src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 28 Jan 2011 12:03:49 +0000

author
mcimadamore
date
Fri, 28 Jan 2011 12:03:49 +0000
changeset 845
5a43b245aed1
parent 844
2088e674f0e0
child 852
899f7c3d9426
permissions
-rw-r--r--

6313164: javac generates code that fails byte code verification for the varargs feature
Summary: method applicability check should fail if formal varargs element type is not accessible
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 import static com.sun.tools.javac.main.OptionName.*;
    50 /** Type checking helper class for the attribution phase.
    51  *
    52  *  <p><b>This is NOT part of any supported API.
    53  *  If you write code that depends on this, you do so at your own risk.
    54  *  This code and its internal interfaces are subject to change or
    55  *  deletion without notice.</b>
    56  */
    57 public class Check {
    58     protected static final Context.Key<Check> checkKey =
    59         new Context.Key<Check>();
    61     private final Names names;
    62     private final Log log;
    63     private final Resolve rs;
    64     private final Symtab syms;
    65     private final Enter enter;
    66     private final Infer infer;
    67     private final Types types;
    68     private final JCDiagnostic.Factory diags;
    69     private final boolean skipAnnotations;
    70     private boolean warnOnSyntheticConflicts;
    71     private boolean suppressAbortOnBadClassFile;
    72     private final TreeInfo treeinfo;
    74     // The set of lint options currently in effect. It is initialized
    75     // from the context, and then is set/reset as needed by Attr as it
    76     // visits all the various parts of the trees during attribution.
    77     private Lint lint;
    79     // The method being analyzed in Attr - it is set/reset as needed by
    80     // Attr as it visits new method declarations.
    81     private MethodSymbol method;
    83     public static Check instance(Context context) {
    84         Check instance = context.get(checkKey);
    85         if (instance == null)
    86             instance = new Check(context);
    87         return instance;
    88     }
    90     protected Check(Context context) {
    91         context.put(checkKey, this);
    93         names = Names.instance(context);
    94         log = Log.instance(context);
    95         rs = Resolve.instance(context);
    96         syms = Symtab.instance(context);
    97         enter = Enter.instance(context);
    98         infer = Infer.instance(context);
    99         this.types = Types.instance(context);
   100         diags = JCDiagnostic.Factory.instance(context);
   101         Options options = Options.instance(context);
   102         lint = Lint.instance(context);
   103         treeinfo = TreeInfo.instance(context);
   105         Source source = Source.instance(context);
   106         allowGenerics = source.allowGenerics();
   107         allowAnnotations = source.allowAnnotations();
   108         allowCovariantReturns = source.allowCovariantReturns();
   109         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   110         complexInference = options.isSet(COMPLEXINFERENCE);
   111         skipAnnotations = options.isSet("skipAnnotations");
   112         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   113         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   115         Target target = Target.instance(context);
   116         syntheticNameChar = target.syntheticNameChar();
   118         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   119         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   120         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
   121         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   122         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   124         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   125                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   126         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   127                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   128         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
   129                 enforceMandatoryWarnings, "varargs", LintCategory.VARARGS);
   130         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   131                 enforceMandatoryWarnings, "sunapi", null);
   132     }
   134     /** Switch: generics enabled?
   135      */
   136     boolean allowGenerics;
   138     /** Switch: annotations enabled?
   139      */
   140     boolean allowAnnotations;
   142     /** Switch: covariant returns enabled?
   143      */
   144     boolean allowCovariantReturns;
   146     /** Switch: simplified varargs enabled?
   147      */
   148     boolean allowSimplifiedVarargs;
   150     /** Switch: -complexinference option set?
   151      */
   152     boolean complexInference;
   154     /** Character for synthetic names
   155      */
   156     char syntheticNameChar;
   158     /** A table mapping flat names of all compiled classes in this run to their
   159      *  symbols; maintained from outside.
   160      */
   161     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   163     /** A handler for messages about deprecated usage.
   164      */
   165     private MandatoryWarningHandler deprecationHandler;
   167     /** A handler for messages about unchecked or unsafe usage.
   168      */
   169     private MandatoryWarningHandler uncheckedHandler;
   171     /** A handler for messages about unchecked or unsafe vararg method decl.
   172      */
   173     private MandatoryWarningHandler unsafeVarargsHandler;
   175     /** A handler for messages about using proprietary API.
   176      */
   177     private MandatoryWarningHandler sunApiHandler;
   179 /* *************************************************************************
   180  * Errors and Warnings
   181  **************************************************************************/
   183     Lint setLint(Lint newLint) {
   184         Lint prev = lint;
   185         lint = newLint;
   186         return prev;
   187     }
   189     MethodSymbol setMethod(MethodSymbol newMethod) {
   190         MethodSymbol prev = method;
   191         method = newMethod;
   192         return prev;
   193     }
   195     /** Warn about deprecated symbol.
   196      *  @param pos        Position to be used for error reporting.
   197      *  @param sym        The deprecated symbol.
   198      */
   199     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   200         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   201             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   202     }
   204     /** Warn about unchecked operation.
   205      *  @param pos        Position to be used for error reporting.
   206      *  @param msg        A string describing the problem.
   207      */
   208     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   209         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   210             uncheckedHandler.report(pos, msg, args);
   211     }
   213     /** Warn about unsafe vararg method decl.
   214      *  @param pos        Position to be used for error reporting.
   215      *  @param sym        The deprecated symbol.
   216      */
   217     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   218         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   219             log.warning(LintCategory.VARARGS, pos, key, args);
   220     }
   222     /** Warn about using proprietary API.
   223      *  @param pos        Position to be used for error reporting.
   224      *  @param msg        A string describing the problem.
   225      */
   226     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   227         if (!lint.isSuppressed(LintCategory.SUNAPI))
   228             sunApiHandler.report(pos, msg, args);
   229     }
   231     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   232         if (lint.isEnabled(LintCategory.STATIC))
   233             log.warning(LintCategory.STATIC, pos, msg, args);
   234     }
   236     /**
   237      * Report any deferred diagnostics.
   238      */
   239     public void reportDeferredDiagnostics() {
   240         deprecationHandler.reportDeferredDiagnostic();
   241         uncheckedHandler.reportDeferredDiagnostic();
   242         sunApiHandler.reportDeferredDiagnostic();
   243     }
   246     /** Report a failure to complete a class.
   247      *  @param pos        Position to be used for error reporting.
   248      *  @param ex         The failure to report.
   249      */
   250     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   251         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   252         if (ex instanceof ClassReader.BadClassFile
   253                 && !suppressAbortOnBadClassFile) throw new Abort();
   254         else return syms.errType;
   255     }
   257     /** Report a type error.
   258      *  @param pos        Position to be used for error reporting.
   259      *  @param problem    A string describing the error.
   260      *  @param found      The type that was found.
   261      *  @param req        The type that was required.
   262      */
   263     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   264         log.error(pos, "prob.found.req",
   265                   problem, found, req);
   266         return types.createErrorType(found);
   267     }
   269     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   270         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   271         return types.createErrorType(found);
   272     }
   274     /** Report an error that wrong type tag was found.
   275      *  @param pos        Position to be used for error reporting.
   276      *  @param required   An internationalized string describing the type tag
   277      *                    required.
   278      *  @param found      The type that was found.
   279      */
   280     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   281         // this error used to be raised by the parser,
   282         // but has been delayed to this point:
   283         if (found instanceof Type && ((Type)found).tag == VOID) {
   284             log.error(pos, "illegal.start.of.type");
   285             return syms.errType;
   286         }
   287         log.error(pos, "type.found.req", found, required);
   288         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   289     }
   291     /** Report an error that symbol cannot be referenced before super
   292      *  has been called.
   293      *  @param pos        Position to be used for error reporting.
   294      *  @param sym        The referenced symbol.
   295      */
   296     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   297         log.error(pos, "cant.ref.before.ctor.called", sym);
   298     }
   300     /** Report duplicate declaration error.
   301      */
   302     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   303         if (!sym.type.isErroneous()) {
   304             log.error(pos, "already.defined", sym, sym.location());
   305         }
   306     }
   308     /** Report array/varargs duplicate declaration
   309      */
   310     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   311         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   312             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   313         }
   314     }
   316 /* ************************************************************************
   317  * duplicate declaration checking
   318  *************************************************************************/
   320     /** Check that variable does not hide variable with same name in
   321      *  immediately enclosing local scope.
   322      *  @param pos           Position for error reporting.
   323      *  @param v             The symbol.
   324      *  @param s             The scope.
   325      */
   326     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   327         if (s.next != null) {
   328             for (Scope.Entry e = s.next.lookup(v.name);
   329                  e.scope != null && e.sym.owner == v.owner;
   330                  e = e.next()) {
   331                 if (e.sym.kind == VAR &&
   332                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   333                     v.name != names.error) {
   334                     duplicateError(pos, e.sym);
   335                     return;
   336                 }
   337             }
   338         }
   339     }
   341     /** Check that a class or interface does not hide a class or
   342      *  interface with same name in immediately enclosing local scope.
   343      *  @param pos           Position for error reporting.
   344      *  @param c             The symbol.
   345      *  @param s             The scope.
   346      */
   347     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   348         if (s.next != null) {
   349             for (Scope.Entry e = s.next.lookup(c.name);
   350                  e.scope != null && e.sym.owner == c.owner;
   351                  e = e.next()) {
   352                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   353                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   354                     c.name != names.error) {
   355                     duplicateError(pos, e.sym);
   356                     return;
   357                 }
   358             }
   359         }
   360     }
   362     /** Check that class does not have the same name as one of
   363      *  its enclosing classes, or as a class defined in its enclosing scope.
   364      *  return true if class is unique in its enclosing scope.
   365      *  @param pos           Position for error reporting.
   366      *  @param name          The class name.
   367      *  @param s             The enclosing scope.
   368      */
   369     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   370         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   371             if (e.sym.kind == TYP && e.sym.name != names.error) {
   372                 duplicateError(pos, e.sym);
   373                 return false;
   374             }
   375         }
   376         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   377             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   378                 duplicateError(pos, sym);
   379                 return true;
   380             }
   381         }
   382         return true;
   383     }
   385 /* *************************************************************************
   386  * Class name generation
   387  **************************************************************************/
   389     /** Return name of local class.
