym == null || lsym.kind != TYP) {
   261                 return false;
   262             }
   263         }
   264         return true;
   265     }
   267     /** Is this symbol a type?
   268      */
   269     static boolean isType(Symbol sym) {
   270         return sym != null && sym.kind == TYP;
   271     }
   273     /** The current `this' symbol.
   274      *  @param env    The current environment.
   275      */
   276     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   277         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   278     }
   280     /** Attribute a parsed identifier.
   281      * @param tree Parsed identifier name
   282      * @param topLevel The toplevel to use
   283      */
   284     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   285         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   286         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   287                                            syms.errSymbol.name,
   288                                            null, null, null, null);
   289         localEnv.enclClass.sym = syms.errSymbol;
   290         return tree.accept(identAttributer, localEnv);
   291     }
   292     // where
   293         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   294         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   295             @Override
   296             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   297                 Symbol site = visit(node.getExpression(), env);
   298                 if (site.kind == ERR)
   299                     return site;
   300                 Name name = (Name)node.getIdentifier();
   301                 if (site.kind == PCK) {
   302                     env.toplevel.packge = (PackageSymbol)site;
   303                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   304                 } else {
   305                     env.enclClass.sym = (ClassSymbol)site;
   306                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   307                 }
   308             }
   310             @Override
   311             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   312                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   313             }
   314         }
   316     public Type coerce(Type etype, Type ttype) {
   317         return cfolder.coerce(etype, ttype);
   318     }
   320     public Type attribType(JCTree node, TypeSymbol sym) {
   321         Env<AttrContext> env = enter.typeEnvs.get(sym);
   322         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   323         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
   324     }
   326     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   327         breakTree = tree;
   328         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   329         try {
   330             attribExpr(expr, env);
   331         } catch (BreakAttr b) {
   332             return b.env;
   333         } finally {
   334             breakTree = null;
   335             log.useSource(prev);
   336         }
   337         return env;
   338     }
   340     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   341         breakTree = tree;
   342         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   343         try {
   344             attribStat(stmt, env);
   345         } catch (BreakAttr b) {
   346             return b.env;
   347         } finally {
   348             breakTree = null;
   349             log.useSource(prev);
   350         }
   351         return env;
   352     }
   354     private JCTree breakTree = null;
   356     private static class BreakAttr extends RuntimeException {
   357         static final long serialVersionUID = -6924771130405446405L;
   358         private Env<AttrContext> env;
   359         private BreakAttr(Env<AttrContext> env) {
   360             this.env = env;
   361         }
   362     }
   365 /* ************************************************************************
   366  * Visitor methods
   367  *************************************************************************/
   369     /** Visitor argument: the current environment.
   370      */
   371     Env<AttrContext> env;
   373     /** Visitor argument: the currently expected proto-kind.
   374      */
   375     int pkind;
   377     /** Visitor argument: the currently expected proto-type.
   378      */
   379     Type pt;
   381     /** Visitor result: the computed type.
   382      */
   383     Type result;
   385     /** Visitor method: attribute a tree, catching any completion failure
   386      *  exceptions. Return the tree's type.
   387      *
   388      *  @param tree    The tree to be visited.
   389      *  @param env     The environment visitor argument.
   390      *  @param pkind   The protokind visitor argument.
   391      *  @param pt      The prototype visitor argument.
   392      */
   393     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
   394         Env<AttrContext> prevEnv = this.env;
   395         int prevPkind = this.pkind;
   396         Type prevPt = this.pt;
   397         try {
   398             this.env = env;
   399             this.pkind = pkind;
   400             this.pt = pt;
   401             tree.accept(this);
   402             if (tree == breakTree)
   403                 throw new BreakAttr(env);
   404             return result;
   405         } catch (CompletionFailure ex) {
   406             tree.type = syms.errType;
   407             return chk.completionError(tree.pos(), ex);
   408         } finally {
   409             this.env = prevEnv;
   410             this.pkind = prevPkind;
   411             this.pt = prevPt;
   412         }
   413     }
   415     /** Derived visitor method: attribute an expression tree.
   416      */
   417     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   418         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
   419     }
   421     /** Derived visitor method: attribute an expression tree with
   422      *  no constraints on the computed type.
   423      */
   424     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   425         return attribTree(tree, env, VAL, Type.noType);
   426     }
   428     /** Derived visitor method: attribute a type tree.
   429      */
   430     Type attribType(JCTree tree, Env<AttrContext> env) {
   431         Type result = attribType(tree, env, Type.noType);
   432         return result;
   433     }
   435     /** Derived visitor method: attribute a type tree.
   436      */
   437     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   438         Type result = attribTree(tree, env, TYP, pt);
   439         return result;
   440     }
   442     /** Derived visitor method: attribute a statement or definition tree.
   443      */
   444     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   445         return attribTree(tree, env, NIL, Type.noType);
   446     }
   448     /** Attribute a list of expressions, returning a list of types.
   449      */
   450     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   451         ListBuffer<Type> ts = new ListBuffer<Type>();
   452         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   453             ts.append(attribExpr(l.head, env, pt));
   454         return ts.toList();
   455     }
   457     /** Attribute a list of statements, returning nothing.
   458      */
   459     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   460         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   461             attribStat(l.head, env);
   462     }
   464     /** Attribute the arguments in a method call, returning a list of types.
   465      */
   466     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   467         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   468         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   469             argtypes.append(chk.checkNonVoid(
   470                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
   471         return argtypes.toList();
   472     }
   474     /** Attribute a type argument list, returning a list of types.
   475      *  Caller is responsible for calling checkRefTypes.
   476      */
   477     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   478         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   479         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   480             argtypes.append(attribType(l.head, env));
   481         return argtypes.toList();
   482     }
   484     /** Attribute a type argument list, returning a list of types.
   485      *  Check that all the types are references.
   486      */
   487     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   488         List<Type> types = attribAnyTypes(trees, env);
   489         return chk.checkRefTypes(trees, types);
   490     }
   492     /**
   493      * Attribute type variables (of generic classes or methods).
   494      * Compound types are attributed later in attribBounds.
   495      * @param typarams the type variables to enter
   496      * @param env      the current environment
   497      */
   498     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   499         for (JCTypeParameter tvar : typarams) {
   500             TypeVar a = (TypeVar)tvar.type;
   501             a.tsym.flags_field |= UNATTRIBUTED;
   502             a.bound = Type.noType;
   503             if (!tvar.bounds.isEmpty()) {
   504                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   505                 for (JCExpression bound : tvar.bounds.tail)
   506                     bounds = bounds.prepend(attribType(bound, env));
   507                 types.setBounds(a, bounds.reverse());
   508             } else {
   509                 // if no bounds are given, assume a single bound of
   510                 // java.lang.Object.
   511                 types.setBounds(a, List.of(syms.objectType));
   512             }
   513             a.tsym.flags_field &= ~UNATTRIBUTED;
   514         }
   515         for (JCTypeParameter tvar : typarams)
   516             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   517         attribStats(typarams, env);
   518     }
   520     void attribBounds(List<JCTypeParameter> typarams) {
   521         for (JCTypeParameter typaram : typarams) {
   522             Type bound = typaram.type.getUpperBound();
   523             if (bound != null && bound.tsym instanceof ClassSymbol) {
   524                 ClassSymbol c = (ClassSymbol)bound.tsym;
   525                 if ((c.flags_field & COMPOUND) != 0) {
   526                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
   527                     attribClass(typaram.pos(), c);
   528                 }
   529             }
   530         }
   531     }
   533     /**
   534      * Attribute the type references in a list of annotations.
   535      */
   536     void attribAnnotationTypes(List<JCAnnotation> annotations,
   537                                Env<AttrContext> env) {
   538         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   539             JCAnnotation a = al.head;
   540             attribType(a.annotationType, env);
   541         }
   542     }
   544     /** Attribute type reference in an `extends' or `implements' clause.
   545      *
   546      *  @param tree              The tree making up the type reference.
   547      *  @param env               The environment current at the reference.
   548      *  @param classExpected     true if only a class is expected here.
   549      *  @param interfaceExpected true if only an interface is expected here.
   550      */
   551     Type attribBase(JCTree tree,
   552                     Env<AttrContext> env,
   553                     boolean classExpected,
   554                     boolean interfaceExpected,
   555                     boolean checkExtensible) {
   556         Type t = attribType(tree, env);
   557         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   558     }
   559     Type checkBase(Type t,
   560                    JCTree tree,
   561                    Env<AttrContext> env,
   562                    boolean classExpected,
   563                    boolean interfaceExpected,
   564                    boolean checkExtensible) {
   565         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   566             // check that type variable is already visible
   567             if (t.getUpperBound() == null) {
   568                 log.error(tree.pos(), "illegal.forward.ref");
   569                 return types.createErrorType(t);
   570             }
   571         } else {
   572             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   573         }
   574         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   575             log.error(tree.pos(), "intf.expected.here");
   576             // return errType is necessary since otherwise there might
   577             // be undetected cycles which cause attribution to loop
   578             return types.createErrorType(t);
   579         } else if (checkExtensible &&
   580                    classExpected &&
   581                    (t.tsym.flags() & INTERFACE) != 0) {
   582             log.error(tree.pos(), "no.intf.expected.here");
   583             return types.createErrorType(t);
   584         }
   585         if (checkExtensible &&
   586             ((t.tsym.flags() & FINAL) != 0)) {
   587             log.error(tree.pos(),
   588                       "cant.inherit.from.final", t.tsym);
   589         }
   590         chk.checkNonCyclic(tree.pos(), t);
   591         return t;
   592     }
   594     public void visitClassDef(JCClassDecl tree) {
   595         // Local classes have not been entered yet, so we need to do it now:
   596         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   597             enter.classEnter(tree, env);
   599         ClassSymbol c = tree.sym;
   600         if (c == null) {
   601             // exit in case something drastic went wrong during enter.
   602             result = null;
   603         } else {
   604             // make sure class has been completed:
   605             c.complete();
   607             // If this class appears as an anonymous class
   608             // in a superclass constructor call where
   609             // no explicit outer instance is given,
   610             // disable implicit outer instance from being passed.
   611             // (This would be an illegal access to "this before super").
   612             if (env.info.isSelfCall &&
   613                 env.tree.getTag() == JCTree.NEWCLASS &&
   614                 ((JCNewClass) env.tree).encl == null)
   615             {
   616                 c.flags_field |= NOOUTERTHIS;
   617             }
   618             attribClass(tree.pos(), c);
   619             result = tree.type = c.type;
   620         }
   621     }
   623     public void visitMethodDef(JCMethodDecl tree) {
   624         MethodSymbol m = tree.sym;
   626         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
   627         Lint prevLint = chk.setLint(lint);
   628         try {
   629             chk.checkDeprecatedAnnotation(tree.pos(), m);
   631             attribBounds(tree.typarams);
   633             // If we override any other methods, check that we do so properly.
   634             // JLS ???
   635             chk.checkOverride(tree, m);
   637             // Create a new environment with local scope
   638             // for attributing the method.
   639             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   641             localEnv.info.lint = lint;
   643             // Enter all type parameters into the local method scope.
   644             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   645                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   647             ClassSymbol owner = env.enclClass.sym;
   648             if ((owner.flags() & ANNOTATION) != 0 &&
   649                 tree.params.nonEmpty())
   650                 log.error(tree.params.head.pos(),
   651                           "intf.annotation.members.cant.have.params");
   653             // Attribute all value parameters.
   654             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   655                 attribStat(l.head, localEnv);
   656             }
   658             // Check that type parameters are well-formed.
   659             chk.validate(tree.typarams, localEnv);
   660             if ((owner.flags() & ANNOTATION) != 0 &&
   661                 tree.typarams.nonEmpty())
   662                 log.error(tree.typarams.head.pos(),
   663                           "intf.annotation.members.cant.have.type.params");
   665             // Check that result type is well-formed.