   390      *  This is of the form    <enclClass> $ n <classname>
   391      *  where
   392      *    enclClass is the flat name of the enclosing class,
   393      *    classname is the simple name of the local class
   394      */
   395     Name localClassName(ClassSymbol c) {
   396         for (int i=1; ; i++) {
   397             Name flatname = names.
   398                 fromString("" + c.owner.enclClass().flatname +
   399                            syntheticNameChar + i +
   400                            c.name);
   401             if (compiled.get(flatname) == null) return flatname;
   402         }
   403     }
   405 /* *************************************************************************
   406  * Type Checking
   407  **************************************************************************/
   409     /** Check that a given type is assignable to a given proto-type.
   410      *  If it is, return the type, otherwise return errType.
   411      *  @param pos        Position to be used for error reporting.
   412      *  @param found      The type that was found.
   413      *  @param req        The type that was required.
   414      */
   415     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   416         return checkType(pos, found, req, "incompatible.types");
   417     }
   419     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   420         if (req.tag == ERROR)
   421             return req;
   422         if (found.tag == FORALL)
   423             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   424         if (req.tag == NONE)
   425             return found;
   426         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   427             return found;
   428         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   429             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   430         if (found.isSuperBound()) {
   431             log.error(pos, "assignment.from.super-bound", found);
   432             return types.createErrorType(found);
   433         }
   434         if (req.isExtendsBound()) {
   435             log.error(pos, "assignment.to.extends-bound", req);
   436             return types.createErrorType(found);
   437         }
   438         return typeError(pos, diags.fragment(errKey), found, req);
   439     }
   441     /** Instantiate polymorphic type to some prototype, unless
   442      *  prototype is `anyPoly' in which case polymorphic type
   443      *  is returned unchanged.
   444      */
   445     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   446         if (pt == Infer.anyPoly && complexInference) {
   447             return t;
   448         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   449             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   450             return instantiatePoly(pos, t, newpt, warn);
   451         } else if (pt.tag == ERROR) {
   452             return pt;
   453         } else {
   454             try {
   455                 return infer.instantiateExpr(t, pt, warn);
   456             } catch (Infer.NoInstanceException ex) {
   457                 if (ex.isAmbiguous) {
   458                     JCDiagnostic d = ex.getDiagnostic();
   459                     log.error(pos,
   460                               "undetermined.type" + (d!=null ? ".1" : ""),
   461                               t, d);
   462                     return types.createErrorType(pt);
   463                 } else {
   464                     JCDiagnostic d = ex.getDiagnostic();
   465                     return typeError(pos,
   466                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   467                                      t, pt);
   468                 }
   469             } catch (Infer.InvalidInstanceException ex) {
   470                 JCDiagnostic d = ex.getDiagnostic();
   471                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   472                 return types.createErrorType(pt);
   473             }
   474         }
   475     }
   477     /** Check that a given type can be cast to a given target type.
   478      *  Return the result of the cast.
   479      *  @param pos        Position to be used for error reporting.
   480      *  @param found      The type that is being cast.
   481      *  @param req        The target type of the cast.
   482      */
   483     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   484         if (found.tag == FORALL) {
   485             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   486             return req;
   487         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   488             return req;
   489         } else {
   490             return typeError(pos,
   491                              diags.fragment("inconvertible.types"),
   492                              found, req);
   493         }
   494     }
   495 //where
   496         /** Is type a type variable, or a (possibly multi-dimensional) array of
   497          *  type variables?
   498          */
   499         boolean isTypeVar(Type t) {
   500             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   501         }
   503     /** Check that a type is within some bounds.
   504      *
   505      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   506      *  type argument.
   507      *  @param pos           Position to be used for error reporting.
   508      *  @param a             The type that should be bounded by bs.
   509      *  @param bs            The bound.
   510      */
   511     private boolean checkExtends(Type a, TypeVar bs) {
   512          if (a.isUnbound()) {
   513              return true;
   514          } else if (a.tag != WILDCARD) {
   515              a = types.upperBound(a);
   516              return types.isSubtype(a, bs.bound);
   517          } else if (a.isExtendsBound()) {
   518              return types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings);
   519          } else if (a.isSuperBound()) {
   520              return !types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound());
   521          }
   522          return true;
   523      }
   525     /** Check that type is different from 'void'.
   526      *  @param pos           Position to be used for error reporting.
   527      *  @param t             The type to be checked.
   528      */
   529     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   530         if (t.tag == VOID) {
   531             log.error(pos, "void.not.allowed.here");
   532             return types.createErrorType(t);
   533         } else {
   534             return t;
   535         }
   536     }
   538     /** Check that type is a class or interface type.
   539      *  @param pos           Position to be used for error reporting.
   540      *  @param t             The type to be checked.
   541      */
   542     Type checkClassType(DiagnosticPosition pos, Type t) {
   543         if (t.tag != CLASS && t.tag != ERROR)
   544             return typeTagError(pos,
   545                                 diags.fragment("type.req.class"),
   546                                 (t.tag == TYPEVAR)
   547                                 ? diags.fragment("type.parameter", t)
   548                                 : t);
   549         else
   550             return t;
   551     }
   553     /** Check that type is a class or interface type.
   554      *  @param pos           Position to be used for error reporting.
   555      *  @param t             The type to be checked.
   556      *  @param noBounds    True if type bounds are illegal here.
   557      */
   558     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   559         t = checkClassType(pos, t);
   560         if (noBounds && t.isParameterized()) {
   561             List<Type> args = t.getTypeArguments();
   562             while (args.nonEmpty()) {
   563                 if (args.head.tag == WILDCARD)
   564                     return typeTagError(pos,
   565                                         diags.fragment("type.req.exact"),
   566                                         args.head);
   567                 args = args.tail;
   568             }
   569         }
   570         return t;
   571     }
   573     /** Check that type is a reifiable class, interface or array type.
   574      *  @param pos           Position to be used for error reporting.
   575      *  @param t             The type to be checked.
   576      */
   577     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   578         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   579             return typeTagError(pos,
   580                                 diags.fragment("type.req.class.array"),
   581                                 t);
   582         } else if (!types.isReifiable(t)) {
   583             log.error(pos, "illegal.generic.type.for.instof");
   584             return types.createErrorType(t);
   585         } else {
   586             return t;
   587         }
   588     }
   590     /** Check that type is a reference type, i.e. a class, interface or array type
   591      *  or a type variable.
   592      *  @param pos           Position to be used for error reporting.
   593      *  @param t             The type to be checked.
   594      */
   595     Type checkRefType(DiagnosticPosition pos, Type t) {
   596         switch (t.tag) {
   597         case CLASS:
   598         case ARRAY:
   599         case TYPEVAR:
   600         case WILDCARD:
   601         case ERROR:
   602             return t;
   603         default:
   604             return typeTagError(pos,
   605                                 diags.fragment("type.req.ref"),
   606                                 t);
   607         }
   608     }
   610     /** Check that each type is a reference type, i.e. a class, interface or array type
   611      *  or a type variable.
   612      *  @param trees         Original trees, used for error reporting.
   613      *  @param types         The types to be checked.
   614      */
   615     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   616         List<JCExpression> tl = trees;
   617         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   618             l.head = checkRefType(tl.head.pos(), l.head);
   619             tl = tl.tail;
   620         }
   621         return types;
   622     }
   624     /** Check that type is a null or reference type.
   625      *  @param pos           Position to be used for error reporting.
   626      *  @param t             The type to be checked.
   627      */
   628     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   629         switch (t.tag) {
   630         case CLASS:
   631         case ARRAY:
   632         case TYPEVAR:
   633         case WILDCARD:
   634         case BOT:
   635         case ERROR:
   636             return t;
   637         default:
   638             return typeTagError(pos,
   639                                 diags.fragment("type.req.ref"),
   640                                 t);
   641         }
   642     }
   644     /** Check that flag set does not contain elements of two conflicting sets. s
   645      *  Return true if it doesn't.
   646      *  @param pos           Position to be used for error reporting.
   647      *  @param flags         The set of flags to be checked.
   648      *  @param set1          Conflicting flags set #1.
   649      *  @param set2          Conflicting flags set #2.
   650      */
   651     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   652         if ((flags & set1) != 0 && (flags & set2) != 0) {
   653             log.error(pos,
   654                       "illegal.combination.of.modifiers",
   655                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   656                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   657             return false;
   658         } else
   659             return true;
   660     }
   662     /** Check that the type inferred using the diamond operator does not contain
   663      *  non-denotable types such as captured types or intersection types.
   664      *  @param t the type inferred using the diamond operator
   665      */
   666     List<Type> checkDiamond(ClassType t) {
   667         DiamondTypeChecker dtc = new DiamondTypeChecker();
   668         ListBuffer<Type> buf = ListBuffer.lb();
   669         for (Type arg : t.getTypeArguments()) {
   670             if (!dtc.visit(arg, null)) {
   671                 buf.append(arg);
   672             }
   673         }
   674         return buf.toList();
   675     }
   677     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   678         public Boolean visitType(Type t, Void s) {
   679             return true;
   680         }
   681         @Override
   682         public Boolean visitClassType(ClassType t, Void s) {
   683             if (t.isCompound()) {
   684                 return false;
   685             }
   686             for (Type targ : t.getTypeArguments()) {
   687                 if (!visit(targ, s)) {
   688                     return false;
   689                 }
   690             }
   691             return true;
   692         }
   693         @Override
   694         public Boolean visitCapturedType(CapturedType t, Void s) {
   695             return false;
   696         }
   697     }
   699     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   700         MethodSymbol m = tree.sym;
   701         if (!allowSimplifiedVarargs) return;
   702         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   703         Type varargElemType = null;
   704         if (m.isVarArgs()) {
   705             varargElemType = types.elemtype(tree.params.last().type);
   706         }
   707         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   708             if (varargElemType != null) {
   709                 log.error(tree,
   710                         "varargs.invalid.trustme.anno",
   711                         syms.trustMeType.tsym,
   712                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   713             } else {
   714                 log.error(tree,
   715                             "varargs.invalid.trustme.anno",
   716                             syms.trustMeType.tsym,
   717                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   718             }
   719         } else if (hasTrustMeAnno && varargElemType != null &&
   720                             types.isReifiable(varargElemType)) {
   721             warnUnsafeVararg(tree,
   722                             "varargs.redundant.trustme.anno",
   723                             syms.trustMeType.tsym,
   724                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   725         }
   726         else if (!hasTrustMeAnno && varargElemType != null &&
   727                 !types.isReifiable(varargElemType)) {
   728             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   729         }
   730     }
   731     //where
   732         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   733             return (s.flags() & VARARGS) != 0 &&
   734                 (s.isConstructor() ||
   735                     (s.flags() & (STATIC | FINAL)) != 0);
   736         }
   738     /**
   739      * Check that vararg method call is sound
   740      * @param pos Position to be used for error reporting.
   741      * @param argtypes Actual arguments supplied to vararg method.
   742      */
   743     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym) {
   744         Type argtype = argtypes.last();
   745         if (!types.isReifiable(argtype) &&
   746                 (!allowSimplifiedVarargs ||
   747                 msym.attribute(syms.trustMeType.tsym) == null ||
   748                 !isTrustMeAllowedOnMethod(msym))) {
   749             warnUnchecked(pos,
   750                               "unchecked.generic.array.creation",
   751                               argtype);
   752         }
   753     }
   755     /**
   756      * Check that type 't' is a valid instantiation of a generic class
   757      * (see JLS 4.5)
   758      *
   759      * @param t class type to be checked
   760      * @return true if 't' is well-formed
   761      */
   762     public boolean checkValidGenericType(Type t) {
   763         return firstIncompatibleTypeArg(t) == null;
   764     }
   765     //WHERE
   766         private Type firstIncompatibleTypeArg(Type type) {
   767             List<Type> formals = type.tsym.type.allparams();
   768             List<Type> actuals = type.allparams();
   769             List<Type> args = type.getTypeArguments();
   770             List<Type> forms = type.tsym.type.getTypeArguments();
   771             ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   773             // For matching pairs of actual argument types `a' and
   774             // formal type parameters with declared bound `b' ...
   775             while (args.nonEmpty() && forms.nonEmpty()) {
   776                 // exact type arguments needs to know their
   777                 // bounds (for upper and lower bound
   778                 // calculations).  So we create new TypeVars with
   779                 // bounds substed with actuals.
   780                 tvars_buf.append(types.substBound(((TypeVar)forms.head),
   781                                                   formals,
   782                                                   actuals));
   783                 args = args.tail;
   784                 forms = forms.tail;
   785             }
   787             args = type.getTypeArguments();
   788             List<Type> tvars_cap = types.substBounds(formals,
   789                                       formals,
   790                                       types.capture(type).allparams());
   791             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   792                 // Let the actual arguments know their bound
   793                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   794                 args = args.tail;
   795                 tvars_cap = tvars_cap.tail;
   796             }
   798             args = type.getTypeArguments();
   799             List<Type> tvars = tvars_buf.toList();
   801             while (args.nonEmpty() && tvars.nonEmpty()) {
   802                 Type actual = types.subst(args.head,
   803                     type.tsym.type.getTypeArguments(),
   804                     tvars_buf.toList());
   805                 if (!checkExtends(actual, (TypeVar)tvars.head) &&
   806                         !tvars.head.getUpperBound().isErroneous()) {
   807                     return args.head;
   808                 }
   809                 args = args.tail;
   810                 tvars = tvars.tail;
   811             }
   813             args = type.getTypeArguments();
   814             tvars = tvars_buf.toList();
   816             for (Type arg : types.capture(type).getTypeArguments()) {
   817                 if (arg.tag == TYPEVAR &&
   818                         arg.getUpperBound().isErroneous() &&
   819                         !tvars.head.getUpperBound().isErroneous()) {
   820                     return args.head;
   821                 }
   822                 tvars = tvars.tail;
   823             }
   825             return null;
   826         }
   828     /** Check that given modifiers are legal for given symbol and
   829      *  return modifiers together with any implicit modififiers for that symbol.
   830      *  Warning: we can't use flags() here since this method
   831      *  is called during class enter, when flags() would cause a premature
   832      *  completion.
   833      *  @param pos           Position to be used for error reporting.
   834      *  @param flags         The set of modifiers given in a definition.
   835      *  @param sym           The defined symbol.
   836      */
   837     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   838         long mask;
   839         long implicit = 0;
   840         switch (sym.kind) {
   841         case VAR:
   842             if (sym.owner.kind != TYP)
   843                 mask = LocalVarFlags;
   844             else if ((sym.owner.flags_field & INTERFACE) != 0)
   845                 mask = implicit = InterfaceVarFlags;
   846             else
   847                 mask = VarFlags;
   848             break;
   849         case MTH:
   850             if (sym.name == names.init) {
   851                 if ((sym.owner.flags_field & ENUM) != 0) {
   852                     // enum constructors cannot be declared public or
   853                     // protected and must be implicitly or explicitly
   854                     // private
   855                     implicit = PRIVATE;
   856                     mask = PRIVATE;
   857                 } else
   858                     mask = ConstructorFlags;
   859             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   860                 mask = implicit = InterfaceMethodFlags;
   861             else {
   862                 mask = MethodFlags;
   863             }
   864             // Imply STRICTFP if owner has STRICTFP set.
   865             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   866               implicit |= sym.owner.flags_field & STRICTFP;
   867             break;
   868         case TYP:
   869             if (sym.isLocal()) {
   870                 mask = LocalClassFlags;
   871                 if (sym.name.isEmpty()) { // Anonymous class
   872                     // Anonymous classes in static methods are themselves static;
   873                     // that's why we admit STATIC here.
   874                     mask |= STATIC;
   875                     // JLS: Anonymous classes are final.
   876                     implicit |= FINAL;
   877                 }
   878                 if ((sym.owner.flags_field & STATIC) == 0 &&
   879                     (flags & ENUM) != 0)
   880                     log.error(pos, "enums.must.be.static");
   881             } else if (sym.owner.kind == TYP) {
   882                 mask = MemberClassFlags;
   883                 if (sym.owner.owner.kind == PCK ||
   884                     (sym.owner.flags_field & STATIC) != 0)
   885                     mask |= STATIC;
   886                 else if ((flags & ENUM) != 0)
   887                     log.error(pos, "enums.must.be.static");
   888                 // Nested interfaces and enums are always STATIC (Spec ???)
   889                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   890             } else {
   891                 mask = ClassFlags;
   892             }
   893             // Interfaces are always ABSTRACT
   894             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   896             if ((flags & ENUM) != 0) {
   897                 // enums can't be declared abstract or final
   898                 mask &= ~(ABSTRACT | FINAL);
   899                 implicit |= implicitEnumFinalFlag(tree);
   900             }
   901             // Imply STRICTFP if owner has STRICTFP set.
   902             implicit |= sym.owner.flags_field & STRICTFP;
   903             break;
   904         default:
   905             throw new AssertionError();
   906         }
   907         long illegal = flags & StandardFlags & ~mask;
   908         if (illegal != 0) {
   909             if ((illegal & INTERFACE) != 0) {
   910                 log.error(pos, "intf.not.allowed.here");
   911                 mask |= INTERFACE;
   912             }
   913             else {
   914                 log.error(pos,
   915                           "mod.not.allowed.here", asFlagSet(illegal));
   916             }
   917         }
   918         else if ((sym.kind == TYP ||
   919                   // ISSUE: Disallowing abstract&private is no longer appropriate
   920                   // in the presence of inner classes. Should it be deleted here?
   921                   checkDisjoint(pos, flags,
   922                                 ABSTRACT,
   923                                 PRIVATE | STATIC))
   924                  &&
   925                  checkDisjoint(pos, flags,
   926                                ABSTRACT | INTERFACE,
   927                                FINAL | NATIVE | SYNCHRONIZED)
   928                  &&
   929                  checkDisjoint(pos, flags,
   930                                PUBLIC,
   931                                PRIVATE | PROTECTED)
   932                  &&
   933                  checkDisjoint(pos, flags,
   934                                PRIVATE,
   935                                PUBLIC | PROTECTED)
   936                  &&
   937                  checkDisjoint(pos, flags,
   938                                FINAL,
   939                                VOLATILE)
   940                  &&
   941                  (sym.kind == TYP ||
   942                   checkDisjoint(pos, flags,
   943                                 ABSTRACT | NATIVE,
   944                                 STRICTFP))) {
   945             // skip
   946         }
   947         return flags & (mask | ~StandardFlags) | implicit;
   948     }
   951     /** Determine if this enum should be implicitly final.
   952      *
   953      *  If the enum has no specialized enum contants, it is final.
   954      *
   955      *  If the enum does have specialized enum contants, it is
   956      *  <i>not</i> final.
   957      */
   958     private long implicitEnumFinalFlag(JCTree tree) {
   959         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   960         class SpecialTreeVisitor extends JCTree.Visitor {
   961             boolean specialized;
   962             SpecialTreeVisitor() {
   963                 this.specialized = false;
   964             };
   966             @Override
   967             public void visitTree(JCTree tree) { /* no-op */ }
   969             @Override
   970             public void visitVarDef(JCVariableDecl tree) {
   971                 if ((tree.mods.flags & ENUM) != 0) {
   972                     if (tree.init instanceof JCNewClass &&
   973                         ((JCNewClass) tree.init).def != null) {
   974                         specialized = true;
   975                     }
   976                 }
   977             }
   978         }
   980         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   981         JCClassDecl cdef = (JCClassDecl) tree;
   982         for (JCTree defs: cdef.defs) {
   983             defs.accept(sts);
   984             if (sts.specialized) return 0;
   985         }
   986         return FINAL;
   987     }
   989 /* *************************************************************************
   990  * Type Validation
   991  **************************************************************************/
   993     /** Validate a type expression. That is,
   994      *  check that all type arguments of a parametric type are within
   995      *  their bounds. This must be done in a second phase after type attributon
   996      *  since a class might have a subclass as type parameter bound. E.g:
   997      *
   998      *  class B<A extends C> { ... }
   999      *  class C extends B<C> { ... }
  1001      *  and we can't make sure that the bound is already attributed because
  1002      *  of possible cycles.
  1004      * Visitor method: Validate a type expression, if it is not null, catching
  1005      *  and reporting any completion failures.
  1006      */
  1007     void validate(JCTree tree, Env<AttrContext> env) {
  1008         validate(tree, env, true);
  1010     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1011         new Validator(env).validateTree(tree, checkRaw, true);
  1014     /** Visitor method: Validate a list of type expressions.
  1015      */
  1016     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1017         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1018             validate(l.head, env);
  1021     /** A visitor class for type validation.