   666             chk.validate(tree.restype, localEnv);
   667             if ((owner.flags() & ANNOTATION) != 0)
   668                 chk.validateAnnotationType(tree.restype);
   670             if ((owner.flags() & ANNOTATION) != 0)
   671                 chk.validateAnnotationMethod(tree.pos(), m);
   673             // Check that all exceptions mentioned in the throws clause extend
   674             // java.lang.Throwable.
   675             if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
   676                 log.error(tree.thrown.head.pos(),
   677                           "throws.not.allowed.in.intf.annotation");
   678             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   679                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   681             if (tree.body == null) {
   682                 // Empty bodies are only allowed for
   683                 // abstract, native, or interface methods, or for methods
   684                 // in a retrofit signature class.
   685                 if ((owner.flags() & INTERFACE) == 0 &&
   686                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   687                     !relax)
   688                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   689                 if (tree.defaultValue != null) {
   690                     if ((owner.flags() & ANNOTATION) == 0)
   691                         log.error(tree.pos(),
   692                                   "default.allowed.in.intf.annotation.member");
   693                 }
   694             } else if ((owner.flags() & INTERFACE) != 0) {
   695                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   696             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   697                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   698             } else if ((tree.mods.flags & NATIVE) != 0) {
   699                 log.error(tree.pos(), "native.meth.cant.have.body");
   700             } else {
   701                 // Add an implicit super() call unless an explicit call to
   702                 // super(...) or this(...) is given
   703                 // or we are compiling class java.lang.Object.
   704                 if (tree.name == names.init && owner.type != syms.objectType) {
   705                     JCBlock body = tree.body;
   706                     if (body.stats.isEmpty() ||
   707                         !TreeInfo.isSelfCall(body.stats.head)) {
   708                         body.stats = body.stats.
   709                             prepend(memberEnter.SuperCall(make.at(body.pos),
   710                                                           List.<Type>nil(),
   711                                                           List.<JCVariableDecl>nil(),
   712                                                           false));
   713                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   714                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   715                                TreeInfo.isSuperCall(body.stats.head)) {
   716                         // enum constructors are not allowed to call super
   717                         // directly, so make sure there aren't any super calls
   718                         // in enum constructors, except in the compiler
   719                         // generated one.
   720                         log.error(tree.body.stats.head.pos(),
   721                                   "call.to.super.not.allowed.in.enum.ctor",
   722                                   env.enclClass.sym);
   723                     }
   724                 }
   726                 // Attribute method body.
   727                 attribStat(tree.body, localEnv);
   728             }
   729             localEnv.info.scope.leave();
   730             result = tree.type = m.type;
   731             chk.validateAnnotations(tree.mods.annotations, m);
   732         }
   733         finally {
   734             chk.setLint(prevLint);
   735         }
   736     }
   738     public void visitVarDef(JCVariableDecl tree) {
   739         // Local variables have not been entered yet, so we need to do it now:
   740         if (env.info.scope.owner.kind == MTH) {
   741             if (tree.sym != null) {
   742                 // parameters have already been entered
   743                 env.info.scope.enter(tree.sym);
   744             } else {
   745                 memberEnter.memberEnter(tree, env);
   746                 annotate.flush();
   747             }
   748         }
   750         VarSymbol v = tree.sym;
   751         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
   752         Lint prevLint = chk.setLint(lint);
   754         // Check that the variable's declared type is well-formed.
   755         chk.validate(tree.vartype, env);
   757         try {
   758             chk.checkDeprecatedAnnotation(tree.pos(), v);
   760             if (tree.init != null) {
   761                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
   762                     // In this case, `v' is final.  Ensure that it's initializer is
   763                     // evaluated.
   764                     v.getConstValue(); // ensure initializer is evaluated
   765                 } else {
   766                     // Attribute initializer in a new environment
   767                     // with the declared variable as owner.
   768                     // Check that initializer conforms to variable's declared type.
   769                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
   770                     initEnv.info.lint = lint;
   771                     // In order to catch self-references, we set the variable's
   772                     // declaration position to maximal possible value, effectively
   773                     // marking the variable as undefined.
   774                     initEnv.info.enclVar = v;
   775                     attribExpr(tree.init, initEnv, v.type);
   776                 }
   777             }
   778             result = tree.type = v.type;
   779             chk.validateAnnotations(tree.mods.annotations, v);
   780         }
   781         finally {
   782             chk.setLint(prevLint);
   783         }
   784     }
   786     public void visitSkip(JCSkip tree) {
   787         result = null;
   788     }
   790     public void visitBlock(JCBlock tree) {
   791         if (env.info.scope.owner.kind == TYP) {
   792             // Block is a static or instance initializer;
   793             // let the owner of the environment be a freshly
   794             // created BLOCK-method.
   795             Env<AttrContext> localEnv =
   796                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
   797             localEnv.info.scope.owner =
   798                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
   799                                  env.info.scope.owner);
   800             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
   801             attribStats(tree.stats, localEnv);
   802         } else {
   803             // Create a new local environment with a local scope.
   804             Env<AttrContext> localEnv =
   805                 env.dup(tree, env.info.dup(env.info.scope.dup()));
   806             attribStats(tree.stats, localEnv);
   807             localEnv.info.scope.leave();
   808         }
   809         result = null;
   810     }
   812     public void visitDoLoop(JCDoWhileLoop tree) {
   813         attribStat(tree.body, env.dup(tree));
   814         attribExpr(tree.cond, env, syms.booleanType);
   815         result = null;
   816     }
   818     public void visitWhileLoop(JCWhileLoop tree) {
   819         attribExpr(tree.cond, env, syms.booleanType);
   820         attribStat(tree.body, env.dup(tree));
   821         result = null;
   822     }
   824     public void visitForLoop(JCForLoop tree) {
   825         Env<AttrContext> loopEnv =
   826             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   827         attribStats(tree.init, loopEnv);
   828         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
   829         loopEnv.tree = tree; // before, we were not in loop!
   830         attribStats(tree.step, loopEnv);
   831         attribStat(tree.body, loopEnv);
   832         loopEnv.info.scope.leave();
   833         result = null;
   834     }
   836     public void visitForeachLoop(JCEnhancedForLoop tree) {
   837         Env<AttrContext> loopEnv =
   838             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   839         attribStat(tree.var, loopEnv);
   840         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
   841         chk.checkNonVoid(tree.pos(), exprType);
   842         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
   843         if (elemtype == null) {
   844             // or perhaps expr implements Iterable<T>?
   845             Type base = types.asSuper(exprType, syms.iterableType.tsym);
   846             if (base == null) {
   847                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
   848                 elemtype = types.createErrorType(exprType);
   849             } else {
   850                 List<Type> iterableParams = base.allparams();
   851                 elemtype = iterableParams.isEmpty()
   852                     ? syms.objectType
   853                     : types.upperBound(iterableParams.head);
   854             }
   855         }
   856         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
   857         loopEnv.tree = tree; // before, we were not in loop!
   858         attribStat(tree.body, loopEnv);
   859         loopEnv.info.scope.leave();
   860         result = null;
   861     }
   863     public void visitLabelled(JCLabeledStatement tree) {
   864         // Check that label is not used in an enclosing statement
   865         Env<AttrContext> env1 = env;
   866         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
   867             if (env1.tree.getTag() == JCTree.LABELLED &&
   868                 ((JCLabeledStatement) env1.tree).label == tree.label) {
   869                 log.error(tree.pos(), "label.already.in.use",
   870                           tree.label);
   871                 break;
   872             }
   873             env1 = env1.next;
   874         }
   876         attribStat(tree.body, env.dup(tree));
   877         result = null;
   878     }
   880     public void visitSwitch(JCSwitch tree) {
   881         Type seltype = attribExpr(tree.selector, env);
   883         Env<AttrContext> switchEnv =
   884             env.dup(tree, env.info.dup(env.info.scope.dup()));
   886         boolean enumSwitch =
   887             allowEnums &&
   888             (seltype.tsym.flags() & Flags.ENUM) != 0;
   889         if (!enumSwitch)
   890             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
   892         // Attribute all cases and
   893         // check that there are no duplicate case labels or default clauses.
   894         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
   895         boolean hasDefault = false;      // Is there a default label?
   896         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
   897             JCCase c = l.head;
   898             Env<AttrContext> caseEnv =
   899                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
   900             if (c.pat != null) {
   901                 if (enumSwitch) {
   902                     Symbol sym = enumConstant(c.pat, seltype);
   903                     if (sym == null) {
   904                         log.error(c.pat.pos(), "enum.const.req");
   905                     } else if (!labels.add(sym)) {
   906                         log.error(c.pos(), "duplicate.case.label");
   907                     }
   908                 } else {
   909                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
   910                     if (pattype.tag != ERROR) {
   911                         if (pattype.constValue() == null) {
   912                             log.error(c.pat.pos(), "const.expr.req");
   913                         } else if (labels.contains(pattype.constValue())) {
   914                             log.error(c.pos(), "duplicate.case.label");
   915                         } else {
   916                             labels.add(pattype.constValue());
   917                         }
   918                     }
   919                 }
   920             } else if (hasDefault) {
   921                 log.error(c.pos(), "duplicate.default.label");
   922             } else {
   923                 hasDefault = true;
   924             }
   925             attribStats(c.stats, caseEnv);
   926             caseEnv.info.scope.leave();
   927             addVars(c.stats, switchEnv.info.scope);
   928         }
   930         switchEnv.info.scope.leave();
   931         result = null;
   932     }
   933     // where
   934         /** Add any variables defined in stats to the switch scope. */
   935         private static void addVars(List<JCStatement> stats, Scope switchScope) {
   936             for (;stats.nonEmpty(); stats = stats.tail) {
   937                 JCTree stat = stats.head;
   938                 if (stat.getTag() == JCTree.VARDEF)
   939                     switchScope.enter(((JCVariableDecl) stat).sym);
   940             }
   941         }
   942     // where
   943     /** Return the selected enumeration constant symbol, or null. */
   944     private Symbol enumConstant(JCTree tree, Type enumType) {
   945         if (tree.getTag() != JCTree.IDENT) {
   946             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
   947             return syms.errSymbol;
   948         }
   949         JCIdent ident = (JCIdent)tree;
   950         Name name = ident.name;
   951         for (Scope.Entry e = enumType.tsym.members().lookup(name);
   952              e.scope != null; e = e.next()) {
   953             if (e.sym.kind == VAR) {
   954                 Symbol s = ident.sym = e.sym;
   955                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
   956                 ident.type = s.type;
   957                 return ((s.flags_field & Flags.ENUM) == 0)
   958                     ? null : s;
   959             }
   960         }
   961         return null;
   962     }
   964     public void visitSynchronized(JCSynchronized tree) {
   965         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
   966         attribStat(tree.body, env);
   967         result = null;
   968     }
   970     public void visitTry(JCTry tree) {
   971         // Attribute body
   972         attribStat(tree.body, env.dup(tree, env.info.dup()));
   974         // Attribute catch clauses
   975         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
   976             JCCatch c = l.head;
   977             Env<AttrContext> catchEnv =
   978                 env.dup(c, env.info.dup(env.info.scope.dup()));
   979             Type ctype = attribStat(c.param, catchEnv);
   980             if (c.param.type.tsym.kind == Kinds.VAR) {
   981                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
   982             }
   983             chk.checkType(c.param.vartype.pos(),
   984                           chk.checkClassType(c.param.vartype.pos(), ctype),
   985                           syms.throwableType);
   986             attribStat(c.body, catchEnv);
   987             catchEnv.info.scope.leave();
   988         }
   990         // Attribute finalizer
   991         if (tree.finalizer != null) attribStat(tree.finalizer, env);
   992         result = null;
   993     }
   995     public void visitConditional(JCConditional tree) {
   996         attribExpr(tree.cond, env, syms.booleanType);
   997         attribExpr(tree.truepart, env);
   998         attribExpr(tree.falsepart, env);
   999         result = check(tree,
  1000                        capture(condType(tree.pos(), tree.cond.type,
  1001                                         tree.truepart.type, tree.falsepart.type)),
  1002                        VAL, pkind, pt);
  1004     //where
  1005         /** Compute the type of a conditional expression, after
  1006          *  checking that it exists. See Spec 15.25.
  1008          *  @param pos      The source position to be used for
  1009          *                  error diagnostics.
  1010          *  @param condtype The type of the expression's condition.
  1011          *  @param thentype The type of the expression's then-part.
  1012          *  @param elsetype The type of the expression's else-part.
  1013          */
  1014         private Type condType(DiagnosticPosition pos,
  1015                               Type condtype,
  1016                               Type thentype,
  1017                               Type elsetype) {
  1018             Type ctype = condType1(pos, condtype, thentype, elsetype);
  1020             // If condition and both arms are numeric constants,
  1021             // evaluate at compile-time.
  1022             return ((condtype.constValue() != null) &&
  1023                     (thentype.constValue() != null) &&
  1024                     (elsetype.constValue() != null))
  1025                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
  1026                 : ctype;
  1028         /** Compute the type of a conditional expression, after
  1029          *  checking that it exists.  Does not take into
  1030          *  account the special case where condition and both arms
  1031          *  are constants.
  1033          *  @param pos      The source position to be used for error
  1034          *                  diagnostics.
  1035          *  @param condtype The type of the expression's condition.
  1036          *  @param thentype The type of the expression's then-part.
  1037          *  @param elsetype The type of the expression's else-part.
  1038          */
  1039         private Type condType1(DiagnosticPosition pos, Type condtype,
  1040                                Type thentype, Type elsetype) {
  1041             // If same type, that is the result
  1042             if (types.isSameType(thentype, elsetype))
  1043                 return thentype.baseType();
  1045             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1046                 ? thentype : types.unboxedType(thentype);
  1047             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1048                 ? elsetype : types.unboxedType(elsetype);
  1050             // Otherwise, if both arms can be converted to a numeric
  1051             // type, return the least numeric type that fits both arms
  1052             // (i.e. return larger of the two, or return int if one
  1053             // arm is short, the other is char).
  1054             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1055                 // If one arm has an integer subrange type (i.e., byte,
  1056                 // short, or char), and the other is an integer constant
  1057                 // that fits into the subrange, return the subrange type.
  1058                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1059                     types.isAssignable(elseUnboxed, thenUnboxed))
  1060                     return thenUnboxed.baseType();
  1061                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1062                     types.isAssignable(thenUnboxed, elseUnboxed))
  1063                     return elseUnboxed.baseType();
  1065                 for (int i = BYTE; i < VOID; i++) {
  1066                     Type candidate = syms.typeOfTag[i];
  1067                     if (types.isSubtype(thenUnboxed, candidate) &&
  1068                         types.isSubtype(elseUnboxed, candidate))
  1069                         return candidate;
  1073             // Those were all the cases that could result in a primitive
  1074             if (allowBoxing) {
  1075                 if (thentype.isPrimitive())
  1076                     thentype = types.boxedClass(thentype).type;
  1077                 if (elsetype.isPrimitive())
  1078                     elsetype = types.boxedClass(elsetype).type;
  1081             if (types.isSubtype(thentype, elsetype))
  1082                 return elsetype.baseType();
  1083             if (types.isSubtype(elsetype, thentype))
  1084                 return thentype.baseType();
  1086             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1087                 log.error(pos, "neither.conditional.subtype",
  1088                           thentype, elsetype);
  1089                 return thentype.baseType();
  1092             // both are known to be reference types.  The result is
  1093             // lub(thentype,elsetype). This cannot fail, as it will
  1094             // always be possible to infer "Object" if nothing better.
  1095             return types.lub(thentype.baseType(), elsetype.baseType());
  1098     public void visitIf(JCIf tree) {
  1099         attribExpr(tree.cond, env, syms.booleanType);
  1100         attribStat(tree.thenpart, env);
  1101         if (tree.elsepart != null)
  1102             attribStat(tree.elsepart, env);
  1103         chk.checkEmptyIf(tree);
  1104         result = null;
  1107     public void visitExec(JCExpressionStatement tree) {
  1108         attribExpr(tree.expr, env);
  1109         result = null;
  1112     public void visitBreak(JCBreak tree) {
  1113         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1114         result = null;
  1117     public void visitContinue(JCContinue tree) {
  1118         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1119         result = null;
  1121     //where
  1122         /** Return the target of a break or continue statement, if it exists,
  1123          *  report an error if not.
  1124          *  Note: The target of a labelled break or continue is the
  1125          *  (non-labelled) statement tree referred to by the label,
  1126          *  not the tree representing the labelled statement itself.
  1128          *  @param pos     The position to be used for error diagnostics
  1129          *  @param tag     The tag of the jump statement. This is either
  1130          *                 Tree.BREAK or Tree.CONTINUE.
  1131          *  @param label   The label of the jump statement, or null if no
  1132          *                 label is given.
  1133          *  @param env     The environment current at the jump statement.
  1134          */
  1135         private JCTree findJumpTarget(DiagnosticPosition pos,
  1136                                     int tag,
  1137                                     Name label,
  1138                                     Env<AttrContext> env) {
  1139             // Search environments outwards from the point of jump.
  1140             Env<AttrContext> env1 = env;
  1141             LOOP:
  1142             while (env1 != null) {
  1143                 switch (env1.tree.getTag()) {
  1144                 case JCTree.LABELLED:
  1145                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1146                     if (label == labelled.label) {
  1147                         // If jump is a continue, check that target is a loop.
  1148                         if (tag == JCTree.CONTINUE) {
  1149                             if (labelled.body.getTag() != JCTree.DOLOOP &&
  1150                                 labelled.body.getTag() != JCTree.WHILELOOP &&
  1151                                 labelled.body.getTag() != JCTree.FORLOOP &&
  1152                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
  1153                                 log.error(pos, "not.loop.label", label);
  1154                             // Found labelled statement target, now go inwards
  1155                             // to next non-labelled tree.
  1156                             return TreeInfo.referencedStatement(labelled);
  1157                         } else {
  1158                             return labelled;
  1161                     break;
  1162                 case JCTree.DOLOOP:
  1163                 case JCTree.WHILELOOP:
  1164                 case JCTree.FORLOOP:
  1165                 case JCTree.FOREACHLOOP:
  1166                     if (label == null) return env1.tree;
  1167                     break;
  1168                 case JCTree.SWITCH:
  1169                     if (label == null && tag == JCTree.BREAK) return env1.tree;
  1170                     break;
  1171                 case JCTree.METHODDEF:
  1172                 case JCTree.CLASSDEF:
  1173                     break LOOP;
  1174                 default:
  1176                 env1 = env1.next;
  1178             if (label != null)
  1179                 log.error(pos, "undef.label", label);
  1180             else if (tag == JCTree.CONTINUE)
  1181                 log.error(pos, "cont.outside.loop");
  1182             else
  1183                 log.error(pos, "break.outside.switch.loop");
  1184             return null;
  1187     public void visitReturn(JCReturn tree) {
  1188         // Check that there is an enclosing method which is
  1189         // nested within than the enclosing class.
  1190         if (env.enclMethod == null ||
  1191             env.enclMethod.sym.owner != env.enclClass.sym) {
  1192             log.error(tree.pos(), "ret.outside.meth");
  1194         } else {
  1195             // Attribute return expression, if it exists, and check that
  1196             // it conforms to result type of enclosing method.
  1197             Symbol m = env.enclMethod.sym;
  1198             if (m.type.getReturnType().tag == VOID) {
  1199                 if (tree.expr != null)
  1200                     log.error(tree.expr.pos(),
  1201                               "cant.ret.val.from.meth.decl.void");
  1202             } else if (tree.expr == null) {
  1203                 log.error(tree.pos(), "missing.ret.val");
  1204             } else {
  1205                 attribExpr(tree.expr, env, m.type.getReturnType());
  1208         result = null;
  1211     public void visitThrow(JCThrow tree) {
  1212         attribExpr(tree.expr, env, syms.throwableType);
  1213         result = null;
  1216     public void visitAssert(JCAssert tree) {
  1217         attribExpr(tree.cond, env, syms.booleanType);
  1218         if (tree.detail != null) {
  1219             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1221         result = null;
  1224      /** Visitor method for method invocations.
  1225      *  NOTE: The method part of an application will have in its type field
  1226      *        the return type of the method, not the method's type itself!
  1227      */
  1228     public void visitApply(JCMethodInvocation tree) {
  1229         // The local environment of a method application is
  1230         // a new environment nested in the current one.
  1231         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1233         // The types of the actual method arguments.
  1234         List<Type> argtypes;
  1236         // The types of the actual method type arguments.
  1237         List<Type> typeargtypes = null;
  1238         boolean typeargtypesNonRefOK = false;
  1240         Name methName = TreeInfo.name(tree.meth);
  1242         boolean isConstructorCall =
  1243             methName == names._this || methName == names._super;
  1245         if (isConstructorCall) {
  1246             // We are seeing a ...this(...) or ...super(...) call.
  1247             // Check that this is the first statement in a constructor.
  1248             if (checkFirstConstructorStat(tree, env)) {
  1250                 // Record the fact
  1251                 // that this is a constructor call (using isSelfCall).
  1252                 localEnv.info.isSelfCall = true;
  1254                 // Attribute arguments, yielding list of argument types.
  1255                 argtypes = attribArgs(tree.args, localEnv);
  1256                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1258                 // Variable `site' points to the class in which the called
  1259                 // constructor is defined.
  1260                 Type site = env.enclClass.sym.type;
  1261                 if (methName == names._super) {
  1262                     if (site == syms.objectType) {
  1263                         log.error(tree.meth.pos(), "no.superclass", site);
  1264                         site = types.createErrorType(syms.objectType);
  1265                     } else {
  1266                         site = types.supertype(site);
  1270                 if (site.tag == CLASS) {
  1271                     Type encl = site.getEnclosingType();
  1272                     while (encl != null && encl.tag == TYPEVAR)
  1273                         encl = encl.getUpperBound();
  1274                     if (encl.tag == CLASS) {
  1275                         // we are calling a nested class
  1277                         if (tree.meth.getTag() == JCTree.SELECT) {
  1278                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1280                             // We are seeing a prefixed call, of the form
  1281                             //     <expr>.super(...).
  1282                             // Check that the prefix expression conforms
  1283                             // to the outer instance type of the class.
  1284                             chk.checkRefType(qualifier.pos(),
  1285                                              attribExpr(qualifier, localEnv,
  1286                                                         encl));
  1287                         } else if (methName == names._super) {
  1288                             // qualifier omitted; check for existence
  1289                             // of an appropriate implicit qualifier.
  1290                             rs.resolveImplicitThis(tree.meth.pos(),
  1291                                                    localEnv, site);
  1293                     } else if (tree.meth.getTag() == JCTree.SELECT) {
  1294                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1295                                   site.tsym);
  1298                     // if we're calling a java.lang.Enum constructor,
  1299                     // prefix the implicit String and int parameters
  1300                     if (site.tsym == syms.enumSym && allowEnums)
  1301                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1303                     // Resolve the called constructor under the assumption
  1304                     // that we are referring to a superclass instance of the
  1305                     // current instance (JLS ???).