  1022      */
  1023     class Validator extends JCTree.Visitor {
  1025         boolean isOuter;
  1026         Env<AttrContext> env;
  1028         Validator(Env<AttrContext> env) {
  1029             this.env = env;
  1032         @Override
  1033         public void visitTypeArray(JCArrayTypeTree tree) {
  1034             tree.elemtype.accept(this);
  1037         @Override
  1038         public void visitTypeApply(JCTypeApply tree) {
  1039             if (tree.type.tag == CLASS) {
  1040                 List<JCExpression> args = tree.arguments;
  1041                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1043                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1044                 if (incompatibleArg != null) {
  1045                     for (JCTree arg : tree.arguments) {
  1046                         if (arg.type == incompatibleArg) {
  1047                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1049                         forms = forms.tail;
  1053                 forms = tree.type.tsym.type.getTypeArguments();
  1055                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1057                 // For matching pairs of actual argument types `a' and
  1058                 // formal type parameters with declared bound `b' ...
  1059                 while (args.nonEmpty() && forms.nonEmpty()) {
  1060                     validateTree(args.head,
  1061                             !(isOuter && is_java_lang_Class),
  1062                             false);
  1063                     args = args.tail;
  1064                     forms = forms.tail;
  1067                 // Check that this type is either fully parameterized, or
  1068                 // not parameterized at all.
  1069                 if (tree.type.getEnclosingType().isRaw())
  1070                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1071                 if (tree.clazz.getTag() == JCTree.SELECT)
  1072                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1076         @Override
  1077         public void visitTypeParameter(JCTypeParameter tree) {
  1078             validateTrees(tree.bounds, true, isOuter);
  1079             checkClassBounds(tree.pos(), tree.type);
  1082         @Override
  1083         public void visitWildcard(JCWildcard tree) {
  1084             if (tree.inner != null)
  1085                 validateTree(tree.inner, true, isOuter);
  1088         @Override
  1089         public void visitSelect(JCFieldAccess tree) {
  1090             if (tree.type.tag == CLASS) {
  1091                 visitSelectInternal(tree);
  1093                 // Check that this type is either fully parameterized, or
  1094                 // not parameterized at all.
  1095                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1096                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1099         public void visitSelectInternal(JCFieldAccess tree) {
  1100             if (tree.type.tsym.isStatic() &&
  1101                 tree.selected.type.isParameterized()) {
  1102                 // The enclosing type is not a class, so we are
  1103                 // looking at a static member type.  However, the
  1104                 // qualifying expression is parameterized.
  1105                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1106             } else {
  1107                 // otherwise validate the rest of the expression
  1108                 tree.selected.accept(this);
  1112         /** Default visitor method: do nothing.
  1113          */
  1114         @Override
  1115         public void visitTree(JCTree tree) {
  1118         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1119             try {
  1120                 if (tree != null) {
  1121                     this.isOuter = isOuter;
  1122                     tree.accept(this);
  1123                     if (checkRaw)
  1124                         checkRaw(tree, env);
  1126             } catch (CompletionFailure ex) {
  1127                 completionError(tree.pos(), ex);
  1131         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1132             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1133                 validateTree(l.head, checkRaw, isOuter);
  1136         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1137             if (lint.isEnabled(LintCategory.RAW) &&
  1138                 tree.type.tag == CLASS &&
  1139                 !TreeInfo.isDiamond(tree) &&
  1140                 !env.enclClass.name.isEmpty() &&  //anonymous or intersection
  1141                 tree.type.isRaw()) {
  1142                 log.warning(LintCategory.RAW,
  1143                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1148 /* *************************************************************************
  1149  * Exception checking
  1150  **************************************************************************/
  1152     /* The following methods treat classes as sets that contain
  1153      * the class itself and all their subclasses
  1154      */
  1156     /** Is given type a subtype of some of the types in given list?
  1157      */
  1158     boolean subset(Type t, List<Type> ts) {
  1159         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1160             if (types.isSubtype(t, l.head)) return true;
  1161         return false;
  1164     /** Is given type a subtype or supertype of
  1165      *  some of the types in given list?
  1166      */
  1167     boolean intersects(Type t, List<Type> ts) {
  1168         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1169             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1170         return false;
  1173     /** Add type set to given type list, unless it is a subclass of some class
  1174      *  in the list.
  1175      */
  1176     List<Type> incl(Type t, List<Type> ts) {
  1177         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1180     /** Remove type set from type set list.
  1181      */
  1182     List<Type> excl(Type t, List<Type> ts) {
  1183         if (ts.isEmpty()) {
  1184             return ts;
  1185         } else {
  1186             List<Type> ts1 = excl(t, ts.tail);
  1187             if (types.isSubtype(ts.head, t)) return ts1;
  1188             else if (ts1 == ts.tail) return ts;
  1189             else return ts1.prepend(ts.head);
  1193     /** Form the union of two type set lists.
  1194      */
  1195     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1196         List<Type> ts = ts1;
  1197         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1198             ts = incl(l.head, ts);
  1199         return ts;
  1202     /** Form the difference of two type lists.
  1203      */
  1204     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1205         List<Type> ts = ts1;
  1206         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1207             ts = excl(l.head, ts);
  1208         return ts;
  1211     /** Form the intersection of two type lists.
  1212      */
  1213     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1214         List<Type> ts = List.nil();
  1215         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1216             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1217         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1218             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1219         return ts;
  1222     /** Is exc an exception symbol that need not be declared?
  1223      */
  1224     boolean isUnchecked(ClassSymbol exc) {
  1225         return
  1226             exc.kind == ERR ||
  1227             exc.isSubClass(syms.errorType.tsym, types) ||
  1228             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1231     /** Is exc an exception type that need not be declared?
  1232      */
  1233     boolean isUnchecked(Type exc) {
  1234         return
  1235             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1236             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1237             exc.tag == BOT;
  1240     /** Same, but handling completion failures.
  1241      */
  1242     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1243         try {
  1244             return isUnchecked(exc);
  1245         } catch (CompletionFailure ex) {
  1246             completionError(pos, ex);
  1247             return true;
  1251     /** Is exc handled by given exception list?
  1252      */
  1253     boolean isHandled(Type exc, List<Type> handled) {
  1254         return isUnchecked(exc) || subset(exc, handled);
  1257     /** Return all exceptions in thrown list that are not in handled list.
  1258      *  @param thrown     The list of thrown exceptions.
  1259      *  @param handled    The list of handled exceptions.
  1260      */
  1261     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1262         List<Type> unhandled = List.nil();
  1263         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1264             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1265         return unhandled;
  1268 /* *************************************************************************
  1269  * Overriding/Implementation checking
  1270  **************************************************************************/
  1272     /** The level of access protection given by a flag set,
  1273      *  where PRIVATE is highest and PUBLIC is lowest.
  1274      */
  1275     static int protection(long flags) {
  1276         switch ((short)(flags & AccessFlags)) {
  1277         case PRIVATE: return 3;
  1278         case PROTECTED: return 1;
  1279         default:
  1280         case PUBLIC: return 0;
  1281         case 0: return 2;
  1285     /** A customized "cannot override" error message.
  1286      *  @param m      The overriding method.
  1287      *  @param other  The overridden method.
  1288      *  @return       An internationalized string.
  1289      */
  1290     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1291         String key;
  1292         if ((other.owner.flags() & INTERFACE) == 0)
  1293             key = "cant.override";
  1294         else if ((m.owner.flags() & INTERFACE) == 0)
  1295             key = "cant.implement";
  1296         else
  1297             key = "clashes.with";
  1298         return diags.fragment(key, m, m.location(), other, other.location());
  1301     /** A customized "override" warning message.
  1302      *  @param m      The overriding method.
  1303      *  @param other  The overridden method.
  1304      *  @return       An internationalized string.
  1305      */
  1306     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1307         String key;
  1308         if ((other.owner.flags() & INTERFACE) == 0)
  1309             key = "unchecked.override";
  1310         else if ((m.owner.flags() & INTERFACE) == 0)
  1311             key = "unchecked.implement";
  1312         else
  1313             key = "unchecked.clash.with";
  1314         return diags.fragment(key, m, m.location(), other, other.location());
  1317     /** A customized "override" warning message.
  1318      *  @param m      The overriding method.
  1319      *  @param other  The overridden method.
  1320      *  @return       An internationalized string.
  1321      */
  1322     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1323         String key;
  1324         if ((other.owner.flags() & INTERFACE) == 0)
  1325             key = "varargs.override";
  1326         else  if ((m.owner.flags() & INTERFACE) == 0)
  1327             key = "varargs.implement";
  1328         else
  1329             key = "varargs.clash.with";
  1330         return diags.fragment(key, m, m.location(), other, other.location());
  1333     /** Check that this method conforms with overridden method 'other'.
  1334      *  where `origin' is the class where checking started.
  1335      *  Complications:
  1336      *  (1) Do not check overriding of synthetic methods
  1337      *      (reason: they might be final).
  1338      *      todo: check whether this is still necessary.
  1339      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1340      *      than the method it implements. Augment the proxy methods with the
  1341      *      undeclared exceptions in this case.
  1342      *  (3) When generics are enabled, admit the case where an interface proxy
  1343      *      has a result type
  1344      *      extended by the result type of the method it implements.
  1345      *      Change the proxies result type to the smaller type in this case.
  1347      *  @param tree         The tree from which positions
  1348      *                      are extracted for errors.
  1349      *  @param m            The overriding method.
  1350      *  @param other        The overridden method.
  1351      *  @param origin       The class of which the overriding method
  1352      *                      is a member.
  1353      */
  1354     void checkOverride(JCTree tree,
  1355                        MethodSymbol m,
  1356                        MethodSymbol other,
  1357                        ClassSymbol origin) {
  1358         // Don't check overriding of synthetic methods or by bridge methods.
  1359         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1360             return;
  1363         // Error if static method overrides instance method (JLS 8.4.6.2).
  1364         if ((m.flags() & STATIC) != 0 &&
  1365                    (other.flags() & STATIC) == 0) {
  1366             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1367                       cannotOverride(m, other));
  1368             return;
  1371         // Error if instance method overrides static or final
  1372         // method (JLS 8.4.6.1).
  1373         if ((other.flags() & FINAL) != 0 ||
  1374                  (m.flags() & STATIC) == 0 &&
  1375                  (other.flags() & STATIC) != 0) {
  1376             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1377                       cannotOverride(m, other),
  1378                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1379             return;
  1382         if ((m.owner.flags() & ANNOTATION) != 0) {
  1383             // handled in validateAnnotationMethod
  1384             return;
  1387         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1388         if ((origin.flags() & INTERFACE) == 0 &&
  1389                  protection(m.flags()) > protection(other.flags())) {
  1390             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1391                       cannotOverride(m, other),
  1392                       other.flags() == 0 ?