  1306                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1307                     localEnv.info.selectSuper = true;
  1308                     localEnv.info.varArgs = false;
  1309                     Symbol sym = rs.resolveConstructor(
  1310                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1311                     localEnv.info.selectSuper = selectSuperPrev;
  1313                     // Set method symbol to resolved constructor...
  1314                     TreeInfo.setSymbol(tree.meth, sym);
  1316                     // ...and check that it is legal in the current context.
  1317                     // (this will also set the tree's type)
  1318                     Type mpt = newMethTemplate(argtypes, typeargtypes);
  1319                     checkId(tree.meth, site, sym, localEnv, MTH,
  1320                             mpt, tree.varargsElement != null);
  1322                 // Otherwise, `site' is an error type and we do nothing
  1324             result = tree.type = syms.voidType;
  1325         } else {
  1326             // Otherwise, we are seeing a regular method call.
  1327             // Attribute the arguments, yielding list of argument types, ...
  1328             argtypes = attribArgs(tree.args, localEnv);
  1329             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1331             // ... and attribute the method using as a prototype a methodtype
  1332             // whose formal argument types is exactly the list of actual
  1333             // arguments (this will also set the method symbol).
  1334             Type mpt = newMethTemplate(argtypes, typeargtypes);
  1335             localEnv.info.varArgs = false;
  1336             Type mtype = attribExpr(tree.meth, localEnv, mpt);
  1337             if (localEnv.info.varArgs)
  1338                 assert mtype.isErroneous() || tree.varargsElement != null;
  1340             // Compute the result type.
  1341             Type restype = mtype.getReturnType();
  1342             assert restype.tag != WILDCARD : mtype;
  1344             // as a special case, array.clone() has a result that is
  1345             // the same as static type of the array being cloned
  1346             if (tree.meth.getTag() == JCTree.SELECT &&
  1347                 allowCovariantReturns &&
  1348                 methName == names.clone &&
  1349                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
  1350                 restype = ((JCFieldAccess) tree.meth).selected.type;
  1352             // as a special case, x.getClass() has type Class<? extends |X|>
  1353             if (allowGenerics &&
  1354                 methName == names.getClass && tree.args.isEmpty()) {
  1355                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
  1356                     ? ((JCFieldAccess) tree.meth).selected.type
  1357                     : env.enclClass.sym.type;
  1358                 restype = new
  1359                     ClassType(restype.getEnclosingType(),
  1360                               List.<Type>of(new WildcardType(types.erasure(qualifier),
  1361                                                                BoundKind.EXTENDS,
  1362                                                                syms.boundClass)),
  1363                               restype.tsym);
  1366             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
  1367             // has type <T>, and T can be a primitive type.
  1368             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
  1369               Type selt = ((JCFieldAccess) tree.meth).selected.type;
  1370               if ((selt == syms.methodHandleType && methName == names.invoke) || selt == syms.invokeDynamicType) {
  1371                   assert types.isSameType(restype, typeargtypes.head) : mtype;
  1372                   typeargtypesNonRefOK = true;
  1376             if (!typeargtypesNonRefOK) {
  1377                 chk.checkRefTypes(tree.typeargs, typeargtypes);
  1380             // Check that value of resulting type is admissible in the
  1381             // current context.  Also, capture the return type
  1382             result = checkReturn(tree, capture(restype), VAL, pkind, pt);
  1384         chk.validate(tree.typeargs, localEnv);
  1386     //where
  1387         /** Check that given application node appears as first statement
  1388          *  in a constructor call.
  1389          *  @param tree   The application node
  1390          *  @param env    The environment current at the application.
  1391          */
  1392         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1393             JCMethodDecl enclMethod = env.enclMethod;
  1394             if (enclMethod != null && enclMethod.name == names.init) {
  1395                 JCBlock body = enclMethod.body;
  1396                 if (body.stats.head.getTag() == JCTree.EXEC &&
  1397                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1398                     return true;
  1400             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1401                       TreeInfo.name(tree.meth));
  1402             return false;
  1405         /** Obtain a method type with given argument types.
  1406          */
  1407         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
  1408             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
  1409             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1412     public void visitNewClass(JCNewClass tree) {
  1413         Type owntype = types.createErrorType(tree.type);
  1415         // The local environment of a class creation is
  1416         // a new environment nested in the current one.
  1417         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1419         // The anonymous inner class definition of the new expression,
  1420         // if one is defined by it.
  1421         JCClassDecl cdef = tree.def;
  1423         // If enclosing class is given, attribute it, and
  1424         // complete class name to be fully qualified
  1425         JCExpression clazz = tree.clazz; // Class field following new
  1426         JCExpression clazzid =          // Identifier in class field
  1427             (clazz.getTag() == JCTree.TYPEAPPLY)
  1428             ? ((JCTypeApply) clazz).clazz
  1429             : clazz;
  1431         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1433         if (tree.encl != null) {
  1434             // We are seeing a qualified new, of the form
  1435             //    <expr>.new C <...> (...) ...
  1436             // In this case, we let clazz stand for the name of the
  1437             // allocated class C prefixed with the type of the qualifier
  1438             // expression, so that we can
  1439             // resolve it with standard techniques later. I.e., if
  1440             // <expr> has type T, then <expr>.new C <...> (...)
  1441             // yields a clazz T.C.
  1442             Type encltype = chk.checkRefType(tree.encl.pos(),
  1443                                              attribExpr(tree.encl, env));
  1444             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1445                                                  ((JCIdent) clazzid).name);
  1446             if (clazz.getTag() == JCTree.TYPEAPPLY)
  1447                 clazz = make.at(tree.pos).
  1448                     TypeApply(clazzid1,
  1449                               ((JCTypeApply) clazz).arguments);
  1450             else
  1451                 clazz = clazzid1;
  1452 //          System.out.println(clazz + " generated.");//DEBUG
  1455         // Attribute clazz expression and store
  1456         // symbol + type back into the attributed tree.
  1457         Type clazztype = attribType(clazz, env);
  1458         chk.validate(clazz, localEnv);
  1459         clazztype = chk.checkNewClassType(clazz.pos(), clazztype, true, pt);
  1460         if (tree.encl != null) {
  1461             // We have to work in this case to store
  1462             // symbol + type back into the attributed tree.
  1463             tree.clazz.type = clazztype;
  1464             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1465             clazzid.type = ((JCIdent) clazzid).sym.type;
  1466             if (!clazztype.isErroneous()) {
  1467                 if (cdef != null && clazztype.tsym.isInterface()) {
  1468                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1469                 } else if (clazztype.tsym.isStatic()) {
  1470                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1473         } else if (!clazztype.tsym.isInterface() &&
  1474                    clazztype.getEnclosingType().tag == CLASS) {
  1475             // Check for the existence of an apropos outer instance
  1476             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1479         // Attribute constructor arguments.
  1480         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1481         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1483         // If we have made no mistakes in the class type...
  1484         if (clazztype.tag == CLASS) {
  1485             // Enums may not be instantiated except implicitly
  1486             if (allowEnums &&
  1487                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1488                 (env.tree.getTag() != JCTree.VARDEF ||
  1489                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1490                  ((JCVariableDecl) env.tree).init != tree))
  1491                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1492             // Check that class is not abstract
  1493             if (cdef == null &&
  1494                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1495                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1496                           clazztype.tsym);
  1497             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1498                 // Check that no constructor arguments are given to
  1499                 // anonymous classes implementing an interface
  1500                 if (!argtypes.isEmpty())
  1501                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1503                 if (!typeargtypes.isEmpty())
  1504                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1506                 // Error recovery: pretend no arguments were supplied.
  1507                 argtypes = List.nil();
  1508                 typeargtypes = List.nil();
  1511             // Resolve the called constructor under the assumption
  1512             // that we are referring to a superclass instance of the
  1513             // current instance (JLS ???).
  1514             else {
  1515                 localEnv.info.selectSuper = cdef != null;
  1516                 localEnv.info.varArgs = false;
  1517                 tree.constructor = rs.resolveConstructor(
  1518                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  1519                 tree.constructorType = checkMethod(clazztype,
  1520                                             tree.constructor,
  1521                                             localEnv,
  1522                                             tree.args,
  1523                                             argtypes,
  1524                                             typeargtypes,
  1525                                             localEnv.info.varArgs);
  1526                 if (localEnv.info.varArgs)
  1527                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
  1530             if (cdef != null) {
  1531                 // We are seeing an anonymous class instance creation.
  1532                 // In this case, the class instance creation
  1533                 // expression
  1534                 //
  1535                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1536                 //
  1537                 // is represented internally as
  1538                 //
  1539                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1540                 //
  1541                 // This expression is then *transformed* as follows:
  1542                 //
  1543                 // (1) add a STATIC flag to the class definition
  1544                 //     if the current environment is static
  1545                 // (2) add an extends or implements clause
  1546                 // (3) add a constructor.
  1547                 //
  1548                 // For instance, if C is a class, and ET is the type of E,
  1549                 // the expression
  1550                 //
  1551                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1552                 //
  1553                 // is translated to (where X is a fresh name and typarams is the
  1554                 // parameter list of the super constructor):
  1555                 //
  1556                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1557                 //     X extends C<typargs2> {
  1558                 //       <typarams> X(ET e, args) {
  1559                 //         e.<typeargs1>super(args)
  1560                 //       }
  1561                 //       ...
  1562                 //     }
  1563                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  1564                 clazz = TreeInfo.isDiamond(tree) ?
  1565                     make.Type(clazztype)
  1566                     : clazz;
  1567                 if (clazztype.tsym.isInterface()) {
  1568                     cdef.implementing = List.of(clazz);
  1569                 } else {
  1570                     cdef.extending = clazz;
  1573                 attribStat(cdef, localEnv);
  1575                 // If an outer instance is given,
  1576                 // prefix it to the constructor arguments
  1577                 // and delete it from the new expression
  1578                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  1579                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  1580                     argtypes = argtypes.prepend(tree.encl.type);
  1581                     tree.encl = null;
  1584                 // Reassign clazztype and recompute constructor.
  1585                 clazztype = cdef.sym.type;
  1586                 Symbol sym = rs.resolveConstructor(
  1587                     tree.pos(), localEnv, clazztype, argtypes,
  1588                     typeargtypes, true, tree.varargsElement != null);
  1589                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
  1590                 tree.constructor = sym;
  1591                 if (tree.constructor.kind > ERRONEOUS) {
  1592                     tree.constructorType =  syms.errType;
  1594                 else {
  1595                     tree.constructorType = checkMethod(clazztype,
  1596                             tree.constructor,
  1597                             localEnv,
  1598                             tree.args,
  1599                             argtypes,
  1600                             typeargtypes,
  1601                             localEnv.info.varArgs);
  1605             if (tree.constructor != null && tree.constructor.kind == MTH)
  1606                 owntype = clazztype;
  1608         result = check(tree, owntype, VAL, pkind, pt);
  1609         chk.validate(tree.typeargs, localEnv);
  1612     /** Make an attributed null check tree.
  1613      */
  1614     public JCExpression makeNullCheck(JCExpression arg) {
  1615         // optimization: X.this is never null; skip null check
  1616         Name name = TreeInfo.name(arg);
  1617         if (name == names._this || name == names._super) return arg;
  1619         int optag = JCTree.NULLCHK;
  1620         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  1621         tree.operator = syms.nullcheck;
  1622         tree.type = arg.type;
  1623         return tree;
  1626     public void visitNewArray(JCNewArray tree) {
  1627         Type owntype = types.createErrorType(tree.type);
  1628         Type elemtype;
  1629         if (tree.elemtype != null) {
  1630             elemtype = attribType(tree.elemtype, env);
  1631             chk.validate(tree.elemtype, env);
  1632             owntype = elemtype;
  1633             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1634                 attribExpr(l.head, env, syms.intType);
  1635                 owntype = new ArrayType(owntype, syms.arrayClass);
  1637         } else {
  1638             // we are seeing an untyped aggregate { ... }
  1639             // this is allowed only if the prototype is an array
  1640             if (pt.tag == ARRAY) {
  1641                 elemtype = types.elemtype(pt);
  1642             } else {
  1643                 if (pt.tag != ERROR) {
  1644                     log.error(tree.pos(), "illegal.initializer.for.type",
  1645                               pt);
  1647                 elemtype = types.createErrorType(pt);
  1650         if (tree.elems != null) {
  1651             attribExprs(tree.elems, env, elemtype);
  1652             owntype = new ArrayType(elemtype, syms.arrayClass);
  1654         if (!types.isReifiable(elemtype))
  1655             log.error(tree.pos(), "generic.array.creation");
  1656         result = check(tree, owntype, VAL, pkind, pt);
  1659     public void visitParens(JCParens tree) {
  1660         Type owntype = attribTree(tree.expr, env, pkind, pt);
  1661         result = check(tree, owntype, pkind, pkind, pt);
  1662         Symbol sym = TreeInfo.symbol(tree);
  1663         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  1664             log.error(tree.pos(), "illegal.start.of.type");
  1667     public void visitAssign(JCAssign tree) {
  1668         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
  1669         Type capturedType = capture(owntype);
  1670         attribExpr(tree.rhs, env, owntype);
  1671         result = check(tree, capturedType, VAL, pkind, pt);
  1674     public void visitAssignop(JCAssignOp tree) {
  1675         // Attribute arguments.
  1676         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
  1677         Type operand = attribExpr(tree.rhs, env);
  1678         // Find operator.
  1679         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  1680             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
  1681             owntype, operand);
  1683         if (operator.kind == MTH) {
  1684             chk.checkOperator(tree.pos(),
  1685                               (OperatorSymbol)operator,
  1686                               tree.getTag() - JCTree.ASGOffset,
  1687                               owntype,
  1688                               operand);
  1689             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  1690             chk.checkCastable(tree.rhs.pos(),
  1691                               operator.type.getReturnType(),
  1692                               owntype);
  1694         result = check(tree, owntype, VAL, pkind, pt);
  1697     public void visitUnary(JCUnary tree) {
  1698         // Attribute arguments.
  1699         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1700             ? attribTree(tree.arg, env, VAR, Type.noType)
  1701             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  1703         // Find operator.
  1704         Symbol operator = tree.operator =
  1705             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  1707         Type owntype = types.createErrorType(tree.type);
  1708         if (operator.kind == MTH) {
  1709             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1710                 ? tree.arg.type
  1711                 : operator.type.getReturnType();
  1712             int opc = ((OperatorSymbol)operator).opcode;
  1714             // If the argument is constant, fold it.
  1715             if (argtype.constValue() != null) {
  1716                 Type ctype = cfolder.fold1(opc, argtype);
  1717                 if (ctype != null) {
  1718                     owntype = cfolder.coerce(ctype, owntype);
  1720                     // Remove constant types from arguments to
  1721                     // conserve space. The parser will fold concatenations
  1722                     // of string literals; the code here also
  1723                     // gets rid of intermediate results when some of the
  1724                     // operands are constant identifiers.
  1725                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  1726                         tree.arg.type = syms.stringType;
  1731         result = check(tree, owntype, VAL, pkind, pt);
  1734     public void visitBinary(JCBinary tree) {
  1735         // Attribute arguments.
  1736         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  1737         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  1739         // Find operator.
  1740         Symbol operator = tree.operator =
  1741             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  1743         Type owntype = types.createErrorType(tree.type);
  1744         if (operator.kind == MTH) {
  1745             owntype = operator.type.getReturnType();
  1746             int opc = chk.checkOperator(tree.lhs.pos(),
  1747                                         (OperatorSymbol)operator,
  1748                                         tree.getTag(),
  1749                                         left,
  1750                                         right);
  1752             // If both arguments are constants, fold them.
  1753             if (left.constValue() != null && right.constValue() != null) {
  1754                 Type ctype = cfolder.fold2(opc, left, right);
  1755                 if (ctype != null) {
  1756                     owntype = cfolder.coerce(ctype, owntype);
  1758                     // Remove constant types from arguments to
  1759                     // conserve space. The parser will fold concatenations
  1760                     // of string literals; the code here also
  1761                     // gets rid of intermediate results when some of the
  1762                     // operands are constant identifiers.
  1763                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  1764                         tree.lhs.type = syms.stringType;
  1766                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  1767                         tree.rhs.type = syms.stringType;
  1772             // Check that argument types of a reference ==, != are
  1773             // castable to each other, (JLS???).
  1774             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  1775                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  1776                     log.error(tree.pos(), "incomparable.types", left, right);
  1780             chk.checkDivZero(tree.rhs.pos(), operator, right);
  1782         result = check(tree, owntype, VAL, pkind, pt);
  1785     public void visitTypeCast(JCTypeCast tree) {
  1786         Type clazztype = attribType(tree.clazz, env);
  1787         chk.validate(tree.clazz, env);
  1788         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
  1789         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  1790         if (exprtype.constValue() != null)
  1791             owntype = cfolder.coerce(exprtype, owntype);
  1792         result = check(tree, capture(owntype), VAL, pkind, pt);
  1795     public void visitTypeTest(JCInstanceOf tree) {
  1796         Type exprtype = chk.checkNullOrRefType(
  1797             tree.expr.pos(), attribExpr(tree.expr, env));
  1798         Type clazztype = chk.checkReifiableReferenceType(
  1799             tree.clazz.pos(), attribType(tree.clazz, env));
  1800         chk.validate(tree.clazz, env);
  1801         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  1802         result = check(tree, syms.booleanType, VAL, pkind, pt);
  1805     public void visitIndexed(JCArrayAccess tree) {
  1806         Type owntype = types.createErrorType(tree.type);
  1807         Type atype = attribExpr(tree.indexed, env);
  1808         attribExpr(tree.index, env, syms.intType);
  1809         if (types.isArray(atype))
  1810             owntype = types.elemtype(atype);
  1811         else if (atype.tag != ERROR)
  1812             log.error(tree.pos(), "array.req.but.found", atype);
  1813         if ((pkind & VAR) == 0) owntype = capture(owntype);
  1814         result = check(tree, owntype, VAR, pkind, pt);
  1817     public void visitIdent(JCIdent tree) {
  1818         Symbol sym;
  1819         boolean varArgs = false;
  1821         // Find symbol
  1822         if (pt.tag == METHOD || pt.tag == FORALL) {
  1823             // If we are looking for a method, the prototype `pt' will be a
  1824             // method type with the type of the call's arguments as parameters.
  1825             env.info.varArgs = false;
  1826             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
  1827             varArgs = env.info.varArgs;
  1828         } else if (tree.sym != null && tree.sym.kind != VAR) {
  1829             sym = tree.sym;
  1830         } else {
  1831             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
  1833         tree.sym = sym;
  1835         // (1) Also find the environment current for the class where
  1836         //     sym is defined (`symEnv').
  1837         // Only for pre-tiger versions (1.4 and earlier):
  1838         // (2) Also determine whether we access symbol out of an anonymous
  1839         //     class in a this or super call.  This is illegal for instance
  1840         //     members since such classes don't carry a this$n link.
  1841         //     (`noOuterThisPath').
  1842         Env<AttrContext> symEnv = env;
  1843         boolean noOuterThisPath = false;
  1844         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  1845             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  1846             sym.owner.kind == TYP &&
  1847             tree.name != names._this && tree.name != names._super) {
  1849             // Find environment in which identifier is defined.
  1850             while (symEnv.outer != null &&
  1851                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  1852                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  1853                     noOuterThisPath = !allowAnonOuterThis;
  1854                 symEnv = symEnv.outer;
  1858         // If symbol is a variable, ...
  1859         if (sym.kind == VAR) {
  1860             VarSymbol v = (VarSymbol)sym;
  1862             // ..., evaluate its initializer, if it has one, and check for
  1863             // illegal forward reference.
  1864             checkInit(tree, env, v, false);
  1866             // If symbol is a local variable accessed from an embedded
  1867             // inner class check that it is final.
  1868             if (v.owner.kind == MTH &&
  1869                 v.owner != env.info.scope.owner &&
  1870                 (v.flags_field & FINAL) == 0) {
  1871                 log.error(tree.pos(),
  1872                           "local.var.accessed.from.icls.needs.final",
  1873                           v);
  1876             // If we are expecting a variable (as opposed to a value), check
  1877             // that the variable is assignable in the current environment.
  1878             if (pkind == VAR)
  1879                 checkAssignable(tree.pos(), v, null, env);
  1882         // In a constructor body,
  1883         // if symbol is a field or instance method, check that it is
  1884         // not accessed before the supertype constructor is called.
  1885         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  1886             (sym.kind & (VAR | MTH)) != 0 &&
  1887             sym.owner.kind == TYP &&
  1888             (sym.flags() & STATIC) == 0) {
  1889             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  1891         Env<AttrContext> env1 = env;
  1892         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  1893             // If the found symbol is inaccessible, then it is
  1894             // accessed through an enclosing instance.  Locate this
  1895             // enclosing instance:
  1896             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  1897                 env1 = env1.outer;
  1899         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
  1902     public void visitSelect(JCFieldAccess tree) {
  1903         // Determine the expected kind of the qualifier expression.
  1904         int skind = 0;
  1905         if (tree.name == names._this || tree.name == names._super ||
  1906             tree.name == names._class)
  1908             skind = TYP;
  1909         } else {
  1910             if ((pkind & PCK) != 0) skind = skind | PCK;
  1911             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
  1912             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  1915         // Attribute the qualifier expression, and determine its symbol (if any).
  1916         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
  1917         if ((pkind & (PCK | TYP)) == 0)
  1918             site = capture(site); // Capture field access
  1920         // don't allow T.class T[].class, etc
  1921         if (skind == TYP) {
  1922             Type elt = site;
  1923             while (elt.tag == ARRAY)
  1924                 elt = ((ArrayType)elt).elemtype;
  1925             if (elt.tag == TYPEVAR) {
  1926                 log.error(tree.pos(), "type.var.cant.be.deref");
  1927                 result = types.createErrorType(tree.type);
  1928                 return;
  1932         // If qualifier symbol is a type or `super', assert `selectSuper'
  1933         // for the selection. This is relevant for determining whether
  1934         // protected symbols are accessible.
  1935         Symbol sitesym = TreeInfo.symbol(tree.selected);
  1936         boolean selectSuperPrev = env.info.selectSuper;
  1937         env.info.selectSuper =
  1938             sitesym != null &&
  1939             sitesym.name == names._super;
  1941         // If selected expression is polymorphic, strip
  1942         // type parameters and remember in env.info.tvars, so that
  1943         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
  1944         if (tree.selected.type.tag == FORALL) {
  1945             ForAll pstype = (ForAll)tree.selected.type;
  1946             env.info.tvars = pstype.tvars;
  1947             site = tree.selected.type = pstype.qtype;
  1950         // Determine the symbol represented by the selection.
  1951         env.info.varArgs = false;
  1952         Symbol sym = selectSym(tree, site, env, pt, pkind);
  1953         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
  1954             site = capture(site);
  1955             sym = selectSym(tree, site, env, pt, pkind);
  1957         boolean varArgs = env.info.varArgs;
  1958         tree.sym = sym;
  1960         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  1961             while (site.tag == TYPEVAR) site = site.getUpperBound();
  1962             site = capture(site);
  1965         // If that symbol is a variable, ...
  1966         if (sym.kind == VAR) {
  1967             VarSymbol v = (VarSymbol)sym;
  1969             // ..., evaluate its initializer, if it has one, and check for
  1970             // illegal forward reference.