  1393                           Flag.PACKAGE :
  1394                           asFlagSet(other.flags() & AccessFlags));
  1395             return;
  1398         Type mt = types.memberType(origin.type, m);
  1399         Type ot = types.memberType(origin.type, other);
  1400         // Error if overriding result type is different
  1401         // (or, in the case of generics mode, not a subtype) of
  1402         // overridden result type. We have to rename any type parameters
  1403         // before comparing types.
  1404         List<Type> mtvars = mt.getTypeArguments();
  1405         List<Type> otvars = ot.getTypeArguments();
  1406         Type mtres = mt.getReturnType();
  1407         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1409         overrideWarner.clear();
  1410         boolean resultTypesOK =
  1411             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1412         if (!resultTypesOK) {
  1413             if (!allowCovariantReturns &&
  1414                 m.owner != origin &&
  1415                 m.owner.isSubClass(other.owner, types)) {
  1416                 // allow limited interoperability with covariant returns
  1417             } else {
  1418                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1419                           "override.incompatible.ret",
  1420                           cannotOverride(m, other),
  1421                           mtres, otres);
  1422                 return;
  1424         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1425             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1426                     "override.unchecked.ret",
  1427                     uncheckedOverrides(m, other),
  1428                     mtres, otres);
  1431         // Error if overriding method throws an exception not reported
  1432         // by overridden method.
  1433         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1434         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1435         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1436         if (unhandledErased.nonEmpty()) {
  1437             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1438                       "override.meth.doesnt.throw",
  1439                       cannotOverride(m, other),
  1440                       unhandledUnerased.head);
  1441             return;
  1443         else if (unhandledUnerased.nonEmpty()) {
  1444             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1445                           "override.unchecked.thrown",
  1446                          cannotOverride(m, other),
  1447                          unhandledUnerased.head);
  1448             return;
  1451         // Optional warning if varargs don't agree
  1452         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1453             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1454             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1455                         ((m.flags() & Flags.VARARGS) != 0)
  1456                         ? "override.varargs.missing"
  1457                         : "override.varargs.extra",
  1458                         varargsOverrides(m, other));
  1461         // Warn if instance method overrides bridge method (compiler spec ??)
  1462         if ((other.flags() & BRIDGE) != 0) {
  1463             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1464                         uncheckedOverrides(m, other));
  1467         // Warn if a deprecated method overridden by a non-deprecated one.
  1468         if ((other.flags() & DEPRECATED) != 0
  1469             && (m.flags() & DEPRECATED) == 0
  1470             && m.outermostClass() != other.outermostClass()
  1471             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1472             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1475     // where
  1476         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1477             // If the method, m, is defined in an interface, then ignore the issue if the method
  1478             // is only inherited via a supertype and also implemented in the supertype,
  1479             // because in that case, we will rediscover the issue when examining the method
  1480             // in the supertype.
  1481             // If the method, m, is not defined in an interface, then the only time we need to
  1482             // address the issue is when the method is the supertype implemementation: any other
  1483             // case, we will have dealt with when examining the supertype classes
  1484             ClassSymbol mc = m.enclClass();
  1485             Type st = types.supertype(origin.type);
  1486             if (st.tag != CLASS)
  1487                 return true;
  1488             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1490             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1491                 List<Type> intfs = types.interfaces(origin.type);
  1492                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1494             else
  1495                 return (stimpl != m);
  1499     // used to check if there were any unchecked conversions
  1500     Warner overrideWarner = new Warner();
  1502     /** Check that a class does not inherit two concrete methods
  1503      *  with the same signature.
  1504      *  @param pos          Position to be used for error reporting.
  1505      *  @param site         The class type to be checked.
  1506      */
  1507     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1508         Type sup = types.supertype(site);
  1509         if (sup.tag != CLASS) return;
  1511         for (Type t1 = sup;
  1512              t1.tsym.type.isParameterized();
  1513              t1 = types.supertype(t1)) {
  1514             for (Scope.Entry e1 = t1.tsym.members().elems;
  1515                  e1 != null;
  1516                  e1 = e1.sibling) {
  1517                 Symbol s1 = e1.sym;
  1518                 if (s1.kind != MTH ||
  1519                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1520                     !s1.isInheritedIn(site.tsym, types) ||
  1521                     ((MethodSymbol)s1).implementation(site.tsym,
  1522                                                       types,
  1523                                                       true) != s1)
  1524                     continue;
  1525                 Type st1 = types.memberType(t1, s1);
  1526                 int s1ArgsLength = st1.getParameterTypes().length();
  1527                 if (st1 == s1.type) continue;
  1529                 for (Type t2 = sup;
  1530                      t2.tag == CLASS;
  1531                      t2 = types.supertype(t2)) {
  1532                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1533                          e2.scope != null;
  1534                          e2 = e2.next()) {
  1535                         Symbol s2 = e2.sym;
  1536                         if (s2 == s1 ||
  1537                             s2.kind != MTH ||
  1538                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1539                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1540                             !s2.isInheritedIn(site.tsym, types) ||
  1541                             ((MethodSymbol)s2).implementation(site.tsym,
  1542                                                               types,
  1543                                                               true) != s2)
  1544                             continue;
  1545                         Type st2 = types.memberType(t2, s2);
  1546                         if (types.overrideEquivalent(st1, st2))
  1547                             log.error(pos, "concrete.inheritance.conflict",
  1548                                       s1, t1, s2, t2, sup);
  1555     /** Check that classes (or interfaces) do not each define an abstract
  1556      *  method with same name and arguments but incompatible return types.
  1557      *  @param pos          Position to be used for error reporting.
  1558      *  @param t1           The first argument type.
  1559      *  @param t2           The second argument type.
  1560      */
  1561     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1562                                             Type t1,
  1563                                             Type t2) {
  1564         return checkCompatibleAbstracts(pos, t1, t2,
  1565                                         types.makeCompoundType(t1, t2));
  1568     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1569                                             Type t1,
  1570                                             Type t2,
  1571                                             Type site) {
  1572         return firstIncompatibility(pos, t1, t2, site) == null;
  1575     /** Return the first method which is defined with same args
  1576      *  but different return types in two given interfaces, or null if none
  1577      *  exists.
  1578      *  @param t1     The first type.
  1579      *  @param t2     The second type.
  1580      *  @param site   The most derived type.
  1581      *  @returns symbol from t2 that conflicts with one in t1.
  1582      */
  1583     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1584         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1585         closure(t1, interfaces1);
  1586         Map<TypeSymbol,Type> interfaces2;
  1587         if (t1 == t2)
  1588             interfaces2 = interfaces1;
  1589         else
  1590             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1592         for (Type t3 : interfaces1.values()) {
  1593             for (Type t4 : interfaces2.values()) {
  1594                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1595                 if (s != null) return s;
  1598         return null;
  1601     /** Compute all the supertypes of t, indexed by type symbol. */
  1602     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1603         if (t.tag != CLASS) return;
  1604         if (typeMap.put(t.tsym, t) == null) {
  1605             closure(types.supertype(t), typeMap);
  1606             for (Type i : types.interfaces(t))
  1607                 closure(i, typeMap);
  1611     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1612     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1613         if (t.tag != CLASS) return;
  1614         if (typesSkip.get(t.tsym) != null) return;
  1615         if (typeMap.put(t.tsym, t) == null) {
  1616             closure(types.supertype(t), typesSkip, typeMap);
  1617             for (Type i : types.interfaces(t))
  1618                 closure(i, typesSkip, typeMap);
  1622     /** Return the first method in t2 that conflicts with a method from t1. */
  1623     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1624         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1625             Symbol s1 = e1.sym;
  1626             Type st1 = null;
  1627             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1628             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1629             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1630             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1631                 Symbol s2 = e2.sym;
  1632                 if (s1 == s2) continue;
  1633                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1634                 if (st1 == null) st1 = types.memberType(t1, s1);
  1635                 Type st2 = types.memberType(t2, s2);
  1636                 if (types.overrideEquivalent(st1, st2)) {
  1637                     List<Type> tvars1 = st1.getTypeArguments();
  1638                     List<Type> tvars2 = st2.getTypeArguments();
  1639                     Type rt1 = st1.getReturnType();
  1640                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1641                     boolean compat =
  1642                         types.isSameType(rt1, rt2) ||
  1643                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1644                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1645                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1646                          checkCommonOverriderIn(s1,s2,site);
  1647                     if (!compat) {
  1648                         log.error(pos, "types.incompatible.diff.ret",
  1649                             t1, t2, s2.name +
  1650                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1651                         return s2;
  1653                 } else if (!checkNameClash((ClassSymbol)site.tsym, s1, s2)) {
  1654                     log.error(pos,
  1655                             "name.clash.same.erasure.no.override",
  1656                             s1, s1.location(),
  1657                             s2, s2.location());
  1658                     return s2;
  1662         return null;
  1664     //WHERE
  1665     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1666         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1667         Type st1 = types.memberType(site, s1);
  1668         Type st2 = types.memberType(site, s2);
  1669         closure(site, supertypes);
  1670         for (Type t : supertypes.values()) {
  1671             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1672                 Symbol s3 = e.sym;
  1673                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1674                 Type st3 = types.memberType(site,s3);
  1675                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1676                     if (s3.owner == site.tsym) {
  1677                         return true;
  1679                     List<Type> tvars1 = st1.getTypeArguments();
  1680                     List<Type> tvars2 = st2.getTypeArguments();
  1681                     List<Type> tvars3 = st3.getTypeArguments();
  1682                     Type rt1 = st1.getReturnType();
  1683                     Type rt2 = st2.getReturnType();
  1684                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1685                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1686                     boolean compat =
  1687                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1688                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1689                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1690                     if (compat)
  1691                         return true;
  1695         return false;
  1698     /** Check that a given method conforms with any method it overrides.
  1699      *  @param tree         The tree from which positions are extracted
  1700      *                      for errors.
  1701      *  @param m            The overriding method.