  1971             checkInit(tree, env, v, true);
  1973             // If we are expecting a variable (as opposed to a value), check
  1974             // that the variable is assignable in the current environment.
  1975             if (pkind == VAR)
  1976                 checkAssignable(tree.pos(), v, tree.selected, env);
  1979         // Disallow selecting a type from an expression
  1980         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  1981             tree.type = check(tree.selected, pt,
  1982                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
  1985         if (isType(sitesym)) {
  1986             if (sym.name == names._this) {
  1987                 // If `C' is the currently compiled class, check that
  1988                 // C.this' does not appear in a call to a super(...)
  1989                 if (env.info.isSelfCall &&
  1990                     site.tsym == env.enclClass.sym) {
  1991                     chk.earlyRefError(tree.pos(), sym);
  1993             } else {
  1994                 // Check if type-qualified fields or methods are static (JLS)
  1995                 if ((sym.flags() & STATIC) == 0 &&
  1996                     sym.name != names._super &&
  1997                     (sym.kind == VAR || sym.kind == MTH)) {
  1998                     rs.access(rs.new StaticError(sym),
  1999                               tree.pos(), site, sym.name, true);
  2004         // If we are selecting an instance member via a `super', ...
  2005         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2007             // Check that super-qualified symbols are not abstract (JLS)
  2008             rs.checkNonAbstract(tree.pos(), sym);
  2010             if (site.isRaw()) {
  2011                 // Determine argument types for site.
  2012                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2013                 if (site1 != null) site = site1;
  2017         env.info.selectSuper = selectSuperPrev;
  2018         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
  2019         env.info.tvars = List.nil();
  2021     //where
  2022         /** Determine symbol referenced by a Select expression,
  2024          *  @param tree   The select tree.
  2025          *  @param site   The type of the selected expression,
  2026          *  @param env    The current environment.
  2027          *  @param pt     The current prototype.
  2028          *  @param pkind  The expected kind(s) of the Select expression.
  2029          */
  2030         private Symbol selectSym(JCFieldAccess tree,
  2031                                  Type site,
  2032                                  Env<AttrContext> env,
  2033                                  Type pt,
  2034                                  int pkind) {
  2035             DiagnosticPosition pos = tree.pos();
  2036             Name name = tree.name;
  2038             switch (site.tag) {
  2039             case PACKAGE:
  2040                 return rs.access(
  2041                     rs.findIdentInPackage(env, site.tsym, name, pkind),
  2042                     pos, site, name, true);
  2043             case ARRAY:
  2044             case CLASS:
  2045                 if (pt.tag == METHOD || pt.tag == FORALL) {
  2046                     return rs.resolveQualifiedMethod(
  2047                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
  2048                 } else if (name == names._this || name == names._super) {
  2049                     return rs.resolveSelf(pos, env, site.tsym, name);
  2050                 } else if (name == names._class) {
  2051                     // In this case, we have already made sure in
  2052                     // visitSelect that qualifier expression is a type.
  2053                     Type t = syms.classType;
  2054                     List<Type> typeargs = allowGenerics
  2055                         ? List.of(types.erasure(site))
  2056                         : List.<Type>nil();
  2057                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2058                     return new VarSymbol(
  2059                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2060                 } else {
  2061                     // We are seeing a plain identifier as selector.
  2062                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
  2063                     if ((pkind & ERRONEOUS) == 0)
  2064                         sym = rs.access(sym, pos, site, name, true);
  2065                     return sym;
  2067             case WILDCARD:
  2068                 throw new AssertionError(tree);
  2069             case TYPEVAR:
  2070                 // Normally, site.getUpperBound() shouldn't be null.
  2071                 // It should only happen during memberEnter/attribBase
  2072                 // when determining the super type which *must* be
  2073                 // done before attributing the type variables.  In
  2074                 // other words, we are seeing this illegal program:
  2075                 // class B<T> extends A<T.foo> {}
  2076                 Symbol sym = (site.getUpperBound() != null)
  2077                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
  2078                     : null;
  2079                 if (sym == null) {
  2080                     log.error(pos, "type.var.cant.be.deref");
  2081                     return syms.errSymbol;
  2082                 } else {
  2083                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2084                         rs.new AccessError(env, site, sym) :
  2085                                 sym;
  2086                     rs.access(sym2, pos, site, name, true);
  2087                     return sym;
  2089             case ERROR:
  2090                 // preserve identifier names through errors
  2091                 return types.createErrorType(name, site.tsym, site).tsym;
  2092             default:
  2093                 // The qualifier expression is of a primitive type -- only
  2094                 // .class is allowed for these.
  2095                 if (name == names._class) {
  2096                     // In this case, we have already made sure in Select that
  2097                     // qualifier expression is a type.
  2098                     Type t = syms.classType;
  2099                     Type arg = types.boxedClass(site).type;
  2100                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2101                     return new VarSymbol(
  2102                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2103                 } else {
  2104                     log.error(pos, "cant.deref", site);
  2105                     return syms.errSymbol;
  2110         /** Determine type of identifier or select expression and check that
  2111          *  (1) the referenced symbol is not deprecated
  2112          *  (2) the symbol's type is safe (@see checkSafe)
  2113          *  (3) if symbol is a variable, check that its type and kind are
  2114          *      compatible with the prototype and protokind.
  2115          *  (4) if symbol is an instance field of a raw type,
  2116          *      which is being assigned to, issue an unchecked warning if its
  2117          *      type changes under erasure.
  2118          *  (5) if symbol is an instance method of a raw type, issue an
  2119          *      unchecked warning if its argument types change under erasure.
  2120          *  If checks succeed:
  2121          *    If symbol is a constant, return its constant type
  2122          *    else if symbol is a method, return its result type
  2123          *    otherwise return its type.
  2124          *  Otherwise return errType.
  2126          *  @param tree       The syntax tree representing the identifier
  2127          *  @param site       If this is a select, the type of the selected
  2128          *                    expression, otherwise the type of the current class.
  2129          *  @param sym        The symbol representing the identifier.
  2130          *  @param env        The current environment.
  2131          *  @param pkind      The set of expected kinds.
  2132          *  @param pt         The expected type.
  2133          */
  2134         Type checkId(JCTree tree,
  2135                      Type site,
  2136                      Symbol sym,
  2137                      Env<AttrContext> env,
  2138                      int pkind,
  2139                      Type pt,
  2140                      boolean useVarargs) {
  2141             if (pt.isErroneous()) return types.createErrorType(site);
  2142             Type owntype; // The computed type of this identifier occurrence.
  2143             switch (sym.kind) {
  2144             case TYP:
  2145                 // For types, the computed type equals the symbol's type,
  2146                 // except for two situations:
  2147                 owntype = sym.type;
  2148                 if (owntype.tag == CLASS) {
  2149                     Type ownOuter = owntype.getEnclosingType();
  2151                     // (a) If the symbol's type is parameterized, erase it
  2152                     // because no type parameters were given.
  2153                     // We recover generic outer type later in visitTypeApply.
  2154                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  2155                         owntype = types.erasure(owntype);
  2158                     // (b) If the symbol's type is an inner class, then
  2159                     // we have to interpret its outer type as a superclass
  2160                     // of the site type. Example:
  2161                     //
  2162                     // class Tree<A> { class Visitor { ... } }
  2163                     // class PointTree extends Tree<Point> { ... }
  2164                     // ...PointTree.Visitor...
  2165                     //
  2166                     // Then the type of the last expression above is
  2167                     // Tree<Point>.Visitor.
  2168                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  2169                         Type normOuter = site;
  2170                         if (normOuter.tag == CLASS)
  2171                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  2172                         if (normOuter == null) // perhaps from an import
  2173                             normOuter = types.erasure(ownOuter);
  2174                         if (normOuter != ownOuter)
  2175                             owntype = new ClassType(
  2176                                 normOuter, List.<Type>nil(), owntype.tsym);
  2179                 break;
  2180             case VAR:
  2181                 VarSymbol v = (VarSymbol)sym;
  2182                 // Test (4): if symbol is an instance field of a raw type,
  2183                 // which is being assigned to, issue an unchecked warning if
  2184                 // its type changes under erasure.
  2185                 if (allowGenerics &&
  2186                     pkind == VAR &&
  2187                     v.owner.kind == TYP &&
  2188                     (v.flags() & STATIC) == 0 &&
  2189                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  2190                     Type s = types.asOuterSuper(site, v.owner);
  2191                     if (s != null &&
  2192                         s.isRaw() &&
  2193                         !types.isSameType(v.type, v.erasure(types))) {
  2194                         chk.warnUnchecked(tree.pos(),
  2195                                           "unchecked.assign.to.var",
  2196                                           v, s);
  2199                 // The computed type of a variable is the type of the
  2200                 // variable symbol, taken as a member of the site type.
  2201                 owntype = (sym.owner.kind == TYP &&
  2202                            sym.name != names._this && sym.name != names._super)
  2203                     ? types.memberType(site, sym)
  2204                     : sym.type;
  2206                 if (env.info.tvars.nonEmpty()) {
  2207                     Type owntype1 = new ForAll(env.info.tvars, owntype);
  2208                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
  2209                         if (!owntype.contains(l.head)) {
  2210                             log.error(tree.pos(), "undetermined.type", owntype1);
  2211                             owntype1 = types.createErrorType(owntype1);
  2213                     owntype = owntype1;
  2216                 // If the variable is a constant, record constant value in
  2217                 // computed type.
  2218                 if (v.getConstValue() != null && isStaticReference(tree))
  2219                     owntype = owntype.constType(v.getConstValue());
  2221                 if (pkind == VAL) {
  2222                     owntype = capture(owntype); // capture "names as expressions"
  2224                 break;
  2225             case MTH: {
  2226                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
  2227                 owntype = checkMethod(site, sym, env, app.args,
  2228                                       pt.getParameterTypes(), pt.getTypeArguments(),
  2229                                       env.info.varArgs);
  2230                 break;
  2232             case PCK: case ERR:
  2233                 owntype = sym.type;
  2234                 break;
  2235             default:
  2236                 throw new AssertionError("unexpected kind: " + sym.kind +
  2237                                          " in tree " + tree);
  2240             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  2241             // (for constructors, the error was given when the constructor was
  2242             // resolved)
  2243             if (sym.name != names.init &&
  2244                 (sym.flags() & DEPRECATED) != 0 &&
  2245                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
  2246                 sym.outermostClass() != env.info.scope.owner.outermostClass())
  2247                 chk.warnDeprecated(tree.pos(), sym);
  2249             if ((sym.flags() & PROPRIETARY) != 0) {
  2250                 if (enableSunApiLintControl)
  2251                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
  2252                 else
  2253                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
  2256             // Test (3): if symbol is a variable, check that its type and
  2257             // kind are compatible with the prototype and protokind.
  2258             return check(tree, owntype, sym.kind, pkind, pt);
  2261         /** Check that variable is initialized and evaluate the variable's
  2262          *  initializer, if not yet done. Also check that variable is not
  2263          *  referenced before it is defined.
  2264          *  @param tree    The tree making up the variable reference.
  2265          *  @param env     The current environment.
  2266          *  @param v       The variable's symbol.
  2267          */
  2268         private void checkInit(JCTree tree,
  2269                                Env<AttrContext> env,
  2270                                VarSymbol v,
  2271                                boolean onlyWarning) {
  2272 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  2273 //                             tree.pos + " " + v.pos + " " +
  2274 //                             Resolve.isStatic(env));//DEBUG
  2276             // A forward reference is diagnosed if the declaration position
  2277             // of the variable is greater than the current tree position
  2278             // and the tree and variable definition occur in the same class
  2279             // definition.  Note that writes don't count as references.
  2280             // This check applies only to class and instance
  2281             // variables.  Local variables follow different scope rules,
  2282             // and are subject to definite assignment checking.