  1702      */
  1703     void checkOverride(JCTree tree, MethodSymbol m) {
  1704         ClassSymbol origin = (ClassSymbol)m.owner;
  1705         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1706             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1707                 log.error(tree.pos(), "enum.no.finalize");
  1708                 return;
  1710         for (Type t = origin.type; t.tag == CLASS;
  1711              t = types.supertype(t)) {
  1712             if (t != origin.type) {
  1713                 checkOverride(tree, t, origin, m);
  1715             for (Type t2 : types.interfaces(t)) {
  1716                 checkOverride(tree, t2, origin, m);
  1721     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1722         TypeSymbol c = site.tsym;
  1723         Scope.Entry e = c.members().lookup(m.name);
  1724         while (e.scope != null) {
  1725             if (m.overrides(e.sym, origin, types, false)) {
  1726                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1727                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1730             e = e.next();
  1734     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1735         if (s1.kind == MTH &&
  1736                     s1.isInheritedIn(origin, types) &&
  1737                     (s1.flags() & SYNTHETIC) == 0 &&
  1738                     !s2.isConstructor()) {
  1739             Type er1 = s2.erasure(types);
  1740             Type er2 = s1.erasure(types);
  1741             if (types.isSameTypes(er1.getParameterTypes(),
  1742                     er2.getParameterTypes())) {
  1743                     return false;
  1746         return true;
  1750     /** Check that all abstract members of given class have definitions.
  1751      *  @param pos          Position to be used for error reporting.
  1752      *  @param c            The class.
  1753      */
  1754     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1755         try {
  1756             MethodSymbol undef = firstUndef(c, c);
  1757             if (undef != null) {
  1758                 if ((c.flags() & ENUM) != 0 &&
  1759                     types.supertype(c.type).tsym == syms.enumSym &&
  1760                     (c.flags() & FINAL) == 0) {
  1761                     // add the ABSTRACT flag to an enum
  1762                     c.flags_field |= ABSTRACT;
  1763                 } else {
  1764                     MethodSymbol undef1 =
  1765                         new MethodSymbol(undef.flags(), undef.name,
  1766                                          types.memberType(c.type, undef), undef.owner);
  1767                     log.error(pos, "does.not.override.abstract",
  1768                               c, undef1, undef1.location());
  1771         } catch (CompletionFailure ex) {
  1772             completionError(pos, ex);
  1775 //where
  1776         /** Return first abstract member of class `c' that is not defined
  1777          *  in `impl', null if there is none.
  1778          */
  1779         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1780             MethodSymbol undef = null;
  1781             // Do not bother to search in classes that are not abstract,
  1782             // since they cannot have abstract members.
  1783             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1784                 Scope s = c.members();
  1785                 for (Scope.Entry e = s.elems;
  1786                      undef == null && e != null;
  1787                      e = e.sibling) {
  1788                     if (e.sym.kind == MTH &&
  1789                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1790                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1791                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1792                         if (implmeth == null || implmeth == absmeth)
  1793                             undef = absmeth;
  1796                 if (undef == null) {
  1797                     Type st = types.supertype(c.type);
  1798                     if (st.tag == CLASS)
  1799                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1801                 for (List<Type> l = types.interfaces(c.type);
  1802                      undef == null && l.nonEmpty();
  1803                      l = l.tail) {
  1804                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1807             return undef;
  1810     void checkNonCyclicDecl(JCClassDecl tree) {
  1811         CycleChecker cc = new CycleChecker();
  1812         cc.scan(tree);
  1813         if (!cc.errorFound && !cc.partialCheck) {
  1814             tree.sym.flags_field |= ACYCLIC;
  1818     class CycleChecker extends TreeScanner {
  1820         List<Symbol> seenClasses = List.nil();
  1821         boolean errorFound = false;
  1822         boolean partialCheck = false;
  1824         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1825             if (sym != null && sym.kind == TYP) {
  1826                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1827                 if (classEnv != null) {
  1828                     DiagnosticSource prevSource = log.currentSource();
  1829                     try {
  1830                         log.useSource(classEnv.toplevel.sourcefile);
  1831                         scan(classEnv.tree);
  1833                     finally {
  1834                         log.useSource(prevSource.getFile());
  1836                 } else if (sym.kind == TYP) {
  1837                     checkClass(pos, sym, List.<JCTree>nil());
  1839             } else {
  1840                 //not completed yet
  1841                 partialCheck = true;
  1845         @Override
  1846         public void visitSelect(JCFieldAccess tree) {
  1847             super.visitSelect(tree);
  1848             checkSymbol(tree.pos(), tree.sym);
  1851         @Override
  1852         public void visitIdent(JCIdent tree) {
  1853             checkSymbol(tree.pos(), tree.sym);
  1856         @Override
  1857         public void visitTypeApply(JCTypeApply tree) {
  1858             scan(tree.clazz);
  1861         @Override
  1862         public void visitTypeArray(JCArrayTypeTree tree) {
  1863             scan(tree.elemtype);
  1866         @Override
  1867         public void visitClassDef(JCClassDecl tree) {
  1868             List<JCTree> supertypes = List.nil();
  1869             if (tree.getExtendsClause() != null) {
  1870                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1872             if (tree.getImplementsClause() != null) {
  1873                 for (JCTree intf : tree.getImplementsClause()) {
  1874                     supertypes = supertypes.prepend(intf);
  1877             checkClass(tree.pos(), tree.sym, supertypes);
  1880         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1881             if ((c.flags_field & ACYCLIC) != 0)
  1882                 return;
  1883             if (seenClasses.contains(c)) {
  1884                 errorFound = true;
  1885                 noteCyclic(pos, (ClassSymbol)c);
  1886             } else if (!c.type.isErroneous()) {
  1887                 try {
  1888                     seenClasses = seenClasses.prepend(c);
  1889                     if (c.type.tag == CLASS) {
  1890                         if (supertypes.nonEmpty()) {
  1891                             scan(supertypes);
  1893                         else {
  1894                             ClassType ct = (ClassType)c.type;
  1895                             if (ct.supertype_field == null ||
  1896                                     ct.interfaces_field == null) {
  1897                                 //not completed yet
  1898                                 partialCheck = true;
  1899                                 return;
  1901                             checkSymbol(pos, ct.supertype_field.tsym);
  1902                             for (Type intf : ct.interfaces_field) {
  1903                                 checkSymbol(pos, intf.tsym);
  1906                         if (c.owner.kind == TYP) {
  1907                             checkSymbol(pos, c.owner);
  1910                 } finally {
  1911                     seenClasses = seenClasses.tail;
  1917     /** Check for cyclic references. Issue an error if the
  1918      *  symbol of the type referred to has a LOCKED flag set.
  1920      *  @param pos      Position to be used for error reporting.
  1921      *  @param t        The type referred to.
  1922      */
  1923     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1924         checkNonCyclicInternal(pos, t);
  1928     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1929         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1932     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1933         final TypeVar tv;
  1934         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1935             return;
  1936         if (seen.contains(t)) {
  1937             tv = (TypeVar)t;
  1938             tv.bound = types.createErrorType(t);
  1939             log.error(pos, "cyclic.inheritance", t);
  1940         } else if (t.tag == TYPEVAR) {
  1941             tv = (TypeVar)t;
  1942             seen = seen.prepend(tv);
  1943             for (Type b : types.getBounds(tv))
  1944                 checkNonCyclic1(pos, b, seen);
  1948     /** Check for cyclic references. Issue an error if the
  1949      *  symbol of the type referred to has a LOCKED flag set.
  1951      *  @param pos      Position to be used for error reporting.
  1952      *  @param t        The type referred to.
  1953      *  @returns        True if the check completed on all attributed classes
  1954      */
  1955     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1956         boolean complete = true; // was the check complete?
  1957         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1958         Symbol c = t.tsym;
  1959         if ((c.flags_field & ACYCLIC) != 0) return true;
  1961         if ((c.flags_field & LOCKED) != 0) {
  1962             noteCyclic(pos, (ClassSymbol)c);
  1963         } else if (!c.type.isErroneous()) {
  1964             try {
  1965                 c.flags_field |= LOCKED;
  1966                 if (c.type.tag == CLASS) {
  1967                     ClassType clazz = (ClassType)c.type;
  1968                     if (clazz.interfaces_field != null)
  1969                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1970                             complete &= checkNonCyclicInternal(pos, l.head);
  1971                     if (clazz.supertype_field != null) {
  1972                         Type st = clazz.supertype_field;
  1973                         if (st != null && st.tag == CLASS)
  1974                             complete &= checkNonCyclicInternal(pos, st);
  1976                     if (c.owner.kind == TYP)
  1977                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1979             } finally {
  1980                 c.flags_field &= ~LOCKED;
  1983         if (complete)
  1984             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1985         if (complete) c.flags_field |= ACYCLIC;
  1986         return complete;
  1989     /** Note that we found an inheritance cycle. */
  1990     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1991         log.error(pos, "cyclic.inheritance", c);
  1992         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1993             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1994         Type st = types.supertype(c.type);
  1995         if (st.tag == CLASS)
  1996             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1997         c.type = types.createErrorType(c, c.type);
  1998         c.flags_field |= ACYCLIC;
  2001     /** Check that all methods which implement some
  2002      *  method conform to the method they implement.
  2003      *  @param tree         The class definition whose members are checked.
  2004      */
  2005     void checkImplementations(JCClassDecl tree) {
  2006         checkImplementations(tree, tree.sym);
  2008 //where
  2009         /** Check that all methods which implement some
  2010          *  method in `ic' conform to the method they implement.
  2011          */
  2012         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2013             ClassSymbol origin = tree.sym;
  2014             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2015                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2016                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2017                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2018                         if (e.sym.kind == MTH &&
  2019                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2020                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2021                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2022                             if (implmeth != null && implmeth != absmeth &&
  2023                                 (implmeth.owner.flags() & INTERFACE) ==
  2024                                 (origin.flags() & INTERFACE)) {
  2025                                 // don't check if implmeth is in a class, yet
  2026                                 // origin is an interface. This case arises only
  2027                                 // if implmeth is declared in Object. The reason is
  2028                                 // that interfaces really don't inherit from
  2029                                 // Object it's just that the compiler represents
  2030                                 // things that way.
  2031                                 checkOverride(tree, implmeth, absmeth, origin);
  2039     /** Check that all abstract methods implemented by a class are
  2040      *  mutually compatible.
  2041      *  @param pos          Position to be used for error reporting.
  2042      *  @param c            The class whose interfaces are checked.