  2283             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  2284                 v.owner.kind == TYP &&
  2285                 canOwnInitializer(env.info.scope.owner) &&
  2286                 v.owner == env.info.scope.owner.enclClass() &&
  2287                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  2288                 (env.tree.getTag() != JCTree.ASSIGN ||
  2289                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  2290                 String suffix = (env.info.enclVar == v) ?
  2291                                 "self.ref" : "forward.ref";
  2292                 if (!onlyWarning || isStaticEnumField(v)) {
  2293                     log.error(tree.pos(), "illegal." + suffix);
  2294                 } else if (useBeforeDeclarationWarning) {
  2295                     log.warning(tree.pos(), suffix, v);
  2299             v.getConstValue(); // ensure initializer is evaluated
  2301             checkEnumInitializer(tree, env, v);
  2304         /**
  2305          * Check for illegal references to static members of enum.  In
  2306          * an enum type, constructors and initializers may not
  2307          * reference its static members unless they are constant.
  2309          * @param tree    The tree making up the variable reference.
  2310          * @param env     The current environment.
  2311          * @param v       The variable's symbol.
  2312          * @see JLS 3rd Ed. (8.9 Enums)
  2313          */
  2314         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  2315             // JLS 3rd Ed.:
  2316             //
  2317             // "It is a compile-time error to reference a static field
  2318             // of an enum type that is not a compile-time constant
  2319             // (15.28) from constructors, instance initializer blocks,
  2320             // or instance variable initializer expressions of that
  2321             // type. It is a compile-time error for the constructors,
  2322             // instance initializer blocks, or instance variable
  2323             // initializer expressions of an enum constant e to refer
  2324             // to itself or to an enum constant of the same type that
  2325             // is declared to the right of e."
  2326             if (isStaticEnumField(v)) {
  2327                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  2329                 if (enclClass == null || enclClass.owner == null)
  2330                     return;
  2332                 // See if the enclosing class is the enum (or a
  2333                 // subclass thereof) declaring v.  If not, this
  2334                 // reference is OK.
  2335                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  2336                     return;
  2338                 // If the reference isn't from an initializer, then
  2339                 // the reference is OK.
  2340                 if (!Resolve.isInitializer(env))
  2341                     return;
  2343                 log.error(tree.pos(), "illegal.enum.static.ref");
  2347         /** Is the given symbol a static, non-constant field of an Enum?
  2348          *  Note: enum literals should not be regarded as such
  2349          */
  2350         private boolean isStaticEnumField(VarSymbol v) {
  2351             return Flags.isEnum(v.owner) &&
  2352                    Flags.isStatic(v) &&
  2353                    !Flags.isConstant(v) &&
  2354                    v.name != names._class;
  2357         /** Can the given symbol be the owner of code which forms part
  2358          *  if class initialization? This is the case if the symbol is
  2359          *  a type or field, or if the symbol is the synthetic method.
  2360          *  owning a block.
  2361          */
  2362         private boolean canOwnInitializer(Symbol sym) {
  2363             return
  2364                 (sym.kind & (VAR | TYP)) != 0 ||
  2365                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  2368     Warner noteWarner = new Warner();
  2370     /**
  2371      * Check that method arguments conform to its instantation.
  2372      **/
  2373     public Type checkMethod(Type site,
  2374                             Symbol sym,
  2375                             Env<AttrContext> env,
  2376                             final List<JCExpression> argtrees,
  2377                             List<Type> argtypes,
  2378                             List<Type> typeargtypes,
  2379                             boolean useVarargs) {
  2380         // Test (5): if symbol is an instance method of a raw type, issue
  2381         // an unchecked warning if its argument types change under erasure.
  2382         if (allowGenerics &&
  2383             (sym.flags() & STATIC) == 0 &&
  2384             (site.tag == CLASS || site.tag == TYPEVAR)) {
  2385             Type s = types.asOuterSuper(site, sym.owner);
  2386             if (s != null && s.isRaw() &&
  2387                 !types.isSameTypes(sym.type.getParameterTypes(),
  2388                                    sym.erasure(types).getParameterTypes())) {
  2389                 chk.warnUnchecked(env.tree.pos(),
  2390                                   "unchecked.call.mbr.of.raw.type",
  2391                                   sym, s);
  2395         // Compute the identifier's instantiated type.
  2396         // For methods, we need to compute the instance type by
  2397         // Resolve.instantiate from the symbol's type as well as
  2398         // any type arguments and value arguments.
  2399         noteWarner.warned = false;
  2400         Type owntype = rs.instantiate(env,
  2401                                       site,
  2402                                       sym,
  2403                                       argtypes,
  2404                                       typeargtypes,
  2405                                       true,
  2406                                       useVarargs,
  2407                                       noteWarner);
  2408         boolean warned = noteWarner.warned;
  2410         // If this fails, something went wrong; we should not have
  2411         // found the identifier in the first place.
  2412         if (owntype == null) {
  2413             if (!pt.isErroneous())
  2414                 log.error(env.tree.pos(),
  2415                           "internal.error.cant.instantiate",
  2416                           sym, site,
  2417                           Type.toString(pt.getParameterTypes()));
  2418             owntype = types.createErrorType(site);
  2419         } else {
  2420             // System.out.println("call   : " + env.tree);
  2421             // System.out.println("method : " + owntype);
  2422             // System.out.println("actuals: " + argtypes);
  2423             List<Type> formals = owntype.getParameterTypes();
  2424             Type last = useVarargs ? formals.last() : null;
  2425             if (sym.name==names.init &&
  2426                 sym.owner == syms.enumSym)
  2427                 formals = formals.tail.tail;
  2428             List<JCExpression> args = argtrees;
  2429             while (formals.head != last) {
  2430                 JCTree arg = args.head;
  2431                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
  2432                 assertConvertible(arg, arg.type, formals.head, warn);
  2433                 warned |= warn.warned;
  2434                 args = args.tail;
  2435                 formals = formals.tail;
  2437             if (useVarargs) {
  2438                 Type varArg = types.elemtype(last);
  2439                 while (args.tail != null) {
  2440                     JCTree arg = args.head;
  2441                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
  2442                     assertConvertible(arg, arg.type, varArg, warn);
  2443                     warned |= warn.warned;
  2444                     args = args.tail;
  2446             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
  2447                 // non-varargs call to varargs method
  2448                 Type varParam = owntype.getParameterTypes().last();
  2449                 Type lastArg = argtypes.last();
  2450                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
  2451                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
  2452                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
  2453                                 types.elemtype(varParam),
  2454                                 varParam);
  2457             if (warned && sym.type.tag == FORALL) {
  2458                 chk.warnUnchecked(env.tree.pos(),
  2459                                   "unchecked.meth.invocation.applied",
  2460                                   kindName(sym),
  2461                                   sym.name,
  2462                                   rs.methodArguments(sym.type.getParameterTypes()),
  2463                                   rs.methodArguments(argtypes),
  2464                                   kindName(sym.location()),
  2465                                   sym.location());
  2466                 owntype = new MethodType(owntype.getParameterTypes(),
  2467                                          types.erasure(owntype.getReturnType()),
  2468                                          owntype.getThrownTypes(),
  2469                                          syms.methodClass);
  2471             if (useVarargs) {
  2472                 JCTree tree = env.tree;
  2473                 Type argtype = owntype.getParameterTypes().last();
  2474                 if (!types.isReifiable(argtype))
  2475                     chk.warnUnchecked(env.tree.pos(),
  2476                                       "unchecked.generic.array.creation",
  2477                                       argtype);
  2478                 Type elemtype = types.elemtype(argtype);
  2479                 switch (tree.getTag()) {
  2480                 case JCTree.APPLY:
  2481                     ((JCMethodInvocation) tree).varargsElement = elemtype;
  2482                     break;
  2483                 case JCTree.NEWCLASS:
  2484                     ((JCNewClass) tree).varargsElement = elemtype;
  2485                     break;
  2486                 default:
  2487                     throw new AssertionError(""+tree);
  2491         return owntype;
  2494     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
  2495         if (types.isConvertible(actual, formal, warn))
  2496             return;
  2498         if (formal.isCompound()
  2499             && types.isSubtype(actual, types.supertype(formal))
  2500             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
  2501             return;
  2503         if (false) {
  2504             // TODO: make assertConvertible work
  2505             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
  2506             throw new AssertionError("Tree: " + tree
  2507                                      + " actual:" + actual
  2508                                      + " formal: " + formal);
  2512     public void visitLiteral(JCLiteral tree) {
  2513         result = check(
  2514             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
  2516     //where
  2517     /** Return the type of a literal with given type tag.
  2518      */
  2519     Type litType(int tag) {
  2520         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  2523     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  2524         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
  2527     public void visitTypeArray(JCArrayTypeTree tree) {
  2528         Type etype = attribType(tree.elemtype, env);
  2529         Type type = new ArrayType(etype, syms.arrayClass);
  2530         result = check(tree, type, TYP, pkind, pt);
  2533     /** Visitor method for parameterized types.
  2534      *  Bound checking is left until later, since types are attributed
  2535      *  before supertype structure is completely known
  2536      */
  2537     public void visitTypeApply(JCTypeApply tree) {
  2538         Type owntype = types.createErrorType(tree.type);
  2540         // Attribute functor part of application and make sure it's a class.
  2541         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  2543         // Attribute type parameters
  2544         List<Type> actuals = attribTypes(tree.arguments, env);
  2546         if (clazztype.tag == CLASS) {
  2547             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  2549             if (actuals.length() == formals.length() || actuals.isEmpty()) {
  2550                 List<Type> a = actuals;
  2551                 List<Type> f = formals;
  2552                 while (a.nonEmpty()) {
  2553                     a.head = a.head.withTypeVar(f.head);
  2554                     a = a.tail;
  2555                     f = f.tail;
  2557                 // Compute the proper generic outer
  2558                 Type clazzOuter = clazztype.getEnclosingType();
  2559                 if (clazzOuter.tag == CLASS) {
  2560                     Type site;
  2561                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  2562                     if (clazz.getTag() == JCTree.IDENT) {
  2563                         site = env.enclClass.sym.type;
  2564                     } else if (clazz.getTag() == JCTree.SELECT) {
  2565                         site = ((JCFieldAccess) clazz).selected.type;
  2566                     } else throw new AssertionError(""+tree);
  2567                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  2568                         if (site.tag == CLASS)
  2569                             site = types.asOuterSuper(site, clazzOuter.tsym);
  2570                         if (site == null)
  2571                             site = types.erasure(clazzOuter);
  2572                         clazzOuter = site;
  2575                 if (actuals.nonEmpty()) {
  2576                     owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  2578                 else if (TreeInfo.isDiamond(tree)) {
  2579                     //a type apply with no explicit type arguments - diamond operator
  2580                     //the result type is a forall F where F's tvars are the type-variables
  2581                     //that will be inferred when F is checked against the expected type
  2582                     List<Type> ftvars = clazztype.tsym.type.getTypeArguments();
  2583                     List<Type> new_tvars = types.newInstances(ftvars);
  2584                     clazztype = new ClassType(clazzOuter, new_tvars, clazztype.tsym);
  2585                     owntype = new ForAll(new_tvars, clazztype);
  2587             } else {
  2588                 if (formals.length() != 0) {
  2589                     log.error(tree.pos(), "wrong.number.type.args",
  2590                               Integer.toString(formals.length()));
  2591                 } else {
  2592                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  2594                 owntype = types.createErrorType(tree.type);
  2597         result = check(tree, owntype, TYP, pkind, pt);
  2600     public void visitTypeParameter(JCTypeParameter tree) {
  2601         TypeVar a = (TypeVar)tree.type;
  2602         Set<Type> boundSet = new HashSet<Type>();
  2603         if (a.bound.isErroneous())
  2604             return;
  2605         List<Type> bs = types.getBounds(a);
  2606         if (tree.bounds.nonEmpty()) {
  2607             // accept class or interface or typevar as first bound.
  2608             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  2609             boundSet.add(types.erasure(b));
  2610             if (b.isErroneous()) {
  2611                 a.bound = b;
  2613             else if (b.tag == TYPEVAR) {
  2614                 // if first bound was a typevar, do not accept further bounds.
  2615                 if (tree.bounds.tail.nonEmpty()) {
  2616                     log.error(tree.bounds.tail.head.pos(),
  2617                               "type.var.may.not.be.followed.by.other.bounds");
  2618                     tree.bounds = List.of(tree.bounds.head);
  2619                     a.bound = bs.head;
  2621             } else {
  2622                 // if first bound was a class or interface, accept only interfaces
  2623                 // as further bounds.
  2624                 for (JCExpression bound : tree.bounds.tail) {
  2625                     bs = bs.tail;
  2626                     Type i = checkBase(bs.head, bound, env, false, true, false);
  2627                     if (i.isErroneous())
  2628                         a.bound = i;
  2629                     else if (i.tag == CLASS)
  2630                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  2634         bs = types.getBounds(a);
  2636         // in case of multiple bounds ...
  2637         if (bs.length() > 1) {
  2638             // ... the variable's bound is a class type flagged COMPOUND
  2639             // (see comment for TypeVar.bound).
  2640             // In this case, generate a class tree that represents the
  2641             // bound class, ...
  2642             JCTree extending;
  2643             List<JCExpression> implementing;
  2644             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  2645                 extending = tree.bounds.head;
  2646                 implementing = tree.bounds.tail;
  2647             } else {
  2648                 extending = null;
  2649                 implementing = tree.bounds;
  2651             JCClassDecl cd = make.at(tree.pos).ClassDef(
  2652                 make.Modifiers(PUBLIC | ABSTRACT),
  2653                 tree.name, List.<JCTypeParameter>nil(),
  2654                 extending, implementing, List.<JCTree>nil());
  2656             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  2657             assert (c.flags() & COMPOUND) != 0;
  2658             cd.sym = c;
  2659             c.sourcefile = env.toplevel.sourcefile;
  2661             // ... and attribute the bound class
  2662             c.flags_field |= UNATTRIBUTED;
  2663             Env<AttrContext> cenv = enter.classEnv(cd, env);
  2664             enter.typeEnvs.put(c, cenv);
  2669     public void visitWildcard(JCWildcard tree) {
  2670         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  2671         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  2672             ? syms.objectType
  2673             : attribType(tree.inner, env);
  2674         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  2675                                               tree.kind.kind,
  2676                                               syms.boundClass),
  2677                        TYP, pkind, pt);
  2680     public void visitAnnotation(JCAnnotation tree) {
  2681         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
  2682         result = tree.type = syms.errType;
  2685     public void visitAnnotatedType(JCAnnotatedType tree) {
  2686         result = tree.type = attribType(tree.getUnderlyingType(), env);
  2689     public void visitErroneous(JCErroneous tree) {
  2690         if (tree.errs != null)
  2691             for (JCTree err : tree.errs)
  2692                 attribTree(err, env, ERR, pt);
  2693         result = tree.type = syms.errType;
  2696     /** Default visitor method for all other trees.
  2697      */
  2698     public void visitTree(JCTree tree) {
  2699         throw new AssertionError();
  2702     /** Main method: attribute class definition associated with given class symbol.
  2703      *  reporting completion failures at the given position.
  2704      *  @param pos The source position at which completion errors are to be
  2705      *             reported.
  2706      *  @param c   The class symbol whose definition will be attributed.
  2707      */
  2708     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  2709         try {
  2710             annotate.flush();
  2711             attribClass(c);
  2712         } catch (CompletionFailure ex) {
  2713             chk.completionError(pos, ex);
  2717     /** Attribute class definition associated with given class symbol.
  2718      *  @param c   The class symbol whose definition will be attributed.
  2719      */
  2720     void attribClass(ClassSymbol c) throws CompletionFailure {
  2721         if (c.type.tag == ERROR) return;
  2723         // Check for cycles in the inheritance graph, which can arise from
  2724         // ill-formed class files.
  2725         chk.checkNonCyclic(null, c.type);
  2727         Type st = types.supertype(c.type);
  2728         if ((c.flags_field & Flags.COMPOUND) == 0) {
  2729             // First, attribute superclass.
  2730             if (st.tag == CLASS)
  2731                 attribClass((ClassSymbol)st.tsym);
  2733             // Next attribute owner, if it is a class.
  2734             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  2735                 attribClass((ClassSymbol)c.owner);
  2738         // The previous operations might have attributed the current class
  2739         // if there was a cycle. So we test first whether the class is still
  2740         // UNATTRIBUTED.
  2741         if ((c.flags_field & UNATTRIBUTED) != 0) {
  2742             c.flags_field &= ~UNATTRIBUTED;
  2744             // Get environment current at the point of class definition.
  2745             Env<AttrContext> env = enter.typeEnvs.get(c);
  2747             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  2748             // because the annotations were not available at the time the env was created. Therefore,
  2749             // we look up the environment chain for the first enclosing environment for which the
  2750             // lint value is set. Typically, this is the parent env, but might be further if there
  2751             // are any envs created as a result of TypeParameter nodes.
  2752             Env<AttrContext> lintEnv = env;
  2753             while (lintEnv.info.lint == null)
  2754                 lintEnv = lintEnv.next;
  2756             // Having found the enclosing lint value, we can initialize the lint value for this class
  2757             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
  2759             Lint prevLint = chk.setLint(env.info.lint);
  2760             JavaFileObject prev = log.useSource(c.sourcefile);
  2762             try {
  2763                 // java.lang.Enum may not be subclassed by a non-enum
  2764                 if (st.tsym == syms.enumSym &&
  2765                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  2766                     log.error(env.tree.pos(), "enum.no.subclassing");
  2768                 // Enums may not be extended by source-level classes
  2769                 if (st.tsym != null &&
  2770                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  2771                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  2772                     !target.compilerBootstrap(c)) {
  2773                     log.error(env.tree.pos(), "enum.types.not.extensible");
  2775                 attribClassBody(env, c);
  2777                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  2778             } finally {
  2779                 log.useSource(prev);
  2780                 chk.setLint(prevLint);
  2786     public void visitImport(JCImport tree) {
  2787         // nothing to do
  2790     /** Finish the attribution of a class. */
  2791     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  2792         JCClassDecl tree = (JCClassDecl)env.tree;
  2793         assert c == tree.sym;
  2795         // Validate annotations
  2796         chk.validateAnnotations(tree.mods.annotations, c);
  2798         // Validate type parameters, supertype and interfaces.
  2799         attribBounds(tree.typarams);
  2800         chk.validate(tree.typarams, env);
  2801         chk.validate(tree.extending, env);
  2802         chk.validate(tree.implementing, env);
  2804         // If this is a non-abstract class, check that it has no abstract
  2805         // methods or unimplemented methods of an implemented interface.
  2806         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  2807             if (!relax)
  2808                 chk.checkAllDefined(tree.pos(), c);
  2811         if ((c.flags() & ANNOTATION) != 0) {
  2812             if (tree.implementing.nonEmpty())
  2813                 log.error(tree.implementing.head.pos(),
  2814                           "cant.extend.intf.annotation");
  2815             if (tree.typarams.nonEmpty())
  2816                 log.error(tree.typarams.head.pos(),
  2817                           "intf.annotation.cant.have.type.params");
  2818         } else {
  2819             // Check that all extended classes and interfaces
  2820             // are compatible (i.e. no two define methods with same arguments
  2821             // yet different return types).  (JLS 8.4.6.3)
  2822             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  2825         // Check that class does not import the same parameterized interface
  2826         // with two different argument lists.
  2827         chk.checkClassBounds(tree.pos(), c.type);
  2829         tree.type = c.type;
  2831         boolean assertsEnabled = false;
  2832         assert assertsEnabled = true;
  2833         if (assertsEnabled) {
  2834             for (List<JCTypeParameter> l = tree.typarams;
  2835                  l.nonEmpty(); l = l.tail)
  2836                 assert env.info.scope.lookup(l.head.name).scope != null;
  2839         // Check that a generic class doesn't extend Throwable
  2840         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  2841             log.error(tree.extending.pos(), "generic.throwable");
  2843         // Check that all methods which implement some
  2844         // method conform to the method they implement.
  2845         chk.checkImplementations(tree);
  2847         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2848             // Attribute declaration
  2849             attribStat(l.head, env);
  2850             // Check that declarations in inner classes are not static (JLS 8.1.2)
  2851             // Make an exception for static constants.
  2852             if (c.owner.kind != PCK &&
  2853                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  2854                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  2855                 Symbol sym = null;
  2856                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
  2857                 if (sym == null ||
  2858                     sym.kind != VAR ||
  2859                     ((VarSymbol) sym).getConstValue() == null)
  2860                     log.error(l.head.pos(), "icls.cant.have.static.decl");
  2864         // Check for cycles among non-initial constructors.
  2865         chk.checkCyclicConstructors(tree);
  2867         // Check for cycles among annotation elements.
  2868         chk.checkNonCyclicElements(tree);
  2870         // Check for proper use of serialVersionUID
  2871         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
  2872             isSerializable(c) &&
  2873             (c.flags() & Flags.ENUM) == 0 &&
  2874             (c.flags() & ABSTRACT) == 0) {
  2875             checkSerialVersionUID(tree, c);
  2878         // Check type annotations applicability rules
  2879         validateTypeAnnotations(tree);
  2881         // where
  2882         /** check if a class is a subtype of Serializable, if that is available. */
  2883         private boolean isSerializable(ClassSymbol c) {
  2884             try {
  2885                 syms.serializableType.complete();
  2887             catch (CompletionFailure e) {
  2888                 return false;
  2890             return types.isSubtype(c.type, syms.serializableType);
  2893         /** Check that an appropriate serialVersionUID member is defined. */
  2894         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  2896             // check for presence of serialVersionUID
  2897             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  2898             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  2899             if (e.scope == null) {
  2900                 log.warning(tree.pos(), "missing.SVUID", c);
  2901                 return;
  2904             // check that it is static final
  2905             VarSymbol svuid = (VarSymbol)e.sym;
  2906             if ((svuid.flags() & (STATIC | FINAL)) !=
  2907                 (STATIC | FINAL))
  2908                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  2910             // check that it is long
  2911             else if (svuid.type.tag != TypeTags.LONG)
  2912                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  2914             // check constant
  2915             else if (svuid.getConstValue() == null)
  2916                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  2919     private Type capture(Type type) {
  2920         return types.capture(type);
  2923     private void validateTypeAnnotations(JCTree tree) {
  2924         tree.accept(typeAnnotationsValidator);
  2926     //where
  2927     private final JCTree.Visitor typeAnnotationsValidator =
  2928         new TreeScanner() {
  2929         public void visitAnnotation(JCAnnotation tree) {
  2930             if (tree instanceof JCTypeAnnotation) {
  2931                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
  2933             super.visitAnnotation(tree);
  2935         public void visitTypeParameter(JCTypeParameter tree) {
  2936             chk.validateTypeAnnotations(tree.annotations, true);
  2937             // don't call super. skip type annotations
  2938             scan(tree.bounds);
  2940         public void visitMethodDef(JCMethodDecl tree) {
  2941             // need to check static methods
  2942             if ((tree.sym.flags() & Flags.STATIC) != 0) {
  2943                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
  2944                     if (chk.isTypeAnnotation(a, false))
  2945                         log.error(a.pos(), "annotation.type.not.applicable");
  2948             super.visitMethodDef(tree);
  2950     };

mercurial