  2043      */
  2044     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2045         List<Type> supertypes = types.interfaces(c);
  2046         Type supertype = types.supertype(c);
  2047         if (supertype.tag == CLASS &&
  2048             (supertype.tsym.flags() & ABSTRACT) != 0)
  2049             supertypes = supertypes.prepend(supertype);
  2050         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2051             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2052                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2053                 return;
  2054             for (List<Type> m = supertypes; m != l; m = m.tail)
  2055                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2056                     return;
  2058         checkCompatibleConcretes(pos, c);
  2061     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2062         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2063             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2064                 // VM allows methods and variables with differing types
  2065                 if (sym.kind == e.sym.kind &&
  2066                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2067                     sym != e.sym &&
  2068                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2069                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2070                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2071                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2072                     return;
  2078     /** Check that all non-override equivalent methods accessible from 'site'
  2079      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2081      *  @param pos  Position to be used for error reporting.
  2082      *  @param site The class whose methods are checked.
  2083      *  @param sym  The method symbol to be checked.
  2084      */
  2085     void checkClashes(DiagnosticPosition pos, Type site, Symbol sym) {
  2086         List<Type> supertypes = types.closure(site);
  2087         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2088             for (List<Type> m = supertypes; m.nonEmpty(); m = m.tail) {
  2089                 checkClashes(pos, l.head, m.head, site, sym);
  2094     /** Reports an error whenever 'sym' seen as a member of type 't1' clashes with
  2095      *  some unrelated method defined in 't2'.
  2096      */
  2097     private void checkClashes(DiagnosticPosition pos, Type t1, Type t2, Type site, Symbol s1) {
  2098         ClashFilter cf = new ClashFilter(site);
  2099         s1 = ((MethodSymbol)s1).implementedIn(t1.tsym, types);
  2100         if (s1 == null) return;
  2101         Type st1 = types.memberType(site, s1);
  2102         for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name, cf); e2.scope != null; e2 = e2.next(cf)) {
  2103             Symbol s2 = e2.sym;
  2104             if (s1 == s2) continue;
  2105             Type st2 = types.memberType(site, s2);
  2106             if (!types.overrideEquivalent(st1, st2) &&
  2107                     !checkNameClash((ClassSymbol)site.tsym, s1, s2)) {
  2108                 log.error(pos,
  2109                         "name.clash.same.erasure.no.override",
  2110                         s1, s1.location(),
  2111                         s2, s2.location());
  2115     //where
  2116     private class ClashFilter implements Filter<Symbol> {
  2118         Type site;
  2120         ClashFilter(Type site) {
  2121             this.site = site;
  2124         public boolean accepts(Symbol s) {
  2125             return s.kind == MTH &&
  2126                     (s.flags() & (SYNTHETIC | CLASH)) == 0 &&
  2127                     s.isInheritedIn(site.tsym, types) &&
  2128                     !s.isConstructor();
  2132     /** Report a conflict between a user symbol and a synthetic symbol.
  2133      */
  2134     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2135         if (!sym.type.isErroneous()) {
  2136             if (warnOnSyntheticConflicts) {
  2137                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2139             else {
  2140                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2145     /** Check that class c does not implement directly or indirectly
  2146      *  the same parameterized interface with two different argument lists.
  2147      *  @param pos          Position to be used for error reporting.
  2148      *  @param type         The type whose interfaces are checked.
  2149      */
  2150     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2151         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2153 //where
  2154         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2155          *  with their class symbol as key and their type as value. Make
  2156          *  sure no class is entered with two different types.
  2157          */
  2158         void checkClassBounds(DiagnosticPosition pos,
  2159                               Map<TypeSymbol,Type> seensofar,
  2160                               Type type) {
  2161             if (type.isErroneous()) return;
  2162             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2163                 Type it = l.head;
  2164                 Type oldit = seensofar.put(it.tsym, it);
  2165                 if (oldit != null) {
  2166                     List<Type> oldparams = oldit.allparams();
  2167                     List<Type> newparams = it.allparams();
  2168                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2169                         log.error(pos, "cant.inherit.diff.arg",
  2170                                   it.tsym, Type.toString(oldparams),
  2171                                   Type.toString(newparams));
  2173                 checkClassBounds(pos, seensofar, it);
  2175             Type st = types.supertype(type);
  2176             if (st != null) checkClassBounds(pos, seensofar, st);
  2179     /** Enter interface into into set.
  2180      *  If it existed already, issue a "repeated interface" error.
  2181      */
  2182     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2183         if (its.contains(it))
  2184             log.error(pos, "repeated.interface");
  2185         else {
  2186             its.add(it);
  2190 /* *************************************************************************
  2191  * Check annotations
  2192  **************************************************************************/
  2194     /**
  2195      * Recursively validate annotations values
  2196      */
  2197     void validateAnnotationTree(JCTree tree) {
  2198         class AnnotationValidator extends TreeScanner {
  2199             @Override
  2200             public void visitAnnotation(JCAnnotation tree) {
  2201                 super.visitAnnotation(tree);
  2202                 validateAnnotation(tree);
  2205         tree.accept(new AnnotationValidator());
  2208     /** Annotation types are restricted to primitives, String, an
  2209      *  enum, an annotation, Class, Class<?>, Class<? extends
  2210      *  Anything>, arrays of the preceding.
  2211      */
  2212     void validateAnnotationType(JCTree restype) {
  2213         // restype may be null if an error occurred, so don't bother validating it
  2214         if (restype != null) {
  2215             validateAnnotationType(restype.pos(), restype.type);
  2219     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2220         if (type.isPrimitive()) return;
  2221         if (types.isSameType(type, syms.stringType)) return;
  2222         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2223         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2224         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2225         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2226             validateAnnotationType(pos, types.elemtype(type));
  2227             return;
  2229         log.error(pos, "invalid.annotation.member.type");
  2232     /**
  2233      * "It is also a compile-time error if any method declared in an
  2234      * annotation type has a signature that is override-equivalent to
  2235      * that of any public or protected method declared in class Object
  2236      * or in the interface annotation.Annotation."
  2238      * @jls3 9.6 Annotation Types
  2239      */
  2240     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2241         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2242             Scope s = sup.tsym.members();
  2243             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2244                 if (e.sym.kind == MTH &&
  2245                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2246                     types.overrideEquivalent(m.type, e.sym.type))
  2247                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2252     /** Check the annotations of a symbol.
  2253      */
  2254     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2255         if (skipAnnotations) return;
  2256         for (JCAnnotation a : annotations)
  2257             validateAnnotation(a, s);
  2260     /** Check an annotation of a symbol.
  2261      */
  2262     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2263         validateAnnotationTree(a);
  2265         if (!annotationApplicable(a, s))
  2266             log.error(a.pos(), "annotation.type.not.applicable");
  2268         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2269             if (!isOverrider(s))
  2270                 log.error(a.pos(), "method.does.not.override.superclass");
  2274     /** Is s a method symbol that overrides a method in a superclass? */
  2275     boolean isOverrider(Symbol s) {
  2276         if (s.kind != MTH || s.isStatic())
  2277             return false;
  2278         MethodSymbol m = (MethodSymbol)s;
  2279         TypeSymbol owner = (TypeSymbol)m.owner;
  2280         for (Type sup : types.closure(owner.type)) {
  2281             if (sup == owner.type)
  2282                 continue; // skip "this"
  2283             Scope scope = sup.tsym.members();
  2284             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2285                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2286                     return true;
  2289         return false;
  2292     /** Is the annotation applicable to the symbol? */
  2293     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2294         Attribute.Compound atTarget =
  2295             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2296         if (atTarget == null) return true;
  2297         Attribute atValue = atTarget.member(names.value);
  2298         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2299         Attribute.Array arr = (Attribute.Array) atValue;
  2300         for (Attribute app : arr.values) {
  2301             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2302             Attribute.Enum e = (Attribute.Enum) app;
  2303             if (e.value.name == names.TYPE)
  2304                 { if (s.kind == TYP) return true; }
  2305             else if (e.value.name == names.FIELD)
  2306                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2307             else if (e.value.name == names.METHOD)
  2308                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2309             else if (e.value.name == names.PARAMETER)
  2310                 { if (s.kind == VAR &&
  2311                       s.owner.kind == MTH &&
  2312                       (s.flags() & PARAMETER) != 0)
  2313                     return true;
  2315             else if (e.value.name == names.CONSTRUCTOR)
  2316                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2317             else if (e.value.name == names.LOCAL_VARIABLE)
  2318                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2319                       (s.flags() & PARAMETER) == 0)
  2320                     return true;
  2322             else if (e.value.name == names.ANNOTATION_TYPE)
  2323                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2324                     return true;
  2326             else if (e.value.name == names.PACKAGE)
  2327                 { if (s.kind == PCK) return true; }
  2328             else if (e.value.name == names.TYPE_USE)
  2329                 { if (s.kind == TYP ||
  2330                       s.kind == VAR ||
  2331                       (s.kind == MTH && !s.isConstructor() &&
  2332                        s.type.getReturnType().tag != VOID))
  2333                     return true;
  2335             else
  2336                 return true; // recovery
  2338         return false;
  2341     /** Check an annotation value.
  2342      */
  2343     public void validateAnnotation(JCAnnotation a) {
  2344         if (a.type.isErroneous()) return;
  2346         // collect an inventory of the members (sorted alphabetically)
  2347         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2348             public int compare(Symbol t, Symbol t1) {
  2349                 return t.name.compareTo(t1.name);
  2351         });
  2352         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2353              e != null;
  2354              e = e.sibling)
  2355             if (e.sym.kind == MTH)
  2356                 members.add((MethodSymbol) e.sym);
  2358         // count them off as they're annotated
  2359         for (JCTree arg : a.args) {
  2360             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2361             JCAssign assign = (JCAssign) arg;
  2362             Symbol m = TreeInfo.symbol(assign.lhs);
  2363             if (m == null || m.type.isErroneous()) continue;
  2364             if (!members.remove(m))
  2365                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2366                           m.name, a.type);
  2369         // all the remaining ones better have default values
  2370         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2371         for (MethodSymbol m : members) {
  2372             if (m.defaultValue == null && !m.type.isErroneous()) {
  2373                 missingDefaults.append(m.name);
  2376         if (missingDefaults.nonEmpty()) {
  2377             String key = (missingDefaults.size() > 1)
  2378                     ? "annotation.missing.default.value.1"
  2379                     : "annotation.missing.default.value";
  2380             log.error(a.pos(), key, a.type, missingDefaults);
  2383         // special case: java.lang.annotation.Target must not have
  2384         // repeated values in its value member
  2385         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2386             a.args.tail == null)
  2387             return;
  2389         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2390         JCAssign assign = (JCAssign) a.args.head;
  2391         Symbol m = TreeInfo.symbol(assign.lhs);
  2392         if (m.name != names.value) return;
  2393         JCTree rhs = assign.rhs;
  2394         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2395         JCNewArray na = (JCNewArray) rhs;
  2396         Set<Symbol> targets = new HashSet<Symbol>();
  2397         for (JCTree elem : na.elems) {
  2398             if (!targets.add(TreeInfo.symbol(elem))) {
  2399                 log.error(elem.pos(), "repeated.annotation.target");
  2404     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2405         if (allowAnnotations &&
  2406             lint.isEnabled(LintCategory.DEP_ANN) &&
  2407             (s.flags() & DEPRECATED) != 0 &&
  2408             !syms.deprecatedType.isErroneous() &&
  2409             s.attribute(syms.deprecatedType.tsym) == null) {
  2410             log.warning(LintCategory.DEP_ANN,
  2411                     pos, "missing.deprecated.annotation");
  2415 /* *************************************************************************
  2416  * Check for recursive annotation elements.
  2417  **************************************************************************/
  2419     /** Check for cycles in the graph of annotation elements.
  2420      */
  2421     void checkNonCyclicElements(JCClassDecl tree) {
  2422         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2423         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2424         try {
  2425             tree.sym.flags_field |= LOCKED;
  2426             for (JCTree def : tree.defs) {
  2427                 if (def.getTag() != JCTree.METHODDEF) continue;
  2428                 JCMethodDecl meth = (JCMethodDecl)def;
  2429                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2431         } finally {
  2432             tree.sym.flags_field &= ~LOCKED;
  2433             tree.sym.flags_field |= ACYCLIC_ANN;
  2437     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2438         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2439             return;
  2440         if ((tsym.flags_field & LOCKED) != 0) {
  2441             log.error(pos, "cyclic.annotation.element");
  2442             return;
  2444         try {
  2445             tsym.flags_field |= LOCKED;
  2446             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2447                 Symbol s = e.sym;
  2448                 if (s.kind != Kinds.MTH)
  2449                     continue;
  2450                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2452         } finally {
  2453             tsym.flags_field &= ~LOCKED;
  2454             tsym.flags_field |= ACYCLIC_ANN;
  2458     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2459         switch (type.tag) {
  2460         case TypeTags.CLASS:
  2461             if ((type.tsym.flags() & ANNOTATION) != 0)
  2462                 checkNonCyclicElementsInternal(pos, type.tsym);
  2463             break;
  2464         case TypeTags.ARRAY:
  2465             checkAnnotationResType(pos, types.elemtype(type));
  2466             break;
  2467         default:
  2468             break; // int etc
  2472 /* *************************************************************************
  2473  * Check for cycles in the constructor call graph.
  2474  **************************************************************************/
  2476     /** Check for cycles in the graph of constructors calling other
  2477      *  constructors.
  2478      */
  2479     void checkCyclicConstructors(JCClassDecl tree) {
  2480         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2482         // enter each constructor this-call into the map
  2483         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2484             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2485             if (app == null) continue;
  2486             JCMethodDecl meth = (JCMethodDecl) l.head;
  2487             if (TreeInfo.name(app.meth) == names._this) {
  2488                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2489             } else {
  2490                 meth.sym.flags_field |= ACYCLIC;
  2494         // Check for cycles in the map
  2495         Symbol[] ctors = new Symbol[0];
  2496         ctors = callMap.keySet().toArray(ctors);
  2497         for (Symbol caller : ctors) {
  2498             checkCyclicConstructor(tree, caller, callMap);
  2502     /** Look in the map to see if the given constructor is part of a
  2503      *  call cycle.
  2504      */
  2505     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2506                                         Map<Symbol,Symbol> callMap) {
  2507         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2508             if ((ctor.flags_field & LOCKED) != 0) {
  2509                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2510                           "recursive.ctor.invocation");
  2511             } else {
  2512                 ctor.flags_field |= LOCKED;
  2513                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2514                 ctor.flags_field &= ~LOCKED;
  2516             ctor.flags_field |= ACYCLIC;
  2520 /* *************************************************************************
  2521  * Miscellaneous
  2522  **************************************************************************/
  2524     /**
  2525      * Return the opcode of the operator but emit an error if it is an
  2526      * error.
  2527      * @param pos        position for error reporting.
  2528      * @param operator   an operator
  2529      * @param tag        a tree tag
  2530      * @param left       type of left hand side
  2531      * @param right      type of right hand side
  2532      */
  2533     int checkOperator(DiagnosticPosition pos,
  2534                        OperatorSymbol operator,
  2535                        int tag,
  2536                        Type left,
  2537                        Type right) {
  2538         if (operator.opcode == ByteCodes.error) {
  2539             log.error(pos,
  2540                       "operator.cant.be.applied",
  2541                       treeinfo.operatorName(tag),
  2542                       List.of(left, right));
  2544         return operator.opcode;
  2548     /**
  2549      *  Check for division by integer constant zero
  2550      *  @param pos           Position for error reporting.
  2551      *  @param operator      The operator for the expression
  2552      *  @param operand       The right hand operand for the expression
  2553      */
  2554     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2555         if (operand.constValue() != null
  2556             && lint.isEnabled(LintCategory.DIVZERO)
  2557             && operand.tag <= LONG
  2558             && ((Number) (operand.constValue())).longValue() == 0) {
  2559             int opc = ((OperatorSymbol)operator).opcode;
  2560             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2561                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2562                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2567     /**
  2568      * Check for empty statements after if
  2569      */
  2570     void checkEmptyIf(JCIf tree) {
  2571         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(LintCategory.EMPTY))
  2572             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2575     /** Check that symbol is unique in given scope.
  2576      *  @param pos           Position for error reporting.
  2577      *  @param sym           The symbol.
  2578      *  @param s             The scope.
  2579      */
  2580     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2581         if (sym.type.isErroneous())
  2582             return true;
  2583         if (sym.owner.name == names.any) return false;
  2584         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2585             if (sym != e.sym &&
  2586                 (e.sym.flags() & CLASH) == 0 &&
  2587                 sym.kind == e.sym.kind &&
  2588                 sym.name != names.error &&
  2589                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2590                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2591                     varargsDuplicateError(pos, sym, e.sym);
  2592                     return true;
  2593                 } else if (sym.kind == MTH && !hasSameSignature(sym.type, e.sym.type)) {
  2594                     duplicateErasureError(pos, sym, e.sym);
  2595                     sym.flags_field |= CLASH;
  2596                     return true;
  2597                 } else {
  2598                     duplicateError(pos, e.sym);
  2599                     return false;
  2603         return true;
  2605     //where
  2606         boolean hasSameSignature(Type mt1, Type mt2) {
  2607             if (mt1.tag == FORALL && mt2.tag == FORALL) {
  2608                 ForAll fa1 = (ForAll)mt1;
  2609                 ForAll fa2 = (ForAll)mt2;
  2610                 mt2 = types.subst(fa2, fa2.tvars, fa1.tvars);
  2612             return types.hasSameArgs(mt1.asMethodType(), mt2.asMethodType());
  2615         /** Report duplicate declaration error.
  2616          */
  2617         void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2618             if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2619                 log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2623     /** Check that single-type import is not already imported or top-level defined,
  2624      *  but make an exception for two single-type imports which denote the same type.
  2625      *  @param pos           Position for error reporting.
  2626      *  @param sym           The symbol.
  2627      *  @param s             The scope
  2628      */
  2629     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2630         return checkUniqueImport(pos, sym, s, false);
  2633     /** Check that static single-type import is not already imported or top-level defined,
  2634      *  but make an exception for two single-type imports which denote the same type.
  2635      *  @param pos           Position for error reporting.
  2636      *  @param sym           The symbol.
  2637      *  @param s             The scope
  2638      *  @param staticImport  Whether or not this was a static import
  2639      */
  2640     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2641         return checkUniqueImport(pos, sym, s, true);
  2644     /** Check that single-type import is not already imported or top-level defined,
  2645      *  but make an exception for two single-type imports which denote the same type.
  2646      *  @param pos           Position for error reporting.
  2647      *  @param sym           The symbol.
  2648      *  @param s             The scope.
  2649      *  @param staticImport  Whether or not this was a static import
  2650      */
  2651     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2652         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2653             // is encountered class entered via a class declaration?
  2654             boolean isClassDecl = e.scope == s;
  2655             if ((isClassDecl || sym != e.sym) &&
  2656                 sym.kind == e.sym.kind &&
  2657                 sym.name != names.error) {
  2658                 if (!e.sym.type.isErroneous()) {
  2659                     String what = e.sym.toString();
  2660                     if (!isClassDecl) {
  2661                         if (staticImport)
  2662                             log.error(pos, "already.defined.static.single.import", what);
  2663                         else
  2664                             log.error(pos, "already.defined.single.import", what);
  2666                     else if (sym != e.sym)
  2667                         log.error(pos, "already.defined.this.unit", what);
  2669                 return false;
  2672         return true;
  2675     /** Check that a qualified name is in canonical form (for import decls).
  2676      */
  2677     public void checkCanonical(JCTree tree) {
  2678         if (!isCanonical(tree))
  2679             log.error(tree.pos(), "import.requires.canonical",
  2680                       TreeInfo.symbol(tree));
  2682         // where
  2683         private boolean isCanonical(JCTree tree) {
  2684             while (tree.getTag() == JCTree.SELECT) {
  2685                 JCFieldAccess s = (JCFieldAccess) tree;
  2686                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2687                     return false;
  2688                 tree = s.selected;
  2690             return true;
  2693     private class ConversionWarner extends Warner {
  2694         final String uncheckedKey;
  2695         final Type found;
  2696         final Type expected;
  2697         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2698             super(pos);
  2699             this.uncheckedKey = uncheckedKey;
  2700             this.found = found;
  2701             this.expected = expected;
  2704         @Override
  2705         public void warn(LintCategory lint) {
  2706             boolean warned = this.warned;
  2707             super.warn(lint);
  2708             if (warned) return; // suppress redundant diagnostics
  2709             switch (lint) {
  2710                 case UNCHECKED:
  2711                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2712                     break;
  2713                 case VARARGS:
  2714                     if (method != null &&
  2715                             method.attribute(syms.trustMeType.tsym) != null &&
  2716                             isTrustMeAllowedOnMethod(method) &&
  2717                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2718                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2720                     break;
  2721                 default:
  2722                     throw new AssertionError("Unexpected lint: " + lint);
  2727     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2728         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2731     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2732         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial